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1 IntroductionLocally testable codes are (good) error-correcting codes that admit very e�cient codeword tests.Speci�cally, the testing procedure may use only a constant number of (random) queries, and shouldreject non-codewords with probability proportional to their distance from the code.Locally testable codes are related to Probabilistically Checkable Proofs (PCPs) and to PropertyTesting [16, 23]. Speci�cally, locally testable codes can be thought of as a combinatorial counter-parts of the complexity theoretic notion of PCPs, and in fact the use of codes with related featuresis implicit in known PCP constructions. Local testability of codes is also a special case of propertytesting (i.e., the study of sublinear-time approximation algorithms for testing whether an input is\close" to one satisfying a �xed property), and indeed the �rst collection of properties that wereshown to be testable also yield constructions of locally testable codes [11].Locally testable codes were introduced in passing, by Friedl and Sudan [15] and Rubinfeld andSudan [23]. However, despite the central role of locally testable codes in complexity theoretic andalgorthmic research, they have received little explicit attention so far. The primary goal of thiswork is to initiate a systematic study of locally testable codes. In particular, we focus on theconstruction of locally testable codes over a binary alphabet and on the development of techniquesto reduce the alphabet size of locally testable codes. Studying the length of locally testable codes,we obtain for the �rst time (even for non-binary alphabets), codes of almost-linear length.Some well-known examples: To motivate some of the parameters of concern, we start byconsidering some \trivial codes" that are easily testable. It is easy to test (membership in) thecode that contains all strings of a given length (e.g., simply accept every string without looking atit). It is also easy to test the code that consists of only one codeword (e.g., given an arbitrary stringx, pick random index i and verify that x and the single codeword agree at the the ith coordinate).Thus, the concept of locally testable codes is interesting mainly in the case of \good" codes; thatis, codes that have \many" codewords that are pairwise at \large" distance from each other.One non-trivial code allowing e�cient testing is the Hadamard code: the codewords are linearfunctions represented by their values on all possible evaluation points. The number of codewords inHadamard codes grows with the length of the code, and the pairwise distance between codewordsis half of the length of the code. So this code does not admit trivial tests as above. It turns outthat in this case codeword testing amounts to linearity testing [11], and this can be performede�ciently, though the analysis is quite non-trivial.The drawback of the Hadamard code is that k bits of information are encoded using a codewordof length 2k. (The k information bits represent the k coe�cients of a linear function f0; 1gk ! f0; 1g,and bits in the codeword correspond to all possible evaluation points.)A basic question: The question addressed in this work is whether one can hope for a betterrelation between the number of information bits, denoted k, and the length of the codeword,denoted n. Speci�cally, can n be polynomial or even linear in k? For a su�ciently large non-binaryalphabet, Friedl and Sudan [15] showed that n can be made nearly quadratic in k. The maincontribution of this paper is the demonstration of the existence of locally testable codes in whichn is almost-linear in k (i.e., n = k1+o(1)), even for the binary alphabet.
2



1.1 Relation to PCPAs mentioned earlier, locally testable codes are closely related to Probabilistically Checkable Proofs(PCPs). A proof system is de�ned by a (probabilistic) veri�er that is given a pair of strings { apurported theorem (assertion) and a claimed proof (evidence) { such that if the theorem is true,then there exists a proof such that the veri�er accepts; and if the assertion is not true then noevidence causes the veri�er to accept (with high probability). Furthermore, PCP veri�ers achievetheir goals by making only a small number of queries to the proof, which is given as an oracle. ThePCP Theorem [2, 3] shows how to construct PCP veri�ers that make only a constant number ofqueries to the proof oracle.PCPs achieve their strong features by implicitly relying on objects related to locally testablecodes. Indeed the construction of codes over large alphabets that are testable via a small (yet notnecessarily constant) number of queries lies at the heart of many PCPs. It is a common belief,among PCP enthusiasts, that the PCP Theorem [2, 3] already provides (binary) locally testablecodes. This belief relates to a stronger property in the proof of the PCP theorem which actuallyprovides a transformation from standard witnesses for, say SAT, to PCP-proof-oracles, such thattransformed strings are accepted with probability one by the PCP veri�er. When applied to aninstance of SAT that is a tautology, the map typically induces a good error-correcting code mappingk information bits to codewords of length poly(k) (or almost linear in k, when using [21]), whichare pairwise quite far from each other. The common belief is that the PCP-veri�er also yields acodeword test. However, this is not quite true: typically, the analysis only guarantee that eachpassing oracle can be \decoded" to a corresponding NP-witness, but encoding the decoded NP-witness does not necessarily yield a string that is close to the oracle. In particular, this allows fororacles that are accepted with high probability to be far from any valid codeword. Furthermore, itis not necessarily the case that only codewords pass the test with probability one. For example, partof the proof oracle is supposed to encode an m-variate polynomial of individual degree d, yet the(standard) PCP-veri�er will also accept the encoding of any m-variate polynomial of total degreem � d (and the \decoding" procedure will work in this case too).We conclude that the known constructions of PCPs as such do not yield locally testable codes.However, we show that many known PCP constructions can be modi�ed to yield good codes withe�cient codeword tests. We stress that these modi�cations are non-trivial and furthermore areunnatural in the context of PCP. Yet, they do yield coding results of the type we seek (e.g., seeTheorem 2.3).On the other hand, a technique that emerges naturally in the context of our study of e�cientcodeword tests yields improved results on the length of e�cient PCPs. Speci�cally, we obtainconstant-query PCP systems that utilize oracles that are shorter than known before (see Theo-rem 2.5).1.2 Relation to Property TestingProperty testing is the study of highly e�cient approxiamtion algorithms (tests) for determiningwhether an input is close to satisfying a �xed property. Speci�cally, for a property (Booleanfunction) P , a test may query an oracle for a string x at few positions and accept if P (x) is true,and reject with high probability if P (~x) is not true for every ~x that is \close" to x. Property testingwas de�ned in [23] (where the focus was on algebraic properties) and studied systematically in [16](where the focus was on combinatorial properties).Viewed from the perspective of property testing, the tester of a local testable code is a tester forthe property of being a member of the code, where the notion of \closeness" is based on Hamming3



distance. Furthermore, in the coding setting, it is especially natural that one is not interestedin the exactly deciding whether or not the input is a codeword, but rather in the \approximate"distance of the input from the code (i.e., whether it is a codeword or far from any codeword). Thuslocally testable codes are especially well-connected to the theme of property testing. Indeed the�rst few property tests in the literature (e.g., linearity tests [11], low-degree tests [6, 5, 23, 15])can be interpreted as yielding some forms of locally testable codes. More recent works on algebraictesting [7, 1] highlight the connections to codes more explicitly. Our work also uses the resultsand techniques developed in the context of low-degree testing. However, by focussing on the codesexplicitly, we highlight some missing connections. In particular, most of the prior work focussedon codes over large alphabets and do not show how to go from testable codes over large alphabetsto codes over small alphabets. In this work we address such issues explicitly and resolve themto derive our results. Furthermore, we focus on codes that can be tested by making a constantnumbder of queries.1.3 Relation to Locally Decodable CodesA task that is somewhat complementary to the task investigated in this paper, is the task of localdecoding. This is the task of constructing codes that have very e�cient (sub-linear time) decodingalgorithms. Speci�cally, given oracle access to a string that is close to some unknown codeword,the decoding procedure should compute any coordinate of the nearby message while making, say,a constant number of queries to the input oracle. Codes that have such decoding algorithms aretermed locally decodable codes. While local testability and local decodability appear related, nogeneral theorems linking the two tasks are known. In fact, known lower bounds suggest that localdecodability is \harder" to achieve than local testability. Our results con�rm this intuition:� We show the existence of almost-linear (i.e., n = k1+o(1)) length (binary) codes supportingcodeword tests with a constant number of queries. In contrast, it was shown that locallydecodable codes cannot have almost-linear length [20]: that is, if q queries are used forrecovery then n = 
(k1+(1=(q�1))).� For a (large) alphabet that can be viewed as vector space over some �eld F , we show almost-linear length F -linear codes in which testing requires only two queries. In contrast, it wasshown that F -linear codes with two query recovery require exponential length [17].11.4 Organization and previous versionsSection 2 provides a formal treatment of the aforementioned notions as well as a formal statementof our main results. Direct and self-contained constructions of locally testable codes (albeit notachieving the best results) are presented in Section 3. We stress that the latter make no referenceto PCP, although they do use low-degree tests. Our best constructions of locally testable codesare presented in Section 5, where we adapt standard PCP constructions and combine them withthe construction presented in Section 3.2. In Section 4, we adapt some of the ideas presentedin Section 3.2 in order to derive improved PCPs. We stress that Sections 4 and 5 can be readindependently of one another, whereas they both depend on Section 3.2. Subsequent works andopen problems are discussed in Section 6.1An F -linear code over the alphabet � = F ` is a linear space over F (but not necessarily over F `). In ourcodes (which support two-query tests) it holds that ` = exp(plog k) and jF j = O(`), while n < k1+(log k)�0:4999 . Incontrast, the lower-bound on n (for two-query decoding) established in [17] assert that n > exp(
(k � (` � `0)2)) incase F = GF (2`0), which (for ` = exp(plog k) = ko(1) and `0 = O(1) + log `) yields n > exp(
(k)).4



The current version di�ers from our preliminary report [18] in several aspects. Most importantly,we present two de�nitions of locally-testable codes, whereas only the weaker one has appearedin [18]. Furthermore, we introduce a few modi�cations to the construction of Section 3.2 in orderto obtain locally-testable codes under the stronger de�nition. More detailed comments appear inthe relevant places.2 Formal SettingThroughout this work, all oracle machines (i.e., codeword testers and PCP veri�ers) are non-adaptive; that is, they determine their queries based solely on their input and random choices.This is in contrast to adaptive orcale machines that may determine their queries based on answersobtained to prior queries. Since our focus is on positive results, this makes our results only stronger.2.1 CodesWe consider codes mapping a sequence of k input symbols into a sequence of n � k symbols overthe same alphabet, denoted �, which may but need not be the binary alphabet. Such a genericcode is denoted by C : �k ! �n, and the elements of fC(a) : a2�kg � �n are called codewords (ofC). Throughout this paper, the integers k and n are to be thought of as parameters, and � maydepend on them. Thus, we actually discuss in�nite families of codes (which are associated within�nite sets of possible k's), and whenever we say that some quantity of the code is a constant wemean that this quantity is constant for the entire family (of codes). Typically, we seek to have � assmall as possible, desire that j�j be a constant (i.e., does not depend on k), and are most contentwhen � = f0; 1g (i.e., a binary code).Distance between n-symbol sequences over � is de�ned in the natural manner; that is, foru; v 2 �n, the distance �(u; v) is de�ned as the number of locations on which u and v di�er (i.e.,�(u; v) def= jfi : ui 6= vigj, where u = u1 � � � un 2 �n and v = v1 � � � vn 2 �n). The relative distancebetween u and v, denoted �(u; v), is the ratio �(u; v)=n. The distance of a code C : �k ! �n is theminimum distance between its codewords; that is, mina6=bf�(C(a); C(b))g. Throughout this work,we focus on codes of \large distance"; speci�cally, codes C : �k ! �n of distance 
(n).The distance of w 2 �n from a code C : �k ! �n, denoted �C(w), is the minimum distancebetween w and the codewords; that is, �C(w) def= minaf�(w; C(a))g. An interesting case is ofnon-codewords that are \relatively far from the code", which may mean that their distance fromthe code is greater than (say) a third of the distance of the code.Codeword Tests: two de�nitionsLoosely speaking, by a codeword test (for the code C : �k ! �n) we mean a randomized (non-adaptive) oracle machine, called a tester, that is given oracle access to w 2 �n (viewed as afunction w : f1; :::; ng ! �). The tester is required to (always) accept every codeword and rejectwith (relatively) high probability every oracle that is \far" from the code. Indeed, since our focusis on positive results, we use a strict formulation in which the tester is required to accept eachcodeword with probability 1.2 (This corresponds to \perfect completeness" in the PCP setting.)2More generaly, one may allow codewords to be rejected with small probability. Note that this relaxation (w.r.tcodewords) may be odd if coupled with the stronger de�nition regarding non-codewords (presented below).5



The following two de�nitions di�er by what is required from the tester in case the oracle isnot a codeword. The weaker de�nition (which is the one that appears in our preliminary re-port [18]) requires that for every w 2 �n, given oracle access to w, the tester rejects with probabil-ity 
(�C(w)=n)� o(1). An alternative formulation (of the same notion) is that, for some functionf(n) = o(n), every w 2 �n that is at distance greater than f(n) from C is rejected with probability
(�C(w)=n). Either way, this de�nition (i.e., De�nition 2.1) e�ectively requires nothing with re-spect to non-codewords that are relatively close to the code (i.e., are at distance at most f(n) fromC). A stronger and smoother de�nition (i.e., De�nition 2.2) requires that every non-codeword w isrejected with probability 
(�C(w)=n).3De�nition 2.1 (codeword tests, weak de�nition): A randomized (non-adaptive) oracle machineM is called a weak codeword test for C : �k ! �n if it satis�es the following two conditions:1. Accepting codewords: For any a 2 �k, given oracle access to w = C(a), machine M acceptswith probability 1. That is, Pr[MC(a)(k; n;�)=1] = 1, for any a 2 �k.2. Rejection of non-codeword: For some constant c > 0 and function f(n) = o(n), for every w 2�n, given oracle access to w, machine M rejects with probability at least (c ��C(w)�f(n))=n.That is, Pr[Mw(k; n;�)=1] < 1� ((c ��C(w) � f(n))=n), for any w 2 �n.De�nition 2.2 (codeword tests, strong de�nition): A randomized (non-adaptive) oracle machineM is called a strong codeword test for C : �k ! �n (or just a codeword test for C : �k ! �n) if itsatis�es the following two conditions:� Accepting codewords: As in De�nition 2.1, for any a 2 �k, given oracle access to w = C(a),machine M accepts with probability 1.� Rejection of non-codeword: For some constant c > 0 and for every w 2 �n, given oracleaccess to w 2 �n, machine M rejects with probability at least c ��C(w)=n.That is, Pr[Mw(k; n;�)=1] < 1� (c ��C(w)=n), for any w 2 �n.We say that the code C : �k ! �n is locally testable if it has a (strong) codeword test that makesa constant number of queries.Relation to property testing: Codewords tests are indeed a special type of property testers (asde�ned in [23, 16]). However, in the \property testing" literature one typically prefers to providethe tester with a distance parameter and require that the tester rejects all objects that are that farfrom the property with probability at least 2=3 (rather than with probability proportional to theirdistance). In such a case, the query complexity is measured as a function of the distance parameterand is constant only when the latter parameter is a constant fraction of the maximum possibledistance. Strong codeword testers yield property testers with complexity that is inversely propor-tional to the distance parameter, whereas the complexity of testers derived from weak codewordtests is \well behaved" only for large values of the distance parameter.3In both cases we have required that the rejection probability grows linearly with the distance of the oracle fromthe code. A more general treatment (e.g., requiring a polynomial relationship) makes sense too.
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Our main resultsOur main result regarding codes isTheorem 2.3 For every c > 0:5 and in�nitely many k's, there exist locally testable codes withbinary alphabet such that n = exp((log k)c) � k = k1+o(1). Furthermore, these codes are linear andhave distance 
(n).Theorem 2.3 (as well as Part 2 of Theorem 2.4) vastly improves over the Hadamard code (in whichn = 2k), which is the only locally testable binary code previously known. Theorem 2.3 is proven bycombining Part 1 of the following Theorem 2.4 with non-standard modi�cations of standard PCPconstructions.Theorem 2.4 (proven by direct/self-contained constructions):1. For every c > 0:5 and in�nitely many k's, there exist locally testable codes with non-binaryalphabet � such that n = exp((log k)c) � k = k1+o(1) and log j�j = exp((log k)c) = ko(1).Furthermore, the tester makes two queries.2. For every c > 1 and in�nitely many k's, there exist locally testable codes over binary alphabetsuch that n < kc. Furthermore, the code is linear.In both cases, the codes have distance 
(n).Part 1 improves over the work of Friedl and Sudan [15], which only yields n = k2+o(1). We commentthat (good) binary codes cannot be tested using two queries (cf. [9]).The set of k's for which Theorems 2.3 and 2.4 hold is reasonable dense; in all cases, if k is inthe set then the next integer in the set is smaller than k1+o(1). Speci�cally, in Part 1 (resp., Part 2)of Theorem 2.4, if k is in the set then the next integer in the set is smaller than exp((log k)0:51) � k(resp., O(poly(log k) � k)).2.2 PCPA probabilistic checkable proof (PCP) system for a set L is a probabilistic polynomial-time (non-adaptive) oracle machine (called veri�er), denoted V , satisfying� Completeness: For every x 2 L there exists an oracle �x such that V , on input x and accessto oracle �x, always accepts x.� Soundness: For every x 62 L and every oracle �, machine V , on input x and access to oracle�, rejects x with probability at least 12 .As usual, we focus on PCP systems with logarithmic randomness complexity and constant querycomplexity. This means that, without loss of generality, the length of the oracle is polynomial in thelength of the input. However, we aim at PCP systems that utilize oracles that are of almost-linearlength. Our main result regarding such PCP systems is the following:Theorem 2.5 For every c > 0:5, there exists an almost-linear time randomized reduction of SAT toa promise problem that has a 19-query PCP system that utilizes oracles of length exp((log n)c) �n =n1+o(1), where n is the length of the input. Furthermore, the reduction maps k-bit inputs to n-bitinputs such that n = exp((log k)c) � k = k1+o(1).This should be compared to the PCP system for SAT of Polishchuk and Spielman [21] that whenutilizing oracles of length n1+� makes O(1=�) queries. In contrast, our PCP system utilizing oraclesof length n1+o(1) while making 19 queries. 7



3 Direct Constructions of CodesIn this section, we prove Theorem 2.4; that is, we describe codes mapping k bits of informationto codewords of length kc, for every c > 1, that are locally testable. Although we do not useany variant of the PCP Theorem, our constructions are related to known PCP constructions inthe sense that we use codes and analysis that appear, at least implicitly, in PCP constructions.Speci�cally, we will use results regarding low-degree tests that were proven for deriving the PCPTheorem [2, 3]. We stress that we do not use the (complex) parallelization procedure of [2] northe full power of the proof composition paradigm of [3], which is more complex than the classicalnotion of concatenated codes [14] used below.We start by describing (in Section 3.1) a code over a large alphabet, which we refer to asthe FS/RS code. This code, which is a direct interpretation of \low-degree tests", was proposedby Friedl and Sudan [15] and Rubinfeld and Sudan [23]. The size of this code turns out to benearly quadratic in length (even after using the best possible analysis of low-degree tests). Toreduce the size of the code to being nearly linear, we introduce a random truncation technique inSection 3.2. This establishes Part (1) of Theorem 2.4 (which refers to codes over large alphabets).In Sections 3.3 and 3.4 we apply the \code concatenation" technique to reduce the alphabet size ofthe codes, till we get a binary code, thus establishing Part (2) of Theorem 2.4.3.1 The Basic Code (FS/RS-Code)The FS/RS code is based on low-degree multi-variant polynomials over �nite �elds. We thus startwith the relevant preliminaries. Let F be a �nite �eld, and m; d be integer parameters such that(typically) m � d < jF j. Denote by Pm;d the set of m-variate polynomials of total degree d over F .We represent each p 2 Pm;d by the list of its �m+dd � coe�cients; that is, jPm;dj = jF j(m+dd ) = jF j(m+dm ).(For m� d, we use jPm;dj < jF j(2dm) < jF j(2d=m)m .)Denote by Lm the set of lines over Fm, where each line is de�ne by two points a; b 2 Fm;that is, for a = (a1; :::; am) and b = (b1; :::; bm), the line `a;b consists of the set of jF j pointsf`a;b(t) def= ((a1 + tb1); :::; (am + tbm)) : t 2 Fg.The code. We consider a code C : Pm;d ! �jLmj, where � = F d+1; that is, C assigns eachp 2 Pm;d a (jLmj-long) sequence of �-values. We view Lm as the set of indices (or coordinates) inany w 2 �jLmj; that is, for any ` 2 Lm, we denote by w` the symbol in w having index `. In thecode C that we consider, for every p 2 Pm;d, the symbol of C(p) that is indexed by ` 2 Lm, denotedC(p)`, is the univariate polynomial that represents the values of the polynomial p : Fm ! F onthe line `; that is, for `a;b 2 Lm, the univariate polynomial C(p)`a;b can be formally written asqa;b(z) def= p(`a;b(z)) = p((a1 + b1z); :::; (am + bmz)). Since the polynomial p has total degree d, sodoes the univariate polynomial qa;b.Parameters. To evaluate the basic parameters of the code C, let use consider it as mapping�k ! �n, where indeed n = jLmj = jF j2m and k = log jPm;dj=log j�j. Note thatk = log jPm;djlog j�j = �m+dd � log jF j(d+ 1) log jF j = �m+dm �d+ 1 (1)which, for m � d, is approximated by (d=m)m=d � (d=m)m. Using jF j = poly(d), we haven = jF j2m = poly(dm), and so k � (d=m)m is polynomially related to n (provided, say, m < pd).Note that the code has large distance (since the di�erent C(p)'s tend to disagree on most lines).8



