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unbounded prover an onvine a probabilisti polynomial-time veri�er of themembership of a ommon input in a predetermined language. Thus, interativeproof systems generalize and ontain as a speial ase the traditional \NP-proofsystems" (in whih veri�ation is deterministi and \non-interative").It is well-known that this generalization buys us a lot: The IP Charateri-zation Theorem of Lund, Fortnow, Karlo�, Nisan and Shamir [LFKN92, Sha92℄states that every language in PSPACE has an interative proof system, and itis easy to see that only languages in PSPACE have interative proof systems.It is well-known that the strong expressive power of interative proofs islargely due to the presene of interation. In partiular, interative proofs inwhih a single message is sent (like inNP-proofs) yield a omplexity lass (knownas MA) that seems very lose to NP. It is interesting to explore what happensbetween these extremes of unbounded interation and no interation. That is,what is the expressive power of interative proofs that utilize a bounded, butnonzero, amount of interation?Interative Proofs with Few Messages. The earliest investigations of the abovequestion examined the message omplexity of interative proofs, i.e., the numberof messages exhanged. (Sometimes, we refer to rounds, whih are a pair ofveri�er-prover messages.) The Speedup Theorem of Babai and Moran [BM88℄(together with [GS89℄) shows that the number of messages in an interative proofan be always be redued by a onstant fator (provided the number of messagesremains at least 2). On the other hand, there is a large gap between onstant-round interative proofs and unrestrited interative proofs. As mentioned above,all of PSPACE has a general interative proof [LFKN92, Sha92℄. In ontrast,the lass AM of problems with onstant-round interative proofs is viewed asbeing relatively lose to NP. Spei�ally, AM lies in the seond level of thepolynomial-time hierarhy [BM88℄, annot ontain oNP unless the polynomial-time hierarhy ollapses [BHZ87℄, and atually equalsNP under plausible iruitomplexity assumptions [AK97, KvM99, MV99℄.Laoni Provers. A more re�ned investigation of the above question was initi-ated by Goldreih and H�astad [GH98℄, who gave bounds on the omplexity oflanguages possessing interative proofs with various restritions on the numberof bits of ommuniation and/or randomness used. One of the restritions theyonsidered, and the main fous of our investigation, limits the number of bitssent from the prover to the veri�er by some bound b. That is, what languagesan be proven by \laoni" provers?Sine the prover is trying to onvey something to the veri�er, this seems tobe the most interesting diretion of ommuniation. Moreover, for appliationsof interative proofs (e.g., in ryptographi protools), it models the ommonsituation in whih ommuniation is more expensive in one diretion (e.g., if theprover is a handheld wireless devie).On one hand, we know of interative proofs for several \hard" problems(Quadrati Nonresiduosity [GMR89℄,Graph Nonisomorphism [GMW91℄,and others [GK93, GG00, SV97℄) in whih the ommuniation from the prover to



the veri�er is severely bounded (in fat, to one bit). On the other hand, no suhproof systems were known for NP-omplete problems, nor was there any india-tion of impossibility (exept when additional onstraints are imposed [GH98℄).In this work, we provide strong evidene of impossibility.Our Results. Consider interative proofs in whih the prover sends at mostb = b(n) bits to the veri�er on inputs of length n. Goldreih and H�astad [GH98,Thm. 4℄ plaed suh languages in BPTIMENP(T ), where T = poly(n) �2poly(b),whih learly implies nothing for languages in NP. In ontrast, we show thatthe omplements of suh languages have onstant-round interative proofs ofomplexity T (i.e., the veri�er's omputation time and the total ommuniationis bounded by T ). In partiular, NP-omplete problems annot have interativeproofs in whih in whih the prover sends at most polylogarithmially many bitsto the veri�er unless oNP is in the