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Probabilistic Proof Systems | Part ISalil VadhanLECTURE 1Interactive ProofsThe notion of a proof is central to mathematics and computer science, andhence has been the subject of much investigation in both �elds. Indeed, fromprevious lectures in this volume, the reader should already be aware of the intimateconnection between traditional mathematical proofs and the fundamental questionsof complexity theory (e.g., P ?= NP and NP ?= co-NP). In this lecture series(and the subsequent one by Madhu Sudan), we will examine several nontraditionalnotions of proof which have been at the center of some very exciting developmentsin complexity theory.Recall that proofs are given their meaning by specifying a procedure for verify-ing them. To formalize this, both assertions and proofs are written as strings oversome �nite alphabet, and a language L is used to identify the strings representing\true assertions." A classical proof system for L is given by a veri�cation algorithmV with the following two properties:1. (Completeness) True assertions have proofs. That is, if x 2 L, then thereexists proof such that V (x; proof ) = accept.2. (Soundness) False assertions have no proofs. That is, if x =2 L, then for allproof �, V (x; proof �) = reject.3. (E�ciency) V (x; proof ) runs in time poly(jxj).Clearly, completeness and soundness are central to our intuitive notion of proof.Some form of e�ciency is also important, for if one could decide whether the as-sertion is true in less time than it takes to verify the proof, then the proof loses itsusefulness. Recall that NP is the class of languages having classical proof systemsas de�ned above.1Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA.E-mail address: salil@deas.harvard.edu.The author is supported by an NSF Mathematical Sciences Postdoctoral Research Fellowship.Thanks to Jirka Hanika for assistance in preparing these lecture notes.c2000 American Mathematical Society1



2 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART IIn these lectures, we will consider augmenting the above notion with two newingredients (as proposed in [GMR89, BM88]). The �rst is randomization; that is,we will allow the veri�cation procedure to toss coins and accept or reject incorrectlywith some small probability. While this is a substantial deviation from the clas-sical viewpoint whereby proofs establish the truth of an assertion with certainty,it is natural given the wide acceptance of randomized computations as reasonablesubstitutes for deterministic ones. The second new ingredient is interaction. Clas-sically, proofs are viewed as static objects that are written and �xed, before beingexamined in their entirety by the veri�cation procedure. Instead, we will allow theveri�er to interact with a dynamic, all-powerful \prover" who will try to convincethe veri�er of the validity of the assertion at hand.Since the classical notion of proof seems to be adequate, the reader may won-der what we gain by augmenting proof systems in these ways. Most directly, weobtain a more general notion of \e�ciently veri�able proofs" which, in additionto having possible philosophical value, provides e�cient proofs for more assertionsthan classical proofs do (as we shall see in Section 1.3). The new notions are alsovery useful for statements that do possess classical proofs. For example, they canyield dramatic e�ciency savings in veri�cation (as we will see in the PCP Theorempresented in Madhu Sudan's lectures). The new notions also enable us to to de�neand achieve properties that are meaningless (or trivial) for classical proofs. Forexample, in Lecture 2 we will construct zero-knowledge proofs, which are proofsthat reveal nothing other than the validity of the assertion being proven! We alsoobtain new insight into classical proofs and complexity classes by characterizingthem in terms of the new types of proof systems. Finally, the new types of proofsystems have applications to other topics in computer science: the probabilisticallycheckable proofs of Madhu Sudan's lectures yield insight into the approximabilityof optimization problems (cf., the lectures of Sanjeev Arora in this volume) andthe zero-knowledge proofs of Lecture 2 have wide applicability in cryptographicprotocols (indeed, this was one of the main motivations of [GMR89]).1.1. De�nitionsBasic Notation: Let A be a probabilistic algorithm. A(x; r) denotes the outputof A when fed input x and coin tosses r. A(x) denotes the distribution of A(x; r)when r is chosen uniformly at random. We say that A runs in time t(n) if for all xof length n, A(x; r) halts within t(n) steps with probability 1 over the choice of r.As suggested above, we will obtain a new type of proof system by replacing clas-sical (NP) proofs with a \prover" that \interacts" with a probabilistic \veri�er".In order to make this precise, we must �rst formalize the notion of an interactiveprotocol between two parties A and B. We do this by viewing each party as afunction, taking the history of the protocol (all the messages previously exchanged)and the party's random coins, to the party's next message. Either party can decideto halt the interaction (possibly accepting or rejecting), at which point the otherparty is given an opportunity to compute one more message.De�nition 1.1 (interactive protocols). An interactive protocol (A;B) is any pairof functions from strings to strings. The interaction between A and B on commoninput x is the following random process (denoted (A;B)(x)):1. Uniformly choose random coin tosses rA and rB for A and B, respectively.



LECTURE 1. INTERACTIVE PROOFS 32. Repeat the following for i = 1; 2; : : : :(a) If i is odd, let mi = A(x;m1; : : : ;mi�1; rA).(b) If i is even, let mi = B(x;m1; : : : ;mi�1; rB).(c) If mi�1 2 faccept; reject; haltg, then exit loop.If the last message computed by A is accept (resp., reject), we say that Aaccepts (resp., rejects), and similarly for B. We call such a protocol polynomiallybounded if there is a polynomial p(�) such that, on common input x, at most p(jxj)messages are exchanged, and each is of length at most p(jxj) (with probability 1 overthe choice of rA and rB).Originally, interactive protocols were de�ned in terms \interactive Turing ma-chines," but that approach is too tied to a particular model of computation for ourtastes.Now interactive proofs can be de�ned as a type of interactive protocol betweena prover (with no computational limitations) and a polynomial-time veri�er. Thecompleteness and soundness conditions of classical proofs are replaced with proba-bilistic ones which guarantee that the veri�er gains statistical con�dence that theassertion being proven is true.De�nition 1.2 (interactive proofs | IP [GMR89, BM88]). An interactive pro-tocol (P; V ) is said to be an interactive proof system for a language L if the followingconditions hold:1. (E�ciency) (P; V ) is polynomially bounded and V is polynomial-time com-putable.2. (Completeness) If x 2 L, then V accepts with probability at least 2=3 in(P; V )(x).3. (Soundness) If x =2 L, then for any P �, V accepts with probability at most1=3 in (P �; V )(x).IP is class of languages possessing interactive proofs.We now make some basic observations about the above de�nition.� The acceptance probabilities of 2=3 and 1=3 allowed in the above de�nitionare arbitrary, and can be replaced with any pair of constants 1 > � >� > 0. Indeed, the error probability of any such proof system can be madeexponentially small by taking polynomially many repetitions and having theveri�er accept according to majority/threshold rule.� Interactive proofs do indeed generalize classical proofs, because the provercan simply send the veri�er a classical proof, which the veri�er then checks.Thus, NP � IP. The main question we will address in this lecture iswhether IP is strictly bigger than NP, and by how much. It is left as anexercise to prove the upper bound IP � PSPACE.� The veri�er's randomness is essential in interactive proofs: IP with deter-ministic veri�ers collapses to NP (exercise). On the other hand, restrictingto a deterministic prover causes no loss of generality (exercise).1.2. Graph NonisomorphismOur �rst hint that interactive proofs are strictly more powerful than classical oneswill come from an elegant proof system for Graph Nonisomorphism.



