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Abstract

We prove that if a linear error-correcting code C : {0,1}™ — {0,1}™ is such that a bit
of the message can be probabilistically reconstructed by looking at two entries of a corrupted
codeword, then m = 24" We also present several extensions of this result.

We show a reduction from the complexity of one-round, information-theoretic Private In-
formation Retrieval Systems (with two servers) to Locally Decodable Codes, and conclude that
if all the servers’ answers are linear combinations of the database content, then t = (n/2%),
where t is the length of the user’s query and a is the length of the servers’ answers. Actually, 2¢
can be replaced by O(a*), where k is the number of bit locations in the answer that are actually
inspected in the reconstruction.
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1 Introduction

This paper is concerned with two related notions. The first notion is that of locally decodable codes
(LDC), which are error-correcting codes that allow recovery of individual information bits based on
a few (randomly selected) codeword bits. The second notion is that of private information retrieval
(PIR) schemes, which are protocols allowing users to retrieve desired data items from several (non-
colluding) servers without yielding any information to any individual server. The relation between
these notions has been observed by some researchers before, and is further established in this paper.

The study of LDCs was initiated by Katz and Trevisan [9], who established super-linear (but
at most quadratic) lower bounds on the length of codes that allow recovery based on a constant
number of bits. In contrast, the best known constructions of LDCs supporting recovery based on
reading k bits [3] have length 2”6(1°g1°gk/(k1°gk)), which is of the form 27" for every constant k.
This leaves a huge gap between the known lower and upper bounds, and an important research goal
is to try to close this gap. We take a first step in this direction by closing the gap (via improved
lower bounds) for the special case of linear LDCs in which recovery is based on two bits. We
note that all the known constructions of LDCs are linear codes, including constructions where the
decoder makes more than two queries. See [13] for a survey on LDCs and their applications.

The study of PIR schemes was initiated by Chor, Goldreich, Kushilevitz and Sudan [6], who
presented (among other schemes) a one-round, 2-server PIR scheme of communication complexity
O(n'/3). The question of whether their (2-server) PIR scheme has the lowest communication
complexity possible has been open since. We present several results that are related to this question,
where all our results relate to the special case of one-round, 2-server PIR schemes in which the
servers’ answers are always linear combinations of the data bits. Again, we note that in all the
known constructions of PIR schemes the server’s answers are linear combination of the data bits.
This is also true of schemes involving more than two servers. See [8] for a survey on PIR schemes.

1.1 Locally Decodable Codes

In this paper we cousider error-correcting codes with the following local decodability property:
given a corrupted codeword it is possible to recover each bit of the original message by applying
a probabilistic procedure that looks at only two entries of the corrupted codeword. That is, if the
code is binary, then only two bits of the corrupted codeword are read. The procedure should predict
each bit with a constant advantage even when there is a constant fraction of errors in the corrupted
codeword. The Hadamard code satisfies this requirement, but unfortunately its codewords are
exponentially longer than the message they encode. In this paper, we prove that this is essentially
the best possible with respect to linear codes.

Let us first define formally the notion of a locally decodable code. For a natural number n,

we let [n] o {1,...,n}. For z € ¥™ and ¢ € [m|, we let z; be the ith element of z; that is,
T =x1 Ty Fory,z € ¥™, we denote by d(y, z) the number of locations on which y and z differ,

that is, d(y, z) = [{i : yi # =i}

Definition 1.1 For reals 6,¢ and an integer q, we say that C : X" — '™ is a (g, 9, ¢€)-locally
decodable code if there exists a probabilistic oracle machine A such that:

e In every invocation, A makes at most q queries (possibly adaptively). Query i € [m| to the
oracle y € I'™ 1s answered by y;.



e For every x € X", for every y € I' with d(y,C(x)) < ém, and for every i € [n], we have

1
Pr[AY(i) = =] 2 i + ¢
X

where the probability is taken over the internal coin tosses of A.

An algorithm A satisfying the above requirements is called an (adaptive) (q,0,¢)-local decoding
algorithm for C.

Notice that, for small € and large X, the definition is very weak: the decoding algorithm is only
guaranteed to recover the requested entry with some advantage over a random guess. The correct
answer may not even be the one with the largest probability of being output, and so the correct-
ness probability cannot be amplified by running the algorithm several times and taking the most
occurring answer. In order to prove a lower bound, it is of course desirable to state the weakest
possible definition.

While it appears natural to allow adaptive reconstruction algorithms in our definition, we only
know how to directly prove lower bounds in the non-adaptive case. Lower bounds for the non-
adaptive case can be generalized to the adaptive case by using the following reduction.

Lemma 1.2 ([9]) Let C: X" — I'™ be an error-correcting code that has an adaptive (2,6, ¢€)-local
decoding algorithm. Then C also has a non-adaptive (2,06,¢/|I'|)-local decoding algorithm.

All the results that we will state (from now on) refer to non-adaptive reconstruction procedures,
and “local decoding algorithm” and “locally decodable code” will always refer to the non-adaptive
case. We omit the statement of the results for the adaptive case (which can be obtained by the
application of the above lemma).
As stated above, our work focuses on linear codes. In particular, we will consider the following
settings:
e 3 =11 = F is a finite field, and the function C : F* — F™ is a linear mapping between the
vector spaces F and F™. In Theorem 1.3 (and in Section 3) we deal with the special case
Y =T = GF(2), while in Theorem 1.4 (and in Section 4) we deal with general fields.
e ¥ = {0,1}, T = {0,1}}, and C : {0,1}* — {0,1}'™ is linear. We deal with this case in
Theorem 1.5 (and in Section 5).
e ¥ =T =1{0,1}}, and C: {0,1}" — {0,1}'™ is linear. That is, we consider codes mapping
a sequence of n blocks, each being a string of length [/, to a sequence of m such blocks, and
algorithms that recover a desired (entire) block by making two block-queries. We refer to
such codes as block-block codes, and deal with them in Theorem 1.6 (and in Section 6).

Our main result is

Theorem 1.3 Let ¥ =1 = {0,1}, let C: X" — I'™ be a (2,6, €)-locally decodable linear code, and
suppose that n > 8/€b. Then m > 27/,

In comparison, the Hadamard code, which is linear, is a (2,6,1/2 — 26)-locally decodable code
for every 6 < 1/4, and its encoding length is m = 2". In Section 8 we show that linear (2,06,¢)
codes exist with m = 20(6n/(1-2¢),

Theorem 1.3 has the following extensions to larger alphabets (corresponding to the three cases
discussed above). First, we consider an extension to linear codes over arbitrary finite fields.



Theorem 1.4 Let C : F" — F™ be a (2,6,¢)-locally decodable linear code. Then m >
2%-n72710g2 |F| ]

Theorem 1.5 Let C: {0,1}" — ({0,1})™ be a (2,6, €)-locally decodable linear code, and suppose
that the decoder uses only k predetermined bits out of the | bits that it receives as answer to each
query. Then m > (1/f(k,1)) - 2/ (WD) where f(k,1) = S5, (i) < min{2', 21}, provided that
n > 8f(k,1)/eb.

Theorem 1.6 Let C : ({0,1})" — ({0,1}9)™ be a (2,6,¢)-locally decodable code that is a linear
block-block code. Then m > 2%'”_(“1)2.

Theorem 1.4 is proved in Section 4, by an extension of the argument used in the proof of
Theorem 1.3. Theorem 1.5 is proved in Section 5 by means of a reduction to the case [ = £ =1 and
an application of Theorem 1.3. Theorem 1.6 is proved in Section 6 by an extension of the argument
used in the proof of Theorem 1.3.

1.2 Private Informational Retrieval

Loosely speaking, a Private Information Retrieval (PIR) scheme for k servers is a protocol by which
a user can obtain the value of a desired bit out of n bits held by the servers without yielding the
identity of this bit to any individual server (assuming that the servers do not cooperate in order
to learn the identity of the desired bit). The aim is to obtain PIR schemes of low communication
complexity (i.e., substantially lower than the obvious solution of having a server send all n bits
to the user). We focus on one-round PIR schemes that are protocols in which the user sends a
single message to each server, which responds also with a single message. All known efficient PIR
schemes are one-round. In the definition below, () represents the algorithm employed by the user
to generate its queries, S; represents the algorithm employed by the jth server, and R represents
the recovery algorithm used by the user (once it gets the servers’ answers).

Definition 1.7 A one-round, (1 — §)-secure, 2-server PIR scheme for database size n, with re-
covery probability p, query size t and answer size a is a quadruple of deterministic algorithms
A=(Q, 51,852, R) with the following properties.

Algorithmic operation: On input i € [n] and (random-tape) r € {0,1}X, algorithm Q outputs a

pair of t-bit long queries; that is, (q1,q2) def Q(i, 7).

On input a database x € {0,1}", and query q € {0,1}!, algorithm Sy (resp., Sy) returns an
answer Si(x,q) € {0,1}* (resp., Sa(x,q) € {0,1}%).

