
On Centralized Smooth Scheduling

Dedicated to the memory of Professor Shimon Even for his inspiration and encouragement

Ami Litman∗ Shiri Moran-Schein∗

Abstract

This paper studies evenly distributed sets of natural numbers and their applications to scheduling
in a centralized environment. Such sets, called smooth sets, have the property that their quantity
within each interval is proportional to the size of the interval, up to a bounded additive deviation;
namely, for ρ,∆ ∈ R a set A of natural numbers is (ρ,∆)-smooth if abs(|I| · ρ− |I ∩A|) < ∆ for any
interval I ⊂ N.

The current paper studies scheduling persistent clients on a single slot-oriented resource in a
flexible and predictable manner. Each client γ has a given rate ργ that defines the share of the
resource he is entitled to receive and the goal is a smooth schedule in which, for some predefined ∆,
each client γ is served in a (ργ ,∆)-smooth set of slots (natural numbers).

The paper considers a centralized environment where a single algorithm computes the user of
the current slot. (An accompanying paper studies a distributed environment in which each client
by itself computes whether or not it owns the current slot.) An important contribution of this
paper is the construction of a smooth schedule with an extremely efficient algorithm that computes
the user of each slot in O(log log q) time and O(n) space, where n is the number of clients and

q , max {ργ/ργ′ | γ, γ′ ∈ Γ}; in many practical applications this O(log log q) value is actually a
small constant.

Our scheduling technique is based on a reduction from allocation of slots to allocation of sub-
intervals of the unit interval. This technique naturally extends to the problem of scheduling multiple
resources, even under the restriction that a client can be served concurrently by at most one resource.
This paper constructs such a schedule in which the users of each slot are computed extremely fast
— in O(m log log q) time per slot and O(n) space where m is the number of resources; this result is
a significant improvement on the prior fastest algorithm that produces such a schedule (actually of
a special type — a P-fair schedule) in O(m log n) time per slot and O(n) space.

Moreover, the paper introduces a novel approach to multi-resource scheduling in which each
resource independently computes, slot after slot, what client to serve in this slot; the paper presents
such a schedule computed in O(log log q) time per slot and O(n) space; prior to our work, nothing
was known about such independent computation. Finally, this paper demonstrates the usefulness
of smooth schedules by showing that they are highly attractive for multiplexing the links of a
connection-oriented packet switching network.

∗Department of Computer Science, Technion, Haifa 32000, Israel. E-mail: {litman,mshiri}@cs.technion.ac.il.

1

1 Introduction

1.1 Smooth Scheduling

This paper studies evenly distributed sets of natural numbers and their applications to scheduling in
a centralized environment. Such sets, called smooth sets, have the property that their quantity within
each interval is proportional to the size of the interval, up to a bounded additive deviation; namely,
for ρ, ∆ ∈ R a set A of natural numbers is (ρ, ∆)-smooth if abs(|I| · ρ − |I ∩ A|) < ∆ for any interval
I ⊂ N; a set A is ∆-smooth if it is (ρ, ∆)-smooth for some real number ρ. An earlier paper of us [22]
establish the concept of smooth sets and the current paper builds on the mathematical infrastructure
constructed there; it also builds on tools and techniques developed in an accompanying paper [21]
which studies applications of smooth sets to scheduling in a distributed environment.

As demonstrated in this paper and in [21], smooth sets are highly attractive for scheduling persistent
clients [7] having pre-defined rates on a single slot-oriented resource in a flexible and predictable manner.
In this framework, time is divided into discrete slots and in each slot the resource (e.g., a communication
channel) may serve at most one client (e.g., a session). Each client γ has a pre-defined rate ργ ∈ [0, 1]
that defines the share of the resource he is entitled to receive. A smooth schedule for such a problem
is a schedule in which, for some predefined ∆, each client γ is served in a (ργ , ∆)-smooth set of slots
(natural numbers). Such a schedule enjoys the following two attractive properties. Proper rate —
the average amount of service received by a client γ in the long-run is a ργ fraction of the resource.
Bounded deviation — the number of slots a client γ receives during any k consecutive slots deviates
from his nominal share of k · ργ by less than a pre-specified constant.

We apply a novel approach to scheduling in which the scheduling process is divided into two stages.
In the allocation stage each client is allocated an infinite set of slots that is generated via abstract
mathematical operations. In the online stage an algorithm computes, slot after slot, the client which is
served in this slot. This contrast most previous approaches in which the allocation is just a by-product
of the online algorithm. Moreover, the mathematical operations we use enable exceedingly fast online
algorithms working in, essentially, a constant time per slot. (The allocation stage is also efficient and
takes polynomial time.) This contrast most other algorithms that produce smooth schedules (e.g.,
[8, 9, 26]) as they are based on priority queues and their time per slot is at least logarithmic in the size
of the queues.

The current paper studies a centralized environment in which a single algorithm computes, slot after
slot, the owner of this slot. In contrast, our accompanying paper [21] studies a distributed environment
in which each client by itself (without any inter-client communication) computes, slot after slot, whether
or not it owns this slot.

An important contribution of the current paper is the construction, under some reasonable restric-
tions, of a smooth schedule in which the owner of each slot is computed extremely fast, essentially in a
constant time. Our scheduling technique is based on a reduction from allocation of slots to allocation
of sub-intervals of the unit interval. This technique naturally extends to the problem of scheduling
multiple resources, even under the restriction that a client can be served concurrently by at most one
resource. Our extended technique constructs such a schedule in which the users of each slot are com-
puted extremely fast in time that is independent of the number of clients. This result is a significant
improvement on the prior fastest algorithm [9] that produces such a schedule (actually of a special type
— a P-fair schedule). Moreover, the paper introduces a novel approach to multi-resource scheduling in
which each resource independently (without any inter-resource communication) computes the user of
each slot. Another important contribution of this paper is the construction of such a schedule in which
each resource computes the user of each of its slots in essentially a constant time per slot. Finally, the
paper demonstrates the usefulness of smooth schedules by showing that they are highly attractive for
multiplexing the links of a connection-oriented packet switching network.

1.2 Dispatching in Constant Time

We henceforth identify the slots of the resource with the natural numbers and use the following no-
tations. For a set A of slots (natural numbers), if the following limit, lim|I|→∞(|A ∩ I|/|I|), exists
where I ranges over the intervals of natural numbers, then this limit is called the rate of A and is
denoted rate(A). Clearly, a (ρ, ∆)-smooth set has rate ρ. Let Γ be a finite set of clients. A Γ-

2

system {Xγ | γ ∈ Γ} is an association of an element Xγ with each γ ∈ Γ. A Γ-allocation is a Γ-system
{Aγ ⊂ N | γ ∈ Γ} of disjoint sets of natural numbers. Such an allocation is ∆-smooth if every Aγ is
∆-smooth; the allocation is smooth if it is ∆-smooth for some ∆. A rate function ρ over Γ is a function
that assigns to each γ ∈ Γ a real number ργ ∈ [0, 1]. For such a ρ, a ρ-allocation is a Γ-allocation
{Aγ | γ ∈ Γ} with rate(Aγ) = ργ .

A dispatcher of a Γ-allocation {Aγ | γ ∈ Γ} is an algorithm that dispatches the slots (natural num-
bers) one by one. That is, for each integer i in its turn the dispatcher determines the owner of this
integer — the client γ ∈ Γ s.t. i ∈ Aγ — or determines that there is no such γ. A dispatcher operates
on a RAM of a predefined width; such a dispatcher is of space s and time t if it uses at most s memory
words and dispatches each slot in at most t time units.

The first result concerning smooth allocation is due to Tijdeman [26] who proved that any rate
function, in which the sum of the rates is at most one, has a 2-smooth allocation. Tijdeman did not
address the dispatching complexity; however, since his algorithm is based on a priority argument, the
time complexity of the dispatching algorithm seems to be no better than O(log n), where n is the
number of clients.

An important contribution of this paper is that any rate function, obeying some reasonable restric-
tions, has a smooth allocation with two extremely efficient dispatchers whose time is either constant
or essentially constant, as stated by the following two theorems. In these theorems a k-bit rational is
a number which is the ratio of two k-bit numbers. Our model of computation is the popular RAM
[13], and the k-bit RAM is the RAM with k-bit words. (Such a RAM performs standard operations on
these words in constant time.)

Theorem 3: Let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ 0.99 and all the ργ are k-bit rational.

Let q = max
{

ργ/ργ′ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is a 10-smooth ρ-allocation which has two

dispatchers on any Ω(k)-bit RAM: the first of O(log log q) time and O(n) space1 and the second of
O(1) time and O(n · q) space.

