
Improved derandomization of BPP using a hitting set generatorOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.il Avi WigdersonInstitute of Computer ScienceThe Hebrew University of JerusalemGivat-Ram, Jerusalem, Israelavi@cs.huji.ac.ilJune 2, 1999AbstractA hitting-set generator is a deterministic algorithm which generates a set of strings thatintersects every dense set recognizable by a small circuit. A polynomial time hitting-set gen-erator readily implies RP = P . Andreev et. al. (ICALP'96, and JACM 1998) showed that ifpolynomial-time hitting-set generator in fact implies the much stronger conclusion BPP = P .We simplify and improve their (and later) constructions.Keywords: Derandomization, RP, BPP , one-sided error versus two-sided error,

0

1 IntroductionThe relation between randomized computations with one-sided error and randomized computationswith two-sided error is one of the most interesting questions in the area. Speci�cally, we refer tothe relation betwen RP and BPP. In particular, does RP = P imply BPP = P?The breakthrough paper of Andreev et. al. [1] (and its sequel [2]) gave a natural setting inwhich the answer is yes. The setting is a speci�c natural way to prove RP = P, namely via\hitting-set generators" (see exact de�nition below). Intuitively, such a generator outputs a set ofstrings, that hits every large e�ciently-recognizable set (e.g., the witness set of a positive inputof an RP language). Having such a generator which runs in polynomial time enables the trivialdeterministic simulation of an RP algorithm using each of its outputs as the random pad of thegiven algorithm.The main result of [1] was that such a generator for 1-sided error algorithms already su�cesto derandomize 2-sided error algorithms: the existence of polynomial-time hitting set generatorsimply BPP = P.De�nition 1 (hitting set generator): An algorithm, G, is called a hitting set generator for circuitsif for every n; s 2 N (given in unary) generates as output a set of n-bit strings G(n; s) with thefollowing property: every circuit of size s on n input bits, which accepts at least half its inputs,accepts at least one element from the set G(n; s).1Since s = s(n) is the essential complexity parameter (n � s), we let tG(s) denote the running time ofthe generator G on input (n; s), and NG(s) denote the size of its output set. Clearly NG(s) � tG(s).The result of Andreev et. al. [1] isTheorem 2 [1]: If there exists a hitting-set generator G running in time tGthen BPP � DTime(poly(tG(poly(n))).With the most important special case (i.e., tG(s) = poly(s))Corollary 3 [1]: If G runs in polynomial time then BPP = P.Our main result is a simple proof of Theorem 2. To explain what simple means is not so simple,and we have to explain how the given generator assumed in the theorem is used to enable thederandomization of BPP , in the proof of [1] and in later proofs. Indeed later proofs (of [2] andthen [3]) were much simpler, but while proving Corollary 3, they fell short of proving Theorem 2.The reader is warned that the following discussion is on an intuitive level and some thingscannot easily be made precise. If you don't like such discussions, you are welcome to skip to theformal proof in the next two sections.The proof in [1] uses the generator in two ways. Once, literally as a producer of a hitting set forall large e�cient sets. Second, and more subtly, as a hard function. Observe that the existence ofsuch a generator G immediately implies the existence of a function in E on O(log tG(s)) bits whichcannot be computed by circuits of size s. These two ways are combined in a rather involved wayfor the derandomization of BPP .It is interesting to note that for the case tG(s) = poly(s), the resulting hard function mentionedabove can be plugged into the pseudo{random generator of [6], to yield BPP = P as in Corolarry 3.1Usually generators are de�ned to output only one string; in terms of the above de�nition it means that on inputan index i 2 f1; :::; jG(n; s)jg, the generator outputs the ith string in G(n; s). However, we �nd the current conventionsimpler to work with in the current context. 1