4 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART IDe�nition 1.3. If G = ([n]; E) is an undirected graph1 and � is a permutation on[n], then �(G) denotes the graph obtained by permuting the vertices of G accordingto �. That is, �(G) = ([n]; E0), where E0 = f(�(u); �(v)) : (u; v) 2 Eg. If G andH are graphs on n vertices, and there exists a � such that �(G) = H, we say thatG and H are isomorphic and write G�=H. � is called an isomorphism betweenG and H, and H is said to be an isomorphic copy of G. Graph Isomorphismis the language GI = f(G;H) : G�=Hg: Graph Nonisomorphism (GNI) is thecomplement of GI.It is easy to see that Graph Isomorphism is in NP: an easily veri�able proofthat two graphs are isomorphic is an isomorphism between them. In contrast, noclassical proofs are known for Graph Nonisomorphism. Nevertheless, as we shallsee, Graph Nonisomorphism does possess a very e�cient interactive proof:2Theorem 1.4 ([GMW91]). Graph Nonisomorphism is in IP.The interactive proof is based on two observations. First, if two graphs arenonisomorphic, then their sets of isomorphic copies are disjoint. Second, if twographs are isomorphic, then a random isomorphic copy of one graph is indistin-guishable from a random isomorphic copy of the other. Thus, the interactive proof,given in Protocol 1.5, tests whether the prover can distinguish between randomisomorphic copies of the two graphs.Protocol 1.5: Interactive proof (P; V ) for GraphNonisomorphismInput: Graphs G0 = ([n]; E0) and G1 = ([n]; E1)1. V : Uniformly select b 2 f0; 1g. Uniformly select a permutation� on [n]. Let H = �(Gb). Send H to P .2. P : If G0�=H , let c = 0. Else let c = 1. Send c to V .3. V : If c = b, accept. Otherwise, reject.We now verify that this protocol meets the de�nition of an interactive proof.Proof of Theorem 1.4 (sketch). If G0 and G1 are nonisomorphic, then G0�=Hif and only if b = 0. So the prover strategy speci�ed above will make the veri�eraccept with probability 1. Thus, completeness is satis�ed.On the other hand, if G0 and G1 are isomorphic, then H has the same dis-tribution when b = 0 as it does when b = 1 (exercise). Thus, b is independent ofH and the prover has at most probability at most 1=2 of guessing b correctly nomatter what strategy it follows. This shows that the protocol is sound.A few remarks about the proof system are in order. The �rst is it achieves anacceptance probability of 1 in the completeness condition; this attractive propertyis often referred to as perfect completeness. Second, the proof system is very com-munication e�cient: only two messages are exchanged and the prover sends only1To avoid notational confusion with the veri�er strategy V , all of our graphs will have vertex set[n] def= f1; : : : ; ng for some n 2 N.2There has been some recent evidence that Graph Nonisomorphism is inNP, in fact based on theexistence of an e�cient interactive proof for Graph Nonisomorphism [AK97, KvM99, MV99].



LECTURE 1. INTERACTIVE PROOFS 5one bit to the veri�er (more generally, k bits to achieve soundness probability 1=2k).Finally, note that it is crucial for soundness that the veri�er's random coin ips arekept \private." If the bit b is made public and revealed to the prover, soundnesswill no longer hold. Surprisingly, every private-coin interactive proof (like the oneabove) can be transformed into a public-coin one; that is, one in which the veri�er'scoin ips are completely visible to the prover [GS89].1.3. co-NP and moreIn the previous section, we saw an interactive proof for a problem not known tohave e�cient classical proofs, giving the �rst evidence that IP is strictly larger thanNP. In this section, we shall obtain much stronger evidence:Theorem 1.6 ([LFKN92]). co-NP � IP.It is widely believed that NP 6= co-NP (cf., the lectures of Paul Beame in thisvolume), so this strongly suggests that interactive proofs are more powerful thanclassical ones.1.3.1. A First AttemptBy the NP-completeness of Satisfiability, proving that co-NP � IP is equiv-alent to giving an interactive proof for Unsatisfiability. So let us consider howone may try to prove that a formula ' is unsatis�able. Actually, it will be useful toconsider how to prove that a formula ' has exactly k satisfying assignments for anyk. That is, we want to give an interactive proof for Exact #SAT, the languageE#SAT def= f('; k) : ' has exactly k satisfying assignmentsgObservation. A formula '(x1; : : : ; xn) has exactly k satisfying assignments i�there exist k0, k1 such that1. k0 + k1 = k,2. '0(x2; : : : ; xn)def= '(0; x2; : : : ; xn) has exactly k0 satisfying assignments, and3. '1(x2; : : : ; xn) def= '(1; x2; : : : ; xn) has exactly k1 satisfying assignments.This observation suggests a �rst idea for proving that ' has exactly k satisfyingassignments: First, the prover sends the veri�er k0 and k1. Second, the veri�erchecks that k0 + k1 = k, and randomly selects a value b 2 f0; 1g for the �rstvariable. Then the prover recursively proves to the veri�er (using the same protocol)that 'b has exactly kb satisfying assignments. (At the bottom of the recursionwhen the formula has no variables, the veri�er simply checks that evaluates to0 or 1 according to whether the prover has claimed that it has 0 or 1 satisfyingassignments, respectively.)When ' has exactly k satisfying assignments, the veri�er will accept with prob-ability 1 in this protocol. Conversely, when ' does not have exactly k satisfyingassignments, one of the conditions in the observation must fail to hold, so there is anonzero probability that the prover will continue to have a false statement to prove(unless k0 + k1 6= k, in which case the veri�er will reject immediately). Continuingthis argument inductively, we conclude that the veri�er has a nonzero probabilityof rejecting overall. However, it is not an interactive proof because, in the sound-ness case, the veri�er may accept with probability 1�2�n, which is not su�cientlybounded away from 1. This is because, for each variable of the formula, the veri�er



6 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART Imay have only probability 1=2 of setting the variable in a way that leaves the proverwith something false to prove.1.3.2. ArithmetizationIntuitively, the problem described above comes from the fact that every variable ofthe formula has only two possible values and we can only guarantee that at leastone of these values will reect the falsity of the assertion that the prover is tryingto prove. An idea for solving this is to allow the variables to take values in a largerset F (� f0; 1g), and extend the formula ' : f0; 1g ! f0; 1g to a more \robust"function ~' : Fn ! F so that \most" evaluation points will reect inconsistencies.We will do this extension via powerful technique known as arithmetization. Wewill take F to be a su�ciently large �nite �eld and show how to extend ' to a(multivariate) low-degree polynomial over F. The robustness properties we desirewill be based on the fact that two distinct low-degree polynomials cannot agree inmany places.We recursively de�ne a mapping ' 7! ~' from Boolean formulas in variablesx1; : : : ; xn to polynomials over F in variables x1; : : : ; xn:~xi = xif:' = 1� ~''̂ ^  = ~' � ~ (Without loss of generality, we restrict our attention to formulas over the completebasis : and ^.)The following are easily veri�ed by induction:1. ~'jf0;1gn = '.2. The (total) degree of the polynomial ~' is at most d = j'j.Proving that ' has exactly k satisfying assignments is equivalent to provingk = Xx12f0;1g Xx22f0;1g � � � Xxn2f0;1g ~'(x1; : : : ; xn)(1.7)(provided that the characteristic of F is greater than 2n, which can be guaranteedby choosing F = Z=qZ for a prime q > 2n). The protocol for proving Equation (1.7)will proceed analogously to the �rst attempt above, generalized to this setting wherethe variables can take values in F. The prover will send the veri�er the valuesk� def= Xx22f0;1g � � � Xxn2f0;1g ~'(�; x2; : : : ; xn)(1.8)for every � 2 F (rather than just k0 and k1 as before). As before, the veri�er willcheck that k0+k1 = k, and then choose a random � 2 F on which the prover shouldrecursively prove that Equation (1.8) holds. The key observation which makes thiswork is that the k�'s can all be speci�ed by a degree d polynomial p satisfyingp(�) = k� 8� (because ~' is of degree d). This helps in two ways. First, it allowsall the values fk�g to be speci�ed succinctly by the prover by giving the d + 1coe�cients of p. (The entire list given explicitly would be of size jFj > 2n, which istoo large). Second, it guarantees that if the prover sends a wrong value for a singlek�, then the prover must send a wrong value for most k�'s.



