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Abstract. We continue the investigation of interactive proofs with bounded
communication, as initiated by Goldreich and Hastad (IPL 1998). Let L
be a language that has an interactive proof in which the prover sends
few (say b) bits to the verifier. We prove that the complement L has
a constant-round interactive proof of complexity that depends only ex-
ponentially on b. This provides the first evidence that for NP-complete
languages, we cannot expect interactive provers to be much more “la-
conic” than the standard NP proof.

When the proof system is further restricted (e.g., when b = 1, or when
we have perfect completeness), we get significantly better upper bounds
on the complexity of L.

Keywords: interactive proofs, Arthur-Merlin games, sampling protocols, statis-
tical zero knowledge, game theory

1 Introduction

Interactive proof systems were introduce by Goldwasser, Micali and Rackoff [GMR&89]
in order to capture the most general way in which one party can efficiently ver-
ify claims made by another, more powerful party.! That is, interactive proof
systems are two-party randomized protocols through which a computationally
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! Arthur-Merlin games, introduced by Babai [Bab85], are a special type on interactive
proofs in which the verifier is restricted to send the outcome of each coin it tosses.
Such proof systems are also called public coin, and are known to be as expressive
as general interactive proofs [GS89]. We warn that the latter assertion refers to the
entire class but not to refined complexity measures such as the number of bits sent
by the prover (considered below).



unbounded prover can convince a probabilistic polynomial-time verifier of the
membership of a common input in a predetermined language. Thus, interactive
proof systems generalize and contain as a special case the traditional “NP-proof
systems” (in which verification is deterministic and “non-interactive”).

It is well-known that this generalization buys us a lot: The IP Characteri-
zation Theorem of Lund, Fortnow, Karloff, Nisan and Shamir [LFKN92, Sha92]
states that every language in PSPACE has an interactive proof system, and it
is easy to see that only languages in PSPACE have interactive proof systems.

It is well-known that the strong expressive power of interactive proofs is
largely due to the presence of interaction. In particular, interactive proofs in
which a single message is sent (like in NP-proofs) yield a complexity class (known
as MA) that seems very close to NP. It is interesting to explore what happens
between these extremes of unbounded interaction and no interaction. That is,
what is the expressive power of interactive proofs that utilize a bounded, but
nonzero, amount of interaction?

Interactive Proofs with Few Messages. The earliest investigations of the above
question examined the message complexity of interactive proofs, i.e., the number
of messages exchanged. (Sometimes, we refer to rounds, which are a pair of
verifier-prover messages.) The Speedup Theorem of Babai and Moran [BM88]
(together with [GS89]) shows that the number of messages in an interactive proof
can be always be reduced by a constant factor (provided the number of messages
remains at least 2). On the other hand, there is a large gap between constant-
round interactive proofs and unrestricted interactive proofs. As mentioned above,
all of PSPACE has a general interactive proof [LFKN92, Sha92]. In contrast,
the class AM of problems with constant-round interactive proofs is viewed as
being relatively close to NP. Specifically, AM lies in the second level of the
polynomial-time hierarchy [BM88], cannot contain coNP unless the polynomial-
time hierarchy collapses [BHZ87], and actually equals NP under plausible circuit
complexity assumptions [AK97, KvM99, MV99].

Laconic Provers. A more refined investigation of the above question was initi-
ated by Goldreich and Hastad [GH98], who gave bounds on the complexity of
languages possessing interactive proofs with various restrictions on the number
of bits of communication and/or randomness used. One of the restrictions they
considered, and the main focus of our investigation, limits the number of bits
sent from the prover to the verifier by some bound b. That is, what languages
can be proven by “laconic” provers?

Since the prover is trying to convey something to the verifier, this seems to
be the most interesting direction of communication. Moreover, for applications
of interactive proofs (e.g., in cryptographic protocols), it models the common
situation in which communication is more expensive in one direction (e.g., if the
prover is a handheld wireless device).

On one hand, we know of interactive proofs for several “hard” problems
(QUADRATIC NONRESIDUOSITY [GMR89], GRAPH NONISOMORPHISM [GMW91],
and others [GK93, GG00, SV97]) in which the communication from the prover to



the verifier is severely bounded (in fact, to one bit). On the other hand, no such
proof systems were known for NP-complete problems, nor was there any indica-
tion of impossibility (except when additional constraints are imposed [GH9S]).
In this work, we provide strong evidence of impossibility.