The Codeword Test: The test consists of selecting two random lines that share a random point,and checking that the univariate polynomials associated with these lines yield the same value for theshared point. That is, to check whether w 2 �jLmj is a codeword, we select a random point r 2 Fm,and two random lines `0; `00 going through r (i.e., `0(t0) = r and `00(t00) = r for some t0; t00 2 F ),obtain the answer polynomials q0 and q00 (i.e., q0 = w`0 and q00 = w`00) and check whether theyagree on the shared point (i.e., whether q0(t0) = q00(t00)). This test is essentially the one analyzedin [2], where it is shown that (for jF j = poly(d)) if the oracle is �-far from the code then this factis detected with probability 
(�).We comment that in [2] the test is described in terms of two oracles: a point oracle f :Fm!F(viewed as the primary or \real" input) and a line oracle g :Lm!F d+1 (viewed as an auxiliary oradditional oracle). Indeed, we will also revert to this view in our analysis. Unfortunately, usingoracles having di�erent range will complicate the code-concatenation (presented in Section 3.3),and this is the reason that we maintain explicitly only the line-oracle (and refer to the point-oracleonly in the analysis). Note that a line-oracle can be used to de�ne a corresponding point-oraclein several natural ways. For example, we may consider the (random) value given to each point bya random line passing through this point, or consider the value given to each point by a (�xed)canonical line passing through this point. (The former de�nition was used in our preliminaryreport [18], whereas the latter will be used below.)3.2 Random Truncation of the FS/RS-CodeOur aim in this section is to tighten the relationship between k and n in locally testable codes. Inorder to get the best possible relation between n and k, one needs to use analyses of low-degree testthat allows for jF j to be as small as possible as compared to d. Based on the analysis of [21], [15]show that it su�ces to use jF j = �(d). However, even with this best possible analysis, we are stillleft with n that is quadratic in jF jm, whereas k = o(dm) = o(jF jm). (This quadratic blowup comesfrom the fact that the number of lines (over Fm) is quadratic in the number of points, which inturn upperbounds the number of coe�cients of a (generic) m-variant polynomial (over F ).) Thus,to obtain n almost-linear in k, we must use a di�erent code.Overview of our construction: Our main idea here is to project the FS/RS code to a randomlychosen subset of the coordinates. Thus our code is essentially just a projection of the FS/RS codeto a random subset of lines in Fm. This subset will have size that is almost-linear in jF jm, andconsequently the code will have almost-linear length. However, for technical reasons, we revert tothe \point vs. lines" test (rather than using the \intersecting lines" test). Thus our encoding ofa polynomial p 2 Pm;d ends up consisting of two parts:4 One part simply giving the value of p onevery point in Fm, and the other part giving the value of p restricted to a collection of lines, wherethe lines come from a randomly chosen subset, denoted Rm � Lm. Given a codeword c supposedlyencoding some unknown polynomial p, the codeword test may now pick a random point from Fmand a random line from Rm that passes through this point and veri�es that the restriction of p tothis line (as asserted by the second part of c) agrees with the value of p on this point (as assertedby the �rst part of c).While the code we use is essentially the one above, we modify it slightly to preserve uniformityin its alphabet size. As described so far, the �rst part of the code uses as its alphabet F , whilethe second part of the code needs the alphabet F d+1. To make things more uniform, we view the4Only the second part was used in our preliminary report [18]. The corresponding analysis (in [18]) was morecomplex (as well as more interesting), but yielded a weaker result.9



�rst part also as elements of F d+1. Syntactically this is obtained by repeating each �eld element(in the �rst part) for d+1 times. Semantically we view this (d+1)-sequence as giving the value ofp restricted to a degenerate line that starts at the said point and has \slope" 0m. The value of prestricted to this line ought to be a constant and we need to test this explicitly. So we augment thecodeword test by performing both a \point vs. line" test and checking that a random degenerateline is assigned a constant function. Speci�cally, the value of a desired point (for the \point vs.line" test) is obtained from the corresponding degenerate line (i.e., from the polynomial assignedto this line); that is, in the \point vs. line" test we obtain two polynomials and compare the valuesassigned by them to two points. For sake of uniformly, we test whether this degenerate line isassigned a constant function by inspecting the values assigned by the corresponding polynomial totwo points. Below we give the details of the code, the test, and the analysis.The truncated code: In what follows, we will �x positive integers m; d and a �eld F . We willassume log log d � m � log d, and jF j = �(d). Our code will be over the alphabet � = F d+1corresponding to the vector space of univariate polynomials of degree at most d over F . For thesake of concreteness, we will assume that a polynomial p(x) = Pdi=0 cixi is represented by thevector hc0; : : : ; cdi. Let L = Lm denote the collection of all lines in Fm. Let A denote the collectionof degenerate lines; that is, the set f`a;0m 2 Lja 2 Fmg. For a (multi-)set R � L, let R0 be the(multi-)set R [A. For such a set R, we de�ne the code CR : Pm;d ! �R0 as follows: We index thevectors in �R0 by lines ` 2 R0. For p 2 Pm;d and ` 2 R0, the `th symbol in the encoding CR(p) isthe polynomial obtained by restricting p to the line `.Thus, our encoding is simply a projection of the FS/RS code to the coordinates in A[R, where Ais the collection of degenerate lines, while R is an arbitrary subset of L. In what follows, we will showthat if R is chosen uniformly at random (with replication from L) and jRj = �(mjF jm log jF j), thenthe code is locally testable. (To shorten our sentences we will simply say \R is chosen randomly" tosay \the elements of the multi-set R are chosen uniformly at random from L".) We next describethe parameters of the code, and then describe the codeword test.The basic parameters: We consider the information length k, the block length n and relativedistance of the code. To compare k with n, let us consider the code as a mapping �k ! �n, wheren = jR0j = O(mjF jm log jF j) and (as before) k = log jPm;dj=log j�j. We pick m and d so thatm = 
(log log d) but m = o(log d), and in such case we have k � dm�1=mm and, for jF j = O(d),we have n = O(mjF jm log jF j) = O(d)m. We highlight two possible settings of the parameters:1. Using d = mm, we get k � mm2�2m and n = mm2+o(m), which yields n � exp(plog k) � k andlog j�j = log jF jd+1 � d log d � exp(plog k).2. Letting d = me for any constant e > 1, we get k � m(e�1)m and n � mem, which yieldsn � ke=(e�1) and log j�j � d log d � (log k)e.We next show that when jF j = 
(d) and jRj is chosen randomly of size 
(mjF jm log jF j), the codehas relative distance � > 0, with high probability. A straightfoward attempt to prove this fact isto upperbound the probability that a speci�c pair of codewords are too close and to use a unionbound (over all possible pairs of codewords). This attempt fails, because the former probabilityis exponential (decreasing) in jRj which is typically jF jk1+o(1) , whereas the number of pairs isexponential in (jF jk)2. However, if the code is \linear" in an adequate sense (as de�ned below)then it su�ces to bound the weight of (non-zero) codewords, which in turn can be done by applyinga union bound over all codewords (rather than over all pairs of codewords).10



We say that a subset C � �n, where � � F d+1, is F -linear if it is a linear subspace of (F d+1)nwhen viewed as a vector space over F . In other words, for every x; y 2 C and �; � 2 F , it is thecase that �x + �y 2 C, where �x = (�x1; : : : ; �xn) when x = (x1; : : : ; xn) 2 (F d+1)n and �xidenotes the usual scalar-vector product.Proposition 3.1 For every R, the code CR is F -linear.Proof: For every p0; p00 2 Pm;d and �; � 2 F , and for every ` 2 R0, it holds that (�CR(p0)+�CR(p00))`equals �CR(p0)`+ �CR(p00)`. Letting p(`) denote the univariant polynomial representing the valuesof the polynomial p when restricted to the line `, we have CR(p0)` = p0(`) and CR(p00)` = p00(`).Finally, CR(�p0 + �p00)` = (�p0 + �p00)(`) = �p0(`) + �p00(`) = �CR(p0)` + �CR(p00)`where the second equality follows from the fact that (�p0 + �p00)(x) = �p0(x) + �p00(x) for everyx 2 Fm. Thus, CR(�p0 + �p00) = �CR(p0) + �CR(p00), and the proposition follows.We are now ready to analyze the relative distance of CR.Proposition 3.2 With probability 1 � o(1), for a randomly chosen R, the code CR has relativedistance at least � = 
(1� d=jF j) > 0.Proof: Informally, the code CL has relative distance at least 1 � d=jF j; and so truncation to arandom subset of coordinates should leave it with relative distance at least � = 
(1�d=jF j). Below,we formally prove this assertion for � = 12 � (1 � d=jF j), but the same argument can be used toestablish � = c � (1� d=jF j), for any constant c < 1.Since the code CR is F -linear (see Proposition 3.1), the distance between any two di�erentcodewords is captured by the weight of some non-zero codeword. Thus, it su�ces to lowerboundthe weight of all non-zero codewords in CR. Fix a non-zero polynomial p 2 Pm;d, and consider thecorresponding codeword CR(p). Our aim is to prove that the probabilility that CR(p) has relativeweight less than � is at most o(jFm;dj�1).We �rst consider CL(p). By the folklore property of multivariate polynomials, we have that pevaluates to non-zero values on at least 1� d=jF j fraction of the points in Fm. Extending this factto lines, we can infer immediately that the restriction of p to 1� d=jF j = 2� fraction of the lines isnon-zero. (This is true since one can sample a random line by picking a random point x and pickinga random line through x, and if the p is non-zero at x, it must be non-zero on the line.) Also, wehave that the restriction of p to A is non-zero on at least 1� d=jF j > � fraction of the \lines" in A(since these lines are just points in disguise). So in order for CR(p) to have fewer than � fraction ofnon-zero coordinates, it must be that p is non-zero on fewer than � fraction of the lines in R. But wealso have that the expected fraction of lines in R where p is non-zero, when R is chosen at random,is at least 2�. Applying Cherno� bound, we �nd that the probability that this fraction turns outto be less than � when R is chosen at random, is at most exp(��jRj) = o(jF j�jF jm) = o(jFm;dj�1).Thus, the probabilility that CR(p) has relative weight less than � is at most o(jFm;dj�1). Takingthe union bound over all possible polynomials p, we �nd the probability that CR has a codewordof weight less than � is at most o(1).We now move to describing the codeword test.
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The Codeword Test: The test for the code CR is a variant of the points-vs-lines test (cf. [2])that accesses two oracles, one giving the value of a function f : Fm ! F and the other supposedlygiving the restriction of f to lines in Fm. The original test picks a random point x 2 Fm and arandom line ` 2 L passing through x and veri�es that f(x) agrees with its supposed restriction off to the line `. In implementing this test, we modify it in two ways: Firstly, we do not have therestriction of f to all lines, only to those in R (or rather to R[A), so we modify the above test bypicking a random ` 2 R that passes through x. Secondly, we do not (actually) have oracle accessto the value of f on individual points, but rather the restriction of f to \degenerate lines" (wherea word to be tested is allowed to provide arbitrary degree d polynomials as values of f restricted tothese lines). So we test that the restriction of this word to degenerate lines is a constant, and usethis constant as the value of the corresponding point. This leads to the following test that, givenoracle access to w 2 �A[R, proceeds as follows:1. Pick x 2 Fm uniformly at random and let `0 = `x;0m 2 A.2. Pick ` 2 R uniformly among lines that pass through x.(If no such line exists, set ` = `0.)3. Let h0 = w`0 and h = w`.(Recall that h0 and h are univariate degree d polynomials.)4. Constant Test: Pick random � 2 F and verify h0(0) = h0(�).5. Point-vs-Line Test: Let � 2 F be such that `(�) = x. Verify h0(0) = h(�).Note that the codeword test makes two queries to w (i.e., for w`0 and w`), and uses the answersin two di�erent tests. Recall that, for sake of uniformity (with the Point-vs-Line Test), we avoida seemingly simpler version of the Constant Test (in which one veri�ers that h0 is a constantpolynomial). We analyze the codeword test next.Analysis. It is obvious that the test accepts a valid codeword with probability 1. Below we givea lower bound on the rejection probabibility of non-codewords. As in Proposition 3.2, the lowerbound holds for almost all possible R's.Lemma 3.3 For at least a 1 � o(1) fraction of the possible choices of R of size n � jFmj =O(mjF jm log jF j), every w 2 �n is rejected by the codeword test with probability 
(�CR(w)), where�CR(w) is the relative distance of w from the code CR.The above lemma improves over the probability bound 
(�CR(w)=n)� o(1) that was established inour preliminary report [18] for a related code (and a related test).Proof: Let w = (w0; w00), where w0 2 �jAj corresponds to the lines in A and w00 2 �jRj correspondsto the lines in R. Intuitively, the distance of w from CR may be due to three sources:1. The distance of w0 from a sequence of constant polynomials. In this case, the Constant Testwill cause rejection with probability that is linearly related to the said distance (becuase non-constant polynomials disagree with any constant polynomial on most points). For details seeClaim 3.3.1. 12



2. The distance of the function determined by (the constant term of) the polynomials in w0 froma low-degree polynomial. In this case, for all but a o(1) of the choices of R, the Point-vs-LineTest will cause rejection with probability that is linearly related to the said distance. Theproof of this claim (see Claim 3.3.2) is the most interesting part of the current analysis. Itamounts to showing that, for most choices of R, the modi�ed (Point-vs-Line) low-degree testthat selects lines in R performs as well as the original low-degree test (which selects lines inL). The proof relies on the following observations:(a) Each possible function f : Fm ! F determines an optimal answer for each possibleline-query, which in turn assigns each possible query a \rejection value" that is merelythe fraction of points on the line for which the (optimal) answer disagrees with the valueof f .(b) The rejection probability of the original low-degree test is related to the average of theserejection values, where the average is taken over all lines.(c) The modi�ed test refers to a (random) set of line-queries, and so its rejection probabilityis related to the average of these rejection values, where the average is taken over thesaid set.However, for a random set (of adequate size), with overwhelmingly high probability, theaverage of values assigned to elements in the set approximates the average of all values.3. The distance of w00 from the values assigned to lines by the low-degree polynomial that isclosest to the function determined by (the constant term of) the polynomials in w0. Supposethat the latter function f is actually a low-degree polynomial. Then, for all but a o(1) ofthe choices of R, the Point-vs-Line Test will cause rejection with probability that is linearlyrelated to the distance of \CR(f) restricted to R" from w00. The claim can be extended tothe general case in which f is only close to Pm;d; for details see Claim 3.3.3.Turning to the actual proof, we �x some notation �rst. As above, we view w 2 �n as indexed bylines in A [ R, and write w = (w0; w00) 2 �jAj � �jRj. We denote by fw : Fm ! F the functionde�ned by letting fw(a) = w0̀a;0m (0); that is, fw(a) is the value at zero of the univariate polynomialthat is assigned (by w0) to the degenerate line passing through a. Let pw 2 Pm;d denote the m-variate degree d polynomial closest to fw (breaking ties arbitrarily). Let �(w) = �CR(w) be the(relative) distance of w from the code CR. In accordance to the motivational discussion, we considerthe following auxiliary distances:1. �con(w) denotes the fraction of a 2 Fm such that w0̀a;0m is not a constant polynomial.2. �ldp(w) denotes the relative distance of fw from pw (or equivalently from Pm;d).3. �agr(w) denotes the relative distance between the values assigned by pw to lines in R andw00; that is, �agr(w) = Pr`2R[pw(`) 6= w00̀], where (as above) pw(`a;b) denotes the univariantpolynomial in x 2 F that is obtained from pw(a+ xb).For a polynomial p 2 Pm;d and a set of lines S � L, we let ES(p) denote the sequence of univariantpolynomials representing the values assigned by p to each line in S (i.e., ES(p)` = p(`) for every` 2 S). Indeed, CR(p) = EA[R(p). Using this notation, we have�agr(w) = �(ER(pw); w00)jRj13



