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1 IntroductionWe study the existence of (good) error-correcting codes that admit very e�cient codeword tests.Speci�cally, we require the testing procedure to use only a constant number of (random) queries, andreject non-codewords with probability proportional to their distance from the code. Such codes maybe thought of as a combinatorial counterparts of the complexity theoretic notion of probabilisticallycheckable proofs (PCPs). They were formally introduced by Friedl and Sudan [11]. Here we initiatea systematic study of this notion.Some examples: Codeword testing is meaningful only for good codes. In particular, it is easyto test trivial codes (e.g., for codes containing all possible strings of certain length or, on theother extreme, for codes containing a single codewords (or very few codewords)). One non-trivialcode allowing e�cient testing is the Hadamard code: the codewords are linear functions, and socodeword testing amounts to linearity testing [7].The drawback of the Hadamard code is that k bits of information are encoded using a codewordof length 2k. (The k information bits represent the k coe�cients of a linear function f0; 1gk ! f0; 1g,and bits in the codeword correspond to all possible evaluation points.)The question addressed in this work is whether one can hope for a better relation between thenumber of information bits, k, and the length of the codeword, denoted n. Speci�cally, can n bepolynomial or even linear in k? For (su�ciently large) non-binary alphabet, Friedl and Sudan [11]showed that n can be almost quadratic in k. We show that n may be almost-linear in k (i.e.,n = k1+o(1)), even for the binary alphabet.1.1 Relation to PCPIt is a common belief, among PCP enthusiasts, that the PCP Theorem [1, 2] already provides codesas we desire. Consider the mapping of standard witnesses for, say SAT, to PCP-oracles. Whenapplied to an instance of SAT that is a tautology, the map typically induces a good error-correctingcode mapping k information bits to codewords of length poly(k) (or almost linear in k, whenusing [17]). The common belief is that the PCP veri�er also yields a codeword test. However, thisis not quite true: It is only guaranteed that each passing oracle can be \decoded" to a correspondingNP-witness, but this does not mean that a passing oracle is (close to) a valid codeword (becausethe \decoding" procedure is actually stronger than is standard in coding theory), or that onlycodewords pass the test with probability one. For example, part of the PCP oracle is supposed toencode an m-variate polynomial of individual degree d, yet the PCP veri�er will also accept theencoding of any m-variate polynomial of total degree m �d (and the \decoding" procedure will workin this case too).Still, we show that many known PCP constructions can be modi�ed to yield good codes withe�cient codeword tests. We stress that these modi�cations are non-trivial and furthermore areunnatural in the context of PCP. Yet, they yield coding results of the type we seek (e.g., seeTheorem 2.1).On the other hand, a technique that emerges naturally in the context of our study of e�cientcodeword tests yields improved results on the length of e�cient PCP proofs. Speci�cally, weobtain constant-query PCP systems that utilize oracles that are shorter than known before (seeTheorem 2.3).
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1.2 Relation to Locally Decodable CodesThe problem of designing e�cient codeword tests seems easier than the question of designinge�cient decoding procedures that allow to recover any desired information bit by reading only aconstant number of bits in the codeword. Our results con�rm this intuition:� We show the existence of almost-linear (i.e., n = k1+o(1)) length (binary) codes supportingcodeword tests with a constant number of queries. In contrast, it was shown that locallydecodable codes cannot have almost-linear length [16].1� For large alphabet, we show almost-linear length coordinate-linear codes in which testingrequires only two queries. In contrast, it was shown that coordinate-linear codes with twoquery recovery require exponential length [13].2 Formal SettingThroughout this work, all oracle machines (i.e., codeword testers and PCP veri�ers) are non-adaptive; that is, they determine their queries based solely on their input and random choices.This is in contrast to adaptive orcale machines that may determine their queries based on answersobtained to prior queries. Since our focus is on positive results, this makes our results only stronger.2.1 CodesWe consider codes mapping a sequence of k input symbols into a sequence of n � k symbols overthe same alphabet, denoted �, which may but need not be the binary alphabet. Such a genericcode is denoted by C : �k ! �n. Throughout this paper, the integers k and n are to be thoughtof as parameters, and � may depend on them. Thus, we actually discuss in�nite families of codes(which are associated with in�nite sets of possible k's), and whenever we say that some quantityof the code is a constant we mean that this quantity is constant for the entire family (of codes).Typically, we seek to have � as small as possible, desire that j�j be a constant (i.e., does not dependon k), and are most content when � = f0; 1g (i.e., a binary code).Distance between n-symbol sequences over � is de�ned in the natural manner; that is, foru; v 2 �n, the distance �(u; v) is de�ned as the number of locations on which u and v di�er (i.e.,�(u; v) def= jfi : ui 6= vigj, where u = u1 � � � un 2 �n and v = v1 � � � vn 2 �n). The distance of acode C : �k ! �n is the minimum distance between its codewords; that is, mina6=bf�(C(a); C(b))g.Throughout this work, we focus on codes of \large distance"; speci�cally, codes C : �k ! �n ofdistance 
(n).The distance of w 2 �n from a code C : �k ! �n is the minimum distance between w and thecodewords; that is, minaf�(w; C(a))g. An interesting case is of non-codewords that are \relativelyfar from the code", which may mean that their distance from the code is greater than (say) halfthe distance of the code.By a codeword test (for the code C : �k ! �n) we mean a randomized (non-adaptive) oraclemachine (called tester) that given oracle access to w 2 �n (viewed as a function w : f1; :::; ng ! �)satis�es the following two conditions:21If q queries are used for recovery then n = 
(k1+(1=(q�1))).2Both the following conditions may be meaningfully relaxed. For example, the tester may be allowed to err withsmall probability in case it is given oracle access to a codeword, and the rejection condition may be restricted tonon-codewords that are relatively far from the code. Since our results are positive, it make sense for us to use thestronger de�nition provided below. 3



� Accepting codewords: For any a 2 �k, given oracle access to w = C(a), the tester accepts withprobability 1.� Rejection of non-codeword: For every w 2 �n that is at distance �n from C, given oracleaccess to w, the tester rejects with probability 
(�)� o(1). (The o(1) term can be avoided ifwe consider only non-codewords that are at distance more than �0n from the code, for someconstant �0 > 0.)3We say that the code C : �k ! �n is locally testable if it has a codeword test that makes a constantnumber of queries. Our main result regarding codes isTheorem 2.1 For every c > 0:5 and in�nitely many k's, there exist locally testable codes withbinary alphabet such that n = exp((log k)c) � k = k1+o(1). Furthermore, these codes are linear andhave distance 
(n).Theorem 2.1 (as well as Part 2 of Theorem 2.2) vastly improves over the Hadamard code (in whichn = 2k), which is the only locally testable binary code previously known. Theorem 2.1 is proven bycombining Part 1 of the following Theorem 2.2 with non-standard modi�cations of standard PCPconstructions.Theorem 2.2 (proven by direct/self-contained constructions):1. For every c > 0:5 and in�nitely many k's, there exist locally testable codes with non-binaryalphabet � such that n = exp((log k)c) � k = k1+o(1) and log j�j = exp((log k)c) = ko(1).Furthermore, the tester makes two queries.2. For every c > 1 and in�nitely many k's, there exist locally testable codes binary alphabet suchthat n < kc.In both cases, the codes are linear in a suitable sense and have distance 
(n).Part 1 improves over the work of Friedl and Sudan [11], which only yields n = k2+o(1). We commentthat (good) binary codes cannot be tested using two queries (cf. [6]). The set of k's for which suchcodes exist is reasonable dense; in both cases, if k is in the set then the next integer in the set issmaller than k1+o(1). Speci�cally, in Part 1 (resp., Part 2), if k is in the set then the next integerin the set is smaller than exp((log k)0:51) � k (resp., O(poly(log k) � k)).2.2 PCPA probabilistic checkable proof (PCP) system for a set L is a probabilistic polynomial-time (non-adaptive) oracle machine (called veri�er), denoted V , satisfying� Completeness: For every x 2 L there exists an oracle �x so that V , on input x and access tooracle �x, always accepts x.� Soundness: For every x 62 L and every oracle �, machine V , on input x and access to oracle�, rejects x with probability at least 12 .3Following this alternative (i.e., of considering only non-codewords that are very far from the code), we may usean alternative formulation (which is more standard in the \property testing" literature; cf. [19, 12]). Speci�cally, wemay require that every non-codeword that is at least �0n-far from the code be rejected with probability at least 1=2.4



As usual, we focus on PCP systems with logarithmic randomness complexity and constant querycomplexity. This means that, without loss of generality, the length of the oracle is polynomial in thelength of the input. However, we aim at PCP systems that utilize oracles that are of almost-linearlength. Our main result regarding such PCP systems isTheorem 2.3 For every c > 0:5, there exists an almost-linear time randomized reduction of SAT toa promise problem that has a 19-query PCP system that utilizes oracles of length exp((log n)c) �n =n1+o(1), where n is the length of the input. Furthermore, the reduction maps k-bit inputs to n-bitinputs such that n = exp((log k)c) � k = k1+o(1).This should be compared to the PCP system for SAT of Polishchuk and Spielman [17] that whenutilizing oracles of length n1+� makes O(1=�) queries. In contrast, our PCP system utilizing oraclesof length n1+o(1) while making 19 queries.3 Direct Constructions of CodesIn this section, we prove Theorem 2.2. Although we do not use any variant of the PCP Theorem,our constructions are somewhat related to known PCP constructions in the sense that we usecodes (and analysis) that appear (at least implicitly) in the latter. Speci�cally, we will use resultsregarding low-degree tests that were proven for deriving the PCP Theorem [1, 2]. We stress thatwe neither use the (complex) parallelization procedure (of [1, 2]) nor the full power of the proofcomposition paradigm (of [2], which is more complex than the classical notion of concatenatedcodes [10] used below).3.1 The Basic Code (FS-Code)Our starting point is a code proposed by Friedl and Sudan [11] based on a low-degree test due toRubinfeld and Sudan [19].Let F be a �nite �eld, andm; d be integer parameters such that (typically) m � d < jF j. Denoteby Pm;d the set of m-variate polynomials of total degree d over F . We represent each p 2 Pm;d bythe list of its �m+dd � coe�cients; that is, jPm;dj = jF j(m+dd ). (For m � d, we use jPm;dj < jF j(2d=m)m .)Denote by Lm the set of lines over Fm, where each line is de�ne by two points a; b 2 Fm;that is, for a = (a1; :::; am) and b = (b1; :::; bm), the line `a;b consists of the set of jF j pointsf`a;b(t) def= ((a1 + tb1); :::; (am + tbm)) : t 2 Fg.We consider the code C : Pm;d ! �jLmj, where � = F d+1; that is, C assigns each p 2 Pm;d a(jLmj-long) sequence of �-values, where each �-value corresponds to a di�erent element of Lm. Theelement associated with ` 2 Lm in the (jLmj-long) sequence C(p), denoted C(p)`, is the univariatepolynomial that represents the values of the polynomial p : Fm ! F on the line `; that is, for`a;b 2 Lm, the univariate polynomial C(p)`a;b can be formally written as qa;b(z) def= p(`a;b(z)) =p((a1 + b1z); :::; (am + bmz)). Since the polynomial p has total degree d, so does the univariatepolynomial qa;b.To evaluate the basic parameters of the code C, let use consider it as mapping �k ! �n, whereindeed n = jLmj = jF j2m and k = log jPm;dj=log j�j. Note thatk = log jPm;djlog j�j = �m+dd � log jF j(d+ 1) log jF j = �m+dm �d+ 1 (1)5



which, for m � d, is approximated by (d=m)m=d � (d=m)m. Using jF j = poly(d), we haven = jF j2m = poly(dm), and so k is polynomially related to n (provided, say, m < pd). Note thatthe code has large distance (since the di�erent C(p)'s tend to disagree on most lines).The Codeword Test: The test consists of selecting two random lines that share a random point,and checking that the univariate polynomials associated with these lines yield the same value for theshared point. That is, to check whether w 2 �jLmj is a codeword, we select a random point r 2 Fm,and two random lines `0; `00 going through r (i.e., `0(t0) = r and `00(t00) = r for some t0; t00 2 F ),obtain the answer polynomials q0 and q00 (i.e., q0 = w`0 and q00 = w`00) and check whether they agreeon the shared point (i.e., whether q0(t0) = q00(t00)). This test is essentially the one analyzed in [1],where it is shown that (for jF j = poly(d)) if the oracle is �-far from the code then this is detectedwith probability 
(�).3.2 Random Truncation of the FS-CodeOur aim is to tighten the relation between k and n. Recall that the gap between them is due to twosources; �rstly, the analysis in [1] required a �eld F that is polynomially bigger than the degree d.This problem can be eliminated using the better analysis of [17], which only requires jF j = 
(d)(see [11]). The second problem is that n is quadratic in jF jm, whereas k = o(dm) = o(jF jm). Thus,to obtain n almost-linear in k, we must use a di�erent code.We will use a random projection (or \truncation") of the FS-code on approximately jF jm ofthe coordinates. Let Rm � Lm be a random subset of O(jF jm log jF j) lines. We consider the codeCRm : Pm;d ! �jRmj, where the element associated with `a;b 2 Rm � Lm in the sequence CRm(p)is the univariate polynomial that represents the values of the polynomial p : Fm ! F on the line`a;b. When Rm is (unimportant or) understood from the context, we shorthand CRm by C.To evaluate the basic parameters of the code C, let use consider it as mapping �k ! �n, wheren = jRmj = O(jF jm log jF j) (and as before k = log jPm;dj=log j�j). Thus, for m � d, we havek � dm�1=mm and, for jF j = O(d), we have n = O(jF jm log jF j) = O(d)m. We highlight twopossible settings of the parameters:1. Using d = mm, we get k � mm2�2m and n = mm2+o(m), which yields n � exp(plog k) � k andlog j�j = log jF jd+1 � d log d � exp(plog k).2. Letting d = me for constant e > 1, we get k � m(e�1)m and n � mem, which yields n �ke=(e�1) and log j�j � d log d � (log k)e.The Codeword Test: The original codeword test can be extended to the current setting. Specif-ically, the new test consists of selecting two random lines in Rm that share a random point, andchecking that the univariate polynomials associated with these lines yield the same value for theshared point. (We stress that we �rst select uniformly a point r 2 Fm, and next select two lines inRm that pass through r.) We prove that this codeword test for the randomly-truncated code CRmworks as well as the codeword test for the basic FS-code.Lemma 3.1 Let jF j = 
(d) and jF j < exp(mm). Then, for at least a 1 � o(1) fraction of thepossible choices of Rm of size n, the following holds for every w 2 �n: if the distance of w fromthe code CRm is �n then the probability that the above codeword test rejects is 
(�)� o(1).Proof: First we reduce the analysis of the above codeword test (which compares the value givento two intersecting lines) to an analysis of a point-vs-line test that compares the value of a suitable6