Our Results. Consider interactive proofs in which the prover sends at most
b = b(n) bits to the verifier on inputs of length n. Goldreich and Hastad [GH9S,
Thm. 4] placed such languages in BPTIMENF (T'), where T' = poly(n) - 20°W (")
which clearly implies nothing for languages in NP. In contrast, we show that
the complements of such languages have constant-round interactive proofs of
complexity T' (i.e., the verifier’s computation time and the total communication
is bounded by T'). In particular, NP-complete problems cannot have interactive
proofs in which in which the prover sends at most polylogarithmically many bits
to the verifier unless coNP is in the quasipolynomial analogue of AM. In fact,
assuming NP has constant-round interactive proofs with logarithmic prover-to-
verifier communication we conclude coNP C AM. As mentioned above, this is
highly unlikely.

We obtain stronger results in two special cases:

1. We show that if a language has an interactive proof of perfect completeness
(i.e., , zero error probability on YES instances) in which the prover sends at
most b(n) bits, then it is in coNTIME(T), where T'(n) = 2" - poly(n).
Thus, unless NP = coNP, NP-complete languages cannot have interactive
proof systems of perfect completeness in which the prover sends at most
logarithmically many bits.

2. We show that if a language has an interactive proof in which the prover
sends a single bit (with some restrictions on the error probabilities), then
it has a statistical zero-knowledge interactive proof; that is, is in the class
SZK. This is a stronger conclusion than our main result because SZK C
AM N coAM, as shown by Fortnow [For89] and Aiello and Hastad [AH91].
Recalling that Sahai and Vadhan [SV97] showed that any language in SZK
has an interactive proof in which the prover sends a single bit, we obtain a
surprising equivalence between these two classes.?

Lastly, we mention one easy, but apparently new, observation regarding mes-
sage complexity. A question that is left open by the results mentioned earlier
is what happens “in between” constant rounds and polynomially many rounds.
Phrased differently, can the Speedup Theorem of Babai and Moran be improved
to show that m(n)-message interactive proofs are no more powerful than m'(n)-
message ones for some m' = o(m)? By combining careful parameterizations of
[LFKN92, BM88]|, we observe that such an improvement is unlikely. More pre-
cisely, for every nice function m, we show that there is a language which has an

2 In addition, if the error probabilities are sufficiently small, we also are able to reduce
interactive proofs in which the prover sends a single message of several bits (e.g.,
O(loglog n) bits) to the 1-bit case above. But we omit these results from this extended
abstract due to space constraints.



m(n)-message interactive proof but not an o(m(n))-message one, provided that
#SAT is not contained in the subexponential analogue of coAM.

Additional Related Work. 1t should be noted that the results of Goldreich and
Hastad are significantly stronger when further restrictions are imposed in addi-
tion to making the prover laconic. In particular, they obtain an upper bound
of BPTIME(T) (rather than BPTIMENF (T)), with T = 20°¥(®) . poly(n)
for languages possessing either of the following kinds of interactive proofs: (a)
public-coin proofs in which the prover sends at most b bits, (b) proofs in which
the communication in both directions is bounded by b.

There has also been a body of research on the expressive power of multi-prover
interactive proofs (MIP’s) and probabilistically checkable proofs (PCP’s) with low
communication, because of the importance of the communication parameter in
their applications to inapproximability. In particular, Bellare, Goldreich, and
Sudan [BGS98] give negative results about the expressive power of “laconic”
PCP’s and MIP’s. One-query probabilistically checkable proofs are equivalent
to interactive proofs in which the prover sends a single message, so our results
provide bounds on the former.

Our work is also related to work on knowledge complexity. Knowledge com-
plexity, proposed by [GMR&9], aims to measure how much “knowledge” is leaked
from the prover to the verifier in an interactive proof. Several measures of knowl-
edge complexity were proposed by Goldreich and Petrank [GP99], and series of
works provided upper bounds on the complexity of languages having interac-
tive proofs with low knowledge complexity [GP99, GOP98, PT96, SV97]. These
results are related to, but incomparable to ours.