(The numbering of this theorem, as well as of the other theorems stated in the introduction, follows
that of the main part of the paper.) The schedule of Theorem 3 utilizes only 99% of the resource. This
utilization can be improved to 100% if we impose a certain restriction on the rates. To this end, a k-bit
fraction is a (non-negative) number having a binary expansion with k bits to the right of the binary
point; a number is of l significant-bits if its binary expansion has an interval of l bits s.t. all the bits
outside this interval are 0. In other words, the former number is of the form j/2k for some j ∈ N and
the latter number is of the form i · 2j with j ∈ Z, i ∈ N and i < 2l.

Theorem 2: Let ρ be a rate function over Γ s.t.
∑

γ ργ ≤ 1 and all the ργ are k-bit fractions

of l significant-bits. Let q = max
{

ργ/ργ′ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is an (l + 1)-smooth
ρ-allocation which has two dispatchers on any Ω(k)-bit RAM: the first of O(log log q) time and O(n)
space and the second of O(1) time and O(n · q) space.

Prior to this work, the fastest dispatchers of a smooth schedule [26, 9] worked in O(log n) time and
O(n) space on the same RAM of the above theorems. More about the second work [9] follows shortly.

1.3 Multiple Resources

A natural extension of our work concerns scheduling of m identical resources, where the sum of the
rates of the clients is (of course) at most m and the rate of each client is at most one. If it is permitted
to serve a single client by several resources in one time-slot then it is easy to transform any scheduling
technique of a single resource into a scheduling technique of m identical resources, as indicated in
[8]; see also Section 4. However, in some applications (e.g., CPU scheduling) a client can be served
concurrently by at most one resource. As pointed out by Liu [23] and again by Baruah at el. [8] “the
simple fact that a client can use only one resource even when several resources are free at the same
time adds a surprising amount of difficulty” (to the scheduling problem).

1The bounds on the number of memory words and their width are critical; without one of them it is a simple matter
to encode the entire schedule in a finite number of words and to retrieve the owners of the slots, one by one, in constant
time.

3

Surprisingly, it turns out that under our scheduling technique this is not the case. Namely, a
straightforward extension of our technique produces the following theorems, which provides extremely
efficient dispatchers for this problem whose time is either O(m) or essentially O(m). Prior to our work,
the fastest dispatcher for the problem [9] was of O(m log n) time where n is the number of clients.

We use the following terminology in the context of m identical resources2. For a set of clients Γ,
a (Γ, m)-allocation is a Γ-system {Aγ ⊆ N | γ ∈ Γ} s.t. for any slot i ∈ N, the set of clients served
in this slot, {γ | i ∈ Aγ}, has at most m clients. Note that the allocation specifies which clients are
served in each slot but does not specify which client each resource serves. For a rate function ρ over
Γ, a (ρ, m)-allocation is a (Γ, m)-allocation {Aγ | γ ∈ Γ} with rate(Aγ) = ργ . A dispatcher of such an
allocation is an algorithm that computes, for each slot i, the set of clients that are served in this slot
(but does not specify which client each resource serves).

Theorem 5: Let m ∈ N and let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ 0.99 ·m, each ργ ≤ 1 and

all the ργ are k-bit rationals. Let q = max
{

ργ/ρ′γ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is a 10-smooth
(ρ, m)-allocation which has two dispatchers on any Ω(k + log n)-bit RAM: the first of O(m log log q)
time and O(n) space, and the second of O(m) time and O(n · q) space.

Again, the utilization can be improved to 100% under a certain restriction on the rates, as follows.

Theorem 4: Let m ∈ N and let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ m, each ργ ≤ 1 and all

the ργ are k-bit fraction of l significant-bits. Let q = max
{

ργ/ρ′γ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there
is an (l +1)-smooth (ρ, m)-allocation which has two dispatchers on any Ω(k +log n)-bit RAM: the first
of O(m log log q) time and O(n) space and the second of O(m) time and O(n · q) space.

Theorems 4 and 5 consider a Ω(k + log n)-bit RAM. The same expression is also implicit in Theorems
2 and 3 since the premise of these theorems implies that k = Ω(log n).
Independent Dispatching: In some applications (e.g., CPU scheduling), each resource has its
own computational capabilities. In this case it is highly desirable that each resource independently
dispatches its own slots; that is, in each slot the resource computes what client to serve. As stated
formally by the following theorem, our scheduling technique achieves this independent dispatching with
dispatchers whose time per-slot does not depend on the number of clients or on the number of resources,
and is either constant or essentially constant. Moreover, the service provided by any single resource
to each of the clients is 10-smooth. Prior to our work, nothing was known about a smooth schedule
with efficient independent dispatchers and nothing was known about such schedule in which the service
provided by each resource is smooth.

The following theorem, which summarizes our independent dispatching, uses the following termi-
nology. A sequence A1, · · · , Am of Γ-allocations realizes a (Γ, m)-allocation A if when each resource j
serves the clients as per the allocation Aj then the combined service is as per the (Γ, m)-allocation A;
namely, no slot is assigned to the same client by two distinct Aj allocations and in each time-slot i the

set
{

γ | ∃j : i ∈ Aj
γ

}

of clients served by the combined allocation in this time-slot equals to the set of

clients served by the (Γ, m)-allocation A in that time-slot.

Theorem 7: Let m ∈ N and let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ 0.99 ·m, each ργ ≤ 1 and

all the ργ are k-bit rationals. Let q = max
{

ργ/ρ′γ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is a 10-smooth

(ρ, m)-allocation which is realized by a sequence A1, A2, · · ·Am of Γ-allocations s.t. each of the Aj is
10-smooth and has two dispatchers on any Ω(k + log n)-bit RAM: the first of O(log log q) time and
O(n) space, and the second of O(1) time and O(n · q) space.

The problem of scheduling multiple resources under the restriction of no concurrent service was
resolved in 1993 by Baruah et al. in a seminal paper [8]. Actually, they introduced and solved an
harder problem, the P-fair periodic scheduling problem, in which each client γ has to be scheduled
during the first t slots either ⌈ργ · t⌉ or ⌊ργ · t⌋ times. In [9] Baruah at el. presented the currently
fastest dispatcher of a P-fair schedule and this dispatcher is of O(m log n) time and O(n) space on the
same RAM as ours. Many works study variants and extensions of the P-fair scheduling problem, e.g.,
[9, 1, 24, 18, 12, 4, 2, 3, 5, 11].

2This terminology is different from that of [21] due to the different focus of the current paper.

4

A P-fair schedule is a special form of 2-smooth schedule [22]. Thus, the P-fair problem differs from
our problem, solved in Theorem 5, in two main aspects: the sum of the rates of the clients can be
as large as m (rather than 0.99 · m) and the schedule is 2-smooth (rather than 10-smooth). In many
applications, however, the difference between a 2-smooth schedule and a 10-smooth schedule is not
essential; an example of such an application, concerning connection-oriented packet switching network,
is given in Section 5.

The main advantage of our technique over the known P-fair scheduling techniques is its exceedingly
fast dispatchers. Another advantage of our technique, summarized in Theorem 7, is that each resource
can independently dispatch its own slots in a time that is essentially constant. Nothing is known about
efficient independent dispatchers of a P-fair schedule. Moreover, nothing is known about any efficient
parallel implementation of a dispatcher of a P-fair schedule.

The above theorems are phrased in an existential manner. However, they summarize our scheduling
technique that actually constructs the allocations and the dispatchers in question and, moreover, all
these objects can be constructed in polynomial time. In addition, the two dispatchers provided by each
of our theorems actually represent the endpoints of a wide spectrum of dispatchers with time-space
tradeoff. Finally, in Theorems 3, 5 and 7 the number 0.99 can be replaced with 1 − ǫ where ǫ > 0. In
this case the resulting allocation is O(log(1/ǫ))-smooth while the other parameters in the conclusion
of the theorems are intact.

1.4 Scheduling Communication Networks

The issue of scheduling the links of a connection-oriented packet-switching network has been studied
extensively; see the enlightening survey of Zhang [28]. The current paper propose an attractive new
scheme for scheduling the links of such a network, based on Theorem 3. This scheme is an example
of an application of smooth scheduling in which the difference between a 2-smooth schedule and a
10-smooth schedule is not essential.

We assume the standard model of packet switching network [19]. That is, the network is made
of nodes (switches) connected by directed links; time is divided into discrete time-slots (which are
identified with the natural numbers); in each slot a link transmits either one packet or no packet. In
the simple model, the transmission delay of a link is one time-slot; however, we consider a more realistic
model in which each link has a fixed delay which is an integral number of slots. (Nevertheless, in each
time-slot the link can start transmitting a new packet.) Switches do not introduce any delay; that is, a
packet that entered a switch during a certain slot is ready to be transmitted during the following one.

In our case the network is used by connections (a.k.a. sessions) where each connection is a sequence
of packets (a packets stream) that traverses a predefined path from its source to its destination; the
packets of a packet-stream follow each other (and never get lost); in each time-slot the connection
initiates at most one packet; and each connection γ has a rate ργ which constrains its bandwidth as
follows: In any k consecutive slots the connection initiates at most ργ · k + ∆′ packets, where ∆′ is
some global constant. Many works assume such a constraint [28, 14, 15, 25, 16, 10, 6, 17].

