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1 IntrodutionIn the last ouple of deades, the area of property testing has attrated muh attention (see, e.g., aouple of reent surveys [14, 15℄). Loosely speaking, property testing typially refers to sub-lineartime probabilisti algorithms for deiding whether a given objet has a predetermined property oris far from any objet having this property. Suh algorithms, alled testers, obtain loal views ofthe objet by making adequate queries; that is, the objet is seen as a funtion and the testers getorale aess to this funtion (and thus may be expeted to work in time that is sub-linear in thelength of the objet).While a host of fasinating results and tehniques has emerged, the desire for a omprehensiveunderstanding of what makes some properties easy to test (while others are hard to test) is far frombeing satis�ed.1 Two general approahes that seem to have a potential of addressing the question(of \what makes testing possible") were suggested reently.1. Restriting attention to the lass of proximity oblivious testers, whih are onstant-querytesters that rejet any objet with probability proportional (but not neessarily linearly pro-portional) to its distane from the predetermined property. Indeed, the haraterization ofproximity oblivious testers, in two entral models of graph properties, obtained in [8℄, seemsto answer the foregoing question: graph properties have proximity oblivious testers if and onlyif they an be haraterized in terms of adequate loal onditions.22. But even before [8℄, an approah based on adequately invariant loal onditions was putforward in [12℄. It was shown that in the ontext of testing algebrai properties, a suÆientondition for testability (whih in fat yields proximity oblivious testers) is that the propertyan be haraterized in terms of loal onditions that are invariant in an adequate sense.Thus, these two approahes have a very similar avor, but they are very di�erent at the atualdetails. On the one hand, the de�nition of proximity oblivious testers does not refer to any strutureof the underlying domain of funtions, and the loal onditions in the two graph models do not referexpliitly to any invariane. However, invariane under relabeling of the graph's verties is impliitin the entire study of graph properties (sine the latter are de�ned in terms of suh invariane). Onthe other hand, the linear invarianes onsidered in [12℄ presume that the funtions' domain an beassoiated with some vetor spae and that the properties are invariant under linear transformationsof this vetor spae.Thus, the �rst task that we undertake is providing a de�nition of a general notion of \hara-terization by invariant loal onditions", where at the very minimum this general de�nition shouldunify the notions underlying [8, 12℄. Suh a de�nition is presented in Setion 2.Given suh a de�nition, a natural onjeture that arises, hereafter referred to as the invarianeonjeture, is that a property has a onstant-query proximity-oblivious tester if and only if it anbe haraterized by invariant loal onditions. This onjeture is rigorously formulated within ourde�nitional framework (see Setion 2.2) and the urrent work is devoted to its study. The mainresults of our study may be stated informally as follows:1. The invariane onjeture holds in the ontext of testing graph properties in the dense graphmodel (see Theorem 3.1).1This assertion is not meant to undermine signi�ant suesses of several haraterization projets, most notablythe result of [1℄.2We warn the the piture is atually not that lean, beause in the ase of the bounded-degree model the notionof adequay inludes some tehnial ondition, termed non-propagation.1



2. The invariane onjeture holds in the ontext of testing graph properties in the bounded-degree graph model if and only if all loal properties are non-propagating (see Theorem 3.1and Open Problem 5.8 in [8℄).3. In general, the invariane onjeture fails in both diretions.(a) Charaterization by invariant loal onditions is not neessary for proximity oblivioustesting. This is demonstrated both by linear properties (see Theorem 5.1) and by theditatorship property (see Theorem 5.2).(b) Charaterization by invariant loal onditions is not suÆient for proximity oblivioustesting (see Theorem 5.3). This is demonstrated by the property alled Eulerian orien-tation (whih refers to the orientation of the edges of a yli grid, f. [5℄).Thus, there are natural settings in whih the invariane onjeture holds, but there are also naturalsettings in whih it fails (in eah of the possible diretions).The tehnial angle. Items 1 and 2 are established by relying on orresponding results of [8℄,while our ontribution is in observing that the loal onditions stated in [8℄ (in terms of subgraphfreeness) oinide with loal onditions that are invariant under graph isomorphisms. Atually, torule out haraterizations by other possible invarianes, we use the anonization tehnique of [9,Thm. 2℄. In the two examples of Item 3a we rely on the fat that these properties were shown tohave (proximity oblivious) testers in [11℄ and [3℄, respetively. Thus, in both ases, our ontributionis showing that these properties annot be haraterized by invariant loal onditions. In Item 3bwe rely on a lower bound established in [5℄ (regarding testing Eulerian orientations of yli grids),and our ontribution is in observing that this property an be haraterized by invariant loalonditions.We mention that the property used towards establishing Item 3b is invariant under a 1-transitive3 permutation group. Thus, even suh an invariane feature does not guarantee easytestability (i.e., a standard tester of query omplexity that only depends on the proximity param-eter).Terminology. Throughout the text, when we say proximity oblivious testing we atually meanproximity oblivious testing in a onstant number of queries. The de�nition of proximity oblivioustesting appears in the appendix.Organization. In Setion 2 we provide a de�nitional framework that aptures the foregoingdisussion. In partiular, this framework inludes a general de�nition of the notion of hara-terizations by invariant loal onditions and a formal statement of the invariane onjeture. InSetion 3 we show the the invariane onjeture holds in the ontext of testing graph propertiesin the dense graph model, and in Setion 4 we present an analogous onditional (or partial) resultfor the bounded-degree graph model. The failure of the invariane onjeture is demonstrated inSetion 5, and possible onlusions are disussed in Setion 6.3A permutation group G over D is alled 1-transitive if for every e; e0 2 D there exists a � 2 G suh that �(e) = e0.
