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1 Introdu
tionIn the last 
ouple of de
ades, the area of property testing has attra
ted mu
h attention (see, e.g., a
ouple of re
ent surveys [14, 15℄). Loosely speaking, property testing typi
ally refers to sub-lineartime probabilisti
 algorithms for de
iding whether a given obje
t has a predetermined property oris far from any obje
t having this property. Su
h algorithms, 
alled testers, obtain lo
al views ofthe obje
t by making adequate queries; that is, the obje
t is seen as a fun
tion and the testers getora
le a

ess to this fun
tion (and thus may be expe
ted to work in time that is sub-linear in thelength of the obje
t).While a host of fas
inating results and te
hniques has emerged, the desire for a 
omprehensiveunderstanding of what makes some properties easy to test (while others are hard to test) is far frombeing satis�ed.1 Two general approa
hes that seem to have a potential of addressing the question(of \what makes testing possible") were suggested re
ently.1. Restri
ting attention to the 
lass of proximity oblivious testers, whi
h are 
onstant-querytesters that reje
t any obje
t with probability proportional (but not ne
essarily linearly pro-portional) to its distan
e from the predetermined property. Indeed, the 
hara
terization ofproximity oblivious testers, in two 
entral models of graph properties, obtained in [8℄, seemsto answer the foregoing question: graph properties have proximity oblivious testers if and onlyif they 
an be 
hara
terized in terms of adequate lo
al 
onditions.22. But even before [8℄, an approa
h based on adequately invariant lo
al 
onditions was putforward in [12℄. It was shown that in the 
ontext of testing algebrai
 properties, a suÆ
ient
ondition for testability (whi
h in fa
t yields proximity oblivious testers) is that the property
an be 
hara
terized in terms of lo
al 
onditions that are invariant in an adequate sense.Thus, these two approa
hes have a very similar 
avor, but they are very di�erent at the a
tualdetails. On the one hand, the de�nition of proximity oblivious testers does not refer to any stru
tureof the underlying domain of fun
tions, and the lo
al 
onditions in the two graph models do not referexpli
itly to any invarian
e. However, invarian
e under relabeling of the graph's verti
es is impli
itin the entire study of graph properties (sin
e the latter are de�ned in terms of su
h invarian
e). Onthe other hand, the linear invarian
es 
onsidered in [12℄ presume that the fun
tions' domain 
an beasso
iated with some ve
tor spa
e and that the properties are invariant under linear transformationsof this ve
tor spa
e.Thus, the �rst task that we undertake is providing a de�nition of a general notion of \
hara
-terization by invariant lo
al 
onditions", where at the very minimum this general de�nition shouldunify the notions underlying [8, 12℄. Su
h a de�nition is presented in Se
tion 2.Given su
h a de�nition, a natural 
onje
ture that arises, hereafter referred to as the invarian
e
onje
ture, is that a property has a 
onstant-query proximity-oblivious tester if and only if it 
anbe 
hara
terized by invariant lo
al 
onditions. This 
onje
ture is rigorously formulated within ourde�nitional framework (see Se
tion 2.2) and the 
urrent work is devoted to its study. The mainresults of our study may be stated informally as follows:1. The invarian
e 
onje
ture holds in the 
ontext of testing graph properties in the dense graphmodel (see Theorem 3.1).1This assertion is not meant to undermine signi�
ant su

esses of several 
hara
terization proje
ts, most notablythe result of [1℄.2We warn the the pi
ture is a
tually not that 
lean, be
ause in the 
ase of the bounded-degree model the notionof adequa
y in
ludes some te
hni
al 
ondition, termed non-propagation.1



2. The invarian
e 
onje
ture holds in the 
ontext of testing graph properties in the bounded-degree graph model if and only if all lo
al properties are non-propagating (see Theorem 3.1and Open Problem 5.8 in [8℄).3. In general, the invarian
e 
onje
ture fails in both dire
tions.(a) Chara
terization by invariant lo
al 
onditions is not ne
essary for proximity oblivioustesting. This is demonstrated both by linear properties (see Theorem 5.1) and by thedi
tatorship property (see Theorem 5.2).(b) Chara
terization by invariant lo
al 
onditions is not suÆ
ient for proximity oblivioustesting (see Theorem 5.3). This is demonstrated by the property 
alled Eulerian orien-tation (whi
h refers to the orientation of the edges of a 
y
li
 grid, 
f. [5℄).Thus, there are natural settings in whi
h the invarian
e 
onje
ture holds, but there are also naturalsettings in whi
h it fails (in ea
h of the possible dire
tions).The te
hni
al angle. Items 1 and 2 are established by relying on 
orresponding results of [8℄,while our 
ontribution is in observing that the lo
al 
onditions stated in [8℄ (in terms of subgraphfreeness) 
oin
ide with lo
al 
onditions that are invariant under graph isomorphisms. A
tually, torule out 
hara
terizations by other possible invarian
es, we use the 
anonization te
hnique of [9,Thm. 2℄. In the two examples of Item 3a we rely on the fa
t that these properties were shown tohave (proximity oblivious) testers in [11℄ and [3℄, respe
tively. Thus, in both 
ases, our 
ontributionis showing that these properties 
annot be 
hara
terized by invariant lo
al 
onditions. In Item 3bwe rely on a lower bound established in [5℄ (regarding testing Eulerian orientations of 
y
li
 grids),and our 
ontribution is in observing that this property 
an be 
hara
terized by invariant lo
al
onditions.We mention that the property used towards establishing Item 3b is invariant under a 1-transitive3 permutation group. Thus, even su
h an invarian
e feature does not guarantee easytestability (i.e., a standard tester of query 
omplexity that only depends on the proximity param-eter).Terminology. Throughout the text, when we say proximity oblivious testing we a
tually meanproximity oblivious testing in a 
onstant number of queries. The de�nition of proximity oblivioustesting appears in the appendix.Organization. In Se
tion 2 we provide a de�nitional framework that 
aptures the foregoingdis
ussion. In parti
ular, this framework in
ludes a general de�nition of the notion of 
hara
-terizations by invariant lo
al 
onditions and a formal statement of the invarian
e 
onje
ture. InSe
tion 3 we show the the invarian
e 
onje
ture holds in the 
ontext of testing graph propertiesin the dense graph model, and in Se
tion 4 we present an analogous 
onditional (or partial) resultfor the bounded-degree graph model. The failure of the invarian
e 
onje
ture is demonstrated inSe
tion 5, and possible 
on
lusions are dis
ussed in Se
tion 6.3A permutation group G over D is 
alled 1-transitive if for every e; e0 2 D there exists a � 2 G su
h that �(e) = e0.
2