On input i € [n], v € {0,1}, and answers a1,c9 € {0,1}¢, algorithm R outputs a bit
R(i,r, a1, az), which is supposed to be a guess of the entry x;.

The recovery condition: We denote by A(i,z) the random variable that represents the output of
R(i,r, S1(z,q1),S2(x,q2)), where (q1,q2) = Q(i,7) and the probability space is induced by the
uniform distribution of r € {0,1}. Then, for every i € [n] and x € {0,1}", it must hold that
Pr[A(i,z) = x;] > p.

The secrecy condition: For i € [n], denote by Q1(i) (resp., Q2(i)) the distribution induced on the
first (resp., second) element of Q(i,7) when r is uniformly distributed in {0,1}. Then, for
every i,j € [n], the distributions Q1(i) and Q1(j) (resp., Q2(i) and Q2(j)) are é-close (i.e.,
the statistical difference between them is at most §).



Notice that we relax (and quantify) the security and recovery requirements; the traditional perfect
requirements are obtained by setting 6 = 0 and p = 1. On the other hand, in the following, we
restrict our attention to PIR schemes which have linear answers; that is, for every fixed query
q € {0,1}", the servers’ answers Sy (z,q) and Sy(x,q) are linear functions of = (each bit of Sy (z,q)
and each bit of Sy(x,q) is a linear combination of the bits of z). All known PIR schemes satisfy
this requirement.

Our main result for PIR schemes is the following lower bound, proved in Section 7

Theorem 1.8 Suppose there is a one-round, (1 — 6)-secure PIR scheme with 2 servers, linear
answers, database size n, query size t, answer size a, and recovery probability 1/2+ €. Suppose also
that the user only uses k predetermined bits out of the a bits it receives as answer to each query.
Then

(e—0)-n
t> m—long(k,a)—S,

where f(k,a) =Yty (¢) < min{2¢, 2a*}.

As immediate corollaries we conclude that

e Any (secure, one-round) 2-server PIR scheme with linear answers of constant length must
have queries of linear (i.e., (n)) length. (This extends a simple lower bound (of n — 1 bits)
on the length of queries in a 2-server PIR scheme with single-bit linear answers [6, Sec. 5.2].)

e Any (secure, one-round) 2-server PIR scheme with linear answers in which the user only uses
one bit from each answer must have communication complexity Q(y/n).

e Any (secure, one-round) 2-server PIR scheme with linear answers in which the user only uses
k bits from each answer, k a constant, must have communication complexity Q(n/(*++1),

In one of the PIR schemes of Chor et al. [6], both a and ¢ are O(n!'/3), and k = 4. By a minor
modification to that scheme, we can reduce k to 3. Thus the third lower bound asserts that for this
case (i.e., k = 3), communication complexity of Q(n'/*) is essential. We comment that the first
two lower bounds are tight:

e There exists a (perfectly secure, one-round) 2-server PIR scheme that uses n-bit queries and
linear answers that are single bits (cf., [6, Sec. 3.1]).

e There exists a (perfectly secure, one-round) 2-server, linear-answer PIR scheme in which the
user uses only one bit from each /n bit-long answer, and the queries are also \/n-bit long
strings (e.g., by a minor modification of the scheme in [6, Sec. 3.2-3.3] as applied to d = 2).

Regarding 2-server schemes, Chor et al. [6] present a scheme where a, k and ¢ are O(n!/3). Our
results do not yield any lower bound in this setting. In particular, it is compatible with current
knowledge (but considered very unlikely) that a 2-server scheme exists in which a, k and ¢ are all
O(logn).

The best g-server PIR construction, for large ¢, is due to Beimel et al. [3], and it achieves a = 1
and ¢ = nlogd/(qloglogq)

All known constructions, including those in [6, 3] are linear and one-round.



Perspective: Computational security. We stress that the above results (as well as Section 7)
refer to an information-theoretic notion of security. A relaxed notion of security, requiring only
security with respect to polynomial-time servers, was put forward and first investigated by Chor
and Gilboa [5]. Assuming the existence of one-way functions, for any ¢ > 0, they presented 2-
server computational-secure PIR schemes of communication complexity O(n¢). Furthermore, their
PIR schemes are one-round and use linear 1-bit answers. Combined with our results (or actually
even with [6, Sec. 5.2]), this provides another PIR setting in which the relaxed notion of compu-
tational security offers an advantage over information-theoretic security. (The other PIR setting
we refer to is the single-server setting in which n bits is a lower bound in the case of information-
theoretic security [6, Sec. 5.1], whereas communication complexity of O(n¢) can be achieved for
computationally-secure PIR’s [10], assuming the intractability of the quadratic residuosity prob-
lem.)

1.3 Tightness of Our Bounds

In Section 8 we outline some constructions that give upper bounds which are quite close to our
lower bounds for the case of binary codes (or PIR with answer size one).
Specifically, we present the following constructions:

e For every 0 < € < 1/2, ¢ > 2 and for sufficiently large n, a (2,¢,€) smooth linear code with
encoding length 29(*/¢) (See Section 2 for a definition of smooth code.) This construction
perfectly matches our 282(en/¢) Jower bound that we prove as an intermediate step for our
lower bounds for codes and PIR schemes.

e For every 0 < e <1/2,0 < 6 < 1/4 and sufficiently large n, a (2, 6, ¢) locally decodable linear
code with encoding length 2007/(1=29) " Our lower bound is 2™,

e For every 0 < € < 1/2, 0 < 6 < 2¢, a (1 — 6)-secure 2-round linear PIR with query size
O(n(2e — 6)) and answer size 1. Our lower bound is Q(n(e — 6)).

1.4 Subsequent Work

Following the preliminary publication of our results, Obata [12] improves our lower bound for binary
linear smooth codes to 24én/(1=29)) " for every § > 0, € < 1/2. (Note that in a locally decodable
code that corrects up to a 6 fraction of errors, the reconstruction probability cannot be arbitrarily
close to 1.) In light of the construction that we mentioned above, this lower bound is tight in all
parameters.

One central question left open by our work refers to general (rather than linear) binary codes.
Specifically, does the exponential lower-bound on the length of binary linear codes that support
2-query decodability extend to genmeral (i.e., non-linear) codes? This question has been resolved
recently by Kerenidis and de Wolf [11], who proved a 28:poly(€6)n) Jower-bound on the length of
any (2,6,¢€) locally decodable binary code. The results of Kerenidis and de Wolf also apply to
2-server, 2-round, (1 — §)-secure PIR with answer size k and recovery probability 1 — ¢, giving a
communication lower bound of Q(poly(e,8,27%) for such schemes. We note that the dependency
of their bound on e and 6 is worse than in our results. Interestingly, the lower bound of [11] relies
on quantum information theory. For special the case of private information retrieval with 1-bit



answers and recovery probability 1, the lower-bound of [11] was subsequently improved by Beigel
et al. [2] (using a simpler “classical” argument).

Our lower-bound for the case of general fields (i.e., Theorem 1.4) was recently improved by Dvir
and Shpilka [7], who removed the dependency of the lower bound on the field size. We conjecture
that a similar improvement is possible for Theorem 1.6.

1.5 Organization

Most of the paper is devoted to analysis of several types of locally decodable codes, and the
application to private information retrieval is postponed to the last section (Section 7).

We start the analysis of locally decodable codes by using a known reduction (due to Katz and
Trevisan [9]) to a combinatorial problem. In case of linear codes the reduction yields a special case
for which we obtain (in Section 3) stronger bounds than the ones obtained in [9]. Indeed, this
improvement (applicable for the case of linear codes) is the source of all our lower bounds. We
extend our analysis in three directions:

1. In Section 4, we consider linear codes over arbitrary fields (rather than over the field GF'(2)).

Our lower bound in this case is exponential in n, but inversely proportional to the size of the
field.

2. In Section 5, we consider linear codes in which the decoder may read two [-bit long blocks in
order to recover one input bit.

Our lower bound in this case is exponential in n/2!, with an improvement to n/min{2', ¥}
in case the decoder only uses k£ out of the [ bits in each retrieved block.

3. In Section 6, we consider linear codes in which the decoder may read two [-bit long blocks in
order to recover one [-bit long input block.

Our lower bound in this case is exponential in n — [2.

In Section 8 we consider the tightness of some of our lower-bounds.

2 Preliminaries

The notions and results in this section are mostly due to Katz and Trevisan [9]. In particular, their
notion of smooth codes and its relation to locally decodable codes are central to our analysis. Here
we generalize their definition to the case in which the message is over a non-Boolean alphabet.

2.1 Smooth Codes

Informally, a code is smooth if a corresponding local decoding algorithm “spreads its queries almost
uniformly” (or, actually, does not query any code location too frequently).

Definition 2.1 For fized c, e, and integer q we say that C: X" — I'™ is a (q, ¢, €)-smooth code if
there exists a probabilistic oracle machine A such that:

e In every invocation, A makes at most q queries non-adaptively.



e For every x € {0,1}" and for every i € [n], we have

Pr[AC®) () = ;] > % +e.

e For every i € [n] and j € [m], the probability that on input i machine A queries index j is at
most c/m.