quasipolynomial analogue of AM. In fat,assuming NP has onstant-round interative proofs with logarithmi prover-to-veri�er ommuniation we onlude oNP � AM. As mentioned above, this ishighly unlikely.We obtain stronger results in two speial ases:1. We show that if a language has an interative proof of perfet ompleteness(i.e., , zero error probability on yes instanes) in whih the prover sends atmost b(n) bits, then it is in oNTIME(T ), where T (n) = 2b(n) � poly(n).Thus, unless NP = oNP, NP-omplete languages annot have interativeproof systems of perfet ompleteness in whih the prover sends at mostlogarithmially many bits.2. We show that if a language has an interative proof in whih the proversends a single bit (with some restritions on the error probabilities), thenit has a statistial zero-knowledge interative proof; that is, is in the lassSZK. This is a stronger onlusion than our main result beause SZK �AM \ oAM, as shown by Fortnow [For89℄ and Aiello and H�astad [AH91℄.Realling that Sahai and Vadhan [SV97℄ showed that any language in SZKhas an interative proof in whih the prover sends a single bit, we obtain asurprising equivalene between these two lasses.2Lastly, we mention one easy, but apparently new, observation regarding mes-sage omplexity. A question that is left open by the results mentioned earlieris what happens \in between" onstant rounds and polynomially many rounds.Phrased di�erently, an the Speedup Theorem of Babai and Moran be improvedto show that m(n)-message interative proofs are no more powerful than m0(n)-message ones for some m0 = o(m)? By ombining areful parameterizations of[LFKN92, BM88℄, we observe that suh an improvement is unlikely. More pre-isely, for every nie funtion m, we show that there is a language whih has an2 In addition, if the error probabilities are suÆiently small, we also are able to redueinterative proofs in whih the prover sends a single message of several bits (e.g.,O(loglog n) bits) to the 1-bit ase above. But we omit these results from this extendedabstrat due to spae onstraints.



m(n)-message interative proof but not an o(m(n))-message one, provided that#SAT is not ontained in the subexponential analogue of oAM.Additional Related Work. It should be noted that the results of Goldreih andH�astad are signi�antly stronger when further restritions are imposed in addi-tion to making the prover laoni. In partiular, they obtain an upper boundof BPTIME(T ) (rather than BPTIMENP(T )), with T = 2poly(b) � poly(n)for languages possessing either of the following kinds of interative proofs: (a)publi-oin proofs in whih the prover sends at most b bits, (b) proofs in whihthe ommuniation in both diretions is bounded by b.There has also been a body of researh on the expressive power ofmulti-proverinterative proofs (MIP's) and probabilistially hekable proofs (PCP's) with lowommuniation, beause of the importane of the ommuniation parameter intheir appliations to inapproximability. In partiular, Bellare, Goldreih, andSudan [BGS98℄ give negative results about the expressive power of \laoni"PCP's and MIP's. One-query probabilistially hekable proofs are equivalentto interative proofs in whih the prover sends a single message, so our resultsprovide bounds on the former.Our work is also related to work on knowledge omplexity. Knowledge om-plexity, proposed by [GMR89℄, aims to measure how muh \knowledge" is leakedfrom the prover to the veri�er in an interative proof. Several measures of knowl-edge omplexity were proposed by Goldreih and Petrank [GP99℄, and series ofworks provided upper bounds on the omplexity of languages having intera-tive proofs with low knowledge omplexity [GP99, GOP98, PT96, SV97℄. Theseresults are related to, but inomparable to ours.For example, Petrank and Tardos [PT96℄ showed that languages havingknowledge omplexity k = O(log n) are ontained in AM \ oAM. While itis true that the knowledge omplexity of an interative proof is bounded by theamount of prover-to-veri�er ommuniation, their result does not yield anythinginteresting for laoni interative proofs. The reason is that