2 General FrameworkFor simpli
ity, we 
onsider properties of �nite fun
tions de�ned over a �nite domain D and havinga �nite range R, whereas an asymptoti
 treatment requires 
onsidering properties that are in�nitesequen
es of su
h properties (i.e., a sequen
e of the type (Pn)n2N where Pn is a set of fun
tionsfrom Dn to Rn). Still, we shall just write P;D;R, and (in order for our asymptoti
 statements tomake sense) one should think of Pn;Dn; Rn. In parti
ular, when we say that some quantity is a\
onstant", we a
tually think ofD as growing (along with P and possiblyR), while the said quantityremains �xed. Thus, in the rest of our presentation, D and R should be 
onsidered as generi
 setshaving a variable size, although they will be often omitted from de�nitions and notations.The simpli�ed form of the invariant 
ondition. We start by outlining a simpli�ed versionof the 
ondition that we seek, regarding a property P (of fun
tions D ! R):1. P is 
losed under the a
tion of some permutation group G, whi
h is de�ned over D, and2. P has a 
hara
terization via a 
onstant number of \generi
" 
onstraints of 
onstant size su
hthat a fun
tion f is in P i� all a
tual 
onstraints obtained by having G a
t on the generi

onstraints are satis�ed.In other words, P 
an be 
hara
terized by a set of 
onstraints that are generated by some permu-tation group G a
ting on a 
onstant number of 
onstant-size 
onstraints.We stress that the foregoing permutation group G is 
hosen arbitrarily, and may depend on P(and not only on a natural 
lass of properties to whi
h P belongs). Thus, if P is a graph property,then G need not be the group that preserves all graph properties (i.e., the vertex-relabeling group),but rather may be any group that extend the vertex-relabeling group. For example, if P is theproperty of having more edges than non-edges, then the group may be the symmetri
 group of all(unordered) vertex pairs, whi
h in parti
ular 
ontains the vertex-relabeling group as a subgroup.2.1 Chara
terization by generated 
onstraintsWe now generalize and 
larify the above dis
ussion. First we need to de�ne what we mean bya 
onstraint. A 
onstraint will be a pair 
onsisting of domain elements and a Boolean predi
ateapplied to the 
orresponding values, and it is satis�ed by a fun
tion f if applying the predi
ate tothe f -values at the spe
i�ed lo
ations yields the Boolean value 1 (representing true).De�nition 2.1 (
onstraints): A 
onstraint is a pair ((e1; :::; e
); �) su
h that e1; :::; e
 are distin
telements in D, and � : R
 ! f0; 1g is an arbitrary predi
ate. We say that the foregoing is a
onstraint of arity 
 (or a 
-
onstraint). A fun
tion f : D ! R is said to satisfy the foregoing
onstraint if �(f(e1); :::; f(e
)) = 1.Note that at this point the predi
ate � may depend on the sequen
e of elements (e1; :::; e
). Su
ha dependen
e will not exist in the 
ase that a large set of 
onstraints is generated based on few
onstraints (as in De�nition 2.3).The next notion is of 
hara
terization by a set of 
onstraints. A property P of fun
tions is
hara
terized by a set of 
onstraints if f is in P if and only f satis�es all 
onstraints in the set.De�nition 2.2 (
hara
terization by 
onstraints): Let C be a set of 
onstraints and P be a property.We say that P is 
hara
terized by C if for every f : D ! R it holds that f 2 P if and only if fsatis�es ea
h 
onstraint in C. 3



Next, we 
onsider the set of 
onstraints generated by the 
ombination of (1) a �xed set of 
onstraints,(2) a group of permutations over D, and (3) a group of permutations over R. For starters, thereader is advised to think of the se
ond group as of the trivial group 
ontaining only the identitypermutation. In general, we shall 
onsider a subset of the set of all pairs 
onsisting of a permutationas in (2) and a permutation as in (3).De�nition 2.3 (generated 
onstraints): Let C be a �nite set of 
-
onstraints, and M be a set ofpairs 
onsisting of a permutation over D and a permutation over R (i.e., for any (�; �) 2 M itholds that � is a permutation of D and � is a permutation R). The set of 
onstraints generated byC and M , denoted CONS(C;M), is de�ned byCONS(C;M) def= f((�(e1); :::; �(e
)); � Æ ��1) : ((e1; :::; e
); �)2C ; (�; �)2Mg (1)where � Æ ��1(v1; :::; v
) denotes �(��1(v1); :::; ��1(v
)).Note that saying that f satis�es ((�(e1); :::; �(e
)); � Æ ��1) means that(� Æ ��1)(f(�(e1)); :::; f(�(e
))) = �(��1(f(�(e1))); :::; ��1(f(�(e
)))) = 1;whi
h means that ��1 Æf Æ� satis�es the 
onstraint ((e1; :::; e
); �). Regarding the use of ��1 Æf Æ�rather than � Æ f Æ �, see dis
ussion following De�nition 2.5.Notation: As in De�nition 2.3, it will be 
onvenient to generalize fun
tions to sequen
es overtheir domain. That is, for any fun
tion F de�ned over some set S, and for any e1; :::; et 2 S, wedenote the sequen
e (F (e1); :::; F (et)) by F (e1; :::; et). Throughout the text, id will be used todenote the identity permutation, where the domain is understood from the 
ontext.2.2 The invarian
e 
onditionReturning to the 
ondition outlined initially, let us now formulate it as follows. We 
onsider agroup of pairs (�; �) su
h that � is a permutation over D and � is a permutation over R with agroup operation that 
orresponds to 
omponent-wise 
omposition of permutations (i.e., (�1; �1)�(�2; �2) = (�1 Æ �2; �1 Æ �2), where � denotes the group operation). We 
all su
h a group a groupof permutation pairs, and note that it need not be a dire
t produ
t of a group of permutation overD and a group of permutations over R.De�nition 2.4 (the invarian
e 
ondition): A property P satis�es the invarian
e 
ondition if thereexists a 
onstant, denoted 
, a �nite set of 
-
onstraints, denoted C, and a group, denoted M , ofpermutation pairs over D � R su
h that P is 
hara
terized by CONS(C;M). In this 
ase, we alsosay that P satis�es the invarian
e 
ondition w.r.t M .Re
all that the group operation � of M satis�es (�1; �1) � (�2; �2) = (�1 Æ �2; �1 Æ �2), whereÆ denotes 
omposition of permutations. Thus, M indu
es a permutation group over D (as wellas one over R), but M is not ne
essarily their dire
t produ
t (e.g., for D = R, it may be thatM = f(�; �) : � 2 Gg, where G is a permutation group over D).
4