In our scheme, each link is considered in isolation, without regard to the other links. Its slots
are pre-allocated to the connections using it so that, for some (small) constant ∆, the slots allocated
to each connection constitute a ∆-smooth set with the given rate. Any schedule that is based on a
pre-allocation is, of course, non-greedy (a.k.a. non work-conserving). That is, a link may be idle while
packets are ready to cross it. Moreover, our scheme has a second level of flow control — a link may be
idle in a slot while packets of the connection having this slot are ready to cross it.

The performance of a networking scheme is usually measured by the following parameters [28]. Two
parameters, which are associated with each connection, are the (worst case) end-to-end delay of the
connection and its buffering requirements. Under our scheme, the end-to-end delay of a connection γ is

O(lγ/ργ)+
∑lγ

i=1
di, when lγ is the length of the path of γ and di is the delay of the i-th link of the path.

The buffering requirements of a connection γ is O(1) per link; thus, the buffering requirements per link
are O(n), when n is the number of the connections using the link. Another parameter associated with
a connection is its jitter [28]. Our scheme guarantees zero jitter; this, of course, requires additional
buffers which are already included in the above O(n) buffering requirements.

An efficient networking scheme should serve concurrently a large set of connections, and therefore
the restrictions it imposes on those connections should be as weak as possible. Our scheme can schedule
any set of connections obeying the only restriction that the sum of the rates of the connections crossing

5

any given link is at most 0.99. We say that the capacity of such a scheme is 0.99 and clearly the
maximal achievable capacity is 1.

It is highly desirable [28] that the online algorithms controlling the links are very fast. Our algo-
rithms are extremely fast — their time per slot of a link does not depend on the number of connections
using the link and is essentially constant.

Our scheme compares favorably with prior networking schemes. There is no scheme that outper-
forms ours in all the above parameters and most of the schemes that outperform ours in some of these
parameters do so only by a small constant factor.

A notable exception is the outstanding result of Andrews at el. [6]; they proved the existence of a
schedule which is, in many aspects, optimal. The capacity of their scheme is one — it schedules any
set of connections obeying the only restriction that the sum of the rates of the connections crossing any
given link is at most one. In their schedule the end-to-end delay of a connection γ is just O(1/ργ + lγ),
when lγ is the length of the path associated with the connection. (This is under the assumption that the
transmission delay of a link is one time-slot.) Their scheme distinguishes between two classes of buffers.
Buffers of the first class are used to store packets that just entered the system and have not crossed any
link, yet; their scheme requires O(1) such buffers per connection. Buffers of the second class are used
to store packets in transit; their scheme requires only O(1) such buffers per link; this is in contrast to
most of the networking schemes [28], including ours, which require O(1) buffers per link per connection.
Thus, w.r.t. the delay and the buffering requirements their work significantly outperforms ours, as well
as most of the other works in this field [28]. The weakness of their result relates to the complexity of the
online computation. Their paper [6] does not address this complexity which seems to be exceedingly
high, and thus it seems that their scheme is impractical. Another weakness of their scheme is that
it does not guarantee zero jitter. As said, in our scheme a link dispatches each slot in essentially a
constant time while using moderate amount of memory and our scheme guarantees zero jitter.

The rest of this paper is organized as follows. Section 2 presents notions and lemmas from [22, 21]
which are used here. Section 3 constructs smooth schedules with extremely efficient dispatchers, Section
4 extends our technique for scheduling multiple resources, and Section 5 presents an attractive scheme
for scheduling the links of connection oriented packet switching network.

2 Imported Tools

As said, this paper builds on the mathematical infrastructure of smooth sets developed in [22] and on
fast resolution of smooth sets developed in [21]. This section reviews notions and lemmas from these
papers which are used here.
Smooth Sets Recall that a set A ⊂ N is (ρ, ∆)-smooth if abs(|I| · ρ− |I ∩ A|) < ∆ for any interval I
of N.

Lemma 1: [22] Let A1, A2 ⊂ N be (ρ1, ∆1)-smooth and (ρ2, ∆2)-smooth, respectively. Then:

a. If A1 ∩ A2 = ∅ then A1 ∪ A2 is (ρ1 + ρ2, ∆1 + ∆2)-smooth.

b. The set N \ A1 is (1 − ρ1, ∆1)-smooth.

c. If A2 ⊂ A1 then A1 \ A2 is (ρ1 − ρ2, ∆1 + ∆2)-smooth.

Lemma 2: [20, 22] A (ρ, 1)-smooth set A ⊂ N exists for any 0 ≤ ρ ≤ 1.

To address the time and space complexity of our algorithms, we assume the popular RAM model
of computation [13]. Specifically, the memory of a k-bit RAM is organized in binary words of k bits,
each having a distinct k-bit address and such a RAM performs standard operations on these words in
constant time.
Resolution of Sets A resolver of a set of slots (natural numbers) is an algorithm that determines,
slot after slot, whether the slot belongs or does not belong to the set. A resolver operates on a RAM
of a predefined width; such a resolver is of space s and time t if it uses at most s memory words and
resolves each slot in at most t time units.

Lemma 3: [21] Any 1-smooth set whose rate is a k-bit rational has a resolver of O(1) time and O(1)
space on any Ω(k)-bit RAM.

6

Composition of Sets For A, B ⊂ N the set composition of A and B is the subset D of A s.t., for all
i, the i-th member of A is in D iff the i-th member of N is in B and A has an i-th member. In other
words, the composition of A and B is A ◦ B , {i ∈ A : |[0, i) ∩ A| ∈ B}. Note that for any D ⊂ A
there is a set B ⊂ N s.t. D = A ◦ B and, when A is infinite, this B is unique.

Lemma 4: [22] Composition of sets is an associative operator.

Lemma 5: [22] Let A1 and A2 be (ρ1, ∆1)-smooth and (ρ2, ∆2)-smooth subsets of N. Then:

a. A1 ◦ A2 is (ρ1 · ρ2, ρ2 · ∆1 + ∆2)-smooth.

b. If ∆2 = 1 and ρ2 ≤ (∆1 − 1)/∆1 then A1 ◦ A2 is (ρ1 · ρ2, ∆1)-smooth.

A Shuffle The scheduling technique of the paper is based on a one-to-one partial function from the
unit interval into the natural numbers s.t. an interval of length ρ is mapped onto a subset of the natural
numbers with rate ρ. To formalize this, we henceforth extend any function f to be defined on any set
Z (not necessarily a subset of the domain of f) by f(Z) , {f(z) | z ∈ Z ∧ f(z) is defined}. For a
real interval Z, let ‖Z‖ denote the length of Z. A shuffle is a partial one-to-one function f from the
unit interval into the natural numbers s.t. for any interval X ⊂ [0, 1), rate(µ(X)) = ‖X‖.

Theorem 1: [22] There is a shuffle f s.t. for any 0 < ǫ and for any real interval X ⊂ [0, 1), there
exists an interval Y ⊂ X s.t. ‖X‖(1 − ǫ) ≤ ‖Y ‖ and f(Y) is O(log(1/ǫ))-smooth.

Note that the length of the above X intervals, as well as their endpoints, are not necessarily rational.
The shuffle, satisfying Theorem 1, constructed in [22] is denoted µ and called the infinite bit reversal

function (and is related to the finite bit reversal permutation). This µ is defined only on binary-fractions
— numbers of the form l/2j with j, l ∈ N — in the unit interval. Let x ∈ [0, 1) be a binary-fraction
and let 0.α0α1α2 · · · be its binary expansion. Then µ(x) ∈ N is the number whose binary expansion is
· · ·α2α1α0. This definition is meaningful since αi 6= 0 for finitely many i.

Our technique employs Lemma 6 below which uses the following terminology. Let n, j ∈ N. An
(n × j)-interval is an interval X ⊂ [0, 1) of the form X = [l/2j , (l + n)/2j) for some l ∈ N. We allow
one or two of the parameters, n and j, to be replaced with a ∗ which stands for any natural number.
For example, a (∗ × j)-interval is an interval that is an (n × j)-interval for some n (including the
case of n = 0). An extreme interval is either the empty interval or a (∗ × ∗)-interval X s.t. for some
(1 × ∗)-interval Y , X ⊂ Y and X shares an endpoint with Y .

Lemma 6: [22] Let X be a non-empty (n × ∗)-interval. Then:

a. The set µ(X) is (⌈log n⌉ + 1)-smooth.

b. Either X is an extreme interval or there are ∆1, ∆2 ∈ R and two disjoint extreme intervals X1

and X2 s.t. X1∪X2 = X, µ(X1) is ∆1-smooth, µ(X2) is ∆2-smooth and ∆1 +∆2 = (⌈log n⌉+1).