function f : Fm ! F on a random point with the value induced by (the polynomial associatedwith) a random line passing through this point. Fixing any Rm and any w 2 �n, we constructa random function f : Fm ! F by selecting uniformly, for each r 2 Fm, a line ` in Rm thatpasses through r and setting f(r) accordingly (i.e., f(r) = w`(t) where r = `(t)). We note thatthe probability that the original intersecting-lines test accepts w equals the probability that thepoint-vs-line test accepts w along with the resulting random f , because the (random) value f(r)(obtained from f) may be viewed as obtained from a (second) random line that passes through r.Thus, it su�ces to analyze the point-vs-line test as applied to w and the corresponding random f .This will be done in two stages: in the �rst stage (see Claim 3.1.1) we relate the distance of w fromthe code C = CRm to the expected distance of f from the set Pm;d, whereas in the second stage (seeClaim 3.1.2) we relate the rejection probability of the point-vs-line test when accessing the orcalepair (w; f) to the distance of f from Pm;d.Let us �rst de�ne more precisely the two notions, which were mentioned above and will bepivotal to our proof. We assume, for simplicity, that the lines in Rm pass through all points inFm. (This can be easily ensured by adding jFmj lines to Rm. Alternatively, whenever relating toa point that is not covered by any line in Rm, we may assume that any condition regarding linespassing through this point is not satis�ed.) Recall that � = F d+1 and that Rm is a set of n linesover Fm (i.e., for (a; b) 2 Fm � Fm, the line `a;b : F ! Fm satis�es `a;b(t) = a+ tb).The point-vs-line test for CRm . Given orcale access to w 2 �jRmj (viewed as w : Rm ! F d+1) andto f : Fm ! F , the test �rst selects uniformly a point r 2 Fm, and next selects uniformly aline ` 2 Rm that passes through r. The test compares the value f(r) and the value that theunivariant polynomial w` assignes to r (i.e., if `(t) = r then the test compares f(r) to w`(t),where w` 2 F d+1 is viewed as a degree d-polynomial).The random function associated with w 2 �jRmj. For every w 2 �jRmj, we de�ne a random functionfw : Fm ! F as follows. For every r 2 Fm, the random value fw(r) is de�ned by selectinguniformly a line ` 2 Rm that passes through r (i.e., ` 2 Rm such that `(t) = r for some t 2 F )and setting fw(r) according to the value that r is assigned by w` (i.e., fw(r) = w`(t)).Claim 3.1.1 (�rst stage): For all but at most an o(1) fraction of the possible choices of Rm, thefollowing holds: for every w 2 �jRmj, the (fractional) distance of w from the code C = CRm islinearly related to the expected (fractional) distance of fw from the set Pm;d. Speci�cally, if w is atdistance � � jRmj from the code C = CRm , then the expected distance of the random function fw fromthe set Pm;d is at least ((�=2) � o(1)) � jFmj.Proof: Fixind Rm and w 2 �jRmj, we will show that, for every p 2 Pm;d, with overwhelminglyhigh probability (over the randomized de�nition of fw), the (fractional) distance of fw from papproximates the (fractional) distance of w from C(p) = CRm(p). For simplicity, we �rst assumethat Rm covers all points uniformly (i.e., each point in Fm resides in exactly jF j � jRmj=jFmj linesof Rm).Let p 2 Pm;d and denote by "n the distance of w from C(p); that is, w` 6= C(p)` (= p(`)) on an" fraction of the `'s in Rm. For each ` 2 Rm such that w` 6= C(p)` it is the case that w` disagreeswith p on almost all (i.e., all but d) points that reside on the line ` (because both w`(�) and p(`(�))are low-degree univariant polynomials). Thus, for uniformly selected ` 2 Rm and t 2 F , it holdsthat Pr`2Rm;t2F [w`(t) 6= p(`(t))] � " � (1� (d=jF j)) :7



By the uniform coverage property of Rm, the same holds when r is selected uniformly in Fm, and` is selected uniformly among all lines in Rm that pass through r; that is,Prr2Fm;`2Rm(r)[w`(t`(r)) 6= p(r)] � (1� (d=jF j)) � " ;where Rm(r) is the set of lines in Rm that pass through r and t`(r) is such that `(t`(r)) = r. Sincefw(r) is de�ned according to a random line ` 2 Rm that passes through r (i.e., fw(r) def= w`(t`(r)),for a uniformly selected ` 2 Rm(r)), it holds that the expected (fractional) disagreement of arandom fw with p is at least (1� (d=jF j)) �". Furthermore, since fw is de�ne independently on eachpoint of Fm, with probability at least 1�exp("jF jm), a random fw disagrees with p on at least a "=2fraction of the points. Using the union bound (over all p 2 Pm;d) it follows that, with probabilityat least 1 � jPm;dj � exp("jF jm), the (fractional) distance of fw from each p 2 Pm;d approximates(up-to an additive term of "=2) the (fractional) distance of w from the corresponding C(p). UsingjPm;dj < jF j(2d=m)m = o(exp("jF jm)), which holds for " > 2�m (log jF j < mm and d > 4jF j), weconclude that with probability 1� o(1) (over the choice of fw) the (fractional) distance of fw fromPm;d approximates the distance of w from CRm (up-to an additive term of "=2). We conclude thatthe expected (fractional) distance of fw from the set Pm;d approximates the (fractional) distanceof w from the code CRm (up-to an additive term of (�=2) + o(1)).Recall that in the above analysis, we have assumed that Rm covers all points uniformly (i.e.,each point resides on the same number of lines in Rm). In general, this is not the case. Yet, withvery high probability, a random set Rm cover almost all points in an almost uniform manner. This\almost uniformity" su�ces for extending the above analysis.4 Thus, for all but at most an o(1)fraction of the Rm's, the distance of any w from the code CRm is well-approximated by the distanceof the corresponding random function fw from the set Pm;d.Claim 3.1.2 (second stage): For all but at most an o(1) fraction of the possible choices of Rm,the following holds: for every w 2 �jRmj and f : Fm ! F , the probability that the point-vs-line testrejects the oracle pair (w; f) is linearly related to the distance of f from Pm;d. That is, if f is atfractional distance " from Pm;d then the test rejects (w; f) with probability 
(")� o(1).This claim will be applied to pairs (w; fw), where w is �xed and fw is constructed at random asabove.Proof: Following [19, 1, 2, 17], we observe that for each possible function f : Fm ! F there existsan optimal strategy of answering all possible line-queries such that the acceptance probability ofthe line-vs-point test for oracle pairs (�; f) is maximized.5 Speci�cally, for a �xed function f ,and each line `, the optimal way to answer the line-query ` is given by the degree d univariate4Alternatively, for almost all Rm's, there exists a set Sm � Lm that covers all points uniformly such that jSmj =n = jRmj and jRm \ Smj = n � o(n). In order to analyze the randomized construction of fw (based on w) withrespect to the code CRm , we consider the randomized construction of gu based on u with respect to the code CSm ,where u` = w` for every ` 2 Rm \ Sm. By the above analysis, the expected distance of gu from Pm;d approximatesthe distance of u from CSm , which in turn approximates the distance of w from CRm (because u and w as well asCSm and CRm agree on all ` 2 Rm \Sm). Finally, observe that the expected fractional distance between gu and fw iso(1), because for all but an o(1) fraction of the points r all but an o(1) fraction of the lines of Rm that pass throughr are also in Sm, and vice versa.5In previous work (and their prior applications), the (\point-oracle") function f is viewed as the primary oracleand the \line-oracle" is viewed as an auxiliary (\proof") orcale. Thus, the focus on f in prior work is very natural.In our work, the line-oracle is the primary oracle, and the function f is de�ned based on it, and so focusing on thelatter seems a bit unnatural. Still, the analysis of previous work can be applied here, and Claim 3.1.1 is the vehiclethough which we can turn from the line-oracle to a (related, random) point-oracle.8



polynomial that agrees with the value of f on the maximum number of points of `. Thus, theoptimal acceptance probability of the line-vs-point test, when the point-oracle equals f , dependsonly on f (and not on the line-oracle w, which may not be optimal for f , even in case f = fw asabove). Furthermore, this probability is the average of quantities (i.e., the agreements of f withthe best univariate polynomials) that f associates with each of the possible lines.Let us denote by D`(f) the fractional disagreement of f , when restricted to line `, with thebest univariate polynomial. Then, by the relevant results in [1, 2, 17], the average of D`(f) takenover all lines (i.e., over Lm) is linearly related to the distance of f from Pm;d. (This is becausethe latter average equals the rejection probability of the line-vs-point test over all possible lines,which is the test that is analyzed in [1, 2, 17].) Clearly, the rejection probability of our test (i.e., theline-vs-point test for lines uniformly selected in Rm, when applied to any w and f) is lower-boundedby the average of the D`(f)'s over the lines in Rm (rather than over the set of all lines, Lm). Now,for each �xed f , with probability 1� exp(�jRmj), the average of the D`(f)'s (taken over all lines)is approximated (up-to some constant) by the average taken over a random set Rm. Taking theunion bound over all jF jjF jm functions f 's, we conclude that, for almost all Rm, the point-vs-linetest rejects each f with probability that is linearly related to the distance of f from Pm;d (becauseexp(�jRmj) � jF jjF jm = o(1)).The lemma follows by combining Claims 3.1.1 and 3.1.2: By Claim 3.1.1, for all but at mostan o(1) fraction of the Rm's, the (fractional) distance of each w from CRm is linearly related to theexpected (fractional) distance of the corresponding random fw from Pm;d. By Claim 3.1.2, for allbut at most an o(1) fraction of the Rm's, each w and the corresponding random fw is rejected bythe point-vs-line with probability that is linearly related to the distance of fw from Pm;d. Thus,for all but at most an o(1) fraction of the Rm's, the point-vs-line rejects the oracle pair (w; fw)with probability at least 
(�) � o(1), where � is the fractional distance of w from CRm . By thepreliminary discussion, the same holds for the original (intersecting-lines) test.F -linearity: The (modi�ed as well as the original) code C is F -linear; that is, the individualF -elements in the codeword sequence are linear combinations (over F ) of the F -elements in theinformation being encoded. Equivalently, for every �0; �00 2 F and every p0; p00 2 Pm;d, it holdsthat C(�0p0 + �00p00)` = �0C(p0)` + �00C(p00)`, for every line (�-coordinate) `. This is the casebecause C(�0p0 + �00p00)` equals the univariate polynomial (in z) given by (�0p0 + �00p00)(`(z)) =�0p0(`(z)) + �00p00(`(z)), which in turn equals �0C(p0)` + �00C(p00)`.Conclusion: Using the �rst parameter-setting (i.e., d = mm), we establish Part 1 of Theorem 2.2.An alternative construction: To simplify the analysis of the codeword test, we may constructan alternative code in which C is augmented by an evaluation of the polynomial p on all possiblepoints (i.e., Fm). Furthermore, the augmentation is repeated enough times (i.e., 
((d+1) � log jF j)times) such that this portion dominates the length of the code (as well as the distance to it).Using the alternative construction allows to directly apply the analysis of [1, 2, 17] (while con�ningourselves to analyzing the e�ect of taking a sample Rm of the quantities assigned by f to all possiblelines). On the other hand, using the alternative code will slightly complicate the next subsection.3.3 Decreasing the alphabet sizeThe above construction uses quite a big alphabet (i.e., � = F d+1). Our aim in this subsection is tomaintain the above performance while using a smaller alphabet (i.e., F rather than F d+1). This is9



achieved by concatenating the above code (which encodes information by a sequence of n degree dunivariate polynomials over F ) with the following inner-code that maps F d+1 to F n0 , where n0 issub-exponential in k0 def= d+ 1.For a (suitable) constant d0, let k0 = hd0 and [h] = f1; :::; hg. As a warm-up, considerthe special case of d0 = 2. In this case, the code C0 maps bilinear forms in xi's and yi's(with coe�cients (ci;j)i;j2[h]) to the values of these forms under all possible assignments. Thatis, C0 : F h2 ! F jF j2h maps the sequence of coe�cients (ci;j)i;j2[h] to the sequence of values(va1;:::;ah;b1;:::;bh)a1;:::;ah;b1;:::;bh2F where va1;:::;ah;b1;:::;bh = Pi;j2[h] ci;j � aibj . In general (i.e., ar-bitrary d0 � 1), the inner-code C0 : F k0 ! F n0 maps d0-linear forms in the variables setsfz(1)i : i 2 [h]g; :::; fz(d0)i : i 2 [h]g to the values of these d0-linear forms under all possible assign-ments to these d0h variables. That is, C0 maps the sequence of coe�cients (ci1;:::;id0 )i1;:::;id02[h] to thesequence of values (va(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h )a(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h 2F where va(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h =Pi1;:::;id02[h] ci1;:::;id0 �Qd0j=1 a(j)ij . Thus, (k0 = hd0 and) n0 = jF jd0h = exp(d0 � (k0)1=d0 log jF j).Testing the inner-code: A valid codeword is a multi-linear function (in the variable setsfz(1)i : i 2 [h]g; :::; fz(d0 )i : i 2 [h]g); that is, for each j, a valid codeword is linear in the variablesz(j)i 's. Thus, testing whether a sequence belongs to the inner-code amounts to d0 linearity checks.Speci�cally, for each j, we randomly select r = (r(1)1 ; :::; r(1)h ; :::; r(d0)1 ; :::; r(d0)h ) and s(j)1 ; :::; s(j)h , andcompare vr + v0;:::;0;s(j)1 ;:::;s(j)h ;0;:::;0 to v(t(1)1 ;:::;t(1)h ;:::;t(d0)1 ;:::;t(d0)h ), where t(j)i = r(j)i + s(j)i and t(j0)i = r(j0)ifor j0 6= j. To simplify the analysis, we also let the test employ a total low-degree test (to verifythat the codeword is a multi-variate polynomial of total-degree d0).6 (The total-degree test usesd0 + 2 queries, and so our codeword test uses 3d0 + d0 + 2 queries.)Lemma 3.2 If the distance of w0 2 F n0 from C0 is �n0 then the probability that the codeword testfor C0 rejects is 
(�).Proof sketch: If w0 2 F jF d0hj (viewed as a function F d0h ! F ) is at fractional distance atleast min(�; 0:5) from the set of d0h-variate polynomials of total degree d0 then it is rejected withprobability 
(�) by the total-degree test. Otherwise, w0 is at distance less than min(�; 0:5) �n0 fromsuch a polynomial, denoted p0, which is unique. By the hypothesis (regarding the distance of w0from C0), this p0 must be non-linear in some block of variables (i.e., in the z(j)i 's). With probability1� (d0=jF j) > 0:9 this non-linearity is preserved when assigning random values to the variables ofall the other blocks. On the other hand, the expected fractional distance between the residual w0and p0 under such a random assignment is less than 0:5. Thus, under such random assignment,the expected fractional distance of the residual w0 from the set of linear functions in the z(j)i 's isat least 0:9� 0:5 = 0:4. It follows that w0 is rejected with constant probability by the jth linearitytest (because, with probability at least 0:2, the residual w0 is at least 0:2-far from being linear inthe z(j)i 's).Testing the concatenated-code: In order to test the concatenated code, we �rst test (randominstances of) the inner-code and next use self-correction on the latter to emulate the testing of theouter-code. Speci�cally, the tester for the concatenated code selects at random two intersecting6We conjecture that the codeword test operates well also without employing the total-degree test, but the aug-mented codeword test is certainly easier to analyze. 10