The invarian
e 
ondition and 
overing the domain. We 
on�ne our dis
ussion to the 
asethat the domain 
ontains only elements that are in
uential w.r.t the property P; that is, for everye 2 D, there exists f1 2 P and f0 62 P su
h that f1(x) = f0(x) for every x 2 D n feg. Observe thatif property P satis�es the invarian
e 
ondition w.r.t M , then M indu
es a transitive permutationgroup on a 
onstant fra
tion of D. This follows be
ause the permutation group (over D) indu
edby M must map a 
onstant number of elements (i.e., those appearing in the 
onstraint set C) toall elements of D.The main question. We ask what is the relation between satisfying the invarian
e 
onditionand having a proximity oblivious tester (of 
onstant-query 
omplexity). One natural 
onje
ture,hereafter referred to as the invarian
e 
onje
ture, is that a property satis�es the invarian
e 
onditionif and only if it has a proximity oblivious tester. Weaker forms of this 
onje
ture refer to its validitywithin various models of property testing. This leads us to ask what are \models of propertytesting".2.3 Models of property testingNatural model of property testing 
an be de�ned by spe
ifying the domain and range of fun
tions(i.e., D and R) as well as 
losure features of the properties in the model.4 We elaborate below (andmention that this view was elaborated independent by Sudan [17℄).For example, the model of testing graph properties in the adja
en
y matrix representation,introdu
ed in [6℄, refers to D = �[N ℄2 � and R = f0; 1g as well as to the permutation group overD that is de�ned by all relabeling of [N ℄. Spe
i�
ally, an N -vertex graph is represented by theBoolean fun
tion g : �[N ℄2 � ! f0; 1g su
h that g(fu; vg) = 1 if and only if u and v are adja
entin the graph. Here an adequate 
losure feature gives rise to graph properties, where P is a graphproperty if, for every su
h fun
tion g, and every permutation  over [N ℄, it holds that g 2 P i�g 2 P, where g (fu; vg) def= g(f (u);  (v)g).In general, 
losure features are de�ned by groups of pairs of permutations, just as those inDe�nition 2.4.De�nition 2.5 (
losure features): Let M be as in De�nition 2.4. We say that a property P is
losed under M if, for every (�; �) 2M , it holds that f 2 P if and only if � Æ f Æ ��1 2 P.Note that � Æ f Æ ��1 (rather than � Æ f Æ �) is indeed the natural 
hoi
e, sin
e f maps D to Rwhereas the new fun
tion f 0 = � Æ f Æ ��1 is meant to map �(D) to �(R); thus, when f 0 is appliedto e0 = �(e) this results in �rst re
overing e, next applying f , and �nally applying �.De�nition 2.6 (
losure-based models of property testing): The model of M 
onsists of the 
lassof all properties that are 
losed under M .For example, the model of testing graph properties in the adja
en
y matrix representation 
orre-sponds to the set M that equals all pairs (�; id) su
h that there exists a permutation  over [N ℄su
h that �(fu; vg) = f (u);  (v)g (for all fu; vg 2 D = �[N ℄2 �). As we shall see, not all \
ommonmodels of property testing" 
an be redu
ed to De�nition 2.6, but nevertheless De�nition 2.6 is agood starting point; that is, various models 
an be naturally de�ned as sub
lasses of the 
lass of4In addition, one may 
onsider sub-models that are obtained by requiring the fun
tions in su
h a model to satisfysome auxiliary properties. 5