For example, Petrank and Tardos [PT96] showed that languages having
knowledge complexity & = O(logn) are contained in AM N coAM. While it
is true that the knowledge complexity of an interactive proof is bounded by the
amount of prover-to-verifier communication, their result does not yield anything
interesting for laconic interactive proofs. The reason is that their result only
applies to interactive proofs with error probabilities significantly smaller than
27% and it is easy to see that interactive proofs with prover-to-verifier commu-
nication & = O(logn) error probability < 27* only capture BPP (and hence
are uninteresting). Our results apply even for constant error probabilities.

Sahai and Vadhan [SV97] (improving [GP99]) showed that languages with
logarithmic knowledge complexity in the “hint sense” collapse to SZK, and
their result applies even if the error probabilities are constant. However, this is
also incomparable to ours, for the “hint sense” is the one measure of knowledge
complexity which is not bounded by the prover-to-verifier communication.

Finally, it is important to note that the situation is dramatically different
for argument systems [BCC88] (also known as computationally sound proofs).
These are like interactive proofs, but the soundness condition is restricted to
polynomial-time provers. Kilian [Kil92] showed that NP has laconic argument
systems if strong collision-resistant hash functions exist. Specifically, under a
strong enough (but still plausible) assumption, NP has public-coin arguments
in which the verifier’s randomness and the communication in both directions is



polylogarithmic. Combined with [GH9S8], this provides a strong separation be-
tween the efficiency of arguments versus interactive proofs for NP; and our
results extend this separation to the case that only the prover-to-verifier com-
munication is counted (and the interactive proof is not required to be public
coin).

2 Preliminaries

We assume that the reader is familiar with the basic concepts underlying interac-
tive proofs (and public-coin interactive proofs) (see e.g., [Sip97, Gol99, Vad00]).
Throughout, we work with interactive proofs for promise problems rather than
languages. More precisely, a promise problem II = (IIy,IIy) is a pair of dis-
joint sets of strings, corresponding to YES and NO instances, respectively. In other
words, a promise problem is simply a decision problem in which some inputs are
excluded. The definition of interactive proofs is extended to promise problems
in the natural way: we require that when the input is a YES instance, the prover
convinces the verifier to accept with high probability (completeness); and when
the input is a NO instance, the verifier accepts with low probability no matter
what strategy the prover follows (soundness). Working with promise problems
rather than languages only makes our results stronger (except for one direction
of Theorem 4.4).

We denote by IP(b,m) (resp., AM(b,m)) the class of problems having in-
teractive proofs (resp., public-coin interactive proofs) in which the prover sends
a total of at most b bits, and the total number of messages exchanged (in both
directions) is at most m. Note that b and m are integer functions of the common
input length, denoted n. When b is not polynomial in n, it will be understood
that we talk of a generalization in which the verifier is allowed time polynomial
in b and n (rather than just in n). Unless specified differently, we refer to proof
systems with completeness probability 2/3 and soundness probability 1/3.

We denote IP(b) = IP(b, 2b); that is, making only the trivial bound on the
number of messages exchanged. We denote by IP" the analogue of IP when

the proof system has perfect completeness (i.e., completeness probability 1).

The class of problems with constant-round interactive proofs is denoted AM def

AM(poly(n),2) = IP(poly(n), O(1)). (The second equality is by Thms 2.3 and
2.4 below.) When we wish to specify the completeness probability ¢ = ¢(n) and
soundness probability s = s(n) we will use subscripts: IP. s and AM_ ;.

Using the above notations, we recall the main results of Goldreich and Hastad,
which are the starting point for our work.

Theorem 2.1 ([GH98]). AM(b,m) C BPTIME (poly(2°,m™,n))
Theorem 2.2 ([GH98]). IP(b,m) C BPTIME (poly(2°,m™, n))N¥
We also state some standard results that we will use:

The(or)em 2.3 ([BM88]). AM(b,m) C AM(b?-poly(m), [m/2]) € AM((b-
m)©0(m) 2).



Theorem 2.4 ([GS89]). IP(b,m) C AM(poly(b,n),m).

Theorem 2.5 ([BHZS87]). If coNP C AM(b,2), then X2 C IIa(poly(n,b)).
In particular, if coNP C AM, then the polynomial-time hierarchy collapses to
PH =3, =1I,.

