
Finding Cy
les and Trees in Sublinear TimeArtur Czumaj Oded Goldrei
h Dana Ron C. Seshadhri Asaf ShapiraChristian SohlerApril 7, 2010Abstra
tWe present sublinear-time (randomized) algorithms for �nding simple
y
les of length atleast k � 3 and tree-minors in bounded-degree graphs. The
omplexity of these algorithmsis related to the distan
e of the graph from being Ck-minor free (resp., free from having the
orresponding tree-minor). In parti
ular, if the graph is far (i.e.,
(1)-far) from being
y
le-free,i.e. if one has to delete a
onstant fra
tion of edges to make it
y
le-free, then the algorithm�nds a
y
le of polylogarithmi
 length in time eO(pN), where N denotes the number of verti
es.This time
omplexity is optimal up to polylogarithmi
 fa
tors.The foregoing results are the out
ome of our study of the
omplexity of one-sided errorproperty testing algorithms in the bounded-degree graphs model. For example, we show that
y
le-freeness of N -vertex graphs
an be tested with one-sided error within time
omplexityeO(poly(1=�) �pN). This mat
hes the known
(pN) query lower bound, and
ontrasts with thefa
t that any minor-free property admits a two-sided error tester of query
omplexity that onlydepends on the proximity parameter �. For any
onstant k � 3, we extend this result to testingwhether the input graph has a simple
y
le of length at least k. On the other hand, for any�xed tree T , we show that T -minor freeness has a one-sided error tester of query
omplexitythat only depends on the proximity parameter �.Our algorithm for �nding
y
les in bounded-degree graphs extends to general graphs, wheredistan
es are measured with respe
t to the a
tual number of edges. Su
h an extension is notpossible with respe
t to �nding tree-minors in o(pN)
omplexity.

Keywords: Sublinear-Time Algorithms, Property Testing, Bounded-Degree Graphs, One-Sidedvs Two-Sided Error Probability,

Contents1 Introdu
tion 11.1 Our main results . 11.2 The property testing
onne
tion . 21.3 Te
hniques . 31.3.1 Testing
y
le-freeness . 31.3.2 Testing Ck-minor freeness, for any k > 3 . 41.3.3 Testing H-minor freeness, for any
y
le-free H 41.4 Another perspe
tive: Finding arbitrary forbidden minors 51.5 Further re
e
tions regarding one-sided error . 61.6 The general (unbounded-degree) graph model . 71.7 Organization . 82 Preliminaries 83 Testing Cy
le-Freeness 94 Testing C4-Minor-Freeness 115 Testing Ck-Minor-Freeness, for any k � 4 145.1 Some basi
 fa
ts regarding spots . 155.2 The a
tual redu
tion . 176 Proof of the Lower Bound 207 Testing Tree-Minor Freeness 217.1 A redu
tion of un
onne
ted H to
onne
ted H . 217.2 Testing that the graph
ontains no simple k-length path 237.3 Testing that the graph
ontains no k-star as a minor 237.4 The general
ase: Testing T -minor freeness for any tree T 247.5 Testing T -minor freeness for any depth-two tree T 308 The unbounded-degree graph model 338.1 Testing
y
le-freeness . 348.2 Testing tree-minor-freeness . 348.3 Testing with adja
en
y queries . 35Bibliography 35

I

1 Introdu
tionConsider the algorithmi
 problem of �nding a (simple)
y
le in a bounded degree graph (assumingone exists), where the aim is to �nd su
h a
y
le in (randomized) sublinear time. In general, �ndinga
y
le in sublinear time may not be possible, sin
e the graph may
ontain only
y
les of length
(n). This may also be the
ase if one needs to remove a
onstant number of the edges of the graphin order to make it
y
le-free. But suppose one needs to remove a
onstant fra
tion of the graph'sedges in order to make it
y
le free. Can we then devise a sublinear time algorithm? One of ourresults in this paper is an aÆrmative answer to this question. Furthermore, the running time ofthat algorithm is (essentially) optimal.1.1 Our main resultsAs we have mentioned above, we
onsider graphs of bounded degree d with N verti
es. We saythat a graph is �-far from being
y
le-free if one has to remove at least �dN edges from G in orderto make it
y
le free. We
an now formally state our �rst result.Theorem 1.1 There exists a randomized algorithm that, on input an N -vertex graph G of
on-stant degree bound d that is �-far from being
y
le-free, �nds a simple
y
le in G in expe
ted timeeO(poly(1=�) � pN). Furthermore, the
y
le found has length poly(��1 logN).Using the
onne
tion to one-sided error property testing (detailed in Se
tion 1.2), we infer thatthe algorithm of Theorem 1.1 is optimal; that is, no randomized o(pN)-time algorithm
an �nd
y
les in (bounded-degree) graphs that are
(1)-far from being
y
le-free. Furthermore, one
annot expe
t to �nd simple
y
les of length o(logN), sin
e su
h may not exist (even if the graph isfar from being
y
le-free). The result of Theorem 1.1
an be extended to �nding a simple
y
le oflength at least k, for any �xed k � 3.Theorem 1.2 For every
onstant k > 3, there exists a randomized algorithm that, on input anN -vertex graph G of
onstant degree bound d that is �-far from having no
y
les of length at leastk, �nds a simple
y
le of length at least k in G in expe
ted time eO(poly(1=�) � pN). Furthermore,the
y
le found has length poly(��1 logN).Again, the algorithm obtained is optimal. We note that
y
les of length at least k in G
orrespondto Ck-minors of G. Here, Ck denotes the k-vertex
y
le. An H-minor of G is obtained from G bya sequen
e of edge removals, vertex removals, and edge
ontra
tions. (A Ck-minor of G is a
y
lein G of length larger than k.)We next turn from �nding
y
les to �nding tree-stru
tures in graphs. Our main result dealswith �nding tree-minors. Consider the following interesting spe
ial
ase. For any
onstant k, wewant to �nd a tree with at least k leaves. One of our results is a randomized algorithm that �ndssu
h trees in expe
ted time that is polynomially related to k and to the distan
e of the input graphfrom a graph having no su
h trees. This problem
orresponds to �nding minors that are k-vertexstars.Theorem 1.3 For any �xed tree T , there exists a randomized algorithm that, on input an N -vertex graph G of
onstant degree bound d that is �-far from being T -minor free, �nds a T -minorin expe
ted time that only depends on �, where vertex manipulation operations are
ounted at unit
ost. 1