For x ∈ R and j ∈ N, let ⌊x⌋j denote the maximal j-bit fraction which is not larger than x. In other

words, ⌊x⌋j is the number obtained from the binary expansion of x by deleting all the bits rightwards

to, and including, the (j + 1)-th position after the point. For j, n ∈ N, let νj(n) ,
⌊

µ−1(n)
⌋j

.

Lemma 7: [21] For any j ∈ N, the infinite sequence 〈νj(0), νj(1), . . .〉 can be generated in O(1) space
and O(1) time per element on any Ω(j)-bit RAM.

3 Dispatching in Constant Time

This section shows that any rate function, obeying some reasonable restrictions, has a smooth allocation
having very efficient dispatchers whose time per-slot is independent of the number of clients, and is
essentially constant.

This is achieved by the binary-intervals technique which is a variant of the intervals technique
established in our earlier paper [22]. Both techniques are based on the shuffle function µ and allocate
disjoint sets of slots by allocating disjoint real intervals and applying µ on these intervals. Moreover,

7

both techniques allocate to each client an interval whose length is determined by the client’s rate.
The main difference between these techniques is that the binary-intervals technique has an additional
requirement on the allocated intervals: Each such interval should be a (∗ × ∗)-interval. We refer to
such an interval as a binary-interval and hence the name of the technique. In order to avoid confusion
between allocations of slots and allocations of intervals, we henceforth refer to the latter as assigning;
namely, we allocate sets of slots and assign intervals of real numbers.
The Interval Membership Problem. Our efficient dispatchers are based on efficient solutions to
a variant of the following problem. Let Γ be a finite set of clients and let S = {Sγ | γ ∈ Γ} be a
Γ-system of disjoint real intervals. In the S-membership problem the system S is predefined and the
problem is to find, for any given point y ∈ R, the client γ with y ∈ Sγ or to determine that there is no
such client.

Our fast dispatchers are based on fast solutions to the S-membership problem for systems of intervals
having certain properties. A Γ-system of intervals S = {Sγ | γ ∈ Γ} is solid if ∪γ∈ΓSγ is an interval.
Such a system is ordered if the intervals are arranged in decreasing order of their length; that is,
‖Sγ‖ < ‖Sγ′‖ implies that inf(Sγ) > inf(Sγ′). The following two lemmas are based on elementary data
structures and, in order not to interrupt the exposition of the paper, their proofs are deferred to the
appendix.

Lemma 8: Let S = {Sγ | γ ∈ Γ} be a solid Γ-system of disjoint intervals s.t. the endpoints of all the
Sγ are k-bit rationals; let q = max

{

‖Sγ‖/‖Sγ′‖ : γ, γ′ ∈ Γ
}

and let n = |Γ|. Then the S-membership
problem can be solved for any point which is a k-bit rational in O(1) time and O(n · q) space on any
Ω(k)-bit RAM.

Lemma 9: Let S = {Sγ | γ ∈ Γ} be a solid and ordered Γ-system of disjoint intervals s.t. the
endpoints of all the Sγ are k-bit rational; let q = max

{

‖Sγ‖/‖Sγ′‖ : γ, γ′ ∈ Γ
}

and let n = |Γ|. Then
the S-membership problem can be solved for any point which is a k-bit rational in O(log log q) time
and O(n) space on any Ω(k)-bit RAM.

The following theorem is among the main results of this paper, and it uses the following terminology
(already defined in the introduction). A k-bit fraction is a (non-negative) number having a binary
expansion with k bits to the right of the binary point; a number is of l significant-bits if its binary
expansion has an interval of l bits s.t. all the bits outside this interval are 0. In other words, the former
number is of the form j/2k for some j ∈ N and the latter number is of the form i · 2j with j ∈ Z, i ∈ N

and i < 2l.

Theorem 2: Let ρ be a rate function over Γ s.t.
∑

γ ργ ≤ 1 and all the ργ are k-bit fractions of

l significant-bits. Let q = max
{

ργ/ργ′ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is an (l + 1)-smooth
ρ-allocation which has two dispatchers on any Ω(k)-bit RAM: the first of O(log log q) time and O(n)
space and the second of O(1) time and O(n · q) space.

The proof of Theorem 2 uses the following lemmas and is based on a reduction from the problem
of allocating and dispatching a given rate function ρ obeying the premise of Theorem 2 to the problem
of producing an appropriate assignment of the unit interval and solving the resulting membership
problem.

Lemma 10: Let ρ be a rate function over Γ,
∑

γ ργ ≤ 1 and let ργ = hγ/2jγ where hγ , jγ ∈ N. Then:

a. There is a solid Γ-system of disjoint real intervals S = {Sγ | γ ∈ Γ} s.t. 0 ∈ ∪γSγ and for each γ,
Sγ is an (hγ × jγ)-interval.

b. Moreover, if for some l ∈ N, 2l−1 ≤ hγ < 2l for all γ then there is an ordered Γ-system satisfying
statement (a).

Proof: Consider statement (a). We process the clients γ ∈ Γ in increasing order of their jγ , and
assign to them adjacent intervals of the appropriate length where the first interval starts at 0. The
interval assigned to a client γ is an (hγ , jγ)-interval since the length of the previous intervals are all
jγ-bit fractions and the set of the jγ-bit fractions is closed under addition.

8

The construction for statement (b) is identical to that for statement (a), except that we process
the clients in decreasing order of their rates. We have ⌊log ργ⌋ =

⌊

log(hγ/2jγ)
⌋

= l − 1 − jγ ; hence the
clients are actually processed in increasing order of their jγ and the conclusion of statement (a) also
holds.

Lemma 11: Let k ∈ N and let S = {Sγ | γ ∈ Γ} be a solid Γ-system of disjoint (∗× k)-intervals. Let
q = max

{

‖Sγ‖/‖Sγ′‖ | γ, γ′ ∈ Γ
}

, let n = |Γ| and let A = {µ(Sγ) | γ ∈ Γ}. Then A is a Γ-allocation
such that:

a. The allocation A has a dispatcher of O(1) time and O(n · q) space on any Ω(k)-bit RAM.

b. If S is ordered then A has a dispatcher of O(log log q) time and O(n) space on any such RAM.

Proof: Consider statement (a). By Lemma 8, the S-membership problem can be solved for any
point which is a k-bit rational in O(1) time and O(n · q) space on any Ω(k)-bit RAM. Clearly, each Sγ

is a (∗ × k)-interval. Thus, for any i ∈ N, i ∈ µ(Sγ) iff νk(i) ∈ Sγ . By Lemma 7, the infinite sequence

〈νk(0), νk(1), . . .〉 can be generated in O(1) space and O(1) time per element on any Ω(k)-bit RAM.
Hence, each slot can be dispatched in O(1) time and O(n · q) space on any Ω(k)-bit RAM. Statement
(b) follows from the same arguments, using Lemma 9 instead of Lemma 8.

Theorem 2 follows from the fact that any real number x ∈ (0, 1] of l significant-bits equals h/2j for
some j, h ∈ N with 2l−1 ≤ h < 2l and from Lemmas 10, 11 and 6(a).

Rational Rates In Theorem 2 the rates are restricted to be binary-fractions having a certain number
of significant bits. As stated by the following theorem, this restriction can be lifted if we agree to
utilize only 99% of the resource, rather than 100%. (But, of course, the rates still have to be rational
numbers and the width of the RAM depends on the complexity of these numbers.)

Theorem 3: Let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ 0.99 and all the ργ are k-bit rational.

Let q = max
{

ργ/ργ′ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is a 10-smooth ρ-allocation which has two
dispatchers on any Ω(k)-bit RAM: the first of O(log log q) time and O(n) space and the second of O(1)
time and O(n · q) space.

We construct the ρ-allocation of Theorem 3 by the following two steps reduction. We slightly
increase the rate of each client to a number of 8 significant-bits and solve the resulting allocation
problem via Theorem 2. Then we prune the allocated sets of slots to achieve the required rates. The
following lemma establishes the first step in this reduction.

Lemma 12: Let α ∈ R ∩ (0, 1]. Then there is a number α′ of 8 significant-bits s.t. α ≤ α′ < α/0.99.
Moreover, if α ≥ 2−k then α′ is a (k + 7)-bit fraction.

Proof: Let j ∈ N be s.t. 2−j ≤ α < 2−j+1 and let α′ =
⌈

α · 2j+7
⌉

/2j+7. Since 128 ≤
⌈

α · 2j+7
⌉

≤ 256

and since the set of numbers of l significant-bits is closed under multiplication by 2i for any i ∈ Z, α′

is of 8 significant-bits. We have:

α ≤ α′ < α + 1/2j+7 since α′ =
⌈

α · 2j+7
⌉

/2j+7

≤ α(1 + 1/27) since 2−j ≤ α
< α/0.99 since 1 + 1/27 < 1/0.99

Clearly, our α′ is a (j + 7)-bit fraction; hence, if α ≥ 2−k then k ≥ j and α′ is a (k + 7)-bit fraction, as
required.