However, [6] was unavailable to the authors of [1] at the time (the two papers are independent).Moreover, [6] is far from \simple", it does use the computational consequence which we are tryingto avoid, and anyway it is not strong enough to yield Theorem 2.A considerably simpler proof was given in [2]. There the generator is used only in its \originalcapacity", as a hitting set generator, without explicitely using any computational consequence ofits existence. In some sense, this proof is more clearly a \black-box" use of the output set of thegenerator. However, something was lost. The running time of the derandomization is replaced bypoly(tG(tG(poly(n))).On the one hand, this is not too bad. For the interesting case of tG(s) = poly(s) (whichimplies RP = P), they still get the consequence of 3 BPP = P (as iterating a polynomial functiontwice results in a polynomial). On the other hand, if the function tG grows moderately so thattG(tG(n)) = 2n, then we have as assumption a highly nontrivial derandomization of RP , but theconsequence is a completely trivial derandomization of BPP.The best (to our taste) way to understand the origin of the iterated application of the functiontG in the result above, is explained in the recent paper [3], which further simpli�es the proof of [2].They remind the reader that Sipser's proof [8] putting BPP in �2 \�2 actually gives much more.In fact, viewed appropriately, it almost begs (with hindsight) the use of hitting sets!The key is, that in both the 89 and 98 expressions for the BPP language, the \witnesses"for the existential quanti�er are abundant. Put di�erently, BPP � RP prRP , (where prRP is thepromise-problem version of RP). But if you have a hitting set, you can use it �rst to derandomizethe \oracle" part or the right hand side. This leaves us with an RTime(tG(poly(n)) machine, whichcan again be derandomized (using hitting sets for tG(poly(n)) size circuits).In short, the \two quanti�er" representation of BPP , leads to a two-level recursive applicationof the generator. It seems hopeless to reduce the number of quanti�ers to one in Sipser's result. Soanother route has to be taken to prove Theorem 2 in a similar \direct" (or \black-box") as above,without incurring the penalty arising from this two level recursion.We eliminate the recursion to have only one-level use of the hitting set, by \increasing thedimension to two": We view the possible random strings of the BPP algorithm as elements in amatrix. This is inspired by another, recent proof (strengthening Sipser's result) that BPP �MA,due to Goldreich and Zuckerman [5]. There and here strong extractors (cf., [10] or [9]) are usedto ensure that in this matrix, the \non-witnesses" are not only few, but actually miss most rowsand columns. The hitting set is used to select a small subset of the rows and a small subset ofthe columns, and the entries of this submatrix determine the result. Speci�cally we will look for\enough" (yet few) rows which are monochromatic, and decide accordingly. The correctness ande�ciency of the test is spelled out is Lemma 6. It is essentially captured by the following simpleRamsey-type result, which is seemingly new and may be of independent interest.Proposition 4 Let n � 2k. Then for every n-vertex graph, either the graph or its complement hasa dominating set of size k. Furthermore, one can �nd such a set in polynomial time.We end by observing that (like the previous results) our result holds in the context of promiseproblems. Hence, the existence of hitting set generators provide an e�cient way for approximatelycounting the fraction of inputs accepted by a given circuit within additive polynomial fraction.Formalizing this is standard and we leave it to the reader.
2