(The probabilities are taken over the internal coin tosses of A.) An algorithm A satisfying the above
requirements is called a (g, ¢, €)-smooth decoding algorithm for C.

We stress that the decoding condition in Definition 2.1 refers only to valid codewords, whereas
the corresponding condition in Definition 1.1 refers to all oracles that are sufficiently close to valid
codewords. To get a feeling for the smoothness condition note that if the decoding machine spreads
its queries uniformly, then we would get ¢ = ¢ (and this is the lowest possible value, assuming that
the machine always makes ¢ queries). It turns out that any locally decodable code is smooth, for
suitable parameters and by possible modification of the decoding machine.

Theorem 2.2 (See Theorem 1 in [9]) Let C : X" — '™ be a (q,0,€)-locally decodable code.
Then C is also a (q,q/b,€)-smooth code.

This is stated only for the case ¥ = {0,1} in [9], but the proof applies to the general case as well. A
weak converse also holds, namely, if C is a (g, ¢, €)-smooth code, then C is also (g, 6, € — g6)-locally
decodable, for every 6 < €/q.

2.2 The Recovery Graphs

Let C: X" — I'" be a (2, ¢, €)-smooth code and let algorithm A be a (non-adaptive) (2, ¢, €)-smooth
decoding algorithm for C. Let {q1, g2} be a pair of elements of [m]|. We say that a given invocation
of A reads {q1, g2} if the set of indices which A reads in that invocation is exactly {qi,q2}. We say
that {q1, g2} is good for i if there is a non-zero probability that A reads {qi,¢2} and

Pr[AC®) (i) = ;| A reads {q1,q2}] > |1§|,
where the probability is taken over z uniformly chosen from {0,1}", and over the internal coin
tosses of A. This may seem a very weak property, but we can derive interesting consequences from
it when C is a linear code. When C is linear, the value of x; can either be deduced as a linear
combination of the entries ¢; and g2 of C(z), or it is linearly independent from them. In the latter
case, the pair (¢1,¢2) cannot possibly be good for i, because, for a random x, the value z; is a
random variable that is statistically independent of the entries ¢; and ¢y of C(x). Therefore, if
(q1,92) is good for i, and C is linear, it follows that x; can be deduced without errors by looking
at the entries ¢; and ¢ of C(z).

For every i € [n], we consider the graph with edge set consisting of the set of good pairs. We
call this graph the recovery graph for i. We may assume without loss of generality that the decoding
procedure makes two distinct queries, and so the recovery graph has no self-loop.



Definition 2.3 Fizing a code C: {0,1}" — I'™ and a 2-query recovery algorithm A, the recovery
graph for i € [n], denoted G;, consists of the vertex set [m] and the edge set E; that equals the set
of pairs {q1,q2} that are good for i.

We have the following result about such graphs.

Lemma 2.4 ([9]) Let C be a (2,c,€)-smooth code and {G;}I—, be the associated set of recovery
graphs. Then, for every i, the graph G; = ([m], E;) has a matching M; C E; of size at least
emn|X[/(2¢- (|X] = 1)).

This is essentially Lemma 4 in [9], but, since we slightly changed the definition of the recovery
graph (from [9]), and get slightly better bounds, we present a proof below.

Proof: We may assume without loss of generality that, for every i € [n| and j1,j2 € [m],

Pr(ACE)(3) = ;| A queries {ji, j2}] > ﬁ (1)
where the probability is taken uniformly over z € ¥™ and A’s internal coin tosses. (For example,
we can modify A so that it outputs a random element of ¥ whenever ¢ € [n] and j1,j2 € [m] do not
satisfy Eq. (1).) It follows from Markov’s inequality that, with probability at least |X|e/(|X]| — 1),
on input i € [n], algorithm A generates a pair that is good for 7. In other words, with probability at
least |X|e/(|X| — 1), the pair generated by A(i) is an edge in G;. Thus, if C C [m] is a vertex cover
of G;, then the probability that A(i) queries at least one element of C' is at least |X|e/(|X| — 1).
On the other hand, no element of [m] is queried by A with probability greater than ¢/m, and so
it follows that |C| > (|X|e/(|2] — 1)/(¢/m) = |X]|em/(]X| — 1)e. Since the size of the maximum
matching in a graph is at least half the size of the minimum vertex cover, we conclude that G; has
a matching of size at least |X]em/2(|X| — 1)c. [ ]

3 The Boolean Case — Proof of Theorem 1.3

3.1 Getting Rid Of Projected Bits

To simplify the rest of our analysis, we would like to get rid of bits in the range of the code that
are identical to some input (data) bit. That is, we wish the code to be such that no single bit of
the output is (always) equal to a particular bit of the input. We can accommodate this condition
essentially by removing the bits of the input that are identical to too many bits in the output. This
gives the following lemma, which is stated and proven here only for the case of linear codes.!

Lemma 3.1 For n > 4c/e and m < 2™/%/n, let C : {0,1}" — {0,1}"™ be a linear (g, c, €)-smooth
code. Then, for some n' > n/2, there is a linear code C': {0, 1}”’ — {0,1}?™ that has a (q,c,€/2)-
smooth reconstruction procedure such that each of the output bits of C' is neither identically zero
nor equal to a single input bit.

1 We conjecture that a similar lemma hold for general codes.



Thus lower bounds on the length of smooth codes satisfying the conclusion of the lemma yield lower
bounds on general smooth codes. Needless to say, if m > 2”/2/n then we are done anyhow.

Proof: We say that the output position j € [m] is a projection of the input position i € [n] if it
holds that C(z); = x; for every € {0,1}". We denote by P; the set of output positions that are
projections of the input position 7 € [n], and consider the set I of locations in the input that occur

in more than a fraction 2/n of the bits of the output; that is, I o {i € [n] : |P;| > 2m/n}. Clearly,
|I| < n/2. On the other hand, for each ¢ € [n]\ I, on input ¢, the reconstruction procedure queries
a location in P; with probability at most 2¢/n, which is less than €/2 (provided that n > 4c/e).
Thus, if we modify C in locations U\ 1%, then we may decrease the recovery probability by at
most €/2, so the recovery condition is met.

Without loss of generality, suppose that I = {n’ +1,...,n}, where n’ > n/2. We counstruct the
code C' : {0, 1}”’ — {0,1}"™ by replacing the values of all projected output bits that correspond to
inputs in [n'] by 21 + 9, and replacing each input bit x; for i € I by some function f;(z1,...,2,) to
be determined later. That is, C'(z1, ...,z ); = 21 + 2 + 2 for j € Ujcun P, and C'(21, ..., 2 )j =
C(z1, ..o,y frrg1(2’), ..., fu(@)); otherwise, where 2’ = (z1,...,x,7). Note that C' essentially
maintains the decodability properties of the original n’ variables; that is, the recovery algorithm of
C recovers each of the bits of C’ with probability at least (1 + €)/2.

Recall that we need to show that each of the output bits of C’ is neither identically zero nor
equal to a single input bit. This is obvious for j € U, P, and showing it for the other j’s
requires an adequate choice of the functions f;’s (for ¢ € I). This yields n’ + 1 linear inequalities
for each of the m output bits, yielding a system on (n' + 1)m inequalities in the formal variables
21, .., T and the undetermined linear functions f,/41, ..., fn. Using the probabilistic method and
(n' + 1)m < 2", it follows that there exists a choice of these functions such that all (n’ 4+ 1)m
inequalities are satisfied (as formal inequalities between linear expressions in the formal variables
21, .., Ty ). The lemma follows. [ |

3.2 The Combinatorial Lemma

We will deal with the linear error-correcting code C’ of Lemma 3.1. In the following we will use
e; to denote a vector in {0,1}" that has 1 in the i-th coordinate and 0 elsewhere. We can identify
our error-correcting code C’ with a sequence of m' vectors ay,...,a,, € {0, 1}”’, such that the jth
bit of C(x) is a; - . Recall that, by Lemma 3.1, none of these a;’s equals any unit vector e;. Let
{G;}™., be the sequence of recovery graphs associated with C' as in Lemma 2.4.

Lemma 3.2 For every i, and for every {qi1,q2} € Ej, e; is in the span of {aq,,aq,}.

Proof: Suppose ¢; is linearly independent of a4, and ag,. Then, for a random x, the value z - ¢;
is independent (in the statistical sense) of the values « - ag, and « - ag,, and so it is not possible to
gain any advantage in predicting x; by looking at the ¢;-th and the ¢o-th bit of the encoding of =.

]

Since we are dealing with the field {0,1}, when e; is in the span of {a4,,a4,} there are only three
possibilities: either aq, or ag, equals e; itself, or e; = a4, ® ag,. But for C’ (as in Lemma 3.1) the

% Specifically, selectilllg each f; uniformly among all possible 2" linear functions, each inequality is violated with
probability at most 27" . Thus, a random choice of these functions satisfies all inequalities with probability at least
1= +1)m-27" >0.
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only possible case is that ¢; = a4, ®ag,. Thus proving Theorem 1.3 reduces to proving the following
result.