their result onlyapplies to interative proofs with error probabilities signi�antly smaller than2�k, and it is easy to see that interative proofs with prover-to-veri�er ommu-niation k = O(log n) error probability � 2�k only apture BPP (and heneare uninteresting). Our results apply even for onstant error probabilities.Sahai and Vadhan [SV97℄ (improving [GP99℄) showed that languages withlogarithmi knowledge omplexity in the \hint sense" ollapse to SZK, andtheir result applies even if the error probabilities are onstant. However, this isalso inomparable to ours, for the \hint sense" is the one measure of knowledgeomplexity whih is not bounded by the prover-to-veri�er ommuniation.Finally, it is important to note that the situation is dramatially di�erentfor argument systems [BCC88℄ (also known as omputationally sound proofs).These are like interative proofs, but the soundness ondition is restrited topolynomial-time provers. Kilian [Kil92℄ showed that NP has laoni argumentsystems if strong ollision-resistant hash funtions exist. Spei�ally, under astrong enough (but still plausible) assumption, NP has publi-oin argumentsin whih the veri�er's randomness and the ommuniation in both diretions is



polylogarithmi. Combined with [GH98℄, this provides a strong separation be-tween the eÆieny of arguments versus interative proofs for NP; and ourresults extend this separation to the ase that only the prover-to-veri�er om-muniation is ounted (and the interative proof is not required to be publioin).2 PreliminariesWe assume that the reader is familiar with the basi onepts underlying intera-tive proofs (and publi-oin interative proofs) (see e.g., [Sip97, Gol99, Vad00℄).Throughout, we work with interative proofs for promise problems rather thanlanguages. More preisely, a promise problem � = (�Y ; �N ) is a pair of dis-joint sets of strings, orresponding to yes and no instanes, respetively. In otherwords, a promise problem is simply a deision problem in whih some inputs areexluded. The de�nition of interative proofs is extended to promise problemsin the natural way: we require that when the input is a yes instane, the proveronvines the veri�er to aept with high probability (ompleteness); and whenthe input is a no instane, the veri�er aepts with low probability no matterwhat strategy the prover follows (soundness). Working with promise problemsrather than languages only makes our results stronger (exept for one diretionof Theorem 4.4).We denote by IP(b;m) (resp., AM(b;m)) the lass of problems having in-terative proofs (resp., publi-oin interative proofs) in whih the prover sendsa total of at most b bits, and the total number of messages exhanged (in bothdiretions) is at most m. Note that b and m are integer funtions of the ommoninput length, denoted n. When b is not polynomial in n, it will be understoodthat we talk of a generalization in whih the veri�er is allowed time polynomialin b and n (rather than just in n). Unless spei�ed di�erently, we refer to proofsystems with ompleteness probability 2=3 and soundness probability 1=3.We denote IP(b) = IP(b; 2b); that is, making only the trivial bound on thenumber of messages exhanged. We denote by IP+ the analogue of IP whenthe proof system has perfet ompleteness (i.e., ompleteness probability 1).The lass of problems with onstant-round interative proofs is denoted AM def=AM(poly(n); 2) = IP(poly(n); O(1)). (The seond equality is by Thms 2.3 and2.4 below.) When we wish to speify the ompleteness probability  = (n) andsoundness probability s = s(n) we will use subsripts: IP;s and AM;s.Using the above notations, we reall the main results of Goldreih and H�astad,whih are the starting point for our work.Theorem 2.1 ([GH98℄). AM(b;m) � BPTIME(poly(2b;mm; n))Theorem 2.2 ([GH98℄). IP(b;m) � BPTIME(poly(2b;mm; n))NPWe also state some standard results that we will use:Theorem 2.3 ([BM88℄). AM(b;m) � AM(b2 �poly(m); dm=2e) � AM((b �m)O(m); 2):