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2 General FrameworkFor simpliity, we onsider properties of �nite funtions de�ned over a �nite domain D and havinga �nite range R, whereas an asymptoti treatment requires onsidering properties that are in�nitesequenes of suh properties (i.e., a sequene of the type (Pn)n2N where Pn is a set of funtionsfrom Dn to Rn). Still, we shall just write P;D;R, and (in order for our asymptoti statements tomake sense) one should think of Pn;Dn; Rn. In partiular, when we say that some quantity is a\onstant", we atually think ofD as growing (along with P and possiblyR), while the said quantityremains �xed. Thus, in the rest of our presentation, D and R should be onsidered as generi setshaving a variable size, although they will be often omitted from de�nitions and notations.The simpli�ed form of the invariant ondition. We start by outlining a simpli�ed versionof the ondition that we seek, regarding a property P (of funtions D ! R):1. P is losed under the ation of some permutation group G, whih is de�ned over D, and2. P has a haraterization via a onstant number of \generi" onstraints of onstant size suhthat a funtion f is in P i� all atual onstraints obtained by having G at on the generionstraints are satis�ed.In other words, P an be haraterized by a set of onstraints that are generated by some permu-tation group G ating on a onstant number of onstant-size onstraints.We stress that the foregoing permutation group G is hosen arbitrarily, and may depend on P(and not only on a natural lass of properties to whih P belongs). Thus, if P is a graph property,then G need not be the group that preserves all graph properties (i.e., the vertex-relabeling group),but rather may be any group that extend the vertex-relabeling group. For example, if P is theproperty of having more edges than non-edges, then the group may be the symmetri group of all(unordered) vertex pairs, whih in partiular ontains the vertex-relabeling group as a subgroup.2.1 Charaterization by generated onstraintsWe now generalize and larify the above disussion. First we need to de�ne what we mean bya onstraint. A onstraint will be a pair onsisting of domain elements and a Boolean prediateapplied to the orresponding values, and it is satis�ed by a funtion f if applying the prediate tothe f -values at the spei�ed loations yields the Boolean value 1 (representing true).De�nition 2.1 (onstraints): A onstraint is a pair ((e1; :::; e); �) suh that e1; :::; e are distintelements in D, and � : R ! f0; 1g is an arbitrary prediate. We say that the foregoing is aonstraint of arity  (or a -onstraint). A funtion f : D ! R is said to satisfy the foregoingonstraint if �(f(e1); :::; f(e)) = 1.Note that at this point the prediate � may depend on the sequene of elements (e1; :::; e). Suha dependene will not exist in the ase that a large set of onstraints is generated based on fewonstraints (as in De�nition 2.3).The next notion is of haraterization by a set of onstraints. A property P of funtions isharaterized by a set of onstraints if f is in P if and only f satis�es all onstraints in the set.De�nition 2.2 (haraterization by onstraints): Let C be a set of onstraints and P be a property.We say that P is haraterized by C if for every f : D ! R it holds that f 2 P if and only if fsatis�es eah onstraint in C. 3



Next, we onsider the set of onstraints generated by the ombination of (1) a �xed set of onstraints,(2) a group of permutations over D, and (3) a group of permutations over R. For starters, thereader is advised to think of the seond group as of the trivial group ontaining only the identitypermutation. In general, we shall onsider a subset of the set of all pairs onsisting of a permutationas in (2) and a permutation as in (3).De�nition 2.3 (generated onstraints): Let C be a �nite set of -onstraints, and M be a set ofpairs onsisting of a permutation over D and a permutation over R (i.e., for any (�; �) 2 M itholds that � is a permutation of D and � is a permutation R). The set of onstraints generated byC and M , denoted CONS(C;M), is de�ned byCONS(C;M) def= f((�(e1); :::; �(e)); � Æ ��1) : ((e1; :::; e); �)2C ; (�; �)2Mg (1)where � Æ ��1(v1; :::; v) denotes �(��1(v1); :::; ��1(v)).Note that saying that f satis�es ((�(e1); :::; �(e)); � Æ ��1) means that(� Æ ��1)(f(�(e1)); :::; f(�(e))) = �(��1(f(�(e1))); :::; ��1(f(�(e)))) = 1;whih means that ��1 Æf Æ� satis�es the onstraint ((e1; :::; e); �). Regarding the use of ��1 Æf Æ�rather than � Æ f Æ �, see disussion following De�nition 2.5.Notation: As in De�nition 2.3, it will be onvenient to generalize funtions to sequenes overtheir domain. That is, for any funtion F de�ned over some set S, and for any e1; :::; et 2 S, wedenote the sequene (F (e1); :::; F (et)) by F (e1; :::; et). Throughout the text, id will be used todenote the identity permutation, where the domain is understood from the ontext.2.2 The invariane onditionReturning to the ondition outlined initially, let us now formulate it as follows. We onsider agroup of pairs (�; �) suh that � is a permutation over D and � is a permutation over R with agroup operation that orresponds to omponent-wise omposition of permutations (i.e., (�1; �1)�(�2; �2) = (�1 Æ �2; �1 Æ �2), where � denotes the group operation). We all suh a group a groupof permutation pairs, and note that it need not be a diret produt of a group of permutation overD and a group of permutations over R.De�nition 2.4 (the invariane ondition): A property P satis�es the invariane ondition if thereexists a onstant, denoted , a �nite set of -onstraints, denoted C, and a group, denoted M , ofpermutation pairs over D � R suh that P is haraterized by CONS(C;M). In this ase, we alsosay that P satis�es the invariane ondition w.r.t M .Reall that the group operation � of M satis�es (�1; �1) � (�2; �2) = (�1 Æ �2; �1 Æ �2), whereÆ denotes omposition of permutations. Thus, M indues a permutation group over D (as wellas one over R), but M is not neessarily their diret produt (e.g., for D = R, it may be thatM = f(�; �) : � 2 Gg, where G is a permutation group over D).