�con(w) = �(EA(fw); w0)jAj�ldp(w) = �(fw; pw)jAj = �(EA(fw); EA(pw))jAjLastly, note that (jAj+ jRj) � �(w) � (�con(w) + �ldp(w)) � jAj+ �agr(w) � jRjThus, either �con(w) + �ldp(w) � �(w) or �agr(w) � �(w).Claim 3.3.1 For every w 2 �n, the Constant Test rejects w with probability at least (1� (d=jF j)) ��con(w).Proof: Fix any w 2 �n. Then, with probability �con(w), the point x 2 Fm selected by the test issuch that the degree d univariant polynomial h0 = w0̀x;0m is not a constant polynomial. In such acase, with probability at least 1�d=jF j over the choice of � 2 F , the value h0(�) will disagree withh0(0), because the constant function f0(x) def= h0(0) (for all x 2 F ) is also a degree d polynomial.In such a case, the Constant Test rejects. The claim follows.For the next claim, we rephrase the Point-vs-Line test in terms of the associated functionsf : Fm ! F and g : R! �, where in our application f = fw and g(`) = w00̀ (for every ` 2 R). Thetest now picks x 2 Fm uniformly at random and ` 2 R uniformly among lines passing through x.For � such that `(�) = x, it veri�es that h(�) = f(x), where h is the univariant polynomial g(`).Let �ld(f) = �Pm;d(f) denote the relative distance of f from Pm;d. Indeed, �ld(fw) = �ldp(w).Claim 3.3.2 For all but at most an o(1) fraction of the possible choices of R, the following holds:For every f : Fm ! F and g : R! �, the probability that the Point-vs-Line Test (of Step 5) rejectsthe oracle pair (f; g) is at least 
(�ld(f)).In particular, we may conclude that our codeword test rejects any w with probability at least
(�ldp(w)). Note that Claim 3.3.2 does not refer to the distance of g from being a legitimate line-oracle (let alone one that corresponds to f). Thus, Claim 3.3.2 e�ectively refers to all possible g's(or rather to the best possible g) that may be paired with f .Proof: We prove the claim in two steps. First, we �x f : Fm ! F and prove that for all butexp(��ld(f) � jRj) fraction of R's, the rejection probability of the test on input f and any g : R! �is 
(�ld(w)). Next, we use a union bound over an approriate collection of functions f , to prove thatno function f is rejected with probability less than 
(�ld(f)). An interesting aspect of the secondstep is that we analyze the performance of the test on all functions by using a union bound onlyon a small fraction of the possible functions.Step 1 { overview: Following [23, 2, 3, 21, 15], we observe that for each possible function f : Fm ! Fthere exists an optimal strategy of answering all possible line-queries such that the acceptanceprobability of the point-vs-line test for oracle pairs (f; �) is maximized. Speci�cally, for a �xedfunction f , and each line `, the optimal way to answer the line-query ` is given by the degree dunivariate polynomial that agrees with the value of f on the maximum number of points of `.Thus, the optimal acceptance probability of the point-vs-line test, when the point-oracle equals f ,depends only on f (and not on the line-oracle g, which may not be optimal for f). Furthermore,this probability is the average of quantities (i.e., the agreements of f with the best univariate14



polynomials) that f associates with each of the possible lines. The latter fact holds not only whenthe test operates with the set of all lines, but also when it oprates with any set of lines R (as inthe claim).5 The key observation is that for a random set R, with overwhelmingly high probability,the average over R of quantities associated with lines in R approximates the average over L of thesame quantities.Step 1 { details: Fix f : Fm ! F an let � = �ld(f) denote its distance to the nearest low-degreepolynomial. Let us denote by D`(f) the fractional disagreement of f , when restricted to line `, withthe best univariate polynomial (i.e., the univariate polynomial that is nearest to f j` (f restricted to`)). Note that, on input oracles f and g, the rejection probability of the standard point-vs-line test(which refers to all possible lines), denoted pL(f; g), is lowerbounded by the average of the D`(f)'sover all ` 2 L (with equality holding if, for every line ` 2 L, it holds that g(`) is a polynomial withmaximal agreement with f j`). A similar observation holds for the Point-vs-Line Test that refers tothe set of lines R, except that now the average is taken over the lines in R. Furthermore, the averageis weighted according to the probability that the test inpects the di�erent lines (because a line isselected by uniformly selecting a point and then selecting a random line that passes through thispoint). Thus, the rejection probability of the Point-vs-Line Test that refers to the set R, denotedpR(f; g), is lowerbounded by the weighted average of the corresponding D`(f)'s.Using the best-known analysis of the standard low-degree test (in particular, using [15, Theorem7] to include the case where jF j = O(d)), we obtain thatpL(f; g) � �(f) def= jLj�1 � X̀2LD`(f) = 
(�) :(Actually, we only care about the second inequality.)6 Now, when R is chosen at random (as a set ofn�jAj lines from L), the expected value of �R(f) def= jRj�1 �P`2RD`(f) equals E`[D`(f)] = �(f). ByCherno� bound, we have that the probability that R is such that �R(f) < �(f)=2 is exponentiallysmall in �jRj. That is, for a random set R of n� jAj lines, it holds that(8f) PrR[�R(f) < �(f)=2] < exp(�
(�ld(f) � jRj)) (2)In the following two paragraphs we assume that R is such that �R(f) � �(f)=2.Let us assume that R covers all points uniformly; that is, each point resides on the same numberof lines in R (where several appearances on the same line are counted several times). This impliesthat our test selects lines uniformly in R. Then, the rejection probability of our test (i.e., thepoint-vs-line test for lines uniformly selected in R), when applied to f and any g, is lower-boundedby the (unweighted) average of the D`(f)'s over the lines in R (rather than over the set of all lines,L). It follows that pR(f; g) � �R(f) � �(f)=2 = 
(�ld(f)). (Recall that pR(f; g) denotes the saidrejection probability.)Recall that in the previous paragraph we have assumed that R covers all points uniformly (i.e.,each point resides on the same number of lines in R). In general, this may not be the case. Yet,with very high probability, a random set R covers all points in an almost uniform manner, andthis \almost uniformity" su�ces for extending the above analysis. Speci�cally, we �rst note that,5In the latter case, the average is taken according to the distribution on R that is induced by the test. Note thatthis distribution is not necessarily uniform over R.6The inequality jLj�1 �P`2LD`(f) = 
(�) is only implicit in most prior works, but it can also be inferred from theresults that are stated explicitly in them (which refer to the rejection probability of the standard test). Speci�cally,for the optimal g, the rejection probability of the standard point-vs-line test (which refers to all possible lines) equalsthe average of the D`(f)'s (over all ` 2 L). 15



with overwhelmingly high probability, each point in Fm resides on (1 � 0:1) � jRj=jF jm�1 lines.Indeed, the probability that a particular point resides on a deviating number of lines is at mostexp(�
(jRj=jF jm�1)) = o(jF j�m), since jRj � m � jF jm�1 log jF j. Next observe that in the aboveanalysis we assumed that the test selects lines uniformly in R, whereas our test selects lines in R byselecting uniformly a point and then selecting a random line passing through this point. However,as shown in the next paragraph, for R as above (i.e., that covers all points \almost uniformity"),the distribution induced on the selected lines assigns each line in R a probability of (1�0:1)�1=jRj.Thus, the rejection probability may be skewed by a factor of (1� 0:1)�1 = (1� 0:2) from the valuejRj�1 �P`2RD`(f) = �R(f), which is analyzed above. We get pR(f; g) � 0:8 � �R(f) � 0:4 � �(f) =
(�ld(f)). For future reference, we state the following fact (which, unlike the former inequality,does not assume �R(f) � �(f)=2):PrR[(8f; g) pR(f; g) � 0:8 � �R(f) and �(f) = 
(�ld(f))] = 1� o(1) (3)It is left to analyze the distribution induced on lines selected from R (by the aforementionedprocess), when R covers all points \almost uniformity". For a point x, we let lines(x) denote theset of lines that pass through x. Then, the probability that the line ` = (x1; :::; xjF j) 2 R is selectedis given by jF jXi=1Pr[xi is selected] � 1jlines(xi)j = jF j � 1jF jm � 1(1� 0:1) � jRj=jF jm�1which equals (1� 0:1)�1 � jRj�1 as claimed.Step 2 { overview: Our aim is to show that, for most R's, it is the case that �R(f) � �(f)=2 holds forevery f . This su�ces to complete the proof of the current claim, because we have shown in Step 1(see Eq. (3)) that pR(f; g) � �R(f) and �(f) = 
(�ld(f)) for every pair (f; g). We would now liketo take the union bound over all f 's that are at distance � from Pm;d in order to upper bound thefraction of R's such that there exists such a function f for which �R(f) < �(f)=2. The problem isthat the number of such functions is � jF jm�jF jm� � jPm;dj > (d=m)m, whereas (for a random R) we onlyhave PrR[�R(f) < �(f)=2] < exp(�
(�jRj)) (and in fact PrR[�R(f) < �(f)=2] > exp(�O(�jRj))).This su�ces in case �jRj > (d=m)m, which in turn su�ces to establish a weak tester (as perDe�nition 2.1),7 but we wish to handle the general case (in order to establish a strong tester asper De�nition 2.2). Thus, we cluster these functions according to the low-degree function thatis closest to them, and show that it is enough to analyze one cluster (e.g., the one of the zeropolynomial). The validity of the latter observation relies on properties of the set Pm;d that implythat D`(f) = D`(f + p) holds for every function f , polynomial p 2 Pm;d and line `. The bene�tin the said observation is that we need only consider the functions that are closest to some �xedpolynomial and are at relative distance � from it (rather than all functions at relative distance� from Pm;d). Thus, we get an upperbound of � jF jm�jF jm� � exp(�
(�jRj), which is negligible (sincejRj � jF jm log jF jm).Step 2 { details: For any �xed � > 0, we start by considering the functions that are at relativedistance � from the zero polynomial. The number of such functions is at most jF jm�jF jm! < (jF jm)�jF jm = exp(�mjF jm log jF j) :7This is all that was established in our preliminary report [18], and the stronger analysis that follows is new.16



On the other hand, by Eq. (2), for any such function f , it holds that PrR[�R(f) < �(f)=2] =exp(�
(�ld(f) � jRj)), and if this function is closest to the zero polynomial (i.e., �(f; 0) = �Pm;d(f))then �ld(f) = �. Thus, using jRj = c � jF jm log jF jm (for an adequate constant c), the probability(over the choices of R) that there exists a function f that is closest to the zero polynomial and isat relative distance � from it such that �R(f) < �(f)=2 is upperbounded byexp(�mjF jm log jF j) � exp(�
(� � jRj)) = exp(�2�jF jm log jF jm) < o(jF j�m) ;where the last inequality uses � � 1=jF jm. Summing over all (the jF jm) possibilities of �, we seethat the probability over R, that there exists a function f that is closest to the zero polynomial(among all polynomials in Pm;d) such that �R(f) < �(f)=2 is o(1).To conclude the argument, we use properties of the set Pm;d. Speci�cally, suppose that R issuch that for every � and every function f that is closest to the zero polynomial and at distance� from this polynomial it holds that �R(f) � �(f)=2. Now, consider an arbitrary function f 0 thatis at distance � from the set Pm;d, and let p 2 Pm;d be the polynomial closest to f 0. Then, thefunction f = f 0 � p is closest to the zero polynomial (and at distance � from it), and we claimthat �(f) = �(f 0) and �R(f) = �R(f 0). The reason being that, for every function f and polynomialp 2 Pm;d and for every line `, it holds that D`(f) = D`(f + p) (although the polynomials selectedto achieve the maximum agreement with f and f + p, over the line `, may be di�erent). Indeed, ifq is used to achieve the maximum agreement with f over the line ` then q + (pj`) will be selectedto achieve the maximum agreement with f + p, where pj` is the univariant polynomial obtained byrestricting the polynomial p to the line `.Thus, for R as above and for every f , we have �R(f) = �R(f � p) � �(f � p)=2 = �(f)=2, wherep 2 Pm;d is closest to f . By Eq. (3), we have pR(f; g) � 0:8�R(f) and �(f) = 
(�ld(f)) for everypair (f; g). Combining all the above, we get pR(f; g) � 0:8�R(f) � 0:4�(f) = 
(�ld(f)), and thecurrent claim follows,The last claim, which also relates to the Point-vs-Line Test, is also phrased in terms of theassociated functions f : Fm ! F and g : R ! �, where in our application f = fw and g(`) = w00̀(for every ` 2 R).Claim 3.3.3 For all but at most an o(1) fraction of the possible choices of R, the following holds:for every f : Fm ! F and g : R ! �, the probability that the point-vs-line test rejects the oraclepair (f; g) is at least 12 � �(g; ER(p))jRj � �(f; p)jFmj ;where p is the polynomial in Pm;d that is closest to f .Claim 3.3.3 will be applied to pairs (fw; w00), in which case �(w00; ER(pw)) = �agr(w) � jRj and�(fw; pw) = �ldp(w) � jFmj (recalling that pw is the polynomial closest to fw). Consequently,we will infer that the codeword test reject any w with probability at least (�agr(w)=2) � �ldp(w).Needless to say, this claim will be invoked only in case �ldp(w) < �agr(w)=2.Proof: We �rst consider what happens when the test is invoked with oracle access to the pair(p; g), rather than to the pair (f; g). This mental experiment is easier to analyze in the case thatthe test selects lines uniformly in R (which is the case only when R covers all points uniformly).Still, as in the proof of Claim 3.3.2, we extend the analysis to most R (i.e., the R's that cover allpoints almost uniformly). The claim follows by observing that the test queries the point orcale on17



a single uniformly distributed point, and so replacing p by f may reduce the rejection probabilityby at most their relative distance.As in the proof of Claim 3.3.2, we start by assuming that R covers all points uniformly (i.e.,each point resides on the same number of lines in R). In this case, the test selects lines uniformlyin R. Thus, with probability � def= �(g; ER(p))=jRmj, the test selects a line ` such that h def= g(`)does not agree with p on `. Now, since both h and ER(p)` (i.e., the values of p restricted tothe line `) are degree d univariant polynomials (and since they disagree), they disagree on at leastjF j�d > 2jF j=3 of the points on `. Thus, the test will reject the oracle pair (p; g) with probability atleast (2=3)��. However, in general, R may not cover all points uniformly. Yet (as shown in the proofof Claim 3.3.2), with very high probability, a random set R covers all points in an almost uniformmanner (i.e., each point in Fm resides on (1 � 0:1) � jRj=jF jm�1 lines). This \almost uniformity"su�ces for extending the above analysis. Speci�cally, in this case each line is selected (by the test)with probability (1� 0:2)=jRj, and so the test rejects the oracle pair (p; g) with probability at least0:8 � (2=3) � � > �=2.So far we have analyzed the behavior of the test with respect to the oracle pair (p; g), whereaswe need to analyze the behavior with respect to the oracle pair (f; g). Recalling the test makes asingle uniformly distributed query to the point oracle, the claim follows.Wrapping things up: Recall that either �con(w) + �ldp(w) � �(w) or �agr(w) � �(w). If�con(w) � �(w)=4 then invoking Claim 3.3.1 we are done. Similarly, if �ldp(w) � �(w)=4 theninvoking Claim 3.3.2 we are done. It remains to deal with the case that both �con(w) < �(w)=4 and�ldp(w) < �(w)=4, which implies that �agr(w) � �(w). But now, invoking Claim 3.3.3 and using(�agr(w)=2) � �ldp(w) > �(w)=4, the lemma follows.Conclusion: By the above, with probability 1�o(1) over the choice of R, the code CR has relativeconstant distance and is locally-testable (using two queries). Using the �rst parameter-setting (i.e.,d = mm), we establish Part 1 of Theorem 2.4.3.3 Decreasing the alphabet sizeThe above construction uses quite a big alphabet (i.e., � = F d+1). Our aim in this subsection is tomaintain the above performance while using a smaller alphabet (i.e., F rather than F d+1). This isachieved by concatenating the above code (which encodes information by a sequence of n degree dunivariate polynomials over F ) with the following inner-code that maps F d+1 to F n0 , where n0 issub-exponential in k0 def= d+ 1.The inner-code: For a (suitable) constant d0, let k0 = hd0 and [h] = f1; :::; hg. As a warm-up, consider the special case of d0 = 2. In this case, the code C0 maps bilinear forms in xi'sand yi's (with coe�cients (ci;j)i;j2[h]) to the values of these forms under all possible assignments.That is, C0 : F h2 ! F jF j2h maps the sequence of coe�cients (ci;j)i;j2[h] to the sequence of val-ues (va1;:::;ah;b1;:::;bh)a1 ;:::;ah;b1;:::;bh2F where va1;:::;ah;b1;:::;bh = Pi;j2[h] ci;j � aibj . In general (i.e.,arbitrary d0 � 1), the inner-code C0 : F k0 ! F n0 maps d0-linear forms in the variables setsfz(1)i : i 2 [h]g; :::; fz(d0)i : i 2 [h]g to the values of these d0-linear forms under all possible assign-ments to these d0h variables. That is, C0 maps the sequence of coe�cients (ci1;:::;id0 )i1;:::;id02[h] to thesequence of values (va(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h )a(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h 2F where va(1)1 ;:::;a(1)h ;:::;a(d0)1 ;:::;a(d0)h =Pi1;:::;id02[h] ci1;:::;id0 �Qd0j=1 a(j)ij . Thus, (k0 = hd0 and) n0 = jF jd0h = exp(d0 � (k0)1=d0 � log jF j). Notethat the inner-code has relative distance (1� (d0=jF j)) > 3=4.18



Testing the inner-code: A valid codeword is a multi-linear function (in the variable setsfz(1)i : i 2 [h]g; :::; fz(d0 )i : i 2 [h]g); that is, for each j, a valid codeword is linear in the vari-ables z(j)i 's. Thus, testing whether a sequence belongs to the inner-code amounts to d0 linearitychecks. Speci�cally, for each j, we randomly select r = (r(1)1 ; :::; r(1)h ; :::; r(d0)1 ; :::; r(d0)h ) 2 F d0h and(s(j)1 ; :::; s(j)h ) 2 F h, and check whether vr + vs = vt, wheres = (r(1)1 ; :::; r(1)h ; :::; r(j�1)1 ; :::; r(j�1)h ; s(j)1 ; :::; s(j)h ; r(j+1)1 ; :::; r(j+1)h ; :::; r(d0)1 ; :::; r(d0)h ) andt = (r(1)1 ; :::; r(1)h ; :::; r(j�1)1 ; :::; r(j�1)h ; r(j)1 + s(j)1 ; :::; r(j)h + s(j)h ; r(j+1)1 ; :::; r(j+1)h ; :::; r(d0)1 ; :::; r(d0)h ) :To simplify the analysis, we also let the test employ a total low-degree test (to verify that thecodeword is a multi-variate polynomial of total-degree d0).8 The total-low-degree test uses d0 + 2queries, and so our codeword test uses 3d0 + d0 + 2 = O(d0) queries.Lemma 3.4 If the distance of w0 2 F n0 from C0 is �n0 then the probability that the codeword testfor C0 rejects is 
(�).Proof: If w0 2 F jF d0hj (viewed as a function w0 : F d0h ! F ) is at fractional distance at leastmin(�; 0:4) from the set of d0h-variate polynomials of total degree d0 then it is rejected with proba-bility 
(�) by the total-degree test. Otherwise, w0 is at distance less than min(�; 0:4) � n0 from sucha polynomial, denoted p0, which is unique (since min(�; 0:4) < (jF j � d)=2jF j). By the hypothe-sis (regarding the distance of w0 from C0), this p0 must be non-linear in some block of variables;that is, for some j, the polynomial p0 is non-linear in fz(j)i : i 2 [h]g. With probability at least1�(d0=jF j) > 0:9, this non-linearity is preserved when assigning random values to the variables of allthe other blocks; that is, for a random r = (r(1); :::; r(d0)) 2 (F h)d0 , with probability at least 0:9, thepolynomial q0(z(j)) def= p0(r(1); :::; r(j�1); z(j); r(j+1); :::; r(d0)) is not linear, where z(j) = (z(j)1 ; :::; z(j)h ).(Here we used the fact that p0 has degree at most d0.)9 Furthermore, q0 (which also has degree atmost d0) is at distance 1� (d0=jF j) > 0:9 from any linear function (in z(j)). On the other hand, theexpected fractional distance between the residual w0 and p0 under such a random assignment is lessthan 0:4. Thus, under such random assignment, the expected fractional distance of the residual w0from the set of linear functions in fz(j)i : i 2 [h]g is at least 0:9 � 0:9� 0:4 > 0:4. It follows that w0 isrejected with constant probability by the jth linearity test (because, with probability at least 0:2,the residual w0 is at least 0:2-far from being linear in the z(j)i 's).The concatenated-code: The concatenated-code obtained by composing the outer-code C :�k ! �n with the inner-code C0 : F k0 ! F n0 , where � = F d+1 = F k0 , maps (x1; :::; xk) to(C0(y1); ::::; C0(yn)), where (y1; ::::; yn) def= C(x1; :::; xk). Thus, the concatenated-code maps k �k0-longsequences over F to n � n0-long sequences over F . Furthermore, the concatenated-code is linear(over F ); that is, for each i, each F -symbol in the sequence C0(yi) is a linear combination of theF -symbols in yi, which in turn are linear combinations of the F -symbols in (x1; :::; xk).8We believe that the codeword test operates well also without employing the total-degree test, but the augmentedcodeword test is certainly easier to analyze.9Write the polynomial p0 as the sum of monomials in z(j) with coe�cients being functions of the other variables.Consider any non-linear monomial in z(j) having a non-zero coe�ent (which is a polynomial of degree at most d0 � 2in the other variables). Then, by the Schwarz{Zippel Lemma, with probability at least 1� ((d0 � 2)=jF j), a randomassignment to the other variables will yield a non-zero value, and thus this (non-linear) monomial in z(j) will appearin q0 (with a non-zero coe�cient). 19