lines `0 and `00, and �rst applies the inner-code tester to the inner-encoding of the polynomialsassociated by the outer code to these lines. To emulate the outer-code test, the current testerneeds to obtain the value of these polynomials at some elements of F (which are determined bythe outer test). Suppose that we need the value of q0 (a univariate polynomial of degree d =hd0 � 1 over F ) at t 2 F , and that q0 is encoded by the inner-code. However, the value q0(t) =Pi1;:::;id02[h] q0i1;:::;id0 t(i1�1)+(i2�1)h+���+(id0�1)hd0�1 equals the entry of C0(q0) that is associated withthe sequence (t0; :::; th�1; t0; :::; t(h�1)h; :::; t0; :::; t(h�1)hd0�1).7 Self-correction of the desired entry isperformed via polynomial interpolation, and requires only d0 + 1 queries. Thus, the concatenatedcode can be tested by making O(d0) queries.Notes: Observe that the inner-code is linear (over F ), and thus so is also the concatenated code.Furthermore, the codeword test is a conjunction of (O(d0)) linear tests. Alternatively, we mayperform one of these linear tests, selected at random (with equal probability). Regarding theparameters of the concatenated code, suppose that in the outer-code we use the setting d = me(for constant e > 1), and in the inner-code we use d0 = 2e. Then, we obtain a code that maps F kk0to F nn0 , where n � ke=(e�1) and n0 � exp(d1=d0) � exp((log k)e=d0) = exp(plog k) = ko(1) (usingd � (log k)e). Thus, nn0 � (kk0)e=(e�1) and jF j = O(d) � (log k)e (as before).3.4 A Binary CodeThe last step is to derive a binary code. This is done by concatenating the above code with aHadamard code, while assuming that F = GF (2k00). The Hadamard code is used to code elementsof F by binary sequences of length n00 def= 2k00 .To test the newly concatenated code, we combine the obvious testing procedure for theHadamard code with the fact that all that we need to check for the current outer-code are (aconstant number of) linear (in F ) conditions involving a constant number of F -entries. Insteadof checking such a linear condition over F , we check that the corresponding equality holds fora random sum of the bits in the representation of the elements of F (using the hypothesis thatF = GF (2k00)). Speci�cally, suppose that we need to check whether Pi �iai = 0 (in F ), for someknown �i 2 F and oracle answers denoted by ai's. Then, we uniformly select r 2 GF (2k00), andcheck whether hr;Pi �iaii � 0 mod 2 holds, where hu; vi denotes the inner-product modulo 2 of(the GF (2k00) elements) u and v (viewed as k00-bit long vectors). The latter check is performed byrelying on the following two facts:1. hr;Pi �iaii �Pi hr; �iaii mod 2.2. Each hr; �iaii can be obtained by making a single query (which is determined by r and �i) tothe Hadamard coding of ai, because hr; �iaii is merely a linear combination with coe�cientsdepending only on �i and r of the bits of ai. (Each bit of �iai 2 GF (2k00) is a linearcombination with coe�cients depending only on �i of the bits of ai, and hr; vi is a linearcombination with coe�cients depending only on r of the bits of v.)Thus, the emulation of the outer-code test is performed by accessing a constant number of entriesin the inner-code. It follows that the �nal concatenated code is locally testable. The �nal code7That is, we consider the entry of C0(q0) that is associated with the sequence (a(1)1 ; :::; a(1)h ; :::; a(d0)1 ; :::; a(d0)h )that satis�es a(j)i = t(i�1)hj�1 . The value of this entry equals Pi1;:::;id02[h] q0i1;:::;id0 � Qd0j=1 a(j)ij , which equalsPi1;:::;id02[h] q0i1;:::;id0 �Qd0j=1 t(ij�1)hj�1 =Pi1;:::;id02[h] q0i1;:::;id0 � tPd0j=1(ij�1)hj�1 .11



maps f0; 1gkk0k00 to f0; 1gnn0n00 , where nn0 � (kk0)e=(e�1) and n00 = 2k00 = jF j = poly(log k) = ko(1).Thus, nn0n00 � (kk0k00)e=(e�1). This establishes Part 2 of Theorem 2.2.Note: Fixing any integer e > 1, the above code can be constructed for any integer h, whiledetermining k0 = he, k00 = logO(k0) and k � (me�1)m, where m = (he � 1)1=e � h. Thus,K def= kk0k00 � h(e�1)h � he � log he � h(e�1)h. The ratio between consecutive values of K is given by(h+1)(e�1)(h+1)h(e�1)h = O(h)e�1 < (logK)e�1, and so the successor of K is smaller than (logK)e�1 �K.4 Nearly linear-sized PCPsIn this section we give a probabilistic construction of nearly-linear sized PCPs for SAT. Moreformally, we reduce SAT probabilistically to a promise problem recognized by a PCP veri�er tossing(1+o(1)) log n random bits (on inputs of length n) and queries a proof oracle in a constant numberof bits and has perfect completeness and soundness arbitrarily close to 12 . We stress that theconstant number of bits is explicit and small. Speci�cally, if the o(1) function in the randomnessis allowed to be as large as 1=poly log log n, then the number of queries can be reduced to 16 bits.The little o(1) function can be reduced to O(plog log n= log n) for a small cost in the number ofqueries, which now goes up to 19 bits. These improvements are obtained by using and improvingresults of Harsha and Sudan [15].We get our improvements by applying the \random truncation" method (introduced in Sec-tion 3) to certain constant-prover one-round proof systems, which are crucial ingredients in theconstructions of PCPs. Typically, these proof systems use provers of very di�erent sizes, and byapplying the \random truncation" method we obtain an equivalent system in which all provershave size roughly equal to the size of the smallest prover in the original scheme. At this point,we reduce the randomness complexity to be logarithmic in the size of the provers (i.e., and thuslogarithmic in the size of the smallest original prover).Recall that typical PCP constructions are obtained by the technique of proof compositionintroduced by Arora and Safra [2]. In this technique, an \outer veri�er", typically a veri�er for aconstant prover one round proof system, is composed with an \inner veri�er" to get a new PCPveri�er. The new veri�er essentially inherits the randomness complexity of the outer veri�er andthe query complexity of the inner veri�er. Since our goal is to reduce the randomness complexityof the composed veri�er, we achieve this objective by reducing the randomness complexity of theouter veri�er.As stated above, the key step is to reduce the sizes of the provers. As a warm-up, we �rst showthat the random truncation method can be applied to any 2-prover one-round proof system, wherethe size of one prover is much larger than the size of the second prover, to reduce the size of thelarger prover to roughly the size of the smaller prover.We then show how to apply the random truncation to the veri�er of a speci�c 3-prover one-roundproof system used by Harsha and Sudan [15]. Their veri�er is a variant of the one constructed by Razand Safra [18] (see also, Arora and Sudan [3]), which are, in turn, variants of a veri�er constructedby Arora et al. [1]. All these veri�ers share the common property of working with provers of\imbalanced" sizes. We manage to reduce the size of the provers to the size of the smallest one,and consequently reduce the randomness of the veri�er to (1 + o(1)) log n (i.e., logarithmic in theprover size). We stress that this part is not generic but relies on properties of the proof of soundnessin, say, [15], which are abstracted below. Applying the composition lemmas used/developed in [15]to this new veri�er gives us our e�cient PCP constructions.12



4.1 MIP veri�ers and random samplingWe start by de�ning a 2-prover 1-round proof system as a combinatorial game between a veri�erand two provers. Below, 
 denotes the space of veri�er's coins, qi denotes its strategy of formingqueries to the ith prover, and Pi denote strategies for answering these queries (where all refer tothe residual strategies for a �xed common input).De�nition 4.1 For �nite sets Q1; Q2;
; and A, a (Q1; Q2;
; A)-2IP veri�er V is given by func-tions q1 : 
 ! Q1 and q2 : 
 ! Q2 and Verdict : 
 � A � A ! f0; 1g. The value of V ,denote w(V ), is the maximum, over all functions P1 : Q1 ! A and P2 : Q2 ! A of the quantityEr 
 [Verdict(r; P1(q1(r)); P2(q2(r)))]. A 2IP veri�er V is said to be uniform if for each i 2 f1; 2g,the distributions fqi(r)gr 
 are uniform over Qi.Focusing on the case jQ2j � jQ1, we de�ne a \sampled" 2IP veri�er:De�nition 4.2 Given a (Q1; Q2;
; A)-2IP veri�er V and set S � Q2, let 
S = fr 2 
 j q2(r) 2Q1g. For T � 
S, the (S; T )-sampled 2IP veri�er V jS;T is a (Q1; S; T;A)-2IP veri�er given byfunctions q01 : T ! Q1, q02 : T ! S, and Verdict0 : T �A�A! f0; 1g obtained by restricting q1, q2and Verdict to T .In the following lemma we show that a su�ciently large randomly sampled set S from Q2 isvery likely to preserve the value of a veri�er approximately. Furthermore, the value continues tobe preserved approximately if we pick T to be a su�ciently large random subset of 
S.Lemma 4.3 There exist absolute constants c1; c2 such that the following holds for everyQ1; Q2;
; A, � and 
 > 0. Let V be an (Q1; Q2;
; A)-uniform 2IP veri�er.Completeness: Any (S; T )-sampled veri�er preserves the perfect completeness of V . That is, if!(V ) = 1 then, for every S � Q2 and T � 
S, it holds that !(V jS;T ) = 1.Soundness: For su�ciently large S and T , a random (S; T )-sampled veri�er preserves the sound-ness of V up-to a constant factor. Speci�cally, let N1 = c1� �jQ1j log jAj+ log 1
� andN2 = c2� �N1 log jAj+ log 1
�, and suppose that S is a uniformly selected multiset of sizeN1 of Q2, and T is a uniformly selected multiset of size N2 of 
S. Then, for !(V ) � �, withprobability at least 1� 
 it holds that !(V jS;T ) � 2�.Note that the reduction in randomness complexity (i.e., obtaining N2 = ~O(jQ1j)) relies on theshrinking of the second prover to size N1 = ~O(jQ1j). Without shrinking the second prover, wewould obtain N2 = ~O(jQ2j), which is typically useless (becuase, typically, j
j = ~O(jQ2j)).Proof: Assuming that !(V ) � �, we focus on the soundness condition. The proof is partitionedinto two parts. First we show that a random choice of S is unlikely to increase the value of thegame to above 3=2�. Next, assuming the �rst part was ok, we show that a random choice of Tis unlikely to increase the value of the game above 2�. The second part of the proof is really astandard argument which has been observed before in the context of PCPs. We thus focus on the�rst part, which abstracts the idea of the random truncation from Section 3.Our aim is to bound the value !(V jS;
S), for a randomly chosen S. Fix any prover strat-egy P1 : Q1 ! A for the �rst prover. Now note that an optimal function, denoted P �2 ,for the second prover answer each question q2 2 Q2 by an answer that maximizes the ac-ceptance probability with respect to the �xed P1 (i.e., an optimal answer is a string a2 that13



maximizes Er2
jq2(r)=q2 [Verdict(r; P1(q1(r)); a2)]). We stress that this assertion holds both forthe original 2IP veri�er V as well as for any (S;
S)-sampled veri�er.8 For every questionq2 2 Q2, let �q2 denote the acceptance probability of the veri�er V given that the second ques-tion is q2 (i.e., �q2 = Er2
jq2(r)=q2 [Verdict(r; P1(q1(r)); P �2 (q2))]). By de�nition (and uniformity)Eq22Q2 [�q2 ] = Er2
[�q2(r)] � �. The quantity of interest to us is Er2
S [�q2(r)] = Eq22S [�q2 ]. Astraightforward application of Cherno� bounds shows that the probability that this quantity ex-ceeds (3=2)� is exp(��N1). Taking the union bound over all possible P1's, we infer that the prob-ability that there exists a P1; P2 such that Er 
S [Verdict(r; P1(q1(r)); P2(q2(r)))] > (3=2)� is atmost exp(��N1) � jAjjQ1j. Thus, using N1 = c1� �jQ1j log jAj+ log 1
� (for some absolute constantc1), it follows that !(V jS;
S ) � (3=2)� with probability at least 1� 
2 (over the choices of S). Thelemma follows.94.2 Improved 3-Prover Proof System for NPWe now de�ne the more general notion of a constant-prover one-round interactive proof system(MIP).De�nition 4.4 For positive reals c; s, integer p and functions r; a : Z+ ! Z+, we say that alanguage L 2 MIPc;s[p; r; a] (or, L has a p-prover one-round proof system with answer length a)if there exists a probabilistic polynomial-time veri�er V interacting with p provers P1; : : : ; Pp suchthatOperation: On input x of length n, the veri�er tosses r(n) coins, generates queries q1; : : : ; qp toprovers P1; :::; Pp, obtain the corresponding answers a1; : : : ; ap 2 f0; 1ga(n), and outputs aBoolean verdict that is a function of x, its randomness and the answers a1; : : : ; ap.Completeness: If x 2 L then there exist strategies P1; : : : ; Pp such that V accepts their response withprobability at least c.Soundness: If x 62 L then for every sequence of prover strategies P1; : : : ; Pp, machine V acceptstheir response with probability at most s, which is called the soundness error.Harsha and Sudan [15] presented a randomness e�cient 3-prover one-round proof system withanswer length poly(log n) and randomness complexity (3 + �) log2 n, where � > 0 is an arbitraryconstant and n denotes the length of the input. Here we reduce the randomness required by theirveri�er to (1 + o(1)) log n.Before going on we introduce a notion that will be useful in this section | namely, the notionof a length preserving reduction. For a function ` : Z+ ! Z+, a reduction is `(n)-length preservingif it maps instances of length n to instances of length at most `(n).Lemma 4.5 For every � > 0 and functions m(n), `(n) satisfying `(n) =
(m(n)
(m(n))n1+
(1=m(n))), SAT reduces in probabilistic polynomial time, under `(n)-length preserving reductions to a promise problem � 2 MIP1;�[3; (1 + 1=m(n)) log n +O(m(n) logm(n));m(n)O(1)nO(1=m(n))].8But, the assertion does not hold for most (S; T )-sampled veri�ers.9Indeed, we have ignored the e�ect of sampling 
S ; that is, the relation of !(V jS;
S ) and !(V jS;T ), for a randomT � 
S of size N2. Here, we �x any choice of P1 : Q1 ! A and P2 : S ! A. Again, applying Cherno� bounds, we seethat the probability that the restrictions of 
S to T lead to acceptance with probability more than !(V jS;
S )+(�=2)is exp(��N2). Taking the union bound over all choices of P1 and P2, we infer that !(V jS;T ) > !(V jS;
S ) + (�=2)with probability at most exp(��N2) � jAjjQ1j+jSj. Thus, using N2 = c2� (jSj log jAj + log(1=
)), we conclude that!(V jS;T ) � !(V jS;
S ) + (�=2) with probability at least 1� 
2 (over the choices of T ).14