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The invariane ondition and overing the domain. We on�ne our disussion to the asethat the domain ontains only elements that are inuential w.r.t the property P; that is, for everye 2 D, there exists f1 2 P and f0 62 P suh that f1(x) = f0(x) for every x 2 D n feg. Observe thatif property P satis�es the invariane ondition w.r.t M , then M indues a transitive permutationgroup on a onstant fration of D. This follows beause the permutation group (over D) induedby M must map a onstant number of elements (i.e., those appearing in the onstraint set C) toall elements of D.The main question. We ask what is the relation between satisfying the invariane onditionand having a proximity oblivious tester (of onstant-query omplexity). One natural onjeture,hereafter referred to as the invariane onjeture, is that a property satis�es the invariane onditionif and only if it has a proximity oblivious tester. Weaker forms of this onjeture refer to its validitywithin various models of property testing. This leads us to ask what are \models of propertytesting".2.3 Models of property testingNatural model of property testing an be de�ned by speifying the domain and range of funtions(i.e., D and R) as well as losure features of the properties in the model.4 We elaborate below (andmention that this view was elaborated independent by Sudan [17℄).For example, the model of testing graph properties in the adjaeny matrix representation,introdued in [6℄, refers to D = �[N ℄2 � and R = f0; 1g as well as to the permutation group overD that is de�ned by all relabeling of [N ℄. Spei�ally, an N -vertex graph is represented by theBoolean funtion g : �[N ℄2 � ! f0; 1g suh that g(fu; vg) = 1 if and only if u and v are adjaentin the graph. Here an adequate losure feature gives rise to graph properties, where P is a graphproperty if, for every suh funtion g, and every permutation  over [N ℄, it holds that g 2 P i�g 2 P, where g (fu; vg) def= g(f (u);  (v)g).In general, losure features are de�ned by groups of pairs of permutations, just as those inDe�nition 2.4.De�nition 2.5 (losure features): Let M be as in De�nition 2.4. We say that a property P islosed under M if, for every (�; �) 2M , it holds that f 2 P if and only if � Æ f Æ ��1 2 P.Note that � Æ f Æ ��1 (rather than � Æ f Æ �) is indeed the natural hoie, sine f maps D to Rwhereas the new funtion f 0 = � Æ f Æ ��1 is meant to map �(D) to �(R); thus, when f 0 is appliedto e0 = �(e) this results in �rst reovering e, next applying f , and �nally applying �.De�nition 2.6 (losure-based models of property testing): The model of M onsists of the lassof all properties that are losed under M .For example, the model of testing graph properties in the adjaeny matrix representation orre-sponds to the set M that equals all pairs (�; id) suh that there exists a permutation  over [N ℄suh that �(fu; vg) = f (u);  (v)g (for all fu; vg 2 D = �[N ℄2 �). As we shall see, not all \ommonmodels of property testing" an be redued to De�nition 2.6, but nevertheless De�nition 2.6 is agood starting point; that is, various models an be naturally de�ned as sublasses of the lass of4In addition, one may onsider sub-models that are obtained by requiring the funtions in suh a model to satisfysome auxiliary properties. 5



all properties that are losed under some group M (where typially in suh ases the sublass areharaterized by a set of onstraints that are generated as in De�nition 2.3).5We observe that losure underM is a neessary ondition for satisfying the invariane onditionwith respet to M .Proposition 2.7 If P satis�es the invariane ondition w.r.t M , then P is losed under M .Proof: For any f 2 P and (�0; �0) 2 M , onsider f 0 def= �0 Æ f Æ ��10 . We shall show that f 2 Pif and only if f 0 2 P. Suppose that P is haraterized by CONS(C;M), and onsider an arbitraryonstraint in CONS(C;M). By de�nition (of being generated from (C;M)), this onstraint has theform (�(e1); :::; �(e)); � Æ��1), where ((e1; :::; e); �) 2 C and (�; �) 2M . Our aim is to show thatf 0 satis�es this onstraint if and only if f satis�es some related onstraint in CONS(C;M), wherethe two onstraints are related via (�0; �0).We start by looking at the value of (� Æ ��1)(f 0(�(e1)); :::; f 0(�(e))), whih we shorthand as(� Æ ��1)(f 0(�(e1; :::; e))). Plugging-in the de�nition of f 0, what we now look at is (� Æ ��1)((�0 Æf Æ ��10 )(�(e1; :::; e))), whih may be written as �(��1 Æ �0 Æ f Æ ��10 Æ �(e1; :::; e)), whih in turnequals �((��1 Æ�0)Æf Æ (��10 Æ�)(e1; :::; e)). That is, we onsider whether f satis�es the onstraint((��10 Æ �)(e1; :::; e); � Æ (��1 Æ �0)), whih an be written as ((��10 Æ �)(e1; :::; e); � Æ (��10 Æ �)�1).But this onstraint is in CONS(C;M), sine it is generated from ((e1; :::; e); �) 2 C by using thepair (��10 Æ �; ��10 Æ �) 2 M . Thus, f 0 satis�es the onstraint generated (from ((e1; :::; e); �)) by(��10 Æ �; ��10 Æ �) if and only if f satis�es the onstraint generated (from it) by (�; �). It followsthat f 0 satis�es all onstraints in CONS(C;M) if and only if f satis�es all onstraints in CONS(C;M).3 The Invariane Conjeture holds in the Dense Graph ModelWe prove the invariane onjeture holds in the speial ase of graph properties in the