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tI don't think that there is a generi
ally good way of doing a master thesis (nor of doingresear
h in general). Resear
h (like other 
reative a
tivities) evolves in unpredi
table ways, andea
h resear
h proje
t has its own story. I will tell a few su
h stories, and naturally I will rely onstories I know from the inside (or 
lose to that). The only lesson that I 
an o�er is maintainingan openness towards ideas that may emerge.(Notes for a talk to be given on January 20, 2008.)1 My own thesis (1981)In one of my �rst meeting with my predetermined interim supervisor, Shimon Even (who has laterbe
ome my Master and Do
torate thesis advisor) tossed to my dire
tion a Rubi
 Cube and askedif I 
an arrange it. A few days later, when I des
ribed to him a highly wasteful algorithm, thequestion of the minimum move sequen
e arose naturally. Phrased in general terms, this yields a
omputational problem regarding permutation groups, to be des
ribed next.A permutation group over a set D is represented by a set of generators; that is, the groupgenerated by a set S of permutation (over D) is de�ned ashSi def= fg1 Æ g2 Æ � � � Æ g` : g1; g2; :::; g` 2 Sgwhere Æ denotes the 
omposition of permutations. For example, in the 
ase of the Rubi
 Cube, theset of generators 
orresponds to the 6 � 2 rotations that 
an be applied to the 
ube (where ea
hrotation is determined by a rotating side of the 
ube and a dire
tion of rotation).A shortest move sequen
e between two permutations �1; �2 2 hSi is the shortest sequen
e(g1; g2; :::; g`) over S su
h that �2 = g` Æ � � � Æ g2 Æ g1 Æ �1. A natural 
omputational problem is�nding, given S and �1; �2 2 hSi, a shortest move sequen
e from �1 to �2. A 
omputationallyequivalent problem refers to �nding the shortest sequen
e of permutations that generates a givenpermutation. A 
orresponding de
ision problem is presented next.De�nition 1 (short generating sequen
e): Given a set of generators S, a permutation � 2 hSi, andin integer ` presented in unary, determine whether or not there exists `0 � ` and g1; g2; :::; g`0 2 Ssu
h that � = g`0 Æ � � � Æ g2 Æ g1. 1