Before proving this lemma, let us see some special cases obtained by setting m(n) =poly(log log n) and m(n) = plog n, respectively in the above lemma.Corollary 4.6 For every � > 0 and every polynomial p, there exists a promise problem � 2MIP1;�[3; (1+1=p(log log n)) � log n; 2poly(log log n)] such that SAT reduces probabilistically to � undern1+(1=p(log log n))-length preserving reductions.Corollary 4.7 For every � > 0, there exists a promise problem � 2 MIP1;�[3; (1 +O((log log n)=plog n)) � log n; 2O(plog n log log n)], such SAT reduces probabilistically to � undern1+O((log log n)=plog n)-length preserving reductions.We defer the proof of Lemma 4.5 to Section 4.2.4. Here we give an overview of the proof steps.We modify the proof of [15] improving it in two steps. The proof of [15] �rst reduces SAT to aparametrized problem they call GapPCS under `0(n)-length preserving reductions for `0(n) = n1+
for any 
 > 0. Then they give a 3-prover MIP proof system for the reduced instance of GapPCSwhere the veri�er tosses (3 + 
) log `0(n) random coins.Our �rst improvement shows that the reduction of [15] actually yields a stronger reductionthan stated there, in two ways. First we note that their proof allows for smaller values of `(n) thanstated there, allowing in particular for the parameters we need. Furthermore, we notice that theirresult gives rise to instances from a restricted class, for which slightly more e�cient protocols canbe designed. In particular, we can reduce the size of the smallest prover in their MIP protocol toroughly `(n) (as opposed to their result which gives a prover of size `(n)1+
 for arbitrarily small
). These improvements are stated formally in Lemmas A.2 and A.3 and Corollary A.4.The second improvement is more critical to our purposes. Here we improve the randomnesscomplexity of the MIP veri�er of [15], by applying a random truncation. To get this improvementwe need to abstract the veri�er of [15] (or the one obtained from Corollary A.4). This is donein Section 4.2.1. We then show how to transform such a veri�er into one with (1 + o(1)) log nrandomness. This transformation comes in three stages, described in Sections 4.2.2-4.2.4.4.2.1 Abtracting the veri�er of Corollary A.4The veri�er of Corollary A.4 interacts with three provers which we'll denote P , P1, and P2. We willlet Q, Q1, and Q2 denote the question space of the provers respectively; and we'll let A, A1, and A2denote the space of answers of the provers respectively. Denote by Vx(r; a; a1; a2), the acceptancepredicate of the veri�er on input x, where r denotes the veri�er's coins, and a (resp., a1, a2) theanswer of prover f = P (resp., P1, P2). (Note: The value of Vx is 1 if the veri�er accepts.) We'llusually drop the subscript x unless needed. Let us denote by q(r), (resp. q1(r), q2(r)) the veri�er'squery to P (resp., P1, P2) on random string r 2 
, where 
 denotes the space of veri�er's coins.We note that the following properties hold for the 3-prover proof system given by Corollary A.4.1. The acceptance-predicate decomposes: V (r; a; a1; a2) = V1(r; a; a1) ^ V2(r; a; a2), where V1and V2 are predicates.2. Sampleability: The veri�er only tosses O(log n) coins (i.e., 
 = f0; 1gO(log n)). Thus, it isfeasible to sample from various speci�ed subsets of the space of all possible coin outcomes.For example, given S1 � Q1, we can uniformly generate in poly(n)-time a sequence of coinsr such that q1(r) 2 S1. 15



3. Uniformity: The veri�er's queries to prover P (resp. P1; P2) are uniformly distributed overQ (resp. Q1; Q2).4. If x is a no-instance, then for V = Vx, for small � and every possible P strategy, there existsa subset Q0 = Q0P � Q such that for every P1; P2 the following two conditions holdsPrr [q(r) 2 Q0 ^ V1(r; f(Q(r)); P1(Q1(r)))] < �2 (2)Prr [q(r) 62 Q0 ^ V2(r; f(Q(r)); P2(Q2(r)))] < �2 (3)4.2.2 The 3-prover MIP: Stage IWe start by modifying the veri�er of Corollary A.4 so that its questions to provers P1 and P2 are\independent" (given the question to the prover P ). That is, we de�ne a new veri�er, denoted W ,that behaves as follows� On input x, let V = Vx be the veri�er's predicate and let V1 and V2 be as given in Property (1).� Pick q 2 Q uniformly and pick coins r1 and r2 uniformly and independently from the setfr 2 
jq(r) = qg. [Here we use sampleability with respect to a speci�c set of r's.]� Make queries q (which indeed equals q(r1) = q(r2)), q1 = q1(r1) and q2 = q2(r2), to P , P1and P2, receiving answers a = P (q), a1 = P1(q1) and a2 = P2(q2).� Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).Proposition 4.8 W has perfect completeness and soundness at most �.Proof: The completeness is obvious, and so we focus on the soundness. Fix a no-instance x andany set of provers P , P1 and P2. Let Q0 = Q0P be the subset of Q as given by Property (4) of theMIP. The probability that W accepts is given byPrq;r1;r2[EV1(r1) ^EV2(r2)] (4)where EV1(r1) = V1(r1; P (q); P1(q1(r1))) and EV2(r2) = V2(r2; P (q); P2(q2(r2))). Note that q =q(r1) = q(r2), where (q and) r1; r2 are selected as above. Thus, EVi only depends on ri, and theshorthand above is legitimate. Note that the process of selecting r1 and r2 in (4) is equivalent toselecting each of them uniformly (though not independently). We thus upper bound (4) byPrr1 [q(r1) 2 Q0 ^EV1(r1)] + Prr2 [q(r2) 62 Q0 ^EV2(r2)]:Using Property (4), each term above is bounded by �=2 and thus the sum above is upper-boundedby �.4.2.3 The 3-prover MIP: Stage IIIn the next stage, the crucial one in our construction, we reduce the size of the provers P1 and P2by a random truncation. For sets S1 � Q1 and S2 � Q2, we de�ne the (S1; S2)-restricted veri�erWS1;S2 as follows:� On input x, let V = Vx be the veri�er's predicate and let V1 and V2 be as given in Property (1).16



� Pick q 2 Q uniformly and for i 2 f1; 2g pick coins ri's uniformly and independently from thesets fr2
jq(r)=q^qi(r)2Sig. If either of the sets is empty, then the veri�er simply accepts.[Here, again, we use sampleability of subsets of the veri�er coins.]� Make queries q = q(r1) = q(r2), q1 = q1(r1) and q2 = q2(r2), to P , P1 and P2, receivinganswers a = P (q), a1 = P1(q1) and a2 = P2(q2).� Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).As usual it is clear that the veri�er WS1;S2 has perfect completeness (for every S1 and S2). Webound the soundness of this veri�er, for most choices of su�ciently large sets S1 and S2:Lemma 4.9 For randomly chosen sets S1; S2 of size O(jQjmaxflog jAj; log jQjg), with probabilityat least 4=5, the soundness error of the veri�er WS1;S2 is at most 6�.Proof: We start with some notation: Recall that 
 denotes the space of random strings of theveri�er V (of Section 4.2.1). For i 2 f1; 2g and a �xed set Si, let Xi denote the distribution on
 induced by picking a random string r 2 
 uniformly, conditioned on qi(r) 2 Si (i.e., uniform infr2
jqi(r)2Sig). Similarly, let Yi denote the distribution on 
 induced by picking a query q 2 Quniformly and then picking ri uniformly at random from the set fr2
jq(r)=q^qi(r)2Sig. We usethe notation ri D to denote that ri is picked according to distribution D. Note that the veri�erWS1;S2 picks r1 Y1 and r2 Y2 (depending on the same random q 2 Q). In our analysis, we willshow that, for a random Si, the distributions Xi and Yi are statistically close, where as usual thestatistical di�erence between Xi and Yi is de�ned as maxT�
 fPrri Xi [ri 2 T ]� Prri Yi [ri 2 T ]g.We will then show that the veri�er has low soundness error if it works with the distributions X1 andX2. This informal description is made rigorous below by considering the following \bad" events(over the probability space de�ned by the random choices of S1 and S2):BE1: The statistical di�erence between X1 and Y1 is more than �.BE2: The statistical di�erence between X2 and Y2 is more than �.BE3: There exist P and P1 such that for Q0 = Q0P (as in Property (4) of Section 4.2.1)Prr1 X1 �(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))� > 2�:BE4: There exist P and P2 such that for Q0 = Q0P (as in Property (4) of Section 4.2.1)Prr2 X2 �(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))� > 2�:Below we will bound the probability of these bad events, when S1; S2 are chosen at random. But�rst we show that if none of the bad events occur, then the veri�er WS1;S2 has small soundnesserror. Let (r1; r2) WS1;S2 denote a random choice of the pair (r1; r2) as chosen by the veri�erWS1;S2 . Fix proofs P; P1; P2 and let Q0 be as in Property (4). Then,Pr(r1;r2) WS1;S2 [V1(r1; P (q(r1)); P1(q1(r1))) ^ V2(r2; P (q(r2)); P2(q2(r2)))]� Prr1 Y1 [(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))]+Prr2 Y2 [(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))]� Prr1 X1 [(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))] + �+Prr2 X2 [(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))] + � [:BE1 and :BE2]� 6� [:BE3 and :BE4]17



Claim 4.9.1 The probability of event BE1 (resp., BE2) is at most 1=20.Proof: To estimate the statistical di�erence between Xi and Yi, note that sampling ri according toXi is equivalent to the following process: select r0i Xi (i.e., r0i is selected uniformly in frjqi(r)2Sig),set q = q(ri), and pick ri uniformly from the set frj(q(r)= q) ^ (qi(r)2Si)g. Thus, the statisticaldi�erence between Xi and Yi equals 12 �Pq2Q jPrri Xi [q(ri) = q]� Prri Yi [q(ri) = q]j, which in turnequals 12 �Pq2Q ���Prri Xi [q(ri) = q]� 1jQj���. To bound this sum, we bound the contribution of eachof its terms (for a random Si). Fixing an arbitrary q 2 Q, we consider the random variablePrr Xi[q(r) = q] = jfrj(q(r)=q) ^ (qi(r)2Si)gjjfrjqi(r)2Sigj(as a function of the random choice of Si). The expectation of this quantity is 1jQj . A simpleapplication of Cherno� bounds shows that, with probability at least exp(��jSij=jQj), this randomvariable is in (1 � �) 1jQj . Thus, for jSij = c � jQj log jQj (where c = O(1=�)), the probability thatPrr Xi [q(r) = q] is not in [(1 � �) 1jQj ] is at most 120jQj . By the union bound, the probability thatsuch a q exists is at most 120 , and if no such q exists then the statistical di�erence is bounded by atmost �.Claim 4.9.2 The probability of event BE3 (resp., BE4) is at most 1=20.Proof: We will bound the probability of the event BE3. The analysis for BE4 is identical. Bothproofs are similar to the proof of Lemma 4.3.Fix P and let Q0 be the set as given by Propery (4) of Section 4.2.1. We will show thatPrS1 �9P1 s.t. Prr1 X1 �(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))� � 2�� � 120 jAj�jQj (5)The claim will follow by a union bound over the jAjjQj possible choices of P . For each �xed P (andthus �xed Q0), note that there is an optimal prover P1 = P �1 that maximizes the quantity �q1 def=Prrjq1(r)=q1 [(q(r) 2 Q0)^V1(r; P (q(r)); P1(q1))] for every q1 2 Q1. Furthermore, by Proposition 4.8,it holds that Eq12Q1 [�q1 ] = �. Applying Cherno� bounds, we get that the probability that whenwe pick jS1j elements from Q1 uniformly and independently, their average is more than twice theexpectation is at most exp(�jS1j). Thus if jS1j � c � jQj log jAj for some large enough constant c,then this probability is at most 120 jAj�jQj as claimed in Equation (5). The claim follows.Lemma 4.9 follows now since we have that some bad event (i.e., one of the four BEi's) occurswith probability at most 4=20, and otherwise the soundness error is indeed as claimed.4.2.4 The 3-prover MIP: Stage IIIHaving reduced the sizes of the three prover oracles, it is straightforward to reduce the amount ofrandomness used by the three provers. Below we describe a reduced randomness veri�er WS1;S2;Twhere Si � Qi and T � f(r1; r2)j(q(r1) = q(r1)) ^ (qi(ri) 2 Si;8i 2 f1; 2g)g.� On input x, let V = Vx be the veri�er's predicate and let V1 and V2 be as given in Property (1).� Pick (r1; r2) 2 T uniformly at random. [This uses the sampleability property.]� Compute q = q(r1) = q(r2), and make queries q, q1 = q1(r1) and q2 = q2(r2), to P , P1 andP2, receiving answers a = P (q), a1 = P1(q1) and a2 = P2(q2).18



� Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).It is obvious that the veri�er uses log2 jT j random bits. It is also easy to see (as in the second partof the proof of Lemma 4.3) that if T is chosen randomly of su�ciently large size then its soundnessremains low. We skip this proof, stating the resulting lemma.Lemma 4.10 Let s def= O(jQjmaxflog jAj; log jQjg) and t def= O(jQj log jAj + jS1j log jA1j +jS2j log jA2j). Suppose that S1 and S2 are uniformly selected s-subsets of Q1 and Q2, and thatT is a uniformly selected t-subset of f(r1; r2)j(q(r1) = q(r1)) ^ (qi(ri) 2 Si;8i 2 f1; 2g)g. Then,with probability at least 23 , the veri�er WS1;S2;T has soundness error at most 7�.Using Lemma 4.10, we now prove Lemma 4.5.Proof [of Lemma 4.5]: Fix �0 = �=7. Let V be the 3-prover veri�er for SAT as obtained fromCorollary A.4. In particular, V has perfect completeness and soundness �0. The size of the smallestprover is `0(n) = m(n)O(m(n)) �n1+O(1=m(n)), the answer length is bounded by m(n)O(1) �nO(1=m(n)),and V satis�es the properties listed in Section 4.2.1. For sets S1; S2; T , let WS1;S2;T be the veri�erobtained by modifying V as described in the current section. Consider the promise problem �whose instances are tuples (�; S1; S2; T ) where an instance is a yes-instance if WS1;S2;T accepts �with probability one, and the instance is a no-instance if WS1;S2;T accepts with probability at most�. We note that an instance of � of size N has a 3-prover proof system using at most log2N randomcoins, perfect completeness and soundness error 7�0 = � (since WS1;S2;T is such a veri�er). Now,consider the reduction that maps an instance � of SAT of length n to the instance (�; S1; S2; T ),where S1; S2 are random subsets of queries of V of size O(`0(n) � nO(1=m(n))) and T is a randomsubset of size O(`0(n) � nO(1=m(n))) � nO(1=m(n)) = `(n) of the random strings used by the veri�erWS1;S2 . This reduction always maps satis�able instances of SAT to yes-instances of � and, byLemma 4.10, with probability at least 23 , it maps unsatis�able instances of SAT to no-instances of�.4.3 Nearly linear PCPsApplying state-of-the-art composition lemmas to the MIP constructed in the previous subsectiongives our �nal results quite easily. In particular, we use the following lemmas.Lemma 4.11 (cf. [3] or [5, 18]) For every �1 > 0 and p <1, there exists � > 0 and constantsc1; c2; c3 such that for every r; a : Z+ ! Z+,MIP1;�[p; r; a] � MIP1;�1 [p+ 3; r + c1 log a; c2(log a)c3 ]:We apply the lemma above repeatedly till the answer lengths become poly log log log n. Then toterminate the recursion, we use the following result of [15].Lemma 4.12 (Lem. 2.6 in [15]) For every � > 0 and p <1, there exists a 
 > 0 such that forevery r; a : Z+ ! Z+, MIP1;
 [p; r; a] � PCP1; 12+�[r +O(2pa); p+ 7]:Combining the above lemmas with the nearly-linear 3-IP obtained in the previous subsection, weobtain:Theorem 4.13 (Our main PCP result): 19



1. For every � > 0, SAT reduces probabilistically, under n1+O(1= log logn)-length preserving reduc-tions to a promise problem � 2 PCP1; 12+�[(1 +O(1= log log n)) � log n; 16].2. For every � > 0, SAT reduces probabilistically, under n1+O(plog n log log n)-length preservingreductions to a promise problem � 2 PCP1; 12+�[(1 +O(log log n=plog n)) � log n; 19].Part 2 implies Theorem 2.3.Proof: The �rst part is obtained by starting with Corollary 4.6, and applying Lemma 4.11 twiceto get a 9-prover MIP system with answer lengths poly(log log log n). Applying Lemma 4.12 tothis 9-prover proof system, gives the desired 16-bit PCP. For the second part, we start with Corol-lary 4.7 and apply Lemma 4.11 thrice, obtaining a 12-prover MIP system with answer lengthspoly(log log log n). Applying Lemma 4.12 gives the 19-bit PCP.5 Nearly-linear-sized codes from PCPsHere we augment the results of Section 3 by constructing nearly-linear-sized locally-testable codes.We do so by starting with the randomly truncation of the FS-code from Section 3.2, and applyingPCP techniques to reduce the alphabet size (rather than following the paradigm of concatenatedcodes as done in the rest of Section 3). Speci�cally, in addition to encoding individual alphabetsymbols via codewords of smaller alphabet, we also augment the new codewords with small PCPsthat allow to emulate the local-tests of the original code.5.1 Problems with using a PCP directlyBefore turning to the actual constructions, we explain why merely plugging-in a standard (inner-veri�er) PCP will not work. We start with the most severe problem, and then turn to additionalones.Non-uniqueness of the encoding: As discussed in the Introduction, the soundness propertyof standard PCPs does not guarantee unique encodings of witnesses, but rather that PCP oraclesaccepted with high probability can be decoded into some witnesses. Indeed, current PCPs tend todo exactly this, due to a gap between the canonical oracles (used in the completeness condition) thatencodes information as polynomials of some given individual degree, and the soundness conditionthat refers to the total degree of the polynomial.10Linearity: We wish the resulting code to be linear, and it is not clear whether this property holdswhen composing a linear code with a standard inner-veri�er. Since we start with a linear code (anda linear codeword test), there is hope that the proof oracle added to the concatenated code willalso be linear. Indeed, with small modi�cations of standard constructions, this is the case.10In basic constructions of codes, this is not a real problem since we can de�ne the code to be the collection of allpolynomials of a given total degree as opposed to polynomials of speci�ed individual degree bound. However, whenusing such a code as the inner code in composition, we cannot adopt the latter solution because we only know howto construct adequate inner-veri�ers for inputs encoded as polynomials of individually-bouded degree (rather thanbounded total degree).
20



Other technical problems: Other problems arise in translating some of the standard\complexity-theoretic tricks" that are used in all PCP constructions. For example, PCP con-structions are typically described in terms of a dense collection of input lengths (e.g., the inputlength must �t jHjm for some suitable sizes of jHj and m (i.e., m = �(jHj= log jHj)), and areextended to arbitrary lengths by padding (of the input). In our context, such padding, dependingon how it is done, either permits multiple encodings (of the same information), or forces us tocheck for additional conditions on the input (e.g., that certain bits of the input are zeroes). Othercomplications arise when one attempts to deal with \auxiliary variables" that are introduced ina process analogous to the standard reduction of veri�cation of an arbitrary computation to thesatis�ability of a 3CNF expression.This forces us to rework the entire PCP theory, while focusing on unique encodings and onobtaining \linear PCP oracles" when asked to verify homogenous linear conditions on the input. Forthe purposes of constructing short locally testable codes, it su�ces to construct veri�ers verifyingsystems of homogenous linear equations and this is all we'll do (though we could verify a�neequations equally easily). In what follows, whenever we refer to a linear system, it will be impliedthat the constraints are homogenous.5.2 Inner veri�ers for linear systems: De�nition and compositionWe use PCP techniques to transform linear locally testable codes over large alphabet into ones oversmaller alphabet. Speci�cally, we adapt the construction of inner-veri�ers suct that using it to testlinear conditions on the input-oracles will result in testing linear conditions on the proof oracle.The basic ingredient of our proofs is the notion of an inner veri�er for linear codes. A (p; `)!(p0; `0) inner veri�er is designed to transform an F -linear code over an alphabet � = F ` that istestable by p queries, into an F -linear code (of a typically longer size) over an alphabet �0 = F `0that is testable by p0 queries, where typically `0 � ` (but p0 > p). Informally, the inner-veri�erallows to emulate a local test in the given code over �, by providing an encoding (over �0) of eachsymbol in the original codeword as well as auxiliary proofs (of homogenous linear conditions) thatcan be veri�ed based on a constant number of queries.Verifying that a vector satis�es a conjunction of (homogenous) linear conditions is equivalent toverifying that it lies in some linear subspace (i.e., the space of vectors that satisfy these conditions).For integerm and �eld F , we let LF;m denote the set of all linear subspaces of Fm. We'll assume thatsuch a subspace L 2 LF;m is speci�ed by a matrix M 2 Fm�m such that L = fx 2 FmjMx = ~0g.According to convenience, we will sometimes say that a vector lies in L and sometimes say that itsatis�es the conditions L.De�nition 5.1 For a �eld F , and positive integers p; `; p0; `0, and positive reals � and 
, a(F; (p; `)! (p0; `0); �; 
)-linear inner veri�er consists of a triple (E;P;Verdict) such that� E : F ` ! (F `0)n is an F -linear code of minimum distance at least �n over the alphabet F `0.� P : LF;p` � (F `)p ! (F `0)N , is a proving function that satis�es the completeness conditionbelow.� Verdict is an oracle machine that gets as input L 2 LF;p` and (coins) R 2 f0; 1gr and hasoracle access to p+1 vectors, denoted X1; : : : ;Xp 2 (F `0)n and Xp+1 2 (F `0)N , such that eachoracle call is answered by one F `0-coordinate of the corresponding oracle vector.11 MachineVerdict satis�es the following properties:11That is, query j 2 [n] (resp., j 2 [N ]) to oracle i 2 [p] (resp., i = p+ 1) is answered by the jth element of Xi.21



Queries and Linearity: For every choice of L 2 LF;p` and R 2 f0; 1gr, machine Verdict makesat most p0 oracle calls to the oracles X1; : : : ;Xp+1. Furthermore, for every R and L, theacceptance condition of Verdict is a conjunction of F -linear constraints on the responsesto the queries.Completeness: If the p �rst oracles encode a p-tuple of vectors over F ` that satis�es L and ifXp+1 is selected adequately then Verdict always accepts.That is, for every x1; : : : ; xp 2 F ` and L 2 LF;p` such that (x1; : : : ; xp) 2 L, and forevery R 2 f0; 1gr, it holds that Verdict(L;R;E(x1); : : : ; E(xp); P (L; x1; : : : ; xp)) = 1.Augmented Soundness: If the p �rst oracles are far from encoding a p-tuple of vectors overF ` that satis�es L then Verdict rejects for most choices of R, no matter which Xp+1 isused. Furthermore, if the p �rst oracles encode a p-tuple that satis�es L but Xp+1 is farfrom the unique proof determined by P then Verdict rejects for most choices of R.Formally, for X1; : : : ;Xp 2 (F `0)n, Xp+1 2 (F `0)N , L 2 LF;p`, and (x1; : : : ; xp) 2 L, let�(X1; : : : ;Xp+1; L; x1; : : : ; xp) denote the maximum distance of Xi from the correspondingadequate encoding (i.e., E(xi) if i � p and P (L; x1; : : : ; xp) otherwise). That is,�(X1; : : : ;Xp+1; L; x1; : : : ; xp) = max(maxi2[p] ��(Xi; E(xi))gn � ; �(Xp+1; P (L; x1; : : : ; xp))N )Then, for every X1; : : : ;Xp 2 (F `0)n and � 2 (F `0)N ,PrR [Verdict(L;R;X1; : : : ;Xp;�) = 0] � 
�min(�=2; min(x1 ;:::;xp)2L f�(X1; : : : ;Xp+1; L; x1; : : : ; xp)g)Such a veri�er is said to use r coins, encodings of length n and proofs of length N .Typically, we aim at having N;n and 2r be small functions of ` (i.e., polynomial or even almost-linear in `). De�nition 5.1 is designed to suit our applications. Firstly, the augmented notion ofsoundness that refers also to \non-canonical" proofs of valid statements �ts our aim of obtaining acode that is locally checkable (because it guarantees rejection of sequences that are not obtained bythe unique coding transformation). Indeed, this augmentation of soundness is non-standard (andarguablly unnatural) in the context of PCP. Secondly, De�nition 5.1 only handles the veri�cationof linear conditions, and does so while only utilizing linear tests. Indeed, this �ts our aim oftransforming linear codes over large alphabet (i.e., the alphabet F `) to linear codes over smalleralphabet (i.e., F `0).The utility of linear inner veri�ers in constructing locally-testable codes is demonstrated by thefollowing two propositions, which follow immediately from De�nition 5.1. The �rst propositionmerely serves as a warm-up towards the second one.Proposition 5.2 A (F; (1; `) ! (p0; `0); �; 
)-linear inner veri�er implies the existence of a linearlocally-testable code of relatoive distance at most �=2 over the alphabet � = F `0 mapping F ` = �`=`0to �m for m = O(p0 � (n+N)), where n and N are the corresponding lengths of the encoding andthe proof used by the veri�er. Speci�cally, the code is testable with p0 queries, with the rejectionprobability of a word at distance � from any codeword being at least 
(
 � �).Proof: Let V = (E;P;Verdict) be the (F; (1; `) ! (p0; `0); �; 
)-linear inner veri�er, where E :F ` ! (F `0)n and P : LF;` � F ` ! FN . Below we assume that n < N (which is typically the22



case).12 The locally testable encoding E0 of a string x 2 �`=`0 �= F ` equals the (dN=ne + 1)-longsequence (E(x); : : : ; E(x); P (L; x)), where L = F ` (i.e., L is satis�ed by every vector) and E(x) isreplicated dN=ne times. The relative distance of the code given by this encoding is at least �=2.To test a potential codeword (X1; : : : ;XdN=ne; Y ), we perform at random one out of two kinds oftests: With probability 12 we test that the N=n strings Xj 's are replications. We do so by pickinga random index i 2 [n], and two distinct indices j1; j2 2 [N=n], and testing that (Xj1)i = (Xj2)i.With the remaining probability we pick a random test as per the veri�er V , replacing calls to the�rst oracle with corresponding probes to one of the �rst N=n oracles (i.e., one of the Xi's), selectedat random. (Oracle calls to the proof oracle of V are replaced by corresponding probes to Y .) Itcan be veri�ed that words at distance � from codewords are rejected with probability 
(
�).The following proposition will be used to compose locally testable codes over large alphabetswith suitable linear inner veri�ers to obtain locally testable codes over smaller alphabets. Speci�-cally, given a q-query testable F -linear code over the alphabet � = F b, we wish to use an adequateencoding (over �0 = F a) and an inner-veri�er in order to emulate the local conditions checked bythe test. The latter conditions are subspaces of F q�b, and so we need a (F; (q; b)! (p; a); �; 
)-linearinner veri�er in order to verify them.Proposition 5.3 (composing an outer code with an inner-veri�er):� Let C be a locally testable F -linear code over the alphabet � = F b mapping �K to �N , andsuppose that the codeword test uses R coins and q queries.� Let V = (E;P;Verdict) be a (F; (q; b) ! (p; a); �; 
)-linear inner veri�er, where E : F b !(F a)n and P : LF;q�b � (F b)q ! (F a)m.Then, there exists a locally testable code over the alphabet �0 = F a mapping �K � �0b�K=a to �0Mfor M = O(Nn+2Rm). Furthermore, the resulting code has distance at least �nD, where D is thedistance of C.Proof: The new code consists of two parts (which are properly balanaced). The �rst part isobtained by encoding each �-symbol of the codeword of C by the code E, whereas the second partis obtained by providing proofs (for the inner-veri�er) for the validity of each of the 2R possiblechecks that may be performed by the codeword test. Speci�cally, x 2 �K is encoded by thesequence �E(y1); : : : ; E(yN );P (L0R ; yi0R;1 ; : : : ; yi0R;q ); : : : ; P (L1R ; yi1R;1 ; : : : ; yi1R;q)�where y1 � � � yN = C(x), and for every ! 2 f0; 1gR, on coins !, the codeword test (for C) probeslocations i!;1; :::; i!;q and veri�es the linear condition L!. Indeed, as in the proof of Proposition 5.3,the above should be modi�ed such that the two parts of the new codeword (i.e., the E-part andthe P -part) have about the same length.13Testing the new code is done by emulating the codeword test of C. That is, to test a potentialcodeword (X1; :::;XN ;Y0R ; :::; Y1R), we select uniformly ! 2 f0; 1gR, determine the correspondingcondition (i!;1; :::; i!;q; L!) checked by the original codeword test, and invoke the inner-veri�er Von input L! while providing V with (coins and) oracle access to Xi!;1 ; :::;Xi!;q and Y!.12Otherwise, one can augment P (L; x) with E(x) and maintain the soundness by testing consistency between thetwo copies of E(x) (as done below).13As before, the modi�cation is via replication, and the new codeword test should check that the replication isproper. 23



