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t. We 
ontinue the investigation of intera
tive proofs with bounded
ommuni
ation, as initiated by Goldrei
h and H�astad (IPL 1998). Let Lbe a language that has an intera
tive proof in whi
h the prover sendsfew (say b) bits to the veri�er. We prove that the 
omplement �L hasa 
onstant-round intera
tive proof of 
omplexity that depends only ex-ponentially on b. This provides the �rst eviden
e that for NP-
ompletelanguages, we 
annot expe
t intera
tive provers to be mu
h more \la-
oni
" than the standard NP proof.When the proof system is further restri
ted (e.g., when b = 1, or whenwe have perfe
t 
ompleteness), we get signi�
antly better upper boundson the 
omplexity of �L.Keywords: intera
tive proofs, Arthur-Merlin games, sampling proto
ols, statis-ti
al zero knowledge, game theory1 Introdu
tionIntera
tive proof systems were introdu
e by Goldwasser, Mi
ali and Ra
ko� [GMR89℄in order to 
apture the most general way in whi
h one party 
an eÆ
iently ver-ify 
laims made by another, more powerful party.1 That is, intera
tive proofsystems are two-party randomized proto
ols through whi
h a 
omputationally? Supported by the MINERVA Foundation.?? Work done while at the Institute for Advan
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eton, NJ, supported byan NSF Mathemati
al S
ien
es Postdo
toral Resear
h Fellowship.? ? ? Partially supported by NSF grants CCR-9987845 and CCR-9987077.1 Arthur-Merlin games, introdu
ed by Babai [Bab85℄, are a spe
ial type on intera
tiveproofs in whi
h the veri�er is restri
ted to send the out
ome of ea
h 
oin it tosses.Su
h proof systems are also 
alled publi
 
oin, and are known to be as expressiveas general intera
tive proofs [GS89℄. We warn that the latter assertion refers to theentire 
lass but not to re�ned 
omplexity measures su
h as the number of bits sentby the prover (
onsidered below).



unbounded prover 
an 
onvin
e a probabilisti
 polynomial-time veri�er of themembership of a 
ommon input in a predetermined language. Thus, intera
tiveproof systems generalize and 
ontain as a spe
ial 
ase the traditional \NP-proofsystems" (in whi
h veri�
ation is deterministi
 and \non-intera
tive").It is well-known that this generalization buys us a lot: The IP Chara
teri-zation Theorem of Lund, Fortnow, Karlo�, Nisan and Shamir [LFKN92, Sha92℄states that every language in PSPACE has an intera
tive proof system, and itis easy to see that only languages in PSPACE have intera
tive proof systems.It is well-known that the strong expressive power of intera
tive proofs islargely due to the presen
e of intera
tion. In parti
ular, intera
tive proofs inwhi
h a single message is sent (like inNP-proofs) yield a 
omplexity 
lass (knownas MA) that seems very 
lose to NP. It is interesting to explore what happensbetween these extremes of unbounded intera
tion and no intera
tion. That is,what is the expressive power of intera
tive proofs that utilize a bounded, butnonzero, amount of intera
tion?Intera
tive Proofs with Few Messages. The earliest investigations of the abovequestion examined the message 
omplexity of intera
tive proofs, i.e., the numberof messages ex
hanged. (Sometimes, we refer to rounds, whi
h are a pair ofveri�er-prover messages.) The Speedup Theorem of Babai and Moran [BM88℄(together with [GS89℄) shows that the number of messages in an intera
tive proof
an be always be redu
ed by a 
onstant fa
tor (provided the number of messagesremains at least 2). On the other hand, there is a large gap between 
onstant-round intera
tive proofs and unrestri
ted intera
tive proofs. As mentioned above,all of PSPACE has a general intera
tive proof [LFKN92, Sha92℄. In 
ontrast,the 
lass AM of problems with 
onstant-round intera
tive proofs is viewed asbeing relatively 
lose to NP. Spe
i�
ally, AM lies in the se
ond level of thepolynomial-time hierar
hy [BM88℄, 
annot 
ontain 
oNP unless the polynomial-time hierar
hy 
ollapses [BHZ87℄, and a
tually equalsNP under plausible 
ir
uit
omplexity assumptions [AK97, KvM99, MV99℄.La
oni
 Provers. A more re�ned investigation of the above question was initi-ated by Goldrei
h and H�astad [GH98℄, who gave bounds on the 
omplexity oflanguages possessing intera
tive proofs with various restri
tions on the numberof bits of 
ommuni
ation and/or randomness used. One of the restri
tions they
onsidered, and the main fo
us of our investigation, limits the number of bitssent from the prover to the veri�er by some bound b. That is, what languages
an be proven by \la
oni
" provers?Sin
e the prover is trying to 
onvey something to the veri�er, this seems tobe the most interesting dire
tion of 
ommuni
ation. Moreover, for appli
ationsof intera
tive proofs (e.g., in 
ryptographi
 proto
ols), it models the 
ommonsituation in whi
h 
ommuni
ation is more expensive in one dire
tion (e.g., if theprover is a handheld wireless devi
e).On one hand, we know of intera
tive proofs for several \hard" problems(Quadrati
 Nonresiduosity [GMR89℄,Graph Nonisomorphism [GMW91℄,and others [GK93, GG00, SV97℄) in whi
h the 
ommuni
ation from the prover to