LECTURE 1. INTERACTIVE PROOFS 71.3.3. The Proof SystemFormalizing the above ideas, we obtain Protocol 1.9.Protocol 1.9: Interactive Proof for E#SATInput: A formula '(x1; : : : ; xn) and an integer k1. P; V : Let d = j'j, and let F be a �nite �eld of characteristicgreater than 2d (� 2n), and let ~'(x1; : : : ; xn) be the arithmeti-zation of ' (over F).2. P : Compute the degree d polynomialp1(x) def= Xx22f0;1g � � � Xxn2f0;1g ~'(x; x2; : : : ; xn);and send p1 to V .3. V : Check that p1(0)+p1(1) = k (and reject immediately if not).4. V : Choose �1 uniformly from F and send �1 to P .5. P; V : From i = 2 to n, do the following:(a) P : Compute the degree d polynomialpi(x) def= Xxi+12f0;1g � � � Xxn2f0;1g ~'(�1; : : : ; �i�1; x; xi+1; : : : ; xn);and send pi to V .(b) V : Check that pi(0) + pi(1) = pi�1(�i�1) (and reject im-mediately if not).(c) V : Choose �i uniformly from F and send �i to P .6. V : Accept if pn(�n) = ~'(�1; : : : ; �n).Proposition 1.10. Protocol 1.9 is an interactive proof system for Exact #SAT.Proof. E�ciency can be veri�ed by inspection. Also by inspection, we see thatif ' has exactly k satisfying assignments and the prover computes all the pi'saccording to the speci�ed protocol, then all the veri�er's checks will pass. Thatis, p1(0) + p1(1) = k, pi(0) + pi(1) = pi�1(�i�1) for all i > 1, and pn(�n) =~'(�1; : : : ; �n).Thus, we need only prove soundness. We will argue that if ' does not have ksatisfying assignments, then, no matter what strategy P � the prover follows, theveri�er will accept with probability at most nd=jFj < d2=2d < 1=3 (for su�cientlylarge d = j'j).Let p1(x); : : : ; pn(x) denote the polynomials computed correctly (as prescribedby Protocol 1.9), and let p�1(x); : : : ; p�n(x) denote the polynomials sent by P �. Notethat p1(0) + p1(1) is exactly the number of satisfying assignments of '. Thus, if 'does not have exactly k satisfying assignments, then no matter what p�1 the proversends, either (a) p�1(0) + p�1(1) 6= k, or (b) p�1 6= p1. If (a) holds, then the veri�erwill reject immediately. If (b) holds, then with high probability (� 1 � d=jF j)p�1(�1) 6= p1(�1) (because p�1 and p1 are distinct degree d polynomials, and henceagree on at most d points). Thus, after the �rst variable is set, the prover will beleft with a false assertion to prove with high probability (rather than probability1=2), as desired.



8 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART ILater rounds are analyzed in a similar fashion. Assume thatp�i�1(�i�1) 6= pi�1(�i�1) = pi(0) + pi(1):Then no matter what p�i the prover sends, it must be the case that either (a)p�i (0) + p�i (1) 6= p�i�1(�i�1), or (b) p�i 6= pi. As before, if (a) holds the veri�er willreject immediately, and if (b) holds, then p�i (�i) 6= pi(�i) with probability at least1� d=jFj.By a union bound, it follows that, with probability at least 1 � nd=jFj, theveri�er rejects or p�n(�n) 6= pn(�n) = ~'(�1; : : : ; �n). Since the veri�er will alsoreject in the latter case, soundness is established.1.3.4. A Full Characterizationco-NP � IP (Thm. 1.6) follows from Proposition 1.10 because Unsatisfiabilityreduces to Exact #SAT via the map ' 7! ('; 0). In fact, it even follows thatP#P � IP. With some additional ideas, we obtain a complete characterization ofthe power of interactive proofs.Theorem 1.11 ([Sha92]). IP = PSPACEProof sketch. Recall that a complete problem forPSPACE isQuantified Bool-ean Formulae (QBF), i.e., the language of true assertions of the form8x19x28x3 � � � 9xn'(x1; : : : ; xn);where ' is a Boolean formula. Let's attempt to directly extend the ideas of Pro-tocol 1.9 to this problem. That is, extend the arithmetization to formulas withquanti�ers, and construct a protocol which eliminates one variable/quanti�er at atime (with the veri�er choosing random values in some �eld). Let '(x1; : : : ; xi) bea partially quanti�ed formula with free (i.e., unquanti�ed) variables x1; : : : ; xi (and\bound" variables xi+1; : : : ; xn). We de�ne its arithmetization ~'(x1; : : : ; xi) as fol-lows. If ' has no quanti�ers (i.e., i = n), then ~' is de�ned just as in Section 1.3.2.If ' = 8xi+1 (x1; : : : ; xi+1) then~'(x1; : : : ; xi) = ~ (x1; : : : ; xi; 0) � ~ (x1; : : : ; xi; 1)(1.12)If ' = 9xi+1 (x1; : : : ; xi+1) then~'(x1; : : : ; xi) = 1� �1� ~ (x1; : : : ; xi; 0)� � �1� ~ (x1; : : : ; xi; 1)�(1.13)This arithmetization maintains the property that the arithmetized formulas agreewith original formulas whenever the free variables are assigned values from f0; 1g. Inparticular, proving that a fully quanti�ed Boolean formula is in QBF is equivalentto proving that its arithmetization is the constant polynomial 1.The problem with this new arithmetization is that the degrees blow up, squaringwith every quanti�er. The result is the polynomials the prover would have to sendin a protocol like Protocol 1.9 would be of exponentially large degree, and the proofsystem will fail to satisfy the e�ciency requirement. The solution is to introduceoperations that reduce the degree but have no e�ect on boolean values. Supposef(x1; : : : ; xi) is a polynomial and, for some j 2 f1 : : : ; ig, consider the polynomialf 0(x1; : : : ; xi) = xj � f(x1; : : : ; xj�1; 1; xj+1; : : : ; xn) +(1.14) (1� xj) � f(x1; : : : ; xj�1; 0; xj+1; : : : ; xn):



LECTURE 1. INTERACTIVE PROOFS 9f 0 is identical to f when its variables take on boolean values, yet the degree of xj isreduced to 1 in f 0. Interleaving this operation periodically for every unquanti�edvariable prevents the degree blow-up encountered above, and allows a constructionof proof system like Protocol 1.9 for QBF. (The protocol has a \round" for eachquanti�er and each application of the degree-reduction operation, and the consis-tency checks pi(0)+pi(1) = pi�1(�i�1) are replaced with ones to check consistencywith Equations (1.12), (1.13), and (1.14).)1.4. Additional Topics1.4.1. Message ComplexityA striking contrast between the interactive proofs for Graph Nonisomorphism(Protocol 1.5) and co-NP/PSPACE (Protocol 1.9) is that the latter requires muchmore interaction, as measured in the following way:De�nition 1.15 (message complexity3). An interactive protocol (A;B) has mes-sage complexity m(n) if on every input x and every choice of the random coins forA and B, the number of messages computed before the �rst accept/reject/haltmessage is at most m(jxj).The class of languages possessing interactive proofs with constant message com-plexity is denoted AM.4It is natural to ask whether more interaction increases the expressive power ofinteractive proofs. That is, are there languages which have interactive proofs ofmessage complexity m(n) but not m0(n) for some functions m0;m? The followingresult shows that increasing the number of messages by a constant factor does notyield more power:Theorem 1.16 ([BM88]). For any constant c 2 N and any function m(�) � 2,the following holds: If L has an interactive proof with message complexity cm(�),then L has an interactive proof with message complexity m(�).On the other hand, it is known that interactive proofs with constant messagecomplexity can only prove languages that are low in the polynomial-time hierarchy(speci�cally, AM � �2) [BM88], we have seen that all of PSPACE is provablewith no restriction on the number of messages (Thm. 1.11). Hence, polynomiallymany rounds of interaction cannot be reduced to a constant unless PSPACE = �2.In fact, it is unlikely that such an improvement is possible even for co-NP:Theorem 1.17 ([BHZ87]). If co-NP � AM, then the polynomial-time hierarchycollapses (speci�cally, PH = �2).Recall that it is widely believed that the polynomial-time hierarchy does notcollapse (cf., the lectures of Steven Rudich in this volume). Since Graph Noniso-morphism is in AM (Protocol 1.5 consists of two rounds), we obtain the followinginteresting consequence:Corollary 1.18. Graph Isomorphism is notNP-complete unless the polynomial-time hierarchy collapses.4The notation AM comes from Arthur{Merlin games, which was the name given to the typeof interactive proofs introduced in [BM88]. Arthur{Merlin games are the same as public-coininteractive proofs, which we discuss in Section 1.4.2.



