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1 IntroductionNon-trivial results, showing containment of fundamental complexity classes in one another, arequite rare. One of the �rst such results is Sipser's Theorem [12] by which BPP is containedin the Polynomial-Time Hierarchy. A simpler proof, placing BPP even lower in this hierarchy,was presented by Lautemann [10]. Although not stated in these (subsequently introduced) terms,Lautemann's proof actually establishes {Theorem 1 (The Sipser{Lautemann Theorem): BPP �MA.See de�nitions in next section.In this note, we present an alternative proof of the Sipser{Lautemann Theorem. Our proof relieson powerful results regarding randomness{e�cient error reduction (a.k.a ampli�cation) for BPP.Given these powerful results, our proof is almost a triviality.Using similiar arguments, we show that MA � ZPPNP (re-establishing a theorem of Zachosand Heller [14] by which BPP � ZPPNP). It follows that NPBPP � ZPPNP . To the best of ourknowledge, these results were not known before.The purpose of this note is three-fold: Firstly to demonstrate the power of the currently knownresults regarding randomness{e�cient error reduction. We believe that these results have not beenfully assimilated into complexity theory and are yet to be exploited by it. Secondly we wish tofocus attention on the fragment of the polynomial-time hierarchy which contains MA. It seemsthat this fragment gives rise to some challenges which may be within our current reach. Finally,we take the oppertunity to prove the new result claimed above.2 Background2.1 BPP and Ampli�cationDe�nition 1 (The class BPP): For any language L, we denote by �L the characteristic functionof the language; that is, �L(x) = 1 if x 2 L and �L(x) = 0 otherwise. A language L is in BPP ifthere exists a probabilistic polynomial-time machine M such that for every x 2 f0; 1g�Prob(M(x) 6= �L(x)) � 13where the probability is taken uniformly over the internal coin tosses of M .The error probability in the above procedure can be reduced by repetitions (a process hereafterreferred to as ampli�cation). The obvious way of doing so transforms a machine (as above) which,on input x, uses p(jxj) coins into a machine having error probability at most 2�t(jxj) which usesO(t(jxj) � p(jxj)) coins (for any polynomial t). More e�cient ampli�cation procedures, utilizingExpander Random Walks and other tricks, yield the same error bound while using only p(jxj) +(4 + o(1)) � t(jxj) coins (see survey [6]). In particular, for any constant c > 4, using a su�cientlylarge polynomial t, we get a procedure which uses c � t(jxj) coins and has error probability boundedby 2�t(jxj). An alternative construction due to Zuckerman provides, for any constant c > 1 andsu�ciently large polynomial t, a procedure which uses c � t(jxj) coins and has error probabilitybounded by 2�t(jxj). What is remarkable in the last procedure is that the number of coins usedis essentially the logarithm of the error bound. Put in other words, the number of \bad" coinsequences can be made any (constant) root of the total number of coin sequences. In particular,1



Theorem 2 (Zuckerman's e�cient ampli�cation of BPP [15]): For any language L in BPP, thereexists a polynomial-time recognizable binary relation R and a polynomial p such thatjfr 2 f0; 1gp(jxj) : R(x; r) 6= �L(x)gj < 2p(jxj)=32.2 The complexity class MADe�nition 2 (The class MA): A language L is inMA if there exists a polynomial-time recognizable3-ary relation V and polynomials p; q so that� If x 2 L then there exists w 2 f0; 1gq(jxj) so that for every r 2 f0; 1gp(jxj), V (x; w; r) = 1.� If x 62 L then for every w 2 f0; 1gq(jxj)Probr(V (x; w; r) = 1) � 12where the probability is taken uniformly over all r 2 f0; 1gp(jxj).The classMA, introduced by Babai [1], consists of languages having a Merlin{Arthur proof system:The prover (Merlin) sends a certi�cate (denoted w above) to the veri�er (Arthur) who assesses itprobabilistically (by tossing coins r and applying the predicate V ). Merlin{Arthur proof systemsare a degenerate type of interactive proof systems (introduced by Goldwasser, Micali and Racko� [7]and Babai [1]). Actually, in a Merlin{Arthur proof system there is no real interaction. Instead, it isinstructive to viewMA as the randomized