We highlight the fa
t that �nding tree minors
an be done within
omplexity that only dependson �, whereas �nding
y
les requires
(pN) time (also for
onstant � > 0). In fa
t, we show thatTheorem 1.3 extends to any
y
le-free graph H, and on the other hand we prove that for any Hthat
ontains a
y
le �nding H-minors requires
(pN) queries.1 Thus, we obtain the following
hara
terization:Corollary 1.4 Finding H-minors in a
onstant degree graph that is �-far from being H-minor free
an be done in
omplexity that only depends on � if and only if H is
y
le-free.All our results are obtained via the
onne
tion to one-sided error property testing, and are a
tuallyeasier to state in terms of property testing.1.2 The property testing
onne
tionLoosely speaking, property testing refers to sublinear time probabilisti
 algorithms for de
idingwhether a given obje
t has a predetermined property or is far from any obje
t having this property(see the surveys [Fis01, Ron08b, Ron08a℄). Su
h algorithms,
alled testers, obtain lo
al views ofthe obje
t by making suitable queries; that is, the obje
t is seen as a fun
tion and the tester getsora
le a

ess to this fun
tion (and thus may be expe
ted to work in time that is sublinear in thesize of the obje
t).Randomization is essential to natural testers (i.e., testers of natural properties that have sublin-ear query-
omplexity) [GS07℄. The same holds also for error probability, at least on some instan
es,but the question is whether a (small) error probability must appear on all instan
es. In parti
ular,should we allow (small) error probability both on instan
es that have the property and on instan
esthat are far from having it?2Indeed, testers
ome in two basi

avors referring to the foregoing question: two-sided errortesters allow (small) error probability both on instan
es that have the property and on instan
esthat are far from having it, whereas one-sided error testers only allow (small) error probability oninstan
es that are far from having the property. That is, in one-sided error testers, any instan
ethat has the property is a

epted with probability 1.An important observation regarding one-sided error testers is that whenever su
h a tester reje
tssome instan
e, it always has a
erti�
ate that this instan
e does not have the property, where this
erti�
ate is the partial view of the instan
e as obtained by the tester. Indeed, in the
ase of one-sided error, reje
ting an instan
e based on a spe
i�
 partial view means that there exists no instan
ethat has the property and is
onsistent with this partial view. Furthermore, in some
ases (as thoseaddressed in the
urrent work), this partial view
ontains some natural stru
tures (e.g., a
y
le ora tree of interest).Consider, for example, the
ase of testing
y
le-freeness (with one-sided error). In this
ase,whenever the tester reje
ts, its partial view must
ontain a
y
le. Thus, any one-sided tester of
y
le-freeness may be used for �nding
y
les in graphs that are far from being
y
le-free. A similarobservation applies to �nding T -minors, for any �xed tree T .We mention that in most of the property testing literature, one-sided error is viewed as a se
-ondary feature that some testers have and others may la
k. The foregoing
onne
tion demonstratesthe fundamental advantage of one-sided error testers over standard (two-sided error) testers. (Otheradvantages are dis
ussed in Se
tion 1.5.)1This fa
t was mentioned in [BSS08℄.2In any
ase, the basi
 paradigm of property testing allows arbitrary error in
ase the instan
e neither has theproperty nor is far from having it. 2

Lower bounds on the
omplexity of one-sided error testers that signi�
antly ex
eeds the per-forman
e guarantees of known two-sided error testers have been observed, starting with [GGR98,Se
. 10.1.6℄. However, so far, no study has been devoted to providing a one-sided error tester ofoptimal
omplexity, in the
ase where the
omplexity signi�
antly ex
eeds that of the
orrespondingtwo-sided error tester.3In
ontrast, our work is aimed at providing a one-sided error tester of (almost) optimal
om-plexity, in a
ase in whi
h this
omplexity signi�
antly ex
eed the
omplexity of the
orrespondingtwo-sided error tester. For example, re
all that Goldrei
h and Ron provided a two-sided errortester for
y
le-freeness of poly(1=�) query
omplexity [GR02, Thm. 4.2℄, where � denotes the de-sired proximity parameter (i.e., the tester distinguishes
y
le-free graphs from graphs that are �-farfrom being
y
le-free). In
ontrast, [GR02, Prop. 4.3℄ asserts that
y
le-freeness has no one-sidederror tester that makes o(pN) queries (even for � = 1=3), where N denotes the number of verti
esin the input graph. In that
ontext, Theorem 1.1 is equivalent toTheorem 1.5 Cy
le-freeness of
onstant degree N -vertex graphs
an be tested with one-sided errorwithin time
omplexity eO(poly(1=�) � pN). Furthermore, whenever the tester reje
ts, it outputs asimple
y
le of length poly(��1 logN).On the other hand, by the foregoing dis
ussion, whenever the tester asserted in Theorem 1.5 reje
ts,it is the
ase that it explored a subgraph that is not
y
le-free. Moreover, the furthermore
lauseof Theorem 1.5 asserts that in this
ase the explored subgraph a
tually
ontains a simple
y
le oflength poly(��1 logN). Thus, Theorem 1.5 implies Theorem 1.1. Similarly, Theorem 1.5 extendsto testing Ck-minor freeness, for any k � 3, whi
h in turn is equivalent to Theorem 1.1. And,similarly, Theorem 1.3 is equivalent to the existen
e of a tester for T -minor freeness of query
omplexity that only depends on the proximity parameter, for any tree T .1.3 Te
hniquesAs stated at the end of Se
tion 1.1, all our results are obtained via the study of the
omplexity ofone-sided error testers for the
orresponding properties.An interesting feature of our testers for Ck-minor freeness is that they are all obtained bylo
al redu
tions. Spe
i�
ally, our
y
le-freeness (i.e., C3-minor freeness) tester is obtained by arandomized redu
tion to testing bipartiteness, whereas our Ck-minor freeness tester is obtained bya deterministi
 redu
tion to testing
y
le-freeness.1.3.1 Testing
y
le-freenessWe mention that the two-sided error tester of [GR02℄ does not even try to �nd a simple
y
le. Itjust estimates the number of edges in the graph and reje
ts if this estimate ex
eed the number of3To the best of our knowledge, the
ase that seems
losest is the dis
ussion in [AS03, Se
. 2℄ that refers to the
omplexity of testing Kt;t-freeness in the adja
en
y matrix model (introdu
ed in [GGR98℄). Spe
i�
ally, [AS03,Clm. 2.2℄ asserts a two-sided tester of Kt;t-freeness having query
omplexity O(1=�), whereas [AS03, Clm. 2.3℄(
ombined with [GT03, Thm. 2℄) asserts that one-sided error testing of Kt;t-freeness requires
(��t=4) queries, whi
h(as noted at the end of [AS03, Se
. 2℄) is tight up to a polynomial fun
tion (i.e., there exists two-sided tester ofKt;t-freeness having query
omplexity ��O(t) = poly(��t=4)). It is telling that [AS03, Se
. 2℄ leaves the
omplexityof one-sided error testing undetermined (at the \polynomial sla
kness" level). Indeed, like other prior works thataddress this issue, their interest is in demonstrating the gap between the
omplexities of two-sided and one-sidederror testing, and not in determining the latter. 3