Theorem 2.4 ([GS89℄). IP(b;m) � AM(poly(b; n);m).Theorem 2.5 ([BHZ87℄). If oNP � AM(b; 2), then �2 � �2(poly(n; b)).In partiular, if oNP � AM, then the polynomial-time hierarhy ollapses toPH = �2 = �2.Above and throughout the paper, �i(t(n)) (resp., �i(t(n))) denotes thelass of problems aepted by t(n)-time alternating Turing mahines with ialternations beginning with an existential (resp., universal) quanti�er. Thus,�idef=�i(poly(n)) and�idef=�i(poly(n)) omprise the i'th level of the polynomial-time hierarhy.We will also onsider SZK, the lass of problems possessing statistial zero-knowledge interative proofs. Rather than review the de�nition here, we willinstead use a reent haraterization of it in terms of omplete problems whihwill suÆe for our purposes. For distributions X and Y , let �(X;Y ) denote theirstatistial di�erene (or variation distane, i.e., �(X;Y ) = maxS jPr [X 2 S℄�Pr [Y 2 S℄ j. We will onsider distributions spei�ed by iruits whih samplefrom them. More preisely, a iruit with m input gates and n output gates anbe viewed as a sampling algorithm for the distribution on f0; 1gn indued byevaluating the iruit on m random input bits. Statistial Differene is thepromise problem SD = (SDY ;SDN ), whereSDY = f(X;Y ) : �(X;Y ) � 2=3gSDN = f(X;Y ) : �(X;Y ) � 1=3g ;where X and Y are probability distributions spei�ed by iruits whih samplefrom them. More generally, for any 1 � � > � � 0, we will onsider variantsSD�;�, where the thresholds of 2=3 and 1=3 are replaed with � and � respe-tively.Theorem 2.6 ([SV97℄). For any onstants 1 > �2 > � > 0, SD�;� is ompletefor SZK.The following results about SZK are also relevant to us.Theorem 2.7 ([For89, AH91℄). SZK � AM \ oAM.Theorem 2.8 ([Oka00℄). SZK is losed under omplement.Theorem 2.9 ([SV97℄). SZK � IP1�2�n;1=2(1).3 Formal Statement of ResultsWe improve over Theorem 2.2, and address most of the open problems suggestedin [GH98, Se. 3℄. Our main results are listed below.For one bit of prover-to-veri�er ommuniation, we obtain a ollapse to SZK.



Theorem 3.1. For every pair of onstants ; s suh that 1 > 2 > s > =2 > 0,IP;s(1) = SZK.With Theorem 2.8, this gives:Corollary 3.2. For every ; s as in Thm. 3.1, IP;s(1) is losed under omple-ment.For more rounds of ommuniation, we �rst obtain the following result forinterative proofs with perfet ompleteness (denoted by IP+):Theorem 3.3. IP+(b) � oNTIME(2b � poly(n)). In partiular,IP+(O(log n)) � oNP.In the general ase (i.e., with imperfet ompleteness), we prove:Theorem 3.4. IP(b;m) � oAM(2b � poly(mm; n); O(m)). In partiular,IP(O(log n);m) � oAM(poly(n); O(m)), for m = O(log n= log logn),The above theorems provide �rst evidene that NP-omplete problems an-not have interative proof systems in whih the prover sends very few bits.Further evidene toward this laim is obtained by applying Theorems 2.3 and2.5:Corollary 3.5. IP(b;m) � oAM(poly(2b;mm; n)m; 2). In partiular,IP(O(log n); O(1)) � oAM and IP(polylogn) � ogAM.Corollary 3.6. NP 6� IP(O(log n); O(1)) unless the polynomial-time hierarhyollapses (to �2 = �2). NP 6� IP(polylogn) unless �2 � e�2.Above, ogAM and e�2 denote the quasipolynomial-time (2polylogn) analoguesof oAM and �2.Finally, we state our result on message omplexity.Theorem 3.7. Let m(n) � n= logn be any \nie" growing funtion. ThenAM(poly(n);m(n)) 6= AM(poly(n); o(m(n)) unless #SAT 2 AM(2o(n); 2).Note that, by Theorem 2.4, it is irrelevant whether we use IP or AM in thistheorem.Due to spae onstraints, we only present proofs of Theorems 3.1 and 3.3 inthis extended abstrat. The proof of our main result (Theorem 3.4) is signi�-antly more involved, and will be given in the full version of the paper.4 Extremely Laoni Provers (Saying Only One Bit)In this setion, we prove Theorem 3.1. The proof is based on the following lemma,along with previous results.Lemma 4.1. Every problem in IP;s(1) redues to SD;s.Proof. Let (P; V ) be an interative proof for some problem so that the proversends a single bit during the entire interation. We may thus assume that oninput x and internal oin tosses r, the veri�er �rst sends a message y = Vx(r),the prover answers with a bit � 2 f0; 1g, and the veri�er deides whether toaept or rejet by evaluating the prediate Vx(r; �) 2 f0; 1g.