10 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART I"""""ccccc"""""bbbbb lll%%%%NPBPPP AM
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�2 � � � PH IP = PSPACEP#P
Figure 1. Relation of IP and AM to other complexity classes. Lines indicateleft-to-right inclusion.Proof. If Graph Isomorphism were NP-complete, the Graph Nonisomor-phism would be co-NP-complete and we would have co-NP � AM.The above proof refers to NP-completeness via standard Karp reductions (alsoknown as \many-one" or \mapping" reductions), but it can be easily extendedto more general forms of reducibility such as Cook reductions [Sch88] (see also[GG00]).1.4.2. Private Coins vs. Public CoinsRecall that it was essential in the proof system for Graph Nonisomorphism(Protocol 1.5) that the veri�er's coin tosses are \private," meaning that they are notvisible to the prover. In striking contrast, the veri�er needs no hidden randomnessin the proof systems for co-NP (Protocol 1.9) and PSPACE. That is, those proofsystems satisfy the following de�nition:De�nition 1.19 (public-coin proofs [BM88]). An interactive proof system ispublic coin if each of the veri�er's messages consists of random coin tosses, uniformand independent of the previous messages (except for the last accept=reject=haltmessage).Since PSPACE has a public-coin proof system and IP = PSPACE, it followsthat public-coin interactive proofs are as powerful as private-coin ones. However,there is a stronger (and older) equivalence between private coins and public coinsthat also preserves message complexity:Theorem 1.20 ([GS89]). If a language has an interactive proof with messagecomplexity m(n), then it has a public-coin interactive proof with message complexitym(n).This theorem is very useful in proving results about interactive proofs, sincethe structured behavior of the veri�er in public-coin proofs makes them much easierto analyze and manipulate. Indeed, the proofs of Theorems 1.16 and 1.17 begin byusing Theorem 1.20 to reduce to the public-coin case.Applying Theorem 1.20 to the proof system for Graph Nonisomorphism(Protocol 1.5), we obtain the following consequence:Corollary 1.21. Graph Nonisomorphism has a 2-message public-coin interac-tive proof system.One of the exercises involves constructing a 2-message public-coin interactiveproof for a problem related to Graph Nonisomorphism (using the same toolsthat underlie the proof of Theorem 1.20).



LECTURE 1. INTERACTIVE PROOFS 111.4.3. The Power of the ProverEven though the de�nition of interactive proofs places no computational restrictionson the prover strategy, it is interesting to investigate what power the prover actuallyneeds. If (P; V ) is an interactive for a language L, then the complexity of the proverstrategy P must, in some sense, be at least the complexity of the language L itself,because one can decide membership in L by simulating the interaction between Pand V . The following de�nition identi�es those proof systems for which this lowerbound on the prover's complexity is tight.De�nition 1.22 ([BG94]). An interactive proof system (P; V ) for a language Lis competitive if the prover strategy P can be computed in probabilistic polynomialtime given a membership oracle for L.Which problems have competitive interactive proofs? Satisfiability (andhence every NP-complete problem) has a competitive interactive proof, by thewell-known fact that using an oracle for deciding SAT, one can actually �nd sat-isfying assignments in polynomial time. The Graph Nonisomorphism proof sys-tem (Protocol 1.5) is also competitive, as the prover strategy amounts to decidingGraph Isomorphism. With a little more work, it can be veri�ed that the proverin Protocol 1.9 can be implemented using a #P-oracle, and hence #P-completeproblems have competitive interactive proofs. Finally, it follows from one of the ex-ercises that PSPACE-complete problems also have competitive interactive proofs.However, it is unlikely that all problems in IP have competitive interactive proofs:Theorem 1.23 ([BG94]). If nondeterministic double-exponential time is not con-tained in probabilistic double-exponential time, then there is a problem in NP whichhas no competitive interactive proof.There are a couple of intriguing open problems involving competitive interactiveproofs.Open Problem 1.24. Do co-NP-complete problems have competitive interactiveproofs?The best upper bound known on the complexity of a prover for co-NP is #P,as in Protocol 1.9.Open Problem 1.25. Does Graph Nonisomorphism have a public-coin com-petitive interactive proof? More generally, are there any problems for which public-coin interactive proofs require provers with greater complexity than private-coin in-teractive proofs?Recall that there is a transformation which converts private-coin interactiveproofs to public-coin ones (Theorem 1.20), but that transformation does not pre-serve the prover's complexity (and no \black box" transformation can [Vad00]).1.5. ExercisesExercise 1 (The veri�er's randomness is essential). Show that the class of lan-guages possessing interactive proofs with a deterministic veri�er is simply NP.Exercise 2 (The prover's randomness is inessential). Show that every language hav-ing an interactive proof has one with a deterministic prover.



12 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART IExercise 3 (Upper-bounding the power of interaction). Convince yourself that IP �PSPACE. (Hint: What is the complexity of computing the deterministic proverstrategy you constructed in Problem 2?)Exercise 4 (Soundness of Graph Nonisomorphism interactive pf). Show that ifG0 = ([n]; E0) and G1 = ([n]; E1) are isomorphic graphs, then �(G0) and �(G1)are identically distributed when � is a uniformly chosen permutation of the vertexset [n].Exercise 5 (Public-coin lower bound protocol*). A family H of functions map-pingX to Y is called pairwise independent if when we choose h uniformly at randomfrom H, the following two conditions hold:� For all x 2 X , h(x) is distributed uniformly in in Y .� For all x1 6= x2 2 X , h(x1) and h(x2) are independent.(E�ciently computable pairwise independent families mapping f0; 1gn to f0; 1gmexist, e.g., the set of functions of the form hA;b(x) = Ax + b where A is an m � n0{1 matrix, b 2 f0; 1gm, and all arithmetic is modulo 2.)1. Let H be a pairwise independent family of functions mapping X to Y , letS � X , and let y be any �xed element of Y . Show that(a) If jSj � � � jY j, then Prh H [9x 2 S s.t. h(x) = y] � �(b) If jSj � (1=�) � jY j, then Prh H [9x 2 S s.t. h(x) = y] � 1� �. (Hint:Use Chebychev's Inequality.)2. An automorphism of a graph is an isomorphism with itself. A graph is rigidif it has no automorphisms other than the identity. Use Part (1) to constructa public-coin interactive proof for the language of rigid graphs. (Hint: LetS be the set of 100-tuples of graphs that are isomorphic to the input graph.)Solution SketchesSolution 1. A transcript of an interaction in which the veri�er accepts constitutesan NP proof. Note that the validity of such a transcript (i.e., consistency with theveri�er's algorithm) can be checked in poly time.Solution 2. An \optimal" prover computes each message to maximize the accep-tance probability of the veri�er given the transcript of the interaction so far. Thisstrategy is deterministic.Solution 3. We need to show that the maximum possible acceptance probabilityp(t) of the veri�er given the transcript t of the interaction so far can be computedin PSPACE. This can be done recursively: If the next move is the prover's, thenp(t) = maxm p(t �m) (where we take the maximum over prover messages m). Ifthe next move is the veri�er's, then p(t) = Pm qt;m � p(t � m), where qt;m is theprobability that the veri�er's next message is m given that the transcript so far ist. Note that qt;m can be computed by enumerating over all the veri�er's coin tosses(and discarding those that are not consistent with t.).Solution 4. Let � be such that �(G0) = G1. Then for every graph H , the map� 7! � � � is a bijection between the set of permutations taking G1 to H and thosetaking G0 to H . ( �(G1) = H , �(�(G0)) = H .)Solution 5.



LECTURE 1. INTERACTIVE PROOFS 131. (a) This is just a union bound | each x 2 S has probability 1=jY j ofmapping to y, so the probability that any of them maps to y is atmost jSj � (1=jY j) � �.(b) This is an application of Chebychev. De�ne indicators Ix for the con-dition h(x) = y. We are interested in the probability (over the choiceof h) of the event that the sum M =Px2S Ix is greater than 0. EachIx has expectation 1=jY j, so E[M ] = jSj�(1=jY j). Each Ix has variance(1 � 1=jY j) � (1=jY j) < 1=jY j. Since they are pairwise independent,Var[M ] � jSj � (1=jY j). Hence, by Chebychev's Inequality,Pr[M = 0] � Pr[jM � E[M ]j � E[M ]] � Var[M ]E[M ]2 � jY jjSj � �:2. The number of graphs isomorphic to G equals n! divided by the number ofautomorphisms of G, including the identity. (The number of permutationstaking G to any H isomorphic to G is exactly the number of automorphismsof G.) Hence, if G has no automorphisms other than the identity then thereare n! graphs isomorphic to G, and if G has at least 1 automorphism otherthan the identity then there are at most n!=2 isomorphic to G. Taking100-tuples ampli�es the gap to 2100, and we get the following proof system:The Veri�er randomly chooses a hash function h mapping to f0; 1g` for` � log2(n!=250). The Prover is then supposed to return a 100-tuple ofgraphs (G1; G2; : : : ; G100) isomorphic to G such that h(G1; : : : ; G100) = 0`.To prove that these 100 graphs are isomorphic to G, the prover also sendsthe corresponding isomorphisms. Completeness and soundness follow fromthe argument above and Part (1).