the veri�er is severely bounded (in fa
t, to one bit). On the other hand, no su
hproof systems were known for NP-
omplete problems, nor was there any indi
a-tion of impossibility (ex
ept when additional 
onstraints are imposed [GH98℄).In this work, we provide strong eviden
e of impossibility.Our Results. Consider intera
tive proofs in whi
h the prover sends at mostb = b(n) bits to the veri�er on inputs of length n. Goldrei
h and H�astad [GH98,Thm. 4℄ pla
ed su
h languages in BPTIMENP(T ), where T = poly(n) �2poly(b),whi
h 
learly implies nothing for languages in NP. In 
ontrast, we show thatthe 
omplements of su
h languages have 
onstant-round intera
tive proofs of
omplexity T (i.e., the veri�er's 
omputation time and the total 
ommuni
ationis bounded by T ). In parti
ular, NP-
omplete problems 
annot have intera
tiveproofs in whi
h in whi
h the prover sends at most polylogarithmi
ally many bitsto the veri�er unless 
oNP is in the quasipolynomial analogue of AM. In fa
t,assuming NP has 
onstant-round intera
tive proofs with logarithmi
 prover-to-veri�er 
ommuni
ation we 
on
lude 
oNP � AM. As mentioned above, this ishighly unlikely.We obtain stronger results in two spe
ial 
ases:1. We show that if a language has an intera
tive proof of perfe
t 
ompleteness(i.e., , zero error probability on yes instan
es) in whi
h the prover sends atmost b(n) bits, then it is in 
oNTIME(T ), where T (n) = 2b(n) � poly(n).Thus, unless NP = 
oNP, NP-
omplete languages 
annot have intera
tiveproof systems of perfe
t 
ompleteness in whi
h the prover sends at mostlogarithmi
ally many bits.2. We show that if a language has an intera
tive proof in whi
h the proversends a single bit (with some restri
tions on the error probabilities), thenit has a statisti
al zero-knowledge intera
tive proof; that is, is in the 
lassSZK. This is a stronger 
on
lusion than our main result be
ause SZK �AM \ 
oAM, as shown by Fortnow [For89℄ and Aiello and H�astad [AH91℄.Re
alling that Sahai and Vadhan [SV97℄ showed that any language in SZKhas an intera
tive proof in whi
h the prover sends a single bit, we obtain asurprising equivalen
e between these two 
lasses.2Lastly, we mention one easy, but apparently new, observation regarding mes-sage 
omplexity. A question that is left open by the results mentioned earlieris what happens \in between" 
onstant rounds and polynomially many rounds.Phrased di�erently, 
an the Speedup Theorem of Babai and Moran be improvedto show that m(n)-message intera
tive proofs are no more powerful than m0(n)-message ones for some m0 = o(m)? By 
ombining 
areful parameterizations of[LFKN92, BM88℄, we observe that su
h an improvement is unlikely. More pre-
isely, for every ni
e fun
tion m, we show that there is a language whi
h has an2 In addition, if the error probabilities are suÆ
iently small, we also are able to redu
eintera
tive proofs in whi
h the prover sends a single message of several bits (e.g.,O(loglog n) bits) to the 1-bit 
ase above. But we omit these results from this extendedabstra
t due to spa
e 
onstraints.



