Locally Testable Codes and PCPs of Almost-Linear Length*

Oded Goldreichf Madhu Sudan?
Department of Computer Science Laboratory for Computer Science
Weizmann Institute of Science Massachusetts Institute of Technology
Rehovot, ISRAEL. Cambridge, MA 02139.
oded.goldreich@weizmann.ac.il madhu@mit.edu

March 2, 2004

Abstract

We initiate a systematic study of locally testable codes; that is, error-correcting codes that
admit very efficient membership tests. Specifically, these are codes accompanied with tests that
make a constant number of (random) queries into any given word and reject non-codewords
with probability proportional to their distance from the code.

Locally testable codes are believed to be the combinatorial core of PCPs. However, the
relation is less immediate than commonly believed. Nevertheless, we show that certain PCP
systems can be modified to yield locally testable codes. On the other hand, we adapt techniques
that we develop for the construction of the latter to yield new PCPs. Our main results are
locally testable codes and PCPs of almost-linear length. Specifically, we present:

e Locally testable binary (linear) codes in which k information bits are encoded by a code-
word of length approximately k - exp(y/logk). This improves over previous results that
either yield codewords of exponential length or obtained almost quadratic length code-
words for sufficiently large non-binary alphabet.

e PCP systems of almost-linear length for SAT. The length of the proof is approximately
n -exp(y/logn) and verification in performed by a constant number (i.e., 19) of queries, as
opposed to previous results that used proof length n!+©(1/9) for verification by ¢ queries.

Keywords: Error-Correcting Codes, PCP, randomized reductions, low-degree tests, codeword
tests,

“An extended abstract of this work has appeared in the 43rd FOCS, 2002. A preliminary full version [18] has
appeared on ECCC.

Contents

1 Introduction
1.1 Relation to PCP
1.2 Relation to Property Testing
1.3 Relation to Locally Decodable Codes
1.4 Organization and previous versionso

2 Formal Setting
21 Codes e e e
2.2 PCP . . e

3 Direct Constructions of Codes
3.1 The Basic Code (FS/RS-Code)
3.2 Random Truncation of the FS/RS-Code
3.3 Decreasing the alphabet size L
3.4 A Binary Code

4 Nearly linear-sized PCPs
4.1 MIP verifiers and random sampling oL oo
4.2 Improved 3-Prover Proof System for NP
4.2.1 Abtracting the verifier of Corollary A4
4.2.2 The 3-prover MIP: Stage L.
4.2.3 The 3-prover MIP: Stage IT
4.2.4 The 3-prover MIP: Stage IIL.
4.3 Nearly linear PCPs e

5 Nearly-linear-sized codes from PCPs
5.1 Easy derivation of a weak result
5.2 Problems with an easy derivation of the strong result
5.3 Inner verifiers for linear systems: Definition and composition
5.4 Linear inner verifiers: Two constructions 0oL
5.5 Combining all the constructions L o oL
5.6 Additional remarkso Lo Lo

6 Subsequent Work and Open Problems
Bibliography
Appendices

A The Gap Polynomial-Constraint-Satisfaction Problem

18
21

23
24
25
26
27
28
30
30

31
31
32
33
38
43
44

45

47

49

49

1 Introduction

Locally testable codes are (good) error-correcting codes that admit very efficient codeword tests.
Specifically, the testing procedure may use only a constant number of (random) queries, and should
reject non-codewords with probability proportional to their distance from the code.

Locally testable codes are related to Probabilistically Checkable Proofs (PCPs) and to Property
Testing [16, 23]. Specifically, locally testable codes can be thought of as a combinatorial counter-
parts of the complexity theoretic notion of PCPs, and in fact the use of codes with related features
is implicit in known PCP constructions. Local testability of codes is also a special case of property
testing (i.e., the study of sublinear-time approximation algorithms for testing whether an input is
“close” to one satisfying a fixed property), and indeed the first collection of properties that were
shown to be testable also yield constructions of locally testable codes [11].

Locally testable codes were introduced in passing, by Friedl and Sudan [15] and Rubinfeld and
Sudan [23]. However, despite the central role of locally testable codes in complexity theoretic and
algorthmic research, they have received little explicit attention so far. The primary goal of this
work is to initiate a systematic study of locally testable codes. In particular, we focus on the
construction of locally testable codes over a binary alphabet and on the development of techniques
to reduce the alphabet size of locally testable codes. Studying the length of locally testable codes,
we obtain for the first time (even for non-binary alphabets), codes of almost-linear length.

Some well-known examples: To motivate some of the parameters of concern, we start by
considering some “trivial codes” that are easily testable. It is easy to test (membership in) the
code that contains all strings of a given length (e.g., simply accept every string without looking at
it). It is also easy to test the code that consists of only one codeword (e.g., given an arbitrary string
x, pick random index 7 and verify that « and the single codeword agree at the the ith coordinate).
Thus, the concept of locally testable codes is interesting mainly in the case of “good” codes; that
is, codes that have “many” codewords that are pairwise at “large” distance from each other.

One non-trivial code allowing efficient testing is the Hadamard code: the codewords are linear
functions represented by their values on all possible evaluation points. The number of codewords in
Hadamard codes grows with the length of the code, and the pairwise distance between codewords
is half of the length of the code. So this code does not admit trivial tests as above. It turns out
that in this case codeword testing amounts to linearity testing [11], and this can be performed
efficiently, though the analysis is quite non-trivial.

The drawback of the Hadamard code is that & bits of information are encoded using a codeword
of length 2¥. (The k information bits represent the k coefficients of a linear function {0, 1}¥ — {0,1},
and bits in the codeword correspond to all possible evaluation points.)

A basic question: The question addressed in this work is whether one can hope for a better
relation between the number of information bits, denoted k, and the length of the codeword,
denoted n. Specifically, can n be polynomial or even linear in k? For a sufficiently large non-binary
alphabet, Friedl and Sudan [15] showed that n can be made nearly quadratic in k. The main
contribution of this paper is the demonstration of the existence of locally testable codes in which
n is almost-linear in k (i.e., n = k1+°(1)), even for the binary alphabet.

1.1 Relation to PCP

As mentioned earlier, locally testable codes are closely related to Probabilistically Checkable Proofs
(PCPs). A proof system is defined by a (probabilistic) verifier that is given a pair of strings — a
purported theorem (assertion) and a claimed proof (evidence) — such that if the theorem is true,
then there exists a proof such that the verifier accepts; and if the assertion is not true then no
evidence causes the verifier to accept (with high probability). Furthermore, PCP verifiers achieve
their goals by making only a small number of queries to the proof, which is given as an oracle. The
PCP Theorem [2, 3] shows how to construct PCP verifiers that make only a constant number of
queries to the proof oracle.

PCPs achieve their strong features by implicitly relying on objects related to locally testable
codes. Indeed the construction of codes over large alphabets that are testable via a small (yet not
necessarily constant) number of queries lies at the heart of many PCPs. It is a common belief,
among PCP enthusiasts, that the PCP Theorem [2, 3] already provides (binary) locally testable
codes. This belief relates to a stronger property in the proof of the PCP theorem which actually
provides a transformation from standard witnesses for, say SAT, to PCP-proof-oracles, such that
transformed strings are accepted with probability one by the PCP verifier. When applied to an
instance of SAT that is a tautology, the map typically induces a good error-correcting code mapping
k information bits to codewords of length poly(k) (or almost linear in k, when using [21]), which
are pairwise quite far from each other. The common belief is that the PCP-verifier also yields a
codeword test. However, this is not quite true: typically, the analysis only guarantee that each
passing oracle can be “decoded” to a corresponding NP-witness, but encoding the decoded NP-
witness does not necessarily yield a string that is close to the oracle. In particular, this allows for
oracles that are accepted with high probability to be far from any valid codeword. Furthermore, it
is not necessarily the case that only codewords pass the test with probability one. For example, part
of the proof oracle is supposed to encode an m-variate polynomial of individual degree d, yet the
(standard) PCP-verifier will also accept the encoding of any m-variate polynomial of total degree
m - d (and the “decoding” procedure will work in this case too).

We conclude that the known constructions of PCPs as such do not yield locally testable codes.
However, we show that many known PCP constructions can be modified to yield good codes with
efficient codeword tests. We stress that these modifications are non-trivial and furthermore are
unnatural in the context of PCP. Yet, they do yield coding results of the type we seek (e.g., see
Theorem 2.3).

On the other hand, a technique that emerges naturally in the context of our study of efficient
codeword tests yields improved results on the length of efficient PCPs. Specifically, we obtain
constant-query PCP systems that utilize oracles that are shorter than known before (see Theo-
rem 2.5).

1.2 Relation to Property Testing

Property testing is the study of highly efficient approxiamtion algorithms (tests) for determining
whether an input is close to satisfying a fixed property. Specifically, for a property (Boolean
function) P, a test may query an oracle for a string = at few positions and accept if P(x) is true,
and reject with high probability if P(Z) is not true for every Z that is “close” to x. Property testing
was defined in [23] (where the focus was on algebraic properties) and studied systematically in [16]
(where the focus was on combinatorial properties).

Viewed from the perspective of property testing, the tester of a local testable code is a tester for
the property of being a member of the code, where the notion of “closeness” is based on Hamming

distance. Furthermore, in the coding setting, it is especially natural that one is not interested
in the exactly deciding whether or not the input is a codeword, but rather in the “approximate”
distance of the input from the code (i.e., whether it is a codeword or far from any codeword). Thus
locally testable codes are especially well-connected to the theme of property testing. Indeed the
first few property tests in the literature (e.g., linearity tests [11], low-degree tests [6, 5, 23, 15])
can be interpreted as yielding some forms of locally testable codes. More recent works on algebraic
testing [7, 1] highlight the connections to codes more explicitly. Our work also uses the results
and techniques developed in the context of low-degree testing. However, by focussing on the codes
explicitly, we highlight some missing connections. In particular, most of the prior work focussed
on codes over large alphabets and do not show how to go from testable codes over large alphabets
to codes over small alphabets. In this work we address such issues explicitly and resolve them
to derive our results. Furthermore, we focus on codes that can be tested by making a constant
numbder of queries.

1.3 Relation to Locally Decodable Codes

A task that is somewhat complementary to the task investigated in this paper, is the task of local
decoding. This is the task of constructing codes that have very efficient (sub-linear time) decoding
algorithms. Specifically, given oracle access to a string that is close to some unknown codeword,
the decoding procedure should compute any coordinate of the nearby message while making, say,
a constant number of queries to the input oracle. Codes that have such decoding algorithms are
termed locally decodable codes. While local testability and local decodability appear related, no
general theorems linking the two tasks are known. In fact, known lower bounds suggest that local
decodability is “harder” to achieve than local testability. Our results confirm this intuition:

o We show the existence of almost-linear (i.e., n = k!*°(1)) length (binary) codes supporting
codeword tests with a constant number of queries. In contrast, it was shown that locally
decodable codes cannot have almost-linear length [20]: that is, if ¢ queries are used for
recovery then n = Q(k!T(1/(a=1)),

e For a (large) alphabet that can be viewed as vector space over some field F', we show almost-
linear length F-linear codes in which testing requires only two queries. In contrast, it was
shown that F-linear codes with two query recovery require exponential length [17].1

1.4 Organization and previous versions

Section 2 provides a formal treatment of the aforementioned notions as well as a formal statement
of our main results. Direct and self-contained constructions of locally testable codes (albeit not
achieving the best results) are presented in Section 3. We stress that the latter make no reference
to PCP, although they do use low-degree tests. Our best constructions of locally testable codes
are presented in Section 5, where we adapt standard PCP constructions and combine them with
the construction presented in Section 3.2. In Section 4, we adapt some of the ideas presented
in Section 3.2 in order to derive improved PCPs. We stress that Sections 4 and 5 can be read
independently of one another, whereas they both depend on Section 3.2. Subsequent works and
open problems are discussed in Section 6.

!An F-linear code over the alphabet ¥ = F* is a linear space over F' (but not necessarily over Fl). In our
codes (which support two-query tests) it holds that £ = exp(y/Togk) and |F| = O(£), while n < k(g R
contrast, the lower-bound on n (for two-query decoding) established in [17] assert that n > exp(Q2(k — (¢ ¢')?)) in
case F' = GF(?ZI), which (for £ = exp(v/Iog k) = k°") and £ = O(1) + log ¢) yields n > exp(Q(k)).

The current version differs from our preliminary report [18] in several aspects. Most importantly,
we present two definitions of locally-testable codes, whereas only the weaker one has appeared
n [18]. Furthermore, we introduce a few modifications to the construction of Section 3.2 in order
to obtain locally-testable codes under the stronger definition. More detailed comments appear in
the relevant places.

2 Formal Setting

Throughout this work, all oracle machines (i.e., codeword testers and PCP verifiers) are non-
adaptive; that is, they determine their queries based solely on their input and random choices.
This is in contrast to adaptive orcale machines that may determine their queries based on answers
obtained to prior queries. Since our focus is on positive results, this makes our results only stronger.

2.1 Codes

We consider codes mapping a sequence of k input symbols into a sequence of n > k symbols over
the same alphabet, denoted X, which may but need not be the binary alphabet. Such a generic
code is denoted by C : ¥*¥ — ¥ and the elements of {C(a) : a € X¥} C X" are called codewords (of
C).

Throughout this paper, the integers k and n are to be thought of as parameters, and 3 may
depend on them. Thus, we actually discuss infinite families of codes (which are associated with
infinite sets of possible k’s), and whenever we say that some quantity of the code is a constant we
mean that this quantity is constant for the entire family (of codes). Typically, we seek to have ¥ as
small as possible, desire that |X| be a constant (i.e., does not depend on k), and are most content
when ¥ = {0,1} (i.e., a binary code).

Distance between m-symbol sequences over X is defined in the natural manner; that is, for
u,v € X", the distance A(u,v) is defined as the number of locations on which u and v differ (i.e.,
A(u,v) def {7 : u; # vi}|, where u = u;---u, € ¥" and v = vy --- v, € ¥"). The relative distance
between u and v, denoted 6(u,v), is the ratio A(u,v)/n. The distance of a code C : ¥¥ — ¥" is the
minimum distance between its codewords; that is, min,z,{A(C(a),C(b))}. Throughout this work,
we focus on codes of “large distance”; specifically, codes C : ¥¥ — X" of distance Q(n).

The distance of w € X" from a code C : ¥ — X" denoted Ac(w), is the minimum distance

between w and the codewords; that is, A¢(w) o ming{A(w,C(a))}. An interesting case is of

non-codewords that are “relatively far from the code”, which may mean that their distance from
the code is greater than (say) a third of the distance of the code.

Codeword Tests: two definitions

Loosely speaking, by a codeword test (for the code C : £*¥ — ¥") we mean a randomized (non-
adaptive) oracle machine, called a tester, that is given oracle access to w € X" (viewed as a
function w : {1,...,n} — ¥). The tester is required to (always) accept every codeword and reject
with (relatively) high probability every oracle that is “far” from the code. Indeed, since our focus
is on positive results, we use a strict formulation in which the tester is required to accept each
codeword with probability 1.2 (This corresponds to “perfect completeness” in the PCP setting.)

2More generaly, one may allow codewords to be rejected with small probability. Note that this relaxation (w.r.t
codewords) may be odd if coupled with the stronger definition regarding non-codewords (presented below).

The following two definitions differ by what is required from the tester in case the oracle is
not a codeword. The weaker definition (which is the one that appears in our preliminary re-
port [18]) requires that for every w € X", given oracle access to w, the tester rejects with probabil-
ity Q(Ac(w)/n) —o(1). An alternative formulation (of the same notion) is that, for some function
f(n) = o(n), every w € X" that is at distance greater than f(n) from C is rejected with probability
Q(A¢(w)/n). Either way, this definition (i.e., Definition 2.1) effectively requires nothing with re-
spect to non-codewords that are relatively close to the code (i.e., are at distance at most f(n) from
C). A stronger and smoother definition (i.e., Definition 2.2) requires that every non-codeword w is
rejected with probability Q(Ac(w)/n).3

Definition 2.1 (codeword tests, weak definition): A randomized (non-adaptive) oracle machine
M s called a weak codeword test for C : ©% — X7 if it satisfies the following two conditions:

1. Accepting codewords: For any a € X¥, given oracle access to w = C(a), machine M accepts
with probability 1. That is, Pr[MC® (k,n,X)=1] = 1, for any a € 2.

2. Rejection of non-codeword: For some constant ¢ > 0 and function f(n) = o(n), for every w €
X", given oracle access to w, machine M rejects with probability at least (¢- Ac(w)— f(n))/n.

That is, Pr[M"™(k,n,X)=1] < 1—((c¢-Ac(w) — f(n))/n), for any w e X",

Definition 2.2 (codeword tests, strong definition): A randomized (non-adaptive) oracle machine
M s called a strong codeword test for C : ¥ — X" (or just a codeword test for C : ¥¥ — ") if it
satisfies the following two conditions:

o Accepting codewords: As in Definition 2.1, for any a € XF, given oracle access to w = C(a),
machine M accepts with probability 1.

e Rejection of non-codeword: For some constant ¢ > 0 and for every w € X", given oracle
access to w € X", machine M rejects with probability at least ¢ - Ac(w)/n.

That is, Pr[M"™ (k,n,X)=1] < 1—(c-Ac(w)/n), for any w € X"

We say that the code C : ¥ — Y% is locally testable if it has a (strong) codeword test that makes
a constant number of queries.

Relation to property testing: Codewords tests are indeed a special type of property testers (as
defined in [23, 16]). However, in the “property testing” literature one typically prefers to provide
the tester with a distance parameter and require that the tester rejects all objects that are that far
from the property with probability at least 2/3 (rather than with probability proportional to their
distance). In such a case, the query complexity is measured as a function of the distance parameter
and is constant only when the latter parameter is a constant fraction of the maximum possible
distance. Strong codeword testers yield property testers with complexity that is inversely propor-
tional to the distance parameter, whereas the complexity of testers derived from weak codeword
tests is “well behaved” only for large values of the distance parameter.

3In both cases we have required that the rejection probability grows linearly with the distance of the oracle from
the code. A more general treatment (e.g., requiring a polynomial relationship) makes sense too.

Our main results
Our main result regarding codes is

Theorem 2.3 For every ¢ > 0.5 and infinitely many k’s, there exist locally testable codes with
binary alphabet such that n = exp((log k)¢) - k = k"o, Furthermore, these codes are linear and
have distance Q(n).

Theorem 2.3 (as well as Part 2 of Theorem 2.4) vastly improves over the Hadamard code (in which
n = 2%), which is the only locally testable binary code previously known. Theorem 2.3 is proven by
combining Part 1 of the following Theorem 2.4 with non-standard modifications of standard PCP
constructions.

Theorem 2.4 (proven by direct/self-contained constructions):

1. For every ¢ > 0.5 and infinitely many k’s, there exist locally testable codes with non-binary
alphabet X such that n = exp((logk)®) - k = k'T°0) and log|X| = exp((log k)¢) = kM),
Furthermore, the tester makes two queries.

2. For every ¢ > 1 and infinitely many k’s, there exist locally testable codes over binary alphabet
such that n < k°. Furthermore, the code is linear.

In both cases, the codes have distance Q(n).

Part 1 improves over the work of Friedl and Sudan [15], which only yields n = £>+°(). We comment
that (good) binary codes cannot be tested using two queries (cf. [9]).

The set of k’s for which Theorems 2.3 and 2.4 hold is reasonable dense; in all cases, if £ is in
the set then the next integer in the set is smaller than k'+t°(). Specifically, in Part 1 (resp., Part 2)
of Theorem 2.4, if k is in the set then the next integer in the set is smaller than exp((log k)%%!) - k

(resp., O(poly(log k) - k)).