It is quite easy to show that the foregoing problem is NP-
omplete, where the unary presentationof ` seems essential for the problem being in NP (sin
e, as shown later, for ` presented in binarythe problem is a
tually PSPACE-
omplete).My proof of NP-
ompleteness 
onsisted of a simple redu
tion from 3XC. Re
all that an instan
eof the latter is a sequen
e of 3-sets over some universe [3n℄ and the question is whether there existsa subsequen
e that forms an exa
t 
over of [3n℄. The redu
tion maps su
h an instan
e to a sequen
eof generating permutations over 3n pairs of elements su
h that in the ith generator permutationthe jth pair is swit
hed if and only if the ith subset 
ontain the element j. The target permutationhas all 3n pairs swit
hed, and the target length is set to n.Epilogue: Although the foregoing proof 
ould pass as a Master Thesis in 1981 (but probablynot today...), I a
tually ended-up submitting a di�erent work as my Master Thesis. That work
onsisted of a taxonomi
 study of various edge testing problems for networks, where most of theseproblems were proved to be NP-
omplete.2 The thesis of Ronen Vainish (1988)Ronen was the �rst master student that I advised. Our joint resear
h was aimed at providing asimpli�
ation of the general 
onstru
tion of se
ure multi-party proto
ols. The following des
riptionassumes some basi
 familiarity with the subje
t, as provided in [2, Se
. 7.1℄.At the time this resear
h was started, the general 
onstru
tion of se
ure multi-party proto
olspro
eeded by invoking a general 
onstru
tion of se
ure two-party proto
ols multiple times. Inretrospe
t, the most important part of our study is a 
ouple of observations that allow to repla
ethe invo
ation of the general 
onstru
tion of a se
ure two-party proto
ol by a simple proto
ol.The �rst simplifying observation was that the task of 
onstru
ting arbitrary se
ure multi-partyproto
ols redu
es to providing a se
ure implementation of the following two-party randomizedfun
tionality (for the spe
ial 
ase of n = 2). For parties holding inputs x 2 f0; 1gn and y 2 f0; 1gn,respe
tively, the desired output is a random pair of bits (ea
h obtained at one of the two parties)that sum-up (mod 2) to the inner-produ
t (mod 2) of x and y. In fa
t, it suÆ
es to 
onsider se
urityin the semi-honest model, where ea
h party follows the pres
ribed proto
ol and the question is what
an be learned from the full trans
ript of the party's view of the proto
ol's exe
ution.The se
ond simplifying observation was that se
urely implementing the aforementioned two-party fun
tionality redu
es to implementing 1-out-of-2 Oblivious Transfer, OT21, whi
h allows are
eiver to obtain one out of two bits held by the sender without letting the sender know whi
h bitwas obtained. Following is the implementation suggested for the \inner-produ
t fun
tionality":Constru
tion 2 For i = 1; :::; n, the �rst party sele
ts uniformly 
i 2 f0; 1g, and invokes OT21 asa sender while providing 
i as its �rst se
ret and 
i + xi mod 2 as its se
ond se
ret, and the otherparty asks for the �rst se
ret if and only if yi = 1. Note that, in the ith iteration, the se
ond partyobtained the value 
0i  
i + xiyi mod 2. The �rst party (lo
ally) outputs Pni=1 
i mod 2, whereasthe se
ond party (lo
ally) outputs Pni=1 
0i mod 2, and indeednXi=1 
i + nXi=1 
0i � nXi=1(
i + 
0i) � nXi=1 xiyi (mod 2):
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3 The thesis of Eyal Kushilevitz (1989)The thesis of Eyal refers to the notion of perfe
t zero-knowledge, whi
h seems mu
h more stri
tthan the standard notion of zero-knowledge (see [1, Chap. 4℄). The 
orresponding 
lasses of setshaving zero-knowledge and perfe
t zero-knowledge proofs are denoted ZK and PZK, respe
tively.At the time it was known that the existen
e of one-way fun
tions implies that NP � ZK. In
ontrast, it was known that PZK � SZK � AM\ 
oAM, whi
h implies that it is unlikely thatNP is 
ontained in PZK. Some indi
ations that PZK may extend beyond BPP were known,assuming the intra
tability of either Graph Isomorphism or Quadrati
 Resideousity (sin
e the
orresponding sets were known to be in PZK). But both these assumptions seemed less reliable thanthe intra
tability of either fa
toring or the Dis
rete Logarithm Problem (DLP). Indeed, the openproblem that I o�ered to Eyal was to provide more reliable eviden
e to the 
onje
ture PZK 6= BPP ,whi
h he did.Theorem 3 (Eyal's thesis): There exists a promise problem in PZK that is 
omputationally equiv-alent to DLP.Thus, assuming that DLP is intra
table, PZK must extend beyond (the promise problem versionof) BPP.Interestingly, proving that PZK extends beyond BPP, based on the 
onje
tured intra
tabilityof fa
toring (or even a more general assumption) is still an open problem.4 The thesis of Ran Canetti (1992)So far I told the stories of one thesis emerging from a game, one thesis emerging out of studyinga famous result, and one thesis addressing a known open problem. The following story is one of athesis that emerged from wondering about some material learned in a 
ourse.Taking a 
ourse on 
ommuni
ation 
omplexity, Ran learned about the 
omplexity gap betweendeterministi
 and randomized proto
ols, and wondered whether there exists a trade-o� between theamount of randomness and 
ommuni
ation 
omplexity. The answer turned out to be aÆrmative,and detailing it was the 
ontents of Ran's thesis. Below, I will only outline the gap as taught toRan.The setting for 
ommuni
ation 
omplexity 
onsists of two parties and a predetermined fun
tionf : f0; 1gn � f0; 1gn ! f0; 1g. The �rst party is given a string x 2 f0; 1gn, the se
ond party isgiven a string y 2 f0; 1gn, and their goal is to obtain the value f(x; y). We are only interestedin the number of bits ex
hanged between the two parties towards their goal, and totally disregardtheir lo
al 
omputation time. Clearly, ea
h su
h fun
tion 
an be 
omputed by ex
hanging n bits(e.g., the �rst party sends x to the se
ond party). A 
omplexity gap between deterministi
 andrandomized proto
ols was known to exist for the equality fun
tion (i.e., eq(x; y) = 1 if and only ifx = y):� Any deterministi
 proto
ol for equality has 
ommuni
ation 
omplexity at least n.� There exists a probabilisti
 proto
ol for equality that has error probability 1=3 and 
ommu-ni
ation 
omplexity O(log n).Following are two out of several proto
ols that may be used to establish the probabilisti
 