Whereas Proposition 5.3 refers to the composition of an outer code with an inner-veri�er yieldinga new code, the following lemma refers to composing two inner-veri�ers yielding a new inner-veri�er.Indeed, we could have worked only with Proposition 5.3 (or alternatively only with Lemma 5.4 andProposition 5.2), but it seems more convenient to (have and) work with both.14Lemma 5.4 (composition of linear inner-veri�ers): Let 
1; 
2 � 1. Given a (F; (p; `) !(p0; `0); �1; 
1)-linear inner veri�er and a (F; (p0; `0) ! (p00; `00); �2; 
2)-linear inner veri�er, it ispossible to construct a (F; (p; `)! (p00; `00); �1�2; 
1
2�2=6)-linear inner veri�er. Furthermore, if theith given veri�er uses ri coins, encoding length ni and proof length Ni, then the resulting innerveri�er uses r1 + r2 coins, encoding length n1 � n2 and proof length N1 � n2 + 2r1 �N2.Proof: We start with the construction. Given a (F; (p; `) ! (p0; `0); r1; �1; 
1) inner veri�er V1 =(E1; P1;Verdict1) and a (F; (p0; `0) ! (p00; `00); r2; �2; 
2) inner veri�er V2 = (E2; P2;Verdict2), wede�ne their composition V1 
 V2 = (E;P;Verdict) as follows� E : F ` ! (F `00)n1�n2 is the concatenation of the encoding functions E1 : F ` ! (F `0)n1 andE2 : F `0 ! (F `00)n2 . That is, E(x1; : : : ; x`) = (E2(y1); : : : ; E2(yn1)), where (y1; : : : ; yn1) def=E1(x1; : : : ; x`).� P = (P (1); P (2)) is obtained as follows: Given L; x1; : : : ; xp, the �rst part of the proof (i.e.,P (1)(L; x1; : : : ; xp)) is the symbol-by-symbol encoding under E2 of P1(L; x1; : : : ; xp). Thatis, P (1)(L; x1; : : : ; xp) = (E2(y1); : : : ; E2(yN1)), where (y1; : : : ; yN1) def= P1(L; x1; : : : ; xp). Thesecond part of the proof (i.e., P (2)(L; x1; : : : ; xp)) consists of 2r1 blocks corresponding to eachof the 2r1 possible checks of Verdict1. For each R1 2 f0; 1gr1 , the block corresponding to R1 inP (2)(L; x1; : : : ; xp) is the value P2(LR1 ; z1; : : : ; zp0), where z1; : : : ; zp0 denote the p0 coordinatesof E1(x1); : : : ; Ep(xp) and P1(L; x1; : : : ; xp) that are inspected by Verdict1(L;R1; : : :) and LR1is the linear conjunction of F -linear conditions checked by Verdict1.Note that the proof length is N1 �n2+2r1 �N2, where the �rst (resp., second) term correspondsto P (1) (resp., (P (2)).� Verdict(L; (R1; R2);X1; : : : ;Xp;�) is computed as follows: Let q1; : : : ; qp0 be the queries thatthe function Verdict1(L;R1; : : :) makes into its oracles X 01; : : : ;X 0p;�0 on randomness R1,and let L0 denote the conjunction of linear equations it needs to verify on its responses.Then Verdict now applies the function Verdict2(L0; R2; : : :) on input L0 to the sub-oraclescorresponding the E2-encodings of the p0 queries determined by Verdict1. That is, if thejth query (i.e., qj) of Verdict1 is to X 0i then Verdict identi�es the jth oracle of Verdict2(to be denoted X 00j ) with block qj of Xi (which supposedly encodes the corresponding sym-bol of X 0i). Otherwise (i.e., the jth query of Verdict1 is to �0), Verdict identi�es the jthoracle of Verdict2 (i.e., X 00j ) with block qj of the �rst part of � = (�(1);�(2)) (which sup-posedly encodes the corresponding symbol of �0). Finally, Verdict identi�es the provingoracle of Verdict2 (to be denoted �00) with the block of �(2) that corresponds to R1, invokesVerdict2(L0; R2;X 001 ; :::;X 00p0 ;�00), and Verdict accepts if and only Verdict2 accepts.We now argue that the composition satis�es the required properties. The main issue is the (aug-mented) soundness requirement. Suppose that X1; : : : ;Xp and Xp+1 = (�(1);�(2)) are p + 1oracles that are rejected by V1 
 V2(L; �; : : :) with probability (
1
2�2=6) � �, where � � �1�2.14An analogous comment may apply to the design of PCP system.24



We need to show that there exist vectors (x1; : : : ; xp) 2 L such that �(E(xi);Xi) � �n1n2 and�(P (L; x1; : : : ; xp);Xp+1) � �N , where N def= N1 � n2 + 2r1 �N2.Let D2 denote a unique decoding function for the inner encoding function E2 (i.e., D2(X) = xif �(E2(x);X) � (�2=2) � n2 and arbitrary otherwise). Applying this function to each of the n1blocks of Xi 2 (F `00)n2�n1 , for i 2 [p], we obtain corresponding Yi 2 (F `0)n1 . Similarly, applying thisfunction to each of the N1 blocks of �(1) 2 (F `00)n2�N1 , we obtain Yp+1 2 (F `0)N1 .For each R1, let use denote by p2(R1) the probability that on coins (R1; �) veri�er V rejects theabove oracles, where the probability is taken over V2's actions. Suppuse that p2(R1) < 
2�2=2, andconsider the p0 input oracles and the proof oracle (i.e., part of �(2)) determined by R1. Then, bythe (basic) soundness of V2, these p0 sub-oracles (which are blocks in X1; :::;Xp;�(1)) are at relativedistance at most p2(R1)=
2 from the E2-encoding of the corresponding blocks in Y1; :::; Yp; Yp+1.Furthermore, by the augmented soundness (of V2), the corresponding part of �(2), denoted ZR1 , isat relative distance at most p2(R1)=
2 from the value obtained by applying P2 to these p0 blocks(of the Yi's).Next, let p1 def= PrR1 [p2(R1) � 
2�2=2] Since ER1 [p2(R1)] = (
1
2�2=6)�, it follows that p1 �
1�=3. Now, since � � �1�2, the Yi's are p1=
1-close to a valid encoding of a p-tuple, denoted(x1; :::; xp), and a corresponding P1-proof (i.e., P1(L; x1; :::; xp)). We conclude that the Yi's are atrelative distance at most p1=
1 from the corresponding E1(xi)'s (resp., P1(L; x1; :::; xp)). De�ning�2(R1) def= p2(R1)=
2 if p2(R1) < 
2�2=2 and �2(R1) def= 1 otherwise, recall that the Yi's are at relativedistance at most ER1 [�2(R1)] from the corresponding blocks of the Xi's (resp., �(1)). Recall that,except for a p1 fraction of the R1's, it holds that p2(R1) < 
2�2=2, we obtain�(E(xi);Xi)n1n2 � �1(E1(xi); Yi)n1`0 + �2(E2(Yi);Xi)n1n2� p1
1 + ER1[�2(R1)]� �3 + �ER1[p2(R1)=
2] + p1� < �using 
1; 
2 � 1. The same holds with respect to the distance of �(1) from P (1)(L; x1; :::; xp).Finally, recall that for all but at most an p1 fraction of the R1's, the relative distance between ZR1(i.e., the corresponding block of �(2)) and the value obtained by applying P2 to the relevant blocks ofthe Yi's is at most �2(R1). It follows that the relative distance between �(2) from P (2)(L; x1; :::; xp)is at most p1 +ER1 [�2(R1)], which is bounded by � (as shown above).5.3 Linear inner veri�ers: Two constructionsThroughout the rest of this section, F2 def= GF (2). We start by presenting a linear inner veri�er thatcorresponds to the inner-most veri�er of Arora et al. [1]. Things are simpler in our context, sincewe only need to prove/verify linear conditions. Here these (linear) conditions refer to p elements ofF k2 , and are veri�ed by a (random) linear test that depends on p+ 1 bits (at random locations).Lemma 5.5 There exists a 
 > 0 such that for every pair of integers p, `, there exists a (F2; (p; `)!(p+1; 1); 12 ; 
)-linear inner veri�er. Furthermore, the length of the encoding is 2`, the length of theproof is 2p`, and the randomness in use equals 2p`.Proof: The encoding E is just the Hadamard encoding; and the proving function P (L; x1; : : : ; xp) isalso Hadamard encoding, this time of the vector (x1; : : : ; xp). To check whether X1; : : : ;Xp 2 F 2`225



encodes a vector in the linear subspace L given by a matrix M 2 F p`�p`2 , the verdict functionuniformly selects q1; : : : ; qp 2 F2̀ and a random linear combination v of the constraints of L, (i.e.,picks a random vector w 2 F p`2 and sets v = w � L), and veri�es that (X1)q1 � � � � (Xp)qp =(Xp+1)(q1;:::;qp)�v. The now standard analysis implies the soundness of this veri�er.The main result in this subsection is an adaptation of the intermediate inner-veri�er of Aroraet al. [1, Section 7]. Recall that the latter uses signi�cantly shorter encoding and proofs (and lessrandomness) than the simpler Hadamard-based veri�er, but veri�cation is based on (a constantnumber of) non-boolean answers.Lemma 5.6 There exists a 
 > 0 such that for every pair of integers p, `, there exists a (F2; (p; `)!(p + 3;poly(log p`)); 12 ; 
)-linear inner veri�er. Furthermore, the lengths of the encoding and theproofs are poly(p`), and the randomness in use equals O(p log `).Our construction is a modi�cation of an inner veri�er given by Arora et al. [1] (Proof of Theorem2.1.9, Section 7.5). We thus start by providing an overview of their proof and discuss the mainissues that need to be addressed in adapting their to a proof of Lemma 5.6.Overview of the proof of [1, Thm. 2.1.9]. We use the formalism of [15] to interpret the mainsteps in the proof of [1]. (In particular, whenever we refer to a step as \standard", such a step isperformed explicitly in [15].) As a �rst step in their proof, Arora et al. [1] reduce SAT to a GapPCSproblem (see Appendix for de�nition). Then, using a low-total-degree test, they give a 3-prover1-round proof system for NP languages. Finally they observe that the proof system with slightmodi�cations also works as proofs of properties of concatenated strings. Since the gap problemthat is target of the reduction is critical, let us review the completeness and soundness condition ofthe reduction. Recall that an instance of GapPCS consists of a sequence of algebraic constraints onthe values of a function g : Fm ! F . Each constraint is dependent on the value of g at (roughly)only polylogarithmically many inputs. The goal is to �nd a low-degree polynomial g that satis�esall or most constraints. In greater detail, the reduction consists of a pair of algorithms A and B,where A reduces instances of SAT to instances of GapPCS, and B takes as input an instance � ofSAT and an assignment a satisfying � and produces a polynomial g that satis�es all constraints ofA(�). The properties of the reduction are as follows:Completeness: If a is an assignment satisfying � then g = B(�; a) is a degree d bounded polynomialg that satis�es all constraints of A(�).Soundness: If � is not satis�able, then no total degree d bounded polynomial g satis�es even an �fraction of the constraints of A(�).Since the soundness condition only focusses on degree d polynomials (and not arbitrary functions),constructing such a reduction turns out to be easier than constructing a full PCP. On the otherhand, by combining this with a low-degree test it is easy to extend the soundness to all functions.One would hope to use the above reduction directly to get a locally testable code by setting � tobe some formula enforcing the linear conditions L. But as noted earlier, several problems come up:First, B is not a linear map, but this is �xed easily. The more serious issue is that the soundnesscondition permits the existence of low-degree functions that satisfy all constraints that are not ofthe form B(a) for any a. Indeed, in standard reductions the only functions of the form g = B(a)have a bound of d=m in the degree of each variable, but this is not something that the low-degreetest can test. Thus to apply the low-degree test and protocol of [1], we e�ectively augment thereduction from SAT to GapPCS so as to get the following soundness condition.26