2.2 PCP

A probabilistic checkable proof (PCP) system for a set L is a probabilistic polynomial-time (non-
adaptive) oracle machine (called verifier), denoted V', satisfying

o Completeness: For every x € L there exists an oracle 7, such that V', on input « and access
to oracle 7., always accepts x.

e Soundness: For every x ¢ L and every oracle 7w, machine V', on input z and access to oracle
m, rejects x with probability at least %

As usual, we focus on PCP systems with logarithmic randomness complexity and constant query
complezity. This means that, without loss of generality, the length of the oracle is polynomial in the
length of the input. However, we aim at PCP systems that utilize oracles that are of almost-linear
length. Our main result regarding such PCP systems is the following:

Theorem 2.5 For everyc > 0.5, there exists an almost-linear time randomized reduction of SAT to
a promise problem that has a 19-query PCP system that utilizes oracles of length exp((logn)¢)-n =
it where n is the length of the input. Furthermore, the reduction maps k-bit inputs to n-bit
inputs such that n = exp((log k)°) - k = k'to(),

This should be compared to the PCP system for SAT of Polishchuk and Spielman [21] that when
utilizing oracles of length n'*¢ makes O(1/¢) queries. In contrast, our PCP system utilizing oracles
of length ntto) while making 19 queries.

3 Direct Constructions of Codes

In this section, we prove Theorem 2.4; that is, we describe codes mapping k bits of information
to codewords of length k¢, for every ¢ > 1, that are locally testable. Although we do not use
any variant of the PCP Theorem, our constructions are related to known PCP constructions in
the sense that we use codes and analysis that appear, at least implicitly, in PCP constructions.
Specifically, we will use results regarding low-degree tests that were proven for deriving the PCP
Theorem [2, 3]. We stress that we do not use the (complex) parallelization procedure of [2] nor
the full power of the proof composition paradigm of [3], which is more complex than the classical
notion of concatenated codes [14] used below.

We start by describing (in Section 3.1) a code over a large alphabet, which we refer to as
the FS/RS code. This code, which is a direct interpretation of “low-degree tests”, was proposed
by Friedl and Sudan [15] and Rubinfeld and Sudan [23]. The size of this code turns out to be
nearly quadratic in length (even after using the best possible analysis of low-degree tests). To
reduce the size of the code to being nearly linear, we introduce a random truncation technique in
Section 3.2. This establishes Part (1) of Theorem 2.4 (which refers to codes over large alphabets).
In Sections 3.3 and 3.4 we apply the “code concatenation” technique to reduce the alphabet size of
the codes, till we get a binary code, thus establishing Part (2) of Theorem 2.4.

3.1 The Basic Code (FS/RS-Code)

The FS/RS code is based on low-degree multi-variant polynomials over finite fields. We thus start
with the relevant preliminaries. Let F' be a finite field, and m,d be integer parameters such that
(typically) m < d < |F|. Denote by P, 4 the set of m-variate polynomials of total degree d over F.

m+d m—+d
We represent each p € P, 4 by the list of its (m;d) coeflicients; that is, | P, 4| = |F|(i) = |F|().
2d "
(For m <« d, we use |Pp, 4| < |F|(m) < |F|Zdim)™)
Denote by L,, the set of lines over F'™, where each line is define by two points a,b € F™;

that is, for a = (ai,...,amm) and b = (b1,...,by,), the line £,; consists of the set of |F| points

{lap(®) % ((ay +tby), ooy (@ + thy)) : t € F}.

The code. We consider a code C : P, 4 — Yllml where ¥ = F4t1; that is, C assigns each
p € Py.q a (|Ly|-long) sequence of ¥-values. We view L,, as the set of indices (or coordinates) in
any w € X/Eml; that is, for any £ € L,,, we denote by w, the symbol in w having index £. In the
code C that we consider, for every p € P, 4, the symbol of C(p) that is indexed by £ € L,,, denoted
C(p)e, is the univariate polynomial that represents the values of the polynomial p : F* — F on

the line ¢; that is, for {,, € L,,, the univariate polynomial C(p)gayb can be formally written as

dap(2) def P(Lap(2)) = p((ar + b12), ..., (@m + bry2)). Since the polynomial p has total degree d, so

does the univariate polynomial gqp.

Parameters. To evaluate the basic parameters of the code C, let use consider it as mapping
3% — ¥", where indeed n = |Ly,| = |[F|*™ and k = log |P,, 4|/log |Z|. Note that

m+d m~+d
log || (d+1)log |F| d+1

which, for m < d, is approximated by (d/m)™/d =~ (d/m)™. Using |F| = poly(d), we have
n = |F|*™ = poly(d™), and so k ~ (d/m)™ is polynomially related to n (provided, say, m < v/d).
Note that the code has large distance (since the different C(p)’s tend to disagree on most lines).

The Codeword Test: The test consists of selecting two random lines that share a random point,
and checking that the univariate polynomials associated with these lines yield the same value for the
shared point. That is, to check whether w € X/ is a codeword, we select a random point r € F™,
and two random lines ¢/, ¢" going through r (i.e., £'(t') = r and ¢"(¢") = r for some t',t" € F),
obtain the answer polynomials ¢’ and ¢” (i.e., ¢ = wy and ¢ = wyr) and check whether they
agree on the shared point (i.e., whether ¢'(¢t') = ¢”(¢")). This test is essentially the one analyzed
in [2], where it is shown that (for |F'| = poly(d)) if the oracle is e-far from the code then this fact
is detected with probability Q(e).

We comment that in [2] the test is described in terms of two oracles: a point oracle f: F™ — F
(viewed as the primary or “real” input) and a line oracle g: L,, — F*! (viewed as an auxiliary or
additional oracle). Indeed, we will also revert to this view in our analysis. Unfortunately, using
oracles having different range will complicate the code-concatenation (presented in Section 3.3),
and this is the reason that we maintain explicitly only the line-oracle (and refer to the point-oracle
only in the analysis). Note that a line-oracle can be used to define a corresponding point-oracle
in several natural ways. For example, we may consider the (random) value given to each point by
a random line passing through this point, or consider the value given to each point by a (fixed)
canonical line passing through this point. (The former definition was used in our preliminary
report [18], whereas the latter will be used below.)

3.2 Random Truncation of the FS/RS-Code

Our aim in this section is to tighten the relationship between £ and n in locally testable codes. In
order to get the best possible relation between n and &, one needs to use analyses of low-degree test
that allows for |F'| to be as small as possible as compared to d. Based on the analysis of [21], [15]
show that it suffices to use |F| = ©(d). However, even with this best possible analysis, we are still
left with n that is quadratic in |F|™, whereas k = o(d"™) = o(|F|™). (This quadratic blowup comes
from the fact that the number of lines (over F™) is quadratic in the number of points, which in
turn upperbounds the number of coefficients of a (generic) m-variant polynomial (over F').) Thus,
to obtain n almost-linear in k£, we must use a different code.

Overview of our construction: Our main idea here is to project the FS/RS code to a randomly
chosen subset of the coordinates. Thus our code is essentially just a projection of the FS/RS code
to a random subset of lines in F™. This subset will have size that is almost-linear in |F|™, and
consequently the code will have almost-linear length. However, for technical reasons, we revert to
the “point vs. lines” test (rather than using the “intersecting lines” test). Thus our encoding of
a polynomial p € P, 4 ends up consisting of two parts:* One part simply giving the value of p on
every point in ™, and the other part giving the value of p restricted to a collection of lines, where
the lines come from a randomly chosen subset, denoted R, C L,,. Given a codeword ¢ supposedly
encoding some unknown polynomial p, the codeword test may now pick a random point from F™
and a random line from R, that passes through this point and verifies that the restriction of p to
this line (as asserted by the second part of ¢) agrees with the value of p on this point (as asserted
by the first part of c).

While the code we use is essentially the one above, we modify it slightly to preserve uniformity
in its alphabet size. As described so far, the first part of the code uses as its alphabet F', while
the second part of the code needs the alphabet F¢t!. To make things more uniform, we view the

*Only the second part was used in our preliminary report [18]. The corresponding analysis (in [18]) was more
complex (as well as more interesting), but yielded a weaker result.

first part also as elements of F?t1. Syntactically this is obtained by repeating each field element
(in the first part) for d 41 times. Semantically we view this (d + 1)-sequence as giving the value of
p restricted to a degenerate line that starts at the said point and has “slope” 0™. The value of p
restricted to this line ought to be a constant and we need to test this explicitly. So we augment the
codeword test by performing both a “point vs. line” test and checking that a random degenerate
line is assigned a constant function. Specifically, the value of a desired point (for the “point vs.
line” test) is obtained from the corresponding degenerate line (i.e., from the polynomial assigned
to this line); that is, in the “point vs. line” test we obtain two polynomials and compare the values
assigned by them to two points. For sake of uniformly, we test whether this degenerate line is
assigned a constant function by inspecting the values assigned by the corresponding polynomial to
two points. Below we give the details of the code, the test, and the analysis.

The truncated code: In what follows, we will fix positive integers m,d and a field F'. We will
assume loglogd < m < logd, and |F| = ©(d). Our code will be over the alphabet ¥ = Fat!
corresponding to the vector space of univariate polynomials of degree at most d over F. For the
sake of concreteness, we will assume that a polynomial p(z) = Z?:o c;x' is represented by the
vector (co,...,cq). Let L = L,, denote the collection of all lines in F™. Let A denote the collection
of degenerate lines; that is, the set {{,om € Lla € F™}. For a (multi-)set R C L, let R’ be the
(multi-)set RU A. For such a set R, we define the code C*: P, 4 — SR as follows: We index the
vectors in L by lines £ € R'. For p € P4 and ¢ € R, the (th symbol in the encoding C¥(p) is
the polynomial obtained by restricting p to the line £.

Thus, our encoding is simply a projection of the FS/RS code to the coordinates in AUR, where A
is the collection of degenerate lines, while R is an arbitrary subset of L. In what follows, we will show
that if R is chosen uniformly at random (with replication from L) and |R| = ©(m/|F|™ log |F|), then
the code is locally testable. (To shorten our sentences we will simply say “R is chosen randomly” to
say “the elements of the multi-set R are chosen uniformly at random from L”.) We next describe
the parameters of the code, and then describe the codeword test.

The basic parameters: We consider the information length k, the block length n and relative
distance of the code. To compare k with n, let us consider the code as a mapping ©¥ — %" where
n = |R'| = O(m|F|™log|F|) and (as before) k = log|P,, q|/log|X|. We pick m and d so that
m = Q(loglog d) but m = o(log d), and in such case we have k ~ d™ 1/m™ and, for |F| = O(d),
we have n = O(m|F|™ log|F|) = O(d)™. We highlight two possible settings of the parameters:

1. Using d = m™, we get k ~ m™ =2m and n = mm2+"(m), which yields n = exp(y/log k) - k and
log || = log |F|?*! ~ dlog d ~ exp(y/Iog k).

2. Letting d = m*® for any constant ¢ > 1, we get k£ = mE=Dm and n ~ m™, which yields
n ~ k1 and log |X| = dlog d ~ (log k)°.

We next show that when |F| = Q(d) and |R] is chosen randomly of size Q(m|F|™ log|F|), the code
has relative distance 6 > 0, with high probability. A straightfoward attempt to prove this fact is
to upperbound the probability that a specific pair of codewords are too close and to use a union
bound (over all possible pairs of codewords). This attempt fails, because the former probability
is exponential (decreasing) in |R| which is typically |F|k1+o(1)7 whereas the number of pairs is
exponential in (|F|¥)2. However, if the code is “linear” in an adequate sense (as defined below)
then it suffices to bound the weight of (non-zero) codewords, which in turn can be done by applying

a union bound over all codewords (rather than over all pairs of codewords).

10

We say that a subset C C X", where ¥ ~ F9t! is F-linear if it is a linear subspace of (F4+1)"
when viewed as a vector space over F. In other words, for every z,y € C and «, 8 € F, it is the
case that ax + By € C, where ax = (ax1,...,0u,) when 2 = (21,...,2,) € (FTH" and ax;
denotes the usual scalar-vector product.

Proposition 3.1 For every R, the code C® is F-linear.

Proof: For every p/,p" € P, qand o, 3 € F, and for every £ € R/, it holds that (aCE(p")+8CH(p")),
equals aC®(p'), + BCE(p")s. Letting p(£) denote the univariant polynomial representing the values
of the polynomial p when restricted to the line £, we have C(p'), = p'(¢) and CE(p"), = p"({).
Finally,

Clap’ +Bp")e = (e’ + Bp")(0) = ap' () + Bp"(£) = aC(p)e+ BCE (")

where the second equality follows from the fact that (ap’ + 8p”)(x) = ap'(z) + Bp”(x) for every
x € F™. Thus, C¥(ap’ + Bp") = aCE(p") + BCE(p"), and the proposition follows. [|

We are now ready to analyze the relative distance of CE.

Proposition 3.2 With probability 1 — o(1), for a randomly chosen R, the code C® has relative
distance at least 6 = Q(1 —d/|F|) > 0.

Proof: Informally, the code CX has relative distance at least 1 — d/|F|; and so truncation to a
random subset of coordinates should leave it with relative distance at least 6 = Q(1—d/|F|). Below,
we formally prove this assertion for § = 3 - (1 — d/|F|), but the same argument can be used to
establish 6 = ¢- (1 — d/|F|), for any constant ¢ < 1.

Since the code C® is F-linear (see Proposition 3.1), the distance between any two different
codewords is captured by the weight of some non-zero codeword. Thus, it suffices to lowerbound
the weight of all non-zero codewords in C*. Fix a non-zero polynomial p € P,, 4, and consider the
corresponding codeword C®(p). Our aim is to prove that the probabilility that C*(p) has relative
weight less than ¢ is at most o(|Fy, 4| 7!).

We first consider CL(p). By the folklore property of multivariate polynomials, we have that p
evaluates to non-zero values on at least 1 — d/|F| fraction of the points in F™. Extending this fact
to lines, we can infer immediately that the restriction of p to 1 — d/|F| = 26 fraction of the lines is
non-zero. (This is true since one can sample a random line by picking a random point = and picking
a random line through x, and if the p is non-zero at x, it must be non-zero on the line.) Also, we
have that the restriction of p to A is non-zero on at least 1 — d/|F| > 6 fraction of the “lines” in A
(since these lines are just points in disguise). So in order for C*(p) to have fewer than ¢ fraction of
non-zero coordinates, it must be that p is non-zero on fewer than 6 fraction of the lines in R. But we
also have that the expected fraction of lines in R where p is non-zero, when R is chosen at random,
is at least 20. Applying Chernoff bound, we find that the probability that this fraction turns out
to be less than § when R is chosen at random, is at most exp(—6|R|) = o(|F|~1™) = o(|F,,, 4| 71).
Thus, the probabilility that C*(p) has relative weight less than 6 is at most o(|Fy, 4|). Taking
the union bound over all possible polynomials p, we find the probability that C® has a codeword
of weight less than ¢ is at most o(1). []

We now move to describing the codeword test.

11

The Codeword Test: The test for the code C is a variant of the points-vs-lines test (cf. [2])
that accesses two oracles, one giving the value of a function f : F — F and the other supposedly
giving the restriction of f to lines in F"*. The original test picks a random point x € F" and a
random line ¢ € L passing through x and verifies that f(z) agrees with its supposed restriction of
f to the line ¢. In implementing this test, we modify it in two ways: Firstly, we do not have the
restriction of f to all lines, only to those in R (or rather to RU A), so we modify the above test by
picking a random ¢ € R that passes through z. Secondly, we do not (actually) have oracle access
to the value of f on individual points, but rather the restriction of f to “degenerate lines” (where
a word to be tested is allowed to provide arbitrary degree d polynomials as values of f restricted to
these lines). So we test that the restriction of this word to degenerate lines is a constant, and use
this constant as the value of the corresponding point. This leads to the following test that, given
oracle access to w € XAYE proceeds as follows:

1. Pick € F'™ uniformly at random and let {y = £, on € A.

2. Pick £ € R uniformly among lines that pass through z.

(If no such line exists, set £ = {;.)

3. Let hp = wy, and h = wy.

(Recall that hy and h are univariate degree d polynomials.)
4. Constant Test: Pick random « € F' and verify ho(0) = ho(a).

5. Point-vs-Line Test: Let § € F be such that ¢(3) = x. Verify ho(0) = h(3).

Note that the codeword test makes two queries to w (i.e., for wy, and wy), and uses the answers
in two different tests. Recall that, for sake of uniformity (with the Point-vs-Line Test), we avoid
a seemingly simpler version of the Constant Test (in which one verifiers that hy is a constant
polynomial). We analyze the codeword test next.

Analysis. It is obvious that the test accepts a valid codeword with probability 1. Below we give
a lower bound on the rejection probabibility of non-codewords. As in Proposition 3.2, the lower
bound holds for almost all possible R’s.

Lemma 3.3 For at least a 1 — o(1) fraction of the possible choices of R of size n — |[F™| =
O(m|F|™log|F|), every w € X" is rejected by the codeword test with probability Q(6cr(w)), where
6cr(w) is the relative distance of w from the code C%.

The above lemma improves over the probability bound Q(6¢r(w)/n) —o(1) that was established in
our preliminary report [18] for a related code (and a related test).

Proof: Let w = (w',w"), where w’ € X!4| corresponds to the lines in A and w” € XI# corresponds
to the lines in R. Intuitively, the distance of w from C® may be due to three sources:

1. The distance of w' from a sequence of constant polynomials. In this case, the Constant Test
will cause rejection with probability that is linearly related to the said distance (becuase non-
constant polynomials disagree with any constant polynomial on most points). For details see
Claim 3.3.1.

12

2. The distance of the function determined by (the constant term of) the polynomials in w’ from
a low-degree polynomial. In this case, for all but a o(1) of the choices of R, the Point-vs-Line
Test will cause rejection with probability that is linearly related to the said distance. The
proof of this claim (see Claim 3.3.2) is the most interesting part of the current analysis. It
amounts to showing that, for most choices of R, the modified (Point-vs-Line) low-degree test
that selects lines in R performs as well as the original low-degree test (which selects lines in
L). The proof relies on the following observations:

(a) Each possible function f : F™ — F determines an optimal answer for each possible
line-query, which in turn assigns each possible query a “rejection value” that is merely
the fraction of points on the line for which the (optimal) answer disagrees with the value
of f.

(b) The rejection probability of the original low-degree test is related to the average of these
rejection values, where the average is taken over all lines.

(¢) The modified test refers to a (random) set of line-queries, and so its rejection probability
is related to the average of these rejection values, where the average is taken over the
saud set.

However, for a random set (of adequate size), with overwhelmingly high probability, the
average of values assigned to elements in the set approximates the average of all values.

3. The distance of w” from the values assigned to lines by the low-degree polynomial that is
closest to the function determined by (the constant term of) the polynomials in w’. Suppose
that the latter function f is actually a low-degree polynomial. Then, for all but a o(1) of
the choices of R, the Point-vs-Line Test will cause rejection with probability that is linearly
related to the distance of “Cf(f) restricted to R” from w”. The claim can be extended to
the general case in which f is only close to P, 4; for details see Claim 3.3.3.

Turning to the actual proof, we fix some notation first. As above, we view w € X" as indexed by
lines in AU R, and write w = (v, w") € X4 x LIEl. We denote by f,, : F™ — F the function
defined by letting fu,(a) = wj_ . (0); that is, fu(a) is the value at zero of the univariate polynomial
that is assigned (by w') to the degenerate line passing through a. Let p, € P, 4 denote the m-
variate degree d polynomial closest to f, (breaking ties arbitrarily). Let é(w) = 6por(w) be the
(relative) distance of w from the code C%. In accordance to the motivational discussion, we consider
the following auxiliary distances:

1. con(w) denotes the fraction of @ € F™ such that wj ym 18 1Ob & constant polynomial.

2. Ogp(w) denotes the relative distance of f,, from p, (or equivalently from P, 4).

3. Oagr(w) denotes the relative distance between the values assigned by p, to lines in R and
w"; that is, Ougr(w) = Procr[pw() # wy], where (as above) py({y5) denotes the univariant
polynomial in x € F that is obtained from p,,(a + xb).

For a polynomial p € P, 4 and a set of lines S C L, we let £%(p) denote the sequence of univariant
polynomials representing the values assigned by p to each line in S (i.e., £%(p), = p(¢) for every
¢ € S). Indeed, C®(p) = £E4YE(p). Using this notation, we have

A(ER(pw), w")

6a_gr(1,U) = |R|

13

A(EA(fu),w')
|4
A(fw,Pw) _ A(gA(fw)a gA(pw))
|4 4]

5con (U}) —

b1dp(w)

Lastly, note that
(1Al +[R]) - 6(w) < (bcon(w) + blap(w)) - |A] + Sage(w) - |R]
Thus, either dcon(w) + djap(w) > 6(w) or Oagr(w) > 6(w).