version of NP: Here the \certi�cates" (for membership)can be veri�ed via a randomized procedure and errors may occur (alas with bounded probability).3 A proof of the Sipser{Lautemann Theorem3.1 The proof itselfUsing Zuckerman's e�cient ampli�cation of BPP, we present the following MA proof system. Specif-ically, we will refer to the relation R and the polynomial p guaranteed in Theorem 2.The protocol. On input x, both parties compute m = p(jxj), and proceed as follows.1. Merlin tries to select r0 2 f0; 1gm=2 so that R(x; r0r00) = 1 for all r00 2 f0; 1gm=2. Merlin sendsr0 to Arthur.2. Arthur selects r00 2 f0; 1gm=2 uniformly and accepts if and only if R(x; r0r00) = 1.Analysis of the above protocol. If x 2 L then there are at most 2m=3 possible r's for whichR(x; r) = 0. Thus there are at most 2m=3 pre�xes r0 2 f0; 1gm=2 for which some r00 exists so thatR(x; r0r00) = 0. Merlin may just select any of the other 2m=2�2m=3 pre�xes and make Arthur alwaysaccept. On the other hand, if x 62 L then there are at most 2m=3 possible r's for which R(x; r) = 1.Thus, for each r0 2 f0; 1gm=2Probr002f0;1gm=2(R(x; r0r00) = 1) � 2m=32m=2 � 122



3.2 DiscussionWhat we have done is partition the space of all (2m) possible coin-tosses outcomes into (2m=2)subsets of equal size. What we used is1. The number of bad outcomes is smaller than the number of subsets (and so there exists asubset with no bad outcomes). This was used to analyze the case x 2 L.2. The number of bad outcomes is much smaller than the size of each subset (and so each subsetcontains a majority of good outcomes). This was used to analyze the case x 62 L.Thus, what we have used is the fact that number of bad outcomes is much smaller than the squareroot of the total number of outcomes. The fact that any BPP-machine can be transformed intoa machine for which the above hold is highly non-trivial. We believe that this fact (or knowngeneralizations of it) may �nd further applications in complexity theory.Comparison to Lautemann's proof. Recall that Lautemann's proof has the prover send theveri�er t = m= log2m strings, s1; :::; st, and the veri�er tosses coins r 2 f0; 1gm and accepts i�R(x; r� si) = 1 holds for some i. The existence of an appropriate sequence of strings is proven byan elementary probabilistic argument. Actually, s1 may be any �xed string (e.g., 0m) and so needsnot be sent (by the prover). We observe that if we start with R as guaranteed by Theorem 2,then t = 2 su�ces. This gets us very close to the proof above. In fact, the probabilistic argumentof Lautemann reduces to the trivial counting argument above. Thus, using Theorem 2 allows alsoa simpli�cation of Lautemann's argument, although the proof presented earlier is believed to besimpler: Technically speaking, we have the prover send only m=2 bits (rather than m required inthe simpli�ed Lautemann's argument), the veri�er tosses only m=2 coins (again, rather than m),and the predicate R is evaluated only once (rather than twice).3.3 Two-sided error equals one-sided error for MABoth Lautemann's proof as well as ours can be extended to show that a two-sided error versionof MA equals the one-sided error de�ned above. (This provides an alternative proof to the onepresented in [13].) We mention that interactive proof systems with zero error collapse to NP,whereas for all (higher than MA) levels of the interactive proof hierarcy, the two-sided error versionequals the one-sided one [5].De�nition 3 (Two-sided version of MA): A language L is inMA2 if there exists a polynomial-timerecognizable 3-ary relation V and polynomials p; q so that� If x 2 L then there exists w 2 f0; 1gq(jxj) so thatProbr(V (x; w; r) = 1) � 23� If x 62 L then for every w 2 f0; 1gq(jxj)Probr(V (x; w; r) = 0) � 23In both cases, the probability is taken uniformly over all r 2 f0; 1gp(jxj).3