m(n)-message intera
tive proof but not an o(m(n))-message one, provided that#SAT is not 
ontained in the subexponential analogue of 
oAM.Additional Related Work. It should be noted that the results of Goldrei
h andH�astad are signi�
antly stronger when further restri
tions are imposed in addi-tion to making the prover la
oni
. In parti
ular, they obtain an upper boundof BPTIME(T ) (rather than BPTIMENP(T )), with T = 2poly(b) � poly(n)for languages possessing either of the following kinds of intera
tive proofs: (a)publi
-
oin proofs in whi
h the prover sends at most b bits, (b) proofs in whi
hthe 
ommuni
ation in both dire
tions is bounded by b.There has also been a body of resear
h on the expressive power ofmulti-proverintera
tive proofs (MIP's) and probabilisti
ally 
he
kable proofs (PCP's) with low
ommuni
ation, be
ause of the importan
e of the 
ommuni
ation parameter intheir appli
ations to inapproximability. In parti
ular, Bellare, Goldrei
h, andSudan [BGS98℄ give negative results about the expressive power of \la
oni
"PCP's and MIP's. One-query probabilisti
ally 
he
kable proofs are equivalentto intera
tive proofs in whi
h the prover sends a single message, so our resultsprovide bounds on the former.Our work is also related to work on knowledge 
omplexity. Knowledge 
om-plexity, proposed by [GMR89℄, aims to measure how mu
h \knowledge" is leakedfrom the prover to the veri�er in an intera
tive proof. Several measures of knowl-edge 
omplexity were proposed by Goldrei
h and Petrank [GP99℄, and series ofworks provided upper bounds on the 
omplexity of languages having intera
-tive proofs with low knowledge 
omplexity [GP99, GOP98, PT96, SV97℄. Theseresults are related to, but in
omparable to ours.For example, Petrank and Tardos [PT96℄ showed that languages havingknowledge 
omplexity k = O(log n) are 
ontained in AM \ 
oAM. While itis true that the knowledge 
omplexity of an intera
tive proof is bounded by theamount of prover-to-veri�er 
ommuni
ation, their result does not yield anythinginteresting for la
oni
 intera
tive proofs. The reason is that their result onlyapplies to intera
tive proofs with error probabilities signi�
antly smaller than2�k, and it is easy to see that intera
tive proofs with prover-to-veri�er 
ommu-ni
ation k = O(log n) error probability � 2�k only 
apture BPP (and hen
eare uninteresting). Our results apply even for 
onstant error probabilities.Sahai and Vadhan [SV97℄ (improving [GP99℄) showed that languages withlogarithmi
 knowledge 
omplexity in the \hint sense" 
ollapse to SZK, andtheir result applies even if the error probabilities are 
onstant. However, this isalso in
omparable to ours, for the \hint sense" is the one measure of knowledge
omplexity whi
h is not bounded by the prover-to-veri�er 
ommuni
ation.Finally, it is important to note that the situation is dramati
ally di�erentfor argument systems [BCC88℄ (also known as 
omputationally sound proofs).These are like intera
tive proofs, but the soundness 
ondition is restri
ted topolynomial-time provers. Kilian [Kil92℄ showed that NP has la
oni
 argumentsystems if strong 
ollision-resistant hash fun
tions exist. Spe
i�
ally, under astrong enough (but still plausible) assumption, NP has publi
-
oin argumentsin whi
h the veri�er's randomness and the 
ommuni
ation in both dire
tions is



polylogarithmi
. Combined with [GH98℄, this provides a strong separation be-tween the eÆ
ien
y of arguments versus intera
tive proofs for NP; and ourresults extend this separation to the 
ase that only the prover-to-veri�er 
om-muni
ation is 
ounted (and the intera
tive proof is not required to be publi

oin).2 PreliminariesWe assume that the reader is familiar with the basi
 
on
epts underlying intera
-tive proofs (and publi
-
oin intera
tive proofs) (see e.g., [Sip97, Gol99, Vad00℄).Throughout, we work with intera
tive proofs for promise problems rather thanlanguages. More pre
isely, a promise problem � = (�Y ; �N ) is a pair of dis-joint sets of strings, 
orresponding to yes and no instan
es, respe
tively. In otherwords, a promise problem is simply a de
ision problem in whi
h some inputs areex
luded. The de�nition of intera
tive proofs is extended to promise problemsin the natural way: we require that when the input is a yes instan
e, the prover
onvin
es the veri�er to a