ommu-ni
ation 
omplexity upper-bound. 3



Constru
tion 4 (two known probabilisti
 proto
ols for the fun
tion eq):1. Using a good error-
orre
ting 
ode C : f0; 1gn ! f0; 1gm, the �rst party uniformly sele
tsi 2 [m℄ and sends (i; C(x)i) to the se
ond party, whi
h outputs 1 if and only if the bit C(x)iequals the value C(y)i.Note that for x 6= y, it holds that Bx;y def= fi 2 [m℄ : C(x)i = C(y)ig has 
ardinality at mostm� d, where d denotes the distan
e of C.2. In this 
ase the inputs x and y are viewed as elements of f0; 1:::; 2n � 1g. The �rst partyuniformly sele
ts a prime p 2 [n2; 2n2℄ and sends (p; x mod p) to the se
ond party, whi
houtputs 1 if and only if the value x mod p equals the value y mod p.Using the Chinese Reminder Theorem, for any x 6= y, the set of primes p 2 [n2; 2n2℄ thatsatisfy x mod p = y mod p has 
ardinality smaller than n= logn.5 The thesis of Ifta
h Haitner (2004)When writing [2℄, I realized that the standard Oblivious Transfer proto
ol works under more stri
t
onditioned than 
ommonly assumed. Spe
i�
ally, I refer to the following proto
ol (see [2, Se
. 7.3.2℄for further details).Constru
tion 5 (Oblivious Transfer (OT21) proto
ol for semi-honest model): The proto
ol refersto a 
olle
tion of trapdoor permutation, ff� :D�!D�g�2I , where D� � f0; 1gj�j, and to a 
orre-sponding hard-
ore predi
ate b : f0; 1g� ! f0; 1g.Inputs: The sender has input (�1; �2) 2 f0; 1g2, the re
eiver has input i 2 f1; 2g.Step S1: The sender uniformly sele
ts an index-trapdoor pair, (�; t), by running the generationalgorithm of the said 
olle
tion, and sends the index � to the re
eiver.Step R1: The re
eiver uniformly and independently sele
ts xi; y3�i 2 D�, sets yi = f�(xi), andsends (y1; y2) to the sender.Step S2: Upon re
eiving (y1; y2), using the inverting-with-trapdoor algorithm and the trapdoor t,the sender 
omputes zj = f�1� (yj), for both j 2 f1; 2g, and sends (�1�b(z1); �2�b(z2)) to there
eiver.Step R2: Upon re
eiving (
1; 
2), the re
eiver lo
ally outputs 
i�b(xi).The se
urity of the foregoing proto
ol relies on the assumption that it is possible to uniformlysele
t y3�i 2 D� without knowing f�1� (y3�i) (or making the task of �nding this value easy). Thisassumption 
learly holds in 
ase D� = f0; 1gj�j, and 
an be proved for some popular 
andidate
olle
tions of trapdoor permutations (see [2, Apdx. C.1℄ for details). However, I wanted to regainthe 
laim that OT21 
an be se
urely implemented based on any 
olle
tion of trapdoor permutations,and posed this 
hallenge to Ifta
h.Although Ifta
h did not resolve this 
hallenge, he made signi�
ant progress on it. Spe
i�
ally,he showed that an alternative proto
ol (indeed a more 
ompli
ated version of Constru
tion 5)works when using any 
olle
tion of trapdoor permutations for whi
h D� has a noti
eable densityin f0; 1gj�j. It follows that OT21 
an be se
urely implemented based on any su
h 
olle
tion (i.e., oftrapdoors with \dense" domain). The question of se
urely implement OT21 based on an arbitrary
olle
tion of trapdoor permutations remains open.4



6 Brief 
omments on four re
ent theses6.1 Or She�et (De
. 2006)The thesis (see also [5℄) initiates a study of the randomness-
omplexity of property testing, present-ing both general existential bounds and spe
i�
 eÆ
ient algorithms for the 
ase of Bipartiteness.This starting point of the study is the essential role of randomness in property testing, and thefo
us is on maintaining the low query (and time) 
omplexity of the tester while de
reasing itsrandomness 
omplexity as mu
h as possible.6.2 K�r Barhum (Feb. 2007)The thesis presents fast algorithms for approximating the average distan
e between pairs of pointsin a Eu
lidean spa
e. A follow-up paper [3℄ 
onfronts the algorithm presented in the thesis witha straightforward algorithm that merely samples pairs of points, and studies the derandomizationof the latter algorithm. That is, the question is of 
onstru
ting a �xed sparse set of pairs thatapproximates all pairwise distan
es for any (
orresponding) set of points in a Eu
lidean spa
e (andmore generally in any metri
 spa
e).6.3 Or Meir (O
t. 2007)The thesis (see also [6℄) is a te
hni
al tour de for
e presenting a 
ombinatorial 
onstru
tion of lo
allytestable 
odes. Loosely speaking, a 
ode is lo
ally testable if it admit a 
odeword test that probethe string in a 
onstant number of (randomly sele
ted) lo
ations. Or's 
onstru
tion meets the bestknown parameters, but does in a way that is di�erent and more pleasing than prior 
onstru
tions.Spe
i�
ally, it neither rely on sophisti
ated algebrai
 
onstru
tions nor on a PCP 
onstru
tion.6.4 Lidor Avigad (Nov. 2009)This thesis presents a signi�
ant extension of the study of the \lowest 
omplexity level" of testinggraph properties (in the adja
en
y representation model). By the \lowest 
omplexity level" I referto properties that 
an be tested by a non-adaptive tester of query 
omplexity that is inverselyproportional to the proximity parameter. This 
lass was shown in [4, Se
. 6℄ to 
ontain, for any
onstant 
, the set of graphs that 
onsist of up to 
 isolated 
liques. Looking at the 
omplementgraphs, this means that the propert asso
iated with 
 is being a \blow-up" of the graph 
onsistingof 
 isolated verti
es. Lidor's extension refers to all properties that 
orrespond to being a blow-upof any �xed graph.Referen
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