edges that
orrespond to any forest that spans the set of
onne
ted
omponents of the graph.4 Wealso mention that a \girth versus edge-density" lower bound implies that any graph G = ([N ℄; E)that is �-far from being
y
le-free must have a simple
y
le of length O((logN)=�).5 6 The problem,however, is �nding su
h a
y
le in sublinear time.Our one-sided error tester of
y
le-freeness �nds a
y
le in the original graph by randomlyredu
ing this problem to the problem of �nding an odd-length
y
le in an auxiliary graph. Spe
if-i
ally, the input graph G = ([N ℄; E) is randomly transformed into an auxiliary graph su
h thatea
h edge e 2 E is repla
ed, with probability 1=2 by a 2-vertex path (with an auxiliary vertex),and remains inta
t otherwise. Thus, with probability 1=2, ea
h
y
le in G is transformed into anodd-length
y
le. Furthermore, we show that if G is �-far from being
y
le-free, then (w.h.p.) theresulting graph is
(�)-far from being bipartite.A
ru
ial feature of the foregoing randomized redu
tion is that it is lo
al in the sense that ea
hoperation on the transformed graph
an be implemented by a
onstant number of operations on theoriginal graph. Thus, we
an emulate the exe
ution of a bipartite tester (i.e., the one of [GR99℄)on the transformed graph. This allows us to establish Theorem 1.5.1.3.2 Testing Ck-minor freeness, for any k > 3Re
all that the set of Ck-minor-free graphs
oin
ides with the set of graphs that have no simple
y
le of length at least k. Theorem 1.2 is proved by a (lo
al) redu
tion of testing Ck-minor-freenessto testing
y
le-freeness. For example, in the
ase of k = 4 we repla
e ea
h triangle by a 3-vertexstar; that is, we omit the original edges of this triangle, and introdu
e an auxiliary vertex thatis
onne
ted to the three
orresponding verti
es. We then prove that if the original graph is C4-minor-free then the resulting graph is
y
le-free, whereas if the original graph is �-far from beingC4-minor-free then the resulting graph is
(�)-far from being
y
le-free.For larger values of k, a more sophisti
ated lo
al repla
ement is used. That is, repla
ing allsmall
y
les by auxiliary verti
es will not do. To illustrate the diÆ
ulty of dealing with k > 4, notethat, unlike in the
ase k = 4, a Ck-minor free graph may
ontain
y
les of length smaller than kthat share some
ommon edges, and so the simple repla
ement will not yield a
y
le-free graph.(In
ontrast, note that a C4-minor free graph
an not
ontain a pair of triangles that share an edge(sin
e su
h a subgraph
ontains a
y
le of length 4).1.3.3 Testing H-minor freeness, for any
y
le-free HThe main
hallenge for this problem is testing T -minor freeness, where T is an arbitrary tree.The simple
ase in whi
h T is a k-vertex star, for some k � 2, provides a good illustration tothe underlying main idea. In this
ase we may sele
t a random vertex and start a BFS at thisvertex, stopping whenever either we en
ounter a layer with at least k verti
es or we explored more4Note that any
y
le-free graph is a forest, and if the number of trees in this forest is t, then the di�eren
e betweenthe number of verti
es and the number of edges in the graph equals t. The two-sided error tester of [GR02℄ estimatesthe number of edges and the number of
onne
ted
omponents in the graph, and
ondu
ts the adequate
omputation.The number of
onne
ted
omponents is estimated by the number of
onne
ted
omponents that have more thanO(1=�) verti
es, whereas the latter number is approximated by exploring the neighborhood of a few randomly sele
tedverti
es.5This is a
onsequen
e of the Moore bound - a graph of girth k has at most n1+1=k edges.6Consider any
onne
ted
omponent of G, denoted G0 = ([N 0℄; E0), that is �-far from being
y
le-free, and let dbe the
onstant degree bound of G. Note that jE0j � (1 + (d�=2)) �N 0, be
ause sele
ting an arbitrary spanning treeof G0 and omitting all non-tree edges yields a
y
le-free. The
laim follows by re
alling that any n-vertex graph thathas at least n1+(1=k) edges has girth at most 2k (i.e., has a simple
y
le of length at most 2k).4

than 4k=� layers (or we explored the entire
onne
ted
omponent). In the �rst
ase, we found thedesired minor and
an safely reje
t, whereas in the se
ond
ase we found a set of at least 4k=�verti
es that is separated from the rest of the graph by less than dk edges. Thus, if the graphG = ([N ℄; E)
ontains at least (1� �=4) �N start verti
es that do not lead the algorithm to reje
t,then G
an be de
omposed to
onne
ted
omponents that are ea
h T -minor free by omitting atmost �dN=2 edges (i.e., the edges that are in
ident at the �N=4 ex
eptional verti
es and the edgesof the aforementioned small
uts).Needless to say, the
ase of a general tree T is mu
h more
omplex, but the governing prin
ipleremains a tight relation between having few start verti
es that
ontain a T -minor at their vi
inityand the ability to de
ompose the graph to
onne
ted
omponents with few edges between them.This relation is
aptured by the following result, whi
h may be of independent interest.7Theorem 1.6 For every d and k there exists an r = r(d; k) su
h that if the r-neighborhood of avertex s in a graph of degree bound d does not
ontain a T -minor of some tree T with at most kverti
es, then this neighborhood
ontains a set S that is separated from the rest of the graph by lessthan �djSj=4 edges.In other words, if all \sub-neighborhoods" of the r-neighborhood of s are \expanding" (i.e., are notseparated from the rest by small
uts), then this r-neighborhood
ontains a T -minor of every treeT with at most k verti
es.We redu
e �ndingH-minors, whereH is an arbitrary
y
le-free graph (forest), to �nding disjointtree minors. Again, the redu
tion is lo
al, and in this
ase it is almost straightforward, where thesubtlety is related to the fa
t that we refer to one-sided error. Spe
i�
ally, if H
onsists of the
onne
ted
omponents H1; :::;Hm, then it does not ne
essarily hold that G is H-minor free if andonly if G is Hi-minor free for all i 2 [m℄. Still, this is \almost true" and so a small modi�
ation ofthe straightforward redu
tion will do.1.4 Another perspe
tive: Finding arbitrary forbidden minorsOur results may be viewed as progress in resolving an open problem, posed by Benjamini, S
hramm,and Shapira [BSS08℄, that refers to one-sided error testing of H-minor-freeness, for any �nite graphH (or even a �nite family of su
h graphs).8 Spe
i�
ally, Benjamini et al. [BSS08℄ proved that,for any H, the property of being H-minor-free
an be tested within query
omplexity that onlydepends on the proximity parameter,9 when allowing two-sided error. They
onje
tured that forany non-forest H, there exists an H-minor-freeness tester with query
omplexity O(pN). Theyalso mention that the
(pN) lower bound of [GR℄ holds for testing any non-forest H.Our results (essentially) resolve this question in the aÆrmative for the spe
ial
ase of H = Ck,for every k � 3.7We mention that the problem of �nding small trees in lo
ally expanding graphs has been studied before (
f.,e.g. [FP87℄). However, our Theorem 1.6 seems in
omparable, sin
e we seek spe
i�
 tree minors rather than spe
i�
trees, whereas our expansion
ondition is very weak.8Re
all that the graph G has an H-minor if H
an be obtained from G through a series of vertex removals, edgeremovals, and edge
ontra
tions (see, e.g., Lov�asz [Lov06℄). The graph G is H-minor free, if it
ontains no H-minor.Also re
all that the set of
y
le-free graphs
oin
ides with the set of C3-minor-free graphs, where Ck denote thek-
y
le graph (i.e., a graph
onsisting of a simple
y
le of length k).9The query
omplexity obtained in [BSS08℄ is triple-exponential in 1=�. The
omplexity was re
ently improved toexponential in 1=� [HKNO09℄, 5