Modi�ed Soundness: If g is a degree d polynomial that is not of the form g = B(a) for some asatisfying �, then g does not satisfy an � fraction of the constraints of A(�).To obtain the modi�ed soundness condition, we need to delve further into the reduction of [1] andthe transformation B implied there. Say that their reduction produces a GapPCS instance on mvariate polynomials.1. The m-variant polynomial g = B(a) in their transformation has the form g(i; ~x) = gi(~x), fori 2 [k], where the gi's are polynomials (of varying degrees) in m� 1 variables. Furthermore,g is a polynomial of degree k � 1 in the �rst variable.2. There exists a sequence of integers hmiii2[k] such that the polynomial gi only depends on the�rst mi � m� 1 variables.3. For every i 2 [k] there exists a sequence of integers hdi;jij2[m�1] such that gi(~x) has a degreebound of di;j � d in its jth variable.4. The polynomial g must evaluate to zero on some subset of the points (due to some paddingon input variables).5. Finally, over some subset of the points g evaluates to either 0 or 1. (Note that this conditionis not trivial since we will not be working with F2 but some extension �eld K of F2. Infact over the extension �eld, these constraints are not even linear. However since K is anextension of F2, these conditions turn out to be F2-linear.)In what follows we will, in e�ect, be augmenting the reduction from SAT to GapPCS so as toinclude all constraints of the above form. This will force the GapPCS problem to only havesatisfying assignments of the form g = B(a) and thus salvage the reduction. (In actuality, wewill be considering satisfying assignments that are presented as a concatenation of several piecesthat are individually encoded and the constraints of the system we build will be verifying thatthe \concatenation" of the various pieces is a satisfying assignment. Furthermore, we will only bylooking at systems of linear equations and not general satis�ability.)The actual construction (i.e., proof of Lemma 5.6): Recall that we need to describe thethree ingredients in the inner veri�er: the encoding function E : F2̀ ! (F `02 )n, the proving functionP : F p`2 ! (F `02 )N , and the oracle machine Verdict. We start by developing the machinery for theencoding function and the proving function. We do so by transforming the question of satisfactionof a system of linear equations into a seqeunce of consistency relationships among polynomials andusing this sequence to describe the encoding and proving function. Fix a linear space L 2 LF2;p`and vectors x1; : : : ; xp such that (x1; : : : ; xp) 2 L.Transforming the linear system. Our �rst step is to convert L into a conjunction of width-3 linearconstraints (i.e., constraints that apply to at most 3 variables at a time). So we introducea vector of auxiliary variables xp+1 on at most n = p2`2 variables and transform L into alinear space L0 of width 3-constraints such that (x1; : : : ; xp) 2 L if and only if there existsxp+1 such that (x1; : : : ; xp+1) 2 L0. (Note that L0 2 LF2;p`+n and jxij = ` if i � p whereasjxp+1j = n� `. We'll take care of this discrepency in the next step.)Low-degree extensions and dealing with padding. The low-degree extension is standard, but we needto deal with the padding it creates (and with the padding already done above). That is, we27



have to augment the linear system to verify that the padded parts of the input are indeedall-zero.We pick a �eld K = f�1 = 0; �2 = 1; : : : ; �jKjg, that extends F2, of su�ciently large size (to bespeci�ed later), and a subsetH = f�1; : : : ; �hg of size h = dlog ne and letm = dlog n= log log neso that hm � n. Next, we let x0i = xi0hm�n (i.e., we pad xi with enough zeroes so that itslength is exactly hm). Now, we let L00 be the F2-linear constraints indicating that the paddedparts of x0i are zero, and (x01; : : : ; x0p+1) correspond to the padding of (x1; : : : ; xp+1) 2 L0.Finally, as usual, we view x0i as a function from Hm ! f0; 1g and let f1; : : : ; fp+1 : Km ! Kbe m-variate polynomials of degree h� 1 in each of the m variables that extend the functionsdescribed by x01; : : : ; x0p+1. (We note for future reference that the encoding E function for xiwill essentially be the function fi.)Concatenating the p pieces (standard): Now let f : Km+1 ! K be the function given by f(�i; � � �) =fi(� � �) if i 2 f1; : : : ; p+ 1g that is a polynomial of degree p in its �rst variable.Low-degree extension of L00 (standard): Note that L00 imposes linear constraints of the form�1f(z1) + �2f(z2) + �3f(z3) for �1; �2; �3 2 f0; 1g and z1; z2; z3 2 f�1; : : : ; �p+1g �Hm on f .We extend L00 as a function L̂00 : K3(m+1)+3 ! K, by letting L00(�1; �2; �3; z1; z2; z3) = 1, for�1; �2; �3 2 H and z1; z2; z3 2 Hm+1 if the constraint �1f(z1)+�2f(z2)+�3f(z3) is imposedby L00, by letting L00(� � �) = 0 for other inputs from H3m+6, and letting L00 be a polynomialof degree h� 1 in all other variables.We comment that the current step does not rely on L00 being a linear function. The linearityof L00 (or rather of the condition �1f(z1) + �2f(z2) + �3f(z3)) will be used in the next step.Verifying satis�ability of L00 via sequence of polynomials. This part is standard except for rule (R0)below which includes an extra check that some elements being considered are 0/1. In fact,this part corresponds to the \sum check" in [1] (which is one of the two procedures in theoriginal innner-veri�er, the other being a low-degree test).Let m0 = 4m + 8. We de�ne a sequence of polynomials g0; : : : ; gm0+1 : Km0 ! K, whereg0 is essentially f ; g1 is related to g0 by an F2-linear relationship, and gi is related to gi�1by a K-linear relationship. The motivation behind these polynomials is the following: g1 isde�ned so that the condition (x1; : : : ; xp) 2 L is equivalent to the condition g1(~u) = 0 forevery ~u 2 Hm0 . The polynomials gi relax this condition gradually, giving \gi+1(~u) = 0 forevery ~u 2 F i �Hm�i" if and only if \gi(~u) = 0 for every ~u 2 F i�1 �Hm�i+1". Thus �nallywe have gm0+1 � 0 if and only if (x1; : : : ; xp) 2 L. We now de�ne these polynomials explicitly.For �i's and ui's from K and zi's from Km+1, let we de�ne:g0(z1; : : : ; z4; �1; : : : ; �4) def= f(z1)(R0) : g1(z1; : : : ; z4; �1; : : : ; �4) =  3Xi=1 �i � g0(zi~0)! � L̂00(�1; �2; �3; z1; z2; z3)+�4 � (g0(z4~0)2 � g0(z4~0)):The terms involving g0(z4~0) are meant to verify that g0(z4~0) are always 0/1. These are \op-tional" in standard PCPs, in that they are not needed to get soundness, but are occasionallythrown in since they don't involve much extra work. In contrast, in our case these are nec-essary to enforce the augmented soundness condition. Note that while this condition is a28



quadratic constraint (regarding g0) over K, the map � 7! �2 is an F2-linear map over �elds ofcharacteristic two, and so the identity above is indeed F2-linear, despite the quadratic term.For i = 1 to m0, let(Ri) : gi+1(u1; : : : ; ui�1; ui; ui+1; : : : ; u4m+8) = h�1Xj=0 uji � gi(u1; : : : ; ui�1; �j; ui+1; : : : ; u4m+8):Merging the di�erent polynomials into a single polynomial g (standard): Now, let g : Km0+1 ! K bethe function given by g(i; z) = gi(z) if i 2 f0; : : : ;m0 + 1g that is a degree m0 + 1 polynomialin the �rst variable i. Assuming h � m0 � p, we have that g is a polynomial of individualdegree at most 2h and thus has total degree at most d = 2m0h.Lines and curves over g (standard): Let gjlines : K2m0+1 ! Kd be the function describing g re-stricted to lines. Let w = 2(m0 + 1)h, `00 = wd and let gjcurves : C ! K`00 be the restrictionof g to some subset C of degree w curves, where C are all the curves that arise in the verdictfunction's computations below.The encoding and proving functions (standard): Finally, we get to de�ne the encoding and provingfunctions. The encoding function E(xi) is the table of values of the function f 0i : Km ! K`00where f 0i(x) = (fi(x); 0`00�1) (i.e., elements of K are being written as vectors from K`00 . Theproving function P (L; x1; : : : ; xp) consists of the triple of functions (g0; (gjlines)0; gjcurves), whereg0 : Km0+1 ! K`00 and (gjlines)0 : K2(m0+1) ! K`00 are the functions g and gjlines with theirrange being mapped, by padding, into K`00 .We now describe the verdict function. To motivate this, recall that the verdict function, whichessentially has access to oracles for g, gjlines, gjcurves and f1; : : : ; fp, needs to verify the followingitems:1. g is a polynomial of degree at most d, gjlines is the restriction of g to lines, and gjcurves is therestriction of g to curves.2. The degree of g in its �rst variable is at most m0 + 1.3. For i 2 f1; : : : ;m0 + 1g, then function gi given by gi(u) = g(i; u) is computed correctly fromgi�1 by an application of the rule (Ri�1).4. Verify that gm0+1 is identically zero.5. Verify that g0 is a polynomial of degree 0 in all but its �rst m+ 1 variables.6. Verify that the function f : Km+1 ! K given by f(x) = g0(x; 0 � � � 0) is a polynomial of degreeat most p in its �rst variable and a polynomial of degree at most h � 1 in the remaining mvariables.7. Verify that f(i; � � �) = fi(� � �) for every i 2 f1; : : : ; pg.(Working one's way upwards, one can see that P (L; x1; : : : ; xp) is the only function to satisfy allthe above constraints.)We are now ready to describe the veri�er's actions (or to be formal, the Verdict function). Theaim is to emulate a large number of checks (i.e., random veri�cation of all the above conditions) by29



using only p+ 3 oracle calls, and still incur only a constant error probability. Speci�cally, ignoringcondition (1) for a moment, a random test of condition (2) requires m0+2 points in the domain ofg, condition (3) involves m0+1 equalities (which refer to m0 +1 di�erent parts of g), condition (5)involves m0 � m equalities (one per each suitable variable in g0), and condition (7) involves pequalities, each referring to a di�erent function fi. Following [1], all these di�erent conditions willbe checked by retreiving the corresponding (random) g-values from a suitable curve in gjcurves, andobtaining the fi-values from the corresponding oracles. Finally, Condition (1) will be tested via anadequate low-degree test that makes only 2 additional queries. Details follow.The veri�er �rst picks one random test (to be emulated) per each of the equalities correspondingto the conditions (2){(7) above. Speci�cally, in order to emulate the testing of conditions (2), (5)& (6), it picks random axis parallel lines (one per each of the relevant variables) and picks O(h)points on these Km0+1-lines with the intent of inspecting the value of g0 at these points. (We stressthat the veri�er does not query g0 at these points, but rather only determines these points at thisstage.) Similarly, in order to emulate the testing of conditions (3), (4) & (7), it picks random pointsfrom the domain of the corresponding gi's and f . Having chosen these points, it picks one totallyrandom point in Km0 . All in all this amounts to determining w = O(mh) points in the domain ofg0. The veri�er then determines a degree w curve, denoted C, (over Km0+1) that passes throughthese m points. Next, it picks a random point � on this curve and a random line l through thepoint �.We �nally get to the actual queries of the veri�er. The verdict function queries g0(�), (gjlines)0(l)and gjcurves(C). It veri�es that g0(�) is actually in K and (gjlines)0(l) is in Kd (as opposed to K`).It then veri�es that the three responses agree at �. Finally, it veri�es the values of g0 on the testpoints for tests (2)-(7), as claimed by gjcurves(C), are consistent with the conditions (2)-(7). Inparticular, verifying condition (7) requires one probe each into the oracles X1; : : : ;Xp. (Once againthe responses to these probes are elements of K` and the verdict veri�es that the responses are inK padded with 0's.) Thus, in total, we made only 3 + p queries.This concludes the description of the veri�er. We stress that all the \0-padding veri�cations" areonly intended to guarantee the modi�ed notion of soundness (and are not needed for the standardnotion of soundness). The same holds with respect to the various tests of individual degrees (whichtest a degree lower than the (curve-to-line) low degree test). Omitting all these extra test, wouldget us back to [1].The modi�ed soundness of the above veri�er is established as usual assuming jKj � poly(`00=�).In particular, if the function g : Km0+1 ! K obtained by ignoring the last `00 � 1 coordinates ofthe function g0 is not, say :01-close to some polynomial ĝ of total degree d then the low-degreetest will reject with constant probability. If the response of the query to gjcurves is not consistentwith ĝ on all the queried points, then the curve to g0 consistency test will detect this with constantprobability. Finally if any of the conditions (2)-(7) is violated, then the �nal check above detectswith constant probability.Recall that the oracle machine Verdict makes p+ 3 queries in all. The answers it receives arefrom K`00 and thus `0, the answer length, equals `00 log2 jKj which is poly log(p`) as required. Thesoundness error, 
, is some constant bounded away from 0. Finally, note that all checks by theveri�er are actually K-linear, except for the satisfaction of rule (R0), which is only F2-linear.5.4 Combining all the constructionsWe are now ready to prove the main theorem of this section.30



Theorem 5.7 (Theorem 2.1, restated): For in�nitely many k, there exists a linear locally-testablebinary code mapping k bits to n def= kO(plog k log log k) bits. Furthermore, the codes has distance 
(n).Proof: Composing (as per Lemma 5.4) the (F2; (p; `) ! (p + 3;poly(log p`)); 1=2; 
)-linear innerveri�er of Lemma 5.6 with the (F2; (p+ 3;poly(log p`))! (p+ 4; 1); 1=2; 
)-linear inner veri�er ofLemma 5.5, we obtain that there exist constants �1; 
1 > 0 such that for every constant p0 andfor every `0, there exists an (F2; (p0; `0) ! (p0 + 4; 1); �1; 
1)-linear inner veri�er V1. Furthermore,V1 uses r1 = O(log p0`0) + 2(p0 + 3) � poly(log p0`0) = poly(log `0) coins, encoding of length n1 =poly(`0) � exp(poly(log p0`0)), and proofs of length m1 = poly(n1).Similarly, for any constant p, composing the veri�er of Lemma 5.6 with V1 (while setting p0 =p+3 and `0 = poly(log `)),15 we get a (F2; (p; `)! (p+7; 1); �2; 
2)-linear inner veri�er V2 for some�2; 
2 > 0. Furthermore, V2 uses r2 = O(log p`) + r1 = O(log `) + poly(log log `) coins, encoding oflength n2 = poly(`) � n1 = poly(`), and proofs of length m2 = poly(n2).Our �nal step will be to compose (as per Proposition 5.3) the truncated version of the FS-code (from Section 3.2) with the linear inner veri�er V2. Recall that, for any constant c > 1=2,the truncated version of the FS-code maps (F d+1)K to (F d+1)N , where N = exp(logcK) �K andjF j = �(d) < exp(logcK). The corresponding codeword test uses R def= log2N + 2 log log jF jrandom bits and makes q = O(1) queries. Using F = FO(1)+log2 d2 and � = F d+1 � FO(d log d)2 ,we apply Proposition 5.3 to this code (and codeword test) and V2 above, while setting p = q,` = O(d log d) and b = O(d log d), where d < exp(logcK) (for any constant c > 1=2). We obtain abinary linear locally-testable code mapping (F b2 )K to FM2 , where M = O(N � n2 + 2R �m2). UsingR = log2N+O(log log d) andm2 = poly(n2) = poly(`) = poly(d), we getM = N �exp(O(logcK)) =K � exp(O(logcK)). The theorem follows.5.5 Additional remarksIn this section we show that locally testable codes over small alphabets can be modi�ed such thatthe tester only uses randomness that is logarithmic in the codeword and only makes three queries.We stress that the stated modi�cation increases the length of the codewords by a constant factor.We start with reducing the randomness complexity of the tester.Proposition 5.8 Let C : �k ! �n be a code. Then every codeword tester for C can be modi-�ed into one that maintains the same acceptance probabilities up-to an additive term of �, whilepreserving the number of queries and using randomness complexity at most O(log(1=�)) + log2 n+log2 log2 j�j.Proof: The proof follows the standard/easy part of the proof of Lemma 3.1 (and analogous resultsin Section 4). Speci�cally, using the probabilistic method, there exists a set of O(��2 log2 j�nj)possible random-tapes for the original tester so that if the tester restricts its choices to this setthen its acceptance probability on every potential sequence is preserved up to an additive term of�. (Observe that, with probability 1 � exp(��2t), a random set of t random-tapes approximatesthe acceptance probability for a �xed sequence up to �, and that the number of possible sequencesis j�nj.) The proposition follows.Using Proposition 5.8, we show that our main result regarding locally testable codes (i.e., Theo-rem 2.1) holds also with tester that make only three queries. The latter assertion is an immediatecorollary of the following proposition.15Thus, r1 = poly(log poly(log `)) = poly(log log `) = o(log `) and n1 = exp(poly(log poly(log `))) =exp(poly(log log `)) = `o(1). 31