A speial ase | unique answers. To demonstrate the main idea, we onsider�rst the natural ase in whih for every pair (x; r) there exists exatly one � suhthat Vx(r; �) = 1. (Note that otherwise, the interation on input x and veri�er'sinternal oin tosses r is redundant, sine the veri�er's �nal deision is una�etedby it.) For this speial ase (whih we refer to as unique answers), we will provethe following:Claim 4.2. If a problem has an IP;s(1) proof system with unique answers, thenit redues to SD2�1;2s�1.Let �x(r) denote the unique � satisfying Vx(r; �) = 1. The prover's ability toonvine the veri�er is related to the amount of information regarding �x(r) thatis revealed by Vx(r). For example, if for some x, �x(r) is determined by Vx(r) thenthe prover an onvine the veri�er to aept x with probability 1 (by replyingwith �x(r)). If, on the other hand, for some x, �x(r) is statistially independentof Vx(r) (and unbiased), then there is no way for the prover to onvine theveri�er to aept x with probability higher than 1/2. This suggests the redutionx 7! (C1x; C2x), where C1x(r) def= (Vx(r); �x(r)) and C2x(r) def= (Vx(r); �x(r)), whereb denotes the omplement of a bit b.Now we relate the statistial di�erene between the distributions sampled byC1x and C2x to the maximum aeptane probability of the veri�er. Sine the �rstomponents of C1x and C2x are distributed identially, their statistial di�ereneis exatly the average over the �rst omponent Vx(r) of the statistial di�erenebetween the seond omponents onditioned on Vx(r). That is,�(C1x; C2x) = Ey Vx [� (�xjy; �xjy)℄ ;where �xjy denotes the distribution of �x(r) when r is uniformly distributedamong fr0 : Vx(r0) = yg. For any y and b 2 f0; 1g, let qbjy denote the probabilitythat �xjy = b. Then, for any �xed y, � (�xjy; �xjy) = jq1jy � q0jyj = 2qy � 1,where qy def= maxb2f0;1gfqbjyg � 12 . So, we have:�(C1x; C2x) = Ey Vx [2qy � 1℄ :On the other hand, the optimal prover strategy in (P; V ) is: upon reeiving y,respond with b that maximizes qbjy. When the prover follows this strategy, wehave Pr[V aepts x℄ = Ey Vx [qy℄ :Putting the last two equations together, we onlude that �(C1x; C2x) = 2 �Pr[V aepts x℄ � 1.3 Thus if the proof system has ompleteness and sound-ness error bounds  and s, respetively, then the redution maps instanes to3 Note that under the hypothesis of the speial ase, for every x the prover mayonvine the veri�er to aept x with probability at least 1=2 (and so suh a non-trivial proof system must have soundness at least 1=2).