2 The Derandomization ProcedureGiven L 2 BPP we �rst use strong results regarding extractors (cf., [10] or [9]) to obtain a proba-bilistic polynomial-time algorithm, A, which on inputs of length n uses 2` = poly(n) many randombits and errs with probability at most 2�(`+1).2 Let A(x; r) denote the output of algorithm A oninput x 2 f0; 1gn and random-tape contents r 2 f0; 1g2`, and p be some �xed polynomial so thatthe computation of A on inputs of length n can be implemented by circuits of size p(`)=`. Ourderandomization procedure, described below, utilizes a hitting-set generator H as de�ned above(cf., Def. 1).Derandomization procedure: On input x 2 f0; 1gn, letting A and ` be as above.1. Invoking the hitting-set generator G obtain H G(` ; p(`)). That is, H is a hitting setfor circuits of size p(`) and input length `. Denote the elements of H by e1; :::; eN, whereN def= NG(p(`)) and each ei is in f0; 1g`.2. Construct an N-by-N matrix, M = (vi;j)i;j , so that vi;j = A(x; eiej). That is, we run A withall possible random-pads composed of pairs of strings in H.3. Using a procedure to be speci�ed below, determine whether for every ` columns there exists arow on which all these columns have 1-value. If the procedure accepts then accept else rejects.That is, we accept if and only if8c1; :::; c` 2 [N] 9r 2 [N] s.t. ^ì=1 (vci;r = 1) (1)We �rst show that if x 2 L then Eq. (1) holds, and analogously if x 62 L then8r1; :::; r` 2 [N] 9c 2 [N] s.t. ^ì=1 (vri;c = 0) (2)Note that this by itself does not establish the correctness of the procedure. Neither did we specifyhow to e�ciently implement the procedure. To that end we use a general technical lemma whichimplies that it cannot be the case that both Eq. (1) and Eq. (2) hold, and in fact e�ciently decidesat least one which does not hold. These are defered to the next section. But �rst we prove theabove implications.Proposition 5 If x 2 L (resp., x 62 L) then Eq. (1) (resp., Eq. (2)) holds,Proof: We shall prove a more general statement. That is, let �L be the characteristic function ofL (i.e., �L(x) = 1 if x 2 L and �L(x) = 0 otherwise). Then we prove that for every x 2 f0; 1gn, forevery ` rows (resp., columns) there exists a column (resp., row) on which the value of the matrixis �L(x).Fixing the input x 2 f0; 1gn to algorithm A, we consider the circuit Cx which takes an 2`-bitinput r and outputs A(x; r) (i.e., evaluates A on input x and coins r). By the above hypothesis(regarding the error probability of A), we havePrr2f0;1g2` [Cx(r) 6= �L(x)] � 2�(`+1)Thus, at least half the values of z 2 f0; 1g` satisfy 8yCx(y; z) = �L(x). We will use a much weakerconsequence, namely, that the above holds for every set of ` values of y (and this weakness is thekey to our more e�cient reduction).2We note that using [10], ` is linear in the randomness of the original BPP-algorithm, and the polynomial p belowis quite large. Using the extractors in [9, 7], one may be able to obtain more favorite bounds.3

1. Fix any sequence y = (y1; :::; y`) so that y1; :::; y` 2 f0; 1g`. Then,Prz2f0;1g` [(8i) Cx(yiz) = �L(x)] � 1=2 (3)Consider the circuit Cx;y(z) def= ^ì=1(Cx(yiz) = �L(x)). Then, by the above Prz[Cx;y(z) =�L(x)] � 1=2. On the other hand, the size of Cx;y is merely ` times the size of Cx, which was atmost p(`)=`. Thus, by de�nition of the hitting-set generator G, the set H = G(` ; p(`)) mustcontain a string z so that Cx;y(z) = �L(x). By de�nition of Cx;y it follows that Cx(yiz) =�L(x) holds for every i 2 [`].The above holds for any y = (y1; :::; y`). Thus, for every y1; :::; y` 2 f0; 1g` there exists z 2 Hso that A(x; yiz) = Cx(yiz) = �L(x) for every i 2 [`].Thus we have proved that for every ` rows in M there exists a column on which the value ofthe matrix is �L(x).2. A similar argument applies to sets of ` columns inM . Speci�cally, for every z1; :::; z` 2 f0; 1g`Pry2f0;1g` [(8i) Cx(yzi) = �L(x)] � 12Again, we conclude that for every z1; :::; z` 2 f0; 1g`, there exists y 2 H so that Cx(yzi) =�L(x) for every i 2 [`]. Thus, for every ` columns in M there exists a row on which the valueof the matrix is �L(x).The proposition follows.3 Correctness and E�ciency of the DerandomizationProposition 5 shows that for every x either Eq. (1) or Eq. (2) holds. But, as stated above, it is noteven clear that Eq. (1) and Eq. (2) cannot hold simultaneously. This is asserted next.Lemma 6 Every n-by-n Boolean matrix, with n � 2k, either has k rows whose OR is the all1's row, or k columns whose AND is the all 0's column. Moreover, there is a (deterministic)polynomial-time algorithm that given such a matrix �nd such a set.We prove the lemma momentarily. But �rst let use show that Eq. (1) and Eq. (2) cannot holdsimultaneously. We �rst note that in our case n = N = NG(`; p(`)) (which is smaller than 2` by thehypothesis of Theorem 2) and k = `. Then we just apply the following corollary.Corollary 7 For every n-by-n Boolean matrix, with n � 2k, it is impossible that both1. For every k rows there exists a column so that all the k rows have a 0-entry in this column.2. For every k columns there exists a row so that all the k columns have a 1-entry in this row.Furthermore, assuming one of the above holds, we can decide which holds in (deterministic) polynomial-time.
4