The following lemma summarizes the second step of the above reduction in which the allocated sets
are pruned to have the required rates.

Lemma 13: Let A = {Aγ | γ ∈ Γ} be a Γ-allocation having a dispatcher of t time and s space on a
certain RAM; let B = {Bγ ⊆ N | γ ∈ Γ} be a Γ-system and let each Bγ have a resolver of O(1) time
and O(1) space on the above RAM. Then the Γ-system C = {Aγ ◦ Bγ | γ ∈ Γ} is a Γ-allocation having
a dispatcher of t + O(1) time and s + |Γ| space on the above RAM.

9

Proof: Since Aγ ◦ Bγ ⊆ Aγ , C is a Γ-allocation. Our dispatcher of C dispatches each slot i in two
steps. First it dispatches slot i as per the allocation A. If i is not allocated in A then the same holds
for C. Otherwise, let γ be the client owning this slot in A. Our dispatcher invokes the resolver of Bγ

to resolve the next slot of this resolver. According to that resolution our dispatcher either dispatches
slot i to γ or determines that the slot is not allocated.

Theorem 3 follows from Theorem 2 and Lemmas 12, 2, 3, 5(a) and 13.

4 Multiple Resources

A natural extension of our work concerns scheduling of m identical resources where the sum of the rates
of the clients is (of course) at most m and the rate of each client is at most one. If it is permitted to
serve a single client by several resources in one slot then it is easy to transform any scheduling technique
of a single resource into a scheduling technique of m identical resources, as follows. Split each slot into
m consecutive sub-slots; schedule the resulting infinite sequence of sub-slots by the given technique on
a single resource; replace the service provided by this resource during m consecutive sub-slots with the
equivalent service provided by m resources in a single slot.

However, in some applications (e.g., CPU scheduling) a client can be served concurrently by at most
one resource, and it was widely believed that this restriction “adds a surprising amount of difficulty”
(to the scheduling problem) [23, 8]. In this section we show that our binary-intervals technique has a
straightforward extension to the case of multiple resources even under the restriction of no concurrent
service.

Our extensions are summarized in the following two theorems, which are generalization of Theorems
2 and 3, and use the following terminology in the context of m identical resources. For a set of clients
Γ, a (Γ, m)-allocation is a Γ-system {Aγ ⊆ N | γ ∈ Γ} s.t. for any slot i ∈ N, the set of clients served
in this slot, {γ | i ∈ Aγ}, has at most m clients. Note that the allocation specifies which clients are
served in each slot but does not specify which client each resource serves. For a rate function ρ over
Γ, a (ρ, m)-allocation is a (Γ, m)-allocation {Aγ | γ ∈ Γ} with rate(Aγ) = ργ . A dispatcher of such an
allocation is an algorithm that computes, for each slot i, the set of clients that are served in this slot
(but does not specify which client each resource serves).

Theorem 4: Let m ∈ N and let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ m, each ργ ≤ 1 and all

the ργ are k-bit fraction of l significant-bits. Let q = max
{

ργ/ρ′γ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there
is an (l +1)-smooth (ρ, m)-allocation which has two dispatchers on any Ω(k +log n)-bit RAM: the first
of O(m log log q) time and O(n) space and the second of O(m) time and O(n · q) space.

Theorem 5: Let m ∈ N and let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ 0.99 ·m, each ργ ≤ 1 and

all the ργ are k-bit rationals. Let q = max
{

ργ/ρ′γ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is a 10-smooth
(ρ, m)-allocation which has two dispatchers on any Ω(k + log n)-bit RAM: the first of O(m log log q)
time and O(n) space, and the second of O(m) time and O(n · q) space.

The allocation constructed below for Theorems 4 and 5 has an additional interesting property — it
can be realized in such a way that each client is served by at most two resources.

Recall that the binary-intervals technique (as well as the intervals technique) is based on the shuffle
µ which is defined only on binary-fractions in the unit interval. The extension of our binary-intervals
technique to several identical resources is based on the function µ̄ which is the following straightforward
extension of µ to all positive binary-fractions: µ(x) , µ(x mod 1). The following lemma follows from
the fact that µ is a shuffle (and hence one-to-one) and is onto the natural numbers; the specific definition
of µ is irrelevant as far as this lemma is concerned.

Lemma 14:

a. For any interval X ⊂ R
+ with ‖X‖ ≤ 1, rate(µ(X)) = ‖X‖.

b. Let l ∈ N and X ⊂ R
+ be an interval which is closed in one side and open in the other with

‖X‖ = l. Then | {x ∈ X | µ(x) = i} | = l for any i ∈ N.

10

In this section we adjust the notion of (h× j)-interval and its derivatives to fit the context of multiple
resources by lifting the requirement that these intervals are sub-intervals of the unit interval. Most of
our Lemmas hold for this new definition, when µ is replaced with µ̄. In particular, we use the adjusted
variants of the following two lemmas: Lemma 6 (with no additional adjustments) and Lemma 10 with
the omission of the requirement of

∑

γ ργ ≤ 1.
In the following we present the extension of the binary-intervals technique to multiple resources in

the context of Theorem 4; the deduction from this theorem to Theorem 5 is the same as in the single
resource case.

Given a rate function ρ over Γ as per Theorem 4, we construct a Γ-system {Sγ | γ ∈ Γ} of disjoint

sub-intervals of the real interval [0, m) satisfying (the new version of) Lemma 10. Let Aγ , µ(Sγ) and
let A = {Aγ | γ ∈ Γ}. By Lemma 14, A is an (ρ, m)-allocation and, moreover, by Lemma 6(a), this
allocation is (l + 1)-smooth.

It remains to show that A has efficient dispatchers as per Theorem 4. To dispatch slot i, one needs
to solve m instances of the S-membership problem for the points µ−1(i), µ−1(i)+1, · · · , µ−1(i)+m−1.
Our dispatchers take advantage of the fact that the endpoints of all the Sγ are k-bit fractions and solves

the S-membership problem for the points νk(i), νk(i) + 1, . . . , νk(i) + m − 1. By Lemma 7, νk(i) can
be generated in O(1) space and O(1) time on any Ω(k)-bit RAM. Assume, without loss of generality,
that m ≤ n; hence, the endpoints of all the Sγ are (k + log n)-bit rationals; by Lemma 8, the slot can
be dispatched in O(m) time and O(n · q) space on any Ω(k +log n)-bit RAM and by Lemma 9, the slot
can be dispatched in O(m log log q) time and O(n) space on any such RAM.

4.1 Independent Dispatching

In some applications (e.g., CPU scheduling) each resource has its own computational capabilities. In
this case it is highly desirable that each resource independently dispatches its own slots; that is, in each
slot the resource computes what client to serve. As stated formally by the following two theorems,
our scheduling technique provide independent dispatchers whose time per-slot does not depend on
the number of clients or on the number of resources, and is either constant or essentially constant.
Moreover, the service provided by each single resource is 10-smooth.

Recall that a sequence A1, · · · , Am of Γ-allocations realizes a (Γ, m)-allocation A if when each
resource j serves the clients as per the allocation Aj then the combined service is as per the (Γ, m)-
allocation A; namely, no slot is assigned to the same client by two distinct Aj allocations and in each

time-slot i the set
{

γ | ∃j : i ∈ Aj
γ

}

of clients served by the combined allocation in this time-slot

equals to the set of clients served by the (Γ, m)-allocation A in that time-slot. As usual, the first of
the following two theorems utilizes 100% of the resource but restricts the rates to be binary fractions
having a certain number of significant bits; the second theorem lifts this restriction but utilizes only
99% of the resource.

Theorem 6: Let m ∈ N and let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ m, each ργ ≤ 1 and all

the ργ are k-bit fraction of l significant-bits. Let q = max
{

ργ/ρ′γ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there

is an (l + 1)-smooth (ρ, m)-allocation which is realized by a sequence A1, A2, · · ·Am of Γ-allocations
s.t. each of the Aj is (l + 1)-smooth and has two dispatchers on any Ω(k + log n)-bit RAM: the first of
O(log log q) time and O(n) space, and the second of O(1) time and O(n · q) space.

Proof: The construction for this theorem follows closely that of Theorem 4. The assignment
of intervals to clients S = {Sγ | γ ∈ Γ}, the resulting (ρ, m)-allocation A = {Aγ | γ ∈ Γ}, and the
databases used to solve the S-membership problem are exactly the same in both theorems; thus,
the (ρ, m)-allocation A is (l + 1)-smooth. In the case of Theorem 4, a slot is dispatched by solving
m instances of the S-membership problem. In the current case, the j-th resource dispatches slot i
by solving the j-th instance; that is, at time i the j-th resources solves the membership problem of
νk(i)+j−1. Thus, resource j is associated with interval [j−1, j) and solves the S-membership problem
exclusively for points in this interval. This dispatching produces a Γ-allocation of the slots of the j-th

resource denoted by Aj =
{

Aj
γ | γ ∈ Γ

}

; by Lemma 6(a), Aj is (l + 1)-smooth and by Lemma 11, Aj

has dispatchers of the required complexity. By our construction and by Lemma 14, A is realized by
the Aj allocations.