Theorem 1.7 (see Theorems 1.1 and 1.2): For any
onstant k � 3, there exists a one-sided errortester of time
omplexity eO(poly(dk=�) � pN) for testing whether a
onstant degree N -vertex graphis Ck-minor-free. Furthermore, whenever the tester reje
ts, it outputs a simple
y
le of length atleast k (and at most poly(��1 logN)).We note that �nding
y
les seems the \hard" part of �nding minors; that is,
y
les are the sour
eof the
(pN) query lower bound. Re
all that [GR02, Prop. 4.3℄ establishes an
(pN) query lowerbound for any algorithm that �nds C3-minors (or, in other words, a one-sided property tester for
y
le-freeness). Although it was mentioned in [BSS08℄ that this lower bound may extend to H-minor-freeness, for any H that
ontains a
y
le, a proof of this fa
t has not appeared so far. Wepresent a proof of this fa
t, thus establishing an
(pN) query lower bound for any algorithm that�nds minors that
ontain
y
les. This stands in
ontrast to the following result (
f. Corollary 1.4).Theorem 1.8 (see Theorem 1.3): For any �xed
y
le-free graph H, there exists a one-sided errortester of query
omplexity that only depends on the proximity parameter for testing whether a given
onstant degree graph is H-minor-free. Furthermore, whenever the tester reje
ts, it outputs anH-minor of the input graph.The query
omplexity of the foregoing tester is exponential in (16d=�)O(k), where k denotes thenumber of verti
es in H and � is the proximity parameter. We mention that better
omplexity
anbe a
hieved in some spe
ial
ases (e.g., stars and depth-two trees, see Se
tion 7).A wider perspe
tive on �nding forbidden minors. The �rst result dealing with graphminors is the well known Kuratowski-Wagner theorem [Kur30, Wag37℄ that states that any non-planar graph
ontains a K5 or K3;3 minor. Consider a property P su
h that if G 2 P, then, for anyminor H of G, H 2 P. Su
h a property is minor-
losed. It was
onje
tured by Wagner that for anyminor-
losed property P, there is a �nite set of graphs HP su
h that G 2 P i� G is H-minor free,for all H 2 HP . Robertson and Seymour had a long series of deep papers, whi
h
ulminated in theproof of this
onje
ture [RS04℄,
alled the Graph-Minor Theorem. From an algorithmi
 perspe
tive,one of the milestones in this series was a polynomial time algorithm that
he
ked H-minor freeness,for any graph H [RS95℄.It is natural to ask this algorithmi
 question, from a sublinear perspe
tive. Do we really needto look at the whole graph to �nd a forbidden minor? Suppose we are given a graph G that is farfrom being minor-free, say a (small)
onstant fra
tion of the edges needs to be removed to makeG minor-free. Then,
an we �nd an H-minor by looking at a sublinear portion of the graph? Thiswould imply the interesting
ombinatorial statement that su
h a graph
ontains sublinear sized H-minors. This paper is the �rst investigation into this problem. Indeed, one-sided property testers
an be thought of as sublinear time minor �nders (see Se
tion 1.2).1.5 Further re
e
tions regarding one-sided errorThe relative power of two-sided versus one-sided error randomized de
ision pro
edures has been thefo
us of
onsiderable study in many settings, in
luding in property testing. Indeed, in any setting,one-sided error pro
edures o�er the advantage of never reje
ting yes-instan
es. However, as wealready saw in Se
tion 1.2, this advantage has a spe
ial appeal in the
ontext of property testing,sin
e it yields algorithms for very eÆ
iently �nding some desired stru
tures (whenever the graphis far from being \free of them"). Additional bene�ts of one-sided error testers are dis
ussed next.6

Firstly, we note that property testing is asymmetri
 in nature: It refers to distinguishing ob-je
ts that perfe
tly satisfy a predetermined property from obje
ts that are far from satisfying thisproperty. Indeed, property testing is a relaxation of the original de
ision task (whi
h refers todistinguishing obje
ts that satisfy the property from obje
ts that do not satisfy it), where therelaxation is applied to one type of instan
es but not to the other. In this
ontext, it is naturalto apply the probabilisti
 relaxation also to one type of instan
es (i.e., the far-away instan
es) butnot to the other.Se
ondly, we note that one of the main appli
ations of property testers is their potential use asa preliminary \fast but
rude" de
ision step, whi
h when
oupled with an exa
t (but slow) de
isionpro
edure yields a pro
edure that is always
orre
t and often very fast. That is, we envision usinga property tester as a \sieve" that reje
ts \on the spot" (i.e., \fast") very bad instan
es (i.e.,those that are far from satisfying this property), while passing the rest of the instan
es for furtherexamination. In su
h a
ontext, we
an a�ord passing very bad instan
es for further examination(sin
e all this means is a waste of time), but we
annot a�ord failing a good instan
e.Lastly, we
onsider the relationship between property testing and lo
al stru
tures in the testedproperty. Intuitively, the existen
e of a property tester means that a global stru
ture (i.e., dis-tan
e of the obje
t to the property) is re
e
ted in (or
o-related with) a lo
al stru
ture (i.e., thepart of the obje
t being probed by the tester). In the general
ase (of two-sided error), this
o-relation is statisti
al, whereas in the
ase of one-sided error this
orrelation is a
tually a (\robust")
hara
terization.The last aspe
t is parti
ularly
lear in the
urrent study. Firstly, the notion of lo
al stru
tureis most appealing in the bounded-degree model, where it refers to graph neighborhoods. Se
ondly,the di�erent types of lo
al stru
tures underlying the two-sided and one-sided error testers is moststriking in the
ase of
y
le-freeness. The two-sided error tester of [GR02℄ relies on the fa
t thatdistan
e from
y
le-freeness in
onne
ted graphs is re
e
ted by the di�eren
e between the numberof edges and the number of verti
es, whereas these numbers
an be estimated (with two-sidederror) by sampling the graph's verti
es. Note that su
h estimates
annot yield a
hara
terization(let alone a robust one) of the
y
le-free graphs. In
ontrast, our one-sided error tester relies on thefa
t that distan
e from
y
le-freeness is re
e
ted in the density of short simple
y
les in the graph,whereas su
h
y
les
an be found by an appropriate randomized exploration of the graph. Indeed,this yields a (robust)
hara
terization of the set of
y
le-free graphs (i.e., a graph is
y
le-free i� it
ontains no simple
y
le, and the farther the graph is from being
y
le-free the shorter and moreabundant these
y
les are).1.6 The general (unbounded-degree) graph modelOur algorithm for �nding
y
les in bounded-degree graphs (i.e., Theorem 1.1) extends to thegeneral graphs model (i.e., the model in [PR02℄), where distan
es are measured with respe
t tothe a
tual number of edges (see Se
tion 8).10 This follows by an alternative presentation of thebasi
 randomized redu
tion, whi
h may be viewed as redu
ing
y
le-freeness to a generalizationof 2-
olorability. In this generalization, edges of the graph are labeled by either eq or neq, and alegal 2-
oloring (of the verti
es) is one in whi
h every two verti
es that are
onne
ted by an edge10Algorithms in this model use the same type of in
iden
e queries as in the main (bounded-degree) model we
onsider. The di�eren
e is that a graph G = ([N ℄; E) is said to be �-far from H-minor-freeness if �jEj edges (ratherthan �dN=2 edges) must be removed from G in order to obtain an H-minor-free subgraph. The point is that thenumber of edges is related to the average degree of G rather than to its degree (upper) bound, whi
h may besigni�
antly smaller. Thus, distan
es under this model are possibly larger, and thus the testing requirement ispossibly harder. 7