Testing the concatenated-code: In order to test the concatenated code, we �rst test (randominstances of) the inner-code, and next use self-correction on the latter to emulate the testing ofthe outer-code. Speci�cally, the tester for the concatenated code selects at random (as the testerof the outer-code) two intersecting lines `0 and `00, and �rst applies the inner-code tester to theinner-encoding of the polynomials associated by the outer code to these two lines. To emulate theactual check of the outer-code test, the current tester needs to obtain the value of these polynomialsat some elements of F (which are determined by the outer test). (Note that by the modi�cationintroduced after the proof of Lemma 3.3, all that the outer-code tester does is to compare the valuesof univariant polynomials at certain points.) Suppose that we need the value of q0 (a univariatepolynomial of degree d = hd0 � 1 over F ) at t 2 F , and that q0 is encoded by the inner-code. Recallthat q0 is represented as a sequence of coe�cients that, for sake of the inner-code, may be indexedby d0-tuples over [h] such that q0i1;:::;id0 is the coe�cient of the Pd0j=1(ij � 1) � hj�1-th power; thatis, q0(z) = Pi1;:::;id02[h] q0i1;:::;id0 � zPd0j=1(ij�1)�hj�1 . Observe that the value q0(t) equals the entry ofC0(q0) that is associated with the sequence (t0; :::; th�1; t0; :::; t(h�1)h; :::; t0; :::; t(h�1)hd0�1). That is,we consider the entry of C0(q0) that is indexed by the sequence (a(1)1 ; :::; a(1)h ; :::; a(d0)1 ; :::; a(d0)h ) thatsatis�es a(j)i = t(i�1)hj�1 . The value of this entry equalsPi1;:::;id02[h] q0i1;:::;id0 �Qd0j=1 a(j)ij , which equalsXi1;:::;id02[h] q0i1;:::;id0 � d0Yj=1 t(ij�1)hj�1 = Xi1;:::;id02[h] q0i1;:::;id0 � tPd0j=1(ij�1)hj�1 = q0(t) :Self-correction of the desired entry is performed via polynomial interpolation, and requires onlyd0 + 1 queries (where each query is uniformly distributed). Thus, the concatenated code can betested by making O(d0) queries: It is clear that our tester makes 2 � (4d0+2)+2 � (d0+1) queries andthat it accepts each codeword with probability 1, but the rejection probability of the tester doesrequire a detailed analysis (which is provided next). The point is to prove that the composition oftests (for the concatenation-code) does work as one would have expected.Lemma 3.5 Let F and C = CR be as in Lemma 3.3, and C0 : F k0 ! F n0 be as above, where k0 = hd0and n0 = jF jd0h. Then, every w 2 F nn0 is rejected by the concatenated-code tester with probabilitythat is linearly related to the distance of w from the concatenated-code.Proof: Let us denote by � the relative distance of w = (w1; :::; wn) 2 (F n0)n from the concatenated-code, and let �i def= �C0(wi)=n0 denote the relative distance of wi from the inner-code C0. Recall thateach of the two lines selected by the outer-code tester is not uniformly distributed in [n] � Am[Rm,but it is rather that the �rst line is selected uniformly in Am � [jF jm] whereas the second line isselected uniformly in Rm � [n] n [jF jm]. For a constant c > 1 (to be determined), we consider thefollowing two cases:10Case 1: either jF j�m �PjF jmi=1 �i > �=c or (n� jF jm)�1 �Pni=jF jm+1 �i > �=c. In this case, at least oneof the wi probed by the outer-code tester is at expected relative distance at least �=c fromthe inner-code. Thus, in this case, the inner-code tester will reject with probability 
(�=c),which is 
(�) because c is a constant.Case 2: both jF j�m �PjF jmi=1 �i � �=c and (n� jF jm)�1 �Pni=jF jm+1 �i � �=c. It follows that at least1 � (�=2) of the wi's are (2=c)-close to the inner-code. Denoting the closest corresponding10Alternatively, instead of consisdering the two partial sums, one may consider a weighted average of all �i's, wherethe weights are proportional to the probability that the various lines are queried.20



codewords by ci's, we let di denote the decoding of ci (and of wi) if �C0(wi; ci) � 2n0=c and bearbitrary otherwise. Thus, the relative distance of (d1; :::; dn) from the outer-code is at least��(�=c)�(�=2) > �=3, where the �=c term accounts for the average distance of the ci's from thewi's, and the �=2 term accounts for the arbitrary di's (which were introduced to facilitate therest of the analysis). Thus, for some constant c0 > 0 (determined in Lemma 3.3), the outer-code testes rejects (d1; :::; dn) with probability at least c0 � �=3. (We will set c = 24(d0+1)=c0.)The question is what happens when the concatenated-code tester emulates the outer-code.Recall that, in the current case, both the indices probed by the outer-code tester correspondto wi's that are at expected relative distance at most �=c from the inner-code. It follows thatwith probability at least 1 � 2 � (2(d0 + 1)�=c), both indices probed by the outer-code testercorrespond to wi's that are at relative distance at most 1=2(d0 + 1) from the inner-code. Inthis case, with probability at least (1� (d0+1) � (1=2(d0 +1)))2 = 1=4, both the self-correctedvalues (computed by our test) will match the corresponding di's. Note that if the above twoevents occur then our tester correctly emulates the outer-code tester. Thus, our tester rejectsif the following three events occur:1. The outer-code tester would have rejected the two answers (i.e., the two di's).2. The two probed indices correspond to wi's that are at relative distance at most 1=2(d0+1)from the inner-code (and in particular from the corresponding C0(di)'s).3. The self-corrected values match the corresponding di's.By the above, Event 1 occurs with probability at least c0�=3, and Event 2 fails with probabilityat most 4(d0 + 1)�=c = c0�=6 (by setting c = 24(d0 + 1)=c0). Thus, our tester rejects w withprobability at least ((c0�=3) � (c0�=6)) � (1=4) = 
(�), where the 1=4 is due to the probabilitythat Event 3 occurs (conditioned on Events 1 and 2 occuring).Thus, in both cases, any word that is at relative distance � from the concatenated-code is rejectedwith probability 
(�). The lemma follows.Other properties: Recall that the inner-code is linear (over F ), and so is also the concatenatedcode. Furthermore, the codeword test is a conjunction of O(d0) linear tests. Alternatively, wemay perform one of these linear tests, selected at random (with equal probability). The relativedistnace of the concatenated code is the product of the relative distances of the outer and innercodes, and thus is a constant. Regarding the parameters of the concatenated code, suppose thatin the outer-code we use the setting d = me (for any constant e > 1), and that in the inner-codewe use d0 = 2e. Then, we obtain a code that maps F kk0 to F nn0 , where n � ke=(e�1) and n0 �exp(d1=d0) � exp((log k)e=d0) = exp(plog k) = ko(1) (using d � (log k)e). Thus, nn0 � (kk0)e=(e�1),whereas the alphabet size is jF j = O(d) � (log k)e. For usage in the next subsection, we only carethat the alphabet size is ko(1), while the rate is good (i.e., nn0 � (kk0)e=(e�1)).3.4 A Binary CodeThe last step is to derive a binary code. This is done by concatenating the code presented inSection 3.3 with the Hadamard code, while assuming that F = GF (2k00). That is, the Hadamardcode is used to code elements of F by binary sequences of length n00 def= 2k00 .To test the newly concatenated code, we combine the obvious testing procedure for theHadamard code with the fact that all that we need to check for the current outer-code are (a21



constant number of) linear (in F ) conditions involving a constant number of F -entries. Insteadof checking such a linear condition over F , we check that the corresponding equality holds fora random sum of the bits in the representation of the elements of F (using the hypothesis thatF = GF (2k00)). Speci�cally, suppose that we need to check whether Pi �iai = 0 (in F ), for someknown �i 2 F and oracle answers denoted by ai's. Then, we uniformly select r 2 GF (2k00), andcheck whether hr;Pi �iaii � 0 mod 2 holds, where hu; vi denotes the inner-product modulo 2 of(the GF (2k00) elements) u and v (viewed as k00-bit long vectors). The latter check is performed byrelying on the following two facts:Fact 1: hr;Pi �iaii �Pi hr; �iaii mod 2.Fact 2: Each hr; �iaii can be obtained by making a single query (which is determined by r and �i)to the Hadamard coding of ai, because hr; �iaii is merely a linear combination with coe�cientsdepending only on �i and r of the bits of ai.(Each bit of �iai 2 GF (2k00) is a linear combination with coe�cients depending only on �i ofthe bits of ai, and hr; vi is a linear combination with coe�cients depending only on r of thebits of v.)Speci�cally, let use denote by C : F kk0 ! F nn0 the code presented in Section 3.3, and let C00 :f0; 1gk00 ! f0; 1gn00 denote the suitable Hadamard code, where F = GF (2k00) � f0; 1gk00 and[n00] � f0; 1gk00 . Then, concatanating these two codes, we obtain a code that maps (x1; :::; xkk0) 2(f0; 1gk00 )kk0 to (C00(y1); :::; C00(ynn0)), where (y1; :::; ynn0) = C(x1; :::; xkk0). Recall that the codewordtester of C checks a constant number of linear conditions, each depending on a constant number ofpositions (i.e., F -symbols). By reducing the detection probability, we may assume that it actuallychecks only one such condition. Then we consider the following tester for the new code: The testeris given oracle access to w = (w1; ::::; wnn0), where each wi = wi;1 � � �wi;n00 2 f0; 1gn00 , and proceedsas follows:1. The tester selects the locations i1; :::; iq 2 [nn0] and the linear condition (�1; :::; �q) 2 F q tobe checked by the codeword tester of C. (These choices are distributed as in the latter tester.)2. For j = 1; :::; q, the tester checks that wij is a codeword of C00, by uniformly selecting r; s 2f0; 1gk00 and checking whether wij ;r + wij ;s = wij ;r�s.3. The tester emulates the check Pqj=1 �jdij = 0 of the tester for C, where dij is the C00-decodingof wij and the arithmetic is over F = GF (2k00). This will done by uniformly selecting r 2f0; 1gk00 , and checking that hr;Pqj=1 �jdij i = 0. By Fact 1, we may check Pqj=1 hr; �jdij i = 0.To this end, we should obtain hr; �jdij i, for r and �j that are known to us. As stated in Fact 2,the desired bit can be expressed as a linear combination (with �xed coe�cients dependingonly on r and �j) of the bits of dij . That is, hr; �jdij i = hrj ; dij i, where rj is determined by rand �j . Recall that hrj ; dij i = C00(dij )rj . However, since we may not have a valid codeword ofdij , we obtain the corresponding entry via self-correction of wij . That is, we obtain (a goodguess for) C00(dij )rj , by using wij ;rj�sj � wij ;sj , for a uniformly selected sj 2 f0; 1gk00 .To conclude, we uniformly select r 2 f0; 1gk00 , and determine r1; :::; rq based on r and the�j 's (determined in Step 1). Next, we select uniformly s1; :::; sq 2 f0; 1gk00 , and check thatPqj=1(wij ;rj�sj � wij ;sj ) = 0.Our tester makes 3q + 2q to the code, where q is a constant. It is clear that this tester acceptsany valid codeword. The analysis of the rejection probability of non-codewords can be carried out22



analogously to Lemma 3.5 (i.e., considering two cases according to the average distance of the wi'sfrom valid codewords of C00).11 It follows that non-codewords are rejected with probability that isproportional to their distance from the code.The �nal code maps f0; 1gkk0k00 to f0; 1gnn0n00 , where nn0 � (kk0)e=(e�1) and n00 = 2k00 = jF j =poly(log k) = ko(1). Thus, nn0n00 � (kk0k00)e=(e�1). (Also note that the �nal code is linear and haslinear distance.) This establishes Part 2 of Theorem 2.4.Note: Fixing any integer e > 1, the above code can be constructed for any integer h, whiledetermining k0 = he, k00 = logO(k0) and k � (me�1)m, where m = (he � 1)1=e � h. Thus,K def= kk0k00 � h(e�1)h � he � log he � h(e�1)h. The ratio between consecutive values of K is given by(h+1)(e�1)(h+1)h(e�1)h = O(h)e�1 < (logK)e�1, and so the successor of K is smaller than (logK)e�1 �K.4 Nearly linear-sized PCPsIn this section we give a probabilistic construction of nearly-linear sized PCPs for SAT. Moreformally, we reduce SAT probabilistically to a promise problem recognized by a PCP veri�er tossing(1+o(1)) log n random bits (on inputs of length n) and queries a proof oracle in a constant numberof bits and has perfect completeness and soundness arbitrarily close to 12 . We stress that theconstant number of bits is explicit and small. Speci�cally, if the o(1) function in the randomnessis allowed to be as large as 1=poly log log n, then the number of queries can be reduced to 16 bits.The little o(1) function can be reduced to O(plog log n= log n) for a small cost in the number ofqueries, which now goes up to 19 bits. These improvements are obtained by using and improvingresults of Harsha and Sudan [19].We get our improvements by applying the \random truncation" method (introduced in Sec-tion 3) to certain constant-prover one-round proof systems, which are crucial ingredients in theconstructions of PCPs. Typically, these proof systems use provers of very di�erent sizes, and byapplying the \random truncation" method we obtain an equivalent system in which all provershave size roughly equal to the size of the smallest prover in the original scheme. At this point,we reduce the randomness complexity to be logarithmic in the size of the provers (i.e., and thuslogarithmic in the size of the smallest original prover).Recall that typical PCP constructions are obtained by the technique of proof compositionintroduced by Arora and Safra [3]. In this technique, an \outer veri�er", typically a veri�er for aconstant prover one round proof system, is composed with an \inner veri�er" to get a new PCPveri�er. The new veri�er essentially inherits the randomness complexity of the outer veri�er andthe query complexity of the inner veri�er. Since our goal is to reduce the randomness complexityof the composed veri�er, we achieve this objective by reducing the randomness complexity of theouter veri�er.As stated above, the key step is to reduce the sizes of the provers. As a warm-up, we �rst showthat the random truncation method can be applied to any 2-prover one-round proof system, wherethe size of one prover is much larger than the size of the second prover, to reduce the size of thelarger prover to roughly the size of the smaller prover.We then show how to apply the random truncation to the veri�er of a speci�c 3-prover one-roundproof system used by Harsha and Sudan [19]. Their veri�er is a variant of the one constructed by Raz11In the current setting we may treat all the code's coordinates uniformly. The constant c will be set depending onc0 and q (i.e., c = 4q=c0), where c0 is performance proportion established by Lemma 3.5. Thus, each self-correctionwill incur an error of 2�=c < c0�=2q. 23



and Safra [22] (see also, Arora and Sudan [4]), which are, in turn, variants of a veri�er constructedby Arora et al. [2]. All these veri�ers share the common property of working with provers of\imbalanced" sizes. We manage to reduce the size of the provers to the size of the smallest one,and consequently reduce the randomness of the veri�er to (1 + o(1)) log n (i.e., logarithmic in theprover size). We stress that this part is not generic but relies on properties of the proof of soundnessin, say, [19], which are abstracted below. Applying the composition lemmas used/developed in [19]to this new veri�er gives us our e�cient PCP constructions.4.1 MIP veri�ers and random samplingWe start by de�ning a 2-prover 1-round proof system as a combinatorial game between a veri�erand two provers. Below, 
 denotes the space of veri�er's coins, qi denotes its strategy of formingqueries to the ith prover, and Pi denote strategies for answering these queries (where all refer tothe residual strategies for a �xed common input).De�nition 4.1 For �nite sets Q1; Q2;
; and A, a (Q1; Q2;
; A)-2IP veri�er V is given by func-tions q1 : 
 ! Q1 and q2 : 
 ! Q2 and Verdict : 
 � A � A ! f0; 1g. The value of V ,denote w(V ), is the maximum, over all functions P1 : Q1 ! A and P2 : Q2 ! A of the quantityEr 
 [Verdict(r; P1(q1(r)); P2(q2(r)))]. A 2IP veri�er V is said to be uniform if for each i 2 f1; 2g,the distributions fqi(r)gr 
 are uniform over Qi.Focusing on the case jQ2j � jQ1, we de�ne a \sampled" 2IP veri�er:De�nition 4.2 Given a (Q1; Q2;
; A)-2IP veri�er V and set S � Q2, let 
S = fr 2 
 j q2(r) 2Q1g. For T � 
S, the (S; T )-sampled 2IP veri�er V jS;T is a (Q1; S; T;A)-2IP veri�er given byfunctions q01 : T ! Q1, q02 : T ! S, and Verdict0 : T �A�A! f0; 1g obtained by restricting q1, q2and Verdict to T .In the following lemma we show that a su�ciently large randomly sampled set S from Q2 isvery likely to preserve the value of a veri�er approximately. Furthermore, the value continues tobe preserved approximately if we pick T to be a su�ciently large random subset of 
S.Lemma 4.3 There exist absolute constants c1; c2 such that the following holds for everyQ1; Q2;
; A, � and 
 > 0. Let V be an (Q1; Q2;
; A)-uniform 2IP veri�er.Completeness: Any (S; T )-sampled veri�er preserves the perfect completeness of V . That is, if!(V ) = 1 then, for every S � Q2 and T � 
S, it holds that !(V jS;T ) = 1.Soundness: For su�ciently large S and T , a random (S; T )-sampled veri�er preserves the sound-ness of V up-to a constant factor. Speci�cally, let N1 = c1� �jQ1j log jAj+ log 1
� andN2 = c2� �N1 log jAj+ log 1
�, and suppose that S is a uniformly selected multiset of sizeN1 of Q2, and T is a uniformly selected multiset of size N2 of 
S. Then, for !(V ) � �, withprobability at least 1� 
 it holds that !(V jS;T ) � 2�.Note that the reduction in randomness complexity (i.e., obtaining N2 = ~O(jQ1j)) relies on theshrinking of the second prover to size N1 = ~O(jQ1j). Without shrinking the second prover, wewould obtain N2 = ~O(jQ2j), which is typically useless (becuase, typically, j
j = ~O(jQ2j)).Proof: Assuming that !(V ) � �, we focus on the soundness condition. The proof is partitionedinto two parts. First we show that a random choice of S is unlikely to increase the value of the24