Claim 3.3.1 For every w € X", the Constant Test rejects w with probability at least (1 —(d/|F))-
Scon (W).

Proof: Fix any w € X". Then, with probability d.on(w), the point z € F™ selected by the test is
such that the degree d univariant polynomial hy = wzz m 15 nOt a constant polynomial. In such a
case, with probability at least 1 —d/|F'| over the choice of o € F, the value ho(a) will disagree with

ho(0), because the constant function fo(x) def ho(0) (for all z € F) is also a degree d polynomial.
In such a case, the Constant Test rejects. The claim follows. [|

For the next claim, we rephrase the Point-vs-Line test in terms of the associated functions
f:F™— Fand g: R— X, where in our application f = f,, and g(¢) = w} (for every £ € R). The
test now picks x € F" uniformly at random and ¢ € R uniformly among lines passing through x.
For 8 such that ¢(3) = x, it verifies that h(3) = f(x), where h is the univariant polynomial g(¢).
Let 61q(f) = 6pm7d(f) denote the relative distance of f from P, 4. Indeed, é14(fw) = O1ap(w).

Claim 3.3.2 For all but at most an o(1) fraction of the possible choices of R, the following holds:
For every f : F™ — F and g : R — X, the probability that the Point-vs-Line Test (of Step 5) rejects
the oracle pair (f,g) is at least Q(é1q(f)).

In particular, we may conclude that our codeword test rejects any w with probability at least
Q(b1ap(w)). Note that Claim 3.3.2 does not refer to the distance of g from being a legitimate line-
oracle (let alone one that corresponds to f). Thus, Claim 3.3.2 effectively refers to all possible g’s
(or rather to the best possible g) that may be paired with f.

Proof: We prove the claim in two steps. First, we fix f : F'™ — F and prove that for all but
exp(—da(f)-|R]|) fraction of R’s, the rejection probability of the test on input f and any g : R — X
is Q(61q(w)). Next, we use a union bound over an approriate collection of functions f, to prove that
no function f is rejected with probability less than Q(éq(f)). An interesting aspect of the second
step is that we analyze the performance of the test on all functions by using a union bound only
on a small fraction of the possible functions.

Step 1 — overview: Following [23, 2, 3, 21, 15], we observe that for each possible function f : F™ — F
there exists an optimal strategy of answering all possible line-queries such that the acceptance
probability of the point-vs-line test for oracle pairs (f,-) is maximized. Specifically, for a fixed
function f, and each line ¢, the optimal way to answer the line-query ¢ is given by the degree d
univariate polynomial that agrees with the value of f on the maximum number of points of £.
Thus, the optimal acceptance probability of the point-vs-line test, when the point-oracle equals f,
depends only on f (and not on the line-oracle g, which may not be optimal for f). Furthermore,
this probability is the average of quantities (i.e., the agreements of f with the best univariate

14

polynomials) that f associates with each of the possible lines. The latter fact holds not only when
the test operates with the set of all lines, but also when it oprates with any set of lines R (as in
the claim).> The key observation is that for a random set R, with overwhelmingly high probability,
the average over R of quantities associated with lines in R approximates the average over L of the
same quantities.

Step 1 — details: Fix f : F™ — F an let 6 = 614(f) denote its distance to the nearest low-degree
polynomial. Let us denote by Dy(f) the fractional disagreement of f, when restricted to line £, with
the best univariate polynomial (i.e., the univariate polynomial that is nearest to f|, (f restricted to
0)). Note that, on input oracles f and g, the rejection probability of the standard point-vs-line test
(which refers to all possible lines), denoted p.(f,g), is lowerbounded by the average of the Dy(f)’s
over all ¢ € L (with equality holding if, for every line ¢ € L, it holds that g(¢) is a polynomial with
maximal agreement with f|y). A similar observation holds for the Point-vs-Line Test that refers to
the set of lines R, except that now the average is taken over the lines in R. Furthermore, the average
is weighted according to the probability that the test inpects the different lines (because a line is
selected by uniformly selecting a point and then selecting a random line that passes through this
point). Thus, the rejection probability of the Point-vs-Line Test that refers to the set R, denoted
pr(f,g), is lowerbounded by the weighted average of the corresponding Dy(f)’s.

Using the best-known analysis of the standard low-degree test (in particular, using [15, Theorem
7] to include the case where |F'| = O(d)), we obtain that

pr(fr9) = 7(f) LIS Dolf) = Q(6).

LeL

(Actually, we only care about the second inequality.)® Now, when R is chosen at random (as a set of
n—|A| lines from L), the expected value of 75 (f) def |R| 713 cr De(f) equals Eo[Dy(f)] = 7(f). By
Chernoff bound, we have that the probability that R is such that 7r(f) < 7(f)/2 is exponentially

small in ¢|R|. That is, for a random set R of n — |A] lines, it holds that

(Vf) Prr[rr(f) <7(f)/2] < exp(=Q2(bu(f)-[R]) (2)

In the following two paragraphs we assume that R is such that 7r(f) > 7(f)/2.

Let us assume that R covers all points uniformly; that is, each point resides on the same number
of lines in R (where several appearances on the same line are counted several times). This implies
that our test selects lines uniformly in R. Then, the rejection probability of our test (i.e., the
point-vs-line test for lines uniformly selected in R), when applied to f and any g, is lower-bounded
by the (unweighted) average of the Dy(f)’s over the lines in R (rather than over the set of all lines,
L). It follows that pr(f,9) > 7r(f) > 7(f)/2 = Q(6a(f)). (Recall that pr(f,g) denotes the said
rejection probability.)

Recall that in the previous paragraph we have assumed that R covers all points uniformly (i.e.,
each point resides on the same number of lines in R). In general, this may not be the case. Yet,
with very high probability, a random set R covers all points in an almost uniform manner, and
this “almost uniformity” suffices for extending the above analysis. Specifically, we first note that,

5In the latter case, the average is taken according to the distribution on R that is induced by the test. Note that
this distribution is not necessarily uniform over R.

®The inequality |L|™*- ZZEL D¢(f) = Q(6) is only implicit in most prior works, but it can also be inferred from the
results that are stated explicitly in them (which refer to the rejection probability of the standard test). Specifically,
for the optimal g, the rejection probability of the standard point-vs-line test (which refers to all possible lines) equals
the average of the D;(f)’s (over all £ € L).

15

with overwhelmingly high probability, each point in F™ resides on (1 & 0.1) - |R|/|F|™ " lines.
Indeed, the probability that a particular point resides on a deviating number of lines is at most
exp(—=Q(|R|/|F|™ 1)) = o(|F|™™), since |R| > m - |F|™ !log|F|. Next observe that in the above
analysis we assumed that the test selects lines uniformly in R, whereas our test selects lines in R by
selecting uniformly a point and then selecting a random line passing through this point. However,
as shown in the next paragraph, for R as above (i.e., that covers all points “almost uniformity”),
the distribution induced on the selected lines assigns each line in R a probability of (14+0.1)7!/|R|.
Thus, the rejection probability may be skewed by a factor of (14£0.1)"! = (1 £0.2) from the value
|RI7Y - Y pcr De(f) = Tr(f), which is analyzed above. We get pr(f,g) > 0.8 7r(f) > 0.4-7(f) =
Q(61a(f)). For future reference, we state the following fact (which, unlike the former inequality,
does not assume 7r(f) > 7(f)/2):

Pre((Vf,9) pr(f,9) 2 0.8-7r(f) and 7(f) = Q(&a(f))] =1 = o(1) (3)

It is left to analyze the distribution induced on lines selected from R (by the aforementioned
process), when R covers all points “almost uniformity”. For a point z, we let lines(x) denote the
set of lines that pass through z. Then, the probability that the line £ = (1, ...,7|p|) € R is selected
is given by

F|
> Prlz; is selected] -
i=1

_ |F| 1 1
lines(z;)| [F|m (1 £0.1) - |R|/[F[™1

which equals (1 +0.1)7! - |R|7! as claimed.

Step 2 — overview: Our aim is to show that, for most R’s, it is the case that 7r(f) > 7(f)/2 holds for
every f. This suffices to complete the proof of the current claim, because we have shown in Step 1
(see Eq. (3)) that pr(f,g) > 7r(f) and 7(f) = Q(éa(f)) for every pair (f,g). We would now like
to take the union bound over all f’s that are at distance ¢ from P, 4 in order to upper bound the
fraction of R’s such that there exists such a function f for which 7r(f) < 7(f)/2. The problem is

that the number of such functions is (;@‘Z) | Pp gl > (d/m)™, whereas (for a random R) we only

have Prr[tr(f) < 7(f)/2] < exp(—Q(6|R]|)) (and in fact Prr[tr(f) < 7(f)/2] > exp(—O(é|R]))).
This suffices in case 6|R| > (d/m)™, which in turn suffices to establish a weak tester (as per
Definition 2.1),” but we wish to handle the general case (in order to establish a strong tester as
per Definition 2.2). Thus, we cluster these functions according to the low-degree function that
is closest to them, and show that it is enough to analyze one cluster (e.g., the one of the zero
polynomial). The validity of the latter observation relies on properties of the set P, 4 that imply
that Dy(f) = D¢(f + p) holds for every function f, polynomial p € P, 4 and line £. The benefit
in the said observation is that we need only consider the functions that are closest to some fixed
polynomial and are at relative distance § from it (rather than all functions at relative distance
6 from P, 4). Thus, we get an upperbound of (gﬁl;) - exp(—Q(6|R|), which is negligible (since
|R] > |F|™ log |[F|™).

Step 2 — details: For any fixed 6 > 0, we start by considering the functions that are at relative
distance ¢ from the zero polynomial. The number of such functions is at most

™ 8 F|m
™ = F|™log|F|).
<6|F|m < (|F|™) exp(ém|F|™ log |F)

"This is all that was established in our preliminary report [18], and the stronger analysis that follows is new.

16

Oun the other hand, by Eq. (2), for any such function f, it holds that Prg[rr(f) < 7(f)/2] =
exp(—Q(da(f)-|R])), and if this function is closest to the zero polynomial (i.e., A(f,0) = Ap,_ ,(f))
then 64(f) = 6. Thus, using |R| = ¢ - |F|™log |F|™ (for an adequate constant c), the probability
(over the choices of R) that there exists a function f that is closest to the zero polynomial and is
at relative distance ¢ from it such that 7r(f) < 7(f)/2 is upperbounded by

exp(6mn|E|™ log |[F|) - exp(=Q(é - |R[)) = exp(=26|F|" log |[F|™) < o(|F[™™),

where the last inequality uses § > 1/|F|™. Summing over all (the |F|™) possibilities of 6, we see
that the probability over R, that there exists a function f that is closest to the zero polynomial
(among all polynomials in P, 4) such that 7r(f) < 7(f)/2 is o(1).

To conclude the argument, we use properties of the set P, 4. Specifically, suppose that R is
such that for every 6 and every function f that is closest to the zero polynomial and at distance
6 from this polynomial it holds that 7z(f) > 7(f)/2. Now, consider an arbitrary function f’ that
is at distance ¢ from the set P, 4, and let p € P, 4 be the polynomial closest to f’. Then, the
function f = f’ — p is closest to the zero polynomial (and at distance § from it), and we claim
that 7(f) = 7(f') and 7gr(f) = 7r(f’). The reason being that, for every function f and polynomial
p € Py, q and for every line £, it holds that Dy(f) = Dy(f + p) (although the polynomials selected
to achieve the maximum agreement with f and f + p, over the line ¢, may be different). Indeed, if
q is used to achieve the maximum agreement with f over the line ¢ then ¢ + (p|¢) will be selected
to achieve the maximum agreement with f + p, where p|, is the univariant polynomial obtained by
restricting the polynomial p to the line £.

Thus, for R as above and for every f, we have 7r(f) = mr(f —p) > 7(f —p)/2 = 7(f)/2, where
p € P, 4 is closest to f. By Eq. (3), we have pr(f,g) > 0.87r(f) and 7(f) = Q(61a(f)) for every
pair (f,g). Combining all the above, we get pr(f,g) > 0.87r(f) > 0.47(f) = Q(6a(f)), and the
current claim follows, [|

The last claim, which also relates to the Point-vs-Line Test, is also phrased in terms of the
associated functions f : F™ — F and g : R — X, where in our application f = f,, and g(¢) = wy
(for every ¢ € R).

Claim 3.3.3 For all but at most an o(1) fraction of the possible choices of R, the following holds:
for every f: F™ — F and g : R — X, the probability that the point-vs-line test rejects the oracle
pair (f,g) is at least

1 Ag,£%(p)) A(f,p)

2 R [Em]

where p 1s the polynomial in P, 4 that is closest to f.

Claim 3.3.3 will be applied to pairs (f,,w”), in which case A(w”,ER(py,)) = Sage(w) - |R| and
A(fwsPw) = Oap(w) - |[F™| (recalling that p,, is the polynomial closest to f,). Consequently,
we will infer that the codeword test reject any w with probability at least (Oagr(w)/2) — b1ap(w).
Needless to say, this claim will be invoked only in case djgp(w) < Oagr(w)/2.

Proof: We first consider what happens when the test is invoked with oracle access to the pair
(p,g), rather than to the pair (f,g). This mental experiment is easier to analyze in the case that
the test selects lines uniformly in R (which is the case only when R covers all points uniformly).
Still, as in the proof of Claim 3.3.2, we extend the analysis to most R (i.e., the R’s that cover all
points almost uniformly). The claim follows by observing that the test queries the point orcale on

17

a single uniformly distributed point, and so replacing p by f may reduce the rejection probability
by at most their relative distance.
As in the proof of Claim 3.3.2, we start by assuming that R covers all points uniformly (i.e.,

each point resides on the same number of lines in R). In this case, the test selects lines uniformly

in R. Thus, with probability 6 def A(g,ER(p))/|Rm|, the test selects a line £ such that h et g(?)

does not agree with p on £. Now, since both h and £F(p), (i.e., the values of p restricted to
the line /) are degree d univariant polynomials (and since they disagree), they disagree on at least
|F|—d > 2|F|/3 of the points on £. Thus, the test will reject the oracle pair (p, g) with probability at
least (2/3)-6. However, in general, R may not cover all points uniformly. Yet (as shown in the proof
of Claim 3.3.2), with very high probability, a random set R covers all points in an almost uniform
manner (i.e., each point in F™ resides on (1 £ 0.1) - |R|/|F|™ ! lines). This “almost uniformity”
suffices for extending the above analysis. Specifically, in this case each line is selected (by the test)
with probability (140.2)/|R)|, and so the test rejects the oracle pair (p,g) with probability at least
0.8-(2/3)-6>6/2.

So far we have analyzed the behavior of the test with respect to the oracle pair (p,g), whereas
we need to analyze the behavior with respect to the oracle pair (f,g). Recalling the test makes a
single uniformly distributed query to the point oracle, the claim follows. [|

Wrapping things up: Recall that either Ocon(w) + diap(w) > 6(w) or Ouer(w) > 6(w). If
Scon(w) > 6(w)/4 then invoking Claim 3.3.1 we are done. Similarly, if 6jgp(w) > 6(w)/4 then
invoking Claim 3.3.2 we are done. It remains to deal with the case that both écon(w) < 6(w)/4 and
Siap(w) < 6(w)/4, which implies that dugr(w) > 6(w). But now, invoking Claim 3.3.3 and using

(Oagr(w)/2) — blap(w) > 6(w)/4, the lemma follows. [|

Conclusion: By the above, with probability 1—o(1) over the choice of R, the code C* has relative
constant distance and is locally-testable (using two queries). Using the first parameter-setting (i.e.,
d = m™), we establish Part 1 of Theorem 2.4.

3.3 Decreasing the alphabet size

The above construction uses quite a big alphabet (i.e., ¥ = F?t1). Our aim in this subsection is to
maintain the above performance while using a smaller alphabet (i.e., F rather than F9*t'). This is
achieved by concatenating the above code (which encodes information by a sequence of n degree d
univariate polynomials over F') with the following inner-code that maps F9*! to F" where n' is

sub-exponential in k' a4+

The inner-code: For a (suitable) constant d’, let k' = A% and [h] = {1,...,h}. As a warm-
up, consider the special case of d’ = 2. In this case, the code C’ maps bilinear forms in z;’s
and y;’s (with coefficients (c;;); jen)) to the values of these forms under all possible assignments.
That is, ¢’ : F"* — FIFP" maps the sequence of coefficients (c;j); je(n) to the sequence of val-
ues (Vay, . ap bi, by Jat,anbr,bp€F WHETe Vay oy b b, = 3 iem Gy - aibj. In general (e,
arbitrary d > 1), the inner-code ¢’ : F¥ — F™ maps d'-linear forms in the variables sets
{2(1) ci e [hl}, .., {z(dl) : 4 € [h]} to the values of these d'-linear forms under all possible assign-

7 7
ments to these d'h variables. That is, C' maps the sequence of coefficients (Cily---yid’)il,---,idle[h] to the

sequence of values (v where v =
q (0,00 a0) oD g gl

i elh] Citvnig [10oy 0. Thus, (K = b and) n' = |F|*" = exp(d’ - (K)"/? - log |F|). Note
that the inner-code has relative distance (1 — (d'/|F|)) > 3/4.

18

Testing the inner-code: A valid codeword is a multi-linear function (in the variable sets
{zl(l) NS [h]},...,{zgd’) i € [h]}); that is, for each j, a valid codeword is linear in the vari-
ables zgj)’s. Thus, testing whether a sequence belongs to the inner-code amounts to d' linearity
checks. Specifically, for each j, we randomly select 7 = (rgl),...,rél), ...,ng’), ...,T,(Ld’)) e F¥M and

(sgj), vy ng)) € F", and check whether vz + vs = vy, where

5 = (Tgl),...,T,(Ll),...,ngfl),...,T,(Ljfl),sgj),...,sgj),rgjﬂ),...,T,(LjH),...,T%d’),...,rgd’)) and
t = (rg),...,7',(11),...,7'9_1),...,T,(Lj_l),rgj)—i—sgj),...,r,(j)—I—sglj),rgjﬂ),...,r,(LjH),...,rgd’),...,rf(ld’)).

To simplify the analysis, we also let the test employ a total low-degree test (to verify that the
codeword is a multi-variate polynomial of total-degree d’).® The total-low-degree test uses d’' + 2
queries, and so our codeword test uses 3d’ + d' + 2 = O(d’) queries.

Lemma 3.4 If the distance of w' € F™ from C' is en’ then the probability that the codeword test
for C" rejects is Q(e).

Proof: If ' € FIF"" (viewed as a function w' : F¥" — F) is at fractional distance at least
min(e, 0.4) from the set of d'h-variate polynomials of total degree d' then it is rejected with proba-
bility Q(e) by the total-degree test. Otherwise, w' is at distance less than min(e, 0.4) - n’ from such
a polynomial, denoted p’, which is unique (since min(e, 0.4) < (|F| — d)/2|F|). By the hypothe-
sis (regarding the distance of w’ from C'), this p’ must be non-linear in some block of variables;
that is, for some j, the polynomial p’ is non-linear in {zgj) : 1 € [h]}. With probability at least
1—(d'/|F]) > 0.9, this non-linearity is preserved when assigning random values to the variables of all
the other blocks; that is, for a random 7 = (F(1), .., 7(¥)) € (F™")¥ | with probability at least 0.9, the
polynomial ¢'(z19)) def D, 700 20 70+ 7(d)) s not linear, where zU) = (zgj), s z,(Lj)).
(Here we used the fact that p’ has degree at most d’.)® Furthermore, ¢’ (which also has degree at
most d') is at distance 1 — (d'/|F|) > 0.9 from any linear function (in Z)). On the other hand, the
expected fractional distance between the residual w’ and p’ under such a random assignment is less
than 0.4. Thus, under such random assignment, the expected fractional distance of the residual w’
from the set of linear functions in {zz(]) 4 € [h]} is at least 0.9-0.9—0.4 > 0.4. It follows that w’ is
rejected with constant probability by the ;" linearity test (because, with probability at least 0.2,

the residual w' is at least 0.2-far from being linear in the zgj)’s). [|

The concatenated-code: The concatenated-code obtained by composing the outer-code C :
vk — ¥" with the inner-code C' : F¥ — F" where & = F*! = FF maps (z1,...,x;) to
(C"(y1), s C'(yn)), where (y1, ..., yn) def C(x1,...,xx). Thus, the concatenated-code maps k- k'-long
sequences over F to n - n/-long sequences over F. Furthermore, the concatenated-code is linear
(over F); that is, for each i, each F-symbol in the sequence C'(y;) is a linear combination of the
F-symbols in y;, which in turn are linear combinations of the F-symbols in (x1, ...,).