labeled eq (resp. neq) are assigned the same
olor (resp., opposite
olors). We also observe thatthe Bipartite testers of [GR99, KKR04℄ extend to this generalization of 2-
olorability.We mention that analogous extensions do not work for testing Ck-minor freeness, for k > 3, norfor testing tree-minor-freeness. In fa
t, we show that, in the general graph model, it is not possibleto �nd tree-minors (or even test freeness with two-sided error) by using o(pN) queries.1.7 OrganizationSe
tion 2
ontains a formal statement of the relevant de�nitions and terminology. The testers ofCk-minor freeness are presented in Se
tions 3{5. Our main result (i.e., the one-sided error testerof
y
le-freeness) is presented in Se
tion 3. The redu
tion of testing Ck-minor freeness to testing
y
le-freeness is presented in Se
tion 5, but Se
tion 4 provides an adequate warm-up by treatingthe
ase of k = 4.In Se
tion 6, we prove the lower bound
laimed in [BSS08℄ regarding the query
omplexity ofone-sided error testing H-minor freeness, when H
ontains a
y
le. In
ontrast, in Se
tion 7 we
onsider the
ase that H is
y
le-free, and present the improved testers for H-minor freeness in this
ase (i.e., when H is a forest).Finally, in Se
tion 8 we
onsider the unbounded-degree model, dis
ussed in Se
tion 1.6.2 PreliminariesThis work refers to the bounded-degree model (introdu
ed in [GR02℄). This model refers to a �xeddegree bound, denoted d. An N -vertex graph G = ([N ℄; E) (of maximum degree d) is representedin this model by a fun
tion g : [N ℄ � [d℄ ! f0; 1; :::; Ng su
h that g(v; i) = u 2 [N ℄ if u is the ithneighbor of v and g(v; i) = 0 if v has less than i neighbors. Testing in this model is
aptured bythe general de�nition of property testing of fun
tions, when applied to fun
tions of the foregoingtype and
onsidering only graph properties (i.e., properties that are preserved under isomorphism).That is, saying that a tester has ora
le a

ess to a graph G means that it is given ora
le a

ess tothe
orresponding fun
tion g.De�nition 2.1 (testers in the bounded-degree model): Let d 2 N be �xed and � be a property ofgraphs with maximum degree at most d. We denote the restri
tion of � to N -vertex graphs by �N .A randomized ora
le ma
hine T is
alled a tester for � if the following two
onditions hold:1. For every N 2 N and � 2 [0; 1℄, on input (N; �) and when given ora
le a

ess to any G 2 �Nthe ma
hine T a

epts with probability at least 2=3; that is, Pr[TG(N; �) = 1℄ � 2=3.2. For every N 2 N and � 2 [0; 1℄, and every N -vertex graph G that is �-far from �N , it holds thatPr[TG(N; �) = 1℄ � 1=3, where G = ([N ℄; E) is �-far from �N if for every G0 = ([N ℄; E0) 2 �Nit holds that the symmetri
 di�eren
e of E and E0
ontains more than � � dN=2 elements.11In
ase the �rst
ondition holds with probability 1, we say that T has one-sided error. Otherwise,we say that T has two-sided error.11Alternatively, representing G by g : [N ℄ � [d℄ ! f0; 1; :::; Ng (resp., G0 by g0 : [N ℄ � [d℄ ! f0; 1; :::; Ng) wemay require that Prx2[N℄�[d℄[g(x) 6= g0(x)℄ > �. Note that in this
ase, for ea
h G we should
onsider all legitimaterepresentations of G0 as a fun
tion g0.
8

Throughout our study, the degree bound d � 3 is a
onstant,12 and sometimes O/Omega-notionshide a dependen
e on d. The query and time
omplexities of testers are stated as fun
tions of thegraph size, N , and the proximity parameter, �.Notation. For a graph G = ([N ℄; E), we denote the set of neighbors of v 2 [N ℄ (in G) by �G(v);that is, �G(v) = fu2 [N ℄ : fu; vg2Eg.Terminology. We stress that by a
y
le in a graph G = ([N ℄; E) we mean a sequen
e of verti
es(v1; : : : ; vt; vt+1) su
h that v1 = vt+1 and for every i 2 [t℄ it holds that fvi; vi+1g 2 E; that is,(u; v; w; v; u) (or even (u; v; u)) is
onsidered a
y
le. A simple
y
le is a
y
le as above in whi
ht � 3 and jfvi : i 2 [t℄gj = t.3 Testing Cy
le-FreenessAs stated in the introdu
tion, we redu
e testing
y
le-freeness to testing bipartiteness. Re
all thatwe
onsider bounded-degree graphs, where the degree bound d is assumed to be a
onstant (for thegeneral
ase, see Appendix 8). We stress that the redu
tion is randomized and lo
al (i.e., operationsin the resulting graph are easily implemented via operations in the original graph). Wishing toavoid a general de�nition of (randomized) lo
al redu
tions, we expli
itly present the tester obtainedby it.For a �xed graph G = ([N ℄; E) and fun
tion � : E ! f1; 2g, we denote by G� the graphobtained from G by repla
ing ea
h edge e 2 E su
h that �(e) = 2 by a 2-edge path (with anauxiliary intermediate vertex). Ea
h edge e 2 E su
h that �(e) = 1 remains an edge in G� . Thatis, the graph G� = (V� ; E�) is de�ned as follows:V� def= [N ℄ [fae : e 2 E ^ �(e) = 2g (1)E� def= fe : e 2 E ^ �(e) = 1g [ffu; aeg; fae; vg : e = fu; vg 2 E ^ �(e) = 2g (2)We now turn to the tester itself. The tester emulates the exe
ution of the bipartiteness testingalgorithm [GR99℄ on G� by performing queries to G. The bipartiteness testing algorithm performstwo types of operations: sele
ting a vertex uniformly at random and taking random walks byquerying verti
es on their neighbors. Thus the exe
ution of the tester boils down to emulatingthese operations, as des
ribed next. We use ? to denote \null". If we query for the ith neighbor ofvertex v and no su
h neighbor exists, we get ? as an answer.Algorithm 3.1 (the
y
le-freeness tester): Given input graph G = ([N ℄; E), the tester sele
tsuniformly at random a fun
tion � : E ! f1; 2g and invokes a bipartite tester, denoted T , on thegraph G� , emulating its operations as follows.1. If T wishes to sele
t a random vertex in G� , then the tester sele
ts uniformly a vertex v 2 [N ℄,outputs v with probability 1=(d+1), and otherwise sele
ts ea
h neighbor u of v with probability1=(2(d + 1)) and outputs afu;vg if �(fu; vg) = 2. Indeed, this pro
ess is guaranteed to outputa uniformly distributed vertex with probability at least 1=(d + 1), and in
ase of failure it isrepeated (up to O(logN) times).12There is little point in
onsidering d � 2, be
ause in this
ase the problems we
onsider are either trivial (i.e.,for d = 1) or very easy (i.e., for d = 2). Spe
i�
ally, for d = 2, one
an test Ck-minor-freeness by sele
ting a randomvertex and exploring its k=2-neighborhood. 9