11

Theorem 7: Let m ∈ N and let ρ be a rate function over Γ s.t.
∑

γ∈Γ
ργ ≤ 0.99 ·m, each ργ ≤ 1 and

all the ργ are k-bit rationals. Let q = max
{

ργ/ρ′γ | γ, γ′ ∈ Γ
}

and n = |Γ|. Then there is a 10-smooth

(ρ, m)-allocation which is realized by a sequence A1, A2, · · ·Am of Γ-allocations s.t. each of the Aj is
10-smooth and has two dispatchers on any Ω(k + log n)-bit RAM: the first of O(log log q) time and
O(n) space, and the second of O(1) time and O(n · q) space.

Proof: As in the construction of Theorems 3 and 5, we construct the required (ρ, m)-allocation
by the following two steps reduction. We slightly increase the rate of each client to a number of
8 significant-bits and solve the resulting problem using Theorem 6. Then we prune the allocated
sets of slots so that they have the required rate. This pruning has to be done carefully due to the
following problem which is expressed in the terminology of Theorem 6. An interval Sγ may intersect
two consecutive intervals [j, j + 1) and [j + 1, j + 2). If each of the two resources in question prunes
its allocation of γ then the total allocation of γ may fail to be 10-smooth. To overcome this problem,
the pruning should be done by only one of these resources. This is possible since we need to prune out
much less than half of the current allocation.

We now show that the resulting total allocation Aγ of such a γ is 10-smooth. For i = 1, 2, let
Yi = Sγ ∩ [j + i−1, j + i). For any (1×0)-interval Z and (1×∗)-interval X, either X ⊂ Z or X ∩Z = ∅.
This and Lemma 6(b) implies that µ̄(Yi) is ∆i-smooth for some ∆1 and ∆2 with ∆1 +∆2 = 9. Exactly
one of these sets, say µ̄(Y1), is pruned. By Lemma 5(a), the pruned set is (∆1 + 1)-smooth and by
Lemma 1(a), the resulting Aγ is 10-smooth.

5 Scheduling of Communication Networks

This section demonstrates that the concept of smoothness is very attractive for scheduling the links
of connection-oriented packet switching networks, and in particular of these networks that transport
continuous-media (video, audio, etc.) of real-time nature. The section also demonstrates that, in this
application, the difference between a 2-smooth schedule (as in [8]) and a 10-smooth schedule (as in
Section 3) is not essential.

We assume the standard model of packet switching network [19] with a small modification, as
described in Subsection 1.4. In our case the network is used by connections (a.k.a. sessions) where
each connection is a sequence of packets (a packet-stream) that traverses a predefined path from its
source to its destination; the packets of a packet-stream follow each other (and never get lost); in
each time-slot the connection initiates at most one packet; and each connection γ has a rate ργ which
constrains its bandwidth as follows. In any k consecutive slots the connection initiates at most ργ ·k+∆′

packets, where ∆′ is some global constant. Many works assume such a constraint (e.g., [28, 14, 15, 25,
16, 10, 6, 17]).

Our networking scheme is very simple due to the following features. Each link is pre-allocated to
the connections using it and this allocation is ∆-smooth for a small ∆. (It is assumed that ∆ < ∆′).
Moreover, the allocation of each link is done in isolation, without regard to the other links. This enables
very fast dispatching via the techniques of Section 3. Moreover, once the allocation of slots has been
done the connections do not compete with each other and therefore the analysis of the traffic is very
simple.

In the context of network traffic it is convenient to seperate the two ingredients of the concept of
smoothness as follows. A set A ⊂ N is (<, ρ,∆)-bounded if |A ∩ I| < |I| · ρ + ∆ for any interval I of
natural numbers; it is (>, ρ,∆)-bounded if |A ∩ I| > |I| · ρ − ∆ for any such interval I. By definition,
a set is (ρ, ∆)-smooth iff it is both (<, ρ,∆)-bounded and (>, ρ,∆)-bounded. The following lemma is
straightforward.

Lemma 15: Let A1 be (<, ρ1, ∆1)-bounded, let A2 be (>, ρ2, ∆2)-bounded, and let I be an interval
of N. Then |(A1 ∩ I)| − |(A2 ∩ I)| < (ρ1 − ρ2)|I| + ∆1 + ∆2.

An interface of a communication network is a (virtual) boundary within the network which is
crossed in any time-slot by at most one packet; an example is the head of a link. Given an interface
x and a packet-stream P that crosses x, we denote by Px the set of slots in which packets of P cross
x, and use the phrase ‘the packet-stream P at x’ to refer to this set. For example, we say that the
packet-stream P is (ρ, ∆)-smooth at x to denote that Px is (ρ, ∆)-smooth.

12

The main components of our networking scheme are stream-shapers of three types. A stream-shaper
is a (virtual) component that shapes a single packet-stream. It receives the packet-stream through its
entry interface and transmits it via its exit interface so that the resulting stream has a certain desired
form. A stream-shaper preserves, of course, the order of the packets and may receive a packet and
transmit it during the same slot. Our first stream-shaper is associated with a predefined set B ⊂ N

and is called a B-doorman. It shapes its packet-stream P so that P at the exit of the shaper is a subset
of B; moreover, this stream-shaper is a greedy one: it releases a packet in every slot of B unless it has
no packet. A (ρ, ∆)-doorman is a B-doorman for some (ρ, ∆)-smooth set B.

Lemma 16: Assume that a packet-stream P enters a (ρ, ∆1)-doorman D and that P is (<, ρ,∆2)-
bounded at the entry of D. Then:

a. At any instant, the doorman stores at most ∆1 + ∆2 packets of P .

b. The doorman delays any packet of P by at most (∆1 + ∆2)/ρ slots.

Proof: Let B be the set associated with the doorman, let x and y be the entry and exit of D, and let
b(t) be the number of packets the doorman has at the beginning of slot t. For statement (a), consider

a slot t and let t′ , max {τ ≤ t : b(τ) = 0}; as b(0) = 0, the above set is not empty. Let I = [t′, t). By
Lemma 15, we have:

b(t) = |Px ∩ I| − |Py ∩ I| < ∆1 + ∆2

For statement (b), let a packet p enter the doorman during slot t1 and exit it during slot t2. Let

t′ , max {τ ≤ t1 : b(τ) = 0}, let I1 = [t′, t1] and let I2 = [t′, t2]. The doorman delays the packet p by
|I2| − |I1|. We have:

|I1| · ρ + ∆2 > |Px ∩ I1| = |Py ∩ I2| = |B ∩ I2| > |I2| · ρ − ∆1

The other two stream-shapers we use are related to jitter. The (end-to-end) jitter [28] of a connection
is the maximum difference between the (end-to-end) delays of any two packets of that connection.
Clearly, it is desirable (or even mandatory) to transport continuous media with zero jitter, and this
can be easily achieved when an upper bound on the delay is given [27]. In our scheme, we eliminate a
jitter (not necessarily an end-to-end one) by a pair of stream-shapers, a timestamp and an equalizer.
Such a pair equalizes the delay of the packets of a certain connection from one interface of the network
to another, as follows. The timestamp is located at the first interface and stamps the packets (of the
connection in question) with the current time, without introducing any delay. The equalizer is located
at the second interface and is given a bound on the delay from the first to the second interface. It
equalizes the delay of the packets, from the first interface to the exit of the equalizer, so that all these
delays are equal to the above given bound.

Lemma 17: Let a packet-stream γ pass through a pair of a timestamp T and an equalizer E. Assume
that γ is (<, ρ,∆)-bounded at the entry of E, the delay of packets from T to E is between t1 and t2
and that t2 is the bound given to E. Then E stores, at most, (t2 − t1) · ρ + ∆ packets.

Proof: By definition, E delays a packet for at most t2 − t1 slots. Hence, packets queued at the
equalizer at the beginning of a slot have entered it during the previous t2 − t1 slots; since the packet-
stream is (<, ργ , ∆)-bounded at the entry of E, the number of such packets is less than (t2− t1) ·ρ+∆.

In what follows we describe three networking schemes. In all of them each link is allocated, in
isolation, to the connection using it and this allocation is ∆-smooth for a small ∆ and has a fast
dispatcher. Such an allocation is presented in Section 3; however, any allocation having the above
attributes will do. Once this allocation has been done, the connections do not compete with each
other any more. Therefore, our schemes handle each connection in isolation and we henceforth present
how each of these schemes handles a single connection γ. Due to the simplicity of this approach, each
scheme can be completely specified by a diagram, as shown in Figures 1, 2, and 3.