all properties that are 
losed under some group M (where typi
ally in su
h 
ases the sub
lass are
hara
terized by a set of 
onstraints that are generated as in De�nition 2.3).5We observe that 
losure underM is a ne
essary 
ondition for satisfying the invarian
e 
onditionwith respe
t to M .Proposition 2.7 If P satis�es the invarian
e 
ondition w.r.t M , then P is 
losed under M .Proof: For any f 2 P and (�0; �0) 2 M , 
onsider f 0 def= �0 Æ f Æ ��10 . We shall show that f 2 Pif and only if f 0 2 P. Suppose that P is 
hara
terized by CONS(C;M), and 
onsider an arbitrary
onstraint in CONS(C;M). By de�nition (of being generated from (C;M)), this 
onstraint has theform (�(e1); :::; �(e
)); � Æ��1), where ((e1; :::; e
); �) 2 C and (�; �) 2M . Our aim is to show thatf 0 satis�es this 
onstraint if and only if f satis�es some related 
onstraint in CONS(C;M), wherethe two 
onstraints are related via (�0; �0).We start by looking at the value of (� Æ ��1)(f 0(�(e1)); :::; f 0(�(e
))), whi
h we shorthand as(� Æ ��1)(f 0(�(e1; :::; e
))). Plugging-in the de�nition of f 0, what we now look at is (� Æ ��1)((�0 Æf Æ ��10 )(�(e1; :::; e
))), whi
h may be written as �(��1 Æ �0 Æ f Æ ��10 Æ �(e1; :::; e
)), whi
h in turnequals �((��1 Æ�0)Æf Æ (��10 Æ�)(e1; :::; e
)). That is, we 
onsider whether f satis�es the 
onstraint((��10 Æ �)(e1; :::; e
); � Æ (��1 Æ �0)), whi
h 
an be written as ((��10 Æ �)(e1; :::; e
); � Æ (��10 Æ �)�1).But this 
onstraint is in CONS(C;M), sin
e it is generated from ((e1; :::; e
); �) 2 C by using thepair (��10 Æ �; ��10 Æ �) 2 M . Thus, f 0 satis�es the 
onstraint generated (from ((e1; :::; e
); �)) by(��10 Æ �; ��10 Æ �) if and only if f satis�es the 
onstraint generated (from it) by (�; �). It followsthat f 0 satis�es all 
onstraints in CONS(C;M) if and only if f satis�es all 
onstraints in CONS(C;M).3 The Invarian
e Conje
ture holds in the Dense Graph ModelWe prove the invarian
e 
onje
ture holds in the spe
ial 
ase of graph properties in the adja
en
ymatrix representation model (a.k.a the dense graph model). Re
all that in the adja
en
y matrixmodel, an N -vertex graph is represented by the (symmetri
) Boolean fun
tion g : [N ℄�[N ℄! f0; 1gsu
h that g(u; v) = 1 if and only if u and v are adja
ent in the graph.We rely on a re
ent result of [8℄, whi
h states that (in this model) P has a proximity oblivioustester if and only if it is a subgraph-freeness property. We next observe that being a subgraph-freeness property is equivalent to satisfying invarian
e 
ondition with respe
t to the 
anoni
al set,where a set M is 
anoni
al if M = M 0 � fidg su
h that M 0 is the group of permutations oververtex-pairs that is indu
ed by vertex-relabeling. (Indeed, the 
anoni
al set is the very set thatde�nes the 
urrent model; see Se
tion 2.3). So it is left to show that P satis�es the invarian
e
ondition if and only if P satis�es the invarian
e 
ondition with respe
t to the 
anoni
al set. Wethus getTheorem 3.1 Suppose that P is a set of Boolean fun
tions over the set of unordered pairs over[N ℄ su
h that P is 
losed under relabeling of the base set (i.e., P is a graph property that refersto the adja
en
y representation of graphs). Then, P has a proximity oblivious tester if and onlyif P satis�es the invarian
e 
ondition. Furthermore, if P satis�es the invarian
e 
ondition, then itsatis�es this 
ondition with the 
anoni
al set.5Indeed, an alternative formulation of the model of testing graph properties in the adja
en
y matrix representationis obtained by starting from D = [N ℄ � [N ℄ and M that equals all pairs (�; id) su
h that �(u; v) = ( (u);  (v)), forsome permutation  over [N ℄ (and all (u; v) 2 D = [N ℄� [N ℄). In su
h a 
ase, we 
onsider the sub
lass of symmetri
fun
tion (i.e., fun
tions g su
h that g(u; v) = g(v; u) for all (u; v)2D).6



Proof: The key observation is that, in this model, a property satis�es the invarian
e 
ondition withrespe
t to the 
anoni
al set if and only if it is a subgraph-freeness property, where throughout thisproof subgraph-freeness means not having 
ertain indu
ed graphs (whi
h are spe
i�ed in a forbiddenset). The ba
kward dire
tion (i.e., from subgraph-freeness to the invarian
e 
ondition) follows byobserving that every subgraph-freeness property satis�es the invarian
e 
ondition with respe
t tothe 
anoni
al set, be
ause it 
an be generated by the predi
ate that forbids 
ertain unlabeledgraphs (e.g., not having F = ([n℄; EF ) as an indu
ed subgraph is 
aptured by the 
onstraint((f1; 2g; ::; f1; ng; :::; fn�1; ng); �) su
h that �(a1;2; :::; an�1;n) = 1 if and only if F is not representedby (ai;j)i;j). In proving the other dire
tion (i.e., from the invarian
e 
ondition to subgraph-freeness),observe that the \base" 
onstraints may be viewed as a predi
ate on an unlabeled indu
ed subgraph;that is, the 
onstraint ((fi1; j1g; ::; fi
; j
g); �) 
an be viewed as forbidding all indu
ed subgraphsthat are 
onsistent with some (aik;jk)k2[
℄ su
h that �(ai1;j1; :::; ai
 ;j
) = 0.Another important observation is that if P satis�es the invarian
e 
ondition then it does so withthe 
anoni
al pair. This observation is proven as follows. Let P be 
hara
terized by CONS(C;M),where M is not ne
essarily the 
anoni
al set. Then, we view CONS(C;M) (or rather the uniformdistribution over it) as a ((possibly \weak") non-adaptive) tester with one-sided error; that is, thistester always a

epts any graph in P and its error probability (on no-instan
es) is stri
tly lessthan 1 (i.e., it a

epts graphs that are not in P with probability is at most 1 � jCONS(C;M)j�1).Applying [9, Thm. 2℄, we obtain a tester with similar one-sided error that only inspe
ts the graphindu
ed by a random 
onstant-size vertex-set. (Indeed, the transformation in [9, Thm. 2℄ preservesthe dete
tion probability no matter how small it is.) The latter tester gives rise to a 
hara
terizationof P that 
an be generated by the de
ision predi
ate of this tester 
oupled with the the group ofvertex-relabeling; that is, P satis�es the invarian
e 
ondition with the 
anoni
al set.The 
urrent theorem now follows by 
ombining the two foregoing observations with [8, Thm. 4.7℄.Spe
i�
ally, by [8, Thm. 4.7℄, P has a proximity oblivious tester, if and only if it is a subgraphfreeness property, By the �rst observation, P is a subgraph freeness property if and only if P satis�esthe invarian
e 
ondition with the 
anoni
al set, whereas (by the se
ond observation) P satis�es theinvarian
e 
ondition if and only if P satis�es the invarian
e 
ondition with the 
anoni
al set.4 The Invarian
e Conje
ture in the Bounded-Degree Graph ModelThe next natural 
hallenge is proving a result analogous to Theorem 3.1 for the bounded-degreegraph model (introdu
ed in [7℄). Unfortunately, only a partial result is established here, be
auseof a diÆ
ulty that arises in [8, Se
. 5℄ (regarding \non-propagation"), to be dis
ussed below.But �rst, we have to address a more basi
 diÆ
ulty that refers to �tting the bounded-degreegraph model within our framework (i.e., Se
tion 2.3). Re
all that the standard presentation ofthe bounded-degree model represents a N -vertex graph of maximum degree d by a fun
tion g :[N ℄� [d℄! f0; 1; :::; Ng su
h that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if vhas less than i neighbors. This 
reates te
hni
al diÆ
ulties, whi
h 
an be resolved in various ways.6The solution adopted here is to modify the representation of the bounded-degree graph model su
hthat N -vertex graphs are represented by fun
tions from [N ℄ to subsets of [N ℄. Spe
i�
ally, su
h agraph is represented by a fun
tion g : [N ℄! 2[N ℄ su
h that g(v) is the set of neighbors of vertex v.6The problem is that here it is important to follow the standard 
onvention of allowing the neighbors of ea
hvertex to appear in arbitrary order (as this will happen under relabeling of vertex names), but this must allow usto permute over [d℄ without distinguishing verti
es from the 0-symbol. One possibility is to give up the standard
onvention by whi
h the verti
es appear �rst and 0-symbols appear at the end of the list. We 
hoose a di�erentalternative. 7