8We believe that the codeword test operates well also without employing the total-degree test, but the augmented
codeword test is certainly easier to analyze.

9Write the polynomial p' as the sum of monomials in V) with coefficients being functions of the other variables.

Consider any non-linear monomial in z0) having a non-zero coeffient (which is a polynomial of degree at most d' — 2
in the other variables). Then, by the Schwarz—Zippel Lemma, with probability at least 1 — ((d' — 2)/|F|), a random
assignment to the other variables will yield a non-zero value, and thus this (non-linear) monomial in zU) will appear
in ¢ (with a non-zero coefficient).

19

Testing the concatenated-code: In order to test the concatenated code, we first test (random
instances of) the inner-code, and next use self-correction on the latter to emulate the testing of
the outer-code. Specifically, the tester for the concatenated code selects at random (as the tester
of the outer-code) two intersecting lines ¢/ and ¢”, and first applies the inner-code tester to the
inner-encoding of the polynomials associated by the outer code to these two lines. To emulate the
actual check of the outer-code test, the current tester needs to obtain the value of these polynomials
at some elements of F' (which are determined by the outer test). (Note that by the modification
introduced after the proof of Lemma 3.3, all that the outer-code tester does is to compare the values
of univariant polynomials at certain points.) Suppose that we need the value of ¢’ (a univariate
polynomial of degree d = h* —1 over F) at t € F, and that ¢’ is encoded by the inner-code. Recall
that ¢’ is represented as a sequence of coefficients that, for sake of the inner-code, may be indexed
by d'-tuples over [h]| such that qgh___,id, is the coefficient of the Z;-llzl(ij — 1) - K¥~1-th power; that

d i1
is, 4'(2) = Xy, ipelh]) Groriy 2225=1 G DP T Gpcerve that the value ¢'(t) equals the entry of
C'(¢') that is associated with the sequence (¢°,...,t"=1, 0, .. t(h=Dh 40 cory (A= DRY “). That is,

we consider the entry of C'(¢') that is indexed by the sequence (agl), ey agll), very agd’), very agld’)) that
satisfies az(]) = t(~DP ™" The value of this entry equals 2t ig€lh] qghwid, 'H?;l az(-]J,), which equals

d' d' .
1Rt " (i—1)hi 1
E qgl,...,idl ’ l I t(z] DA? = E qgl,...,idl ’ tz]=1(%) = q,(t) .
i=1

il:"':idle[h} il:"':idle[h’}

Self-correction of the desired entry is performed via polynomial interpolation, and requires only
d' + 1 queries (where each query is uniformly distributed). Thus, the concatenated code can be
tested by making O(d') queries: It is clear that our tester makes 2-(4d' +2)+2-(d' +1) queries and
that it accepts each codeword with probability 1, but the rejection probability of the tester does
require a detailed analysis (which is provided next). The point is to prove that the composition of
tests (for the concatenation-code) does work as one would have expected.

Lemma 3.5 Let F and C = C® be as in Lemma 3.3, and C' : F¥' — F™ be as above, where k' = h?
and n' = |F|d’h. Then, every w € F' s rejected by the concatenated-code tester with probability
that is linearly related to the distance of w from the concatenated-code.

Proof: Let us denote by € the relative distance of w = (wy, ...,wy) € (F™)" from the concatenated-

code, and let ¢; def Acr(w;)/n' denote the relative distance of w; from the inner-code C'. Recall that
each of the two lines selected by the outer-code tester is not uniformly distributed in [n] = A,,UR,,,
but it is rather that the first line is selected uniformly in A,, = [|F|™] whereas the second line is
selected uniformly in R, = [n] \ [|F'|™]. For a constant ¢ > 1 (to be determined), we consider the

following two cases:!?

Case 1: either |F|"™- Zlﬂm € > ¢/cor (n—|F|™)" L. > i |pjm1 € > €/c. In this case, at least one

of the w; probed by the outer-code tester is at expected relative distance at least €/c from
the inner-code. Thus, in this case, the inner-code tester will reject with probability €2(e/c),
which is (e) because ¢ is a constant.

1 — (¢/2) of the w;’s are (2/c)-close to the inner-code. Denoting the closest corresponding

Case 2: both |F|7™ - Ziillm € <¢€/cand (n—|F|™)" L. i=|p|my1 € < €/c. 1t follows that at least

10 Alternatively, instead of consisdering the two partial sums, one may consider a weighted average of all ¢;’s, where
the weights are proportional to the probability that the various lines are queried.

20

codewords by ¢;’s, we let d; denote the decoding of ¢; (and of w;) if Agr(w;,¢;) < 2n'/c and be
arbitrary otherwise. Thus, the relative distance of (dy, ..., d,) from the outer-code is at least
e—(e/c)—(€/2) > €/3, where the €/c term accounts for the average distance of the ¢;’s from the
w;’s, and the €/2 term accounts for the arbitrary d;’s (which were introduced to facilitate the
rest of the analysis). Thus, for some constant ¢’ > 0 (determined in Lemma 3.3), the outer-
code testes rejects (dy, ..., d,,) with probability at least ¢ - €/3. (We will set ¢ = 24(d’ +1)/c.)
The question is what happens when the concatenated-code tester emulates the outer-code.

Recall that, in the current case, both the indices probed by the outer-code tester correspond
to w;’s that are at expected relative distance at most ¢/c from the inner-code. It follows that
with probability at least 1 — 2 - (2(d’' + 1)¢/c), both indices probed by the outer-code tester
correspond to w;’s that are at relative distance at most 1/2(d’ + 1) from the inner-code. In
this case, with probability at least (1 — (d’' +1)-(1/2(d' +1)))? = 1/4, both the self-corrected
values (computed by our test) will match the corresponding d;’s. Note that if the above two
events occur then our tester correctly emulates the outer-code tester. Thus, our tester rejects
if the following three events occur:

1. The outer-code tester would have rejected the two answers (i.e., the two d;’s).

2. The two probed indices correspond to w;’s that are at relative distance at most 1/2(d'+1)
from the inner-code (and in particular from the corresponding C'(d;)’s).

3. The self-corrected values match the corresponding d;’s.

By the above, Event 1 occurs with probability at least ¢e/3, and Event 2 fails with probability
at most 4(d' + 1)e/c = /6 (by setting ¢ = 24(d’ + 1)/¢'). Thus, our tester rejects w with
probability at least ((c'e/3) — (c'e/6)) - (1/4) = Q(e), where the 1/4 is due to the probability
that Event 3 occurs (conditioned on Events 1 and 2 occuring).

Thus, in both cases, any word that is at relative distance € from the concatenated-code is rejected
with probability ©(e). The lemma follows. i

Other properties: Recall that the inner-code is linear (over F'), and so is also the concatenated
code. Furthermore, the codeword test is a conjunction of O(d’) linear tests. Alternatively, we
may perform one of these linear tests, selected at random (with equal probability). The relative
distnace of the concatenated code is the product of the relative distances of the outer and inner
codes, and thus is a constant. Regarding the parameters of the concatenated code, suppose that
in the outer-code we use the setting d = m® (for any constant e > 1), and that in the inner-code
we use d = 2e. Then, we obtain a code that maps F* 1o F"”', where n ~ k(=1 and n' ~
exp(d/?) ~ exp((log k)¥/%) = exp(v/Iog k) = k°1) (using d ~ (log k)¢). Thus, nn' ~ (kk')¢/(e=1),
whereas the alphabet size is |F| = O(d) = (log k)°. For usage in the next subsection, we only care
that the alphabet size is £°(), while the rate is good (i.e., nn’ =~ (kk')¢/(¢=1).

3.4 A Binary Code
The last step is to derive a binary code. This is done by concatenating the code presented in
Section 3.3 with the Hadamard code, while assuming that F = GF(2¥"). That is, the Hadamard

code is used to code elements of F' by binary sequences of length n” def ok
To test the newly concatenated code, we combine the obvious testing procedure for the
Hadamard code with the fact that all that we need to check for the current outer-code are (a

21

constant number of) linear (in F') conditions involving a constant number of F-entries. Instead
of checking such a linear condition over F, we check that the corresponding equality holds for
a random sum of the bits in the representation of the elements of F' (using the hypothesis that
F = GF(2"")). Specifically, suppose that we need to check whether ¥; aza; = 0 (in F), for some
known o; € F and oracle answers denoted by a;’s. Then, we uniformly select r € GF(2¥"), and
check whether (r, Y, @;a;) = 0 mod 2 holds, where (u,v) denotes the inner-product modulo 2 of
(the GF(2¥") elements) u and v (viewed as k”-bit long vectors). The latter check is performed by
relying on the following two facts:

Fact 1: (r, Y, asa;) = Y, (r, a;a;) mod 2.

Fact 2: Each (r, a;ja;) can be obtained by making a single query (which is determined by r and «;)
to the Hadamard coding of a;, because (r, a;a;) is merely a linear combination with coefficients
depending only on «; and r of the bits of a;.

(Each bit of a;a; € GF(2%") is a linear combination with coefficients depending only on «; of
the bits of a;, and (r,v) is a linear combination with coefficients depending only on 7 of the
bits of v.)

Specifically, let use denote by C : FkE' — P the code presented in Section 3.3, and let C” :
{0,1}*" — {0,1}"" denote the suitable Hadamard code, where F = GF(2¥") = {0,1}*" and
[n"] = {0, 1}’“”. Then, concatanating these two codes, we obtain a code that maps (z1,..., Txg') €
(10, 11¥ Y5 0 (C"(y1), ooy C" (Yt), Where (y1, .., Yt) = C(&1, ..., Tppr). Recall that the codeword
tester of C checks a constant number of linear conditions, each depending on a constant number of
positions (i.e., F-symbols). By reducing the detection probability, we may assume that it actually
checks only one such condition. Then we consider the following tester for the new code: The tester
is given oracle access to w = (w1,, Wypr), where each w; = w; 1 -+ w; o € {0, 1}””, and proceeds
as follows:

1. The tester selects the locations i1, ...,4q € [nn/] and the linear condition (a, ..., aq) € F7 to
be checked by the codeword tester of C. (These choices are distributed as in the latter tester.)

2. For j =1,...,q, the tester checks that w;, is a codeword of C", by uniformly selecting r,s €

{0, 1}’“” and checking whether w;; » + w;; s = wi; ros-

3. The tester emulates the check Z;l-zl ajd;; = 0 of the tester for C, where d;; is the C"-decoding
of w;; and the arithmetic is over F' = GF(2¥"). This will done by uniformly selecting r €
{0,1}*", and checking that (r, > i_1 a;jdi;) = 0. By Fact 1, we may check 3%_, (r, a;d;;) = 0.
To this end, we should obtain (r, a;d;;), for 7 and «; that are known to us. As stated in Fact 2,
the desired bit can be expressed as a linear combination (with fixed coefficients depending
only on r and ;) of the bits of d;;. That is, (r, a;d;;) = (rj,d;;), where r; is determined by r
and ;. Recall that (rj,d;;) = C"(d;;),,. However, since we may not have a valid codeword of
di;, we obtain the corresponding entry via self-correction of w;,. That is, we obtain (a good

guess for) C"(d;;), by using w;, r.@s;, — Wy, s;, for a uniformly selected s; € {0, 1}’“”.

To conclude, we uniformly select r € {0, 1}’“”, and determine ry,...,7, based on r and the
a;’s (determined in Step 1). Next, we select uniformly si,...,s, € {0, 1}¥"and check that

Z;l:l(wijﬂ”j@% - wij:s]‘) = 0.

Our tester makes 3¢ + 2¢ to the code, where ¢ is a constant. It is clear that this tester accepts
any valid codeword. The analysis of the rejection probability of non-codewords can be carried out

22

analogously to Lemma 3.5 (i.e., considering two cases according to the average distance of the w;’s
from valid codewords of C”).!! Tt follows that non-codewords are rejected with probability that is
proportional to their distance from the code.

The final code maps {0, 1}*¥'%" to {0,1}""'"" where nn' =~ (kk')¢/(¢~1) and n” = 2¥" = |F| =
poly(log k) = k°(). Thus, nn'n" ~ (kk'k")¢/(¢=1). (Also note that the final code is linear and has
linear distance.) This establishes Part 2 of Theorem 2.4.

Note: Fixing any integer e > 1, the above code can be constructed for any integer h, while
determining k' = h¢, k" = logO(k') and k ~ (m®)", where m = (h°* — 1)/ ~ h. Thus,
K% kk'k" ~ ple-Dh . pe. log he &~ h(e=Dh_ The ratio between consecutive values of K is given by

er}ﬁ# = 0(h)*"! < (log K)°~!, and so the successor of K is smaller than (log K)¢~! - K.

4 Nearly linear-sized PCPs

In this section we give a probabilistic construction of nearly-linear sized PCPs for SAT. More
formally, we reduce SAT probabilistically to a promise problem recognized by a PCP verifier tossing
(14+0(1))log n random bits (on inputs of length n) and queries a proof oracle in a constant number
of bits and has perfect completeness and soundness arbitrarily close to % We stress that the
constant number of bits is explicit and small. Specifically, if the o(1) function in the randomness
is allowed to be as large as 1/poly log logn, then the number of queries can be reduced to 16 bits.
The little o(1) function can be reduced to O(y/loglogn/logn) for a small cost in the number of
queries, which now goes up to 19 bits. These improvements are obtained by using and improving
results of Harsha and Sudan [19].

We get our improvements by applying the “random truncation” method (introduced in Sec-
tion 3) to certain constant-prover one-round proof systems, which are crucial ingredients in the
constructions of PCPs. Typically, these proof systems use provers of very different sizes, and by
applying the “random truncation” method we obtain an equivalent system in which all provers
have size roughly equal to the size of the smallest prover in the original scheme. At this point,
we reduce the randomness complexity to be logarithmic in the size of the provers (i.e., and thus
logarithmic in the size of the smallest original prover).

Recall that typical PCP constructions are obtained by the technique of proof composition
introduced by Arora and Safra [3]. In this technique, an “outer verifier”, typically a verifier for a
constant prover one round proof system, is composed with an “inner verifier” to get a new PCP
verifier. The new verifier essentially inherits the randomness complexity of the outer verifier and
the query complexity of the inner verifier. Since our goal is to reduce the randomness complexity
of the composed verifier, we achieve this objective by reducing the randomness complexity of the
outer verifier.

As stated above, the key step is to reduce the sizes of the provers. As a warm-up, we first show
that the random truncation method can be applied to any 2-prover one-round proof system, where
the size of one prover is much larger than the size of the second prover, to reduce the size of the
larger prover to roughly the size of the smaller prover.

We then show how to apply the random truncation to the verifier of a specific 3-prover one-round
proof system used by Harsha and Sudan [19]. Their verifier is a variant of the one constructed by Raz

n the current setting we may treat all the code’s coordinates uniformly. The constant ¢ will be set depending on
¢ and q (i.e., ¢ = 4q/c’), where ¢’ is performance proportion established by Lemma 3.5. Thus, each self-correction
will incur an error of 2¢/c < c'¢/2q.

23

and Safra [22] (see also, Arora and Sudan [4]), which are, in turn, variants of a verifier constructed
by Arora et al. [2]. All these verifiers share the common property of working with provers of
“imbalanced” sizes. We manage to reduce the size of the provers to the size of the smallest one,
and consequently reduce the randomness of the verifier to (1 4 o(1))logn (i.e., logarithmic in the
prover size). We stress that this part is not generic but relies on properties of the proof of soundness
in, say, [19], which are abstracted below. Applying the composition lemmas used/developed in [19]
to this new verifier gives us our efficient PCP constructions.

4.1 MIP verifiers and random sampling

We start by defining a 2-prover 1-round proof system as a combinatorial game between a verifier
and two provers. Below, {2 denotes the space of verifier’s coins, ¢; denotes its strategy of forming
queries to the ith prover, and P; denote strategies for answering these queries (where all refer to
the residual strategies for a fixed common input).

Definition 4.1 For finite sets Q1,Q2,92, and A, a (Q1,Q2,2, A)-2IP verifier V' is given by func-
tions q1 : Q@ — Q1 and g2 : Q@ — Q2 and Verdict : @ x A x A — {0,1}. The value of V,
denote w(V'), is the mazimum, over all functions Py : Q1 — A and Py : Q2 — A of the quantity
E,_q [Verdict(r, Pi(q1(r)), P2(qa(r)))]. A 2IP verifier V' is said to be uniform if for each i € {1, 2},
the distributions {q;(r)}r—q are uniform over Q.

Focusing on the case |Qy] > |Q1, we define a “sampled” 2IP verifier:

Definition 4.2 Given a (Q1,Q2,2, A)-2IP verifier V and set S C Q2, let Qg = {r € Q| ¢(r) €
Q1}. For T C Qg, the (S,T)-sampled 2IP verifier Vs 7 is a (Q1,S5,T,A)-2IP verifier given by
functions ¢ : T — Q1, ¢4 : T — S, and Verdict’ : T x A x A — {0,1} obtained by restricting q1, q2
and Verdict to T'.

In the following lemma we show that a sufficiently large randomly sampled set S from Q9 is
very likely to preserve the value of a verifier approximately. Furthermore, the value continues to
be preserved approximately if we pick 1" to be a sufficiently large random subset of {2g.

Lemma 4.3 There exist absolute constants ci,co such that the following holds for every

Q1,Q2,2 A, € and v > 0. Let V be an (Q1,Q2, 2, A)-uniform 2IP verifier.

Completeness: Any (S,T)-sampled verifier preserves the perfect completeness of V. That is, if
w(V) =1 then, for every S C Q2 and T C Qg, it holds that w(V|sT) = 1.

Soundness: For sufficiently large S and T, a random (S,T)-sampled verifier preserves the sound-
ness of V. up-to a constant factor. Specifically, let Ny = (|Q1|log|A| + log %) and

Ny = =2 (Nl log |A| + log %), and suppose that S is a uniformly selected multiset of size

Ny of Qo, and T is a uniformly selected multiset of size Ny of Qg. Then, for w(V') <€, with
probability at least 1 — v it holds that w(V|g 1) < 2e.

Note that the reduction in randomness complexity (i.e., obtaining Ny = O(|Q1])) relies on the
shrinking of the second prover to size Ny = O(|Q1]). Without shrinking the second prover, we
would obtain Ny = O(|Q2|), which is typically useless (becuase, typically, |Q2| = O(]Q2])).

Proof: Assuming that w(V) < €, we focus on the soundness condition. The proof is partitioned
into two parts. First we show that a random choice of S is unlikely to increase the value of the

24

game to above 3/2e. Next, assuming the first part was ok, we show that a random choice of T
is unlikely to increase the value of the game above 2¢. The second part of the proof is really a
standard argument which has been observed before in the context of PCPs. We thus focus on the
first part, which abstracts the idea of the random truncation from Section 3.

Our aim is to bound the value w(V|s), for a randomly chosen S. Fix any prover strat-
egy P1 : Q1 — A for the first prover. Now note that an optimal function, denoted Py,
for the second prover answer each question g2 € (2 by an answer that maximizes the ac-
ceptance probability with respect to the fixed P, (i.e., an optimal answer is a string as that
maximizes E,cqg,(r)=q. [Verdict(r, P1(q1(7)),az)]). We stress that this assertion holds both for
the original 2IP verifier V' as well as for any (S,(g)-sampled verifier.!? For every question
g2 € Q2, let €4, denote the acceptance probability of the verifier V' given that the second ques-
tion is g (i.e., €, = Ercqigy(r)=q,[Verdict(r, P1(q1(r)), 5 (g2))]). By definition (and uniformity)
Egeq@yleq] = Erealegy] < € The quantity of interest to us is Ereqgleg)] = Egesleg]- A
straightforward application of Chernoff bounds shows that the probability that this quantity ex-
ceeds (3/2)e is exp(—eNy). Taking the union bound over all possible P;’s, we infer that the prob-

ability that there exists a P, P> such that E,_q[Verdict(r, P1(q1(r)), Pa(g2(r)))] > (3/2)e is at
most exp(—eNy) - | A1, Thus, using Ny = & (|Q1| log |A| + log %) (for some absolute constant
c1), it follows that w(V]sag) < (3/2)e with probability at least 1 — 3 (over the choices of S). The
lemma follows.13 [|

4.2 Improved 3-Prover Proof System for NP
We now define the more general notion of a constant-prover one-round interactive proof system

(MIP).