Note that NPBPP �MA2 (as Merlin may send an accepting computation of the non-deterministicpolynomial-time oracle-machine and Arthur may veri�er the validity of the oracle answers by run-ning a probabilistic decision procedure of negligible two-sided error).Theorem 3 [13, Thm 2(i)]: MA =MA2.Proof: For every x 2 L we consider w as guaranteed by the �rst condition, whereas for x 62 Lwe consider any w 2 f0; 1gq(jxj). Both Lautemann's proof and ours extend to the BPP promiseproblem, � = (�yes;�no), where�yes def= f(x; w) : Probr(V (x; w; r) = 1) � 23g�no def= f(x; w) : x 62 Lg� f(x; w) : Probr(V (x; w; r) = 0) � 23gIn particular, the ampli�cation technique of Zuckerman applies also to this case and so we obtaina predicate V 0 and a polynomail q0 such that8(x; w) 2 �yes jfr 2 f0; 1gq0(jxj) : V (x; w; r) = 0gj < 2q0(jxj)=38(x; w) 2 �no jfr 2 f0; 1gq0(jxj) : V (x; w; r) = 1gj < 2q0(jxj)=3Thus, we augment the above MA-protocol, as follows. On input x, with m = q0(jxj), Merlin sends(w; r0), where jr0j = m=2, and Arthur uniformly selects r00 2 f0; 1gm=2 and accepts if and only ifV 0(x; w; r0r00) = 1. As before, in case x 2 L, Merlin can make Arthur accept for every choice of r00;whereas, in case x 62 L, for any choice of w; r0, Arthur accepts with negligible probability.4 MA is contained in ZPP with an NP-oracleDe�nition 4 (The class ZPP): A language L is in ZPP if there exists a probabilistic polynomial-time machine M such that for every x 2 f0; 1g�Prob(M(x) = �L(x)) � 12Prob(M(x) = 1� �L(x)) = 0where the probability is taken uniformly over the internal coin tosses of M .Thus, the ZPP machine either gives the correct answer or gives no answer at all. Clearly ZPP =RP \ coRP (actualy, ZPP is sometimes de�ned this way). We start by providing an alternativeproof to a result of Zachos and HellerTheorem 4 [14, P. 132, Cor. 3]: BPP � ZPPNP .Proof: Using the same ampli�cation as above, we construct a probabilistic polynomial-time oraclemachine, M , which on input x operates as follows (where m = p(jxj)):1. Selects � 2 f0; 1g uniformly (as guess for �L(x));4



2. Selects r0 2 f0; 1gm=2 uniformly;3. Queries the oracle on whether (x; �; r0) is in the following coNP setf(y; �; s) : 8w 2 f0; 1gjsj ; R(y; sw) = �g4. If the oracle answers yes then the machine outputs �. Otherwise it halts with no output.Recall that by the above ampli�cation, for any x,� For any r0, jfr00 2 f0; 1gm=2 : R(x; r0r00) 6= �L(x)gj < 2m=2and so the oracle never answers yes on query (x; r0; 1 � �L(x)). Thus, the machine neveroutputs the wrong answer.� Probr0(8r00 2 f0; 1gm=2 ; R(x; r0r00) = �L(x)) > 12and so with probability at least 1=4, over the choices of � and r0, the oracle answers yes (andthe machine produces a 0-1 output).Using straightforward ampli�cation, the theorem follows.Combining ideas from the last two proofs, we obtain.Theorem 5 MA� ZPPNP.Combining Theorems 3 and 5 and observing that NPBPP � MA2 (see above), it follows thatNPBPP � ZPPNP .Proof: We consider the same promise problem, �, as in the proof of Theorem 3. We constructa probabilistic polynomial-time oracle machine, M , which on input x operates as follows (wheren = q(jxj) and m = p(jxj)):1. Uniformly selects r1; :::; r2n 2 f0; 1gm, and ask the NP-oracle whether there exists a w 2f0; 1gn so that ^2ni=1V (x; w; ri) = 1.2. In case oracle answers no then the machine halts with output 0.3. Otherwise, the machine uses the self-reducibility of the NP-oracle in order to �nd w as inItem 1. That is, the machine asks queries of the form \does there exists a w00 2 f0; 1gn�jw0jso that ^2ni=1V (x; w0w00; ri) = 1."4. Once w is found, the machine treats (x; w) as an input to the BPP promise problem � andproceeds as in the proof of Theorem 4. Speci�cally, it considers a strong ampli�cation of thispromise problem, selects a random pre�x, and queries whether all su�xes make the originalpredicate evaluate to 1. If the oracle answers yes then M halts with output 1; otherwise, Mhalts with no output. (We stress that we never output 0 in this step.)Given the analysis in the proof of Theorem 4, it su�ces to note the following5



� For any x (either in L or not), if Probr(V (x; w; r) = 1) < 23 thenProbr1;:::;r2n(^2ni=1V (x; w; r) = 1) < (2=3)2n < 12 � 2�nIt follows that for x 62 L, with probability at least 1=2 (over the choices of the ri's), the oracleanswer in Step 2 is no and machine M outputs 0.� It also follows that, with probability at least 1=2, none of the w's violating (x; w) 2 �yes willbe reconstructed in Step 3.� Thus, for any x 2 L, with probability at least 1=2, Step 4 is invoked with (x; w) 2 �yes. Inthis case (by the analysis in the proof of Theorem 4) machine M outputs 1 with probabilityat least 1=2.