Furthermore, we are only interested in fun
tions g that des
ribed undire
ted graphs, whi
h meansthat g : [N ℄! 2[N ℄ should satisfy u 2 g(v) i� v 2 g(u) (for every u; v 2 [N ℄).Theorem 4.1 Suppose that P is a set of fun
tions from [N ℄ to fS � [N ℄ : jSj�dg that 
orrespondsto undire
ted graph properties; in parti
ular, P is 
losed under the following 
anoni
al setM0 de�nedby (�; �) 2 M0 if and only if � is a permutation over [N ℄ and � a
ts analogously on sets (i.e.,�(S) = f�(v) : v 2 Sg).7 Then:1. If P has a proximity oblivious tester, then it satis�es the invarian
e 
ondition.2. If P satis�es the invarian
e 
ondition, then it satis�es it with respe
t to the 
anoni
al set, andit follows that P is a generalized subgraph freeness property (as de�ned in [8, Def. 5.1℄).Re
all that by [8, Se
. 5℄, if P is a generalized subgraph freeness property that is non-propagating,then P has a proximity oblivious tester. But it is unknown whether ea
h generalized subgraphfreeness property is non-propagating. (We note that this diÆ
ulty holds even with respe
t toproperties that satis�es the invarian
e 
ondition with respe
t to the 
anoni
al set.)8Proof: As in the dense graph model (i.e., Theorem 3.1), the key observation is that a propertyin this model satis�es the invarian
e 
ondition with respe
t to the 
anoni
al set if and only if itis a generalized subgraph-freeness property (as de�ned in [8, Def. 5.1℄). Thus, Part (1) followsimmediately from [8, Thm. 5.5℄, and the point is proving Part (2).9Suppose that P is 
hara
terized by CONS(C;M). Viewing the uniform distribution over CONS(C;M)as a (very weak) one-sided error non-adaptive tester, we apply a \
anoni
alization" pro
edure thatis analogous to [9, Thm. 2℄, and obtain a (very weak) tester that inspe
ts the neighborhoods of
 randomly distributed verti
es. This yields a 
hara
terization of P by CONS(f((1; :::; 
); �)g;M0),where � is this tester's de
ision predi
ate. So we are done.5 The Invarian
e Conje
ture Fails in Some CasesWe show that, in general, the invarian
e 
ondition is neither ne
essary nor suÆ
ient for the existen
eof proximity oblivious testers (POTs).5.1 The Invarian
e Condition is not ne
essary for POTWe present two examples (i.e., properties) that demonstrate that satisfying the invarian
e 
onditionis not ne
essary for having a proximity oblivious tester. Both examples are based on sparse linear
odes that have (proximity oblivious) 
odeword tests (i.e., these 
odes are lo
ally testable). Inboth 
ases, the key observation is that satisfying the invarian
e 
ondition with respe
t to M (asin De�nition 2.4) requires that M is \ri
h enough" sin
e the domain permutations should map a7Re
all that we also assume that for every g 2 P it holds that u 2 g(v) i� v 2 g(u) (for every u; v 2 [N ℄). We notethat this extra property is easy to test.8In fa
t, the negative example in [8, Prop. 5.4℄ 
an arise in our 
ontext. Spe
i�
ally, 
onsider the set of 
onstraintsgenerated by the 
onstraint ((1; 2); �) su
h that �(S1; S2) = 1 i� both (1) jfi 2 f1; 2g : Si = ;gj 6= 1 and (2) jS1j 2f0g [ f2i� 1 : i 2 Ng. (Indeed, 
ondition (1) mandates that if the graph 
ontains an isolated vertex then it 
ontainsno edges, whereas 
ondition (2) mandates that all non-isolated verti
es have odd degree.)9The point (i.e., Part (2)) is showing that if P satis�es the invarian
e 
ondition, then it satis�es it with respe
t to the
anoni
al set. We mention that the transformation from the possibly adaptive 
hara
ter of a proximity oblivious testerto the non-adaptive 
hara
ter of the invarian
e 
ondition (equivalently, generalized subgraph-freeness) is performedin [8, Thm. 5.5℄. 8