pairs having distane bounds 2 � 1 and 2s � 1, respetively.4 This establishesClaim 4.2.The general ase. We now proeed to deal with the general ase in whih theremay exist pairs (x; r) so that either both �'s or none of them satisfy Vx(r; �) = 1.We do so by reduing this general ase to the speial ase.Claim 4.3. If a problem is in IP;s(1), then it has an IP(1+)=2;(1+s)=2(1) proofsystem with unique answers.Clearly, the lemma follows from this laim and the previous one, so we pro-eed to prove the laim.Proof of laim. Let (P; V ) be a general IP;s proof system. Considerthe following modi�ed veri�er strategy.V 0(x): Generate oin tosses r for the original veri�er and do one of thefollowing based on the number j of possible prover responses � forwhih Vx(r; �) = 1.[j = 2℄ Send the prover a speial message \respond with 1" andaept if the prover responds with 1.[j = 1℄ Randomly do one of the following (eah with prob. 1=2):{ Send the prover y = Vx(r) and aept if the prover respondswith the unique � suh that Vx(r; �) = 1.{ Send the prover a speial message \respond with 1" andaept if the prover responds with 1.[j = 0℄ Choose a random bit �. Send the prover a speial message\guess my bit" and aept if the prover responds with �.Clearly, V 0 has unique answers. It an be shown that if an optimalprover makes V aept with probability Æ, then an optimal prover makesV 0 aept with probability (1 + Æ)=2. Claim 4.3 follows. 2Theorem 3.1 follows from Lemma 4.1, Theorem 2.6, and Theorem 2.9. Detailswill be given in the full version of the paper. The 2 > s onstraint in Theorem 3.1is due to the analogous onstraint in Theorem 2.6. Indeed, we an establish thefollowing equivalene (also to be proven the full version of the paper):Theorem 4.4. The following are equivalent.1. For every �; � suh that 1 > � > � > 0, SD�;� is in SZK (and is thereforealso omplete).2. For every ; s suh that 1 >  > s > =2 > 0, IP;s(1) = SZK.Finally, we remark that the ondition s > =2 in Theorems 3.1 and 4.4 isneessary, for IP;s(1) = BPP for any s < =2.4 Note that this relationship is reversed by the natural IP(1) system for SD�;� in whihthe veri�er selets at random a single sample from one of the two distributions andasks the prover to guess whih of the distributions this sample ame from. If thedistributions are at distane Æ then the prover sueeds with probability 12 + Æ2 . Thusapplying this proof system to SD2�1;2s�1 we obtain ompleteness and soundnessbounds  and s, respetively.



5 Laoni Provers with Perfet CompletenessIn this setion, we prove Theorem 3.3.Theorem 3.3 (restated): If a problem � has an interative proof system withperfet ompleteness in whih the prover-to-veri�er ommuniation is at mostb(�) bits then � 2 oNTIME(2b(n) � poly(n)).Proof. We take a slightly unusual look at the interative proof system for � ,viewing it as a \progressively �nite game" between two players P � and V �. P �orresponds to the usual prover strategy and its aim is to make the originalveri�er aept the ommon input. V � is a \heating veri�er" and its aim is toprodue an interation that looks legal and still makes the original veri�er rejetthe ommon input.To make this preise, let b = b(n) be the bound on the prover-to-veri�erommuniation in (P; V ) on inputs of length n, and let m = m(n) be the numberof messages exhanged. Without loss of generality, we may assume that the Vsends all its oin tosses in the last message. A transript is a sequene of mstrings, orresponding to (possible) messages exhanged between P and V . Weall a transript t onsistent (for x) if every veri�er message in t is the messageV would have sent given input x, the previous messages in t, and the oin tossesspei�ed by the last message in t. We all a onsistent t rejeting if V wouldrejet at the end of suh an interation.Now, the game between P �x and V �x has the same struture as the interationbetween P and V on input x: a total of m messages are exhanged and P �x isallowed to send at most b bits. The game between P �x and V �x yields a transript t.We say that V �x wins if t is onsistent and rejeting, and that P �x wins otherwise.We stress that V �x need not emulate the original veri�er nor is it neessarilyimplemented in probabilisti polynomial time.This onstitutes a \perfet information �nite game in extensive form" (alsoknown as a \progressively �nite game") and Zermelo's Theorem (f., [Tu95,Se 10.2℄) says that exatly one of the two players has a winning strategy | thatis, a (deterministi) strategy that will guarantee its vitory no matter how theother party plays.Using the perfet ompleteness ondition, we infer that if the ommon inputx is a yes instane then there exists a winning strategy for P �x . (This is beausethe optimal prover for the original interative proof wins whenever V �x plays ina manner onsistent with some sequene of oin tosses for the original veri�er,and it wins by de�nition if the V �x plays inonsistently with any suh sequene.)On the other hand, by the soundness ondition, if the ommon input is a noinstane then there exists no winning strategy for P �x . (This is beause in thisase no prover strategy an onvine the original veri�er with probability 1.) Bythe above, it follows that whenever the ommon input is a no instane thereexists a winning strategy for V �x .Thus, a proof that x is a no instane onsists of a winning strategy forV �x . Suh strategy is a funtion mapping partial transripts of P �x messages to
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