LECTURE 2Zero-Knowledge ProofsGiven the importance of proofs in mathematics and computer science, it isnatural to ask \What does one learn from a proof?" By de�nition, upon verifyinga proof, one should be convinced that the assertion being proven is true. But aproof can actually reveal much more than that. Indeed, proofs in mathematics areoften valued for providing insight in addition to validating a particular theorem.And, at a minimum, it seems inherent in classical proofs that after verifying aproof, one leaves not just with con�dence that the assertion is true, but also withthe ability to present the same proof to others and convince them of the assertion.Interactive proofs, however, are not bound by the same limitations as classicalproofs. We will see below that it is possible for an interactive proof to be zeroknowledge, with the veri�er learning nothing other than than the validity of theassertion being proven. In particular, after verifying such a proof, one does gainthe ability to convince someone else of the same statement!2.1. De�nitionIt is remarkable that the zero-knowledge property can even be de�ned in a mean-ingful and realizable manner. This is accomplished by the simulation paradigm:we say that veri�er has learned nothing from its interaction with the prover if theveri�er can \simulate" its view of the interaction on its own. That is, there shouldbe an e�cient probabilistic algorithm, called a simulator, whose output distributionis indistinguishable from what the veri�er sees when interacting with the prover.Intuitively, this means that the veri�er learns nothing since it can run the simulatorinstead of interacting with the prover.De�nition 2.1 (view of an interactive protocol). Let (A;B) be an interactive pro-tocol. B's view of (A;B) on common input x is the random variable hA;Bi(x) =(m1; : : : ;mt; r) consisting of all the messages m1; : : : ;mt exchanged between A andB together with the string r of random bits that B has read during the interaction.1De�nition 2.2 (zero-knowledge proofs [GMR89]).An interactive proof system (P; V ) for a language L is said to be zero knowledge if1It may seem unnatural that our notation is asymmetric in that it does not allow for indicatingA's view of the protocol. However, in these lectures, we will only be interested in B's view (as Bcorresponds to the veri�er in an interactive proof), and thus we have opted for a simpler notationat the expense of generality. 15



16 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART Ifor every probabilistic polynomial-time V �, there exists a probabilistic polynomial-time simulator S such thatfS(x)gx2L and fhP; V �i(x)gx2Lare computationally indistinguishable.2 That is, for every (nonuniform) polynomial-time algorithm D, there is a negligible3 function � such that for all x 2 L,jPr [D(x; S(x)) = 1]� Pr [D(x; hP; V �i(x)) = 1]j � �(jxj):Note that the simulation is only required to be accurate on inputs x 2 L;that is, when the assertion being proven is true. We wanted the de�nition tocapture the fact that the veri�er should learn nothing from the \proof" (which isnow actually the strategy for P ). For inputs x =2 L, there is no \correct" proof(as guaranteed by soundness), so it would be somewhat strange to require thatthe veri�er learns nothing in this case. From a cryptographic point of view, thisasymmetry corresponds to the idea that we only wish to protect parties that arebehaving honestly; a prover that is trying to prove a false assertion is certainly not.Another important point about the above de�nition is that we require thezero-knowledge property to hold even if the veri�er follows a strategy V � thatdeviates from the speci�ed protocol (provided it is still polynomial time). Clearly,this feature is crucial in cryptographic applications. (Though \honest-veri�er zeroknowledge," in which a simulator is only required for the speci�ed veri�er strategy,is already nontrivial and of complexity-theoretic interest.)2.2. Zero-knowledge Proofs for NPDe�nition 2.2 beautifully captures the intuitive notion of \learning nothing," butof course, the question remains whether nontrivial zero-knowledge proofs exist.Remarkably, every problem having a classical proof also has a zero-knowledge proof.Theorem 2.3 ([GMW91]). Every language in NP has a zero-knowledge proof(assuming one-way functions4 exist).With this theorem, zero-knowledge proofs gain vast applicability in cryptogra-phy, where it often arises that one party wishes to convince others of some \NPassertion" without leaking unnecessary information. For example, zero-knowledgeproofs can be used to make protocols robust against cheating parties: participantsin the protocol can prove to each other that their actions are consistent with thespeci�ed protocol without comprising any of their \secret" information (e.g., theirencryption keys) [Yao86, GMW87]. They can also be used to construct \iden-ti�cation schemes," whereby one party can \prove" her identity to others withoutleaking any information that can later be used to impersonate her [FFS88].To prove Theorem 2.3, it su�ces to give a zero-knowledge proof for a singleNP-complete problem. We will use Graph 3-Coloring. A 3-coloring of a graphG = ([n]; E) is an assignment C : [n] ! fR;G;Bg (for \Red," \Green," and2See Oded Goldreich's lecture notes in this volume for a detailed discussion of computationalindistinguishability. The de�nition we need di�ers from the one there in two main respects: theensembles are indexed by strings in a language rather than all natural numbers, and we allow thedistinguisher to be nonuniform (i.e., a circuit).3A function � : N ! [0; 1] is negligible if for every (positive) polynomial p, �(n) � 1=p(n) for allsu�ciently large n.4See the lecture notes of Goldreich in this volume for the de�nition of one-way functions



LECTURE 2. ZERO-KNOWLEDGE PROOFS 17\Blue") such that no pair of adjacent vertices are assigned the same color. Graph3-Coloring is the language3COL = fG : G is 3-colorableg ;and it is known to be NP-complete (cf., [Pap94]).2.2.1. A \Physical" ProtocolThe zero-knowledge proof for Graph 3-Coloring is based on the observationthat the classical proof can be broken into \pieces" and randomized in such a waythat (a) the entire proof is valid if and only if every piece is valid, yet (b) eachpiece reveals nothing on its own. For Graph 3-Coloring, the classical proof isa three-coloring of the graph, and the pieces are the restriction of the coloring tothe individual edges: (a) An assigment of colors to vertices of the graph is a proper3-coloring if and only if the endpoints of every edge have distinct colors, yet (b) ifthe three colors are randomly permuted, then the colors assigned to the endpointsof any particular edge are merely a random pair of distinct colors and hence revealnothing.In Protocol 2.4, we show how to use the above observations to obtain a zero-knowledge proof for Graph 3-Coloring which makes use of \physical" imple-ments | namely opaque, lockable boxes. We will later obtain the �nal proof systemby using an appropriate \digital" (i.e., mathematical) primitive which emulates theproperties of opaque boxes used.Protocol 2.4: \Physical" Proof System (P; V ) for Graph3-ColoringInput: A graph G = ([n]; E)1. P : Let C be any canonical 3-coloring of G (e.g., the lexicograph-ically �rst one). Let � be a uniformly selected permutation offR;G;Bg. Let C 0 = � � C.2. P : For every vertex v 2 [n], place C 0(v) inside a box Bv, lockthe box using a key Kv, and send the box Bv to V .3. V : Uniformly select an edge (x; y) 2 E and send (x; y) to P .4. P : Send the keys Kx and Ky to V .5. V : Unlock the boxes Bx and By, and accept if the colors insideare di�erent.We now explain why this protocol works. The following \proof" should only betaken as motivation for the �nal protocol, and the reader should not be disturbed byambiguities resulting from the fact that we haven't precisely de�ned this \physical"model.\Proposition" 2.5. Protocol 2.4 is a \zero-knowledge proof" for 3COL.\Proof". For completeness, �rst observe that if C is a proper 3-coloring of G thenso is C 0. Thus, no matter which edge (x; y) 2 E the veri�er selects, the colors C 0(x)and C 0(y) inside boxes Bx and By will be di�erent. Therefore, the veri�er acceptswith probability 1 when G 2 3COL.