Definition 4.4 For positive reals c,s, integer p and functions r,a : ZT — ZT, we say that a
language L € MIP. [p,r,a] (or, L has a p-prover one-round proof system with answer length a)

if there exists a probabilistic polynomial-time verifier V interacting with p provers Py, ..., P, such

that

Operation: On input x of length n, the verifier tosses r(n) coins, generates queries qi,...,qp to
provers P, ..., P,, obtain the corresponding answers ai,...,a, € {0,1}“(”), and outputs a
Boolean wverdict that is a function of z, its randomness and the answers ay,...,ap.

Completeness: If x € L then there exist strategies Py, ..., B, such that V accepts their response with
probability at least c.

Soundness: If x & L then for every sequence of prover strategies Py,...,P,, machine V accepts
their response with probability at most s, which 1s called the soundness error.

Harsha and Sudan [19] presented a randomness efficient 3-prover one-round proof system with
answer length poly(logn) and randomness complexity (3 + €)logy n, where ¢ > 0 is an arbitrary

2But, the assertion does not hold for most (S, T')-sampled verifiers.

13Indeed, we have ignored the effect of sampling Qs; that is, the relation of w(V]|s,ay) and w(V]s,r), for a random
T C Qg of size No. Here, we fix any choice of P1 : Q1 — A and P> : S — A. Again, applying Chernoff bounds, we see
that the probability that the restrictions of Qs to T lead to acceptance with probability more than w (Vs ag) + (¢/2)
is exp(—eNz). Taking the union bound over all choices of Pi and P2, we infer that w(V|sr) > w(V]sag) + (¢/2)
with probability at most exp(—eNa) - |A|'“tIFIS1 Thus, using N = 22(|S|log |A| 4 log(1/7v)), we conclude that
w(Vls,r) Lw(Vlsas) + (¢/2) with probability at least 1 — 7 (over the choices of T').

25

constant and n denotes the length of the input. Here we reduce the randomness required by their
verifier to (1 4 o(1)) log n.

Before going on we introduce a notion that will be useful in this section — namely, the notion
of a length preserving reduction. For a function £ : Zt — Z*, a reduction is £(n)-length preserving
if it maps instances of length n to instances of length at most £(n).

Lemma 4.5

For every € > 0 and functions m(n), £(n) satisfying €(n) = Q(m(n)H)p1+2A/mm)y = gAT
reduces in probabilistic polynomial time, under ¢(n)-length preserving reductions to a promise prob-
lem TI € MIP; [3, (1 + 1/m(n))log n + O(m(n)log m(n)), m(n)CMnOQ/mm)],

Before proving this lemma, let us see some special cases obtained by setting m(n) =
poly(loglogn) and m(n) = v/log n, respectively in the above lemma.

Corollary 4.6 For every u > 0 and every polynomial p, there exists a promise problem 1I €
MIPy ,[3, (14 1/p(log log n)) -log n, 2P (108108 ™)] sych that SAT reduces probabilistically to I under
plt(/ploglogn)) 1o gth, preserving reductions.

Corollary 4.7 For every p > 0, there exists a promise problem II € MIPq,[3,(1 +
O((loglogn)/+/Togn)) - logn, 200V legnloglogn)] =y ch SAT reduces probabilistically to II under
pltOoglogn)/\/logn) 1o ath preserving reductions.

We defer the proof of Lemma 4.5 to Section 4.2.4. Here we give an overview of the proof steps.
We modify the proof of [19] improving it in two steps. The proof of [19] first reduces SAT to a
parametrized problem they call GapPCS under ¢'(n)-length preserving reductions for #/(n) = n'*t”
for any v > 0. Then they give a 3-prover MIP proof system for the reduced instance of GapPCS
where the verifier tosses (3 +) log¢'(n) random coins.

Our first improvement shows that the reduction of [19] actually yields a stronger reduction
than stated there, in two ways. First we note that their proof allows for smaller values of £(n) than
stated there, allowing in particular for the parameters we need. Furthermore, we notice that their
result gives rise to instances from a restricted class, for which slightly more efficient protocols can
be designed. In particular, we can reduce the size of the smallest prover in their MIP protocol to
roughly ¢(n) (as opposed to their result which gives a prover of size £(n)'*7 for arbitrarily small
7). These improvements are stated formally in Lemmas A.2 and A.3 and Corollary A.4.

The second improvement is more critical to our purposes. Here we improve the randomness
complexity of the MIP verifier of [19], by applying a random truncation. To get this improvement
we need to abstract the verifier of [19] (or the one obtained from Corollary A.4). This is done
in Section 4.2.1. We then show how to transform such a verifier into one with (1 4 o(1))logn
randomness. This transformation comes in three stages, described in Sections 4.2.2-4.2.4.

4.2.1 Abtracting the verifier of Corollary A.4

The verifier of Corollary A.4 interacts with three provers which we’ll denote P, P;, and P,. We will
let Q, @1, and Q)9 denote the question space of the provers respectively; and we’ll let A, A1, and As
denote the space of answers of the provers respectively. Denote by V,(r,a,a1,as), the acceptance
predicate of the verifier on input z, where r denotes the verifier’s coins, and a (resp., a1, a2) the
answer of prover f = P (resp., P, P»). (Note: The value of V,, is 1 if the verifier accepts.) We’ll
usually drop the subscript unless needed. Let us denote by ¢(r), (resp. q1(r), g2(r)) the verifier’s
query to P (resp., P;, P») on random string r € €2, where {2 denotes the space of verifier’s coins.
We note that the following properties hold for the 3-prover proof system given by Corollary A.4.

26

1. The acceptance-predicate decomposes: V(r,a,a1,a2) = Vi(r,a,a1) A Va(r,a,as), where V;
and Vs are predicates.

2. Sampleability: The verifier only tosses O(logn) coins (i.e., @ = {0,1}90°8™)) Thus, it is
feasible to sample from various specified subsets of the space of all possible coin outcomes.
For example, given S; C ()1, we can uniformly generate in poly(n)-time a sequence of coins
r such that ¢;(r) € Sj.

3. Uniformity: The verifier’s queries to prover P (resp. P, P) are uniformly distributed over

Q (resp. Ql, Qz)

4. If x is a NO-instance, then for V' =V, for small € and every possible P strategy, there exists
a subset @ = Q» C @ such that for every P;, P, the following two conditions holds

Prlg(r) € Q" AVA(r, £(Q(r)), PL(Q1(r)))] <

r

Prg(r) & Q" AVa(r, £(Q(r)), Pa(Q2(r)))] <

(4)
()

NN o

4.2.2 The 3-prover MIP: Stage I

We start by modifying the verifier of Corollary A.4 so that its questions to provers P, and P, are
“independent” (given the question to the prover P). That is, we define a new verifier, denoted W,
that behaves as follows

On input z, let V"=V, be the verifier’s predicate and let V; and V5 be as given in Property (1).

Pick ¢ € @ uniformly and pick coins r; and ro uniformly and independently from the set
{r € Q|q¢(r) = q}. [Here we use sampleability with respect to a specific set of 7’s.]

Make queries ¢ (which indeed equals ¢(r1) = q(r2)), ¢1 = q1(r1) and g2 = g2(r2), to P, P,
and Py, receiving answers a = P(q), a1 = P1(¢q1) and as = P(q2).

Accept if and only if Vi(ry,a,a1) A Va(re, a, as).
Proposition 4.8 W has perfect completeness and soundness at most €.

Proof: The completeness is obvious, and so we focus on the soundness. Fix a NO-instance x and
any set of provers P, P; and P». Let Q' = Q'p be the subset of @ as given by Property (4) of the
MIP. The probability that W accepts is given by

Pr [EVi(r1) A EVa(rs)] (6)

q,T1,72

where EVi(r;) = Vi(r1, P(q), P1(q1(r1))) and EVa(ry) = Va(re, P(q), P2(g2(r2))). Note that ¢ =
q(r1) = q(re), where (¢ and) r1, 79 are selected as above. Thus, EV; only depends on 7;, and the
shorthand above is legitimate. Note that the process of selecting r; and ry in (6) is equivalent to
selecting each of them uniformly (though not independently). We thus upper bound (6) by

Prlq(r1) € Q" ANEVi(r1)] + EZT[Q(M) ¢ Q' N EVy(ry)).

T1

Using Property (4), each term above is bounded by €/2 and thus the sum above is upper-bounded
by e. |

27

4.2.3 The 3-prover MIP: Stage I1

In the next stage, the crucial one in our construction, we reduce the size of the provers P; and P,
by a random truncation. For sets S; C @1 and Sy C @9, we define the (Sp, So)-restricted verifier
Wy, s, as follows:

e Oninput z, let V =V, be the verifier’s predicate and let V; and V5 be as given in Property (1).

e Pick ¢ € @ uniformly and for i € {1,2} pick coins r;’s uniformly and independently from the
sets {reQlq(r)=qgAqi(r)€S;}. If either of the sets is empty, then the verifier simply accepts.
[Here, again, we use sampleability of subsets of the verifier coins.]

e Make queries ¢ = q(r1) = q(r2), 1 = q1(r1) and g2 = gq2(r2), to P, P; and P, receiving
answers a = P(q), a1 = Pi(q1) and ay = P»(q2).

e Accept if and only if Vi(ry,a,a1) A Va(re, a,az).

As usual it is clear that the verifier Wg, g, has perfect completeness (for every S; and Sy). We
bound the soundness of this verifier, for most choices of sufficiently large sets S and Ss:

Lemma 4.9 For randomly chosen sets S1, Sy of size O(|Q| max{log |A|,log |Q|}), with probability
at least 4/5, the soundness error of the verifier Ws, g, is at most Ge.

Proof: We start with some notation: Recall that Q denotes the space of random strings of the
verifier V' (of Section 4.2.1). For ¢ € {1,2} and a fixed set S;, let X; denote the distribution on
Q2 induced by picking a random string r € € uniformly, conditioned on ¢;(r) € S; (i.e., uniform in
{reQ|qi(r)€S;}). Similarly, let Y; denote the distribution on € induced by picking a query ¢ € @
uniformly and then picking r; uniformly at random from the set {r € Q|q(r)=¢A¢(r)€S;}. We use
the notation r;«—D to denote that r; is picked according to distribution D. Note that the verifier
Ws, s, picks r1<Y7 and ro«<Y> (depending on the same random ¢ € (). In our analysis, we will
show that, for a random S;, the distributions X; and Y; are statistically close, where as usual the
statistical difference between X; and Y; is defined as maxycq {Pr,,—x;[r; € T] — Pry,—y;[r; € T]}.
We will then show that the verifier has low soundness error if it works with the distributions X; and
Xy. This informal description is made rigorous below by considering the following “bad” events
(over the probability space defined by the random choices of S; and Ss):

BE1: The statistical difference between X; and Y7 is more than e.
BE2: The statistical difference between X9 and Y5 is more than e.

BE3: There exist P and P; such that for Q' = Q> (as in Property (4) of Section 4.2.1)

Pr [(q(r1) € Q) AVi(r1, P(q(r1)), Pr(qi(r1)))] > 2e.

r1—X1
BE4: There exist P and P, such that for Q' = Q> (as in Property (4) of Section 4.2.1)

Pr [(q(rz) & Q") A Va(ra, P(q(r2)), Palq2(r2)))] > 2e.

ro—Xo

28

Below we will bound the probability of these bad events, when Sy, Sy are chosen at random. But
first we show that if none of the bad events occur, then the verifier Wg, g, has small soundness
error. Let (ry,ry)«Wg, g, denote a random choice of the pair (ry,ry) as chosen by the verifier
Ws, s,. Fix proofs P, P, P, and let Q' be as in Property (4). Then,

Priy myews, s, Vi(r, Pla(r), Pi(qi(r1))) A Va(re, P(a(r2)), Pa(gz(r2)))]

< Pryey [(g(r1) € Q) AVi(ry, P(q(r1)), Pi(qi(r1)))]

+Pr,ey, [(g (7'2) Z Q") A Va(rz, P(q(r2)), P2(g2(r2)))]
Py, x, [(q(r1) € Q") AVi(r1, P(q(r1)), Pi(qi(r1)))] + €

+Pryex, [(g(r2) € Q) AVa(ra, P(q(r2)), P2(g2(r2)))] + ¢ [-BE1 and ~BE2]
S (13 [—IBE3 and —IBE4]

IN

Claim 4.9.1 The probability of event BE1 (resp., BE2) is at most 1/20.

Proof: To estimate the statistical difference between X; and Y;, note that sampling r; according to
X is equivalent to the following process: select r;«—X; (i.e., 7 is selected uniformly in {r|g;(r) € S;}),
set ¢ = ¢(r;), and pick r; uniformly from the set {r|(q(r)=¢q) A (¢;i(r) € S;)}. Thus, the statistical
difference between X; and Y; equals %'quQ |Pr, —x,[q(r:) = ¢q] — Prr,v,[q(r;) = ¢]|, which in turn
equals 1 - 20cQ ‘Prw_xi [q(ri) = q] — ﬁ‘ To bound this sum, we bound the contribution of each
of its terms (for a random S;). Fixing an arbitrary ¢ € @), we consider the random variable

_ Hrle(r)=q) A (gi(r) € Si)}|
A == e s
1

(as a function of the random choice of S;). The expectation of this quantity is o A simple

application of Chernoff bounds shows that, with probability at least exp(—e|S;|/|Q]), this random
variable is in (1 £ e)‘Q‘ Thus, for |S;| = ¢- |Q|10g |Q| (where ¢ = O(1/¢€)), the probability that

Pr,x,[q(r) = ¢] is not in [(1 £ e)|Q|] is at most 20|Q| By the union bound, the probability that

such a ¢ exists is at most 210, and if no such ¢ exists then the statistical difference is bounded by at

most €. [|
Claim 4.9.2 The probability of event BES (resp., BE/) is at most 1/20.

Proof: We will bound the probability of the event BE3. The analysis for BE4 is identical. Both
proofs are similar to the proof of Lemma 4.3.
Fix P and let Q' be the set as given by Propery (4) of Section 4.2.1. We will show that

Pri3pb st Pr [(g(r) € Q) AVA(ry, Pe(r)), Prlar(r))] > 2¢| < %lAI_‘Q‘ (7)

r1—X1

The claim will follow by a union bound over the |A||2! possible choices of P. For each fixed P (and

thus fixed Q’), note that there is an optimal prover P, = P} that maximizes the quantity g, def

Pry g1 (m=q [(a(r) € Q") AV1(r, P(q(r)), P1(q1))] for every q1 € Q1. Furthermore, by Proposition 4.8,
it holds that Eg c, (€5] = €. Applying Chernoff bounds, we get that the probability that when
we pick |S;| elements from @ uniformly and independently, their average is more than twice the
expectation is at most exp(—|S1|). Thus if |S;| > ¢-|Q|log|A| for some large enough constant c,

then this probability is at most %|A|*|Q| as claimed in Equation (7). The claim follows. [|
Lemma 4.9 follows now since we have that some bad event (i.e., one of the four BEi’s) occurs
with probability at most 4/20, and otherwise the soundness error is indeed as claimed. [|

29

4.2.4 The 3-prover MIP: Stage I11

Having reduced the sizes of the three prover oracles, it is straightforward to reduce the amount of
randomness used by the three provers. Below we describe a reduced randomness verifier Wg, g, 1
where S; C Q; and T C {(r1,7r2)|(q(r1) = q(r1)) A (qi(r;) € S;, Vi € {1,2})}.

e Oninput z, let V =V, be the verifier’s predicate and let V; and V5 be as given in Property (1).
e Pick (ry,72) € T uniformly at random. [This uses the sampleability property.]

e Compute ¢ = g(r1) = ¢q(r9), and make queries ¢, g1 = ¢1(r1) and ¢a = ¢2(r2), to P, P; and
Py, receiving answers a = P(q), a; = Pi(q1) and ay = P»(g2).

e Accept if and only if Vi(ry,a,a1) A Va(re, a,az).

It is obvious that the verifier uses log, |7| random bits. It is also easy to see (as in the second part
of the proof of Lemma 4.3) that if T' is chosen randomly of sufficiently large size then its soundness
remains low. We skip this proof, stating the resulting lemma.

Lemma 4.10 Let s < O(|Q|max{log|A4|,log|Q|}) and t < O(|Q|log|A| + |Si|log|A1| +

|So| log |Az|). Suppose that Sy and Sy are uniformly selected s-subsets of Q1 and Qq, and that
T is a uniformly selected t-subset of {(r1,7r2)|(q(r1) = q(r1)) A (qi(ri) € Si,Vi € {1,2})}. Then,
with probability at least %, the verifier Ws, s, 7 has soundness error at most Te.

Using Lemma 4.10, we now prove Lemma 4.5.

Proof [of Lemma 4.5]: Fix ¢ = ¢/7. Let V be the 3-prover verifier for SAT as obtained from
Corollary A.4. In particular, V has perfect completeness and soundness €. The size of the smallest
prover is £/(n) = m(n)P0n) . pl+O1/m(n) the answer length is bounded by m(n)?®) . n@1/m(n),
and V satisfies the properties listed in Section 4.2.1. For sets 51,52, T, let Wg, g, 7 be the verifier
obtained by modifying V as described in the current section. Consider the promise problem II
whose instances are tuples (¢, S, So,T) where an instance is a YES-instance if Wg, g, 7 accepts ¢
with probability one, and the instance is a NO-instance if Wg, g, 7 accepts with probability at most
€. We note that an instance of II of size NV has a 3-prover proof system using at most log, /N random
coins, perfect completeness and soundness error 7¢’ = ¢ (since Wy, g, 7 is such a verifier). Now,
consider the reduction that maps an instance ¢ of SAT of length n to the instance (¢, Sy, S2,T),
where S;, Sy are random subsets of queries of V' of size O(¢'(n) - n®1/™M)) and T is a random
subset, of size O(¢'(n) - nO/mm)y . pOA/™m) = f(n) of the random strings used by the verifier
Ws,.s,- This reduction always maps satisfiable instances of SAT to YES-instances of II and, by
Lemma 4.10, with probability at least %, it maps unsatisfiable instances of SAT to NO-instances of

II. [|

4.3 Nearly linear PCPs

Applying state-of-the-art composition lemmas to the MIP constructed in the previous subsection
gives our final results quite easily. In particular, we use the following lemmas.

Lemma 4.11 (cf. [4] or [8, 22]) For every p1 > 0 and p < oo, there exists > 0 and constants
c1,co,c3 such that for every r,a : 2T — ZT,

MIPy . [p,r,a] € MIPy ,, [p 4 3,7 + c1 log a, ca(log a)?].

30

We apply the lemma above repeatedly till the answer lengths become poly logloglogn. Then to
terminate the recursion, we use the following result of [19].

Lemma 4.12 (Lem. 2.6 in [19]) For every € > 0 and p < oo, there exists a v > 0 such that for
every r,a : Zt — Z7T,
MIPy ,[p,r,a] € PCP, ;+E[r +0(2P%),p+17].
’2

Combining the above lemmas with the nearly-linear 3-IP obtained in the previous subsection, we
obtain:

Theorem 4.13 (Our main PCP result):

1. For every € > 0, SAT reduces probabilistically, under n'TO0/10818m) 1o gth preserving reduc-

tions to a promise problem Il € PCP, 1_ [(1+ O(1/loglogn)) - logn, 16].
2

2. For every e > 0, SAT reduces probabilistically, under nl"'o(\/lognloglog")—length preserving
reductions to a promise problem Il € PCP, 1 [(1 + O(loglogn/+/logn)) - logn, 19].
2

Part 2 implies Theorem 2.5.