2. If T queries for the ith neighbor of vertex v 2 [N ℄, then the tester queries for the ith neighborof v, and answers a

ordingly. That is, if the answer was ?, then ? is given as answer toT , whereas if the answer was u, then u is given to T if �(fu; vg) = 1 and afu;vg is givenotherwise.Finally, if T queries for the ith neighbor of a vertex afu;vg and u < v then the tester answerwith u if i = 1, with v if i = 2, and with ? if i > 2.When T halts, the
urrent tester halts with the same verdi
t.Furthermore, if the bipartite tester provides an odd-length
y
le in G� , then we
an easily obtaina
orresponding
y
le in G (by
ontra
ting the 2-vertex paths that appear on it into single edges).We note that the random fun
tion � : E ! f1; 2g
an be sele
ted \on the
y" (i.e., whenever weneed the value of �(e), if this value is still unde�ned then we sele
t it uniformly in f1; 2g and storeit for possible future use).Using the bipartite tester of [GR99℄ in the role of T , we obtain an algorithm of the desired
omplexity that always a

epts a
y
le free graph (see below). Our analysis is thus fo
used on the
ase that G is not
y
le-free.Lemma 3.2 (analysis of the redu
tion):1. If G is
y
le-free then, for every
hoi
e of � : E ! f1; 2g, the graph G� is bipartite.2. If G is not
y
le-free then, with probability at least 1=2 over the random
hoi
e of � : E !f1; 2g, the graph G� is not bipartite.3. There exists a universal
onstant
 > 0 su
h that if G is �-far from being
y
le free then, withprobability at least 1 � exp(�
�dN) over the random
hoi
e of � : E ! f1; 2g, the graph G�is
 � �-far from being bipartite.Proof: The �rst item follows from the fa
t that if G is
y
le-free then, for every � : E ! f1; 2g,the graph G� is also
y
le-free, and thus bipartite. The se
ond item follows by observing that any
y
le in G is transformed with probability 1=2 to an odd-length
y
le in G� . Turning to the lastitem, we
onsider an arbitrary graph G that is not
y
le-free. Denoting by � the a
tual number ofedges (not its fra
tion) that needs to be omitted from G in order to obtain a
y
le-free graph, weshall show that (with probability at least 1 � exp(�
�dN)) the number of edges that needs to beomitted from G� in order to obtain a bipartite graph is at least
 ��.We may assume, without loss of generality, that the graph G is
onne
ted, or else we applythe
laim separately to ea
h
onne
ted
omponent that is not
y
le-free. We may also assume thatG has no verti
es of degree 1, sin
e trun
ating su
h verti
es maintains the value of � (i.e., theabsolute distan
e from being
y
le-free) as well as the (distribution of) the number of edges thathave to be removed to make G� bipartite. Finally, ex
ept in the
ase that G is a simple
y
le,we may also assume that there are no verti
es of degree 2, sin
e we
an
ontra
t paths that only
ontain intermediate verti
es of degree 2 to a single edge, while again preserving � as well as the(distribution of) the number of edges that have to be removed to make G� bipartite.1313The latter assertion follows from the fa
t that the distribution of the parity of the path-lengths inG� is maintained(i.e., both the original path and the
ontra
ted path inG� have odd/even length with probability 1=2. We also mentionthat the
ontra
ted graph G may
ontain self-loops and parallel edges, but the rest of the argument holds in this
asetoo. We stress that the
ontra
ted graph is merely a mental experiment for proving the
urrent lemma.10

In light of the forgoing, we
onsider a
onne
ted graph G = ([N ℄; E) in whi
h ea
h vertex hasdegree at least 3. It follows that � = jEj � (N � 1) > N=2. We shall prove that, with highprobability over the
hoi
e of � , more than
 �� edges must be omitted from the graph G� in orderto obtain a bipartite graph.For ea
h E0 � E of size
�, we
onsider the probability that G0� is bipartite, where G0� denotesthe graph obtained fromG� by omitting the edges ofG� that repla
e the edges inE0 (or alternativelyapplying the randomized redu
tion to the graph G0 = ([N ℄; EnE0)).14 Note that G� is at (absolute)distan
e at most
� from being bipartite if and only if there exists a set E0 of size
� su
h thatG0� is bipartite. Thus, we havep def= Pr� [9E0 � E su
h that jE0j =
� and G0� is bipartite℄� XE0�E: jE0j=
�Pr� [G0� is bipartite℄� �jEj
�� � 2N�1 � 2�(jEj�
�)where the se
ond inequality is due to
onsidering all possible 2-partitions of [N ℄ and noting that forea
h edge e in E nE0 and ea
h 2-partition �, with probability 1=2 over the
hoi
e of �(e) 2 f1; 2g aviolation is
ause by e. Spe
i�
ally, if �(u) = �(v) and �(fu; vg) = 1, then the edge fu; vg violatesthe 2-partition �, and ditto if �(u) 6= �(v) and �(fu; vg) = 2. Note that the hypothesis that G is(
onne
ted and is) at (absolute) distan
e � from being
y
le-free implies that jEj = (N � 1) + �.Now, substituting jEj by (N � 1) + � and using � � N=2 (and
 < 1=2), we getp < �N +�
� � � 2�(1�
)�< �3�
�� � 2��=2whi
h vanishes exponentially in � provided that
 > 0 is a suÆ
iently small
onstant.Con
lusion. Combining Lemma 3.2 with the straightforward observations pre
eding it, we
on-
lude that Algorithm 3.1 is a one-sided error tester for
y
le-freeness, and its
omplexity iseO(poly(1=�) � pN). This establishes Theorem 1.5.4 Testing C4-Minor-FreenessAs a warm-up towards testing Ck-minor-freeness, for any k � 3, we present the treatment of thespe
ial
ase of k = 4. We a
tually redu
e the task of testing C4-minor-freeness to the task of testingC3-minor-freeness. The redu
tion is summarized in the following
onstru
tion.Constru
tion 4.1 (the redu
tion): Given a graph G = ([N ℄; E) (of max degree d), we (lo
ally)
onstru
t the auxiliary graph G0 = ([N ℄[T;E0) su
h that T
ontains the vertex 5u;v;w (referred toas a \triangle" vertex), if and only if fu; vg; fv; wg; fw; ug 2 E andE0 =0�E n0� [u;v;w:5u;v;w2Tfu; vg1A1A [�fu;5u;v;wg : 5u;v;w 2 T	 : (3)14Note however that if G0� is bipartite then G�
an be made bipartite by omitting jE0j (rather 2jE0j) edges, sin
eit suÆ
es to omit a single edge from ea
h path in G� that repla
ed an edge in E0.11

Spe
i�
ally, the set of neighbors of v 2 [N ℄ in G0, denoted �G0(v),
onsists of the following elementsof [N ℄ [T .1. Neighbors of v in G that do not reside in G on a triangle together with v; that is, u 2 �G(v)is in �G0(v) if and only if �G(u) \ �G(v) = ;.2. Ea
h triangle that
ontains v in G; that is, 5u;v;w is in �G0(v) if and only if u;w 2 �G(v)and fw; ug 2 E.The set of neighbors of 5u;v;w 2 T equals fu; v; wg. Noting that d + �d2� � d2, we view G0 as agraph of maximal degree d2.For an illustration of Constru
tion 4.1 see Figure 1. Note that given any v 2 [N ℄, we
an easily
c

a b d

e c

a b d

e

G’G

c

a b d

e

G

c

a b d

e

G’