Lemma 3.3 (Combinatorial Lemma) Let ay,...,a,, be a sequence of (not necessarily distinct)
elements of {0,1}" such that for every i € [n] there is a set M; of disjoint pairs of indices {ji,j2}
such that e; = aj, ® aj,. Then m > 227" where v o Yoy | M) /nm.

Indeed, a special case of interest is where |M;| > ~ym, for each i. Below, we will present two
alternative proofs of Lemma 3.3 (the first being “combinatorial” and the second “information
theoretic”). Combining all the above lemmas, we get:

Corollary 3.4 Let C : {0,1}" — {0,1}™ be a (2,¢,€)-smooth linear code, and suppose that n >
4c/e. Then m > 267/ (2¢),

Notice that Theorem 1.3 is an immediate consequence of Corollary 3.4 and Theorem 2.2.

Proof: Ignoring the case of m > 2"/2 /n, we first apply Lemma 3.1 to obtain a (2, ¢, €' )-smooth lin-
ear code C': {0,1}" — {0,1}™, for n' > n/2, m’ < m and ¢’ = ¢/2 such that no bit in the codeword
equals a bit of the plaintext. Combining Lemmas 2.4 and 3.2, it follows that 2 mIM| > €l e
Finally, applying Lemma 3.3, we get m/ > 22¢"'/¢ > 2¢7/(2¢) and using m > m/ the claim follows.

|

For sake of future reference, we also state the following direct corollary to Lemma 3.3:

Corollary 3.5 Letay,...,ay and My, ..., M, be as in Lemma 3.3. Then, mlogym > 2-3"1" | |M;|.

Proof:  Just let def L Yoity |M;|, and apply Lemma 3.3 (which yields logy m > 2yn). [ ]

nm

3.3 A Combinatorial Proof of Lemma 3.3

For starters, let us suppose that all the vectors ay, ..., a,, are different. In this special case, Lemma
3.3 is a consequence of the following known combinatorial result.?

Lemma 3.6 (See Appendix) For any subset S C {0,1}" of the hypercube, the number of edges
of the hypercube having both endpoints in S is at most +|S|log, |S|.

Let us see that in this special case, Lemma 3.3 follows. Recall that the aforementioned (distinct)
vectors ay,...,a, are all vertices of a hypercube, and the hypothesis (of Lemma 3.3) implies that
the total number of edges between these vertices is at least ymn. But Lemma 3.6 implies that this
number it at most %mlogz m, and so it follows that m > 227",

3 We note that the lower-bound of Lemma 3.3 is tight and implies Lemma 3.6 as a special case. Specifically,
in the special case, the set of edges F/(S,S) with both endpoints in S can be partitioned into matchings M;’s as

in Lemma 3.3. Letting v = (3, |M;])/(n|S]), and applying Lemma 3.3, we get |S] > 227 = 97 2 IMal/151 Thus,
log, |5 > 25, )|/|S], which implies |E(5. )| < (1/2)|5]logy |S].
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To complete the proof of Lemma 3.3, we have to consider the case in which a4,...,a,, are not
all different. Note that an analogue of Lemma 3.6 does not hold in this case (e.g., if a; = -+ =

U2 = 0™ and Gy j9)41 = -+ = ap = 1071 then we get (m/2)? edges).*
For every a € {0,1}", let us denote by v, the number of indices j such that a; = a (so that
>acfo,1}n Va = m). That is, v, is the multiplicity of the vector a in the sequence aq,...,a,,. For

every k, let us denote by Sj. the set of vectors a such that v, >k, and let s, = |Sk|; observe that

Zsk =m, (2)
k

because each vector a that occurs in the sequence aq,...,a,, is counted exactly v, times. Finally,
define x(a,j) to be 1 if v, > j and to be 0 otherwise. With this new piece of notation we can write

> 2 xlak)=m, (3)

ac{0,1}" k>1

and we also note that for any two vectors a,b € {0,1}", we have

min{v,, vy} = Z X(Va, k) x(vp, k). (4)
k>1

Now we would like to argue that for every 4, the following upper bound holds on the size of the
matching M;:

|M;| < Z min{v,, vy} = % Zmin{ua,ya@ei} (5)

a,b:abb=e; a
Indeed, for starters we have by definition that M; is the set of all pairs {j1,j2} such that a;, ®a;, =
e;, and that all such pairs are disjoint. Let us fix two vectors a and b such that a © b = e;, and
consider how many possible pairs {ji,j2} can belong to M; subject to aj, = a and a;j, = b; since
the pairs have to be disjoint, both v, and v, are upper bounds on the number of such possible pairs.
Summing over all choices of @ and b gives the first part of the bound of (5). Notice that the sum is
over all unordered pairs {a,b}, so that if we enumerate all ordered pairs of the form (a,a @ e;) we
are actually counting each unordered pair twice. This explains the factor 1/2 in the second part
of (5).

Combining the lemma’s hypothesis with Equations (5) and (4), we get

S

ymn = 3 |M
1

-
Il

IN
DN | =

n
Z Z min{vg, Vage, |

1=1ae{0,1}"

i Z ZX(Vaak)X(VaGBei,k)

i=1 ae{0,1}" k>1

DN | =

% Note that this example does not violate Lemma 3.3: for every sequence of M;’s as in Lemma 3.3, it holds that
Y IM;| <1 (since |Mi] < 1 and all the other M;’s must be empty). Thus, Lemma 3.3 implies m > 227" for
v < 1/nm < 1/2n, which indeed holds (because m > 2).
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and so

ymn < %ZZ Z X(Va, k)X (Vawe, , k)- (6)

k>1i=1 ae{0,1}"

Note that 3371 3 acq0,13» X(Vas k)X (Vawe;» k) counts (twice) the number of hypercube edges with
both endpoints in Si. Thus, by Lemma 3.6, we have, for every k, that

- 1
Z Z X(Va, k)X (Vage, k) < 2+ §|Sk|10g2 | Sk
i=1 a€{0,1}"

= silogy sy < sg-logym.

Combining this inequality with (6), and recalling (2), we have

1 1
ymn < g;sk-logzm:§m-log2m,

from which it follows that m > 227", This completes the proof of Lemma 3.3.

3.4 An Information-Theoretic Proof of Lemma 3.3

The “information-theoretic” proof in this section is due to Alex Samorodnitsky, and was suggested
to us after we found the combinatorial proof presented in the previous subsection.

Let J be an integer chosen uniformly at random from {1,2,...,m} and let X = a;. We will
write X = X1 Xy --- X,,, where X; denotes the ¢th bit of X, and X; ; denotes X;--- X;. We consider
the entropy of X, denoted H(X). On one hand, H(X) < logy m. On the other hand, we will prove
that H(X) > 2yn, and m > 227 will follow immediately.

We can express the entropy of X as

H(X) = H(Xy) + H(Xs|Xy) + -+ + H(Xp | Xy - Xp). (7)
The value of the ith term H(X;|X;--- X;_1) = H(X;|X1,-1) is given by the following formula:

H(X;|X1; 1) = Z Pr[X;;, 1 =b]- H(X;|X1; 1 =b). (8)
be{0,1}i—1

Observe that for any 0-1 random variable Y with p def Pr(Y =1) (in our case Y = (X;| Xy ;-1 =0)),
we have H(Y') = Hy(p), where Hy(z) = wlogy(1/2) + (1 — x)logy(1/(1 —)) > 2 - min{x,1 — x} is
the binary entropy function.® So Eq. (8) is at least

Z Pr[X; ;-1 = b] - 2min{Pr[X; = 0| X} ;1 = b], Pr[X; = 1| X1 ;-1 = b]}. (9)
be{0,1}—1

Let us say X = ay is an endpoint of an edge of M; if J is any one of the 2|M;| indices in the pairs
of M;. Now, conditioning on the values of any bits other than the ith, the probability that X is an

®We claim that, for 2 € [0,0.5], it holds that H»(x) > 2z (whereas a bound of Hs(z) > x is obvious). The claim
can be verified by noting that f(z) T (z) — 2z is convex in that interval, and that f(0) =0 = f(1/2).
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endpoint of an edge of M; equals the sum, over o € {0,1}, of the probability that X; = ¢ and X
is an endpoint of an edge of M;, under the same conditioning. We prove below that

Pr[X; = 0 and X is an endpoint of an edge of M;|cond| (10)
< min{Pr[X; = 0|cond], Pr[X; = 1|cond|}
for o = 0,1. Applying inequality (10) for o = 0,1, we have

1
Z Pr[X; = ¢ and X is an endpoint of an edge of M;|cond|

< 2min{Pr[X; = 0|cond], Pr[X; = 1|cond|},

and therefore
Pr[X is an endpoint of an edge of M;|cond| (11)

< 2min{Pr[X; = 0|cond], Pr[X; = 1|cond]}.