game to above 3=2�. Next, assuming the �rst part was ok, we show that a random choice of Tis unlikely to increase the value of the game above 2�. The second part of the proof is really astandard argument which has been observed before in the context of PCPs. We thus focus on the�rst part, which abstracts the idea of the random truncation from Section 3.Our aim is to bound the value !(V jS;
S), for a randomly chosen S. Fix any prover strat-egy P1 : Q1 ! A for the �rst prover. Now note that an optimal function, denoted P �2 ,for the second prover answer each question q2 2 Q2 by an answer that maximizes the ac-ceptance probability with respect to the �xed P1 (i.e., an optimal answer is a string a2 thatmaximizes Er2
jq2(r)=q2 [Verdict(r; P1(q1(r)); a2)]). We stress that this assertion holds both forthe original 2IP veri�er V as well as for any (S;
S)-sampled veri�er.12 For every questionq2 2 Q2, let �q2 denote the acceptance probability of the veri�er V given that the second ques-tion is q2 (i.e., �q2 = Er2
jq2(r)=q2 [Verdict(r; P1(q1(r)); P �2 (q2))]). By de�nition (and uniformity)Eq22Q2 [�q2 ] = Er2
[�q2(r)] � �. The quantity of interest to us is Er2
S [�q2(r)] = Eq22S [�q2 ]. Astraightforward application of Cherno� bounds shows that the probability that this quantity ex-ceeds (3=2)� is exp(��N1). Taking the union bound over all possible P1's, we infer that the prob-ability that there exists a P1; P2 such that Er 
S [Verdict(r; P1(q1(r)); P2(q2(r)))] > (3=2)� is atmost exp(��N1) � jAjjQ1j. Thus, using N1 = c1� �jQ1j log jAj+ log 1
� (for some absolute constantc1), it follows that !(V jS;
S ) � (3=2)� with probability at least 1� 
2 (over the choices of S). Thelemma follows.134.2 Improved 3-Prover Proof System for NPWe now de�ne the more general notion of a constant-prover one-round interactive proof system(MIP).De�nition 4.4 For positive reals c; s, integer p and functions r; a : Z+ ! Z+, we say that alanguage L 2 MIPc;s[p; r; a] (or, L has a p-prover one-round proof system with answer length a)if there exists a probabilistic polynomial-time veri�er V interacting with p provers P1; : : : ; Pp suchthatOperation: On input x of length n, the veri�er tosses r(n) coins, generates queries q1; : : : ; qp toprovers P1; :::; Pp, obtain the corresponding answers a1; : : : ; ap 2 f0; 1ga(n), and outputs aBoolean verdict that is a function of x, its randomness and the answers a1; : : : ; ap.Completeness: If x 2 L then there exist strategies P1; : : : ; Pp such that V accepts their response withprobability at least c.Soundness: If x 62 L then for every sequence of prover strategies P1; : : : ; Pp, machine V acceptstheir response with probability at most s, which is called the soundness error.Harsha and Sudan [19] presented a randomness e�cient 3-prover one-round proof system withanswer length poly(log n) and randomness complexity (3 + �) log2 n, where � > 0 is an arbitrary12But, the assertion does not hold for most (S; T )-sampled veri�ers.13Indeed, we have ignored the e�ect of sampling 
S ; that is, the relation of !(V jS;
S ) and !(V jS;T ), for a randomT � 
S of size N2. Here, we �x any choice of P1 : Q1 ! A and P2 : S ! A. Again, applying Cherno� bounds, we seethat the probability that the restrictions of 
S to T lead to acceptance with probability more than !(V jS;
S )+(�=2)is exp(��N2). Taking the union bound over all choices of P1 and P2, we infer that !(V jS;T ) > !(V jS;
S ) + (�=2)with probability at most exp(��N2) � jAjjQ1j+jSj. Thus, using N2 = c2� (jSj log jAj + log(1=
)), we conclude that!(V jS;T ) � !(V jS;
S ) + (�=2) with probability at least 1� 
2 (over the choices of T ).25



constant and n denotes the length of the input. Here we reduce the randomness required by theirveri�er to (1 + o(1)) log n.Before going on we introduce a notion that will be useful in this section | namely, the notionof a length preserving reduction. For a function ` : Z+ ! Z+, a reduction is `(n)-length preservingif it maps instances of length n to instances of length at most `(n).Lemma 4.5For every � > 0 and functions m(n), `(n) satisfying `(n) = 
(m(n)
(m(n))n1+
(1=m(n))), SATreduces in probabilistic polynomial time, under `(n)-length preserving reductions to a promise prob-lem � 2 MIP1;�[3; (1 + 1=m(n)) log n+O(m(n) logm(n));m(n)O(1)nO(1=m(n))].Before proving this lemma, let us see some special cases obtained by setting m(n) =poly(log log n) and m(n) = plog n, respectively in the above lemma.Corollary 4.6 For every � > 0 and every polynomial p, there exists a promise problem � 2MIP1;�[3; (1+1=p(log log n)) � log n; 2poly(log log n)] such that SAT reduces probabilistically to � undern1+(1=p(log log n))-length preserving reductions.Corollary 4.7 For every � > 0, there exists a promise problem � 2 MIP1;�[3; (1 +O((log log n)=plog n)) � log n; 2O(plog n log log n)], such SAT reduces probabilistically to � undern1+O((log log n)=plog n)-length preserving reductions.We defer the proof of Lemma 4.5 to Section 4.2.4. Here we give an overview of the proof steps.We modify the proof of [19] improving it in two steps. The proof of [19] �rst reduces SAT to aparametrized problem they call GapPCS under `0(n)-length preserving reductions for `0(n) = n1+
for any 
 > 0. Then they give a 3-prover MIP proof system for the reduced instance of GapPCSwhere the veri�er tosses (3 + 
) log `0(n) random coins.Our �rst improvement shows that the reduction of [19] actually yields a stronger reductionthan stated there, in two ways. First we note that their proof allows for smaller values of `(n) thanstated there, allowing in particular for the parameters we need. Furthermore, we notice that theirresult gives rise to instances from a restricted class, for which slightly more e�cient protocols canbe designed. In particular, we can reduce the size of the smallest prover in their MIP protocol toroughly `(n) (as opposed to their result which gives a prover of size `(n)1+
 for arbitrarily small
). These improvements are stated formally in Lemmas A.2 and A.3 and Corollary A.4.The second improvement is more critical to our purposes. Here we improve the randomnesscomplexity of the MIP veri�er of [19], by applying a random truncation. To get this improvementwe need to abstract the veri�er of [19] (or the one obtained from Corollary A.4). This is donein Section 4.2.1. We then show how to transform such a veri�er into one with (1 + o(1)) log nrandomness. This transformation comes in three stages, described in Sections 4.2.2-4.2.4.4.2.1 Abtracting the veri�er of Corollary A.4The veri�er of Corollary A.4 interacts with three provers which we'll denote P , P1, and P2. We willlet Q, Q1, and Q2 denote the question space of the provers respectively; and we'll let A, A1, and A2denote the space of answers of the provers respectively. Denote by Vx(r; a; a1; a2), the acceptancepredicate of the veri�er on input x, where r denotes the veri�er's coins, and a (resp., a1, a2) theanswer of prover f = P (resp., P1, P2). (Note: The value of Vx is 1 if the veri�er accepts.) We'llusually drop the subscript x unless needed. Let us denote by q(r), (resp. q1(r), q2(r)) the veri�er'squery to P (resp., P1, P2) on random string r 2 
, where 
 denotes the space of veri�er's coins.We note that the following properties hold for the 3-prover proof system given by Corollary A.4.26



1. The acceptance-predicate decomposes: V (r; a; a1; a2) = V1(r; a; a1) ^ V2(r; a; a2), where V1and V2 are predicates.2. Sampleability: The veri�er only tosses O(log n) coins (i.e., 
 = f0; 1gO(log n)). Thus, it isfeasible to sample from various speci�ed subsets of the space of all possible coin outcomes.For example, given S1 � Q1, we can uniformly generate in poly(n)-time a sequence of coinsr such that q1(r) 2 S1.3. Uniformity: The veri�er's queries to prover P (resp. P1; P2) are uniformly distributed overQ (resp. Q1; Q2).4. If x is a no-instance, then for V = Vx, for small � and every possible P strategy, there existsa subset Q0 = Q0P � Q such that for every P1; P2 the following two conditions holdsPrr [q(r) 2 Q0 ^ V1(r; f(Q(r)); P1(Q1(r)))] < �2 (4)Prr [q(r) 62 Q0 ^ V2(r; f(Q(r)); P2(Q2(r)))] < �2 (5)4.2.2 The 3-prover MIP: Stage IWe start by modifying the veri�er of Corollary A.4 so that its questions to provers P1 and P2 are\independent" (given the question to the prover P ). That is, we de�ne a new veri�er, denoted W ,that behaves as follows� On input x, let V = Vx be the veri�er's predicate and let V1 and V2 be as given in Property (1).� Pick q 2 Q uniformly and pick coins r1 and r2 uniformly and independently from the setfr 2 
jq(r) = qg. [Here we use sampleability with respect to a speci�c set of r's.]� Make queries q (which indeed equals q(r1) = q(r2)), q1 = q1(r1) and q2 = q2(r2), to P , P1and P2, receiving answers a = P (q), a1 = P1(q1) and a2 = P2(q2).� Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).Proposition 4.8 W has perfect completeness and soundness at most �.Proof: The completeness is obvious, and so we focus on the soundness. Fix a no-instance x andany set of provers P , P1 and P2. Let Q0 = Q0P be the subset of Q as given by Property (4) of theMIP. The probability that W accepts is given byPrq;r1;r2[EV1(r1) ^EV2(r2)] (6)where EV1(r1) = V1(r1; P (q); P1(q1(r1))) and EV2(r2) = V2(r2; P (q); P2(q2(r2))). Note that q =q(r1) = q(r2), where (q and) r1; r2 are selected as above. Thus, EVi only depends on ri, and theshorthand above is legitimate. Note that the process of selecting r1 and r2 in (6) is equivalent toselecting each of them uniformly (though not independently). We thus upper bound (6) byPrr1 [q(r1) 2 Q0 ^EV1(r1)] + Prr2 [q(r2) 62 Q0 ^EV2(r2)]:Using Property (4), each term above is bounded by �=2 and thus the sum above is upper-boundedby �. 27



4.2.3 The 3-prover MIP: Stage IIIn the next stage, the crucial one in our construction, we reduce the size of the provers P1 and P2by a random truncation. For sets S1 � Q1 and S2 � Q2, we de�ne the (S1; S2)-restricted veri�erWS1;S2 as follows:� On input x, let V = Vx be the veri�er's predicate and let V1 and V2 be as given in Property (1).� Pick q 2 Q uniformly and for i 2 f1; 2g pick coins ri's uniformly and independently from thesets fr2
jq(r)=q^qi(r)2Sig. If either of the sets is empty, then the veri�er simply accepts.[Here, again, we use sampleability of subsets of the veri�er coins.]� Make queries q = q(r1) = q(r2), q1 = q1(r1) and q2 = q2(r2), to P , P1 and P2, receivinganswers a = P (q), a1 = P1(q1) and a2 = P2(q2).� Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).As usual it is clear that the veri�er WS1;S2 has perfect completeness (for every S1 and S2). Webound the soundness of this veri�er, for most choices of su�ciently large sets S1 and S2:Lemma 4.9 For randomly chosen sets S1; S2 of size O(jQjmaxflog jAj; log jQjg), with probabilityat least 4=5, the soundness error of the veri�er WS1;S2 is at most 6�.Proof: We start with some notation: Recall that 
 denotes the space of random strings of theveri�er V (of Section 4.2.1). For i 2 f1; 2g and a �xed set Si, let Xi denote the distribution on
 induced by picking a random string r 2 
 uniformly, conditioned on qi(r) 2 Si (i.e., uniform infr2
jqi(r)2Sig). Similarly, let Yi denote the distribution on 
 induced by picking a query q 2 Quniformly and then picking ri uniformly at random from the set fr2
jq(r)=q^qi(r)2Sig. We usethe notation ri D to denote that ri is picked according to distribution D. Note that the veri�erWS1;S2 picks r1 Y1 and r2 Y2 (depending on the same random q 2 Q). In our analysis, we willshow that, for a random Si, the distributions Xi and Yi are statistically close, where as usual thestatistical di�erence between Xi and Yi is de�ned as maxT�
 fPrri Xi [ri 2 T ]� Prri Yi [ri 2 T ]g.We will then show that the veri�er has low soundness error if it works with the distributions X1 andX2. This informal description is made rigorous below by considering the following \bad" events(over the probability space de�ned by the random choices of S1 and S2):BE1: The statistical di�erence between X1 and Y1 is more than �.BE2: The statistical di�erence between X2 and Y2 is more than �.BE3: There exist P and P1 such that for Q0 = Q0P (as in Property (4) of Section 4.2.1)Prr1 X1 �(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))� > 2�:BE4: There exist P and P2 such that for Q0 = Q0P (as in Property (4) of Section 4.2.1)Prr2 X2 �(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))� > 2�:
28



Below we will bound the probability of these bad events, when S1; S2 are chosen at random. But�rst we show that if none of the bad events occur, then the veri�er WS1;S2 has small soundnesserror. Let (r1; r2) WS1;S2 denote a random choice of the pair (r1; r2) as chosen by the veri�erWS1;S2 . Fix proofs P; P1; P2 and let Q0 be as in Property (4). Then,Pr(r1;r2) WS1;S2 [V1(r1; P (q(r1)); P1(q1(r1))) ^ V2(r2; P (q(r2)); P2(q2(r2)))]� Prr1 Y1 [(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))]+Prr2 Y2 [(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))]� Prr1 X1 [(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))] + �+Prr2 X2 [(q(r2) 62 Q0) ^ V2(r2; P (q(r2)); P2(q2(r2)))] + � [:BE1 and :BE2]� 6� [:BE3 and :BE4]Claim 4.9.1 The probability of event BE1 (resp., BE2) is at most 1=20.Proof: To estimate the statistical di�erence between Xi and Yi, note that sampling ri according toXi is equivalent to the following process: select r0i Xi (i.e., r0i is selected uniformly in frjqi(r)2Sig),set q = q(ri), and pick ri uniformly from the set frj(q(r)= q) ^ (qi(r)2Si)g. Thus, the statisticaldi�erence between Xi and Yi equals 12 �Pq2Q jPrri Xi [q(ri) = q]� Prri Yi [q(ri) = q]j, which in turnequals 12 �Pq2Q ���Prri Xi [q(ri) = q]� 1jQj���. To bound this sum, we bound the contribution of eachof its terms (for a random Si). Fixing an arbitrary q 2 Q, we consider the random variablePrr Xi[q(r) = q] = jfrj(q(r)=q) ^ (qi(r)2Si)gjjfrjqi(r)2Sigj(as a function of the random choice of Si). The expectation of this quantity is 1jQj . A simpleapplication of Cherno� bounds shows that, with probability at least exp(��jSij=jQj), this randomvariable is in (1 � �) 1jQj . Thus, for jSij = c � jQj log jQj (where c = O(1=�)), the probability thatPrr Xi [q(r) = q] is not in [(1 � �) 1jQj ] is at most 120jQj . By the union bound, the probability thatsuch a q exists is at most 120 , and if no such q exists then the statistical di�erence is bounded by atmost �.Claim 4.9.2 The probability of event BE3 (resp., BE4) is at most 1=20.Proof: We will bound the probability of the event BE3. The analysis for BE4 is identical. Bothproofs are similar to the proof of Lemma 4.3.Fix P and let Q0 be the set as given by Propery (4) of Section 4.2.1. We will show thatPrS1 �9P1 s.t. Prr1 X1 �(q(r1) 2 Q0) ^ V1(r1; P (q(r1)); P1(q1(r1)))� � 2�� � 120 jAj�jQj (7)The claim will follow by a union bound over the jAjjQj possible choices of P . For each �xed P (andthus �xed Q0), note that there is an optimal prover P1 = P �1 that maximizes the quantity �q1 def=Prrjq1(r)=q1 [(q(r) 2 Q0)^V1(r; P (q(r)); P1(q1))] for every q1 2 Q1. Furthermore, by Proposition 4.8,it holds that Eq12Q1 [�q1 ] = �. Applying Cherno� bounds, we get that the probability that whenwe pick jS1j elements from Q1 uniformly and independently, their average is more than twice theexpectation is at most exp(�jS1j). Thus if jS1j � c � jQj log jAj for some large enough constant c,then this probability is at most 120 jAj�jQj as claimed in Equation (7). The claim follows.Lemma 4.9 follows now since we have that some bad event (i.e., one of the four BEi's) occurswith probability at most 4=20, and otherwise the soundness error is indeed as claimed.29



4.2.4 The 3-prover MIP: Stage IIIHaving reduced the sizes of the three prover oracles, it is straightforward to reduce the amount ofrandomness used by the three provers. Below we describe a reduced randomness veri�er WS1;S2;Twhere Si � Qi and T � f(r1; r2)j(q(r1) = q(r1)) ^ (qi(ri) 2 Si;8i 2 f1; 2g)g.� On input x, let V = Vx be the veri�er's predicate and let V1 and V2 be as given in Property (1).� Pick (r1; r2) 2 T uniformly at random. [This uses the sampleability property.]� Compute q = q(r1) = q(r2), and make queries q, q1 = q1(r1) and q2 = q2(r2), to P , P1 andP2, receiving answers a = P (q), a1 = P1(q1) and a2 = P2(q2).� Accept if and only if V1(r1; a; a1) ^ V2(r2; a; a2).It is obvious that the veri�er uses log2 jT j random bits. It is also easy to see (as in the second partof the proof of Lemma 4.3) that if T is chosen randomly of su�ciently large size then its soundnessremains low. We skip this proof, stating the resulting lemma.Lemma 4.10 Let s def= O(jQjmaxflog jAj; log jQjg) and t def= O(jQj log jAj + jS1j log jA1j +jS2j log jA2j). Suppose that S1 and S2 are uniformly selected s-subsets of Q1 and Q2, and thatT is a uniformly selected t-subset of f(r1; r2)j(q(r1) = q(r1)) ^ (qi(ri) 2 Si;8i 2 f1; 2g)g. Then,with probability at least 23 , the veri�er WS1;S2;T has soundness error at most 7�.Using Lemma 4.10, we now prove Lemma 4.5.Proof [of Lemma 4.5]: Fix �0 = �=7. Let V be the 3-prover veri�er for SAT as obtained fromCorollary A.4. In particular, V has perfect completeness and soundness �0. The size of the smallestprover is `0(n) = m(n)O(m(n)) �n1+O(1=m(n)), the answer length is bounded by m(n)O(1) �nO(1=m(n)),and V satis�es the properties listed in Section 4.2.1. For sets S1; S2; T , let WS1;S2;T be the veri�erobtained by modifying V as described in the current section. Consider the promise problem �whose instances are tuples (�; S1; S2; T ) where an instance is a yes-instance if WS1;S2;T accepts �with probability one, and the instance is a no-instance if WS1;S2;T accepts with probability at most�. We note that an instance of � of size N has a 3-prover proof system using at most log2N randomcoins, perfect completeness and soundness error 7�0 = � (since WS1;S2;T is such a veri�er). Now,consider the reduction that maps an instance � of SAT of length n to the instance (�; S1; S2; T ),where S1; S2 are random subsets of queries of V of size O(`0(n) � nO(1=m(n))) and T is a randomsubset of size O(`0(n) � nO(1=m(n))) � nO(1=m(n)) = `(n) of the random strings used by the veri�erWS1;S2 . This reduction always maps satis�able instances of SAT to yes-instances of � and, byLemma 4.10, with probability at least 23 , it maps unsatis�able instances of SAT to no-instances of�.4.3 Nearly linear PCPsApplying state-of-the-art composition lemmas to the MIP constructed in the previous subsectiongives our �nal results quite easily. In particular, we use the following lemmas.Lemma 4.11 (cf. [4] or [8, 22]) For every �1 > 0 and p <1, there exists � > 0 and constantsc1; c2; c3 such that for every r; a : Z+ ! Z+,MIP1;�[p; r; a] � MIP1;�1 [p+ 3; r + c1 log a; c2(log a)c3 ]:30