Proof (of Corollary 7): Suppose Item (1) holds. Then, the OR of every k rows contains a0-entry, and so cannot be the all 1's row. Likewise, if Item (2) holds then the AND of every kcolumns contains a 1-enrty, and so cannot be the all 0's column. Thus, the case where both itemsholds stands in contradiction to Lemma 6. Furthermore, �nding a set as in the lemma yields whichof the two items does not hold.Proof of Lemma 6: Let S0 = [n], R = ;, and repeart for i = 1; 2; :::: Take a row j not in Rwhich has at least jSij=2 1's in Si. Add j to R, and let Si+1 be the part of Si that had 0's in rowj. We get stuck if for any i, no row in current [n]�R has at least jSij=2 1's in Si. Otherwise, weterminate when Si = ;If we never get stuck, then we generated at most log2 n � k rows whose OR is the all 1's row(as the ith row has 1-entries in every column in Si�1 � Si, and the last Si is empty). On theother hand, if we got stuck at iteration i, let S = Si. Note that every row has at least S=2 0's inthe columns S. (This includes the rows in the current R which have only 0's in the columns inS � Si�1 � � � � � S0.) But now picking greedily columns from S in sequence so as to contain thelargest number of 0's in the remaining rows will clearly pick a 0 from every row after a set T of atmost k columns from S were chosen.Turning to the algorithmics, note that the above procedure for constructing R, S and T isimplementable in polynomial-time. Thus, in case the \row" procedure was completed successfully,we may output the set of rows R, and otherwise the set T of columns.Proof of Theorem 2: Proposition 5 shows that for every x either Eq. (1) or Eq. (2) holds,and furthermore that the former (resp., latter) holds whenever x 2 L (resp., x 62 L). By applyingCorollary 7 as indicated above it follows that only one of these equation may hold. Using the decisionprocedure gauarnteed by this corollary, we implement Step 3 in our derandomized procedure, andTheorem 2 follows.References[1] A.E. Andreev, A.E.F. Clementi, and J.D.P. Rolim. A new general derandomizationmethod. Journal of the Association for Computing Machinery (J. of ACM), 45(1), pages179{213, 1998.Hitting Sets Derandomize BPP. In XXIII International Colloquium on Algorithms, Logicand Programming (ICALP'96), 1996.[2] A.E. Andreev, A.E.F. Clementi, J.D.P. Rolim and L. Trevisan, Weak Random Sources,Hitting Sets, and BPP Simulations. To appear in SIAM J. on Comput.. Preliminaryversion in 38th FOCS, pages 264{272, 1997.[3] H. Buhrman and L. Fortnow. One-sided versus two-sided randomness. In Proceedingsof the 16th Symposium on Theoretical Aspects of Computer Science. Lecture Notes inComputer Science, Springer, Berlin, 1999.[4] S. Even, A.L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-plications to Public-Key Cryptography. Inform. and Control, Vol. 61, pages 159{173,1984. 5

[5] O. Goldreich and D. Zuckerman. Another proof that BPP subseteq PH (and more).ECCC, TR97-045, 1997.[6] R. Impagliazzo, A. Wigderson, P=BPP unless E has Subexponential Circuits: Deran-domizing the XOR Lemma. 29th STOC, pages 220{229, 1997.[7] R. Raz, O. Reingold and S. Vadhan. Extracting all the Randomness and Reducing theError in Trevisan's Extractors In 31st STOC, pages 149{158, 1999.[8] M. Sipser. A complexity-theoretic approach to randomness. In 15th STOC, pages 330{335,1983.[9] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Genera-tors. In 31st STOC, pages 141{148, 1999.[10] D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algorithmica,Vol. 16, pages 367{391, 1996.

6