Figure 1: An illustration for Constru
tion 4.1. On the left, G is C4-minor free, and indeed G0 is
y
le-free;while on the right, G is not C4-minor free, and G0
ontains
y
les (but no
y
les of length 3 (triangles).)determine its neighbors in G0 by
he
king the foregoing
onditions. Similarly, for every u; v; w,we
an easily determine whether 5u;v;w is in G0. Lastly, note that we
an sele
t a vertex of G0uniformly by using the following pro
edure.1. Sele
t uniformly v 2 [N ℄.2. Sele
t one of the following two instru
tions at random with equal probability.(a) (Generating a vertex of G):Output v with probability d�2.(b) (Generating a triangle):Sele
t uniformly u;w 2 �G(v). If fu;wg 2 E, then output 5u;v;w with probabilitypv = d�2 � j�G(v)j2=6.In all the other
ases, there is no output.Thus, this pro
ess outputs ea
h vertex of G with probability N�1 �0:5 �d�2 = d�2=2N , and outputsea
h 5u;v;w 2 T with probabilityPx2fu;v;wgN�1 �0:5 �2j�G(x)j�2 �px = d�2=2N . Sin
e there are atleast N verti
es in G0, the probability that the pro
ess does not output any vertex in G0 is at most(1�d�2). If we repeat the pro
ess �(logN) times (re
all that d is assumed to be a
onstant), thenthe probability that we get no output is 1=poly(N). Sin
e the total size of the sample needed iso(N), by a union bound, the probability that this o

urs at any step of the algorithm, is negligible,and this
an be a

ounted for in the one-sided error probability by letting the algorithm a

ept in
ase sampling fails. 12

Algorithm 4.2 (the C4-minor-freeness tester): Given input graph G = ([N ℄; E), the tester emu-lates the exe
ution of Algorithm 3.1 on the graph G0 = ([N ℄[T;E0) as de�ned in Constru
tion 4.1.In the emulation, verti
es of G0 are sele
ted at random and their neighbors are explored on the
y,as detailed above.The analysis of Algorithm 4.2 redu
es to an analysis of Constru
tion 4.1.Claim 4.3 If G is C4-minor-free, then G0 is
y
le-free.Proof: We �rst give a high-level idea of the proof and then give a detailed argument. By thehypothesis, the only simple
y
les in G are triangles, and they are repla
ed in G0 by stars
enteredat auxiliary verti
es. Spe
i�
ally, the triangle fu; v; wg (i.e., the edges fu; vg; fv; wg; fw; ug) isrepla
ed by a star-tree
entered at 5u;v;w and having the leaves u; v; w. Note that this repla
ement
an form no simple
y
les in G0, be
ause the simple paths in G0
orrespond to simple paths in G(where the sub-path v|5u;v;w |w
orresponds to the edge v|w).The
orresponding detailed argument pro
eeds as follows. Assume,
ontrary to the
laim, thatthere exists a simple
y
le 0 = v1|v2{ � � � {vt|vt+1 = v1 in G0. Consider repla
ing ea
h length-2subpath u|5u;w;x|w in 0 by the edge (in G) between u and w (where this edge exists be
ause uand w belong to a
ommon triangle and u 6= w). Sin
e, by
onstru
tion of G0, there are no edges inG0 between triangle verti
es, this way we obtain a
y
le in G, whi
h we denote by . We next showthat is a simple
y
le of length greater than 3, and we rea
h a
ontradi
tion to the hypothesisthat G is C4-minor-free.We �rst verify that the length of is greater than 2. This is true be
ause otherwise, the
y
le 0 is either of the form u|5u;w;x|w|u, or it is of the form u|5u;w;x1|w|5u;w;x2|u. In the�rst
ase 0
ontains an edge fw; ug of a triangle in G, whi
h is not possible by
onstru
tion of G0.In the se
ond
ase, sin
e 0 is simple (so that x1 6= x2), there is a simple 4-
y
le u|x1|w|x2|uin G (
ontradi
ting the hypothesis that G is C4-minor-free). It follows that is a simple
y
le andit remains to verify that its length is greater than 3.Suppose that the length of is 3, that is, = u|w|v|u is a triangle in G. It follows thatnone of the edges fu;wg; fw; vg; fv; ug belong to G0 and therefore, 0 = u|5u;w;x1 |w|5w;v;x2|v|5v;u;x3 |u, where the triangles are distin
t and hen
e at least one of them does not equal5u;w;v. But this implies that there exists a simple 4-
y
le in G (
ontradi
ting the hypothesis thatG is C4-minor-free).Claim 4.4 If G is �-far from being C4-minor-free, then G0 is
(�)-far from being
y
le-free, wherethe Omega-notation hides a polynomial in d.Proof: Suppose that G0 is Æ-
lose to being
y
le-free, where the distan
e refers to the degreebound of G0, whi
h is d2. Let R0 be a set of at most Æ � d2 � (N + jT j)=2 edges su
h that removingR0 from G0 yields a
y
le-free graph, ([N ℄ [T;E0 n R0). Let R � E be a set of edges that
onsistsof (1) all edges of E that are in R0, and (2) ea
h edge fu; vg 2 E su
h that fu;5u;v;wg is in R0.Hen
e, jRj � 2jR0j < Æ � d4N , where we use jT j � �d2� �N . We next prove that removing R from Gyields a graph that is C4-minor-free, and it follows that G is 2d2Æ-
lose to being C4-minor-free.Assume,
ontrary to the
laim, that for some t � 4 there exists a simple
y
le v1|v2{ � � � {vt|v1in the resulting graph (i.e., in the graph ([N ℄; EnR)). We
onsider the
orresponding (not ne
essarilysimple)
y
le in the graph ([N ℄ [T;E0 nR0):Case 1: If the edge fvi; vi+1g 2 E n R is not a part of any triangle in G, then fvi; vi+1g 2 E0 n R0,be
ause fvi; vi+1g is an edge of G0 and it
annot be in R0 (sin
e this would imply that13

fvi; vi+1g 2 R). In this
ase, we just use the edge fvi; vi+1g on the
y
le in the graph([N ℄ [T;E0 n R0).Case 2: If the edge fvi; vi+1g 2 E nR is part of a triangle vi; vi+1; w (in G), then fvi;5vi;vi+1;wg 2E0 nR0 and fvi+1;5vi;vi+1;wg 2 E0 nR0, be
ause both pairs are edges of G0 and
annot be in R0(sin
e this would imply that fvi; vi+1g 2 R). In this
ase, we repla
e the edge fvi; vi+1g 2 EnRby the length-two-path vi|5vi;vi+1;w |vi+1 (in the graph ([N ℄ [T;E0 nR0)).Observe that the \triangle" verti
es used in Case (2) need not be distin
t, but they
an
ollide onlywhen they refer to three
onse
utive verti
es on the original t-
y
le (i.e., if5vi;vi+1;w1 = 5vj ;vj+1;w2 ,for i < j, then vj = vi+1 must hold, and w1 = vj+1 = vi+2 follows). Su
h
ollisions
an beeliminated at the
ost of omitting a single \non-triangle" vertex (i.e., the path vi| 5vi;vi+1;vi+2|vi+1| 5vi;vi+1;vi+2 |vi+2 is repla
ed by the path vi| 5vi;vi+1;vi+2 |vi+2). Thus, we derive asimple
y
le of length at least t � 4 in the graph ([N ℄[T;E0 nR0) (sin
e we have a \triangle" vertexper ea
h omitted \non-triangle" vertex). This
ontradi
ts the hypothesis that ([N ℄ [T;E0 n R0) is
y
le-free, and so the
laim follows.Con
lusion. Combining Claims 4.3 and 4.4, we
on
lude that there exists a one-sided error testerof
omplexity is eO(poly(1=�) � pN) for C4-minor-freeness.5 Testing Ck-Minor-Freeness, for any k � 4In this se
tion we show that, for any k � 4, the task of testing Ck-minor-freeness redu
es to thetask of testing C3-minor-freeness. The redu
tion extends the ideas underlying the redu
tion oftesting C4-minor-freeness to testing C3-minor-freeness (as presented in Se
tion 4).The basi
 idea of the redu
tion is repla
ing simple
y
les that have length smaller than k bystars. A
tually, we repla
e
ertain subgraphs that
ontain su
h
y
les by stars. We start by de�ningthe
lass of (indu
ed) subgraphs that we intend to repla
e by stars. These subgraphs (or rathertheir vertex sets) will be
alled spots. Below, the term 2-
onne
tivity means 2-vertex
onne
tivity;that is, a graph is
alled 2-
onne
ted if every two verti
es in the graph
an be
onne
ted by twovertex-disjoint paths.De�nition 5.1 (spots): A set S � [N ℄ is
alled a k-spot of the graph G = ([N ℄; E) if the followingthree
onditions hold:1. The subgraph indu
ed by S, denoted GS,
ontains no simple
y
le of length � k; that is, GSis Ck-minor-free.2. The subgraph indu
ed by S is 2-
onne
ted.3. For every u 6= v 2 S, either u and v are not
onne
ted by any path that is external to GS orthe length of every su
h external path is at least `(k) def= 2k. Here, by a path external to GS wemean a path that does not use any edge that is in
ident to a vertex in S (i.e., all intermediateverti
es of the path belong to [N ℄ n S).For example, every 4-spot ofG indu
es a triangle inG, whereas the set of possible subgraphs indu
edby 5-spots of G
onsists of the following graphs: the 4-
y
le (i.e., C4), the 4-
y
le augmented bya
hord, the 4-
lique (i.e., K4), and the graphs K2;n and K 02;n for every n � 3, where K 02;n is the14