We apply the lemma above repeatedly till the answer lengths become poly log log log n. Then toterminate the recursion, we use the following result of [19].Lemma 4.12 (Lem. 2.6 in [19]) For every � > 0 and p <1, there exists a 
 > 0 such that forevery r; a : Z+ ! Z+, MIP1;
 [p; r; a] � PCP1; 12+�[r +O(2pa); p+ 7]:Combining the above lemmas with the nearly-linear 3-IP obtained in the previous subsection, weobtain:Theorem 4.13 (Our main PCP result):1. For every � > 0, SAT reduces probabilistically, under n1+O(1= log logn)-length preserving reduc-tions to a promise problem � 2 PCP1; 12+�[(1 +O(1= log log n)) � log n; 16].2. For every � > 0, SAT reduces probabilistically, under n1+O(plog n log log n)-length preservingreductions to a promise problem � 2 PCP1; 12+�[(1 +O(log log n=plog n)) � log n; 19].Part 2 implies Theorem 2.5.Proof: The �rst part is obtained by starting with Corollary 4.6, and applying Lemma 4.11 twiceto get a 9-prover MIP system with answer lengths poly(log log log n). Applying Lemma 4.12 tothis 9-prover proof system, gives the desired 16-bit PCP. For the second part, we start with Corol-lary 4.7 and apply Lemma 4.11 thrice, obtaining a 12-prover MIP system with answer lengthspoly(log log log n). Applying Lemma 4.12 gives the 19-bit PCP.5 Nearly-linear-sized codes from PCPsHere we augment the results of Section 3 by constructing nearly-linear-sized locally-testable codes.We do so by starting with the randomly truncation of the FS/RS-code from Section 3.2, and apply-ing PCP techniques to reduce the alphabet size (rather than following the paradigm of concatenatedcodes as done in the rest of Section 3). Speci�cally, in addition to encoding individual alphabetsymbols via codewords of smaller alphabet, we also augment the new codewords with small PCPsthat allow to emulate the local-tests of the original code. Using an o�-the-shelve PCP (e.g., theone of [2]) this yields a weak locally testable code (i.e., one satisfying De�nition 2.1); for detailssee Section 5.1. As we explain in Section 5.2, using an o�-the-shelve PCP fails to provide a locallytestable code (i.e., one satisfying De�nition 2.2), and some modi�cations are required in order toredeem this state of a�airs (as well as in order to obtain a linear code). Most of the current sectionwill be devoted to implementing these modi�cations. Still, the easy derivation of the weak result(in Section 5.1) serves as a good warm-up.5.1 Easy derivation of a weak resultStarting with the code CR : �k ! �n presented in Section 3.2, we augment the code with smallPCPs each asserting that a speci�c pair of polynomials that are provided for a pair of intersectinglines do assign the same value to the point of intersection. The number of such pairs of lines isjRmj � jF j = ~O(jF jm+1), and each line is assigned a symbol in � = F d+1. The size of each proof ispolynomial in the length of the assertion (i.e., is polynomial in log2 j�j).31



Recall that we are not willing to read the entire two inputs, but must rather perform a constantnumber of binary queries. Still, all standard PCP constructs (e.g., [13, 2]) can be extended to yieldsimilar results when one is charge for orcale access to the input, which in turn is presented in asuitable error-correcting form. Actually, this property is stated explicitly in [5],14 and is alwaysreferred to when using the PCP as an \inner-veri�er" (in the setting of PCP composition). Indeed,we are using the PCPs here as an inner-veri�er (but compose it with a codeword-tester rather thanwith an outer-veri�er). Thus, we should actually replace each symbol in the CR-codeword withits encoding under the suitable code C0 (which encodes m-bit strings by poly(m)-bit C0-codeword).Finally, we should apply a suitable number of repetitions to the new n-sequence such that itslength dominates the length of the added PCPs. For a suitable number of repetitions t, theresulting code maps (x1; :::; xk) 2 �k to ((C0(y1); ::::; C0(yn))t; �1; ::::; �r), where �i is a PCP thatrefers to the i-th pair of intersecting lines and r = jRmj � jF j is the number of such pairs. We sett = !((Pri=1 j�ij)=(Pni=1 jC0(yi)j)), which is greater than jF j because r > n and each �i is longerthan each C0(yi). The tester for the resulting code emulates the testing of CR by inspecting the PCPthat refers to the selected line. That is, when testing (w1; ::::; wtn; wtn+1; :::; wtn+r , we select a pairof intersecting lines (`1; `2) (as done by the tester of CR), and invoke the PCP-veri�er providing itwith orcale access to the input-orcales w`1 and w`2 and proof-oracle �(`1;`2). In addition, we checkthat wjt+` = w`, for uniformly selected ` 2 [n] and j 2 [t� 1].By our choice of t, the distance of the new code is determined by the distance of CR. Indeed,we should not pick t to be too large since this will hurt the rate; for example, t = (log n) �(Pri=1 j�ij)=(Pni=1 jC0(yi)j) will do. Thus, the block-length of the new code isn0 def= (2 log n) � r � j�1j = ~O(jRmj � jF j � poly(log2 j�j)) = ~O(n � jF j � poly(d)) :Using d = mm, we get k0 = k � log2 j�j � mm2�2m+m and n0 = ~O(ndO(1)) < mm2+o(m)+O(m), whichyields n0 = exp(plog k0) � k0.In analysing the above codeword test, we observe that if a sequence is �-far from the new codethen �0 = �� o(1) of the distance must be due to the �rst t blocks (of length n each) of the n0-bitlong sequence. Thus, for constant � > o(1), we can make assertions about this tn-bit long pre�x ofthe sequence. We observe that either the �rst t blocks (of length n) are �0=2-far from being identical(to the �rst block) or the average distance of the �rst block from CR is at least �0=2. Noting thatthe �rst case is detected with probability 
(�) by the auxiliary (\repetition") test, we focus on thesecond case and consider what happens when invoking the PCP veri�er. Indeed, standard PCPveri�er will reject oracles that are far from the set of valid statements (in this case far from allcodewords). Thus (substituting parameters), we obtain:Theorem 5.1 (weak version of Theorem 2.3): For every c > 0:5 and in�nitely many k's, thereexist weak locally testable codes with binary alphabet such that n = exp((log k)c) � k = k1+o(1).Furthermore, these codes have distance 
(n).In contrast to Theorem 2.3, the codes asserted in Theorem 5.1 only have weak codeword tests (i.e.,tests satisfying De�nition 2.1). Furthermore, these codes are not necessarily linear.5.2 Problems with an easy derivation of the strong resultBefore turning to the actual constructions, we explain why merely plugging-in a standard (inner-veri�er) PCP will not work. We start with the most severe problem, and then turn to additionalones.14In fact, the presentation of Babai et al [5] is in these terms.32



Non-uniqueness of the encoding: As discussed in the Introduction, the soundness propertyof standard PCPs does not guarantee unique encodings of witnesses, but rather that PCP oraclesaccepted with high probability can be decoded into some witnesses. Indeed, current PCPs tend todo exactly this, due to a gap between the canonical oracles (used in the completeness condition) thatencodes information as polynomials of some given individual degree, and the soundness conditionthat refers to the total degree of the polynomial.15 This problem was avoided in Section 5.1 bydiscarding non-codewords that are close to the code and making the PCPs themselves a small partof the codeword. Thus, non-uniqueness of decoding of PCPs by itself could not make the sequencetoo far from the code, and so nothing is required if we use the weak de�nition of testing. However,when we seek to achieve the stronger de�nition, this problem becomes relevant (and cannot beavoided).Linearity: We wish the resulting code to be linear, and it is not clear whether this property holdswhen composing a linear code with a standard inner-veri�er. Since we start with an F -linear code(and an F -linear codeword test), there is hope that the proof oracle added to the concatenatedcode will also be linear. Indeed, with small modi�cations of standard constructions, this is the case.Other technical problems: Other problems arise in translating some of the standard\complexity-theoretic tricks" that are used in all PCP constructions. For example, PCP con-structions are typically described in terms of a dense collection of input lengths (e.g., the inputlength must �t jHjm for some suitable sizes of jHj and m (i.e., m = �(jHj= log jHj)), and areextended to arbitrary lengths by padding (of the input). In our context, such padding, dependingon how it is done, either permits multiple encodings (of the same information), or forces us tocheck for additional conditions on the input (e.g., that certain bits of the input are zeroes). Othercomplications arise when one attempts to deal with \auxiliary variables" that are introduced ina process analogous to the standard reduction of veri�cation of an arbitrary computation to thesatis�ability of a 3CNF expression.This forces us to rework the entire PCP theory, while focusing on unique encodings and onobtaining \linear PCP oracles" when asked to verify homogenous linear conditions on the input. Forthe purposes of constructing short locally testable codes, it su�ces to construct veri�ers verifyingsystems of homogenous linear equations and this is all we'll do (though we could verify a�neequations equally easily). In what follows, whenever we refer to a linear system, it will be impliedthat the constraints are homogenous.5.3 Inner veri�ers for linear systems: De�nition and compositionWe use PCP techniques to transform linear locally testable codes over large alphabet into ones oversmaller alphabet. Speci�cally, we adapt the construction of inner-veri�ers such that using it to testlinear conditions on the input-oracles will result in testing linear conditions on the proof oracle.The basic ingredient of our proofs is the notion of an inner veri�er for linear codes. A (p; `)!(p0; `0) inner veri�er is designed to transform an F -linear code over an alphabet � = F ` that istestable by p queries, into an F -linear code (of a typically longer size) over an alphabet �0 = F `015In basic constructions of codes, this is not a real problem since we can de�ne the code to be the collection of allpolynomials of a given total degree as opposed to polynomials of speci�ed individual degree bound. However, whenusing such a code as the inner code in composition, we cannot adopt the latter solution because we only know howto construct adequate inner-veri�ers for inputs encoded as polynomials of individually-bouded degree (rather thanbounded total degree). 33



that is testable by p0 queries, where typically `0 � ` (but p0 > p). Informally, the inner-veri�erallows to emulate a local test in the given code over �, by providing an encoding (over �0) of eachsymbol in the original codeword as well as auxiliary proofs (of homogenous linear conditions) thatcan be veri�ed based on a constant number of queries.Verifying that a vector satis�es a conjunction of (homogenous) linear conditions is equivalent toverifying that it lies in some linear subspace (i.e., the space of vectors that satisfy these conditions).For integerm and �eld F , we let LF;m denote the set of all linear subspaces of Fm. We'll assume thatsuch a subspace L 2 LF;m is speci�ed by a matrix M 2 Fm�m such that L = fx 2 FmjMx = ~0g.According to convenience, we will sometimes say that a vector lies in L and sometimes say that itsatis�es the conditions L.De�nition 5.2 For a �eld F , and positive integers p; `; p0; `0, and positive reals � and 
, a(F; (p; `)! (p0; `0); �; 
)-linear inner veri�er consists of a triple (E;P;Verdict) such that� E : F ` ! (F `0)n is an F -linear code of minimum distance at least �n over the alphabet F `0.� P : LF;p` � (F `)p ! (F `0)N , is a proving function that satis�es the completeness conditionbelow.� Verdict is an oracle machine that gets as input L 2 LF;p` and (coins) R 2 f0; 1gr and hasoracle access to p+1 vectors, denoted X1; : : : ;Xp 2 (F `0)n and Xp+1 2 (F `0)N , such that eachoracle call is answered by one F `0-coordinate of the corresponding oracle vector.16 MachineVerdict satis�es the following properties:Queries and Linearity: For every choice of L 2 LF;p` and R 2 f0; 1gr, machine Verdict makesat most p0 oracle calls to the oracles X1; : : : ;Xp+1. Furthermore, for every R and L, theacceptance condition of Verdict is a conjunction of F -linear constraints on the responsesto the queries.Completeness: If the p �rst oracles encode a p-tuple of vectors over F ` that satis�es L and ifXp+1 is selected adequately then Verdict always accepts.That is, for every x1; : : : ; xp 2 F ` and L 2 LF;p` such that (x1; : : : ; xp) 2 L, and forevery R 2 f0; 1gr, it holds that Verdict(L;R;E(x1); : : : ; E(xp); P (L; x1; : : : ; xp)) = 1.Augmented Soundness: If the p �rst oracles are far from encoding a p-tuple of vectors overF ` that satis�es L then Verdict rejects for most choices of R, no matter which Xp+1 isused. Furthermore, if the p �rst oracles encode a p-tuple that satis�es L but Xp+1 is farfrom the unique proof determined by P then Verdict rejects for most choices of R.Formally, for X1; : : : ;Xp 2 (F `0)n, Xp+1 2 (F `0)N , L 2 LF;p`, and (x1; : : : ; xp) 2 L, let�(X1; : : : ;Xp+1; L; x1; : : : ; xp) denote the maximum distance of Xi from the correspondingadequate encoding (i.e., E(xi) if i � p and P (L; x1; : : : ; xp) otherwise). That is,�(X1; : : : ;Xp+1; L; x1; : : : ; xp) = max(maxi2[p] ��(Xi; E(xi))gn � ; �(Xp+1; P (L; x1; : : : ; xp))N )Then, for every X1; : : : ;Xp 2 (F `0)n and � 2 (F `0)N ,PrR [Verdict(L;R;X1; : : : ;Xp;�) = 0] � 
�min(�=2; min(x1 ;:::;xp)2L f�(X1; : : : ;Xp+1; L; x1; : : : ; xp)g)16That is, query j 2 [n] (resp., j 2 [N ]) to oracle i 2 [p] (resp., i = p+ 1) is answered by the jth element of Xi.34



Such a veri�er is said to use r coins, encodings of length n and proofs of length N .Typically, we aim at having N;n and 2r be small functions of ` (i.e., polynomial or even almost-linear in `). De�nition 5.2 is designed to suit our applications. Firstly, the augmented notion ofsoundness that refers also to \non-canonical" proofs of valid statements �ts our aim of obtaining acode that is locally checkable (because it guarantees rejection of sequences that are not obtained bythe unique coding transformation). Indeed, this augmentation of soundness is non-standard (andarguablly unnatural) in the context of PCP. Secondly, De�nition 5.2 only handles the veri�cationof linear conditions, and does so while only utilizing linear tests. Indeed, this �ts our aim oftransforming linear codes over large alphabet (i.e., the alphabet F `) to linear codes over smalleralphabet (i.e., F `0).The utility of linear inner veri�ers in constructing locally-testable codes is demonstrated by thefollowing two propositions, which follow immediately from De�nition 5.2. The �rst propositionmerely serves as a warm-up towards the second one.Proposition 5.3 A (F; (1; `) ! (p0; `0); �; 
)-linear inner veri�er implies the existence of a linearlocally-testable code of relatoive distance at most �=2 over the alphabet � = F `0 mapping F ` = �`=`0to �m for m = O(p0 � (n+N)), where n and N are the corresponding lengths of the encoding andthe proof used by the veri�er. Speci�cally, the code is testable with p0 queries, with the rejectionprobability of a word at distance � from any codeword being at least 
(
 � �).Proof: Let V = (E;P;Verdict) be the (F; (1; `) ! (p0; `0); �; 
)-linear inner veri�er, where E :F ` ! (F `0)n and P : LF;` � F ` ! FN . Below we assume that n < N (which is typically thecase).17 The locally testable encoding E0 of a string x 2 �`=`0 �= F ` equals the (dN=ne + 1)-longsequence (E(x); : : : ; E(x); P (L; x)), where L = F ` (i.e., L is satis�ed by every vector) and E(x) isreplicated dN=ne times. The relative distance of the code given by this encoding is at least �=2.To test a potential codeword (X1; : : : ;XdN=ne; Y ), we perform at random one out of two kinds oftests: With probability 12 we test that the N=n strings Xj 's are replications. We do so by pickinga random index i 2 [n], and two distinct indices j1; j2 2 [N=n], and testing that (Xj1)i = (Xj2)i.With the remaining probability we pick a random test as per the veri�er V , replacing calls to the�rst oracle with corresponding probes to one of the �rst N=n oracles (i.e., one of the Xi's), selectedat random. (Oracle calls to the proof oracle of V are replaced by corresponding probes to Y .) Itcan be veri�ed that words at distance � from codewords are rejected with probability 
(
�).The following proposition will be used to compose locally testable codes over large alphabetswith suitable linear inner veri�ers to obtain locally testable codes over smaller alphabets. Speci�-cally, given a q-query testable F -linear code over the alphabet � = F b, we wish to use an adequateencoding (over �0 = F a) and an inner-veri�er in order to emulate the local conditions checked bythe test. The latter conditions are subspaces of F q�b, and so we need a (F; (q; b)! (p; a); �; 
)-linearinner veri�er in order to verify them.Proposition 5.4 (composing an outer code with an inner-veri�er):� Let C be a locally testable F -linear code over the alphabet � = F b mapping �K to �N , andsuppose that the codeword test uses R coins and q queries.� Let V = (E;P;Verdict) be a (F; (q; b) ! (p; a); �; 
)-linear inner veri�er, where E : F b !(F a)n and P : LF;q�b � (F b)q ! (F a)m.17Otherwise, one can augment P (L; x) with E(x) and maintain the soundness by testing consistency between thetwo copies of E(x) (as done below). 35



Then, there exists a locally testable code over the alphabet �0 = F a mapping �K � �0b�K=a to �0Mfor M = O(Nn+2Rm). Furthermore, the resulting code has distance at least �nD, where D is thedistance of C.Proof: The new code consists of two parts (which are properly balanaced). The �rst part isobtained by encoding each �-symbol of the codeword of C by the code E, whereas the second partis obtained by providing proofs (for the inner-veri�er) for the validity of each of the 2R possiblechecks that may be performed by the codeword test. Speci�cally, x 2 �K is encoded by thesequence �E(y1); : : : ; E(yN );P (L0R ; yi0R;1 ; : : : ; yi0R;q ); : : : ; P (L1R ; yi1R;1 ; : : : ; yi1R;q)�where y1 � � � yN = C(x), and for every ! 2 f0; 1gR, on coins !, the codeword test (for C) probeslocations i!;1; :::; i!;q and veri�es the linear condition L!. Indeed, as in the proof of Proposition 5.4,the above should be modi�ed such that the two parts of the new codeword (i.e., the E-part andthe P -part) have about the same length.18Testing the new code is done by emulating the codeword test of C. That is, to test a potentialcodeword (X1; :::;XN ;Y0R ; :::; Y1R), we select uniformly ! 2 f0; 1gR, determine the correspondingcondition (i!;1; :::; i!;q; L!) checked by the original codeword test, and invoke the inner-veri�er Von input L! while providing V with (coins and) oracle access to Xi!;1 ; :::;Xi!;q and Y!.Whereas Proposition 5.4 refers to the composition of an outer code with an inner-veri�er yieldinga new code, the following lemma refers to composing two inner-veri�ers yielding a new inner-veri�er.Indeed, we could have worked only with Proposition 5.4 (or alternatively only with Lemma 5.5 andProposition 5.3), but it seems more convenient to (have and) work with both.19Lemma 5.5 (composition of linear inner-veri�ers): Let 
1; 
2 � 1. Given a (F; (p; `) !(p0; `0); �1; 
1)-linear inner veri�er and a (F; (p0; `0) ! (p00; `00); �2; 
2)-linear inner veri�er, it ispossible to construct a (F; (p; `)! (p00; `00); �1�2; 
1
2�2=6)-linear inner veri�er. Furthermore, if theith given veri�er uses ri coins, encoding length ni and proof length Ni, then the resulting innerveri�er uses r1 + r2 coins, encoding length n1 � n2 and proof length N1 � n2 + 2r1 �N2.Proof: We start with the construction. Given a (F; (p; `) ! (p0; `0); r1; �1; 
1) inner veri�er V1 =(E1; P1;Verdict1) and a (F; (p0; `0) ! (p00; `00); r2; �2; 
2) inner veri�er V2 = (E2; P2;Verdict2), wede�ne their composition V1 
 V2 = (E;P;Verdict) as follows� E : F ` ! (F `00)n1�n2 is the concatenation of the encoding functions E1 : F ` ! (F `0)n1 andE2 : F `0 ! (F `00)n2 . That is, E(x1; : : : ; x`) = (E2(y1); : : : ; E2(yn1)), where (y1; : : : ; yn1) def=E1(x1; : : : ; x`).� P = (P (1); P (2)) is obtained as follows: Given L; x1; : : : ; xp, the �rst part of the proof (i.e.,P (1)(L; x1; : : : ; xp)) is the symbol-by-symbol encoding under E2 of P1(L; x1; : : : ; xp). Thatis, P (1)(L; x1; : : : ; xp) = (E2(y1); : : : ; E2(yN1)), where (y1; : : : ; yN1) def= P1(L; x1; : : : ; xp). Thesecond part of the proof (i.e., P (2)(L; x1; : : : ; xp)) consists of 2r1 blocks corresponding to eachof the 2r1 possible checks of Verdict1. For each R1 2 f0; 1gr1 , the block corresponding to R1 inP (2)(L; x1; : : : ; xp) is the value P2(LR1 ; z1; : : : ; zp0), where z1; : : : ; zp0 denote the p0 coordinates18As before, the modi�cation is via replication, and the new codeword test should check that the replication isproper.19An analogous comment may apply to the design of PCP system.36