18 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART IFor soundness, consider the colors inside the boxes sent by the prover in Step 2as assigning a color to each vertex of G. If G is not 3-colorable, then it must bethe case that for some (x; y) 2 E, Bx and By contain the same color. So theveri�er will reject with probability at least 1=jEj. By repeating the protocol jEj+1times, the probability that the veri�er accepts on G =2 3COL will be reduced to(1� 1=jEj)jEj+1 < 1=3.To argue that Protocol 2.4 is \zero knowledge," let's consider what a veri�er\sees" in an execution of the protocol (when the graph is 3-colorable). The veri�ersees n boxes fBvg, all of which are locked and opaque, except for a pair Bx, Bycorresponding to an edge in G. For that pair, the keys Kx and Ky are given andthe colors C 0(x) and C 0(y) are revealed. Of all this, only C 0(x) and C 0(y) canpotentially leak knowledge to the veri�er. However, since the coloring is randomlypermuted by �, C 0(x) and C 0(y) are simply a (uniformly) random pair of distinctcolors from fR;G;Bg, and clearly this is something the veri�er can generate on itsown.In this intuitive argument, we have reasoned as if the veri�er selects the edge(x; y) in advance, or at least independently of the permutation �. This wouldof course be true if the veri�er follows the speci�ed protocol and selects the edgerandomly, but the de�nition of zero knowledge requires that we also consider cheat-ing veri�er strategies whose edge selection may depend on the messages previouslyreceived from the prover (i.e., the collection of boxes). However, the perfect opaque-ness of the boxes guarantees that the veri�er has no information about their con-tents, so we can indeed view (x; y) as being selected in advance by the veri�er, priorto receiving any messages from the prover.2.2.2. The \Digital" ProtocolIn order to obtain a \digital" (i.e., mathematical) zero-knowledge proof for Graph3-Coloring, we will replace the opaque boxes with a cryptographic primitive thatretains the essential features of the boxes: We should be able \lock" objects (i.e.,strings) into \boxes" (again, strings) in such a way that:1. The locked box completely hides the object locked within it (to maintainthe zero-knowledge property).2. A \key" to open a box and verify its contents can be given (to implementStep 4).3. The contents of a locked box cannot be changed (to maintain soundness).The following de�nition captures the above three properties.De�nition 2.6 (commitment schemes | simpli�ed)). A commitment scheme is apolynomial-time algorithm Commit which takes a messagem and a (random) key Kand produces a commitment B = Commit(m;K). For a given m, the distributionof B over a uniformly chosen key K 2 f0; 1gk is denoted Commitk(m). Commitmust satisfy the following properties:1. (unambiguity) For any m 6= m0, the set of commitments to m is disjointfrom the set of commitments to m0. That is, there do not exist K, K 0 suchthat Commit(m;K) = Commit(m;K 0).2. (secrecy) For any m;m0, commitments to m and m0 are computationally in-distinguishable. That is, for every (nonuniform) polynomial-time algorithm



LECTURE 2. ZERO-KNOWLEDGE PROOFS 19D, there is a negligible function � such thatjPr [D(Commitk(m)) = 1]� Pr [D(Commitk(m0))]j � �(k):Note that a commitment B can indeed be \opened" by providing the cor-responding message m and key K, and this can be veri�ed by checking thatB = Commit(m;K).Commitment schemes meeting the above de�nition can be construct from anyone-way permutation5 (exercise). There is a more general de�nition of commitmentschemes which allows interaction (cf., [Gol00]), and commitment schemes meetingthe more general de�nition exist if and only if one-way functions exist [HILL99,Nao91].Replacing the boxes in Protocol 2.4 with a commitment scheme yields the\digital" zero-knowledge proof for Graph 3-Coloring given in Protocol 2.7.Protocol 2.7: \Digital" Proof System (P; V ) for Graph3-ColoringInput: A graph G = ([n]; E)1. P : Let C be any canonical 3-coloring of G (e.g., the lexicograph-ically �rst one). Let � be a uniformly selected permutation offR;G;Bg. Let C 0 = � � C.2. P : For every vertex v 2 [n], choose Kv uniformly in f0; 1gn, letBv = Commit(C 0(v);Kv), and send Bv to V .3. V : Uniformly select an edge (x; y) 2 E and send (x; y) to P .4. P : Send Kx, Ky, C 0(x), and C 0(y) to V .5. V : Accept if Bx = Commit(C 0(x);Kx) and By =Commit(C 0(y);Ky), and C 0(x) 6= C 0(y).2.2.3. Proof of CorrectnessWe now prove the correctness of Protocol 2.7, establishing Theorem 2.3.6Proposition 2.8. Protocol 2.7 is a zero-knowledge proof system for Graph 3-Coloring.Proof. Completeness and soundness are proved as they were for \Proposition" 2.5,using the unambiguity property of commitment schemes to establish soundness.The zero-knowledge property follows the same intuition as in the physical pro-tocol | all the veri�er sees is a random pair of distinct colors, together with theunopened commitments. A random pair of distinct colors is something the veri�ercan generate on its own, and the secrecy property of the commitment scheme shouldimply that the veri�er learns nothing from the unopened commitments. Based onthis intuition, it is straightforward to simulate the veri�er's view when the veri�erfollows the speci�ed protocol: the simulator can randomly select an edge (x; y) 2 E,5One-way permutations are the same objects referred to as \one-to-one one-way functions" inGoldreich's lecture notes.6Except for the fact that we assume the existence of a commitment scheme in the simpli�ed senseof De�nition 2.6, and this is apparently stronger than assuming the existence of one-way functions.



20 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART Iconstruct Bx and By as commitments to a random pair of distinct colors, and con-struct the remaining commitments as commitments to arbitrary colors (since theyneed not be opened).However, for cheating veri�ers, this setting presents an additional subtlety notpresent in the physical protocol. Unlike boxes, commitments do not always \lookthe same" | they vary as a function of their contents and the key. A cheatingveri�er can select the edge (x; y) in a way that depends on the commitment. Thus,unlike the physical setting, the simulator cannot determine in advance which edge(x; y) the veri�er will select and then place a random pair of distinct colors in Bxand By. Instead, the simulator will randomly \guess" which edge the cheatingveri�er will select, and later check this by running the veri�er algorithm. We willargue that the simulator succeeds with noticeable probability (� 1=jEj), and hencepolynomially many trials will yield success with all but negligible probability. Asimulator SV � (for a cheating veri�er V �) designed according to this intuition isgiven in Algorithm 2.9.Algorithm 2.9: Simulator SV � for Protocol 2.7Input: A graph G = ([n]; E), and a cheating veri�er algorithm V �1. Uniformly select an edge (x; y) 2 E.2. De�ne a coloring C 0 : [n] ! fR;G;Bg as follows: Select(C 0(x); C 0(y)) uniformly among the distinct pairs from fR;G;Bg,and for v =2 fx; yg, set C 0(v) = R.3. For every v 2 V , choose Kv uniformly in f0; 1gn and let Bv =Commit(C 0(v);Kv).4. Run V � to determine which edge (x�; y�) it would select whensent all the Bv 's. That is, uniformly select coin tosses r for V �and let (x�; y�) = V �(G; fBvg; r).5. If (x�; y�) 6= (x; y), output fail. Otherwise, output(fBvgv2V ; (x; y); (Kx;Ky; C 0(x); C 0(y)); r).Claim 2.10. For any probabilistic polynomial-time V �, there is a negligible func-tion � such that on any input G = ([n]; E),1. SV �(G) succeeds with probability at least 1=jEj � �(n).2. The output distribution of SV �(G), conditioned on success, is computation-ally indistinguishable from hP; V �i(G).In order to prove Claim 2.10, it will be convenient to consider a modi�cationof the distribution hP; V �i(G) that incorporates a failure probability:Distribution hP; V �if(G): Choose (x; y) uniformly from E. Sample view =(fBvgv2V ; (x�; y�); (Kx� ;Ky� ; C 0(x�); C 0(y�)); r) according to hP; V �i(G). If(x�; y�) 6= (x; y), output fail. Otherwise, output view.hP; V �if(G) succeeds with probability exactly 1=jEj (since (x; y) is indepen-dent of (x�; y�)), and conditioned on success, its output distribution is identicalto hP; V �i(G). Thus, Claim 2.10 is reduced to showing that SV �(G) is computa-tionally indistinguishable from hP; V �if(G). We will prove this using the secrecy