Now we prove inequality (10). We use the fact that the conditioning cond doesn’t involve bit ¢
of X. Given an edge e of M;, either both endpoints satisfy condition cond or neither. Hence

Pr[X; =0 and X is an endpoint of an edge of M;|cond| (12)
= Pr[X; =1 and X is an endpoint of an edge of M;|cond].
Clearly
Pr[X; = 0 and X is an endpoint of an edge of M;|cond]
<  Pr[X; = 0|cond]
and
Pr[X; =1 and X is an endpoint of an edge of M;|cond]
<  Pr[X; = 1|cond].

By equation (12), for o € {0,1} we have
Pr[X; = o and X is an endpoint of an edge of M;|cond]
< min{Pr[X; = 0|cond], Pr[X; = 1|cond]}.
This is inequality (10).

By inequality (11) with cond replaced by “X;;_1 = b” for varying b, expression (9) and hence
H(X;|X;;-1) are bounded below by

Z Pr[X; ;1 =b]- Pr[X is an endpoint of an edge of M;| X ;-1 = 0]
be{0,1}:-1
= Pr[X is an endpoint in an edge of M;]
2| M|
m

Therefore, by equation (7),

- 2
Z = — - ymn = 2yn.

Recalling that H(X) < logm, we obtain 227" and establish Lemma 3.3.
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4 Extension To Arbitrary Finite Fields — The Proof of Theorem
1.4

We extend Theorem 1.3 to linear codes over any finite field F', where F' = GF(2) is a special case
treated (slightly better) in Theorem 1.3. Our aim here is to establish Theorem 1.4, which asserts
that if we let C: F™ — F™ be a (2,6, ¢)-locally decodable linear code, then m > 9% n—2-logy |F|,
This result is proven by an argument analogous to the one in Section 3. Here we deal with vector
spaces over an arbitrary finite field. Specifically, we let F' denote any such field, and consider
n-dimensional vectors over F. In particular, €; denotes the n-dimensional vector that has 1 in
coordinate i and zero in all other coordinates. We say that a pair of vectors (i, ) € F™ x F™ spans
a third vector @ € F"™ if there exists a, f € F such that @ = au + f¢. Again, the analysis reduces
to providing lower bounds on the cardinality of multi-sets that contain many disjoint pairs that
span each é;. Indeed the technical contents of this section is captured by the following lemma.

Lemma 4.1 Let F be a finite field, n an integer, and S a multi-set of F™. Fori=1,...,n, let M;
be a set of disjoint pairs of elements of S that span €;. Then

> M| <2|S| +18]| - logy(IS] - |F)).
=1

Thus, if L S0, M| > 7S], then |S| > 27m—2-loea 71,

4.1 Getting Rid Of Multiples Of ¢;

Motivation: Our first goal is to get rid of queries that are multiples of some unit vector €;.
Intuitively, such queries have limited utility, as shown in Claim 4.2. One benefit of getting rid of
such queries is that recovery via a remaining pair of queries requires to use both answers, that
is, if the query vectors @ and ¥ span €; then it must be the case that e; = «i + (U, for some
a, € F\{0}.

Let S be as in Lemma 4.1, and E; denote the set of all pairs in S that span ;. (Recall that M;
is a subset of E;, consisting only of disjoint pairs.) Define

s Y g\{ag:aEeFki=1,.,n} (13)
E ¥ Ensx9) (14)
MY M NS xS (15)

Claim 4.2 Y1 | [M;| < 2|S|+ Y0, |M])|.

Proof: We bound from above the number of pairs in U;M; with an endpoint in S\ S'. We
consider two types of pairs:

1. A pair (ii,?) such that either @ or ¥ is a multiple of some €;. The number of such pairs is
bounded from above by 2-|S\ S’|, because element of the form «¢; can “account” for at most
one pair.
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2. A pair (4@,V) such that for some i and o, 3 € F \ {0}, € = ai + BU. Suppose, without loss
of generality, that @ = 7¢€; and ¥ = 6€; + ne;. Then ¥ contributes to M; \ M], but cannot
contribute (under this case) to any My \ M} with k ¢ {i,j} (because if (@', 7) € M}, \ M| for
k ¢ {i,j}, then @ must be a multiple of €} and it must hold that €, = /@’ + ' with 5’ = 0;
so this pair is not counted in the current case). It follows that the number of such pairs is
bounded above by 2|5’|.

Combining the two types, the claim follows. |

4.2 Reduction To The Boolean case

Motivation: The first step in the reduction is to convert the system into one in which recovery
is via fixed coefficients. Specifically, we shall define a redundant form of S’ such that each v € S’
will be represented by its |F| — 1 nonzero multiples. Recovery of the ith entry of the message via
queries @ and ¥ with multipliers « and —f will be replaced by queries ai and (v and straight
addition.

Let S’ be a multi-set as above. Define

" Y g a)de S &ae F\{0}} (16)
def

B {(0), (5,8) € 8" x " Iy € F\ {0} st ail — i =), (a7

That is, if @ occurs with multiplicity m in S’, then (for every a € F \ {0}) (@, «) occurs with
multiplicity m in S”. Clearly, if ((@,«),(¥,3)) € EY, then (4,7) € E!. On the other hand, if
(4,7) € EI, then there exists o, 3,7 € F \ {0} such that a@ — ' = 7€, and thus there exists
6 € F\ {0} (ie., 6 = B/«) such that ((@,n), (V,6n)) € E! for every n € F\ {0}.

Let M/ be defined as follows. For every (@, 7) € M/ such that ail — 37 is a multiple of €;, and
for every 6 € F'\ {0}, add ((@,d«), (¥,60)) to M. Note that since @,7 € S’ are not multiples of
€;, it must be the case that a, 8 # 0, and thus indeed M, C E!.

Claim 4.3 1. |S"| = (|F] - 1)-|9.
2. Y M| = (|1F| = 1) - 323 [ M)

3. M is a set of disjoint pairs in E!.

Proof: All items are obvious by the definition. In particular, by the above discussion, M C EY,
and the disjointness of pairs introduced for each single (i, ?) € M/ follows similarly. Specifically,
for every (4,7) € M/, there exist o, 8 € F \ {0} such that ai — 87 is a multiple of &. Thus the
pairs ((, 6, (U, 603)) added to M/, for every 6§ € F\ {0}, are disjoint (because da = 8’ implies
6 = ¢', and similarly for 64 = §'3). [ |

Motivation: The main reduction step in the reduction is carried out in the following proof. It
relies on the fact that if @' — ' = ~é;, with v € F \ {0}, then @' and ¥ agree on all but their ith
coordinate (and they differ on their ith coordinate).

Claim 4.4 Let 8" be an arbitrary subset of F™ x F and M]" be an arbitrary set of disjoint pairs
such that ({4, a), (7, B)) € M]" implies aii — fv = v€; for some v € F\ {0}. Then |S""|log, |S"| >
n n
ie1 [ M.
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Proof:  We consider a randomized mapping of F™ x F to {0,1}". The mapping is based on a
uniformly chosen 2-coloring of F', denoted x, and (#,«) € F™ x F is mapped to x(vi)--- x(vn),
where (vq,...,v,) = ai. Let us denote by p, : F* x F — {0,1}" the mapping induced by the
2-coloring x : F' — {0,1}, that is, py (@, «) = x(v1)--- x(vn), where (vy,...,v,) = au. Thus the
multi-set S is randomly mapped (by p,) to a multi-set B, of {0,1}" such that |B,| = |S"|.
The key observation is that for every ((@,«),(7,3)) € M/", with probability 3, it holds that
f (U, ) @y (U, B) = €; (and otherwise p, (U, o) = py (¥, 3)). The observation follows by combining
the fact that a@ = 87 + v€;, with v € F \ {0}, and the fact that Pr[x(e) = x(e +7)] = 3 for every
e € F (and v € F\ {0}). Letting M;, denote the pairs in M," that are mapped (by p,) to pairs
(u,v) such that u & v = e;, we conclude that the expected size of M, equals 3 - |M/"|, where the
expectation is taken uniformly over all possible x’s.
It follows that there exists a 2-coloring x such that Y7, |M; | > 3 - 3%, |M/"|. Fixing this
X, we apply Corollary 3.5 to By, and the M;,’s, and conclude that |By|logy |By| > 2- >0 |M; |-
Thus . .
5" 1o, S| = Byl logsy Byl > 23" [Miy| > 3 MY
i=1 i=1
|

Finishing the proof of Lemma 4.1: Using Item 3 of Claim 4.3, we may apply Claim 4.4 to S”
and the M/"’s, and get |S”|logy |S"| > Y1ty |M]"|. Applying the other items of Claim 4.3, we get

(IF| = 1) 8 logy(|1F| - [S]) > (IF|=1)- 5| -logy((|F| = 1)|S"])
= |5"] - logy |S"|

n
> 1y
=1
n
= (F|-1)- > M.