adjaenymatrix representation model (a.k.a the dense graph model). Reall that in the adjaeny matrixmodel, an N -vertex graph is represented by the (symmetri) Boolean funtion g : [N ℄�[N ℄! f0; 1gsuh that g(u; v) = 1 if and only if u and v are adjaent in the graph.We rely on a reent result of [8℄, whih states that (in this model) P has a proximity oblivioustester if and only if it is a subgraph-freeness property. We next observe that being a subgraph-freeness property is equivalent to satisfying invariane ondition with respet to the anonial set,where a set M is anonial if M = M 0 � fidg suh that M 0 is the group of permutations oververtex-pairs that is indued by vertex-relabeling. (Indeed, the anonial set is the very set thatde�nes the urrent model; see Setion 2.3). So it is left to show that P satis�es the invarianeondition if and only if P satis�es the invariane ondition with respet to the anonial set. Wethus getTheorem 3.1 Suppose that P is a set of Boolean funtions over the set of unordered pairs over[N ℄ suh that P is losed under relabeling of the base set (i.e., P is a graph property that refersto the adjaeny representation of graphs). Then, P has a proximity oblivious tester if and onlyif P satis�es the invariane ondition. Furthermore, if P satis�es the invariane ondition, then itsatis�es this ondition with the anonial set.5Indeed, an alternative formulation of the model of testing graph properties in the adjaeny matrix representationis obtained by starting from D = [N ℄ � [N ℄ and M that equals all pairs (�; id) suh that �(u; v) = ( (u);  (v)), forsome permutation  over [N ℄ (and all (u; v) 2 D = [N ℄� [N ℄). In suh a ase, we onsider the sublass of symmetrifuntion (i.e., funtions g suh that g(u; v) = g(v; u) for all (u; v)2D).6



Proof: The key observation is that, in this model, a property satis�es the invariane ondition withrespet to the anonial set if and only if it is a subgraph-freeness property, where throughout thisproof subgraph-freeness means not having ertain indued graphs (whih are spei�ed in a forbiddenset). The bakward diretion (i.e., from subgraph-freeness to the invariane ondition) follows byobserving that every subgraph-freeness property satis�es the invariane ondition with respet tothe anonial set, beause it an be generated by the prediate that forbids ertain unlabeledgraphs (e.g., not having F = ([n℄; EF ) as an indued subgraph is aptured by the onstraint((f1; 2g; ::; f1; ng; :::; fn�1; ng); �) suh that �(a1;2; :::; an�1;n) = 1 if and only if F is not representedby (ai;j)i;j). In proving the other diretion (i.e., from the invariane ondition to subgraph-freeness),observe that the \base" onstraints may be viewed as a prediate on an unlabeled indued subgraph;that is, the onstraint ((fi1; j1g; ::; fi; jg); �) an be viewed as forbidding all indued subgraphsthat are onsistent with some (aik;jk)k2[℄ suh that �(ai1;j1; :::; ai ;j) = 0.Another important observation is that if P satis�es the invariane ondition then it does so withthe anonial pair. This observation is proven as follows. Let P be haraterized by CONS(C;M),where M is not neessarily the anonial set. Then, we view CONS(C;M) (or rather the uniformdistribution over it) as a ((possibly \weak") non-adaptive) tester with one-sided error; that is, thistester always aepts any graph in P and its error probability (on no-instanes) is stritly lessthan 1 (i.e., it aepts graphs that are not in P with probability is at most 1 � jCONS(C;M)j�1).Applying [9, Thm. 2℄, we obtain a tester with similar one-sided error that only inspets the graphindued by a random onstant-size vertex-set. (Indeed, the transformation in [9, Thm. 2℄ preservesthe detetion probability no matter how small it is.) The latter tester gives rise to a haraterizationof P that an be generated by the deision prediate of this tester oupled with the the group ofvertex-relabeling; that is, P satis�es the invariane ondition with the anonial set.The urrent theorem now follows by ombining the two foregoing observations with [8, Thm. 4.7℄.Spei�ally, by [8, Thm. 4.7℄, P has a proximity oblivious tester, if and only if it is a subgraphfreeness property, By the �rst observation, P is a subgraph freeness property if and only if P satis�esthe invariane ondition with the anonial set, whereas (by the seond observation) P satis�es theinvariane ondition if and only if P satis�es the invariane ondition with the anonial set.4 The Invariane Conjeture in the Bounded-Degree Graph ModelThe next natural hallenge is proving a result analogous to Theorem 3.1 for the bounded-degreegraph model (introdued in [7℄). Unfortunately, only a partial result is established here, beauseof a diÆulty that arises in [8, Se. 5℄ (regarding \non-propagation"), to be disussed below.But �rst, we have to address a more basi diÆulty that refers to �tting the bounded-degreegraph model within our framework (i.e., Setion 2.3). Reall that the standard presentation ofthe bounded-degree model represents a N -vertex graph of maximum degree d by a funtion g :[N ℄� [d℄! f0; 1; :::; Ng suh that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if vhas less than i neighbors. This reates tehnial diÆulties, whih an be resolved in various ways.6The solution adopted here is to modify the representation of the bounded-degree graph model suhthat N -vertex graphs are represented by funtions from [N ℄ to subsets of [N ℄. Spei�ally, suh agraph is represented by a funtion g : [N ℄! 2[N ℄ suh that g(v) is the set of neighbors of vertex v.6The problem is that here it is important to follow the standard onvention of allowing the neighbors of eahvertex to appear in arbitrary order (as this will happen under relabeling of vertex names), but this must allow usto permute over [d℄ without distinguishing verties from the 0-symbol. One possibility is to give up the standardonvention by whih the verties appear �rst and 0-symbols appear at the end of the list. We hoose a di�erentalternative. 7