Proposition 5.9 Let C : �k ! �n be a locally-testable linear code of distance d = 
(n). Then,there exists a linear code C 0 : �k ! �O(n log j�j) of distance at least d that is testable with threequeries.Proof: By Proposition 5.8, the code C is locally-testable by a tester, denoted T , having randomnesscomplexity � def= log2 n+O(1) + log2 log2 j�j. By a slight modi�cation of T (which only increases �by an additive constant),16 we may assume that T checks a single linear combination (determinedby its random-tape) of the oracle answers. We construct a code C 0, by augmenting C with a suitableencoding of each of the answer tuples obtained by T when using a �xed random-tape. Speci�cally,for each possible r 2 f0; 1g�, we consider the q = O(1) queries, denoted (i1; :::; iq), made by Tand the linear combination (c1; :::; cq) 2 �q of the answers checked by the tester. For x 2 �n andr 2 f0; 1g�, we augment C(x) by a block of length q � 1 such that the `th symbol in the blockequals P`+1j=1 cjxij . Thus, we obtain a code C 0 of length n+ 2� � (q � 1) = n+O(n log(j�j) over �.The corresponding tester for C 0, performs at random (with equal probability) one of the followingtwo tests:1. A consistency test:17 The test selects at random a random-tape r for T and a query (outof the q queries) that T makes on random-tape r. It checks whether the answer obtainedfrom the n-symbol pre�x of C 0 matches the value obtain from the block corresponding to r.Speci�cally, suppose that on coins r the tester T makes the queries i1; :::; iq 2 [n] and checksthe linear combination (c1; :::; cq) 2 �q, and that we decided to check the jth query (where` 2 [q]). For j > 1, we compare cj times the answer obtained from the pre�x of C 0 (i.e., theijth bit of the alledged codeword) to the di�erence between the jth and j� 1st entries in theblock corresponding to r. For j = 1 we compare the �rst entry in the block corresponding tor to the weighted sum of the answers obtained to queries i1 and i2.2. Emulating T : The test selects at random a random-tape r for T and checks the correspondinglinear condition by obtaining the desired linear combination of the answer bits from the lastentry of the block corresponding to r.The proposition follows.Perspective. Proposition 5.9 indicates that three queries su�ce for a meaningful de�nition oflocally-testable linear codes. This result is analogous to the three-query PCPs available for NP-sets. In both cases, the constant error probability remains unspeci�ed, and a second level projectaimed at minimizing the error of three-query test arises. Another worthy project refers to thetrade-o� between the number of queries and the error probability, which in the context of PCP iscaptured by the notion of amortized query complexity. The de�nition of an analogous notion forlocally-testable codes is less staightforward because one needs to specify which strings (i.e., at whatdistance from the code) should be rejected with the stated error probability. One natural choice isto consider the error probability of strings that are at distance d=2 from the code, where d is thedistance of the code itself.16In addition, the detection probability is reduced by a constant factor.17Indeed, this consistency test is quite weak (but it su�ces for our purposes). This consistency test reduces therejection probability by a factor of q. Stronger consistency test seem to require more redundent encodings (e.g., onemay use the Hadamard code). But since our focus is on the total length of C0, our choice of a trivial code (whichcorresponds to using auxiliary variables) seems best. 32



6 Conclusions and Open ProblemsOur code constructions are randomized, and so we do not obtain fully-explicit codes. The ran-domization amounts to selecting a random subspace of random-tapes for certain low-degree tests,and the probabilistic analysis shows that almost all choices of the subspace will do. A natural(de-randomization) goal is to provide an explicit construction of a good subspace. For example, incase of the low-degree test, the goal is to provide an explicit set of ~O(jF jm) lines that can be used(as Rm in the construction of Section 3.2).As a seemingly easier goal, consider the linearity test of Blum, Luby and Rubinfeld [7]: Totest whether f : G ! H is linear, one uniformly selects (x; y) 2 G� G and accepts if and only iff(x) + f(y) = f(x + y). Now, by the probabilistic method, there exists a set R � G � G of sizeO(jGj log jHj) such that the test works well when (x; y) is uniformly selected in R (rather than inG�G).18 The goal is to present an explicit construction of such a set R. Recent progress on thisspecial case (i.e., derandomization of the BLR test) is reported in [14].Another natural question that arises in this work refers to obtaining locally-testable codesfor coding k0 < k information symbols out of codes that apply to k information symbols. Thestraightforward idea of converting k0-symbol messages into k-symbol messages (via padding) andencoding the latter by the original code, preserves many properties of the code but does notnecessarily preserve local-testability.19We have presented locally testable codes and PCP schemes of almost-linear length, where` : N ! N is called almost-linear if `(n) = n1+o(1). For PCP, this improved over a previous resultwhere for each � > 0 a scheme of length n1+� was presented (with query complexity O(1=�)). Recallthat our schemes have length `(n) = exp(log n)c) � n, for any c > 0:5. We wonder whether length`(n) = poly(log n) � n (or even linear length) can be achieved. Similarly, the number of queries inour proof system is really small, say 16, while simultaneously achieving nearly linear-sized proofs.Further reduction of this query complexity is very much feasible and it is unclear what the �nallimit may be. Is it possible to achieve nearly-linear (or even linear?) proofs with 3 query bits andsoundness nearly 1=2?

18For every f : G! H, with probability 1� exp(�jRj) a random set R will be good for testing whether f is linear,and the claim follows using the union bound for all jHjjGj possible functions f : G! H.19Indeed, this di�culty (as well as other di�culties regarding the gap between PCPs and codes) disappears if oneallows probabilistic coding. That is, de�ne a code C : �k ! �n as a randomized algorithm (rather than a mapping),and state all code properties with respect to randomized codewords C(a)'s.33
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A The Gap Polynomial-Constraint-Satisfaction ProblemWe start by recalling the \Gapped Polynomial Constraint Satisfaction Problem" and introducinga restricted version of this problem.Constraint satisfaction problems (CSPs) are a natural class of \optimization" problems wherean instance consists of t Boolean constraints C1; : : : ; Ct placed on n variables taking on values fromsome �nite domain, say f0; : : : ;Dg. Each constraint is restricted in that it may only depend ona small number w of variables. The goal of the optimization problem is to �nd an assignment tothe n variables that maximizes the number of constraints that are satis�ed. The complexity of theoptimization task depends on the nature of constraints that may be applied, and thus each class ofconstraints gives rise to a di�erent optimization problem (cf. [8]). CSPs form a rich subdomain ofoptimization problems that include Max 3SAT, Max 2SAT, Max Cut, Max 3-Colorability etc. andhave been easy targets of reductions from PCPs.Following Harsha and Sudan [15], we consider algebraic variants of CSPs. These problemscome with some syntactic di�erences: The domain of the value that a variable can take on will beassociated with a �nite �eld F ; the index set of the variables will now by Fm for some integer m,rather than being the set [n]; and thus an assignment to the variables may be viewed naturallyas a function f : Fm ! F . Thus the optimization problem(s) ask for functions that satisfy asmany constraints as possible. In this setting, constraints are also naturally interpreted as algebraicfunctions, say given by an algebraic circuit.The interesting (non-syntactic) aspect of these problems is when we optimize over a restrictedclass of functions, rather than the space of all functions. Speci�cally, we specify a degree bound don the function f : Fm ! F and ask for the maximum number of constraints satis�ed by degree dpolynomial functions f . Under this restriction on the space of solutions, it is easier to establish NP-hardness of the task of distinguishing instances where all constraints are satis�able, from instanceswhere only a tiny fraction of constraints are satis�able. This motivates the \Gapped PolynomialCSP", �rst de�ned by Harsha and Sudan [15]. Here we consider a restriction on the class ofinstances, where each constraint, in addition to being restricted to apply only to w variables, isrestricted to apply only to variables that lie on some \2-dimensional variety" (i.e., the names/indicesof the variables that appear in a constraint must lie on such a variety). We de�ne this notion �rst.A set of points x1; : : : ; xk 2 Fm is said to lie on a 2-dimensional variety of degree r if there existsa function Q = (Q1; : : : ; Qm) : F 2 ! Fm where each Qi is a bivariate polynomial of degree r, suchthat there exist points y1; : : : ; yk 2 F 2 such that xj = Q(yj) for every j 2 [k].De�nition A.1 (rGapPCS (restricted Gap Polynomial Constraint Satisfaction)) For� : Z+ ! R+ and r;m; b; q : Z+ ! Z+, the promise problem rGapPCS�;r;m;b;q has as instancestuples (1n; d; k; s; F ;C1; : : : ; Ct), where d; k; s � b(n) are integers, F is a �eld of size q(n) andCj = (Aj ;x(j)1 ; : : : ; x(j)k ) is algebraic constraint given by an algebraic circuit Aj of size s on k inputsand the variable names x(j)1 ; : : : ; x(j)k 2 Fm, where for m = m(n) and for every j 2 [t] the pointsfx(j)i gi lie on some 2-dimensional variety of degree r.YES-instances: (1n; d; k; s; F ;C1; : : : ; Ct) is a yes-instance if there exists a polynomial p : Fm !F of total degree at most d such that for every j 2 f1; : : : ; tg, the constraint Cj is satis�ed byp; that is, Aj(p(x(j)1 ); : : : ; p(x(j)k )) = 0.NO-instances: (1n; d; k; s; F ;C1; : : : ; Ct) is a no-instance if for every polynomial p of degree d, atmost �(n) � t constraints are satis�ed. 36



The following lemma is a slight variant of Lemma 3.16 in [15]. Speci�cally, while [15] use thegeneric fact that any w points lie in a c-dimensional variety of degree cw1=c, we note that thespeci�c O(m(n)b(n)) points chosen for each constraint (in the reduction) lie on a 2-dimensionalvariety of degree O(m(n)). This is because each constraint refers to O(m(n)b(n)) points that lieon one out of O(m(n)) lines.The following lemma simply lists conditions on the parameters which allows GapPCS to beNP-hard. We describe the actual choice of parameters in a corollary to be described shortly.Lemma A.2 There exists a constant c and polynomials p1; p2 such that for any collection of func-tions � : Z+ ! R+ and m; r; b; q; ` : Z+ ! Z+ such that b(n) � log n, (b(n)=m(n))m(n) � n,r(n) � cm(n), q(n) � (b(n)=�(n))p1(m(n)), and `(n) � p2(b(n))(q(n))m(n), SAT reduces torGapPCS�;r;m;b;q under `(n)-length preserving reductions,On the other hand, when applying the MIP system of [15, Section 3.6] to restricted GapPCSinstances, we get:Lemma A.3 There exists a polynomial p such that if � : Z+ ! R+ and r;m; b; q : Z+ ! Z+, satisfyq(n) � poly(r(n))(b(n)=�(n)) then the promise problem rGapPCS�;r;m;b;q has a 3-prover MIP proofwith perfect completeness, soundness O(�(n)), answer length poly(b(n)) log q(n), and randomnessO(logN + m(n) log q(n)), where N denotes the size of the GapPCS instance and n denotes the�rst parameter in the instance. Furthermore, the size of the �rst prover oracle is q(n)m(n), and itsanswer length is log q(n).The lemma above allows us to work with the GapPCS problem for an appropriate choice of theparameters �;m; b; q; `. Combining the above two lemmas, we state the resulting corollary regarding3-prover MIPs for SAT, where we restrict attention to the case of constant � > 0.Corollary A.4 For every constant � > 0 and m : Z+ ! Z+, let `(n) = m(n)O(m(n) � n1+O(1=m(n)).Then SAT reduces in probabilistic polynomial time under `(n)-length preserving reductions to apromise problem that has a 3-prover proof system with perfect completeness, soundness �, logarith-mic randomness, and answer length m(n)O(1) � nO(1=m(n)), in which the �rst prover has size linearin the instance size.Proof: Assume without loss of generality that m(n) � log n=(3 log log n). (For larger m(�),the requirements on both the function `(n) and the answer length become weaker.) Setb(n) = m(n)n1=m(n). Note that this makes b(n) � log n (and (b(n)=m(n))m(n) � n) as re-quired in Lemma A.2. Next, set r(n) = cm(n), where c is from Lemma A.2, and set q(n) =(b(n)=�)poly(m(n)) = poly(m(n))n1=m(n)=� such that it satis�es the requirements in both Lem-mas A.2 and A.3. Finally, set `(n) = poly(b(n))q(n)m(n) = poly(m(n)) � nO(1=m(n)) �m(n)O(m(n)) �n � ��m(n) = O(m(n)O(m(n)) � n1+O(1=m(n))). This setting satis�es all the conditions of Lem-mas A.2 and A.3, which yields a 3-prover proof system for SAT in which the answer lengthsare bounded by poly(b(n)) log q(n) = m(n)O(1) �n1=O(m(n)). Furthermore, the size of the �rst proveris q(n)m(n) < `(n), as required.
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