ept with high probability (
ompleteness); and whenthe input is a no instan
e, the veri�er a

epts with low probability no matterwhat strategy the prover follows (soundness). Working with promise problemsrather than languages only makes our results stronger (ex
ept for one dire
tionof Theorem 4.4).We denote by IP(b;m) (resp., AM(b;m)) the 
lass of problems having in-tera
tive proofs (resp., publi
-
oin intera
tive proofs) in whi
h the prover sendsa total of at most b bits, and the total number of messages ex
hanged (in bothdire
tions) is at most m. Note that b and m are integer fun
tions of the 
ommoninput length, denoted n. When b is not polynomial in n, it will be understoodthat we talk of a generalization in whi
h the veri�er is allowed time polynomialin b and n (rather than just in n). Unless spe
i�ed di�erently, we refer to proofsystems with 
ompleteness probability 2=3 and soundness probability 1=3.We denote IP(b) = IP(b; 2b); that is, making only the trivial bound on thenumber of messages ex
hanged. We denote by IP+ the analogue of IP whenthe proof system has perfe
t 
ompleteness (i.e., 
ompleteness probability 1).The 
lass of problems with 
onstant-round intera
tive proofs is denoted AM def=AM(poly(n); 2) = IP(poly(n); O(1)). (The se
ond equality is by Thms 2.3 and2.4 below.) When we wish to spe
ify the 
ompleteness probability 
 = 
(n) andsoundness probability s = s(n) we will use subs
ripts: IP
;s and AM
;s.Using the above notations, we re
all the main results of Goldrei
h and H�astad,whi
h are the starting point for our work.Theorem 2.1 ([GH98℄). AM(b;m) � BPTIME(poly(2b;mm; n))Theorem 2.2 ([GH98℄). IP(b;m) � BPTIME(poly(2b;mm; n))NPWe also state some standard results that we will use:Theorem 2.3 ([BM88℄). AM(b;m) � AM(b2 �poly(m); dm=2e) � AM((b �m)O(m); 2):



Theorem 2.4 ([GS89℄). IP(b;m) � AM(poly(b; n);m).Theorem 2.5 ([BHZ87℄). If 
oNP � AM(b; 2), then �2 � �2(poly(n; b)).In parti
ular, if 
oNP � AM, then the polynomial-time hierar
hy 
ollapses toPH = �2 = �2.Above and throughout the paper, �i(t(n)) (resp., �i(t(n))) denotes the
lass of problems a

epted by t(n)-time alternating Turing ma
hines with ialternations beginning with an existential (resp., universal) quanti�er. Thus,�idef=�i(poly(n)) and�idef=�i(poly(n)) 
omprise the i'th level of the polynomial-time hierar
hy.We will also 
onsider SZK, the 
lass of problems possessing statisti
al zero-knowledge intera
tive proofs. Rather than review the de�nition here, we willinstead use a re
ent 
hara
terization of it in terms of 
omplete problems whi
hwill suÆ
e for our purposes. For distributions X and Y , let �(X;Y ) denote theirstatisti
al di�eren
e (or variation distan
e, i.e., �(X;Y ) = maxS jPr [X 2 S℄�Pr [Y 2 S℄ j. We will 
onsider distributions spe
i�ed by 
ir
uits whi
h samplefrom them. More pre
isely, a 
ir
uit with m input gates and n output gates 
anbe viewed as a sampling algorithm for the distribution on f0; 1gn indu
ed byevaluating the 
ir
uit on m random input bits. Statisti
al Differen
e is thepromise problem SD = (SDY ;SDN ), whereSDY = f(X;Y ) : �(X;Y ) � 2=3gSDN = f(X;Y ) : �(X;Y ) � 1=3g ;where X and Y are probability distributions spe
i�ed by 
ir
uits whi
h samplefrom them. More generally, for any 1 � � > � � 0, we will 
onsider variantsSD�;�, where the thresholds of 2=3 and 1=3 are repla
ed with � and � respe
-tively.Theorem 2.6 ([SV97℄). For any 
onstants 1 > �2 > � > 0, SD�;� is 
ompletefor SZK.The following results about SZK are also relevant to us.Theorem 2.7 ([For89, AH91℄). SZK � AM \ 
oAM.Theorem 2.8 ([Oka00℄). SZK is 
losed under 
omplement.Theorem 2.9 ([SV97℄). SZK � IP1�2�n;1=2(1).3 Formal Statement of ResultsWe improve over Theorem 2.2, and address most of the open problems suggestedin [GH98, Se
. 3℄. Our main results are listed below.For one bit of prover-to-veri�er 
ommuni
ation, we obtain a 
ollapse to SZK.