LECTURE 2. ZERO-KNOWLEDGE PROOFS 21property of the commitment scheme. More precisely, we will argue that if SV �(G)could be distinguished from hP; V �if(G), then the following two distributions wouldbe distinguishable.Distribution RRR: Output 3n independent commitments to R.Distribution RGB: Output n independent commitments to R, followed by nindependent commitments to B, followed by n independent commitments toG.(Above, all commitments are using uniformly selected keys of length n, i.e., Commitn(�).)Distributions RRR and RGB are computationally indistinguishable by the secrecyof the commitment scheme and a \hybrid argument" (cf., the lecture notes of OdedGoldreich in this volume).To perform the desired reduction, we will give a (nonuniform) polynomial-timealgorithm T which \transforms" Distributions RRR and RGB into SV �(G) andhP; V �if(G), respectively. Thus T can be used to transform a distinguisher betweenthe latter pair of distributions into a distinguisher between the former pair. T willhave the graph G = ([n]; E) and the coloring C used by the prover \hardwired in";this is why we need it to be nonuniform.Algorithm 2.11: Transforming Algorithm TInput: A sequence of 3n commitments(BR1 ; BR2 ; : : : ; BRn ; BG1 ; : : : ; BGn ; BB1 ; : : : ; BBn )Nonuniformity: A 3-colorable graph G = ([n]; E), a 3-coloring C ofG, and a cheating veri�er algorithm V �1. Uniformly select an edge (x; y) 2 E.2. Let � be a uniformly selected permutation of fR;G;Bg. LetC 0 = � � C.3. Choose Kx and Ky uniformly in f0; 1gn. Let Bx =Commit(C 0(x);Kx), By = Commit(C 0(y);Ky).4. For v =2 fx; yg, Let Bv = BC0(v)v .5. Uniformly select coin tosses r for V � and let (x�; y�) =V �(G; fBvg; r).6. If (x�; y�) 6= (x; y), output fail. Otherwise, output(fBvgv2V ; (x; y); (Kx;Ky; C 0(x); C 0(y)); r).The transforming algorithm T is given in Algorithm 2.11. It can be veri�ed byinspection that when T is fed Distribution RGB, its output distribution is exactlyhP; V �if(G). On the other hand, when T is fed Distribution RRR, its outputdistribution is identical to that of the simulator SV �(G) (since when C is a proper3-coloring, C 0(x) and C 0(y) are indeed a random pair of distinct colors). This provesthat SV �(G) is computationally indistinguishable from hP; V �if(G), which in turnestablishes Claim 2.10 and Proposition 2.8.



22 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART I2.2.4. RemarksA few remarks about the proofs of Theorem 2.3 and Proposition 2.8 are in or-der. First, although the de�nition of interactive proofs allows a computationallyunbounded prover, the strategy of the prover in Protocol 2.7 can actually be im-plemented in polynomial time when given an NP witness (i.e., a 3-coloring of thegraph). This property is crucial in cryptographic applications of zero-knowledgeproofs, where we typically want the computations required of all parties to bee�cient (though we may wish for security against computationally unbounded ad-versaries).The simulation is another place in which the proof gives something strongerthan required by the de�nition. The de�nition only requires that for every veri-�er strategy V �, there exists a simulator. However, Algorithm 2.9 gives a single\universal" simulator S which works for all veri�er strategies V �, using this ver-i�er strategy only as a \black box." That is, the simulator only requires accessto the input-output behavior of V �, and not the program which computes it. Allknown zero-knowledge proofs are demonstrated correct using such universal black-box simulation, and it is di�cult to imagine how one would prove the zero-knowledgeproperty in any other way. On the other hand, there are several limitations on thee�ciency of black-box zero-knowledge proofs that are not known to hold for thegeneral de�nition, so there is some motivation to seek alternatives to this paradigm.We also remark on the use of NP-completeness in the proof of Theorem 2.3.NP-completeness results are most often thought of as \negative" statements, asthey give evidence of a problem's intractability. Here, however, we have used NP-completeness in a \positive" way | to reduce the task of proving something aboutall of NP to the task of proving something about a single NP-complete problem,namely Graph 3-Coloring. (There was a similar positive use of completeness inthe proofs of Theorems 1.6 and 1.11.)Finally, we mention a result showing that the seemingly strong zero-knowledgecondition actually does not limit the expressive power of interactive proofs at all:Theorem 2.12 ([IY87, BGG+88]). Every problem in IP has a zero-knowledgeproof (assuming one-way functions exist).While it is a substantial strengthening of Theorem 2.3 from a complexity-theoretic viewpoint, Theorem 2.12 does not yield much more utility for crypto-graphic protocols. The reason is that the crucial property guaranteed by the proofof Theorem 2.3 | that the prover can be implemented in polynomial time givenan NP witness | cannot be extended to Theorem 2.12 for this property does noteven make sense for problems outside NP.2.3. Additional Topics2.3.1. Composition of Zero-Knowledge ProofsWhen presenting the Graph 3-Coloring proof system above, we cavalierly said\repeat the protocol several times to reduce the error probability." While it is truethat repetitions do work for reducing the error probability, their e�ect on the zero-knowledge property is more subtle. To explain the issue in more detail, we need tobe more precise about what we mean by \repetitions." Two natural interpretationsare:



LECTURE 2. ZERO-KNOWLEDGE PROOFS 23Sequential Composition: The k executions of the proof system are per-formed one after another. So if the original proof system has message com-plexity m, the new proof system has message complexity km.Parallel Composition: The k executions of the proof system are carried outall at once, \in lock step." That is, the message complexity of the proofsystem remains the same, and each message of the new proof system consistsof a k-tuple of messages in the original proof system.Of these two, the zero-knowledge property is only preserved under sequentialcomposition, and even that requires a modi�cation of De�nition 2.2 to allow the ver-i�er an \auxiliary input" (to model the veri�er's state after prior interactions) (cf.,[FS90, GO94, GK96b]). The fact that zero knowledge is not closed under parallelcomposition makes it di�cult to construct zero-knowledge proofs which simultane-ously have low message complexity and negligible error probability. Furthermore,there are inherent limitations on constructing such zero-knowledge proofs, at leastusing black-box simulation:Theorem 2.13 ([GK96b]). Only problems in BPP have 3-message black-box sim-ulation zero-knowledge proofs with negligible error probabilities (in the completenessand soundness conditions). For public-coin proofs, the same result holds for anyconstant message complexity.Still, using private coins and a stronger complexity assumption, it is knownhow to construct constant-message zero-knowledge proofs.Theorem 2.14 ([GK96a]). If a family of \claw-free permutations" exists, thenNP has 5-message zero-knowledge proofs.Recently, much attention has focused on the behavior of the zero-knowledgeproperty under more general, \adversarial" forms of repetition to model situationsthat can arise in cryptographic applications. One object of study along these lineshas been concurrent zero knowledge [DNS98], which asks for protocols whose zero-knowledge property is preserved even when many of them are executed at thesame time and the veri�er can adversarially determine how the steps of the variousprotocols are interleaved. Such a situation could arise, for example, when zero-knowledge proofs are being employed in a distributed environment such as theInternet. An even stronger requirement that has been studied is resettable zeroknowledge [CGGM00], which asks that the zero-knowledge property be preservedeven if the veri�er can force the prover to execute the protocol many times usingthe same coin tosses. This might be a realistic attack on physical implementationsof zero-knowledge proofs, where the prover is implemented on, say, a smart card.Given that standard zero-knowledge proofs are not closed under even parallelcomposition, it is not surprising that the construction of message-e�cient concur-rent and resettable zero-knowledge proofs is quite di�cult. To overcome thesedi�culties, some researchers have considered augmenting the model of interac-tion with additional features such as \timing" or \public keys" [DNS98, Dam99,CGGM00]. Other researchers have investigated these notions in the standard in-teractive model, attempting to determine the minimal message complexity neededfor NP to have concurrent or resettable zero-knowledge proofs. While there hasbeen considerable progress, at the time of these lectures there is still a signi�-cant gap between the known upper bounds [RK99, CGGM00, KP00] and lowerbounds [KPR98, Ros00] (which are stronger than those given by Theorem 2.13).