� On input x 2 L, the machine never outputs 0 (since 0 is output only in Step 1 upon acondition which never holds when x 2 L).� On input x 62 L, the machine never outputs 1 (since 1 is output only in Step 4 upon acondition which, by the analysis in the proof of Theorem 4, never holds when (x; w) 2 �no).Thus, we have seen that, for any x, the machine never errs and it produces output with probabilityat least 1=4.5 The bigger picture { the complexity classes around MA5.1 De�nitionsIn the following de�nitions all relations hold only on arguments of polynomially related length (i.e.,all tuples in a relation have arguments which are of length polynomial in the length of the �rstargument). Likewise, all quanti�ers range over arguments of such lengths.De�nition 5 (Traditional classes { classes of the 1970's:)� L is in �P2 = NPNP (resp., �P2 = coNPNP) if there exists a polynomial-time recognizable3-ary relation R so that L = fx : 9y8z R(x; y; z) = 1g(resp., L = fx : 8y9z R(x; y; z) = 1g)� A language L is in �P2 = PNP if there exists a deterministic polynomial-time oracle machineM and an NP-set A such that x 2 L i� MA(x) = 1, for all x's.� A language L is in RP if there exists a probabilistic polynomial-time machine M such thatx 2 L =) Prob(M(x) = 1) � 12x 62 L =) Prob(M(x) = 1) = 0De�nition 6 (AM [1] { a class of the 1980's:) A language L is in AM if there exists a polynomial-time recognizable 3-ary relation V and polynomials p; q so that6



� If x 2 L then for every r 2 f0; 1gp(jxj) there exists w 2 f0; 1gq(jxj) so that V (x; r; w) = 1.� If x 62 L then Probr(9w s.t. V (x; r; w) = 1) � 12where the probability is taken uniformly over all r 2 f0; 1gp(jxj).The class AM, introduced by Babai [1], consists of languages having an Arthur{Merlin proofsystems: The veri�er (Arthur) challenges the prover (Merlin) with a random query, denoted r, andgiven the prover's answer (denoted w) makes a decision using the predicate V . In contrast to Merlin{Arthur systems, here we have a real interaction between the prover and the veri�er. The class AMcoincides with the class of languages having constant-round interactive proof systems [1, 8]. Thus,it is the lowest level of the hierarchy of \real" interactive proofs [1, 7] (i.e., interactive proofs, whichunlike NP and MA, are really interactive).De�nition 7 (SP2 [4, 11] { a class of the 1990's:) L is in SP2 if there exists a polynomial-timerecognizable 3-ary relation R so that for every x 2 f0; 1g�9y8z R(x; y; z) = �L(x) (1)9z8y R(x; y; z) = �L(x) (2)The class SP2 was introduced independently by Canetti [4] and Russell and Sundaram [11] withthe motivation of providing a low \symmetric alternation class" which contains BPP. Indeed,Canetti [4] has extended Lautemann's proof to show that BPP � SP2 , whereas Russell and Sun-daram [11] showed that MA� SP2 (and thus BPP � SP2 ).5.2 Known InclusionsWe recall known inclusions between the classes de�ned above. For sake of self-containment, wepresent proofs as well. Recall that we already have BPP �MA.Syntactical Facts:1. P � RP � NP �MA.2. RP � BPP.3. RP � coMA. (This is a syntactical fact, although it can also be derived from RP � BPPand BPP �MA.)4. NP [ coNP � PNP .5. AM� �P2 .6. SP2 � �P2 \ �P2 . (Actually, the transparent syntactical facts are the inclusion SP2 � �P2 andthe closure of SP2 under complement.)7. ZPPNP � �P2 \�P2 . (Here the transparent fact is ZPPNP � RPNP � NPNP = �P2 .)Proposition 6 [1]: MA� AM. 7



Proof: We use a naive ampli�cation to reduce the error probability in the Merlin{Arthur gameto obtain error which is substantially smaller than the reciprocal of the number of possible Merlinmessages. Speci�cally, we obtain a polynomial-time recognizable 3-ary relation V and polynomialsp; q so that1. If x 2 L then there exists w0 2 f0; 1gq(jxj) so that for every r 2 f0; 1gp(jxj), V (x; w0; r) = 1.2. If x 62 L then for every w 2 f0; 1gq(jxj)Probr(V (x; w; r) = 1) < 12 � 2�q(jxj)Thus, Probr(9w 2 f0; 1gq(jxj) : V (x; w; r) = 1) � Xw2f0;1gq(jxj)Probr(V (x; w; r) = 1)< 12We construct an Arthur{Merlin proof system (de�ned by a new predicate V 0) by merely reversingthe order of moves in the above proof system, and using essentially the same decision predicate asabove: That is, we let V 0(x; r; w) def= V (x; w; r). This potentially makes the task of Merlin easier,and so we need only worry