Furthermore, we are only interested in funtions g that desribed undireted graphs, whih meansthat g : [N ℄! 2[N ℄ should satisfy u 2 g(v) i� v 2 g(u) (for every u; v 2 [N ℄).Theorem 4.1 Suppose that P is a set of funtions from [N ℄ to fS � [N ℄ : jSj�dg that orrespondsto undireted graph properties; in partiular, P is losed under the following anonial setM0 de�nedby (�; �) 2 M0 if and only if � is a permutation over [N ℄ and � ats analogously on sets (i.e.,�(S) = f�(v) : v 2 Sg).7 Then:1. If P has a proximity oblivious tester, then it satis�es the invariane ondition.2. If P satis�es the invariane ondition, then it satis�es it with respet to the anonial set, andit follows that P is a generalized subgraph freeness property (as de�ned in [8, Def. 5.1℄).Reall that by [8, Se. 5℄, if P is a generalized subgraph freeness property that is non-propagating,then P has a proximity oblivious tester. But it is unknown whether eah generalized subgraphfreeness property is non-propagating. (We note that this diÆulty holds even with respet toproperties that satis�es the invariane ondition with respet to the anonial set.)8Proof: As in the dense graph model (i.e., Theorem 3.1), the key observation is that a propertyin this model satis�es the invariane ondition with respet to the anonial set if and only if itis a generalized subgraph-freeness property (as de�ned in [8, Def. 5.1℄). Thus, Part (1) followsimmediately from [8, Thm. 5.5℄, and the point is proving Part (2).9Suppose that P is haraterized by CONS(C;M). Viewing the uniform distribution over CONS(C;M)as a (very weak) one-sided error non-adaptive tester, we apply a \anonialization" proedure thatis analogous to [9, Thm. 2℄, and obtain a (very weak) tester that inspets the neighborhoods of randomly distributed verties. This yields a haraterization of P by CONS(f((1; :::; ); �)g;M0),where � is this tester's deision prediate. So we are done.5 The Invariane Conjeture Fails in Some CasesWe show that, in general, the invariane ondition is neither neessary nor suÆient for the existeneof proximity oblivious testers (POTs).5.1 The Invariane Condition is not neessary for POTWe present two examples (i.e., properties) that demonstrate that satisfying the invariane onditionis not neessary for having a proximity oblivious tester. Both examples are based on sparse linearodes that have (proximity oblivious) odeword tests (i.e., these odes are loally testable). Inboth ases, the key observation is that satisfying the invariane ondition with respet to M (asin De�nition 2.4) requires that M is \rih enough" sine the domain permutations should map a7Reall that we also assume that for every g 2 P it holds that u 2 g(v) i� v 2 g(u) (for every u; v 2 [N ℄). We notethat this extra property is easy to test.8In fat, the negative example in [8, Prop. 5.4℄ an arise in our ontext. Spei�ally, onsider the set of onstraintsgenerated by the onstraint ((1; 2); �) suh that �(S1; S2) = 1 i� both (1) jfi 2 f1; 2g : Si = ;gj 6= 1 and (2) jS1j 2f0g [ f2i� 1 : i 2 Ng. (Indeed, ondition (1) mandates that if the graph ontains an isolated vertex then it ontainsno edges, whereas ondition (2) mandates that all non-isolated verties have odd degree.)9The point (i.e., Part (2)) is showing that if P satis�es the invariane ondition, then it satis�es it with respet to theanonial set. We mention that the transformation from the possibly adaptive harater of a proximity oblivious testerto the non-adaptive harater of the invariane ondition (equivalently, generalized subgraph-freeness) is performedin [8, Thm. 5.5℄. 8



�xed number of elements to all the domain elements. On the other hand, Proposition 2.7 requiresthat the property be losed under M , whereas this is shown to be impossible in both examples. Inthe �rst example, presented next, the property will be shown to be losed only under the trivialpair (id; id).Theorem 5.1 There exists a property, denoted P, of Boolean funtions suh that P has a proximityoblivious tester but does not satis�es the invariane ondition. Furthermore, P is a linear property;that is, if f1; f2 2 P then f1 + f2 2 P, where (f1 + f2)(x) = f1(x)� f2(x) for every x.Proof: We onsider a random linear property of dimension ` = O(log n). That is, for uniformlyseleted funtions g1; :::; g` : [n℄ ! f0; 1g, we onsider the property Pn = fPi2I gi : I � [`℄g.Atually, we repeat this seletion for every value of n, obtaining the property P = (Pn)n2N. It wasshown in [11℄ that, with high probability over these random hoies, the property P has a POT. Weshall show that, with