Our first networking scheme, shown in Figure 1, is a semi-greedy one as follows. Let Li be the i-th
link of the path of γ and let Bi be the set of slots of Li allocated to γ. Connection γ uses every slot

13

of Bi unless it has no available packet. (Of course, γ does not use other slots of Li, even if they are
idle, hence the term semi-greedy.) To this end, γ enters Li via a Bi-doorman, denoted Di in Figure
1. To eliminate the end-to-end jitter, we use an end-to-end pair, T1 and ET1 , of a timestamp and an
equalizer.

Legend

0

∆′ + ∆

D3D2D1

d(L1)

· · ·

d(L3) + 2∆
ργ

d(L3)

2∆2∆

d(L2)

d(L2) + 2∆
ργ

d(L1) + ∆+∆′

ργ

T1

Σid(Li) + ∆′+2l∆−∆
ργ

Σid(Li)

Σid(Li) + ∆′+2l∆−∆
ργ

∆′ + 2l∆

· · ·

delay between endpoints is t1

X needs ∆ + ∆′ buffers

transmission delay of link i

delay ranges between t1 and t2

∆+∆′

X

d(Li)

t1

t2

t1

communication link

internal transfer

timestamp iTi

doorman iDi

equalizer w.r.t. TiETi

?

?

Dl

2∆

ET1

d(Ll) + 2∆
ργ

d(Ll)

Figure 1: Connection γ under Scheme 1

An important aspect of a networking scheme is its buffering requirements. Under our schemes
the buffers are associated with the stream-shapers. As illustrated in Figure 1, connection γ needs
∆ + ∆′, 2∆ and ∆′ + 2l∆ buffers for the first doorman, for any other doorman, and for the equalizer,
respectively, when l is the length of the connection’s path. The first two bounds follow from Lemma
16(a) and the last bound is discussed shortly.

Another aspect of a networking scheme, which is particularly important for real-time communica-
tion, is the end-to-end delay of the connections. (Note that, once the jitter is eliminated, all packets
of γ experience the same delay). As illustrated in Figure 1, the delay of a packet from the entry of
doorman Di to the exit of the following link Li is at least the transmission delay of the link, d(Li),
and at most d(Li) + (∆ + ∆′)/ργ for i = 1 and d(Li) + 2∆/ργ for i > 1. These two bounds follows
from Lemma 16(b). Thus, the delay of a packet, from the origin up to the entry of the equalizer, is

between
∑l

i=1
d(Li) and (∆′ + 2l∆ − ∆)/ργ +

∑l
i=1

d(Li), when l is the length of its path. These last
two numbers, the fact that the packet-stream at the exit of any link is (<, ργ , ∆)-bounded and Lemma
17 establish the above bound of ∆′ + 2l∆ on the buffering requirement of the equalizer. Note that the
simplicity of the above analysis is due to the fact that our scheme handles each connection in isolation,
without regard to the other connections.

Another important aspect of a networking scheme is its capacity. An efficient networking scheme
should serve concurrently a large set of connections, and therefore the restrictions it imposes on those
connection should be as weak as possible. Our scheme, when using the scheduling techniques of Section
3, imposes only the following restrictions on the connections: The packet-stream of each connection γ
is (<, ργ , ∆′)-bounded at the origin (where ∆′ is an arbitrary global constant) and the sum of the rates
of the connections using each link is at most 0.99. We say that such a scheme has a capacity of 0.99,
and all our schemes possess this high capacity.

It is highly desirable [28] that the online algorithms controlling the links are very fast. In a naive
implementation of our scheme, a link used by n connections actually has n doormen. Hence, the
selection of a packet to be transmitted in a slot takes Ω(n) time even if each doorman need just O(1)
time per slot. However, the doorman concept is useful for analyzing the behavior of the network but
not for an efficient implementation. In such an implementation, a doorman is not an active entity but
a passive queue of packets and the active elements are only the links. In each time-slot at most one
packet is added to the queue of a doorman and this can be done by the link submitting the packet. In
addition, at most one packet enters a link in each time-slot; the selection of the connection which uses
the current slot is performed by the centralized dispatcher of the link. Once this selection is made, the

14

link extracts and transmits the first packet from the appropriate queue (if the queue is not empty).
Thus, the computational complexity of the scheduling decision performed by each link is derived

from the complexity of the dispatcher associated with the link. Assume that we use the allocation and
dispatching of Section 3, let n be the number of clients using a certain link and let q be the maximum
ratio of the rates of two clients using this link. In many applications the value of (log log q) is actually
a small constant; thus, by Theorem 3, the complexity of the dispatcher of the above link is O(n) space
and O(1) time per-slot.

As said, our first scheme is semi-greedy — a link is left idle in a slot owned by γ only if γ has no
packet at the corresponding switch. Due to this greediness, the buffering requirement of the equalizer
is exceedingly large and depends on the length of the path. This weakness is overcome by our second
scheme which is not semi-greedy and, instead of eliminating a large jitter only once at the destination,
it eliminates small jitters at each intermediate node. (This idea of piece-wise elimination of the jitter
is not new [28]). To this end, an additional timestamp T2 is inserted after the first doorman and
equalizers w.r.t. this timestamp are inserted at the exit of any link except of the first one; see Figure 2.

0
d(L2) + 2∆

ργ

Σid(Li) +
2(l−1)∆

ργ

d(L2) + 2∆
ργ

ET2
2

?

?

3∆

0

T2D1

∆′ + ∆

T1

d(L3) + 2∆
ργ

?

?

d(L2)

3∆

∆+∆′

ργ

Σid(Li) +
∆′+2(l−1)∆

ργ

?

?

?

?

3∆

ET2
l−1

2∆

Dl

d(Ll)

d(Ll) + 2∆
ργ

ET1

d(Ll) + 2∆
ργ

∆′ + 2∆

· · ·

· · ·

· · ·

d(L3) + 2∆
ργ

d(L1)

D2 D3

2∆

d(L3)

ET2
1

2∆

Σid(Li) + ∆′+2l∆−∆
ργ

Figure 2: Connection γ under Scheme 2

As in the previous scheme, the bounds on the delays, shown in Figure 2, follows from Lemma 16(b)
and from the fact that the packet-stream at the entry of each doorman, except for the first one, are
(<, ργ , ∆)-bounded. Similarly, the new buffering requirements follow from Lemmas 16(a) and 17. We
set the new equalizers to work with T2 rather than with T1 since we assumed that ∆ < ∆′ and therefore
the other setup would increase the buffering requirements and the end-to-end delay.

In an efficient implementation of this scheme, a link performs, not only the functionality of the
doormen, but also the functionality of the equalizers. That is, in each slot a link first computes the
connection owning this slot and then examines the first packet of the relevant queue (if this queue
is not empty) and checks its time-stamp; if the time-stamp is too recent then the packet remains in
the queue and the slot is left idle. Thus, the computational complexity of each link is equal, up to a
constant factor, to that of the first scheme.

Our third scheme, shown in Figure 3, reduces the end-to-end delay and the buffer requirements of the
system but requires more computation power In this scheme the packet-stream is (<, ργ , 1)-bounded
(rather than (<, ργ , ∆)-bounded) at the entry of each doorman. To this end, a new (ργ , 1)-doorman D0

is inserted after T1, the timestamp T2 is moved to the exit of this doorman and an additional equalizer
w.r.t. T2 is inserted at the exit of the first link L1; see Figure 3. Under this setup, the packet-stream
is (<, ργ , 1)-bounded at T2 and therefore it is also (<, ργ , 1)-bounded at the exit of each intermediate
equalizer. As shown in Figure 3, this improves the end-to-end delay and the buffering requirements.
However, the functionality of the new doormen can not be performed by the links and these doormen
requires additional computational capabilities.

Acknowledgments

We wish to thank Adi Rosen for helpful discussion and references.

15

0 0
0

2∆ + 1

ET2
2

d(L2) + ∆+1
ργ

∆′ + 1

d(L2)

d(L1) + ∆+1
ργ

?

?d(L1)

2∆ + 1

ET2
1T2

d(L1) + ∆+1
ργ

D0

Σid(Li) +
∆′+1+l(∆+1)

ργ

Σid(Li) +
∆′+1+l(∆+1)

ργ

?

d(Ll) + ∆+1
ργ

Σid(Li) +
l(∆+1)

ργ

?

?

?

?

· · ·

· · ·

· · ·

2∆ + 1

ET2
l

∆ + 1

Dl

d(Ll)

d(Ll) + ∆+1
ργ

ET1

∆′ + 2

d(L2) + ∆+1
ργ

?

∆ + 1

D2

∆ + 1

D1T1

∆′+1
ργ

Figure 3: Connection γ under Scheme 3

References

[1] M. Adler, P. Berenbrink, T. Friedetzky, L. A. Goldberg, P. Goldberg, and M. Paterson. A propor-
tionate fair scheduling rule with good worst-case performance. In Proceedings of the Thirteenth
Annual ACM Symposium on Parallel Algorithms and Architecture, pages 101–108, 2003.