Above and throughout the paper, 3;(¢(n)) (resp., ILi(¢(n))) denotes the
class of problems accepted by t(n)-time alternating Turing machines with i

alternations beginning with an existential (resp., universal) quantifier. Thus,

Eidgﬁi(poly(n)) and Hidgl—[i(poly(n)) comprise the i’th level of the polynomial-

time hierarchy.

We will also consider SZK, the class of problems possessing statistical zero-
knowledge interactive proofs. Rather than review the definition here, we will
instead use a recent characterization of it in terms of complete problems which
will suffice for our purposes. For distributions X and Y, let A(X,Y") denote their
statistical difference (or variation distance, i.e., A(X,Y) = maxg|Pr[X € S] —
Pr[Y € S]|. We will consider distributions specified by circuits which sample
from them. More precisely, a circuit with m input gates and n output gates can
be viewed as a sampling algorithm for the distribution on {0,1}" induced by
evaluating the circuit on m random input bits. STATISTICAL DIFFERENCE is the
promise problem SD = (SDy,SDy), where

SDy = {(X,Y) : A(X,Y) < 1/3}7

where X and Y are probability distributions specified by circuits which sample
from them. More generally, for any 1 > a > 8 > 0, we will consider variants
SD*#, where the thresholds of 2/3 and 1/3 are replaced with a and 3 respec-
tively.

Theorem 2.6 ([SV97]). For any constants 1 > o> > 8 > 0, SD** is complete
for SZK.

The following results about SZK are also relevant to us.
Theorem 2.7 ([For89, AH91]). SZK C AM N coAM.
Theorem 2.8 ([Oka00]). SZK is closed under complement.

Theorem 2.9 ([SV97]). SZK CIP;_y-» 1/5(1).

3 Formal Statement of Results

We improve over Theorem 2.2, and address most of the open problems suggested
in [GH98, Sec. 3]. Our main results are listed below.
For one bit of prover-to-verifier communication, we obtain a collapse to SZK.



Theorem 3.1. For every pair of constants c,s such that 1> ¢? > s> c¢/2 >0,
IP. (1) = SZK.

With Theorem 2.8, this gives:

Corollary 3.2. For every c,s as in Thm. 8.1, IP. ;(1) is closed under comple-
ment.

For more rounds of communication, we first obtain the following result for
interactive proofs with perfect completeness (denoted by IP™):

Theorem 3.3. IP" (b) C coNTIME(2" - poly(n)). In particular,
IP*(O(logn)) C coNP.

In the general case (i.e., with imperfect completeness), we prove:

Theorem 3.4. IP(b,m) C coAM(2° - poly(m™,n),O(m)). In particular,
IP(O(logn), m) C coAM(poly(n),O(m)), for m = O(logn/loglogn),

The above theorems provide first evidence that NP-complete problems can-
not have interactive proof systems in which the prover sends very few bits.
Further evidence toward this claim is obtained by applying Theorems 2.3 and
2.5:

Corollary 3.5. IP(b,m) C coAM(poly(2°,m™,n)™,2). In particular,

IP(O(logn),0(1)) C coAM and IP(polylogn) C coAM.

Corollary 3.6. NP ¢ IP(O(logn),O(1)) unless the polynomial-time hierarchy
collapses (to X = II3). NP ¢ IP(polylogn) unless 3o C IIs.

Above, coAM and ﬁz denote the quasipolynomial-time (2P°%¥1°8™) analogues
of coAM and II,.
Finally, we state our result on message complexity.

Theorem 3.7. Let m(n) < n/logn be any “nice” growing function. Then
AM(poly(n), m(n)) # AM(poly(n),o(m(n)) unless #SAT € AM(2°(")2).
Note that, by Theorem 2.4, it is irrelevant whether we use IP or AM in this
theorem.

Due to space constraints, we only present proofs of Theorems 3.1 and 3.3 in
this extended abstract. The proof of our main result (Theorem 3.4) is signifi-
cantly more involved, and will be given in the full version of the paper.

4 Extremely Laconic Provers (Saying Only One Bit)

In this section, we prove Theorem 3.1. The proof is based on the following lemma,
along with previous results.