high probability over these random hoies, the property P does not satisfythe invariane ondition.The key observation is that satisfying the invariane ondition with respet to M (as in De�ni-tion 2.4) requires that M is non-trivial (i.e., ontains a non-trivial pair), beause otherwise Pn isharaterized by a �xed (i.e., independent of n) number of onstraints (whih is highly improbablefor random gi's). On the other hand, Proposition 2.7 requires that Pn be losed under M , whihis highly improbable when M is non-trivial. Spei�ally, we will show that with high probability(over the hoie of Pn), for every non-trivial (�; �), there exists f 2 Pn suh that � Æ f Æ ��1 62 P.We distinguish two ases: (1) the ase that � is not the identity permutation but � is the identitypermutation, and (2) the ase that � is not the identity permutation (whih implies that �(b) = 1�bfor every b 2 f0; 1g).Claim 5.1.1 Let � be a permutation suh that m def= jfi2 [n℄ : �(i) 6= igj > 0. Then, for a randomPn, the probability that ff Æ � : f 2 Png = Pn is less than 2�m`=4.Note that the number of permutations that satisfy the hypothesis is smaller than �nm� � (m!) <2m log2 n. Thus, the aggregated probability for the aforementioned Case (1) is a small onstant (i.e.,Pm>0 2�m�((`=4)�log2 n) is smaller than, say, 0:01).Proof: As a warm-up we upper bound the probability that g Æ � = g, where g : [n℄ ! f0; 1g isuniformly distributed. For g Æ � = g to hold, g must be onstant on eah yle of �. Denoting thenumber of yles by  � m=2, it follows that Prg[gÆ� = g℄ = 2�m+ � 2�m=2. The argument extendsto the ase that we wish g Æ� = g+ f to hold for an arbitrary �xed f and a random g. Spei�ally,onsider a yle of �, denoted i1; :::; it. Then, Prg[(8j2 [t� 1℄) g(j +1) = g(j) + f(j)℄ = 2�(t�1). Itis even easier to prove that Prg[g Æ � = f ℄ � 2�m=2, sine atually Prg[g Æ � = f ℄ = 2�n. We nowturn to upper-bound the probability that ff Æ � : f 2 Png = Pn, by upper-boundingPrg1;:::;g`[(8i2 [`℄) gi Æ � 2 Pn℄ = Prg1;:::;g` 248i2 [`℄9Ii � [`℄ s.t. gi Æ � = Xj2Ii gj35 (2)� XI1;:::;I`�[`℄Prg1;:::;g` 248i2 [`℄ gi Æ � = Xj2Ii gj35 (3)We break the sum in Eq. (3) into two parts, separating the single term that orresponds to(I1; :::; I`) = (f1g; :::; f`g) from all other terms. The ontribution of the �rst term to Eq. (3) is9



upper-bounded by (2�m=2)`, beause Prg1;:::;g`[8i 2 [`℄ gi Æ � = gi℄ equals Qì=1 Prgi [gi Æ � = gi℄.For eah other term orresponding to (I1; :::; I`) 6= (f1g; :::; f`g), we pik an arbitrary i suh thatIi 6= fig, and note that Prg1;:::;g`[gi Æ � = Pj2Ii gj ℄ equals 2�n, sine gi is uniformly distributedeven when �xing the value of Pj2Ii gj . Furthermore, this assertion holds even if we only selet giand fi = Pj2Ii gj at random (where in ase Ii = ; we mean setting fi � 0). We now onsideran iterative proess starting with i1 = i, suh that at the �rst step we selet uniformly gi1 andfi1 =Pj2Ii1 gj . Reall that we have Prgi1 ;fi1 [gi1 Æ� = fi1 ℄ = 2�n. For k = 2; :::; `=2, at the kth stepwe set ik suh that gik is independent of gi1 ; :::; gik�1 and fi1 ; :::; fik�1 (where fi = Pj2Ii gj), anduniformly selet gik and fik (unless fik was already determined in whih ase it is left unhanged).Note that suh a ik exists as long as k � `=2, but Iik need not be di�erent than fikg. Then, theprobability that gik Æ � =Pj2Iik gj , onditioned on the values of gi1 ; :::; gik�1 and fi1 ; :::; fik�1 , is atmost 2�m=2, where the probability is taken merely over the hoie of gik (and possibly fik). Thus,the ontribution of this generi term to Eq. (3) is upper-bounded by 2�n � (2�m=2)(`=2)�1. Usingthe union bound, we upper-bound the ontribution of all these (2`)` � 1 terms by2`2 � 2�(n�(m=2)) � (2�m=2)`=2; (4)whih is upper-bounded by 2�(m`=4)�1 (beause 2`2 �2�(n�(m=2)) < 1=2). The laim follows (beause2�m`=2 < 2�(m`=4)�1). 2Claim 5.1.2 Let �(b) = 1� b. Then, for a random Pn, the probability that there exists a permuta-tion � suh that f� Æ f Æ ��1 : f 2 Png = Pn is negligible as a funtion of n (i.e., is vanishes fasterthan any polynomial fration (in n)).Proof: It suÆes to show that, while the all-zero funtion is in Pn, with very high probability theonstant-one funtion is not in Pn. This is the ase beause, with overwhelmingly high probability,for every non-empty I � [`℄ it holds that jfj 2 [n℄ :Pi2I gi(j) = 1gj is in (1� o(1)) � n=2. 2Combining Claims 5.1.1 and 5.1.2, we onlude that with high onstant probability P is not losedunder any non-trivial pair. Realling the initial disussion, the theorem follows.Testing the Long-Code (a.k.a ditatorship tests). We refer to the property P = (Pn), wherefor n = 2`, it holds that f : f0; 1g` ! f0; 1g is in Pn if and only if there exists i 2 [`℄ suh thatf(�1 � � � �`) = �i. Suh a funtion f is a ditatorship (determined by bit i) and an be viewed asthe ith odeword in the long-ode (i.e., the long-ode enoding of i). Note that this property islosed under the pair (�; id), where � is a permutation � over f0; 1g`, if and only if there exists apermutation � over [`℄ suh that �(�1 � � � �`) = ��(1) � � � ��(`). (An analogous onsideration appliesto pairs (�; flip), where flip(�) = 1 � � for every � 2 f0; 1g.) We shall show that these are theonly pairs under whih the ditatorship property is losed, and it will follow that the ditatorshipproperty violates the invariane ondition.Theorem 5.2 The ditatorship property violates the invariane ondition, although it has a prox-imity oblivious tester.Proof: The fat that the ditatorship property has a proximity oblivious tester is establishedin [3, 13℄.10 We shall show that this property violates the invariane ondition beause it is not10The longode test of [3℄ only refers to the ase that ` is a power of 2.10