of E1(x1); : : : ; Ep(xp) and P1(L; x1; : : : ; xp) that are inspected by Verdict1(L;R1; : : :) and LR1is the linear conjunction of F -linear conditions checked by Verdict1.Note that the proof length is N1 �n2+2r1 �N2, where the �rst (resp., second) term correspondsto P (1) (resp., (P (2)).� Verdict(L; (R1; R2);X1; : : : ;Xp;�) is computed as follows: Let q1; : : : ; qp0 be the queries thatthe function Verdict1(L;R1; : : :) makes into its oracles X 01; : : : ;X 0p;�0 on randomness R1,and let L0 denote the conjunction of linear equations it needs to verify on its responses.Then Verdict now applies the function Verdict2(L0; R2; : : :) on input L0 to the sub-oraclescorresponding the E2-encodings of the p0 queries determined by Verdict1. That is, if thejth query (i.e., qj) of Verdict1 is to X 0i then Verdict identi�es the jth oracle of Verdict2(to be denoted X 00j ) with block qj of Xi (which supposedly encodes the corresponding sym-bol of X 0i). Otherwise (i.e., the jth query of Verdict1 is to �0), Verdict identi�es the jthoracle of Verdict2 (i.e., X 00j ) with block qj of the �rst part of � = (�(1);�(2)) (which sup-posedly encodes the corresponding symbol of �0). Finally, Verdict identi�es the provingoracle of Verdict2 (to be denoted �00) with the block of �(2) that corresponds to R1, invokesVerdict2(L0; R2;X 001 ; :::;X 00p0 ;�00), and Verdict accepts if and only Verdict2 accepts.We now argue that the composition satis�es the required properties. The main issue is the (aug-mented) soundness requirement. Suppose that X1; : : : ;Xp and Xp+1 = (�(1);�(2)) are p + 1oracles that are rejected by V1 
 V2(L; �; : : :) with probability (
1
2�2=6) � �, where � � �1�2.We need to show that there exist vectors (x1; : : : ; xp) 2 L such that �(E(xi);Xi) � �n1n2 and�(P (L; x1; : : : ; xp);Xp+1) � �N , where N def= N1 � n2 + 2r1 �N2.Let D2 denote a unique decoding function for the inner encoding function E2 (i.e., D2(X) = xif �(E2(x);X) � (�2=2) � n2 and arbitrary otherwise). Applying this function to each of the n1blocks of Xi 2 (F `00)n2�n1 , for i 2 [p], we obtain corresponding Yi 2 (F `0)n1 . Similarly, applying thisfunction to each of the N1 blocks of �(1) 2 (F `00)n2�N1 , we obtain Yp+1 2 (F `0)N1 .For each R1, let use denote by p2(R1) the probability that on coins (R1; �) veri�er V rejects theabove oracles, where the probability is taken over V2's actions. Suppuse that p2(R1) < 
2�2=2, andconsider the p0 input oracles and the proof oracle (i.e., part of �(2)) determined by R1. Then, bythe (basic) soundness of V2, these p0 sub-oracles (which are blocks in X1; :::;Xp;�(1)) are at relativedistance at most p2(R1)=
2 from the E2-encoding of the corresponding blocks in Y1; :::; Yp; Yp+1.Furthermore, by the augmented soundness (of V2), the corresponding part of �(2), denoted ZR1 , isat relative distance at most p2(R1)=
2 from the value obtained by applying P2 to these p0 blocks(of the Yi's).Next, let p1 def= PrR1 [p2(R1) � 
2�2=2] Since ER1 [p2(R1)] = (
1
2�2=6)�, it follows that p1 �
1�=3. Now, since � � �1�2, the Yi's are p1=
1-close to a valid encoding of a p-tuple, denoted(x1; :::; xp), and a corresponding P1-proof (i.e., P1(L; x1; :::; xp)). We conclude that the Yi's are atrelative distance at most p1=
1 from the corresponding E1(xi)'s (resp., P1(L; x1; :::; xp)). De�ning�2(R1) def= p2(R1)=
2 if p2(R1) < 
2�2=2 and �2(R1) def= 1 otherwise, recall that the Yi's are at relativedistance at most ER1 [�2(R1)] from the corresponding blocks of the Xi's (resp., �(1)). Recall that,except for a p1 fraction of the R1's, it holds that p2(R1) < 
2�2=2, we obtain�(E(xi);Xi)n1n2 � �1(E1(xi); Yi)n1`0 + �2(E2(Yi);Xi)n1n2� p1
1 +ER1 [�2(R1)]37



� �3 + (ER1 [p2(R1)=
2] + p1) < �using 
1; 
2 � 1. The same holds with respect to the distance of �(1) from P (1)(L; x1; :::; xp).Finally, recall that for all but at most an p1 fraction of the R1's, the relative distance between ZR1(i.e., the corresponding block of �(2)) and the value obtained by applying P2 to the relevant blocks ofthe Yi's is at most �2(R1). It follows that the relative distance between �(2) from P (2)(L; x1; :::; xp)is at most p1 +ER1 [�2(R1)], which is bounded by � (as shown above).5.4 Linear inner veri�ers: Two constructionsThroughout the rest of this section, F2 def= GF (2). We start by presenting a linear inner veri�er thatcorresponds to the inner-most veri�er of Arora et al. [2]. Things are simpler in our context, sincewe only need to prove/verify linear conditions. Here these (linear) conditions refer to p elements ofF k2 , and are veri�ed by a (random) linear test that depends on p+ 1 bits (at random locations).Lemma 5.6 There exists a 
 > 0 such that for every pair of integers p, `, there exists a (F2; (p; `)!(p+1; 1); 12 ; 
)-linear inner veri�er. Furthermore, the length of the encoding is 2`, the length of theproof is 2p`, and the randomness in use equals 2p`.Proof: The encoding E is just the Hadamard encoding; and the proving function P (L; x1; : : : ; xp) isalso Hadamard encoding, this time of the vector (x1; : : : ; xp). To check whether X1; : : : ;Xp 2 F 2`2encodes a vector in the linear subspace L given by a matrix M 2 F p`�p`2 , the verdict functionuniformly selects q1; : : : ; qp 2 F2̀ and a random linear combination v of the constraints of L, (i.e.,picks a random vector w 2 F p`2 and sets v = w � L), and veri�es that (X1)q1 � � � � (Xp)qp =(Xp+1)(q1;:::;qp)�v. The now standard analysis implies the soundness of this veri�er.The main result in this subsection is an adaptation of the intermediate inner-veri�er of Aroraet al. [2, Section 7]. Recall that the latter uses signi�cantly shorter encoding and proofs (and lessrandomness) than the simpler Hadamard-based veri�er, but veri�cation is based on (a constantnumber of) non-boolean answers.Lemma 5.7 There exists a 
 > 0 such that for every pair of integers p, `, there exists a (F2; (p; `)!(p + 3;poly(log p`)); 12 ; 
)-linear inner veri�er. Furthermore, the lengths of the encoding and theproofs are poly(p`), and the randomness in use equals O(p log `).Our construction is a modi�cation of an inner veri�er given by Arora et al. [2] (Proof of Theorem2.1.9, Section 7.5). We thus start by providing an overview of their proof and discuss the mainissues that need to be addressed in adapting their to a proof of Lemma 5.7.Overview of the proof of [2, Thm. 2.1.9]. We use the formalism of [19] to interpret the mainsteps in the proof of [2]. (In particular, whenever we refer to a step as \standard", such a step isperformed explicitly in [19].) As a �rst step in their proof, Arora et al. [2] reduce SAT to a GapPCSproblem (see Appendix for de�nition). Then, using a low-total-degree test, they give a 3-prover1-round proof system for NP languages. Finally they observe that the proof system with slightmodi�cations also works as proofs of properties of concatenated strings. Since the gap problemthat is target of the reduction is critical, let us review the completeness and soundness condition ofthe reduction. Recall that an instance of GapPCS consists of a sequence of algebraic constraints onthe values of a function g : Fm ! F . Each constraint is dependent on the value of g at (roughly)38



only polylogarithmically many inputs. The goal is to �nd a low-degree polynomial g that satis�esall or most constraints. In greater detail, the reduction consists of a pair of algorithms A and B,where A reduces instances of SAT to instances of GapPCS, and B takes as input an instance � ofSAT and an assignment a satisfying � and produces a polynomial g that satis�es all constraints ofA(�). The properties of the reduction are as follows:Completeness: If a is an assignment satisfying � then g = B(�; a) is a degree d bounded polynomialg that satis�es all constraints of A(�).Soundness: If � is not satis�able, then no total degree d bounded polynomial g satis�es even an �fraction of the constraints of A(�).Since the soundness condition only focusses on degree d polynomials (and not arbitrary functions),constructing such a reduction turns out to be easier than constructing a full PCP. On the otherhand, by combining this with a low-degree test it is easy to extend the soundness to all functions.One would hope to use the above reduction directly to get a locally testable code by setting � tobe some formula enforcing the linear conditions L. But as noted earlier, several problems come up:First, B is not a linear map, but this is �xed easily. The more serious issue is that the soundnesscondition permits the existence of low-degree functions that satisfy all constraints that are not ofthe form B(a) for any a. Indeed, in standard reductions the only functions of the form g = B(a)have a bound of d=m in the degree of each variable, but this is not something that the low-degreetest can test. Thus to apply the low-degree test and protocol of [2], we e�ectively augment thereduction from SAT to GapPCS so as to get the following soundness condition.Modi�ed Soundness: If g is a degree d polynomial that is not of the form g = B(a) for some asatisfying �, then g does not satisfy an � fraction of the constraints of A(�).To obtain the modi�ed soundness condition, we need to delve further into the reduction of [2] andthe transformation B implied there. Say that their reduction produces a GapPCS instance on mvariate polynomials.1. The m-variant polynomial g = B(a) in their transformation has the form g(i; ~x) = gi(~x), fori 2 [k], where the gi's are polynomials (of varying degrees) in m� 1 variables. Furthermore,g is a polynomial of degree k � 1 in the �rst variable.2. There exists a sequence of integers hmiii2[k] such that the polynomial gi only depends on the�rst mi � m� 1 variables.3. For every i 2 [k] there exists a sequence of integers hdi;jij2[m�1] such that gi(~x) has a degreebound of di;j � d in its jth variable.4. The polynomial g must evaluate to zero on some subset of the points (due to some paddingon input variables).5. Finally, over some subset of the points g evaluates to either 0 or 1. (Note that this conditionis not trivial since we will not be working with F2 but some extension �eld K of F2. Infact over the extension �eld, these constraints are not even linear. However since K is anextension of F2, these conditions turn out to be F2-linear.)In what follows we will, in e�ect, be augmenting the reduction from SAT to GapPCS so as toinclude all constraints of the above form. This will force the GapPCS problem to only have39



satisfying assignments of the form g = B(a) and thus salvage the reduction. (In actuality, wewill be considering satisfying assignments that are presented as a concatenation of several piecesthat are individually encoded and the constraints of the system we build will be verifying thatthe \concatenation" of the various pieces is a satisfying assignment. Furthermore, we will only bylooking at systems of linear equations and not general satis�ability.)The actual construction (i.e., proof of Lemma 5.7): Recall that we need to describe thethree ingredients in the inner veri�er: the encoding function E : F2̀ ! (F `02 )n, the proving functionP : F p`2 ! (F `02 )N , and the oracle machine Verdict. We start by developing the machinery for theencoding function and the proving function. We do so by transforming the question of satisfactionof a system of linear equations into a seqeunce of consistency relationships among polynomials andusing this sequence to describe the encoding and proving function. Fix a linear space L 2 LF2;p`and vectors x1; : : : ; xp such that (x1; : : : ; xp) 2 L.Transforming the linear system. Our �rst step is to convert L into a conjunction of width-3 linearconstraints (i.e., constraints that apply to at most 3 variables at a time). So we introducea vector of auxiliary variables xp+1 on at most n = p2`2 variables and transform L into alinear space L0 of width 3-constraints such that (x1; : : : ; xp) 2 L if and only if there existsxp+1 such that (x1; : : : ; xp+1) 2 L0. (Note that L0 2 LF2;p`+n and jxij = ` if i � p whereasjxp+1j = n� `. We'll take care of this discrepency in the next step.)Low-degree extensions and dealing with padding. The low-degree extension is standard, but we needto deal with the padding it creates (and with the padding already done above). That is, wehave to augment the linear system to verify that the padded parts of the input are indeedall-zero.We pick a �eld K = f�1 = 0; �2 = 1; : : : ; �jKjg, that extends F2, of su�ciently large size (to bespeci�ed later), and a subsetH = f�1; : : : ; �hg of size h = dlog ne and letm = dlog n= log log neso that hm � n. Next, we let x0i = xi0hm�n (i.e., we pad xi with enough zeroes so that itslength is exactly hm). Now, we let L00 be the F2-linear constraints indicating that the paddedparts of x0i are zero, and (x01; : : : ; x0p+1) correspond to the padding of (x1; : : : ; xp+1) 2 L0.Finally, as usual, we view x0i as a function from Hm ! f0; 1g and let f1; : : : ; fp+1 : Km ! Kbe m-variate polynomials of degree h� 1 in each of the m variables that extend the functionsdescribed by x01; : : : ; x0p+1. (We note for future reference that the encoding E function for xiwill essentially be the function fi.)Concatenating the p pieces (standard): Now let f : Km+1 ! K be the function given by f(�i; � � �) =fi(� � �) if i 2 f1; : : : ; p+ 1g that is a polynomial of degree p in its �rst variable.Low-degree extension of L00 (standard): Note that L00 imposes linear constraints of the form�1f(z1) + �2f(z2) + �3f(z3) for �1; �2; �3 2 f0; 1g and z1; z2; z3 2 f�1; : : : ; �p+1g �Hm on f .We extend L00 as a function L̂00 : K3(m+1)+3 ! K, by letting L00(�1; �2; �3; z1; z2; z3) = 1, for�1; �2; �3 2 H and z1; z2; z3 2 Hm+1 if the constraint �1f(z1)+�2f(z2)+�3f(z3) is imposedby L00, by letting L00(� � �) = 0 for other inputs from H3m+6, and letting L00 be a polynomialof degree h� 1 in all other variables.We comment that the current step does not rely on L00 being a linear function. The linearityof L00 (or rather of the condition �1f(z1) + �2f(z2) + �3f(z3)) will be used in the next step.40



Verifying satis�ability of L00 via sequence of polynomials. This part is standard except for rule (R0)below which includes an extra check that some elements being considered are 0/1. In fact,this part corresponds to the \sum check" in [2] (which is one of the two procedures in theoriginal innner-veri�er, the other being a low-degree test).Let m0 = 4m + 8. We de�ne a sequence of polynomials g0; : : : ; gm0+1 : Km0 ! K, whereg0 is essentially f ; g1 is related to g0 by an F2-linear relationship, and gi is related to gi�1by a K-linear relationship. The motivation behind these polynomials is the following: g1 isde�ned so that the condition (x1; : : : ; xp) 2 L is equivalent to the condition g1(~u) = 0 forevery ~u 2 Hm0 . The polynomials gi relax this condition gradually, giving \gi+1(~u) = 0 forevery ~u 2 F i �Hm�i" if and only if \gi(~u) = 0 for every ~u 2 F i�1 �Hm�i+1". Thus �nallywe have gm0+1 � 0 if and only if (x1; : : : ; xp) 2 L. We now de�ne these polynomials explicitly.For �i's and ui's from K and zi's from Km+1, let we de�ne:g0(z1; : : : ; z4; �1; : : : ; �4) def= f(z1)(R0) : g1(z1; : : : ; z4; �1; : : : ; �4) =  3Xi=1 �i � g0(zi~0)! � L̂00(�1; �2; �3; z1; z2; z3)+�4 � (g0(z4~0)2 � g0(z4~0)):The terms involving g0(z4~0) are meant to verify that g0(z4~0) are always 0/1. These are \op-tional" in standard PCPs, in that they are not needed to get soundness, but are occasionallythrown in since they don't involve much extra work. In contrast, in our case these are nec-essary to enforce the augmented soundness condition. Note that while this condition is aquadratic constraint (regarding g0) over K, the map � 7! �2 is an F2-linear map over �elds ofcharacteristic two, and so the identity above is indeed F2-linear, despite the quadratic term.For i = 1 to m0, let(Ri) : gi+1(u1; : : : ; ui�1; ui; ui+1; : : : ; u4m+8) = h�1Xj=0 uji � gi(u1; : : : ; ui�1; �j; ui+1; : : : ; u4m+8):Merging the di�erent polynomials into a single polynomial g (standard): Now, let g : Km0+1 ! K bethe function given by g(i; z) = gi(z) if i 2 f0; : : : ;m0 + 1g that is a degree m0 + 1 polynomialin the �rst variable i. Assuming h � m0 � p, we have that g is a polynomial of individualdegree at most 2h and thus has total degree at most d = 2m0h.Lines and curves over g (standard): Let gjlines : K2m0+1 ! Kd be the function describing g re-stricted to lines. Let w = 2(m0 + 1)h, `00 = wd and let gjcurves : C ! K`00 be the restrictionof g to some subset C of degree w curves, where C are all the curves that arise in the verdictfunction's computations below.The encoding and proving functions (standard): Finally, we get to de�ne the encoding and provingfunctions. The encoding function E(xi) is the table of values of the function f 0i : Km ! K`00where f 0i(x) = (fi(x); 0`00�1) (i.e., elements of K are being written as vectors from K`00 . Theproving function P (L; x1; : : : ; xp) consists of the triple of functions (g0; (gjlines)0; gjcurves), whereg0 : Km0+1 ! K`00 and (gjlines)0 : K2(m0+1) ! K`00 are the functions g and gjlines with theirrange being mapped, by padding, into K`00 .41