Lemma 4.1. Every problem in IP. s(1) reduces to SD*?.

Proof. Let (P,V) be an interactive proof for some problem so that the prover
sends a single bit during the entire interaction. We may thus assume that on
input = and internal coin tosses r, the verifier first sends a message y = V. (r),
the prover answers with a bit ¢ € {0,1}, and the verifier decides whether to
accept or reject by evaluating the predicate V,(r,o) € {0,1}.



A special case — unique answers. To demonstrate the main idea, we consider
first the natural case in which for every pair (z,r) there exists ezactly one o such
that V. (r,0) = 1. (Note that otherwise, the interaction on input x and verifier’s
internal coin tosses r is redundant, since the verifier’s final decision is unaffected
by it.) For this special case (which we refer to as unique answers), we will prove
the following:

Claim 4.2. If a problem has an IP. (1) proof system with unique answers, then
it reduces to SD?¢ 121,

Let 0,(r) denote the unique o satisfying V,.(r,0) = 1. The prover’s ability to
convince the verifier is related to the amount of information regarding o, (r) that
is revealed by V(7). For example, if for some x, o, (r) is determined by V, (1) then
the prover can convince the verifier to accept x with probability 1 (by replying
with o, (r)). If, on the other hand, for some x, o, (r) is statistically independent
of V;(r) (and unbiased), then there is no way for the prover to convince the
verifier to accept x with probability higher than 1/2. This suggests the reduction
z 5 (CL,C2), where CL(r) & (V,(r), 0,(r)) and C2(r) & (V. (r), 52(r)), where
b denotes the complement of a bit b.

Now we relate the statistical difference between the distributions sampled by
C! and C? to the maximum acceptance probability of the verifier. Since the first
components of C} and C? are distributed identically, their statistical difference
is exactly the average over the first component V. (r) of the statistical difference
between the second components conditioned on V,(r). That is,

A(C;,Ci) = E [A(0aly,0aly)],
y<Va
where o,|, denotes the distribution of o,(r) when r is uniformly distributed
among {r' : V;.(r') = y}. For any y and b € {0,1}, let g3, denote the probability
that o,[, = b. Then, for any fixed y, A (0ly,0%|y) = lq11y — qo1y| = 2¢y — 1,

where ¢, def maxpeo,1}{q|y} > 5- S0, we have:
A(C;,C)) = E [2¢,—1].
Yy« Ve

On the other hand, the optimal prover strategy in (P, V') is: upon receiving y,
respond with b that maximizes g;,. When the prover follows this strategy, we
have
Pr[V accepts ] = E [qy].
yVa

Putting the last two equations together, we conclude that A(CL,C%) = 2 -
Pr[V accepts ] — 1.3 Thus if the proof system has completeness and sound-
ness error bounds ¢ and s, respectively, then the reduction maps instances to

3 Note that under the hypothesis of the special case, for every z the prover may
convince the verifier to accept x with probability at least 1/2 (and so such a non-
trivial proof system must have soundness at least 1/2).



pairs having distance bounds 2c — 1 and 2s — 1, respectively.* This establishes
Claim 4.2.

The general case. We now proceed to deal with the general case in which there
may exist pairs (x,r) so that either both ¢’s or none of them satisty V;, (r,0) = 1.
We do so by reducing this general case to the special case.

Claim 4.3. If a problem is in IP. s(1), then it has an IP (1 c)/2 (145)/2(1) proof
system with unique answers.

Clearly, the lemma follows from this claim and the previous one, so we pro-
ceed to prove the claim.

Proof of claim. Let (P,V) be a general IP. ; proof system. Consider

the following modified verifier strategy.

V'(x): Generate coin tosses r for the original verifier and do one of the
following based on the number j of possible prover responses ¢ for
which V,(r,0) = 1.

[ = 2] Send the prover a special message “respond with 1” and
accept if the prover responds with 1.
[7 = 1] Randomly do one of the following (each with prob. 1/2):
— Send the prover y = V,.(r) and accept if the prover responds
with the unique o such that V,(r,o) = 1.
— Send the prover a special message “respond with 1” and
accept if the prover responds with 1.