�xed number of elements to all the domain elements. On the other hand, Proposition 2.7 requiresthat the property be 
losed under M , whereas this is shown to be impossible in both examples. Inthe �rst example, presented next, the property will be shown to be 
losed only under the trivialpair (id; id).Theorem 5.1 There exists a property, denoted P, of Boolean fun
tions su
h that P has a proximityoblivious tester but does not satis�es the invarian
e 
ondition. Furthermore, P is a linear property;that is, if f1; f2 2 P then f1 + f2 2 P, where (f1 + f2)(x) = f1(x)� f2(x) for every x.Proof: We 
onsider a random linear property of dimension ` = O(log n). That is, for uniformlysele
ted fun
tions g1; :::; g` : [n℄ ! f0; 1g, we 
onsider the property Pn = fPi2I gi : I � [`℄g.A
tually, we repeat this sele
tion for every value of n, obtaining the property P = (Pn)n2N. It wasshown in [11℄ that, with high probability over these random 
hoi
es, the property P has a POT. Weshall show that, with high probability over these random 
hoi
es, the property P does not satisfythe invarian
e 
ondition.The key observation is that satisfying the invarian
e 
ondition with respe
t to M (as in De�ni-tion 2.4) requires that M is non-trivial (i.e., 
ontains a non-trivial pair), be
ause otherwise Pn is
hara
terized by a �xed (i.e., independent of n) number of 
onstraints (whi
h is highly improbablefor random gi's). On the other hand, Proposition 2.7 requires that Pn be 
losed under M , whi
his highly improbable when M is non-trivial. Spe
i�
ally, we will show that with high probability(over the 
hoi
e of Pn), for every non-trivial (�; �), there exists f 2 Pn su
h that � Æ f Æ ��1 62 P.We distinguish two 
ases: (1) the 
ase that � is not the identity permutation but � is the identitypermutation, and (2) the 
ase that � is not the identity permutation (whi
h implies that �(b) = 1�bfor every b 2 f0; 1g).Claim 5.1.1 Let � be a permutation su
h that m def= jfi2 [n℄ : �(i) 6= igj > 0. Then, for a randomPn, the probability that ff Æ � : f 2 Png = Pn is less than 2�m`=4.Note that the number of permutations that satisfy the hypothesis is smaller than �nm� � (m!) <2m log2 n. Thus, the aggregated probability for the aforementioned Case (1) is a small 
onstant (i.e.,Pm>0 2�m�((`=4)�log2 n) is smaller than, say, 0:01).Proof: As a warm-up we upper bound the probability that g Æ � = g, where g : [n℄ ! f0; 1g isuniformly distributed. For g Æ � = g to hold, g must be 
onstant on ea
h 
y
le of �. Denoting thenumber of 
y
les by 
 � m=2, it follows that Prg[gÆ� = g℄ = 2�m+
 � 2�m=2. The argument extendsto the 
ase that we wish g Æ� = g+ f to hold for an arbitrary �xed f and a random g. Spe
i�
ally,
onsider a 
y
le of �, denoted i1; :::; it. Then, Prg[(8j2 [t� 1℄) g(j +1) = g(j) + f(j)℄ = 2�(t�1). Itis even easier to prove that Prg[g Æ � = f ℄ � 2�m=2, sin
e a
tually Prg[g Æ � = f ℄ = 2�n. We nowturn to upper-bound the probability that ff Æ � : f 2 Png = Pn, by upper-boundingPrg1;:::;g`[(8i2 [`℄) gi Æ � 2 Pn℄ = Prg1;:::;g` 248i2 [`℄9Ii � [`℄ s.t. gi Æ � = Xj2Ii gj35 (2)� XI1;:::;I`�[`℄Prg1;:::;g` 248i2 [`℄ gi Æ � = Xj2Ii gj35 (3)We break the sum in Eq. (3) into two parts, separating the single term that 
orresponds to(I1; :::; I`) = (f1g; :::; f`g) from all other terms. The 
ontribution of the �rst term to Eq. (3) is9



upper-bounded by (2�m=2)`, be
ause Prg1;:::;g`[8i 2 [`℄ gi Æ � = gi℄ equals Qì=1 Prgi [gi Æ � = gi℄.For ea
h other term 
orresponding to (I1; :::; I`) 6= (f1g; :::; f`g), we pi
k an arbitrary i su
h thatIi 6= fig, and note that Prg1;:::;g`[gi Æ � = Pj2Ii gj ℄ equals 2�n, sin
e gi is uniformly distributedeven when �xing the value of Pj2Ii gj . Furthermore, this assertion holds even if we only sele
t giand fi = Pj2Ii gj at random (where in 
ase Ii = ; we mean setting fi � 0). We now 
onsideran iterative pro
ess starting with i1 = i, su
h that at the �rst step we sele
t uniformly gi1 andfi1 =Pj2Ii1 gj . Re
all that we have Prgi1 ;fi1 [gi1 Æ� = fi1 ℄ = 2�n. For k = 2; :::; `=2, at the kth stepwe set ik su
h that gik is independent of gi1 ; :::; gik�1 and fi1 ; :::; fik�1 (where fi = Pj2Ii gj), anduniformly sele
t gik and fik (unless fik was already determined in whi
h 
ase it is left un
hanged).Note that su
h a ik exists as long as k � `=2, but Iik need not be di�erent than fikg. Then, theprobability that gik Æ � =Pj2Iik gj , 
onditioned on the values of gi1 ; :::; gik�1 and fi1 ; :::; fik�1 , is atmost 2�m=2, where the probability is taken merely over the 
hoi
e of gik (and possibly fik). Thus,the 
ontribution of this generi
 term to Eq. (3) is upper-bounded by 2�n � (2�m=2)(`=2)�1. Usingthe union bound, we upper-bound the 
ontribution of all these (2`)` � 1 terms by2`2 � 2�(n�(m=2)) � (2�m=2)`=2; (4)whi
h is upper-bounded by 2�(m`=4)�1 (be
ause 2`2 �2�(n�(m=2)) < 1=2). The 
laim follows (be
ause2�m`=2 < 2�(m`=4)�1). 2Claim 5.1.2 Let �(b) = 1� b. Then, for a random Pn, the probability that there exists a permuta-tion � su
h that f� Æ f Æ ��1 : f 2 Png = Pn is negligible as a fun
tion of n (i.e., is vanishes fasterthan any polynomial fra
tion (in n)).Proof: It suÆ
es to show that, while the all-zero fun
tion is in Pn, with very high probability the
onstant-one fun
tion is not in Pn. This is the 
ase be
ause, with overwhelmingly high probability,for every non-empty I � [`℄ it holds that jfj 2 [n℄ :Pi2I gi(j) = 1gj is in (1� o(1)) � n=2. 2Combining Claims 5.1.1 and 5.1.2, we 
on
lude that with high 
onstant probability P is not 
losedunder any non-trivial pair. Re
alling the initial dis
ussion, the theorem follows.Testing the Long-Code (a.k.a di
tatorship tests). We refer to the property P = (Pn), wherefor n = 2`, it holds that f : f0; 1g` ! f0; 1g is in Pn if and only if there exists i 2 [`℄ su
h thatf(�1 � � � �`) = �i. Su
h a fun
tion f is a di
tatorship (determined by bit i) and 
an be viewed asthe ith 
odeword in the long-
ode (i.e., the long-
ode en
oding of i). Note that this property is
losed under the pair (�; id), where � is a permutation � over f0; 1g`, if and only if there exists apermutation � over [`℄ su
h that �(�1 � � � �`) = ��(1) � � � ��(`). (An analogous 
onsideration appliesto pairs (�; flip), where flip(�) = 1 � � for every � 2 f0; 1g.) We shall show that these are theonly pairs under whi
h the di
tatorship property is 
losed, and it will follow that the di
tatorshipproperty violates the invarian
e 
ondition.Theorem 5.2 The di
tatorship property violates the invarian
e 
ondition, although it has a prox-imity oblivious tester.Proof: The fa
t that the di
tatorship property has a proximity oblivious tester is establishedin [3, 13℄.10 We shall show that this property violates the invarian
e 
ondition be
ause it is not10The long
ode test of [3℄ only refers to the 
ase that ` is a power of 2.10