losed under pairs (�; �) unless � either preserves the (Hamming) weight of the strings or preservesthis weight under ipping.Indeed, the notion of (Hamming) weight is pivotal to this proof, where the weight of a string� 2 f0; 1g`, denoted wt(�), is de�ned as the number of bit positions that ontain a one (i.e.,wt(�1 � � � �`) def= jfi 2 [`℄ : �i = 1gj). We �rst laim that if Pn is losed under (�; �) then wt(�(�))equals either wt(�) or ` � wt(�) for every � 2 f0; 1g`. (These two ases orrespond to whether� = id or � = flip (i.e., �(�) = 1� �).)Suppose that � maps some `-bit string � to a string � that has a di�erent weight (i.e., wt(�) 6=wt(�)). Then, jff 2 Pn : f(�) = 1gj = wt(�), beause for every f 2 Pn there exists a di�erenti 2 [`℄ suh that f(�1 � � � �`) = �i. Similarly, jff Æ � : f 2 Pn ^ (f Æ �)(�) = 1gj = wt(�), sine(f Æ �)(�) = f(�). Using wt(�) 6= wt(�), we infer that Pn 6= ff Æ � : f 2 Png, sine eah setontains a di�erent number of funtions that evaluated to 1 at the point �. This handles the aseof � = id, and the ase of � = flip is handled similarly (i.e., if � maps some `-bit string � to astring � suh that wt(�) 6= `� wt(�), then Pn 6= f� Æ f Æ � : f 2 Png).Having established the above, we note that if P had satis�ed the invariane ondition then theorrespondingM would have mapped a �xed number of elements to all domain elements. But this�xed number of domain elements (i.e., `-bit long strings) have a �xed number of weights, whereas(by Proposition 2.7 and the above) the set M may only ontain pairs (�; �) suh that � preserves(or \omplements") the weight of strings. This ontradits the requirement that all `+ 1 di�erentweights must be overed by the generated onstraints, and the theorem follows.5.2 The Invariane Condition is not suÆient for POTWe next demonstrate that the invariane ondition does not suÆe for obtaining a proximityoblivious tester. Atually, this example also shows that the invariane ondition does not suÆefor the standard de�nition of testing (with query omplexity that only depends on the proximityparameter).Theorem 5.3 There exists a property, denoted P, of Boolean funtions suh that P satis�es theinvariane ondition but has no proximity oblivious tester. Furthermore, the invariant onditionholds with respet to a single linear onstraint that refer to four domain elements, and a group ofdomain permutations that is 1-transitive. Moreover, P annot be tested (in the standard sense)within query omplexity that only depends on the proximity parameter.Proof: We use a lower bound of [5℄ that refers to the query omplexity of testing Eulerianorientations of �xed (and highly regular) bounded-degree graphs. Spei�ally, [5, Thm. 9.14℄ provesan 
(log `) query lower bound on the omplexity of testing whether the orientation of an `-by-`yli grid is Eulerian. It follows that this property has no POT, while we shall see that it satis�esthe invariane ondition.We represent the orientation of the `-by-` yli grid by two funtions h; v : Z` � Z` ! f0; 1gsuh that h(i; j) represents the orientation of the horizontal edge between the verties (i; j) and(i; j + 1), whereas v(i; j) represents the orientation of the vertial edge between the verties (i; j)and (i+1; j), and the arithmetis is of Z` (i.e., modulo `). Spei�ally, h(i; j) = 1 (resp., v(i; j) = 1)indiates an orientation from (i; j) to (i; j+1) (resp., (i+1; j)). (Needless to say, we an pak bothfuntions in a single funtion; for example, f(1; i; j) = h(i; j) and f(0; i; j) = v(i; j).)The key observation is that the Eulerian orientation property an be haraterized by 4-onstraints that are generated from a single onstraint. Spei�ally, this property is haraterized11



by the set of 4-onstraints fh(i; j) + v(i; j) = h(i; j � 1) + v(i � 1; j) : i; j 2 Z`g, where the on-straint h(i; j) + v(i; j) = h(i; j � 1) + v(i � 1; j) mandates that exatly two of the four edges ofvertex (i; j) are oriented outwards. Finally, note that this set of onstraints is generated by thesingle onstraint h(1; 1) + v(1; 1) = h(1; 0) + v(0; 1) and the set of mappings f(�r;s; id)g, where�r;s(i; j) = (i+ r; j + s). The main laim follows.The only part of the furthermore laim that requires elaboration is the laim that the groupof domain permutations is 1-transitive. To show this we expliitly onsider the paking of theaforementioned two funtions in a single funtion f : f0; 1g�Z`�Z` ! f0; 1g suh that f(1; i; j) =h(i; j) and f(0; i; j) = v(i; j). We rede�ne the domain permutations �r;s suh that �r;s(�; i; j) =(�; i+r; j+s) and introdue an auxiliary permutation �0 suh that �0(�; i; j) = (1��; j; i). Observethat a generi onstraint (now written as f(1; i; j) + f(0; i; j) = f(1; i; j � 1) + f(0; i � 1; j)) ispreserved under the auxiliary permutation �0. The full laim now follows.6 ConlusionsWhile the invariane onjeture