[ = 0] Choose a random bit o. Send the prover a special message
“guess my bit” and accept if the prover responds with o.
Clearly, V' has unique answers. It can be shown that if an optimal

prover makes V' accept with probability d, then an optimal prover makes

V' accept with probability (1 + J)/2. Claim 4.3 follows. m|

|

Theorem 3.1 follows from Lemma 4.1, Theorem 2.6, and Theorem 2.9. Details
will be given in the full version of the paper. The ¢? > s constraint in Theorem 3.1
is due to the analogous constraint in Theorem 2.6. Indeed, we can establish the
following equivalence (also to be proven the full version of the paper):

Theorem 4.4. The following are equivalent.

1. For every a, 8 such that 1 > a > > 0, SD*? is in SZK (and is therefore
also complete).
2. For every c,s such that 1 > ¢ > s >¢/2 >0, IP, 4(1) = SZK.

Finally, we remark that the condition s > ¢/2 in Theorems 3.1 and 4.4 is
necessary, for IP. ;(1) = BPP for any s < ¢/2.

* Note that this relationship is reversed by the natural IP(1) system for SD*# in which
the verifier selects at random a single sample from one of the two distributions and
asks the prover to guess which of the distributions this sample came from. If the
distributions are at distance ¢ then the prover succeeds with probability % + %. Thus
applying this proof system to SD?*~12*7! we obtain completeness and soundness
bounds ¢ and s, respectively.



5 Laconic Provers with Perfect Completeness
In this section, we prove Theorem 3.3.

Theorem 3.8 (restated): If a problem II has an interactive proof system with
perfect completeness in which the prover-to-verifier communication is at most
b(-) bits then IT € coNTIME(2°(™) - poly(n)).

Proof. We take a slightly unusual look at the interactive proof system for I7,
viewing it as a “progressively finite game” between two players P* and V*. P*
corresponds to the usual prover strategy and its aim is to make the original
verifier accept the common input. V* is a “cheating verifier” and its aim is to
produce an interaction that looks legal and still makes the original verifier reject
the common input.

To make this precise, let b = b(n) be the bound on the prover-to-verifier
communication in (P, V') on inputs of length n, and let rn = m(n) be the number
of messages exchanged. Without loss of generality, we may assume that the V'
sends all its coin tosses in the last message. A transcript is a sequence of m
strings, corresponding to (possible) messages exchanged between P and V. We
call a transcript ¢ consistent (for z) if every verifier message in ¢ is the message
V' would have sent given input x, the previous messages in ¢, and the coin tosses
specified by the last message in t. We call a consistent t rejecting if V' would
reject at the end of such an interaction.

Now, the game between P, and V;* has the same structure as the interaction
between P and V' on input z: a total of m messages are exchanged and P is
allowed to send at most b bits. The game between P and V' yields a transcript .
We say that V. wins if ¢ is consistent and rejecting, and that P wins otherwise.
We stress that V" need not emulate the original verifier nor is it necessarily
implemented in probabilistic polynomial time.

This constitutes a “perfect information finite game in extensive form” (also
known as a “progressively finite game”) and Zermelo’s Theorem (cf., [Tuc95,
Sec 10.2]) says that exactly one of the two players has a winning strategy — that
is, a (deterministic) strategy that will guarantee its victory no matter how the
other party plays.

Using the perfect completeness condition, we infer that if the common input
x is a YES instance then there exists a winning strategy for P). (This is because
the optimal prover for the original interactive proof wins whenever V* plays in
a manner consistent with some sequence of coin tosses for the original verifier,
and it wins by definition if the V* plays inconsistently with any such sequence.)
On the other hand, by the soundness condition, if the common input is a NO
instance then there exists no winning strategy for Py. (This is because in this
case no prover strategy can convince the original verifier with probability 1.) By
the above, it follows that whenever the common input is a NO instance there
exists a winning strategy for V.

Thus, a proof that z is a NO instance consists of a winning strategy for
V.. Such strategy is a function mapping partial transcripts of P, messages to



the next V* message. Thus, such a strategy is fully specified by a function from
Ut_{0,1}* to {0, 1}*°¥(™) 'and has description length poly(n)-2°(™*1. To verify
that such a function constitutes a winning strategy for V., one merely tries all

The theorem follows.

possible deterministic strategies for the P} (i.e., all possible b(n)-bit long strings).
|
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