=1

\Y

Thus Y1 |M]] < |S'logy(|F| - |S’]). Combining this with Claim 4.2, we get >_i* ; |M;| < 2|S|+
|S[logs (|£] - |S])-

5 Extension To Binary Linear Block Codes — The Proof of Theo-
rem 1.5

In this section we deal with linear codes mapping {0,1}" to ({0,1}*)™, where the case { = 1
corresponds to the main result (presented in Section 3). Thus each output symbol is an ¢-bit long
string, where each of these bits is a linear combination of the n input bits. We show that providing
lower bounds for the general case reduces to providing lower bounds for the special case of £ = 1.

5.1 Reduction to the Boolean case

Lemma 5.1 Let C: {0,1}" — ({0,1}9)™ be a (g, c, €)-smooth linear error-correcting code. Then
there is a code C' : {0,1}"™ — {0, 1}2l'm that is (q,c - 2, €)-smooth. Furthermore, suppose that C
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has a decoding algorithm that uses only k predetermined bits out of the £ bits that it receives as
answer to each query. Then there is a code C" : {0,1}" — {0,1}*"™ that is (¢, c-t,€)-smooth, where

t=Y"r, (f)

Proof: Let z € {0,1}". We define C'(z) as follows: for every j € [m] and for every a € {0,1}%,
the entry of C’(z) indexed by (j,a) contains the inner product between the jth ({-bit long) block

of C(z) and the ({-bit long) string a. This encoding has length m/' L 90m. We now describe a
smooth decoding procedure for C'.

Let A be the (2, ¢, €)-smooth decoding procedure for C. The smooth decoding procedure A’ for
C’ will first simulate A, and get two queries (j1, jo).

There are two cases to be considered, depending on whether or not x; can be reconstructed as
a linear combination of the 2¢ bits C(x);,, C(x);,.

1. If 2; can be reconstructed as a linear combination of the bits C(x);,, C(x);,, then this means
that there are vectors aj,as € {0,1}* such that z; = a1 - C(2);, ® az - C(z);,. (We use the
notation a - b to denote the inner product of the vectors a and b.) In this case, algorithm A’
can reconstruct z; by looking at two bits of C'(z), that is, the entries (j1,a1) and (jg, az).

2. If ; cannot be reconstructed as a linear combination the bits C(x);,, C(z);,, then, for a
random x, the random variable z; is independent of the random variables C(x);, and C(x);,.
In this case, algorithm A’ outputs a random guess.

As argued in the proof of Lemma 2.4, with probability at least 2e, algorithm A (on input )
samples a pair (j1, j2) that is good for ¢ (i.e., allows reconstruction with average success probability
above 1/2, when averaging over all possible z’s). However, whenever (j1,72) is good for i, we are
in case (1) and A’ correctly reconstructs x;. Combining these two observations, we bound the
reconstruction probability of A" below by 2e-14 (1 — 2¢) - (1/2) = 1/2 + € (as required). Turning
to the smoothness condition, observe that each entry in C’(z) is queried with probability at most
c¢/m, which equals (2° - ¢)/m’ as required.

In order to prove the “furthermore” part, we do a similar construction, except that the entries
of C"(x) correspond to pairs (j,a) where j € [m] and a € {0,1}" is a vector of weight at most k.
When introducing the decoding procedure A” (for C"), we refer not only to the queries made by
A but also the the predetermined bit locations in the answer that are inspected by A. Specifically,
A" first simulates A, and gets two queries (j1,j2) as well as two corresponding sets of bit locations
51,82 C [f]. If x; can be reconstructed as a linear combination of the bit positions S; in C(z);,
and the bit positions Sy in C(x)j,, then A” will reconstruct x; using such a linear combination,
a computation that can be done by looking at two entries of C"(x), since |Si|,|S2| < k. In the
analysis we note that whenever a pair of queries (j1,72) (made by A) is good for ¢, it must be the
case that A” correctly reconstructs x; when (ji,j2) are the queries selected in the simulation step.

|

5.2 Consequences

Combining Lemma 5.1 and Corollary 3.4, we obtain the following result.
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Corollary 5.2 Let C: {0,1}" — ({0,1})™ be a (q, ¢, €)-smooth linear error-correcting code. Then
m > (1/2") - 26"/2'21"3, provided that n > 242c/e. Furthermore, if C has a decoding algorithm that
uses only k of the { bits that it receives as answer to each query, then m > (1/t) - 2en/2t¢ yhere
t=% (), provided that n > 4ct/e.

Theorem 1.5 follows by combining Corollary 5.2 and Theorem 2.2.

6 Extension To Binary Linear Block Codes With Block Decoding
— The Proof of Theorem 1.6

Here we deal with codes mapping ({0,1}%)" to ({0,1}*)™, that is, mapping a sequence of n blocks,
each being a string of length ¢, to a sequence of m such blocks. We consider algorithms that recover
a desired (entire) block by making two block-queries.

We focus on such codes in which the bits of each output block are a linear combination of the {n
input bits (so indeed the £ = 1 case corresponds to the main result presented in Section 3). We stress
that the £ linear combinations corresponding to one output block are not necessarily consistent with
one linear combination of the input blocks. (In case they were, this could be handled as a special
case of the results presented in Section 4.)® We call such codes linear block-block codes.

We seek stronger bounds than the ones presented in Section 5, and we obtain them by extending
Theorem 1.3. This extension is analogous to but different from the one presented in Section 4. Our
aim here is to establish Theorem 1.6, which asserts that if we let C : ({0,1}*)" — ({0,1}*)™ be a
(2,6, €)-locally decodable code that is linear block-block, then m > 9% m—(t+1)2,

This result is proven by an argument analogous to the one in Section 3. Here we deal with {n-bit
long vectors, and consider queries counsisting of ¢ (¢n-dimensional) vectors over {0,1}. For every
1 =1,..,n, we focus on pairs of queries that allow one to recover the entire ith block. Thus the 2/
vectors corresponding to this pair of queries must span the vectors €;_y); for j = 1,...,¢, where
a sequence of vectors 71, ..., %y € {0,1}*" spans the vector @ € {0,1}" if for some I C [t], it holds
that @;cr0; = W. We say that a pair of queries spans the ith block if the 2¢ vectors corresponding
to this pair of queries span the vectors €;_1ypq; for j = 1,...,¢. Again, the analysis reduces to
providing lower bounds on the cardinality of multi-sets that contain many disjoint pairs that span
each block. Indeed the technical contents of this section is captured by the following lemma.

Lemma 6.1 Let { > 2 and n be integers, and S a multi-set of Q def ({0,1}™)¢. Fori =1,...,n,
let M; be a set of disjoint pairs of elements of S that span the ith block. Then

DM < (€4 2) - |S] + S| logy |S]
=1

Thus, if L 37, |M;| > 4|S], then |S] > 277~2~¢,

A sequence of £ vectors, v*, ..., v, of {0,1}*" (i.e., £ linear combinations of the ¢n input bits) is consistent
with one n-dimensional vector (b1,...,b,) € {0,1}" (i.e., a linear combination of the n input blocks) if, for every
j=1,..,¢ the v¥) = (bgj), ceeny bgl)) such that b,(cj) =bifk=j (mod¥), and b,(cj) = 0 otherwise. To see that this
case is a special case of Section 4, consider the blocks as elements of the field GF(?Z), and observe that the output
symbols (i.e., the input blocks viewed as elements of GF(2°)) are merely linear combinations (over GF(2)) of the
input symbols (and that, furthermore, these linear combinations over the extension field GF(2%) are restricted to

having entries in the base field GF'(2) = {0, 1}.
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Notations: It will be more convenient to view queries as £ X fn Boolean matrices (i.e., Q =
{0,1}%%"), rather than as (-sequences of ¢n-dimensional vectors. Correspondingly, it is more
convenient to view the recovery (or spanning) condition in matrix form: Two queries U and V
span the ith block if there exist two £ x £ matrices A and B such that AU + BV = I;, where I;
is the £ x {n matrix that consists of £ x £ sub-matrices such that all but the ith sub-matrix are
identically zero and the sth is the identity matrix.

6.1 Getting Rid of Singular Multiples

Motivation: Unlike the analogous part of the proof of Lemma 4.1, here we do not modify S
but rather only modify the M/’s. Again, we wish to maintain only query pairs that allow recovery
(spanning) via full-rank matrices. It can be shown that such query-pairs are few in number.

Let S and the M;’s be as in Lemma 6.1, and F; be the set of all pairs in S that span the
ith block. Recall that (U, V) € E; implies that there exist two ¢ x £ matrices A and B such that
AU + BV = I,. Let F denote the set of full rank ¢ x ¢ matrices. Define

E ¥ (U, V)eSxS:IABEF st. AU+ BV =L}, (18)
def

M MnE. (19)
Claim 6.2 7' | |M; \ M]| < {]S|.