about the case x 62 L (which we handle easily using the above bound).Speci�cally, for the case x 2 L, we may use the string w0 (guaranteed in Item 1) as Merlin'sresponse to any challenge r (and so V 0(x; r; w0) = V (x; w0; r) = 1 for all r's). For the case x 62 Lwe use the bound in Item 2 and so Probr(9w 2 f0; 1gq(jxj) : V 0(x; r; w) = 1) < 0:5. The propositionfollows.Proposition 7 [11]: MA� SP2 .Proof: We use the same ampli�cation as in the previous proof. Here we write the case x 62 L as8w 2 f0; 1gq(jxj) jfr 2 f0; 1gp(jxj) : V (x; w; r) = 1gj < 2p(jxj)�q(jxj) � 1We de�ne a relation R (for the class SP2 ) so that R(x; y; z) = 1 if jyj = jzj = q(jxj) and at least oneof the following two conditions holds1. y = w0p(jxj)�q(jxj) and V (x; w; z) = 1.2. z = w0p(jxj)�q(jxj) and V (x; w; y) = 1.Clearly, this predicate is symmetric with respect to y and z. Thus, we only show, for any x, theexistence of a string y such that, for all z's, R(x; y; z) = �L(x). Let us shorthand m = p(jxj) andn = q(jxj). For x 2 L there exists w 2 f0; 1gn such that for all r 2 f0; 1gm, V (x; w; r) = 1. Thus,there exists y = w0m�n 2 f0; 1gm such that for all z 2 f0; 1gm, R(x; y; z) = 1. We now turn to thecase where x 62 L: In this case,jfr : 9w s.t. V (x; w; r) = 1gj < 2n � (2n�m � 1) = 2m � 2nThus, there exists r 2 f0; 1gm n f0; 1gn0m�n so that for every w 2 f0; 1gn, V (x; w; r) = 0. Givensuch an r, we prove that for all z's R(x; r; z) = 0. This holds since R(x; r; z) = 1 requires either rending with 0m�n (which does not hold by our choice) or z = w0n�m with V (x; w; r) = 1 (whichagain cannot hold). 8



Proposition 8 [11]: PNP � SP2 .Proof: Let M be a (deterministic) oracle machine recognizing L when given access to the NP-complete language A. We say that a string T is a valid transcript of M(x) if there exists someoracle so that T describes the computation of M on input x and access to this oracle. Note thatthe oracle's answers in a valid transcript of M(x) do not necessarily agree with the language A. Avalid transcript is said to be supported by a sequence of pairs s if for each oracle query q in T whichwas answered by 1 there is a pair (q; w) in s, where w is an NP-witness for membership of q in A.A valid transcript is said to be consistent with a sequence of pairs s if for each oracle query q in Twhich was answered by 0 there is no pair (q; w) in s, where w is an NP-witness for membership ofq in A. We consider a �xed parsing of strings into pairs (T; s), where s is a sequence of pairs.We are now ready to de�ne a relation R (for the class SP2 ): For y = (T; s) and z = (T 0; s0), welet R(x; y; z) def= � if at least one of the following two conditions holds1. T is a valid transcript of M(x) with output �, supported by s and consistent with s0.2. T 0 is a valid transcript of M(x) with output �, supported by s0 and consistent with s.In case none of the conditions hold, R(x; y; z) may be de�ned arbitrarily. Observe that R is well-de�ned (i.e., it can not be the case that T and T 0 are both valid, supported and consistent butwith di�erent outputs). Here we use the fact that M is deterministic and so given the same oracleanswers it must yield the same output. Also, given two valid transcripts which di�er on someoracle answer it cannot be that both transcripts are supported and consistent with the same twosequences of pairs.1 Finally, observe that for every x there exists a pair (T; s) with output �L(x)so that T is a valid transcript of M(x), supported by s and consistent with any possible sequenceof pairs.5.3 Conjectured SeparationsBelow we present some common conjectures.Conjecture 1 (The leading conjecture of TOC): P 6= NP.Conjecture 2 (most widely believed): NP 6� BPP.Conjecture 3 (most widely believed): NP 6= coNP.Conjecture 4 (widely believed): The Polynomial-Time Hierarchy does not collapse.Conjecture 4 implies the following (see [3]):Conjecture 5 (widely believed): coNP 6� AM.We believe that Conjecture 5 is interesting on its own.1Consider the �rst conicting answer and suppose, without loss of generality, that the transcript T the answer is1. Since T is supported by a sequence of pairs s, it cannot be the case that T 0 (in which the answer to the samequery is 0) is consistent with s. 9
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