We now describe the verdict function. To motivate this, recall that the verdict function, whichessentially has access to oracles for g, gjlines, gjcurves and f1; : : : ; fp, needs to verify the followingitems:1. g is a polynomial of degree at most d, gjlines is the restriction of g to lines, and gjcurves is therestriction of g to curves.2. The degree of g in its �rst variable is at most m0 + 1.3. For i 2 f1; : : : ;m0 + 1g, then function gi given by gi(u) = g(i; u) is computed correctly fromgi�1 by an application of the rule (Ri�1).4. Verify that gm0+1 is identically zero.5. Verify that g0 is a polynomial of degree 0 in all but its �rst m+ 1 variables.6. Verify that the function f : Km+1 ! K given by f(x) = g0(x; 0 � � � 0) is a polynomial of degreeat most p in its �rst variable and a polynomial of degree at most h � 1 in the remaining mvariables.7. Verify that f(i; � � �) = fi(� � �) for every i 2 f1; : : : ; pg.(Working one's way upwards, one can see that P (L; x1; : : : ; xp) is the only function to satisfy allthe above constraints.)We are now ready to describe the veri�er's actions (or to be formal, the Verdict function). Theaim is to emulate a large number of checks (i.e., random veri�cation of all the above conditions) byusing only p+ 3 oracle calls, and still incur only a constant error probability. Speci�cally, ignoringcondition (1) for a moment, a random test of condition (2) requires m0+2 points in the domain ofg, condition (3) involves m0+1 equalities (which refer to m0 +1 di�erent parts of g), condition (5)involves m0 � m equalities (one per each suitable variable in g0), and condition (7) involves pequalities, each referring to a di�erent function fi. Following [2], all these di�erent conditions willbe checked by retreiving the corresponding (random) g-values from a suitable curve in gjcurves, andobtaining the fi-values from the corresponding oracles. Finally, Condition (1) will be tested via anadequate low-degree test that makes only 2 additional queries. Details follow.The veri�er �rst picks one random test (to be emulated) per each of the equalities correspondingto the conditions (2){(7) above. Speci�cally, in order to emulate the testing of conditions (2), (5)& (6), it picks random axis parallel lines (one per each of the relevant variables) and picks O(h)points on these Km0+1-lines with the intent of inspecting the value of g0 at these points. (We stressthat the veri�er does not query g0 at these points, but rather only determines these points at thisstage.) Similarly, in order to emulate the testing of conditions (3), (4) & (7), it picks random pointsfrom the domain of the corresponding gi's and f . Having chosen these points, it picks one totallyrandom point in Km0 . All in all this amounts to determining w = O(mh) points in the domain ofg0. The veri�er then determines a degree w curve, denoted C, (over Km0+1) that passes throughthese m points. Next, it picks a random point � on this curve and a random line l through thepoint �.We �nally get to the actual queries of the veri�er. The verdict function queries g0(�), (gjlines)0(l)and gjcurves(C). It veri�es that g0(�) is actually in K and (gjlines)0(l) is in Kd (as opposed to K`).It then veri�es that the three responses agree at �. Finally, it veri�es the values of g0 on the testpoints for tests (2)-(7), as claimed by gjcurves(C), are consistent with the conditions (2)-(7). Inparticular, verifying condition (7) requires one probe each into the oracles X1; : : : ;Xp. (Once again42



the responses to these probes are elements of K` and the verdict veri�es that the responses are inK padded with 0's.) Thus, in total, we made only 3 + p queries.This concludes the description of the veri�er. We stress that all the \0-padding veri�cations" areonly intended to guarantee the modi�ed notion of soundness (and are not needed for the standardnotion of soundness). The same holds with respect to the various tests of individual degrees (whichtest a degree lower than the (curve-to-line) low degree test). Omitting all these extra test, wouldget us back to [2].The modi�ed soundness of the above veri�er is established as usual assuming jKj � poly(`00=�).In particular, if the function g : Km0+1 ! K obtained by ignoring the last `00 � 1 coordinates ofthe function g0 is not, say :01-close to some polynomial ĝ of total degree d then the low-degreetest will reject with constant probability. If the response of the query to gjcurves is not consistentwith ĝ on all the queried points, then the curve to g0 consistency test will detect this with constantprobability. Finally if any of the conditions (2)-(7) is violated, then the �nal check above detectswith constant probability.Recall that the oracle machine Verdict makes p+ 3 queries in all. The answers it receives arefrom K`00 and thus `0, the answer length, equals `00 log2 jKj which is poly log(p`) as required. Thesoundness error, 
, is some constant bounded away from 0. Finally, note that all checks by theveri�er are actually K-linear, except for the satisfaction of rule (R0), which is only F2-linear.5.5 Combining all the constructionsWe are now ready to prove the main theorem of this section.Theorem 5.8 (Theorem 2.3, restated): For in�nitely many k, there exists a linear locally-testablebinary code mapping k bits to n def= kO(plog k log log k) bits. Furthermore, the codes has distance 
(n).Proof: Composing (as per Lemma 5.5) the (F2; (p; `) ! (p + 3;poly(log p`)); 1=2; 
)-linear innerveri�er of Lemma 5.7 with the (F2; (p+ 3;poly(log p`))! (p+ 4; 1); 1=2; 
)-linear inner veri�er ofLemma 5.6, we obtain that there exist constants �1; 
1 > 0 such that for every constant p0 andfor every `0, there exists an (F2; (p0; `0) ! (p0 + 4; 1); �1; 
1)-linear inner veri�er V1. Furthermore,V1 uses r1 = O(log p0`0) + 2(p0 + 3) � poly(log p0`0) = poly(log `0) coins, encoding of length n1 =poly(`0) � exp(poly(log p0`0)), and proofs of length m1 = poly(n1).Similarly, for any constant p, composing the veri�er of Lemma 5.7 with V1 (while setting p0 =p+3 and `0 = poly(log `)),20 we get a (F2; (p; `)! (p+7; 1); �2; 
2)-linear inner veri�er V2 for some�2; 
2 > 0. Furthermore, V2 uses r2 = O(log p`) + r1 = O(log `) + poly(log log `) coins, encoding oflength n2 = poly(`) � n1 = poly(`), and proofs of length m2 = poly(n2).Our �nal step will be to compose (as per Proposition 5.4) the truncated version of the FS/RS-code (from Section 3.2) with the linear inner veri�er V2. Recall that, for any constant c > 1=2,the truncated version of the FS/RS-code maps (F d+1)K to (F d+1)N , where N = exp(logcK) �Kand jF j = �(d) < exp(logcK). The corresponding codeword test uses R def= log2N + 2 log log jF jrandom bits and makes q = O(1) queries. Using F = FO(1)+log2 d2 and � = F d+1 � FO(d log d)2 ,we apply Proposition 5.4 to this code (and codeword test) and V2 above, while setting p = q,` = O(d log d) and b = O(d log d), where d < exp(logcK) (for any constant c > 1=2). We obtain abinary linear locally-testable code mapping (F b2 )K to FM2 , where M = O(N � n2 + 2R �m2). UsingR = log2N+O(log log d) andm2 = poly(n2) = poly(`) = poly(d), we getM = N �exp(O(logcK)) =K � exp(O(logcK)). The theorem follows.20Thus, r1 = poly(log poly(log `)) = poly(log log `) = o(log `) and n1 = exp(poly(log poly(log `))) =exp(poly(log log `)) = `o(1). 43



5.6 Additional remarksIn this section we show that locally testable codes over small alphabets can be modi�ed such thatthe tester only uses randomness that is logarithmic in the codeword and only makes three queries.We stress that the stated modi�cation increases the length of the codewords by a constant factor.We start with reducing the randomness complexity of the tester.Proposition 5.9 Let C : �k ! �n be a code. Then every codeword tester for C can be modi-�ed into one that maintains the same acceptance probabilities up-to an additive term of �, whilepreserving the number of queries and using randomness complexity at most O(log(1=�)) + log2 n+log2 log2 j�j.Proof: The proof follows the standard/easy part of the proof of Lemma 3.3 (and analogous resultsin Section 4). Speci�cally, using the probabilistic method, there exists a set of O(��2 log2 j�nj)possible random-tapes for the original tester so that if the tester restricts its choices to this setthen its acceptance probability on every potential sequence is preserved up to an additive term of�. (Observe that, with probability 1 � exp(��2t), a random set of t random-tapes approximatesthe acceptance probability for a �xed sequence up to �, and that the number of possible sequencesis j�nj.) The proposition follows.Using Proposition 5.9, we show that our main result regarding locally testable codes (i.e., Theo-rem 2.3) holds also with tester that make only three queries. The latter assertion is an immediatecorollary of the following proposition.Proposition 5.10 Let C : �k ! �n be a locally-testable linear code of distance d = 
(n). Then,there exists a linear code C 0 : �k ! �O(n log j�j) of distance at least d that is testable with threequeries.Proof: By Proposition 5.9, the code C is locally-testable by a tester, denoted T , having randomnesscomplexity � def= log2 n+O(1) + log2 log2 j�j. By a slight modi�cation of T (which only increases �by an additive constant),21 we may assume that T checks a single linear combination (determinedby its random-tape) of the oracle answers. We construct a code C 0, by augmenting C with a suitableencoding of each of the answer tuples obtained by T when using a �xed random-tape. Speci�cally,for each possible r 2 f0; 1g�, we consider the q = O(1) queries, denoted (i1; :::; iq), made by Tand the linear combination (c1; :::; cq) 2 �q of the answers checked by the tester. For x 2 �n andr 2 f0; 1g�, we augment C(x) by a block of length q � 1 such that the `th symbol in the blockequals P`+1j=1 cjxij . Thus, we obtain a code C 0 of length n+ 2� � (q � 1) = n+O(n log(j�j) over �.The corresponding tester for C 0, performs at random (with equal probability) one of the followingtwo tests:1. A consistency test:22 The test selects at random a random-tape r for T and a query (outof the q queries) that T makes on random-tape r. It checks whether the answer obtainedfrom the n-symbol pre�x of C 0 matches the value obtain from the block corresponding to r.Speci�cally, suppose that on coins r the tester T makes the queries i1; :::; iq 2 [n] and checks21In addition, the detection probability is reduced by a constant factor.22Indeed, this consistency test is quite weak (but it su�ces for our purposes). This consistency test reduces therejection probability by a factor of q. Stronger consistency test seem to require more redundent encodings (e.g., onemay use the Hadamard code). But since our focus is on the total length of C0, our choice of a trivial code (whichcorresponds to using auxiliary variables) seems best. 44



the linear combination (c1; :::; cq) 2 �q, and that we decided to check the jth query (where` 2 [q]). For j > 1, we compare cj times the answer obtained from the pre�x of C 0 (i.e., theijth bit of the alledged codeword) to the di�erence between the jth and j� 1st entries in theblock corresponding to r. For j = 1 we compare the �rst entry in the block corresponding tor to the weighted sum of the answers obtained to queries i1 and i2.2. Emulating T : The test selects at random a random-tape r for T and checks the correspondinglinear condition by obtaining the desired linear combination of the answer bits from the lastentry of the block corresponding to r.The proposition follows.Perspective. Proposition 5.10 indicates that three queries su�ce for a meaningful de�nition oflocally-testable linear codes. This result is analogous to the three-query PCPs available for NP-sets. In both cases, the constant error probability remains unspeci�ed, and a second level projectaimed at minimizing the error of three-query test arises. Another worthy project refers to thetrade-o� between the number of queries and the error probability, which in the context of PCP iscaptured by the notion of amortized query complexity. The de�nition of an analogous notion forlocally-testable codes is less staightforward because one needs to specify which strings (i.e., at whatdistance from the code) should be rejected with the stated error probability. One natural choice isto consider the error probability of strings that are at distance d=2 from the code, where d is thedistance of the code itself.6 Subsequent Work and Open ProblemsOur code constructions are randomized, and so we do not obtain fully-explicit codes. The ran-domization amounts to selecting a random subspace of random-tapes for certain low-degree tests,and the probabilistic analysis shows that almost all choices of the subspace will do. A natural(de-randomization) goal, stated in our preliminary report [18], has been to provide an explicit con-struction of a good subspace. For example, in case of the low-degree test, the goal is to provide anexplicit set of ~O(jF jm) lines that can be used (as Rm in the construction of Section 3.2).In our preliminary report [18] we also suggested the following seemingly easier goal of de-randomizing the linearity test of Blum, Luby and Rubinfeld [11]. Recall that in order to testwhether f : G ! H is linear, one uniformly selects (x; y) 2 G � G and accepts if and only iff(x) + f(y) = f(x + y). Now, by the probabilistic method, there exists a set R � G � G of sizeO(jGj log jHj) such that the test works well when (x; y) is uniformly selected in R (rather than inG�G).23 The challenge suggested in [18] was to present an explicit construction of such a set R.The latter challenge as well as the more general goal of de-randomizing all our results wererecently resolved by Ben-Sasson, Sudan, Vadhan and Wigderson [10]. Speci�cally, they showedthat for low-degree testing one may use a small set of lines that consists of all lines going in a smallset of directions. They also showed that this result su�ces also for the derandomization of ourPCP result.Another natural question that arises in this work refers to obtaining locally-testable codesfor coding k0 < k information symbols out of codes that apply to k information symbols. Thestraightforward idea of converting k0-symbol messages into k-symbol messages (via padding) and23For every f : G! H, with probability 1� exp(�jRj) a random set R will be good for testing whether f is linear,and the claim follows using the union bound for all jHjjGj possible functions f : G! H.45



encoding the latter by the original code, preserves many properties of the code but does notnecessarily preserve local-testability.24We have presented locally testable codes and PCP schemes of almost-linear length, where` : N ! N is called almost-linear if `(n) = n1+o(1). For PCP, this improved over a previous resultwhere for each � > 0 a scheme of length n1+� was presented (with query complexity O(1=�)). Recallthat our schemes have length `(n) = exp(log n)c) � n, for any c > 0:5. We wonder whether length`(n) = poly(log n) � n (or even linear length) can be achieved. Similarly, the number of queries inour proof system is really small, say 16, while simultaneously achieving nearly linear-sized proofs.Further reduction of this query complexity is very much feasible and it is unclear what the �nallimit may be. Is it possible to achieve nearly-linear (or even linear?) proofs with 3 query bits andsoundness nearly 1=2?AcknowledgmentsWe are grateful to Salil Vadhan for suggesting some modi�cations to the construction and analysisin Section 3.2 , yielding stronger results with simpler proofs.

24Indeed, this di�culty (as well as other di�culties regarding the gap between PCPs and codes) disappears if oneallows probabilistic coding. That is, de�ne a code C : �k ! �n as a randomized algorithm (rather than a mapping),and state all code properties with respect to randomized codewords C(a)'s.46
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A The Gap Polynomial-Constraint-Satisfaction ProblemWe start by recalling the \Gapped Polynomial Constraint Satisfaction Problem" and introducinga restricted version of this problem.Constraint satisfaction problems (CSPs) are a natural class of \optimization" problems wherean instance consists of t Boolean constraints C1; : : : ; Ct placed on n variables taking on values fromsome �nite domain, say f0; : : : ;Dg. Each constraint is restricted in that it may only depend ona small number w of variables. The goal of the optimization problem is to �nd an assignment tothe n variables that maximizes the number of constraints that are satis�ed. The complexity of theoptimization task depends on the nature of constraints that may be applied, and thus each class ofconstraints gives rise to a di�erent optimization problem (cf. [12]). CSPs form a rich subdomain ofoptimization problems that include Max 3SAT, Max 2SAT, Max Cut, Max 3-Colorability etc. andhave been easy targets of reductions from PCPs.Following Harsha and Sudan [19], we consider algebraic variants of CSPs. These problemscome with some syntactic di�erences: The domain of the value that a variable can take on will beassociated with a �nite �eld F ; the index set of the variables will now by Fm for some integer m,rather than being the set [n]; and thus an assignment to the variables may be viewed naturallyas a function f : Fm ! F . Thus the optimization problem(s) ask for functions that satisfy asmany constraints as possible. In this setting, constraints are also naturally interpreted as algebraicfunctions, say given by an algebraic circuit.The interesting (non-syntactic) aspect of these problems is when we optimize over a restrictedclass of functions, rather than the space of all functions. Speci�cally, we specify a degree bound don the function f : Fm ! F and ask for the maximum number of constraints satis�ed by degree dpolynomial functions f . Under this restriction on the space of solutions, it is easier to establish NP-hardness of the task of distinguishing instances where all constraints are satis�able, from instanceswhere only a tiny fraction of constraints are satis�able. This motivates the \Gapped PolynomialCSP", �rst de�ned by Harsha and Sudan [19]. Here we consider a restriction on the class ofinstances, where each constraint, in addition to being restricted to apply only to w variables, isrestricted to apply only to variables that lie on some \2-dimensional variety" (i.e., the names/indicesof the variables that appear in a constraint must lie on such a variety). We de�ne this notion �rst.A set of points x1; : : : ; xk 2 Fm is said to lie on a 2-dimensional variety of degree r if there existsa function Q = (Q1; : : : ; Qm) : F 2 ! Fm where each Qi is a bivariate polynomial of degree r, suchthat there exist points y1; : : : ; yk 2 F 2 such that xj = Q(yj) for every j 2 [k].De�nition A.1 (rGapPCS (restricted Gap Polynomial Constraint Satisfaction)) For� : Z+ ! R+ and r;m; b; q : Z+ ! Z+, the promise problem rGapPCS�;r;m;b;q has as instancestuples (1n; d; k; s; F ;C1; : : : ; Ct), where d; k; s � b(n) are integers, F is a �eld of size q(n) andCj = (Aj ;x(j)1 ; : : : ; x(j)k ) is algebraic constraint given by an algebraic circuit Aj of size s on k inputsand the variable names x(j)1 ; : : : ; x(j)k 2 Fm, where for m = m(n) and for every j 2 [t] the pointsfx(j)i gi lie on some 2-dimensional variety of degree r.YES-instances: (1n; d; k; s; F ;C1; : : : ; Ct) is a yes-instance if there exists a polynomial p : Fm !F of total degree at most d such that for every j 2 f1; : : : ; tg, the constraint Cj is satis�ed byp; that is, Aj(p(x(j)1 ); : : : ; p(x(j)k )) = 0.NO-instances: (1n; d; k; s; F ;C1; : : : ; Ct) is a no-instance if for every polynomial p of degree d, atmost �(n) � t constraints are satis�ed. 49



The following lemma is a slight variant of Lemma 3.16 in [19]. Speci�cally, while [19] use thegeneric fact that any w points lie in a c-dimensional variety of degree cw1=c, we note that thespeci�c O(m(n)b(n)) points chosen for each constraint (in the reduction) lie on a 2-dimensionalvariety of degree O(m(n)). This is because each constraint refers to O(m(n)b(n)) points that lieon one out of O(m(n)) lines.The following lemma simply lists conditions on the parameters which allows GapPCS to beNP-hard. We describe the actual choice of parameters in a corollary to be described shortly.Lemma A.2 There exists a constant c and polynomials p1; p2 such that for any collection of func-tions � : Z+ ! R+ and m; r; b; q; ` : Z+ ! Z+ such that b(n) � log n, (b(n)=m(n))m(n) � n,r(n) � cm(n), q(n) � (b(n)=�(n))p1(m(n)), and `(n) � p2(b(n))(q(n))m(n), SAT reduces torGapPCS�;r;m;b;q under `(n)-length preserving reductions,On the other hand, when applying the MIP system of [19, Section 3.6] to restricted GapPCSinstances, we get:Lemma A.3 There exists a polynomial p such that if � : Z+ ! R+ and r;m; b; q : Z+ ! Z+, satisfyq(n) � poly(r(n))(b(n)=�(n)) then the promise problem rGapPCS�;r;m;b;q has a 3-prover MIP proofwith perfect completeness, soundness O(�(n)), answer length poly(b(n)) log q(n), and randomnessO(logN + m(n) log q(n)), where N denotes the size of the GapPCS instance and n denotes the�rst parameter in the instance. Furthermore, the size of the �rst prover oracle is q(n)m(n), and itsanswer length is log q(n).The lemma above allows us to work with the GapPCS problem for an appropriate choice of theparameters �;m; b; q; `. Combining the above two lemmas, we state the resulting corollary regarding3-prover MIPs for SAT, where we restrict attention to the case of constant � > 0.Corollary A.4 For every constant � > 0 and m : Z+ ! Z+, let `(n) = m(n)O(m(n) � n1+O(1=m(n)).Then SAT reduces in probabilistic polynomial time under `(n)-length preserving reductions to apromise problem that has a 3-prover proof system with perfect completeness, soundness �, logarith-mic randomness, and answer length m(n)O(1) � nO(1=m(n)), in which the �rst prover has size linearin the instance size.Proof: Assume without loss of generality that m(n) � log n=(3 log log n). (For larger m(�),the requirements on both the function `(n) and the answer length become weaker.) Setb(n) = m(n)n1=m(n). Note that this makes b(n) � log n (and (b(n)=m(n))m(n) � n) as re-quired in Lemma A.2. Next, set r(n) = cm(n), where c is from Lemma A.2, and set q(n) =(b(n)=�)poly(m(n)) = poly(m(n))n1=m(n)=� such that it satis�es the requirements in both Lem-mas A.2 and A.3. Finally, set `(n) = poly(b(n))q(n)m(n) = poly(m(n)) � nO(1=m(n)) �m(n)O(m(n)) �n � ��m(n) = O(m(n)O(m(n)) � n1+O(1=m(n))). This setting satis�es all the conditions of Lem-mas A.2 and A.3, which yields a 3-prover proof system for SAT in which the answer lengthsare bounded by poly(b(n)) log q(n) = m(n)O(1) �n1=O(m(n)). Furthermore, the size of the �rst proveris q(n)m(n) < `(n), as required.
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