Proof: The first part is obtained by starting with Corollary 4.6, and applying Lemma 4.11 twice
to get a 9-prover MIP system with answer lengths poly(logloglogn). Applying Lemma 4.12 to
this 9-prover proof system, gives the desired 16-bit PCP. For the second part, we start with Corol-
lary 4.7 and apply Lemma 4.11 thrice, obtaining a 12-prover MIP system with answer lengths
poly(logloglogn). Applying Lemma 4.12 gives the 19-bit PCP. [|

5 Nearly-linear-sized codes from PCPs

Here we augment the results of Section 3 by constructing nearly-linear-sized locally-testable codes.
We do so by starting with the randomly truncation of the FS/RS-code from Section 3.2, and apply-
ing PCP techniques to reduce the alphabet size (rather than following the paradigm of concatenated
codes as done in the rest of Section 3). Specifically, in addition to encoding individual alphabet
symbols via codewords of smaller alphabet, we also augment the new codewords with small PCPs
that allow to emulate the local-tests of the original code. Using an off-the-shelve PCP (e.g., the
one of [2]) this yields a weak locally testable code (i.e., one satisfying Definition 2.1); for details
see Section 5.1. As we explain in Section 5.2, using an off-the-shelve PCP fails to provide a locally
testable code (i.e., one satisfying Definition 2.2), and some modifications are required in order to
redeem this state of affairs (as well as in order to obtain a linear code). Most of the current section
will be devoted to implementing these modifications. Still, the easy derivation of the weak result
(in Section 5.1) serves as a good warm-up.

5.1 Easy derivation of a weak result

Starting with the code C® : ©%¥ — " presented in Section 3.2, we augment the code with small
PCPs each asserting that a specific pair of polynomials that are provided for a pair of intersecting
lines do assign the same value to the point of intersection. The number of such pairs of lines is
|R,| - |F| = O(JF|™*1), and each line is assigned a symbol in ¥ = F¢F!, The size of each proof is
polynomial in the length of the assertion (i.e., is polynomial in log, |X|).

31

Recall that we are not willing to read the entire two inputs, but must rather perform a constant
number of binary queries. Still, all standard PCP constructs (e.g., [13, 2]) can be extended to yield
similar results when one is charge for orcale access to the input, which in turn is presented in a
suitable error-correcting form. Actually, this property is stated explicitly in [5],'* and is always
referred to when using the PCP as an “inner-verifier” (in the setting of PCP composition). Indeed,
we are using the PCPs here as an inner-verifier (but compose it with a codeword-tester rather than
with an outer-verifier). Thus, we should actually replace each symbol in the Cf-codeword with
its encoding under the suitable code C’ (which encodes m-bit strings by poly(m)-bit C'-codeword).
Finally, we should apply a suitable number of repetitions to the new m-sequence such that its
length dominates the length of the added PCPs. For a suitable number of repetitions ¢, the
resulting code maps (z1,...,2) € ¥ to ((C"(y1),,C' (yn))?, 71, ..., m), where 7; is a PCP that
refers to the i-th pair of intersecting lines and r = |R,,| - |F'| is the number of such pairs. We set
t=w((Xi|ml)/ (X1 |C (vi)])), which is greater than |F| because r > n and each m; is longer
than each C'(y;). The tester for the resulting code emulates the testing of C* by inspecting the PCP
that refers to the selected line. That is, when testing (w1, ..., Wi, Wint1, o Wentr, We select a pair
of intersecting lines (¢1,¢3) (as done by the tester of C*), and invoke the PCP-verifier providing it
with orcale access to the input-orcales wy, and wy, and proof-oracle m, 4,). In addition, we check
that wjs1s = wy, for uniformly selected ¢ € [n] and j € [t — 1].

By our choice of ¢, the distance of the new code is determined by the distance of C®. Indeed,
we should not pick ¢ to be too large since this will hurt the rate; for example, ¢ = (logn) -
(i mil)/(32iey |€'(yi)|) will do. Thus, the block-length of the new code is

n' & (2logn) -7+ |m| = O(| R - |F| - poly(log, |S]) = O(n- |F| - poly(d))..
Using d = m™, we get k' = k- log, |S| & m™ ~2m+m and n/ = O(nd9WM)) < mm*+om)+0(m) ' which
yields n' = exp(y/log ') - k'

In analysing the above codeword test, we observe that if a sequence is e-far from the new code
then € = e — o(1) of the distance must be due to the first ¢ blocks (of length n each) of the n'-bit
long sequence. Thus, for constant € > o(1), we can make assertions about this ¢n-bit long prefix of
the sequence. We observe that either the first ¢ blocks (of length n) are €' /2-far from being identical
(to the first block) or the average distance of the first block from C is at least ¢//2. Noting that
the first case is detected with probability Q(e) by the auxiliary (“repetition”) test, we focus on the
second case and consider what happens when invoking the PCP verifier. Indeed, standard PCP
verifier will reject oracles that are far from the set of valid statements (in this case far from all
codewords). Thus (substituting parameters), we obtain:

Theorem 5.1 (weak version of Theorem 2.3): For every ¢ > 0.5 and infinitely many k’s, there
exist weak locally testable codes with binary alphabet such that n = exp((logk)¢) - k = kite),
Furthermore, these codes have distance 2(n).

In contrast to Theorem 2.3, the codes asserted in Theorem 5.1 only have weak codeword tests (i.e.,
tests satisfying Definition 2.1). Furthermore, these codes are not necessarily linear.
5.2 Problems with an easy derivation of the strong result

Before turning to the actual constructions, we explain why merely plugging-in a standard (inner-
verifier) PCP will not work. We start with the most severe problem, and then turn to additional
ones.

'In fact, the presentation of Babai et al [5] is in these terms.

32

Non-uniqueness of the encoding: As discussed in the Introduction, the soundness property
of standard PCPs does not guarantee unique encodings of witnesses, but rather that PCP oracles
accepted with high probability can be decoded into some witnesses. Indeed, current PCPs tend to
do exactly this, due to a gap between the canonical oracles (used in the completeness condition) that
encodes information as polynomials of some given individual degree, and the soundness condition
that refers to the total degree of the polynomial.'® This problem was avoided in Section 5.1 by
discarding non-codewords that are close to the code and making the PCPs themselves a small part
of the codeword. Thus, non-uniqueness of decoding of PCPs by itself could not make the sequence
too far from the code, and so nothing is required if we use the weak definition of testing. However,
when we seek to achieve the stronger definition, this problem becomes relevant (and cannot be
avoided).

Linearity: We wish the resulting code to be linear, and it is not clear whether this property holds
when composing a linear code with a standard inner-verifier. Since we start with an F-linear code
(and an F-linear codeword test), there is hope that the proof oracle added to the concatenated
code will also be linear. Indeed, with small modifications of standard constructions, this is the case.

Other technical problems: Other problems arise in translating some of the standard
“complexity-theoretic tricks” that are used in all PCP constructions. For example, PCP con-
structions are typically described in terms of a dense collection of input lengths (e.g., the input
length must fit |H|™ for some suitable sizes of |H| and m (i.e., m = ©(|H|/log|H]|)), and are
extended to arbitrary lengths by padding (of the input). In our context, such padding, depending
on how it is done, either permits multiple encodings (of the same information), or forces us to
check for additional conditions on the input (e.g., that certain bits of the input are zeroes). Other
complications arise when one attempts to deal with “auxiliary variables” that are introduced in
a process analogous to the standard reduction of verification of an arbitrary computation to the
satisfiability of a 3CNF expression.

This forces us to rework the entire PCP theory, while focusing on unique encodings and on
obtaining “linear PCP oracles” when asked to verify homogenous linear conditions on the input. For
the purposes of constructing short locally testable codes, it suffices to construct verifiers verifying
systems of homogenous linear equations and this is all we’ll do (though we could verify affine
equations equally easily). In what follows, whenever we refer to a linear system, it will be implied
that the constraints are homogenous.

5.3 Inner verifiers for linear systems: Definition and composition

We use PCP techniques to transform linear locally testable codes over large alphabet into ones over
smaller alphabet. Specifically, we adapt the construction of inner-verifiers such that using it to test
linear conditions on the input-oracles will result in testing linear conditions on the proof oracle.
The basic ingredient of our proofs is the notion of an inner verifier for linear codes. A (p,?) —
(p', ") inner verifier is designed to transform an F-linear code over an alphabet ¥ = F* that is
testable by p queries, into an F-linear code (of a typically longer size) over an alphabet X' = F*

15In basic constructions of codes, this is not a real problem since we can define the code to be the collection of all
polynomials of a given total degree as opposed to polynomials of specified individual degree bound. However, when
using such a code as the inner code in composition, we cannot adopt the latter solution because we only know how
to construct adequate inner-verifiers for inputs encoded as polynomials of individually-bouded degree (rather than
bounded total degree).

33

that is testable by p' queries, where typically ¢/ < ¢ (but p’ > p). Informally, the inner-verifier
allows to emulate a local test in the given code over X, by providing an encoding (over ¥') of each
symbol in the original codeword as well as auxiliary proofs (of homogenous linear conditions) that
can be verified based on a constant number of queries.

Verifying that a vector satisfies a conjunction of (homogenous) linear conditions is equivalent to
verifying that it lies in some linear subspace (i.e., the space of vectors that satisfy these conditions).
For integer m and field F', we let Lf ,,, denote the set of all linear subspaces of F*. We’ll assume that
such a subspace L € L, is specified by a matrix M € F™™ such that L = {x € F™|Maz = (}.
According to convenience, we will sometimes say that a vector lies in L and sometimes say that it
satisfies the conditions L.

Definition 5.2 For a field F, and positive integers p,L,p',l', and positive reals 6 and v, a
(F, (p,£) — (p', 1), 6,~)-linear inner verifier consists of a triple (E, P, Verdict) such that

e B:F'— (FZ’)” is an F-linear code of minimum distance at least 6n over the alphabet F* .

o P: Lpy x (FY? — (FY)N, is a proving function that satisfies the completeness condition
below.

e Verdict s an oracle machine that gets as input L € Lpye and (coins) R € {0,1}" and has
oracle access to p+1 vectors, denoted X1,...,X, € (FZ’)” and X,4q € (FZ’)N, such that each
oracle call is answered by one F -coordinate of the corresponding oracle vector.'® Machine
Verdict satisfies the following properties:

Queries and Linearity: For every choice of L € L pe and R € {0,1}", machine Verdict makes
at most p' oracle calls to the oracles X1, ..., X,11. Furthermore, for every R and L, the
acceptance condition of Verdict is a conjunction of F-linear constraints on the responses
to the queries.

Completeness: If the p first oracles encode a p-tuple of vectors over F* that satisfies L and if
Xpy1 18 selected adequately then Verdict always accepts.
That is, for every x1,...,x2, € F* and L € Ly such that (x1,...,2,) € L, and for
every R € {0,1}", it holds that Verdict(L, R, E(z1),. .., E(zp), P(L,z1,...,2p)) = 1.

Augmented Soundness: If the p first oracles are far from encoding a p-tuple of vectors over
F* that satisfies L then Verdict rejects for most choices of R, no matter which Xpy1 18
used. Furthermore, if the p first oracles encode a p-tuple that satisfies L but X, 1 is far
from the unique proof determined by P then Verdict rejects for most choices of R.
Formally, for X1,...,X, € (F*)", X,11 € (FY)N, L € Lppe, and (z1,...,xp) € L, let
e(X1,..., Xpt1, L, x1, ..., xp) denote the mazimum distance of X; from the corresponding
adequate encoding (i.e., E(x;) if t <p and P(L,xy,...,xp) otherwise). That is,

{A(Xi,E(xi))}} _ A(XPH,P(L,xl,...,xp))}
n ’ N

X1, ..., Xpr1, Loy, ..o xp) = max{riréaﬁ

Then, for every X1,...,X, € (F*)" and 11 € (F*)N,

(1:1 7---7wP)€L

%r[Verdict(L,R,Xl,...,Xp,H) = 0] 27-min{6/2, min {e(Xl,...,Xp+1,L,x1,...,a;p)}}

-th

That is, query j € [n] (resp., j € [N]) to oracle i € [p] (resp., i = p + 1) is answered by the j*" element of X;.

34

Such a verifier is said to use r coins, encodings of length n and proofs of length N.

Typically, we aim at having N,n and 2" be small functions of ¢ (i.e., polynomial or even almost-
linear in £). Definition 5.2 is designed to suit our applications. Firstly, the augmented notion of
soundness that refers also to “non-canonical” proofs of valid statements fits our aim of obtaining a
code that is locally checkable (because it guarantees rejection of sequences that are not obtained by
the unique coding transformation). Indeed, this augmentation of soundness is non-standard (and
arguablly unnatural) in the context of PCP. Secondly, Definition 5.2 only handles the verification
of linear conditions, and does so while only utilizing linear tests. Indeed, this fits our aim of
transforming linear codes over large alphabet (i.e., the alphabet F) to linear codes over smaller
alphabet (i.e., Ft).

The utility of linear inner verifiers in constructing locally-testable codes is demonstrated by the
following two propositions, which follow immediately from Definition 5.2. The first proposition
merely serves as a warm-up towards the second one.

Proposition 5.3 A (F,(1,£) — (p',0'),6,v)-linear inner verifier implies the existence of a linear
locally-testable code of relatoive distance at most §/2 over the alphabet ¥ = FY mapping Ft = xt/*
to X for m = O(p' - (n+ N)), where n and N are the corresponding lengths of the encoding and
the proof used by the wverifier. Specifically, the code is testable with p' queries, with the rejection
probability of a word at distance € from any codeword being at least (7 - €).

Proof: Let V = (E, P, Verdict) be the (F,(1,{) — (p/,¢'),6,7)-linear inner verifier, where E :
Ft — (FY)" and P : Lpy x F* — FN. Below we assume that n < N (which is typically the
case).!” The locally testable encoding E' of a string 2 € X¢/* = F* equals the ([N/n] + 1)-long
sequence (E(z),...,E(z), P(L,z)), where L = F* (i.e., L is satisfied by every vector) and E(z) is
replicated [N/n| times. The relative distance of the code given by this encoding is at least 6/2.
To test a potential codeword (X7, ... ,X(N/n],Y), we perform at random one out of two kinds of
tests: With probability % we test that the N/n strings X;’s are replications. We do so by picking
a random index ¢ € [n], and two distinct indices ji,j2 € [IN/n], and testing that (X,); = (X},)i-
With the remaining probability we pick a random test as per the verifier V', replacing calls to the
first oracle with corresponding probes to one of the first N/n oracles (i.e., one of the X;’s), selected
at random. (Oracle calls to the proof oracle of V' are replaced by corresponding probes to Y.) It
can be verified that words at distance e from codewords are rejected with probability Q(ve). W

The following proposition will be used to compose locally testable codes over large alphabets
with suitable linear inner verifiers to obtain locally testable codes over smaller alphabets. Specifi-
cally, given a g-query testable F-linear code over the alphabet ¥ = F? we wish to use an adequate
encoding (over ¥’ = F%) and an inner-verifier in order to emulate the local conditions checked by
the test. The latter conditions are subspaces of F4°, and so we need a (F, (q,b) — (p,a), 6,)-linear
inner verifier in order to verify them.

Proposition 5.4 (composing an outer code with an inner-verifier):

o Let C be a locally testable F-linear code over the alphabet ¥ = F® mapping X to 2V, and
suppose that the codeword test uses R coins and q queries.

o Let V = (E,P,Verdict) be a (F,(q,b) — (p,a),é,7)-linear inner verifier, where E : F® —
(F9)™ and P : L gp X (F?)1 — (F)™.

7Otherwise, one can augment P(L,z) with E(x) and maintain the soundness by testing consistency between the
two copies of E(z) (as done below).

35

Then, there exists a locally testable code over the alphabet X' = F® mapping ¥5 = o K/a gy M
for M = O(Nn +2%m). Furthermore, the resulting code has distance at least én.D, where D is the
distance of C'.

Proof: The new code consists of two parts (which are properly balanaced). The first part is
obtained by encoding each 3-symbol of the codeword of C' by the code E, whereas the second part
is obtained by providing proofs (for the inner-verifier) for the validity of each of the 2 possible
checks that may be performed by the codeword test. Specifically, z € 2¥ is encoded by the
sequence

(E(y1)7 v 7E(yN);P(LOR7yiOR,17' .. 7yi0R,q)7' .. 7P(L1R7yi1R,17 v 7yi13,q)>

where 41 ---yy = C(x), and for every w € {0,1}, on coins w, the codeword test (for C) probes
locations 4y, 1, ..., 4w ¢ and verifies the linear condition L. Indeed, as in the proof of Proposition 5.4,
the above should be modified such that the two parts of the new codeword (i.e., the E-part and
the P-part) have about the same length.!8

Testing the new code is done by emulating the codeword test of C. That is, to test a potential
codeword (Xi, ..., Xn; Yyr, ..., Yir), we select uniformly w € {0,1}#, determine the corresponding
condition (iw,l, ooy g L,,) checked by the original codeword test, and invoke the inner-verifier V'
on input L, while providing V' with (coins and) oracle access to X;, , ..., X;, , and Y. [|

Whereas Proposition 5.4 refers to the composition of an outer code with an inner-verifier yielding
a new code, the following lemma refers to composing two inner-verifiers yielding a new inner-verifier.
Indeed, we could have worked only with Proposition 5.4 (or alternatively only with Lemma 5.5 and
Proposition 5.3), but it seems more convenient to (have and) work with both.!?

i“’aq

Lemma 5.5 (composition of linear inner-verifiers): Let v,v2 < 1. Given a (F,(p,{) —
(', 0'),61,7)-linear inner verifier and a (F,(p',0") — (p",0"),62,72)-linear inner verifier, it is
possible to construct a (F,(p,£) — (p", "), 6169, 717202/6)-linear inner verifier. Furthermore, if the
it given verifier uses r; coins, encoding length n; and proof length N;, then the resulting inner
verifier uses r1 + ro coins, encoding length ny - ny and proof length Ni - no + 2™ - Nj.

Proof: We start with the construction. Given a (F, (p,£) — (p',¢"),r1,061,71) inner verifier V; =
(E1, Py, Verdicty) and a (F, (p', ') — (p",0"),r9,82,72) inner verifier V, = (Ey, Py, Verdicty), we
define their composition Vi ® Vo = (E, P, Verdict) as follows

o E: Ft — (FU)"™ i5 the concatenation of the encoding functions E; : Ft — (F)™ and

’ 1\ o, . def
E,: F* — (FZ)*2. That is, E(z1,...,2¢) = (E2(y1),..., E2(yn,)), where (y1,...,9yn,) =

Ey(21,...,mp).

o P = (PW, P?) is obtained as follows: Given L,z ... ,&p, the first part of the proof (i.e.,
PO(L, x4, ... ,Tp)) is the symbol-by-symbol encoding under Ey of Pi(L,x1,...,xp). That
. def
18, P(l)(LrIl; s 7*1;11) = (EZ(yl)7 v 7E2(yN1))7 where (y17 tee 7yN1) = Pl(LrIl; s 7*1;11)' The

second part of the proof (i.e., P®)(L,z1,... , Tp)) consists of 2" blocks corresponding to each
of the 2"t possible checks of Verdict;. For each R; € {0,1}", the block corresponding to R; in
PO(L, xy,... ,Tp) is the value Po(Lg,, 21, ..., 2y), where z1, ..., zy denote the p’ coordinates

8 As before, the modification is via replication, and the new codeword test should check that the replication is
proper.
19 An analogous comment may apply to the design of PCP system.

36

of Ey(x1),...,Ep(zp) and Pi(L,x1,...,z,) that are inspected by Verdict; (L, Ry,...) and Lp,
is the linear conjunction of F-linear conditions checked by Verdict;.

Note that the proof length is Ny -ng+2"1- Ny, where the first (resp., second) term corresponds
to P1) (resp., (P®).

e Verdict(L, (Ri, Ry), X1,...,Xp,1I) is computed as follows: Let gy,...,qy be the queries that
the function Verdicti(L, Ry, ...) makes into its oracles X7i,..., X ,TI' on randomness Ry,
and let L' denote the conjunction of linear equations it needs to verify on its responses.
Then Verdict now applies the function Verdicto(L', Ro,...) on input L’ to the sub-oracles
corresponding the Es-encodings of the p’ queries determined by Verdict;. That is, if the
jth query (ie., g;) of Verdict; is to X then Verdict identifies the jth oracle of Verdict,
(to be denoted X7) with block g; of X; (which supposedly encodes the corresponding sym-
bol of X/). Otherwise (i.e., the jth query of Verdict; is to II'), Verdict identifies the jth
oracle of Verdicty (i.e., X7) with block g; of the first part of I = (I, I®)) (which sup-
posedly encodes the corresponding symbol of II'). Finally, Verdict identifies the proving
oracle of Verdicty (to be denoted II”) with the block of II?) that corresponds to Ry, invokes
Verdicty (L', Ry, X1, ..., X7, I1"), and Verdict accepts if and only Verdicty accepts.