Proof:  Suppose that (U,V) € M; \ M/, and let AU + BV = I;. Then either A or B is not full
rank. Suppose, without loss of generality, that A is not full rank and let w be a nonzero vector
such that wA = 0. Then w(AU + BV) = wBYV is a vector that is spanned by I;, and so V' spans a
vector in the set {e;_1)etj 1 j = 1,...,}. Consider now the set of indices ¢ such that V' belongs to
a pair in M; \ Mj; for each such index i, V' spans a vector in the set {e;_1y¢4; : j = 1,..., £}, and for
different indices i the sets {e;_1)e4; : j = 1,...,£} are disjoint, and their elements are all linearly
independent. Considering that V can span at most £ linearly independent vectors, we conclude
that there are at most ¢ indices i such that V belongs to a pair in M; \ M/. Thus each V € S
contributes at most ¢ pairs to U, (M; \ M/), and the claim follows. [ ]

6.2 Reduction To The Boolean case

Let S be a multi-set as above and define

S" LU, AU e S&A€F), (20)

Bl {(U,4),(V,B)) € " x §": A,B € F&IC € F AU + BV = CL}. (21)

That is, if U occurs with multiplicity ¢ in S, then (for every A) (U, A) occurs with multiplicity ¢
in §”. Clearly, if ((U, A),(V,B)) € E/, then (U,V) € E.. On the other hand, if (U,V) € E!, then
there exist A, B € F such that AU+ BV = I;, and so for every C € F we have ((U,CA),(V,CB)) €
E". In other words, there exists D € F (i.e., D = A !B) such that for every A’ € F we have
(U, 4), (V, A'D)) € B

Let M/ be defined as follows. For every (U,V) € M/ and A, B € F such that AU + BV = I,
and for every C € F, add ((U,CA),(V,CB)) to M/".

20



Claim 6.3 1. [S"| = |F|-|S| and | M| = |F|-|M]|.

2. M!" is a set of disjoint pairs in E!.

Proof: The claim follows immediately by the definition of S” and the M/"’s. Specifically, for every
(U,V) € M/, there exist A,B € F such that AU — BV = I;. Thus the pairs ((U,CA),(V,CB))
added to M/, for every C € F, are disjoint (because CA = C'A implies C = C’, and similarly for
CB = C'B). n

Claim 6.4 Let S" be an arbitrary subset of Q x F and M]" be an arbitrary set of disjoint pairs
such that ((U, A),(V,B)) € M!" implies AU — BV = C1I; for some C € F. Then |S"|logy |S"| >
n n
i=1 [ M.

Recall that Q = ({0,1}*), but it will be more convenient to view @ as a set of n sequences of
¢ x { matrices, that is, @ = ({0,1}4)".
Proof: The proof mimics the proof of Claim 4.4. This time, we consider a randomized mapping of

Q@ x F to {0,1}". The mapping is based on a uniformly chosen 2-coloring of M e {0, 1}¢%¢, denoted
X, and (U, A) € @ x F is mapped to x(Uy)--- x(U,), where (Uy,...,U,) = AU. Let us denote by
oyt M"xF — {0,1}" the mapping induced by the 2-coloring x, that is, u, (U, A) = x(U1) - - - x(Up),
where (U1, ...,U,) = AU. Thus the multi-set S" is randomly mapped (by g, ) to a multi-set B, of
{0,1}" such that |B,| = |S"|. Again, the key observation is that for every ((U, A),(V, B)) € M]",
with probability %, it holds that p, (U, A) ® puy(V,B) = e;, and otherwise p, (U, A) = p,(V, B).
To justify the key observation, let (Uy,...,U,) = AU and (V4,...,V,,) = BV. Then, U; = Vj for
Jj # 1, and U; # V;. For every choice of the coloring x, we have x(U;) = x(V;). With probability
%, we have x(U;) = x(V;), and with probability + we have x(U;) # x(Vi). The first case gives
pr (U, A) = py (V, B), and the second case gives u, (U, A) @ py(V, B) = e;. Letting M; , denote the
pairs in M]" that are mapped (by ) to pairs (u,v) such that w @ v = e;, we conclude that the

expected size of M;, equals 1 -|M/"|, where the expectation is taken uniformly over all possible

X’s.
It follows that there exists a 2-coloring x such that > 1 ; |sz| > % L |Mz'm|- Fixing this
X, we apply Corollary 3.5 to B, and the M;,’s, and conclude that |By|logy |By| > 2321 [ M; .
Thus ) ]
15" 1og, [S™| = |By|logy |By| > 2- Z [ Miy| = Z | M.
=1 i=1
[ |

Finishing the proof of Lemma 6.1: Using Item 2 of Claim 6.3, we may apply Claim 6.4 to S”
and the M/"’s, and get |S”|logy |S"| > >ity |M]'|. Applying the other item of Claim 6.3, we get

|| - |S|log,y(|1F| - |S]) > |F| - Y [M]].
i=1
Thus Y7, |M!| < |S|logs(|F]| - |S]). Combining this with Claim 6.2 (and using |F| < 2%), we get

n n
DoM< e8]+ M)

21



< €-]S]+ 1S logy (2% - 1S))
< (64 £2)-1S|+|S|logy |S].

7 Lower Bounds For Private Information Retrieval — Proof of The-
orem 1.8

The main result of this section is a reduction showing that a one-round PIR system can be converted
into a smooth error-correcting code. This transformation preserves linearity, and hence, combined
with the lower bound for smooth linear codes, yields a lower bound for linear one-round PIR
systems.

7.1 Constructing Smooth Codes Based on PIR Schemes

Actually, we consider a relaxed notion of a PIR. First, recovery is not required to always be correct
but rather only to be correct with probability at least 1/2 + ¢, where the probability is taken over
the PIR’s randomization for any fixed input (i.e., a database and a desired bit). Second, we do not
require perfect secrecy (i.e., 6 = 0), but rather that the distributions of each query for each desired
bit are at pairwise statistical distance at most 0.

Lemma 7.1 Suppose there is a one-round, (1 — §)-secure PIR scheme with two servers, database
size m, query size t, answer size a, and recovery probability at least 1/2 + e¢. Then there is a
(2,3,¢e — §)-smooth error-correcting code C:{0,1}" — ({0,1}*)™, where m < 6 - 2¢. Furthermore:

1. If in the PIR scheme the answer bits are a linear combination of the data, then C s linear.

2. 1If, in the PIR scheme, the user only uses k predetermined bits out of the a bits it receives as
an answer to each question, then the same property is true for the decoding algorithm of C.

Proof: Let us first develop some intuition about the proof. By enumerating all possible answers
from either server, we can view the PIR system as encoding the database x € {0,1}" as a string
PIR(z) € ({0,1}%)!, where [ = 2-2!. The user can reconstruct one bit z; of the database with
advantage € by looking at two entries of the encoded string PIR(x). For any 7 and j, the distribution
of the first entry read into PIR(z) when reconstructing x; is 6-close to the distribution of the first
entry read into PIR(x) when reconstructing «; (and similarly for the second entry). Instead of this
closeness property, we would like to have a smoothness property, that is, we would like each entry
to be read with low probability. We are willing to make the encoding be slightly longer in order to
achieve this goal. We will achieve this goal by duplicating entries that have a high probability of
being read.

Suppose, to start, that 6 = 0. Then, for every j, the probability that entry j is queried by the
reconstruction algorithm (as a first query or as a second query) is a fixed value p; (independent of
which bit of the database the user wants to reconstruct); note that > pj = 2. We will replicate
entry j of the encoding n; = [p; - [] times, denoting by C(z) this new encoding (with repetitions)
of z. Recall that PIR(x) € ({0,1}*)! (and we will show that C(z) € ({0,1}%)°®).

A reconstruction algorithm for z; from C(z) will generate queries j;, j2 as in the reconstruction
algorithm that accesses PIR(x). The algorithm then picks at random one of the nj, copies of the
Jith entry and one of the nj, copies of the joth entry, and then accesses these selected two entries
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in C(x). Clearly, the advantage in decoding x; remains the same. Regarding smoothness, let us
consider an entry j in PIR(x). If p; <1/I, then the corresponding (unique) bit in C(x) is accessed
with probability p; < 1/I. Otherwise (i.e., p; > 1/I), the jth entry is replicated n; = [p;l] > 1
times, and each copy is accessed with probability p;/n;, which is

Pj_ P 1

[pil] = pil U

The length of the new encoding is m = Zé-:l n;, and we have

3
I
MN

[p;l]

.
—

~ |l

< (1+pjl)

—

+ijl
J

= 3l = 6-2%

I
~ <

Recall that no entry is queried with probability higher than 1/I, which (using m < 3[) is bounded
above by 3/m.

Consider now the general case in which the query distributions for z;, and x;, are only guar-
anteed to be o0-close. We apply the previously described construction using the distribution of
queries for ;. When we want to reconstruct z; we proceed as follows. For every j, let p; be
the probability that j is queried when reconstructing x; and let g; be the probability that j is
queried when reconstructing z;. Note that 3°;p; = >7;¢; = 2 and that 3= |p; — ¢;| < 40, and so
Zj;qj>pj(Qj —pj) < 26. We sample queries ji,jo as in the original algorithm for ; (modified so
as to choose a random copy, if the required entry has multiple copies), and then if ¢;, < pj,, we
proceed to make query ji. If ¢;, > pj,, then we read query j; with probability p; /¢;, and we enter
a “failure mode” with the remaining probability. In failure mode, bit z; is just guessed randomly.
Query jy is handled similarly.