Theorem 3.1. For every pair of 
onstants 
; s su
h that 1 > 
2 > s > 
=2 > 0,IP
;s(1) = SZK.With Theorem 2.8, this gives:Corollary 3.2. For every 
; s as in Thm. 3.1, IP
;s(1) is 
losed under 
omple-ment.For more rounds of 
ommuni
ation, we �rst obtain the following result forintera
tive proofs with perfe
t 
ompleteness (denoted by IP+):Theorem 3.3. IP+(b) � 
oNTIME(2b � poly(n)). In parti
ular,IP+(O(log n)) � 
oNP.In the general 
ase (i.e., with imperfe
t 
ompleteness), we prove:Theorem 3.4. IP(b;m) � 
oAM(2b � poly(mm; n); O(m)). In parti
ular,IP(O(log n);m) � 
oAM(poly(n); O(m)), for m = O(log n= log logn),The above theorems provide �rst eviden
e that NP-
omplete problems 
an-not have intera
tive proof systems in whi
h the prover sends very few bits.Further eviden
e toward this 
laim is obtained by applying Theorems 2.3 and2.5:Corollary 3.5. IP(b;m) � 
oAM(poly(2b;mm; n)m; 2). In parti
ular,IP(O(log n); O(1)) � 
oAM and IP(polylogn) � 
ogAM.Corollary 3.6. NP 6� IP(O(log n); O(1)) unless the polynomial-time hierar
hy
ollapses (to �2 = �2). NP 6� IP(polylogn) unless �2 � e�2.Above, 
ogAM and e�2 denote the quasipolynomial-time (2polylogn) analoguesof 
oAM and �2.Finally, we state our result on message 
omplexity.Theorem 3.7. Let m(n) � n= logn be any \ni
e" growing fun
tion. ThenAM(poly(n);m(n)) 6= AM(poly(n); o(m(n)) unless #SAT 2 AM(2o(n); 2).Note that, by Theorem 2.4, it is irrelevant whether we use IP or AM in thistheorem.Due to spa
e 
onstraints, we only present proofs of Theorems 3.1 and 3.3 inthis extended abstra
t. The proof of our main result (Theorem 3.4) is signi�-
antly more involved, and will be given in the full version of the paper.4 Extremely La
oni
 Provers (Saying Only One Bit)In this se
tion, we prove Theorem 3.1. The proof is based on the following lemma,along with previous results.Lemma 4.1. Every problem in IP
;s(1) redu
es to SD
;s.Proof. Let (P; V ) be an intera
tive proof for some problem so that the proversends a single bit during the entire intera
tion. We may thus assume that oninput x and internal 
oin tosses r, the veri�er �rst sends a message y = Vx(r),the prover answers with a bit � 2 f0; 1g, and the veri�er de
ides whether toa

ept or reje
t by evaluating the predi
ate Vx(r; �) 2 f0; 1g.



A spe
ial 
ase | unique answers. To demonstrate the main idea, we 
onsider�rst the natural 
ase in whi
h for every pair (x; r) there exists exa
tly one � su
hthat Vx(r; �) = 1. (Note that otherwise, the intera
tion on input x and veri�er'sinternal 
oin tosses r is redundant, sin
e the veri�er's �nal de
ision is una�e
tedby it.) For this spe
ial 
ase (whi
h we refer to as unique answers), we will provethe following:Claim 4.2. If a problem has an IP
;s(1) proof system with unique answers, thenit redu
es to SD2
�1;2s�1.Let �x(r) denote the unique � satisfying Vx(r; �) = 1. The prover's ability to
onvin
e the veri�er is related to the amount of information regarding �x(r) thatis revealed by Vx(r). For example, if for some x, �x(r) is determined by Vx(r) thenthe prover 
an 
onvin
e the veri�er to a