We now argue that the composition satisfies the required properties. The main issue is the (aug-
mented) soundness requirement. Suppose that Xi,...,X, and X,1; = (H(l),H(Z)) are p + 1
oracles that are rejected by Vi ® Vo(L,-,...) with probability (v17202/6) - €, where ¢ < 6165.
We need to show that there exist vectors (z1,...,2,) € L such that A(E(x;),X;) < enyny and
A(P(L,a1,. .., 3p), Xps1) < €N, where N % Ny - ny 4271+ Ny,

Let D denote a unique decoding function for the inner encoding function Fy (i.e., Do(X) =z
if A(Ey(x),X) < (62/2) - ng and arbitrary otherwise). Applying this function to each of the n;
blocks of X; € (F*")*2™ for i € [p], we obtain corresponding ¥; € (F*)™. Similarly, applying this
function to each of the Ny blocks of (1) € (F¥")"2'N1 e obtain Y, € (F¥)M.

For each R, let use denote by ps(R;) the probability that on coins (Ry,) verifier V' rejects the
above oracles, where the probability is taken over V5’s actions. Suppuse that pa(R1) < 7202/2, and
consider the p’ input oracles and the proof oracle (i.e., part of II?)) determined by R;. Then, by
the (basic) soundness of Va, these p’ sub-oracles (which are blocks in X1, ..., X, IIMM) are at relative
distance at most pa(R;)/v2 from the Ey-encoding of the corresponding blocks in Yi,..., Yy, Ypi1.
Furthermore, by the augmented soundness (of V3), the corresponding part of I3, denoted ZR,, is
at relative distance at most ps(R;)/7v2 from the value obtained by applying P, to these p’ blocks
(of the Y;’s).

Next, let p1 % Prg, [pa(R1) > 7262/2] Since Eg, [p2(R1)] = (717202/6)e, it follows that p; <
v1€/3. Now, since € < 6162, the Y;’s are p;/yi-close to a valid encoding of a p-tuple, denoted
(21,...,xp), and a corresponding P;-proof (i.e., P(L,x1,...,2p)). We conclude that the Y;’s are at
relative distance at most pi/v1 from the corresponding F1(x;)’s (resp., Pi(L, 1, ...,xp)). Defining
e2(Ry) def p2(R1)/v2 if p2(Ry) < v202/2 and €3(Ry) def g otherwise, recall that the Y;’s are at relative
distance at most Eg, [es(R1)] from the corresponding blocks of the X;’s (resp., II1). Recall that,
except for a p; fraction of the Ry’s, it holds that py(R1) < 7202/2, we obtain

A(E(z:), X) Ay(Er(7:),Y;) n Ay (Ey(Y3), Xi)
ning nlé’ niny

B g fea(R)))
Y1

IN

37

< =+ (Brlpa(Ri)/v)+p1) < €

w

using 71,72 < 1. The same holds with respect to the distance of II(!) from P(l)(L,:cl,...,a:p).
Finally, recall that for all but at most an p; fraction of the R;’s, the relative distance between Zpg,
(i.e., the corresponding block of H(z)) and the value obtained by applying P, to the relevant blocks of
the Yj’s is at most ep(Ry). It follows that the relative distance between II?) from P3)(L, z1, ..., zp)
is at most p; + Eg, [e2(R1)], which is bounded by € (as shown above). [|

5.4 Linear inner verifiers: Two constructions

Throughout the rest of this section, F» def GF(2). We start by presenting a linear inner verifier that
corresponds to the inner-most verifier of Arora et al. [2]. Things are simpler in our context, since
we only need to prove/verify linear conditions. Here these (linear) conditions refer to p elements of
FF, and are verified by a (random) linear test that depends on p + 1 bits (at random locations).

Lemma 5.6 There ezists ay > 0 such that for every pair of integers p, {, there exists a (F, (p,{) —
(p+1,1), %, v)-linear inner verifier. Furthermore, the length of the encoding is 2¢, the length of the
proof is 2P%, and the randomness in use equals 2pl.

Proof: The encoding F is just the Hadamard encoding; and the proving function P(L, 1, ..., xp) is
also Hadamard encoding, this time of the vector (z1,...,x,). To check whether Xi,..., X, € FQZZ
encodes a vector in the linear subspace L given by a matrix M € FP”PY the verdict function
uniformly selects ¢1,...,q, € FQZ and a random linear combination v of the constraints of L, (i.e.,
picks a random vector w € FF* and sets v = w - L), and verifies that (X1)gy @ - (Xp)g, =

(Xp+1)(q1,___7qp)@v. The now standard analysis implies the soundness of this verifier.

The main result in this subsection is an adaptation of the intermediate inner-verifier of Arora
et al. [2, Section 7]. Recall that the latter uses significantly shorter encoding and proofs (and less
randomness) than the simpler Hadamard-based verifier, but verification is based on (a constant
number of) non-boolean answers.

Lemma 5.7 There exists a v > 0 such that for every pair of integers p, £, there exists a (F, (p,{) —
(p + 3, poly(log p?)), %,’y)—linear inner verifier. Furthermore, the lengths of the encoding and the
proofs are poly(pl), and the randomness in use equals O(plog?).

Our construction is a modification of an inner verifier given by Arora et al. [2] (Proof of Theorem
2.1.9, Section 7.5). We thus start by providing an overview of their proof and discuss the main
issues that need to be addressed in adapting their to a proof of Lemma 5.7.

Overview of the proof of [2, Thm. 2.1.9]. We use the formalism of [19] to interpret the main
steps in the proof of [2]. (In particular, whenever we refer to a step as “standard”, such a step is
performed explicitly in [19].) As a first step in their proof, Arora et al. [2] reduce SAT to a GapPCS
problem (see Appendix for definition). Then, using a low-total-degree test, they give a 3-prover
1-round proof system for NP languages. Finally they observe that the proof system with slight
modifications also works as proofs of properties of concatenated strings. Since the gap problem
that is target of the reduction is critical, let us review the completeness and soundness condition of
the reduction. Recall that an instance of GapPCS cousists of a sequence of algebraic constraints on
the values of a function g : F™ — F. Each constraint is dependent on the value of ¢ at (roughly)

38

only polylogarithmically many inputs. The goal is to find a low-degree polynomial g that satisfies
all or most constraints. In greater detail, the reduction consists of a pair of algorithms A and B,
where A reduces instances of SAT to instances of GapPCS, and B takes as input an instance ¢ of
SAT and an assignment a satisfying ¢ and produces a polynomial g that satisfies all constraints of
A(¢). The properties of the reduction are as follows:

Completeness: If a is an assignment satisfying ¢ then g = B(¢, a) is a degree d bounded polynomial
g that satisfies all constraints of A(¢).

Soundness: If ¢ is not satisfiable, then no total degree d bounded polynomial g satisfies even an ¢
fraction of the constraints of A(¢).

Since the soundness condition only focusses on degree d polynomials (and not arbitrary functions),
constructing such a reduction turns out to be easier than constructing a full PCP. On the other
hand, by combining this with a low-degree test it is easy to extend the soundness to all functions.

One would hope to use the above reduction directly to get a locally testable code by setting ¢ to
be some formula enforcing the linear conditions L. But as noted earlier, several problems come up:
First, B is not a linear map, but this is fixed easily. The more serious issue is that the soundness
condition permits the existence of low-degree functions that satisfy all constraints that are not of
the form B(a) for any a. Indeed, in standard reductions the only functions of the form ¢ = B(a)
have a bound of d/m in the degree of each variable, but this is not something that the low-degree
test can test. Thus to apply the low-degree test and protocol of [2], we effectively augment the
reduction from SAT to GapPCS so as to get the following soundness condition.

Modified Soundness: If g is a degree d polynomial that is not of the form g = B(a) for some a
satisfying ¢, then g does not satisfy an € fraction of the constraints of A(¢).

To obtain the modified soundness condition, we need to delve further into the reduction of [2] and
the transformation B implied there. Say that their reduction produces a GapPCS instance on m
variate polynomials.

1. The m-variant polynomial ¢ = B(a) in their transformation has the form ¢(i, %) = ¢;(&), for
i € [k], where the g;’s are polynomials (of varying degrees) in m — 1 variables. Furthermore,
¢ is a polynomial of degree k — 1 in the first variable.

2. There exists a sequence of integers (mi)ie[k] such that the polynomial g; only depends on the
first m; < m — 1 variables.

3. For every i € [k] there exists a sequence of integers (d; ;) je[m—1) such that g;(¥) has a degree
bound of d; ; < d in its jth variable.

4. The polynomial g must evaluate to zero on some subset of the points (due to some padding
on input variables).

5. Finally, over some subset of the points g evaluates to either 0 or 1. (Note that this condition
is not trivial since we will not be working with F» but some extension field K of F5. In
fact over the extension field, these constraints are not even linear. However since K is an
extension of Fy, these conditions turn out to be Fh-linear.)

In what follows we will, in effect, be augmenting the reduction from SAT to GapPCS so as to
include all constraints of the above form. This will force the GapPCS problem to only have

39

satisfying assignments of the form ¢ = B(a) and thus salvage the reduction. (In actuality, we
will be considering satisfying assignments that are presented as a concatenation of several pieces
that are individually encoded and the constraints of the system we build will be verifying that
the “concatenation” of the various pieces is a satisfying assignment. Furthermore, we will only by
looking at systems of linear equations and not general satisfiability.)

The actual construction (i.e., proof of Lemma 5.7): Recall that we need to describe the
three ingredients in the inner verifier: the encoding function E : Fj — (FQZ’)”, the proving function
P:F} SN (FQZ')N , and the oracle machine Verdict. We start by developing the machinery for the
encoding function and the proving function. We do so by transforming the question of satisfaction
of a system of linear equations into a seqeunce of consistency relationships among polynomials and
using this sequence to describe the encoding and proving function. Fix a linear space L € Lp, pr
and vectors zy,...,x, such that (zy,...,2,) € L.

Transforming the linear system. Our first step is to convert L into a conjunction of width-3 linear
constraints (i.e., constraints that apply to at most 3 variables at a time). So we introduce
a vector of auxiliary variables x,4; on at most n = p?0? variables and transform L into a
linear space L' of width 3-constraints such that (x1,...,z,) € L if and only if there exists
@py1 such that (zy,...,2p11) € L. (Note that L' € L, poyy and |z;| = £ if i < p whereas
|zpt1| = n > L. We'll take care of this discrepency in the next step.)

Low-degree extensions and dealing with padding. The low-degree extension is standard, but we need
to deal with the padding it creates (and with the padding already done above). That is, we
have to augment the linear system to verify that the padded parts of the input are indeed
all-zero.

We pick a field K = {¢(1 = 0, = 1,...,(|g|}, that extends Fy, of sufficiently large size (to be
specified later), and a subset H = {(1,...,(n} of size h = [log n] and let m = [logn/ loglogn|
so that A™ > n. Next, we let a} = z;0"" " (i.e., we pad z; with enough zeroes so that its
length is exactly 2™). Now, we let L” be the F-linear constraints indicating that the padded
parts of x; are zero, and (z7,...,2,,) correspond to the padding of (z1,...,zp1) € L.

Finally, as usual, we view 2} as a function from H™ — {0,1} and let fi,..., fp41: K™ — K
be m-variate polynomials of degree h — 1 in each of the m variables that extend the functions
described by z7,...,2},,. (We note for future reference that the encoding E function for x;
will essentially be the function f;.)

Concatenating the p pieces (standard): Now let f : K™™' — K be the function given by f(¢;,--+) =
fi(--+)ifi e {1,...,p + 1} that is a polynomial of degree p in its first variable.

Low-degree extension of L” (standard): Note that L” imposes linear constraints of the form
aif(z1) + arf(z2) + azf(z3) for aq, a0, a3 € {0,1} and 21,292,253 € {C1,..., (o1} X H™ on f.
We extend L” as a function L : K3m+tD+3 K by letting L (a1, oz, a3, 21, 22, 23) = 1, for
1,02, a3 € H and 21, 23, 23 € H™ if the constraint «y f(z1) + aaf(22) +asf(z3) is imposed
by L", by letting L"(---) = 0 for other inputs from H3™*6 and letting L” be a polynomial
of degree h — 1 in all other variables.

We comment that the current step does not rely on L” being a linear function. The linearity
of L" (or rather of the condition a1 f(21) + asf(22) + asf(z3)) will be used in the next step.

40

Verifying satisfiability of L” via sequence of polynomials. This part is standard except for rule (Rg)
below which includes an extra check that some elements being considered are 0/1. In fact,
this part corresponds to the “sum check” in [2] (which is one of the two procedures in the
original innner-verifier, the other being a low-degree test).

Let m' = 4m + 8. We define a sequence of polynomials go,...,gm 11 : K™ — K, where
go is essentially f; g1 is related to gy by an Fb-linear relationship, and g¢; is related to g; 1
by a K-linear relationship. The motivation behind these polynomials is the following: g¢; is
defined so that the condition (xy,...,2,) € L is equivalent to the condition g;(@) = 0 for
every @ € H™. The polynomials g; relax this condition gradually, giving “g; (@) = 0 for
every @ € F' x H™ " if and only if “g;(@) = 0 for every @ € F*~' x H™**1” Thus finally
we have gpyy1 = 0 if and only if (21,...,2,) € L. We now define these polynomials explicitly.
For «;’s and u;’s from K and z;’s from K™T! let we define:

gO(zla"'7Z4aa17"'7a4) = f(zl)

3
(Ro) : g1(21, .oy 24,00, 0q) = (Zai-go(zi0)> L'y, a0, a3, 21, 29, 23)
=1

+ay - (90(240)* — go(240)).

The terms involving go(240) are meant to verify that go(z40) are always 0/1. These are “op-
tional” in standard PCPs, in that they are not needed to get soundness, but are occasionally
thrown in since they don’t involve much extra work. In contrast, in our case these are nec-
essary to enforce the augmented soundness condition. Note that while this condition is a
quadratic constraint (regarding go) over K, the map 3 +— 2 is an Fy-linear map over fields of
characteristic two, and so the identity above is indeed F-linear, despite the quadratic term.

For i =1 to m/, let

h—1
i) v Gi+1\ULly ooy Ug—1, Uiy Ujg415- -y Uam+8) = ui cgi\U1,...,Uj—1, j,ui+1,...,U4m+8 .
(R:) () 7 9i(¢)
=0

Merging the different polynomials into a single polynomial ¢ (standard): Now, let g : K™+ 5 K be
the function given by ¢(i,z) = gi(z) if i € {0,...,m' + 1} that is a degree m' + 1 polynomial
in the first variable 7. Assuming h > m' > p, we have that g is a polynomial of individual
degree at most 2h and thus has total degree at most d = 2m'h.

Lines and curves over g (standard): Let ¢lines : K?m'+1 _ K9 he the function describing g re-
stricted to lines. Let w = 2(m' + 1)h, £ = wd and let g|curves : C — K be the restriction
of g to some subset C of degree w curves, where C are all the curves that arise in the verdict
function’s computations below.

The encoding and proving functions (standard): Finally, we get to define the encoding and proving
functions. The encoding function E(x;) is the table of values of the function f] : K™ — K
where f/(z) = (fi(z),0" =) (i.e., elements of K are being written as vectors from K*'. The
proving function P(L, 1, ...,x,) consists of the triple of functions (¢’, (¢|iines)’, g|curves), where
g K™t K and (Gllines) : K2m'+D) . K are the functions ¢ and 9lines With their
range being mapped, by padding, into K.

41

We now describe the verdict function. To motivate this, recall that the verdict function, which
essentially has access to oracles for g, gliines; 9lcurves and fi,..., fp, needs to verify the following
items:

1. g is a polynomial of degree at most d, g|jines is the restriction of g to lines, and g|cyrves is the
restriction of g to curves.

2. The degree of ¢ in its first variable is at most m’ + 1.

3. Fori € {1,...,m' + 1}, then function g; given by g;(u) = g(i,u) is computed correctly from
gi—1 by an application of the rule (R;_1).

4. Verify that ¢,y is identically zero.
5. Verify that gg is a polynomial of degree 0 in all but its first m + 1 variables.

6. Verify that the function f : K™t — K given by f(x) = go(z,0---0) is a polynomial of degree
at most p in its first variable and a polynomial of degree at most h — 1 in the remaining m
variables.

7. Verify that f(i,---) = fi(---) for every i € {1,...,p}.

(Working one’s way upwards, one can see that P(L,z1,...,x,) is the only function to satisfy all
the above constraints.)

We are now ready to describe the verifier’s actions (or to be formal, the Verdict function). The
aim is to emulate a large number of checks (i.e., random verification of all the above conditions) by
using only p + 3 oracle calls, and still incur only a constant error probability. Specifically, ignoring
condition (1) for a moment, a random test of condition (2) requires m' + 2 points in the domain of
g, condition (3) involves m' + 1 equalities (which refer to m' + 1 different parts of ¢), condition (5)
involves m’ — m equalities (one per each suitable variable in gg), and condition (7) involves p
equalities, each referring to a different function f;. Following [2], all these different conditions will
be checked by retreiving the corresponding (random) g-values from a suitable curve in g|curves, and
obtaining the f;-values from the corresponding oracles. Finally, Condition (1) will be tested via an
adequate low-degree test that makes only 2 additional queries. Details follow.

The verifier first picks one random test (to be emulated) per each of the equalities corresponding
to the conditions (2)-(7) above. Specifically, in order to emulate the testing of conditions (2), (5)
& (6), it picks random axis parallel lines (one per each of the relevant variables) and picks O(h)
points on these K™ 1 lines with the intent of inspecting the value of ¢’ at these points. (We stress
that the verifier does not query ¢’ at these points, but rather only determines these points at this
stage.) Similarly, in order to emulate the testing of conditions (3), (4) & (7), it picks random points
from the domain of the corresponding ¢;’s and f. Having chosen these points, it picks one totally
random point in K™ . All in all this amounts to determining w = O(mh) points in the domain of
g'. The verifier then determines a degree w curve, denoted C, (over Km'“) that passes through
these m points. Next, it picks a random point « on this curve and a random line [through the
point a.

We finally get to the actual queries of the verifier. The verdict function queries ¢'(«), (g|ines)’ (1)
and gleurves(C). Tt verifies that ¢'(«) is actually in K and (g|ines)’ (1) is in K¢ (as opposed to K*).
It then verifies that the three responses agree at «. Finally, it verifies the values of ¢’ on the test
points for tests (2)-(7), as claimed by ¢|curves(C), are consistent with the conditions (2)-(7). In
particular, verifying condition (7) requires one probe each into the oracles X1,..., X,. (Once again

42

the responses to these probes are elements of K and the verdict verifies that the responses are in
K padded with 0’s.) Thus, in total, we made only 3 + p queries.

This concludes the description of the verifier. We stress that all the “0-padding verifications” are
only intended to guarantee the modified notion of soundness (and are not needed for the standard
notion of soundness). The same holds with respect to the various tests of individual degrees (which
test a degree lower than the (curve-to-line) low degree test). Omitting all these extra test, would
get us back to [2].

The modified soundness of the above verifier is established as usual assuming |K| > poly(¢”/e).
In particular, if the function g : K™ 1 — K obtained by ignoring the last ¢/ — 1 coordinates of
the function ¢’ is not, say .01-close to some polynomial § of total degree d then the low-degree
test will reject with constant probability. If the response of the query to g|curves 1S nOt consistent
with ¢ on all the queried points, then the curve to g’ consistency test will detect this with constant
probability. Finally if any of the conditions (2)-(7) is violated, then the final check above detects
with constant probability.