24 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART I2.3.2. Perfect and Statistical Zero KnowledgeThe de�nition of zero-knowledge proofs (De�nition 2.2) requires the simulator'soutput to be computationally indistinguishable from the veri�er's view of the in-teraction. Here, we will consider two \information-theoretic" strengthenings of thisrequirement:Perfect zero knowledge: The simulator's output distribution is identical tothe veri�er's view of the interaction.Statistical zero knowledge: The simulator's output distribution is statisti-cally close to the veri�er's view. More precisely, their statistical di�erence7is bounded by a negligible function of the input length.The class of languages possessing statistical (resp., perfect) zero-knowledgeproofs is denoted SZK (resp., PZK). For contrast, zero-knowledge proofs in thesense of De�nition 2.2 are often referred to as computational zero knowledge andthe class of languages possessing them is denoted CZK. Clearly, PZK � SZK �CZK.Statistical and perfect zero-knowledge proofs provide much stronger \security"guarantees than computational ones, in that the zero-knowledge condition is mean-ingful even for veri�ers with unbounded computational power. Surprisingly, thesestronger requirements can be met, and perfect zero-knowledge proofs are knownto exist for a number of nontrivial problems of complexity-theoretic and cryp-tographic interest: Quadratic Residuosity and Nonresiduosity [GMR89],Graph Isomorphism and Nonisomorphism [GMW91], the Discrete Loga-rithm problem [GK93], and approximate versions of the Shortest Vector andClosest Vector problems in lattices [GG00].Despite containing these problems believed to be hard, there are are also strongupper bounds on the complexity of SZK:Theorem 2.15 ([For89, AH91]). SZK � AM \ co-AM.By Theorem 1.17, this means that it is unlikely that SZK contains NP-hardproblems. This puts SZK in an intriguing region in complexity theory | lyingsomewhere between the tractable problems (i.e., BPP) and the NP-hard ones.This is striking contrast to CZK which equals PSPACE if one-way functionsexist (by Theorems 1.11 and 2.12).Recently, there has been substantial progress in improving our understandingof statistical zero knowledge. Here, we mention two results which have shed morelight on the the complexity of the class SZK.Theorem 2.16 ([Oka00]). SZK is closed under complement.This result is surprising because of the asymmetric de�nition of SZK. There isno a priori reason to believe that if one can prove that a statement is true in zeroknowledge then one should also be able to prove that it is false in zero knowledge;this is similar to the intuition that underlies our belief that NP 6= co-NP. In fact,IP and CZK are also closed under complement (assuming one-way functions existfor CZK), but those are a trivial consequences of the more dramatic result showingthat they are equal to PSPACE (Thms. 1.11 and 2.12).7The statistical di�erence between two probability distributions X and Y on a set D ismaxS�D jPr [X 2 S]� Pr [Y 2 S]j.



LECTURE 2. ZERO-KNOWLEDGE PROOFS 25,,,@@@PPPPPPPPPPP������������ HHHHHH�������aa XXX!! co-NP co-AM
NP AMSZK = co-SZK PH CZK = IP =co-CZKPSPACE =P BPP PZKco-PZKFigure 1. Relation of PZK, SZK, and CZK to other complexity classes(assuming one-way functions exist). Lines indicate left-to-right inclusion.Theorem 2.17 ([SV97, GV99]). SZK has two complete problems, called Sta-tistical Difference and Entropy Difference. (These problems essentiallyamount to approximating the statistical di�erence or the di�erence in entropies be-tween two distributions speci�ed by algorithms (circuits) which sample from them.)These problems give a characterization of SZK that makes no reference tointeraction or zero knowledge, and provide further evidence that SZK captures arich and natural class of computational problems. Furthermore, they have provento be very useful for obtaining general results about SZK, as they reduce questionsabout the entire class to ones about a single problem. Thus, we see more \positive"uses of completeness in this area.There are many open problems regarding statistical zero knowledge (cf., [Vad99]),but here we just mention two.Open Problem 2.18. Does SZK = PZK?Open Problem 2.19. Find a complete problem for SZK that is combinatorial ornumber-theoretic (rather than statistical) in nature.2.4. ExercisesExercise 1 (Commitment schemes). Construct a commitment scheme from anyone-way permutation (which cannot be inverted by polynomial-sized circuits).8Exercise 2 (Honest-veri�er zero knowledge). An honest-veri�er zero-knowledge proofis one in which the simulation condition is only required to hold for the speci�edveri�er V (rather than all polynomial-time veri�ers V �).1. Show that the interactive proof for Graph Nonisomorphism given in lec-ture is honest-veri�er (perfect) zero knowledge.2. Construct a similar honest-veri�er perfect zero-knowledge proof system forQuadratic Nonresiduosity, i.e., the languageQNR = f(n; x) : there is no y such that y2 = x (mod n)g:Exercise 3 (Perfect zero knowledge). Exhibit a perfect zero-knowledge proof forQuadratic Residuosity, i.e., the complement of Quadratic Nonresiduosityfrom Problem 2. (You should exhibit a simulator even for cheating veri�ers. The8The key-length in your construction may depend on the message length, although technicallyDe�nition 2.6 does not allow such a dependence. (This dependency can be removed using apseudorandom generator, as de�ned in the lecture notes of Goldreich in this volume.)



26 SALIL VADHAN, PROBABILISTIC PROOF SYSTEMS | PART Isimulation may fail with probability, say, 1=2, as long as its output distribution iscorrect conditioned on non-failure.)Exercise 4 (Resettable zero knowledge). Informally, a zero-knowledge proof is re-settable if it remains zero knowledge even when the veri�er can force the prover touse the same coin tosses in polynomially many interactions. Find a zero-knowledgeproof which is not resettable (under a reasonable complexity assumption).Solution SketchesSolution 1. Let B be a hard-core predicate for a one-way permutation f . Tocommit to a bit b, choose x at random and output (f(x); B(x) � b). Unambiguityfollows because f is one-to-one. And secrecy follows from the fact that (f(x); B(x))is indistinguishable from uniform and hence also from (f(x); B(x) � 1). (See theconstruction of pseudorandom generators which stretch by 1 bit in Goldreich'slecture notes.) To commit to a long message m, apply this commitment scheme toeach bit ofm (using independently chosen x's for each bit). The indistinguishabilityof Commit(m) and Commit(m0) for all m, m0 follows from a hybrid argumentreducing to secrecy of the 1-bit commitment scheme. (The reduction will need tohave the messages m;m0 hardwired in; this is why we need to work with circuitsrather than uniform adversaries.)Solution 2. For Graph Nonisomorphism, the simulator just mimics the veri�erand produces a transcript in which the prover answers correctly (which happensw.p. 1 in the real interaction on YES instances). The proof system for QuadraticNonresiduosity is as follows: the veri�er chooses a random r 2 Z�n and ips acoin b 2 f0; 1g. If b = 0, she sends the prover r2 and if b = 1, she sends the proverx �r2. The prover must guess b. When x is a quadratic nonresidue, the distributionsr2 and xr2 are disjoint; otherwise, they are identical. The analysis proceeds as forGraph Nonisomorphism.Solution 3. On input (n; x), the prover sends the veri�er a random square s mod-ulo n, and then the veri�er asks the prover to return a square root of either sor sx; the prover chooses one of the possible square roots at random. If x is asquare, this will always be possible. If x is a nonsquare, at most 1 of x; sx has asquare root, so the veri�er will reject with probability at least 1=2. The simulatorchooses r uniformly in Z�n, randomly guesses the veri�er's challenge, and accord-ingly sends either s = r2 or s = r2=x as the prover's message. It then runs theveri�er V � to �nd out whether it guessed the challenge correctly. If yes, it uses ras the prover's last message. If not (which happens w.p. 1/2), it fails. It can beveri�ed that conditioned on non-failure, the output distribution is identical to thereal interaction.Solution 4. The proof system for Graph 3-Coloring given in lecture is an ex-ample. By making the prover run n with the same coin tosses and querying an edgetouching a new vertex each time, the veri�er can learn a 3-coloring of the graph.Hence this cannot be simulated in poly-time unless NP � BPP.



SUGGESTIONS FOR FURTHER READINGThese lectures were not intended to be comprehensive surveys of the areas covered.The \additional topics" sections in particular were designed to give a small sampleof recent research directions and open problems, and are largely a reection of theauthor's own interests. Here we mention some places where the interested readercan learn more about this area.[Gol99, Ch. 2] contains a broad survey of probabilistic proof systems, includingvariants of interactive and zero-knowledge proofs not treated in these lectures. Moredetails of proof that IP = PSPACE (Thm. 1.11) can be found in [Sip97, 10.4].An entertaining account of the ideas leading up to that theorem can be found in[Bab90]. Zero-knowledge proofs are covered in great depth and detail in [Gol00,Ch. 4]. A uni�ed treatment of the recent work on statistical zero knowledge canbe found in [Vad99].
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