ept x with probability 1 (by replyingwith �x(r)). If, on the other hand, for some x, �x(r) is statisti
ally independentof Vx(r) (and unbiased), then there is no way for the prover to 
onvin
e theveri�er to a

ept x with probability higher than 1/2. This suggests the redu
tionx 7! (C1x; C2x), where C1x(r) def= (Vx(r); �x(r)) and C2x(r) def= (Vx(r); �x(r)), whereb denotes the 
omplement of a bit b.Now we relate the statisti
al di�eren
e between the distributions sampled byC1x and C2x to the maximum a

eptan
e probability of the veri�er. Sin
e the �rst
omponents of C1x and C2x are distributed identi
ally, their statisti
al di�eren
eis exa
tly the average over the �rst 
omponent Vx(r) of the statisti
al di�eren
ebetween the se
ond 
omponents 
onditioned on Vx(r). That is,�(C1x; C2x) = Ey Vx [� (�xjy; �xjy)℄ ;where �xjy denotes the distribution of �x(r) when r is uniformly distributedamong fr0 : Vx(r0) = yg. For any y and b 2 f0; 1g, let qbjy denote the probabilitythat �xjy = b. Then, for any �xed y, � (�xjy; �xjy) = jq1jy � q0jyj = 2qy � 1,where qy def= maxb2f0;1gfqbjyg � 12 . So, we have:�(C1x; C2x) = Ey Vx [2qy � 1℄ :On the other hand, the optimal prover strategy in (P; V ) is: upon re
eiving y,respond with b that maximizes qbjy. When the prover follows this strategy, wehave Pr[V a

epts x℄ = Ey Vx [qy℄ :Putting the last two equations together, we 
on
lude that �(C1x; C2x) = 2 �Pr[V a

epts x℄ � 1.3 Thus if the proof system has 
ompleteness and sound-ness error bounds 
 and s, respe
tively, then the redu
tion maps instan
es to3 Note that under the hypothesis of the spe
ial 
ase, for every x the prover may
onvin
e the veri�er to a

ept x with probability at least 1=2 (and so su
h a non-trivial proof system must have soundness at least 1=2).



pairs having distan
e bounds 2
 � 1 and 2s � 1, respe
tively.4 This establishesClaim 4.2.The general 
ase. We now pro
eed to deal with the general 
ase in whi
h theremay exist pairs (x; r) so that either both �'s or none of them satisfy Vx(r; �) = 1.We do so by redu
ing this general 
ase to the spe
ial 
ase.Claim 4.3. If a problem is in IP
;s(1), then it has an IP(1+
)=2;(1+s)=2(1) proofsystem with unique answers.Clearly, the lemma follows from this 
laim and the previous one, so we pro-
eed to prove the 
laim.Proof of 
laim. Let (P; V ) be a general IP
;s proof system. Considerthe following modi�ed veri�er strategy.V 0(x): Generate 
oin tosses r for the original veri�er and do one of thefollowing based on the number j of possible prover responses � forwhi
h Vx(r; �) = 1.[j = 2℄ Send the prover a spe
ial message \respond with 1" anda

ept if the prover responds with 1.[j = 1℄ Randomly do one of the following (ea
h with prob. 1=2):{ Send the prover y = Vx(r) and a

ept if the prover respondswith the unique � su
h that Vx(r; �) = 1.{ Send the prover a spe
ial message \respond with 1" anda

ept if the prover responds with 1.[j = 0℄ Choose a random bit �. Send the prover a spe
ial message\guess my bit" and a

ept if the prover responds with �.Clearly, V 0 has unique answers. It 
an be shown that if an optimalprover makes V a