losed under pairs (�; �) unless � either preserves the (Hamming) weight of the strings or preservesthis weight under 
ipping.Indeed, the notion of (Hamming) weight is pivotal to this proof, where the weight of a string� 2 f0; 1g`, denoted wt(�), is de�ned as the number of bit positions that 
ontain a one (i.e.,wt(�1 � � � �`) def= jfi 2 [`℄ : �i = 1gj). We �rst 
laim that if Pn is 
losed under (�; �) then wt(�(�))equals either wt(�) or ` � wt(�) for every � 2 f0; 1g`. (These two 
ases 
orrespond to whether� = id or � = flip (i.e., �(�) = 1� �).)Suppose that � maps some `-bit string � to a string � that has a di�erent weight (i.e., wt(�) 6=wt(�)). Then, jff 2 Pn : f(�) = 1gj = wt(�), be
ause for every f 2 Pn there exists a di�erenti 2 [`℄ su
h that f(�1 � � � �`) = �i. Similarly, jff Æ � : f 2 Pn ^ (f Æ �)(�) = 1gj = wt(�), sin
e(f Æ �)(�) = f(�). Using wt(�) 6= wt(�), we infer that Pn 6= ff Æ � : f 2 Png, sin
e ea
h set
ontains a di�erent number of fun
tions that evaluated to 1 at the point �. This handles the 
aseof � = id, and the 
ase of � = flip is handled similarly (i.e., if � maps some `-bit string � to astring � su
h that wt(�) 6= `� wt(�), then Pn 6= f� Æ f Æ � : f 2 Png).Having established the above, we note that if P had satis�ed the invarian
e 
ondition then the
orrespondingM would have mapped a �xed number of elements to all domain elements. But this�xed number of domain elements (i.e., `-bit long strings) have a �xed number of weights, whereas(by Proposition 2.7 and the above) the set M may only 
ontain pairs (�; �) su
h that � preserves(or \
omplements") the weight of strings. This 
ontradi
ts the requirement that all `+ 1 di�erentweights must be 
overed by the generated 
onstraints, and the theorem follows.5.2 The Invarian
e Condition is not suÆ
ient for POTWe next demonstrate that the invarian
e 
ondition does not suÆ
e for obtaining a proximityoblivious tester. A
tually, this example also shows that the invarian
e 
ondition does not suÆ
efor the standard de�nition of testing (with query 
omplexity that only depends on the proximityparameter).Theorem 5.3 There exists a property, denoted P, of Boolean fun
tions su
h that P satis�es theinvarian
e 
ondition but has no proximity oblivious tester. Furthermore, the invariant 
onditionholds with respe
t to a single linear 
onstraint that refer to four domain elements, and a group ofdomain permutations that is 1-transitive. Moreover, P 
annot be tested (in the standard sense)within query 
omplexity that only depends on the proximity parameter.Proof: We use a lower bound of [5℄ that refers to the query 
omplexity of testing Eulerianorientations of �xed (and highly regular) bounded-degree graphs. Spe
i�
ally, [5, Thm. 9.14℄ provesan 
(log `) query lower bound on the 
omplexity of testing whether the orientation of an `-by-`
y
li
 grid is Eulerian. It follows that this property has no POT, while we shall see that it satis�esthe invarian
e 
ondition.We represent the orientation of the `-by-` 
y
li
 grid by two fun
tions h; v : Z` � Z` ! f0; 1gsu
h that h(i; j) represents the orientation of the horizontal edge between the verti
es (i; j) and(i; j + 1), whereas v(i; j) represents the orientation of the verti
al edge between the verti
es (i; j)and (i+1; j), and the arithmeti
s is of Z` (i.e., modulo `). Spe
i�
ally, h(i; j) = 1 (resp., v(i; j) = 1)indi
ates an orientation from (i; j) to (i; j+1) (resp., (i+1; j)). (Needless to say, we 
an pa
k bothfun
tions in a single fun
tion; for example, f(1; i; j) = h(i; j) and f(0; i; j) = v(i; j).)The key observation is that the Eulerian orientation property 
an be 
hara
terized by 4-
onstraints that are generated from a single 
onstraint. Spe
i�
ally, this property is 
hara
terized11



by the set of 4-
onstraints fh(i; j) + v(i; j) = h(i; j � 1) + v(i � 1; j) : i; j 2 Z`g, where the 
on-straint h(i; j) + v(i; j) = h(i; j � 1) + v(i � 1; j) mandates that exa
tly two of the four edges ofvertex (i; j) are oriented outwards. Finally, note that this set of 
onstraints is generated by thesingle 
onstraint h(1; 1) + v(1; 1) = h(1; 0) + v(0; 1) and the set of mappings f(�r;s; id)g, where�r;s(i; j) = (i+ r; j + s). The main 
laim follows.The only part of the furthermore 
laim that requires elaboration is the 
laim that the groupof domain permutations is 1-transitive. To show this we expli
itly 
onsider the pa
king of theaforementioned two fun
tions in a single fun
tion f : f0; 1g�Z`�Z` ! f0; 1g su
h that f(1; i; j) =h(i; j) and f(0; i; j) = v(i; j). We rede�ne the domain permutations �r;s su
h that �r;s(�; i; j) =(�; i+r; j+s) and introdu
e an auxiliary permutation �0 su
h that �0(�; i; j) = (1��; j; i). Observethat a generi
 