Recall that the oracle machine Verdict makes p + 3 queries in all. The answers it receives are
from K*' and thus ¢, the answer length, equals £ log, | K| which is poly log(pf) as required. The
soundness error, 7, is some constant bounded away from 0. Finally, note that all checks by the
verifier are actually K-linear, except for the satisfaction of rule (Ry), which is only Fy-linear. [

5.5 Combining all the constructions
We are now ready to prove the main theorem of this section.

Theorem 5.8 (Theorem 2.3, restated): For infinitely many k, there exists a linear locally-testable
binary code mapping k bits to n def L O(Vlogkloglogk) pps Furthermore, the codes has distance Q(n).

Proof: Composing (as per Lemma 5.5) the (F,(p,£) — (p + 3,poly(logpl)),1/2,v)-linear inner
verifier of Lemma 5.7 with the (Fy, (p + 3, poly(log pf)) — (p +4,1),1/2,7)-linear inner verifier of
Lemma 5.6, we obtain that there exist constants §;,v; > 0 such that for every constant p’ and
for every ¢, there exists an (Fy, (p/,¢') — (p' 4+ 4,1), 61,71)-linear inner verifier V;. Furthermore,
V1 uses 11 = O(logp'l') + 2(p' + 3) - poly(log p'¢') = poly(log ¢’) coins, encoding of length n; =
poly(¢') - exp(poly(log p'¢")), and proofs of length my = poly(nq).

Similarly, for any constant p, composing the verifier of Lemma 5.7 with V; (while setting p’ =
p+3and ¢ = poly(log{)),2’ we get a (Fy, (p,£) — (p+7,1), 62, 72)-linear inner verifier V3 for some
89,72 > 0. Furthermore, V5 uses ry = O(log pf) + 1 = O(log ¢) + poly(loglog ¢) coins, encoding of
length ng = poly(¢) - ny = poly(¢), and proofs of length ms = poly(ns).

Our final step will be to compose (as per Proposition 5.4) the truncated version of the FS/RS-
code (from Section 3.2) with the linear inner verifier V5. Recall that, for any constant ¢ > 1/2,
the truncated version of the FS/RS-code maps (F4THE to (FH1)N where N = exp(log¢ K) - K

and |F| = O(d) < exp(log® K). The corresponding codeword test uses R def logy N + 2log log |F|
random bits and makes ¢ = O(1) queries. Using F = F20(1)+10g2d and ¥ = Fit! = on(dlogd),
we apply Proposition 5.4 to this code (and codeword test) and V5 above, while setting p = ¢,
¢ = O(dlogd) and b = O(dlogd), where d < exp(log® K) (for any constant ¢ > 1/2). We obtain a
binary linear locally-testable code mapping (FY)X to FM, where M = O(N - ng + 2% - my). Using
R = logy N+O(loglog d) and mg = poly(nz) = poly(¢) = poly(d), we get M = N-exp(O(log® K)) =
K - exp(O(log® K)). The theorem follows. [|

Thus, 71 = poly(logpoly(logf)) = poly(loglog?) = o(logf) and n1 = exp(poly(logpoly(logf))) =
exp(poly(log log £)) = ¢°(,

43

5.6 Additional remarks

In this section we show that locally testable codes over small alphabets can be modified such that
the tester only uses randomness that is logarithmic in the codeword and only makes three queries.
We stress that the stated modification increases the length of the codewords by a constant factor.
We start with reducing the randomness complexity of the tester.

Proposition 5.9 Let C : ©%¥ — " be a code. Then every codeword tester for C can be modi-
fied into one that maintains the same acceptance probabilities up-to an additive term of €, while
preserving the number of queries and using randomness complezity at most O(log(1/¢€)) 4 logy n +
log, log, [X].

Proof: The proof follows the standard/easy part of the proof of Lemma 3.3 (and analogous results
in Section 4). Specifically, using the probabilistic method, there exists a set of O(e ?log, |X")
possible random-tapes for the original tester so that if the tester restricts its choices to this set
then its acceptance probability on every potential sequence is preserved up to an additive term of
e. (Observe that, with probability 1 — exp(—€?t), a random set of ¢ random-tapes approximates
the acceptance probability for a fixed sequence up to €, and that the number of possible sequences
is |[X™|.) The proposition follows. N

Using Proposition 5.9, we show that our main result regarding locally testable codes (i.e., Theo-
rem 2.3) holds also with tester that make only three queries. The latter assertion is an immediate
corollary of the following proposition.

Proposition 5.10 Let C : ¥ — X" be a locally-testable linear code of distance d = Q(n). Then,
there exists a linear code C' : ¥ — LOW8ED of distance at least d that is testable with three
queries.

Proof: By Proposition 5.9, the code C is locally-testable by a tester, denoted 7', having randomness

complexity p o log, n + O(1) + log, log, |X|. By a slight modification of 7" (which only increases p
by an additive constant),?! we may assume that 7" checks a single linear combination (determined
by its random-tape) of the oracle answers. We construct a code C’, by augmenting C' with a suitable
encoding of each of the answer tuples obtained by 7" when using a fixed random-tape. Specifically,
for each possible r € {0,1}”, we consider the ¢ = O(1) queries, denoted (iy,...,i;), made by T
and the linear combination (cy,...,¢q) € X9 of the answers checked by the tester. For x € ¥" and
r € {0,1}”, we augment C(z) by a block of length ¢ — 1 such that the ¢th symbol in the block
equals Z;g cjxi;. Thus, we obtain a code C' of length n + 27 - (¢ — 1) = n + O(nlog(|X]) over X.
The corresponding tester for C’, performs at random (with equal probability) one of the following
two tests:

1. A consistency test:?2 The test selects at random a random-tape r for T and a query (out
of the ¢ queries) that 7" makes on random-tape r. It checks whether the answer obtained
from the n-symbol prefix of C’ matches the value obtain from the block corresponding to 7.
Specifically, suppose that on coins r the tester 1" makes the queries iy, ...,i; € [n] and checks

21Th addition, the detection probability is reduced by a constant factor.

22Indeed, this consistency test is quite weak (but it suffices for our purposes). This consistency test reduces the
rejection probability by a factor of q. Stronger consistency test seem to require more redundent encodings (e.g., one
may use the Hadamard code). But since our focus is on the total length of C’, our choice of a trivial code (which
corresponds to using auxiliary variables) seems best.

44

the linear combination (ci,...,cq) € X9, and that we decided to check the jth query (where
¢ € [q]). For j > 1, we compare ¢; times the answer obtained from the prefix of C’ (i.e., the
i;th bit of the alledged codeword) to the difference between the jth and j — 1st entries in the
block corresponding to r. For j =1 we compare the first entry in the block corresponding to
r to the weighted sum of the answers obtained to queries ; and %s.

2. Emulating T: The test selects at random a random-tape r for 1" and checks the corresponding
linear condition by obtaining the desired linear combination of the answer bits from the last
entry of the block corresponding to r.

The proposition follows. W

Perspective. Proposition 5.10 indicates that three queries suffice for a meaningful definition of
locally-testable linear codes. This result is analogous to the three-query PCPs available for NP-
sets. In both cases, the constant error probability remains unspecified, and a second level project
aimed at minimizing the error of three-query test arises. Another worthy project refers to the
trade-off between the number of queries and the error probability, which in the context of PCP is
captured by the notion of amortized query complexity. The definition of an analogous notion for
locally-testable codes is less staightforward because one needs to specify which strings (i.e., at what
distance from the code) should be rejected with the stated error probability. One natural choice is
to consider the error probability of strings that are at distance d/2 from the code, where d is the
distance of the code itself.

6 Subsequent Work and Open Problems

Our code constructions are randomized, and so we do not obtain fully-explicit codes. The ran-
domization amounts to selecting a random subspace of random-tapes for certain low-degree tests,
and the probabilistic analysis shows that almost all choices of the subspace will do. A natural
(de-randomization) goal, stated in our preliminary report [18], has been to provide an explicit con-
struction of a good subspace. For example, in case of the low-degree test, the goal is to provide an
explicit set of O(|F|™) lines that can be used (as R,, in the construction of Section 3.2).

In our preliminary report [18] we also suggested the following seemingly easier goal of de-
randomizing the linearity test of Blum, Luby and Rubinfeld [11]. Recall that in order to test
whether f : G — H is linear, one uniformly selects (z,y) € G x G and accepts if and only if
f(z)+ f(y) = f(x +y). Now, by the probabilistic method, there exists a set R C G x G of size
O(|G|log |H|) such that the test works well when (z,y) is uniformly selected in R (rather than in
G x G).% The challenge suggested in [18] was to present an explicit construction of such a set R.

The latter challenge as well as the more general goal of de-randomizing all our results were
recently resolved by Ben-Sasson, Sudan, Vadhan and Wigderson [10]. Specifically, they showed
that for low-degree testing one may use a small set of lines that consists of all lines going in a small
set of directions. They also showed that this result suffices also for the derandomization of our
PCP result.

Another natural question that arises in this work refers to obtaining locally-testable codes
for coding k' < k information symbols out of codes that apply to k information symbols. The
straightforward idea of converting k’-symbol messages into k-symbol messages (via padding) and

#Tor every f : G — H, with probability 1 —exp(—|R|) a random set R will be good for testing whether f is linear,
and the claim follows using the union bound for all |H|‘G‘ possible functions f: G — H.

45

encoding the latter by the original code, preserves many properties of the code but does not
necessarily preserve local-testability.2*

We have presented locally testable codes and PCP schemes of almost-linear length, where
¢ :N — N is called almost-linear if £(n) = n'*t°(). For PCP, this improved over a previous result
where for each € > 0 a scheme of length n!'*¢ was presented (with query complexity O(1/¢)). Recall
that our schemes have length £(n) = exp(logn)) - n, for any ¢ > 0.5. We wonder whether length
¢(n) = poly(logn) - n (or even linear length) can be achieved. Similarly, the number of queries in
our proof system is really small, say 16, while simultaneously achieving nearly linear-sized proofs.
Further reduction of this query complexity is very much feasible and it is unclear what the final
limit may be. Is it possible to achieve nearly-linear (or even linear?) proofs with 3 query bits and
soundness nearly 1/27?

Acknowledgments

We are grateful to Salil Vadhan for suggesting some modifications to the construction and analysis
in Section 3.2 , yielding stronger results with simpler proofs.

2Indeed, this difficulty (as well as other difficulties regarding the gap between PCPs and codes) disappears if one
allows probabilistic coding. That is, define a code C : ¥* — %™ as a randomized algorithm (rather than a mapping),
and state all code properties with respect to randomized codewords C(a)’s.

46

References

[1]

2]

[4]

[5]

[10]

[11]

[12]

[13]

N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing Low-Degree Poly-
nomials over GF(2). In Proc. RANDOM 2003, Lecture Notes in Computer Science, vol.
2754, pages 188-199, Springer, 2003.

S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Verification and In-
tractability of Approximation Problems. JACM, Vol. 45, pages 501-555, 1998. Preliminary
version in 33rd FOCS, 1992.

S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.
JACM, Vol. 45, pages 70-122, 1998. Preliminary version in 33rd FOCS, 1992.

S. Arora and M. Sudan. Improved low degree testing and its applications. In 29th STOC,
pages 485-495, 1997.

L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarith-
mic Time. In 23rd STOC, pages 21-31, 1991.

L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-Prover
Interactive Protocols. Computational Complezity, 1: 3-40 (1991).

M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Linearity testing over
characteristic two. IEEE Transactions on Information Theory, 42(6):1781-1795, November
1996.

M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable
proofs and applications to approximation. In 26th STOC, 1994.

E. Ben-Sasson, O. Goldreich and M. Sudan. Bounds on 2-Query Codeword Testing. In
the proceedings of RANDOM’03, Springer LNCS, Vol. 2764, pages 216-227, 2003.

E. Ben-Sasson, M. Sudan, S. Vadhan and A. Wigderson. Randomness-efficient low degree
tests and short PCPs via epsilon-biased sets. In 35th STOC, pages 612-621, 2003.

M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-
merical Problems. JCSS, Vol. 47, No. 3, pages 549-595, 1993.

N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint
Satisfaction Problems. STAM Press, Philadeplhia, PA, USA, March 2001.

U. Feige, S. Goldwasser, L. Lovéasz, S. Safra, and M. Szegedy. Approximating Clique is
almost NP-complete. JACM, Vol. 43, pages 268-292, 1996. Preliminary version in 32nd
FOCS, 1991.

G.D. Forney. Concatenated Codes. MIT Press, Cambridge, MA 1966.

K. Friedl and M. Sudan. Some Improvements to Low-Degree Tests. In the 3rd Israel
Symp. on Theory and Computing Systems (ISTCS), 1995.

O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning
and approximation. JACM, pages 653-750, July 1998.

47

[17]

[18]

[19]

[20]

[21]

[22]

[23]

O. Goldreich, H. Karloff, L.J. Schulman and L. Trevisan. Lower Bounds for Linear Lo-
cally Decodable Codes and Private Information Retrieval. In the Proc. of the 17th IEEE
Conference on Computational Complexity, 2002.

O. Goldreich and M. Sudan. Locally Testable Codes and PCPs of Almost-Linear Length.
ECCC Report TR02-050, 2002.

P. Harsha and M. Sudan. Small PCPs with Low Query Complexity. Computational
Complexity, 9(3-4):157-201, 2000.

J. Katz and L. Trevisan. On The Efficiency Of Local Decoding Procedures For Error-
Correcting Codes. In the $2nd STOC, 2000.

A. Polishchuk and D.A. Spielman. Nearly-linear size holographic proofs. In 26th STOC,
pages 194-203, 1994.

R. Raz and S. Safra. A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP. In 29th STOC, 1997.

R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, Vol. 25 (2), pages 252-271, 1996.

48

A The Gap Polynomial-Constraint-Satisfaction Problem

We start by recalling the “Gapped Polynomial Constraint Satisfaction Problem” and introducing
a restricted version of this problem.

Constraint satisfaction problems (CSPs) are a natural class of “optimization” problems where
an instance consists of ¢ Boolean constraints C1, ..., C; placed on n variables taking on values from
some finite domain, say {0,...,D}. Each constraint is restricted in that it may only depend on
a small number w of variables. The goal of the optimization problem is to find an assignment to
the n variables that maximizes the number of constraints that are satisfied. The complexity of the
optimization task depends on the nature of constraints that may be applied, and thus each class of
constraints gives rise to a different optimization problem (cf. [12]). CSPs form a rich subdomain of
optimization problems that include Max 3SAT, Max 2SAT, Max Cut, Max 3-Colorability etc. and
have been easy targets of reductions from PCPs.

Following Harsha and Sudan [19], we consider algebraic variants of CSPs. These problems
come with some syntactic differences: The domain of the value that a variable can take on will be
associated with a finite field F'; the index set of the variables will now by F™ for some integer m,
rather than being the set [n]; and thus an assignment to the variables may be viewed naturally
as a function f : F™ — F. Thus the optimization problem(s) ask for functions that satisfy as
many constraints as possible. In this setting, constraints are also naturally interpreted as algebraic
functions, say given by an algebraic circuit.

The interesting (non-syntactic) aspect of these problems is when we optimize over a restricted
class of functions, rather than the space of all functions. Specifically, we specify a degree bound d
on the function f : F™ — F and ask for the maximum number of constraints satisfied by degree d
polynomial functions f. Under this restriction on the space of solutions, it is easier to establish NP-
hardness of the task of distinguishing instances where all constraints are satisfiable, from instances
where only a tiny fraction of constraints are satisfiable. This motivates the “Gapped Polynomial
CSP”, first defined by Harsha and Sudan [19]. Here we consider a restriction on the class of
instances, where each constraint, in addition to being restricted to apply only to w variables, is
restricted to apply only to variables that lie on some “2-dimensional variety” (i.e., the names/indices
of the variables that appear in a constraint must lie on such a variety). We define this notion first.

A set of points x1, ...,z € F™ is said to lie on a 2-dimensional variety of degree r if there exists
a function Q = (Q1,...,Qm) : F? — F™ where each Q; is a bivariate polynomial of degree 7, such
that there exist points y1,...,yx € F? such that z; = Q(y;) for every j € [k].

Definition A.1 (rGapPCS (restricted Gap Polynomial Constraint Satisfaction)) For
€: Zt — R and r,m,b,q : ZT — ZT, the promise problem rGapPCS, , ., , has as instances
tuples (1",d, k, s, F;Cq,...,Cy), where d,k,s < b(n) are integers, F is a field of size q(n) and
C; = (Aj; Igj), . ,.I’(CJ)) is algebraic constraint given by an algebraic circuit A; of size s on k inputs
(4)
T

and the variable names x .,.r,(cj) € F™, where for m = m(n) and for every j € [t| the points

{xgj)}i lie on some 2-dimensional variety of degree r.

YES-instances: (1",d,k,s, F';Cy,...,C}) is a YES-instance if there exists a polynomial p : F™ —
F of total degree at most d such that for every j € {1,...,t}, the constraint C; is satisfied by
p; that is, Aj(p(a;gj)), e ,p(xg))) =0.

NO-instances: (1",d,k,s, F;C1,...,Cy) is a NO-instance if for every polynomial p of degree d, at
most €(n) -t constraints are satisfied.

49

The following lemma is a slight variant of Lemma 3.16 in [19]. Specifically, while [19] use the
generic fact that any w points lie in a c-dimensional variety of degree cw!/¢, we note that the
specific O(m(n)b(n)) points chosen for each constraint (in the reduction) lie on a 2-dimensional
variety of degree O(m(n)). This is because each constraint refers to O(m(n)b(n)) points that lie
on one out of O(m(n)) lines.

The following lemma simply lists conditions on the parameters which allows GapPCS to be
NP-hard. We describe the actual choice of parameters in a corollary to be described shortly.

Lemma A.2 There exists a constant ¢ and polynomials py1,ps such that for any collection of func-
tions € : Zt — RY and m,r,b,q,0 : Z* — Z* such that b(n) > logn, (b(n)/m(n))™™ > n,
rn) > em(n), q(n) > (b(n)/e(m)pr(m(n), and £n) > pa(b(n))(g(m)™™, SAT reduces to
rGapPCS, , ., , under £(n)-length preserving reductions,

On the other hand, when applying the MIP system of [19, Section 3.6] to restricted GapPCS
instances, we get:

Lemma A.3 There exists a polynomial p such that if e : Z+ — RT and r,m,b,q: ZT — Z, satisfy
q(n) = poly(r(n))(b(n)/e(n)) then the promise problem rGapPCS, , ., . has a 3-prover MIP proof
with perfect completeness, soundness O(e(n)), answer length poly(b(n))logg(n), and randomness
O(log N + m(n)logq(n)), where N denotes the size of the GapPCS instance and n denotes the
first parameter in the instance. Furthermore, the size of the first prover oracle is q(n)m(”), and its
answer length is log q(n).

The lemma above allows us to work with the GapPCS problem for an appropriate choice of the
parameters €, m, b, ¢, £. Combining the above two lemmas, we state the resulting corollary regarding
3-prover MIPs for SAT, where we restrict attention to the case of constant ¢ > 0.

Corollary A.4 For every constant € > 0 and m : ZT — Z%, let £(n) = m(n)O0m(n) . p1+01/m(n)),
Then SAT reduces in probabilistic polynomial time under £(n)-length preserving reductions to a
promaise problem that has a 3-prover proof system with perfect completeness, soundness €, logarith-
mac randomness, and answer length m(n)o(l) -pOW/m™n) in which the first prover has size linear
in the instance size.

Proof: Assume without loss of generality that m(n) < logn/(3loglogn). (For larger m(-),
the requirements on both the function f(n) and the answer length become weaker.) Set
b(n) = m(n)n'/™™ Note that this makes b(n) > logn (and (b(n)/m(n))™™ > n) as re-
quired in Lemma A.2. Next, set r(n) = em(n), where ¢ is from Lemma A.2, and set ¢(n) =
(b(n)/e)poly(m(n)) = poly(m(n))n'/™™) /e such that it satisfies the requirements in both Lem-
mas A.2 and A.3. Finally, set £(n) = poly(b(n))g(n)™™ = poly(m(n)) - n@E/mm) . (n)Omn) .
n - e™™ = O(m(n)Om) . pI+O0/m(n)) " This setting satisfies all the conditions of Lem-
mas A.2 and A.3, which yields a 3-prover proof system for SAT in which the answer lengths
are bounded by poly(b(n))log ¢(n) = m(n)°M) . p1/O0m(") Furthermore, the size of the first prover
is ¢(n)™™ < £(n), as required. [|

50