ept with probability Æ, then an optimal prover makesV 0 a

ept with probability (1 + Æ)=2. Claim 4.3 follows. 2Theorem 3.1 follows from Lemma 4.1, Theorem 2.6, and Theorem 2.9. Detailswill be given in the full version of the paper. The 
2 > s 
onstraint in Theorem 3.1is due to the analogous 
onstraint in Theorem 2.6. Indeed, we 
an establish thefollowing equivalen
e (also to be proven the full version of the paper):Theorem 4.4. The following are equivalent.1. For every �; � su
h that 1 > � > � > 0, SD�;� is in SZK (and is thereforealso 
omplete).2. For every 
; s su
h that 1 > 
 > s > 
=2 > 0, IP
;s(1) = SZK.Finally, we remark that the 
ondition s > 
=2 in Theorems 3.1 and 4.4 isne
essary, for IP
;s(1) = BPP for any s < 
=2.4 Note that this relationship is reversed by the natural IP(1) system for SD�;� in whi
hthe veri�er sele
ts at random a single sample from one of the two distributions andasks the prover to guess whi
h of the distributions this sample 
ame from. If thedistributions are at distan
e Æ then the prover su

eeds with probability 12 + Æ2 . Thusapplying this proof system to SD2
�1;2s�1 we obtain 
ompleteness and soundnessbounds 
 and s, respe
tively.



5 La
oni
 Provers with Perfe
t CompletenessIn this se
tion, we prove Theorem 3.3.Theorem 3.3 (restated): If a problem � has an intera
tive proof system withperfe
t 
ompleteness in whi
h the prover-to-veri�er 
ommuni
ation is at mostb(�) bits then � 2 
oNTIME(2b(n) � poly(n)).Proof. We take a slightly unusual look at the intera
tive proof system for � ,viewing it as a \progressively �nite game" between two players P � and V �. P �
orresponds to the usual prover strategy and its aim is to make the originalveri�er a

ept the 
ommon input. V � is a \
heating veri�er" and its aim is toprodu
e an intera
tion that looks legal and still makes the original veri�er reje
tthe 
ommon input.To make this pre
ise, let b = b(n) be the bound on the prover-to-veri�er
ommuni
ation in (P; V ) on inputs of length n, and let m = m(n) be the numberof messages ex
hanged. Without loss of generality, we may assume that the Vsends all its 
oin tosses in the last message. A trans
ript is a sequen
e of mstrings, 
orresponding to (possible) messages ex
hanged between P and V . We
all a trans
ript t 
onsistent (for x) if every veri�er message in t is the messageV would have sent given input x, the previous messages in t, and the 
oin tossesspe
i�ed by the last message in t. We 
all a 
onsistent t reje
ting if V wouldreje
t at the end of su
h an intera
tion.Now, the game between P �x and V �x has the same stru
ture as the intera
tionbetween P and V on input x: a total of m messages are ex
hanged and P �x isallowed to send at most b bits. The game between P �x and V �x yields a trans
ript t.We say that V �x wins if t is 
onsistent and reje
ting, and that P �x wins otherwise.We stress that V �x need not emulate the original veri�er nor is it ne
essarilyimplemented in probabilisti
 polynomial time.This 
onstitutes a \perfe
t information �nite game in extensive form" (alsoknown as a \progressively �nite game") and Zermelo's Theorem (
f., [Tu
95,Se
 10.2℄) says that exa
tly one of the two players has a winning strategy | thatis, a (deterministi
) strategy that will guarantee its vi
tory no matter how theother party plays.Using the perfe
t 
ompleteness 
ondition, we infer that if the 
ommon inputx is a yes instan
e then there exists a winning strategy for P �x . (This is be
ausethe optimal prover for the original intera
tive proof wins whenever V �x plays ina manner 
onsistent with some sequen
e of 
oin tosses for the original veri�er,and it wins by de�nition if the V �x plays in
onsistently with any su
h sequen
e.)On the other hand, by the soundness 
ondition, if the 
ommon input is a noinstan
e then there exists no winning strategy for P �x . (This is be
ause in this
ase no prover strategy 
an 
onvin
e the original veri�er with probability 1.) Bythe above, it follows that whenever the 
ommon input is a no instan
e thereexists a winning strategy for V �x .Thus, a proof that x is a no instan
e 
onsists of a winning strategy forV �x . Su
h strategy is a fun
tion mapping partial trans
ripts of P �x messages to



the next V �x message. Thus, su
h a strategy is fully spe
i�ed by a fun
tion from[bi=0f0; 1gi to f0; 1gpoly(n), and has des
ription length poly(n) �2b(n)+1. To verifythat su
h a fun
tion 
onstitutes a winning strategy for V �x , one merely tries allpossible deterministi
 strategies for the P �x (i.e., all possible b(n)-bit long strings).The theorem follows.Referen
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