Observe that the smoothness requirement is satisfied as before (since each bit corresponding to
the original query j is accessed with probability min{g;,p;}/n; < p;/n; < 1/1). The probability
of entering the failure mode is Zj:q]_>p]_ (¢j —pj) < 26, and when the failure mode is entered, the
probability of guessing x; correctly is exactly one half. Thus, in the worst case, failures subtract §
of the probability of guessing x; correctly, and so the overall probability of guessing x; right is at
least 1/2 4+ ¢ — 6. [ ]

7.2 Consequences

Theorem 1.8 follows by combining Lemma 7.1 and Corollary 5.2. Specifically, using m < 6 - 2!, a

(e—6)n
smoothness bound of ¢ = 3 and recovery advantage € — §, we have 6 - 2 > f(; - 223 7ka) - and

k,a)
Theorem 1.8 follows.”

"Note that, in order to use Corollary 5.2, we need to assume n > 12f(k, a)/(¢ — 6). If the condition is not satisfied,
however, the conclusion of Theorem 1.8 is still true, because it reduces to the trivial statement that ¢ is larger than

a negative number.
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8 Tightness of our Bounds

In this section we show that, for the case of binary alphabets, our bounds are almost tight in their
dependency on all parameters. Some of the bounds presented in this section also appear in [12],
credited to Trevisan.

We begin by recalling that the Hadamard code is a locally decodable and smooth code and how
it gives a private information retrieval system.

The Hadamard code is a linear code C : {0,1}" — {0,1}?". We index the 2" entries of a
codeword by using elements of {0,1}" instead of using integers in [2"], and for a message = and an
entry a we have C(x)[a] = x - a, where the dot product z - a is defined as Y_; zja; (mod 2).

Such a code is (2,2,1/2) smooth. The decoding algorithm, when given a codeword C(z) and an
index ¢, picks at random a string a € {0,1}" and it computes C(z)[a + ;] — C(x)[a], where all the
operations are done modulo 2 and e; is the vector with a 1 in the sth position and zeroes everywhere
else. The algorithm is always correct, because the output of the algorithm is z - (a +¢;) —z - a
which, by linearity, is equal to = - e; = x;. Both queries are uniformly distributed, and so every
location is queried with probability exactly 2/2™.

The same algorithm also shows that the Hadamard code is (2, 6,1/2 — 26) locally decodable for
every 6 < 1/4.

Since the encoding length of the Hadamard code is 27, this implies that for constant € and 6,
our lower bound of 2U) op the encoding length of a (2, 6, €) locally decodable linear code is tight,
and so is, for constant ¢, our 2°4*/¢) lower bound on the encoding length of a (2, ¢, €) smooth linear
code.

Finally, we note that the algorithm also implies the existence of a 1-secure 2-server one-round
linear PIR scheme with recovery probability 1, query size n and answer size 1. We proved a
Q((e — 6)n) lower bound on the query size of a (1 — ¢)-secure 2-server one-round linear PIR scheme
with answer size 1, and so our bound is tight for constant € and constant ¢ < e.

We are now going to consider some other constructions based on the Hadamard code that show
that bound are tight (or almost tight) also in their dependency on the other parameters.

8.1 Smooth Codes

For a given parameter ¢, that we will set later, we define a code C : {0,1}" — {0,1}t'2"/t as
follows:® we divide the input message into ¢ blocks of length n/t each. We encode each block using
the Hadamard code, and then we concatenate the encodings together. The length of the encoding
is therefore ¢ - 2"/¢.

The decoding algorithm, given C(x) and i, applies the Hadamard decoding algorithm to the
portion of C(x) that contains the encoding of the block of = to which z; belongs. The decoding
procedure makes two queries, and each entry of C'(x) has a probability of being queried which is
either zero or 2/2"t. The decoding procedure is then (2,2t,1/2) smooth, and by setting t = ¢/2,
we get a (2,¢,1/2)-smooth code with encoding length (¢/2) - 22/¢ = 20(n/e),

Consider now the following decoding algorithm: with probability 2¢ run the above decoding
procedure; with probability 1 — 2¢ make two queries uniformly at random among the entries that
would not be queried by the decoding procedure, and then output a random bit. This algorithm has
a probability 2e + (1 — 2¢)/2 = 1/2 + € of outputting the right answer. Regarding smoothness, each

$We assume for simplicity that n/t is an integer.
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entry has either a probability 2¢/2"/* or 2(1—€)/((t—1)-2"/*) of being queried. By setting t = ¢/2e,
we get that the decoding procedure is (2, ¢, €)-smooth and the encoding length is (¢/2¢) - 22"/¢ =
20(en/¢) - Our 2°Un/¢) Jower bound is thus tight in its dependency on all the parameters.

8.2 Locally Decodable Codes

The (2,¢,1/2)-smooth code that we described in the previous section is also a (2,6,1/2 — ¢ - 6)-
locally decodable code (whereas its length is (¢/2) - 227/¢). (Use the first decoding procedure and
note that the decoding error is ¢ - ¢.) In particular, setting ¢ = (1 — 2¢)/26 > 2, we can have a
(2,6,¢€) locally decodable code with encoding length 29("®/(1=26) ~ Note that this holds only for
e < (1/2) — 26, and that for very small e this upper-bound does not not quite match our 2(<0®)
lower bound. Obata [12] has recently closed this gap by proving an improved, and tight, lower
bound of 24né/(1=2¢)),

8.3 Private Information Retrieval

We consider again the encoding C : {0,1}"™ — {0, 1}t'2"/t where the input is divided into ¢ blocks,
each block is encoded using the Hadamard code, and then the blocks are concatenated together. In
the 2-server PIR schemes described in this section, a query is an entry j € [t-Z”/t] and the reply of a
server to query j for database x is the j-th bit of C(z). The query size is thus n/t+logt = O(n/t).
The protocols differ in the choice of ¢ and in the algorithm for the user.

As a first scheme, the user, given index 4, runs with probability 1/t the Hadamard decoding
algorithm to recover the bit i; with probability 1 — 1/t it makes two random queries that are
uniformly distributed among the queries that are never made by the decoding algorithm for bit
1, and then produces a random answer. Each server sees a uniform query regardless of ¢, so the
protocol is 1-secure. The probability of success for the user is 1/t + (1 — 1/t)/2 = 1/2 + 1/2t.
By setting ¢ = 1/(2¢) we get a PIR system with query size O(en), perfect security and recovery
probability 1/2 + €.

Suppose now that we just want to construct a (1 — §)-secure system. Then the user can run
the Hadamard decoding algorithm with probability § + 1/t and make random other queries with
probability 1 — é — 1/¢. This still guarantees (1 — ¢)-security. The recovery probability is now
1/2 +6/2 + 1/2¢t, which is 1/2 4 € if we set ¢t = 1/(2¢ — §). With such a setting we get a (1 — §)-
secure system with recovery probability 1/2 4+ ¢ and query size O(n(2¢ — §)), which is a close, if
imperfect, match for our Q(n(e — 6)) lower bound.
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Appendix: Proof of Lemma 3.6

Theorem 2 in [4, Sec. 16] establishes a tighter upper-bound on the number of internal edges; that is,
the upper-bound is tight for any possible value of |S|. The said upper-bound has a more cumbersome
form, which does imply the upper-bound of Lemma 3.6 (i.e., 1|5|log,|S|), but Exercise 1 in [4,
Sec. 16] only asserts an upper-bound of §|S| [log, |S|]. Here, we present a direct proof of Lemma 3.6,
which is simpler than the proof of Theorem 2 in [4, Sec. 16]. This proof seems to be folklore.

The proof is by induction on the size of the set S C {0,1}". The base case of a singleton set
is trivial. In the induction step (i.e., for |S| > 2), we consider any bit that is not fixed over the
strings in S, and denotes by Sy and S; the partition of S according to the value of this bit. Using
the induction hypothesis, the number of internal edges in S is at most

1 1 )
§|50| logy [ So| + §|51| logy |S1| + min(|Se|,[S1]), (22)

where the last term upper-bounds the number of edges between Sy and S;. Assuming, without

loss of generality, that |So| < |S; and denoting m = |S| and = = |Sp|/|S]|, the expression in

Eq. (22) is captured by the function f,,(z) ot t{(wmlogy xm) + (1 — ) logy (1 — z)m] +zm. Clearly,

fm(x) = (m/2)- (22 — Ha(x)) + %mlogQ m, where Ho(x) = xlogy(1/x)+ (1 —z)logy(1/(1 —x)), and
the claim follows by noting that Ha(z) > 2x for z € (0,1/2]. The latter fact follows by (H3(0) =0
and H(1/2) =1 and) the convexity of Hy in the interval [0,1/2], which in turn follows by the fact
that Ho(z) > xlogy(1l/z) > x in this interval.
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