onstraint (now written as f(1; i; j) + f(0; i; j) = f(1; i; j � 1) + f(0; i � 1; j)) ispreserved under the auxiliary permutation �0. The full 
laim now follows.6 Con
lusionsWhile the invarian
e 
onje
ture holds in two natural models of testing graph properties, it wasshown to fail in other settings. These failures, des
ribed in Se
tion 5, are of three di�erent types.1. As shown in Theorem 5.1, proximity oblivious testers exist also for properties that are only
losed under the identity mapping. That is, a strong notion of testability is a
hievable alsoin the absen
e of any invariants.2. As shown in Theorem 5.2, the existen
e of proximity oblivious testing for properties thatdo not satisfy the invarian
e 
ondition is not 
on�ned to unnatural properties and/or toproperties that la
k any invarian
e.3. As shown in Theorem 5.3, the invarian
e 
ondition does not imply the existen
e of a standardtester of query 
omplexity that only depends on the proximity parameter. (Note that thenon-existen
e of su
h testers implies the non-existen
e of proximity oblivious testers.) Fur-thermore, this holds even if the invarian
e 
ondition holds with respe
t to a group of domainpermutations that is 1-transitive.Our feeling is that the fa
t that the invarian
e 
ondition is not ne
essary for proximity oblivioustesting is less surprising than the fa
t that the former is insuÆ
ient for the latter. Giving up onthe ne
essity part, we wonder whether a reasonable strengthening of the invarian
e 
ondition maysuÆ
e for proximity oblivious testing.A natural dire
tion to 
onsider is imposing additional restri
tions on the group of domainpermutations. As indi
ated by Theorem 5.3, requiring this group to be 1-transitive does not suÆ
e,and so one is tempted to require this group to be 2-transitive11 (as indeed suggested in [10℄ w.r.tstandard testing). Re
alling that if P is 
losed under a 2-transitive group (over the domain) then Pis self-
orre
table (and thus 
onsists of fun
tions that are pairwise far apart), one may also wonderabout only requiring 1-transitivity but restri
ting attention to properties that 
onsists of fun
tionsthat are pairwise far apart. We mention that the property used in the proof of Theorem 5.3 
ontainsfun
tions that are 
lose to one another.A
tually, restri
ting attention to properties that are 
losed under a 1-transitive group of domainpermutations, we may return to the question of ne
essity and ask whether the existen
e of proximity11A permutation group G over D is 
alled 2-transitive if for every (e1; e2); (e01; e02) 2 �D2� there exists a � 2 G su
hthat �(e1) = e01 and �(e2) = e02. 12



oblivious testers in this 
ase implies the invarian
e 
ondition. Note that our proof of Theorems 5.1and 5.2 relies on the fa
t that the 
orresponding group is not 1-transitive (e.g., in the �rst 
ase thegroup a
tion is trivial and in the se
ond 
ase it has a non-
onstant number of orbits).A
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Appendix: Property testing and Proximity Oblivious TestersWe �rst re
all the standard de�nition of property testing.De�nition A.1 Let P = Sn2N Pn, where Pn 
ontains fun
tions de�ned over the domain Dn. Atester for a property P is a probabilisti
 ora
le ma
hine T that satis�es the following two 
onditions:1. The tester a

epts ea
h f 2 P with probability at least 2=3; that is, for every n 2 N andf 2 Pn (and every � > 0), it holds that Pr[T f (n; �)=1℄ � 2=3.2. Given � > 0 and ora
le a

ess to any f that is �-far from P, the tester reje
ts with probabilityat least 2=3; that is, for every � > 0 and n 2 N, if f : Dn ! Rn is �-far from Pn, thenPr[T f (n; �)=0℄ � 2=3, where g is �-far from Pn if, for every g 2 Pn, it holds that jfe 2 Dn :f(e) 6= g(e)gj > � � n.If the tester a

epts every fun
tion in P with probability 1, then we say that it has one-sided error;that is, T has one-sided error if for every f 2 P and every � > 0, it holds that Pr[T f (n; �)=1℄ = 1.A tester is 
alled non-adaptive if it determines all its queries based solely on its internal 
oin tosses(and the parameters n and �); otherwise it is 
alled adaptive.The query 
omplexity of a tester is measured in terms of the size parameter, n, and the proximityparameter, �. In this paper we fo
us on the 
ase that the 
omplexity only depends on � (and isindependent of n).Turning to the de�nition of proximity-oblivious testers, we stress that they di�er from standardtesters in that they do not get a proximity parameter as input. Consequently, assuming these testershave sublinear 
omplexity, they 
an only be expe
ted to reje
t fun
tions not in P with probabilitythat is related to the distan
e of these fun
tions from P. This is 
aptured by the following de�nition.De�nition A.2 Let P = Sn2N Pn be as in De�nition A.1. A proximity-oblivious tester for P is aprobabilisti
 ora
le ma
hine T that satis�es the following two 
onditions:1. The ma
hine T a

epts ea
h fun
tion in P with probability 1; that is, for every n 2 N andf 2 Pn, it holds that Pr[T f (n)=1℄ = 1.2. For some (monotone) fun
tion � : (0; 1℄ ! (0; 1℄, ea
h fun
tion f 62 P is reje
ted by T withprobability at least �(ÆP(f)), where ÆP(f) def= ming2PfÆ(f; g)g and Æ(f; g) def= Prx2
[f(x) 6=g(x)℄.The fun
tion � is 
alled the dete
tion probability of the tester T .In general, the query 
omplexity of a proximity-oblivious tester may depend on the size parameter,n, but in this paper we fo
us on the 
ase that this 
omplexity is 
onstant.
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