holds in two natural models of testing graph properties, it wasshown to fail in other settings. These failures, desribed in Setion 5, are of three di�erent types.1. As shown in Theorem 5.1, proximity oblivious testers exist also for properties that are onlylosed under the identity mapping. That is, a strong notion of testability is ahievable alsoin the absene of any invariants.2. As shown in Theorem 5.2, the existene of proximity oblivious testing for properties thatdo not satisfy the invariane ondition is not on�ned to unnatural properties and/or toproperties that lak any invariane.3. As shown in Theorem 5.3, the invariane ondition does not imply the existene of a standardtester of query omplexity that only depends on the proximity parameter. (Note that thenon-existene of suh testers implies the non-existene of proximity oblivious testers.) Fur-thermore, this holds even if the invariane ondition holds with respet to a group of domainpermutations that is 1-transitive.Our feeling is that the fat that the invariane ondition is not neessary for proximity oblivioustesting is less surprising than the fat that the former is insuÆient for the latter. Giving up onthe neessity part, we wonder whether a reasonable strengthening of the invariane ondition maysuÆe for proximity oblivious testing.A natural diretion to onsider is imposing additional restritions on the group of domainpermutations. As indiated by Theorem 5.3, requiring this group to be 1-transitive does not suÆe,and so one is tempted to require this group to be 2-transitive11 (as indeed suggested in [10℄ w.r.tstandard testing). Realling that if P is losed under a 2-transitive group (over the domain) then Pis self-orretable (and thus onsists of funtions that are pairwise far apart), one may also wonderabout only requiring 1-transitivity but restriting attention to properties that onsists of funtionsthat are pairwise far apart. We mention that the property used in the proof of Theorem 5.3 ontainsfuntions that are lose to one another.Atually, restriting attention to properties that are losed under a 1-transitive group of domainpermutations, we may return to the question of neessity and ask whether the existene of proximity11A permutation group G over D is alled 2-transitive if for every (e1; e2); (e01; e02) 2 �D2� there exists a � 2 G suhthat �(e1) = e01 and �(e2) = e02. 12



oblivious testers in this ase implies the invariane ondition. Note that our proof of Theorems 5.1and 5.2 relies on the fat that the orresponding group is not 1-transitive (e.g., in the �rst ase thegroup ation is trivial and in the seond ase it has a non-onstant number of orbits).AknowledgmentsWe are grateful to Dana Ron for useful disussions.
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Appendix: Property testing and Proximity Oblivious TestersWe �rst reall the standard de�nition of property testing.De�nition A.1 Let P = Sn2N Pn, where Pn ontains funtions de�ned over the domain Dn. Atester for a property P is a probabilisti orale mahine T that satis�es the following two onditions:1. The tester aepts eah f 2 P with probability at least 2=3; that is, for every n 2 N andf 2 Pn (and every � > 0), it holds that Pr[T f (n; �)=1℄ � 2=3.2. Given � > 0 and orale aess to any f that is �-far from P, the tester rejets with probabilityat least 2=3; that is, for every � > 0 and n 2 N, if f : Dn ! Rn is �-far from Pn, thenPr[T f (n; �)=0℄ � 2=3, where g is �-far from Pn if, for every g 2 Pn, it holds that jfe 2 Dn :f(e) 6= g(e)gj > � � n.If the tester aepts every funtion in P with probability 1, then we say that it has one-sided error;that is, T has one-sided error if for every f 2 P and every � > 0, it holds that Pr[T f (n; �)=1℄ = 1.A tester is alled non-adaptive if it determines all its queries based solely on its internal oin tosses(and the parameters n and �); otherwise it is alled adaptive.The query omplexity of a tester is measured in terms of the size parameter, n, and the proximityparameter, �. In this paper we fous on the ase that the omplexity only depends on � (and isindependent of n).Turning to the de�nition of proximity-oblivious testers, we stress that they di�er from standardtesters in that they do not get a proximity parameter as input. Consequently, assuming these testershave sublinear omplexity, they an only be expeted to rejet funtions not in P with probabilitythat is related to the distane of these funtions from P. This is aptured by the following de�nition.De�nition A.2 Let P = Sn2N Pn be as in De�nition A.1. A proximity-oblivious tester for P is aprobabilisti orale mahine T that satis�es the following two onditions:1. The mahine T aepts eah funtion in P with probability 1; that is, for every n 2 N andf 2 Pn, it holds that Pr[T f (n)=1℄ = 1.2. For some (monotone) funtion � : (0; 1℄ ! (0; 1℄, eah funtion f 62 P is rejeted by T withprobability at least �(ÆP(f)), where ÆP(f) def= ming2PfÆ(f; g)g and Æ(f; g) def= Prx2
[f(x) 6=g(x)℄.The funtion � is alled the detetion probability of the tester T .In general, the query omplexity of a proximity-oblivious tester may depend on the size parameter,n, but in this paper we fous on the ase that this omplexity is onstant.
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