[2] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proc. of the 12th Euromicro
Conference on Real-Time Systems, pages 35–43, 2000.

[3] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. In Proc. of the
7th International Conference on Real-Time Computing Systems and Applications, pages 297–306,
2000.

[4] J. H. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic tasks.
Computer and System Sciences, 68:157–204, 2004.

[5] B. Andersson, S. K. Baruah, and J. Jonsson. Static-priority scheduling on multiprocessors. Tech-
nical Report TR01-016, Department of Computer Science, University of North Carolina - Chapel
Hill, 2001.

[6] M. Andrews, A. Fernandez, M. Harchol-Balter, F. T. Leighton, and L. Zhang. General dynamic
routing with per-packet delay guarantees of O(distance + 1 / session rate). SIAM Journal on Com-
puting, 30(5):1594–1623, 2000. (Extended abstract was presented at the 38th Annual Symposium
on Foundations of Computer Science (FOCS) 1997.).

[7] A. Bar-Noy, A. Mayer, B. Schieber, and M. Sudan. Guaranteeing fair service to persistent depen-
dent tasks. SIAM J. Of Computing, 27(4):1168–1189, 1998.

[8] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: a notion of
fairness in resource allocation. Algoritmica, 15(6):600–625, 1996. (Extended abstract was presented
at The 25th Annual ACM Symposium on the Theory of Computing. May 1993.).

[9] S. K. Baruah, J. Gehrke, and G. Plaxton. Fast scheduling of periodic tasks on multiple resources.
In Proceedings of the 9th International Parallel Processing Symposium, pages 280–288. IEEE Com-
puter Society Press, 1995.

[10] J. C. R. Bennet and H. Zhang. WF2Q: Worst-case Fair Queueing. In the Fifteenth INFOCOM,
pages 120–128. IEEE, 1996.

[11] A. Chandra, M. Adler, P. Goyal, and P. Shenoy. Surplus fair scheduling: A Proportional-Share
CPU scheduling algorithm for symmetric multiprocessors. In Proceedings of the USENIX 4th
Symposium on Operating System Design and Implementation, pages 45–58, 2000.

[12] A. Chandra, M. Adler, and P. Shenoy. Deadline fair scheduling: Bridging the theory and practice of
proportionate-fair scheduling in multiprocessor servers. In Proceedings of the 7th IEEE Real-Time
Technology and Applications Symposium, pages 3–14, 2001.

16

[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press and
McGraw-Hill Book Company, second edition, 2001.

[14] R. L. Cruz. A calculus for network delay, part i: Network elements in isolation. In IEEE Trans-
actions on Information Theory, 37(1):114–131, 1991.

[15] R. L. Cruz. A calculus for network delay, part ii: Network analysis. In IEEE Transactions on
Information Theory, 37(1):132–141, 1991.

[16] A. Demers, S. Keshave, and S. Shenkar. Analysis and simulation of a fair queueing algorithm.
Journal of Internet-working Research & Experience, pages 3–12, 1990.

[17] S. J. Golestani. A self-clocked fair queueing scheme for broadband applications. In the Thirteenth
INFOCOM, 1994.

[18] P. Holman and J. Anderson. Guaranteeing pfair supertasks by reweighting. In Proceedings of the
22nd IEEE Real-time Systems Symposium, pages 203–212, 2001.

[19] F. T. Leighton. Introdution to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes.
Morgan Kaufmann.

[20] A. J. Lincoln, S. Even, and M. Cohn. Smooth pulse sequences. In Proceedings of the Third Annual
Princeton Conference on Information Sciences and Systems, pages 350–354, 1969.

[21] A. Litman and S. Moran-Schein. On distributed smooth scheduling. Technical Report CS-2005-03,
Department of Computer Science, Technion - Israel Institute of Technology, 2005. Available at:
www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2005/CS/CS-2005-03.

[22] A. Litman and S. Moran-Schein. On smooth sets of integers. Technical Report CS-2005-02,
Department of Computer Science, Technion - Israel Institute of Technology, 2005. Available at:
www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi?2005/CS/CS-2005-02.

[23] C. L. Liu. Scheduling algorithms for multiprocessors in hard-real-time enviroment. JPL space
program summary 37-60, vol. II, Propulsion Lab., Calif. Inst. of Tech., Pasadena, CA, pages 28–
37, 1969.

[24] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating periodic tasks on multiple
resources. In The 20th IEEE Real-Time Systems Symposium, pages 294–303, 1999.

[25] A. K. Perekh and R. G. Gallager. A generalized processor sharing approach to flow control in
integrated services network-the single node case. ACM/IEEE Trans. on Networking, 1(3):344–357,
1992.

[26] R. Tijdeman. The chairman assignment problem. Discrete Mathematics, 32:323–330, 1980.

[27] D. C. Verma, H. Zhang, and D. Ferrari. Delay jitter control for real-time communication in a
packet switching network. In proceeding of TriComm, pages 35–43, 1991.

[28] H. Zhang. Service disciplines for guaranteed performance service in packet-switching networks. In
Proc. IEEE, volume 83, pages 1374–1396, 1995.

Appendix

Lemma 8: Let S = {Sγ | γ ∈ Γ} be a solid Γ-system of disjoint intervals s.t. the endpoints of all the
Sγ are k-bit rationals; let q = max

{

‖Sγ‖/‖Sγ′‖ : γ, γ′ ∈ Γ
}

and let n = |Γ|. Then the S-membership
problem can be solved for any point which is a k-bit rational in O(1) time and O(n · q) space on any
Ω(k)-bit RAM.

Proof: For the sake of simplicity, assume that all intervals Sγ are closed at the bottom and open

at the top. Let U , ∪γSγ and rmin , min {‖Sγ‖ | γ ∈ Γ}. Consider the arithmetic sequence W =

17

〈w0, w1, · · ·〉 in which w0 = min(U) and wi+1−wi = rmin. We construct a linear array with ⌈‖U‖/rmin⌉
entries in which the i-th entry contains enough information to determine, for any y ∈ [wi, wi+1) ∩ U ,
the client γ s.t. y ∈ Sγ . Namely, the i-th entry contains a real number z and two clients γ, γ′ ∈ Γ s.t.
[wi, z) ⊂ Sγ and [z, wi+1) ∩ U ⊂ Sγ′ . (However, γ and γ′ can be equal.) This is possible since each
interval [wi, wi+1) intersects at most two intervals of S.

Given a point y which is a k-bit rational, the algorithm determines whether y ∈ U . If so, the
algorithm computes the index i s.t. y ∈ [wi, wi+1) and, using the data in this entry, finds the required
γ. Clearly, this can be done in O(1) time on any Ω(k)-bit RAM. Consider the space requirements.
Clearly, ‖U‖ ≤ rmin · q ·n. Thus, the array has at most ⌈n · q⌉ entries. Moreover, the data of each entry
can be encoded in O(1) space, implying that the array consumes O(n · q) space.

Lemma 9: Let S = {Sγ | γ ∈ Γ} be a solid and ordered Γ-system of disjoint intervals s.t. the
endpoints of all the Sγ are k-bit rational; let q = max

{

‖Sγ‖/‖Sγ′‖ : γ, γ′ ∈ Γ
}

and let n = |Γ|. Then
the S-membership problem can be solved for any point which is a k-bit rational in O(log log q) time
and O(n) space on any Ω(k)-bit RAM.

Proof: For each i ∈ Z, define Γi ,
{

γ | 2i−1 ≤ ‖Sγ‖ < 2i
}

and Xi , ∪γ∈Γi
Sγ . Since S is ordered,

each Xi is an interval; let each non-empty Xi be called a cluster. Given an instance y ∈ R of the
S-membership problem, our algorithm determines its membership in two steps. In the first step it
determines the cluster to which y belongs (if such a cluster exists) and in the second step it determines
the actual interval Sγ to which y belongs.

By Lemma 8, the second step is of O(1) time and O(n) space. Consider the first step. The algorithm
uses a binary search tree that has been constructed recursively as follows. The root contains a real
number z ∈ [0, 1) which is a ‘median’ of the clusters; that is, the number of clusters to its right and the
number of clusters to its left differ by at most one; each internal node is constructed analogously w.r.t.
to the relevant clusters. Each leaf contains the endpoints of a single cluster. The number of clusters is
no more than n and no more than (log q + O(1)). Thus, the depth of the tree is O(log log q) and the
number of nodes is O(n). Since the endpoints of each Sγ are k-bit rationals, the space requirements
of each internal node and each leaf is O(1) on any Ω(k)-bit RAM. Putting everything together, the
algorithm is of O(log log q) time and O(n) space on any Ω(k)-bit RAM.

18