graph K2;n augmented by a single edge that
onne
ts the two verti
es on the small side.15 (Indeed,in Se
tion 4 we essentially used a relaxed notion of a 4-spot in whi
h the third
ondition was notrequired.)5.1 Some basi
 fa
ts regarding spotsSin
e k is �xed throughout the rest of our dis
ussion, we may omit it from the notations and referto k-spots as spots. A few basi
 properties of spots are listed below.Claim 5.2 If S is a k-spot of G, then the diameter of GS is smaller than k=2.It follows that jSj <Pk=2i=0 di < 2dk=2 < dk�1 (sin
e k � 4 and d � 3).16Proof: Otherwise,
onsider u; v 2 S su
h that the distan
e between u and v in GS is at leastk=2. Sin
e GS is 2-
onne
ted, there exists a simple
y
le in GS that passes through both u andv, and it follows that this
y
le has length at least k, whi
h
ontradi
ts the hypothesis that GS isCk-minor-free.Note that, for any spot S and every three distin
t verti
es u; v; w 2 S, the subgraph GS
ontainsa simple path that goes from u to v via w. This hold by the very fa
t that GS is 2-
onne
ted (i.e.,the se
ond
ondition in De�nition 5.1). By Claim 5.2 the length of this path is less than dk�1. Aswe shall show next, a mu
h better bound follows by using the fa
t that GS is Ck-minor-free (i.e.,the �rst
ondition in De�nition 5.1),Claim 5.3 For every k-spot S and distin
t verti
es u; v; w 2 S, the subgraph GS
ontains a simplepath of length at most 2k � 1 that goes from u to v via w.Su
v wx

Figure 2: An illustration for the proof of Claim 5.3. The jotted line is the path between u and v that passesthrough w.Proof: We just take a
loser look at the standard proof that the fa
t that a graph is 2-
onne
tedimplies the existen
e of a u{ � � � {w{ � � � {v path (for every three verti
es u; v; w in the graph). The15Re
all that Km;n denotes the
omplete bipartite graph with m verti
es on one side and n verti
es on the otherside; that is, Km;n = ([m+ n℄; ffi; m+ jg : i2 [m℄; j2 [n℄g).16We mention that there may exists spots of size d(k�1)=2. Consider, for example, a graph that
onsists of two
opies of a depth (d � 1)-ary tree of depth (k � 1)=2 su
h that ea
h vertex in one tree is
onne
ted to its mirrorvertex in the se
ond tree. To see that this graph is Ck-minor-free,
onsider the
orresponden
e between
y
les on thisgraphs and traversals of parts of the original tree, and note that simple
y
les
orrespond to traversals in whi
h ea
hedge is used at most twi
e. Sin
e su
h traversals have length at most twi
e the depth of the tree, the
laim follows.15

proof starts by
onsidering two di�erent vertex-disjoint u{ � � � {w paths, and an arbitrary pathbetween v and w. In the
urrent
ase (i.e., by Ck-minor-freeness), we may assume that the totallength of the �rst two paths is smaller than k. Similarly, without loss of generality, the length ofthe third path is smaller than k. Pro
eeding as in the standard proof, we ask whether the thirdpath (i.e., the v{ � � � {w path) interse
ts both the u{ � � � {w paths. If the answer is negative, then weare done (as we obtain the desired simple path by
on
atenating the path v{ � � � {w to the w{ � � � {upath that does not interse
t it). Otherwise, let x be the \
losest to v" vertex on the path v{ � � � {wthat appear on either of the u{ � � � {w paths; that is, x is on one of the u{ � � � {w paths and thesub-path v{ � � � {x (of the path v{ � � � {w)
ontains no vertex from either the u{ � � � {w paths. Notethat x = v is possible (but x = w is not), and assume, w.l.o.g., that x resides on the �rst u{ � � � {wpath. Then,
onsider the path obtained by
ombining the following three path segments: (1) thesegment v{ � � � {x of the path v{ � � � {w, (2) the segment x{ � � � {w of the �rst u{ � � � {w path, and(3) the se
ond u{ � � � {w path. Note that the total length of this path is at most 2(k � 1) (i.e., thetotal length of the three paths), and that the three segment do not interse
t (sin
e the v{ � � � {xsegment does not interse
t the x{ � � � {w segment nor the u{ � � � {w path by
hoi
e of v). For anillustration of the argument, see Figure 2.
wu0v0 S2uvS1

Figure 3: An illustration for the proof of Claim 5.4.Claim 5.4 If S1 6= S2 are k-spots of G, then jS1 \ S2j � 1.It follows that the number of spots in a graph G is upper-bounded by the number of edges in G,be
ause every spot S that
ontains v must also
ontain at least two of v's neighbors whereas spotsthat
ontain v may not share any other vertex. Thus, vertex v may parti
ipate in at most j�(v)j=2spots.Proof: Otherwise,
onsider u; v 2 S1 \ S2 and w 2 S2 n S1. By Claim 5.3, the subgraph GS2
ontains a simple path of length at most 2k � 1 that goes from u to v via w. Let u0 (resp., v0)be the last (resp., �rst) vertex of S1 that appears on this path before rea
hing w (resp., afterleaving w). Then, we get a simple path (in G) from u0 2 S1 to v0 2 S1 n fu0g su
h that this path
ontains only intermediate verti
es of S2 n S1. Re
alling that this path has length at most 2k � 1,we rea
h a
ontradi
tion to the hypothesis that S1 is a k-spot (spe
i�
ally to the third
onditionof De�nition 5.1). For an illustration of the argument, see Figure 3.Claim 5.5 Ea
h simple
y
le in any Ck-minor-free graph G is a subset of some k-spot of G.Proof: Consider the following iterative pro
ess of
onstru
ting a spot S that
ontains the afore-mentioned
y
le. Initially, we set S to equal the set of verti
es that reside on this
y
le. Clearly,this set S satis�es the �rst two
onditions of the de�nition of a spot (i.e., De�nition 5.1), whi
h is16

an invariant that we shall maintain throughout the iterative pro
ess. If the
urrent S satis�es alsothe third
ondition of the de�nition of a spot, then S is a spot and we are done. Otherwise, we
onsider a simple path external to S that
onne
ts two of its verti
es; that is, the verti
es u; v 2 S.Adding this path to S we obtain a new set that satis�es Condition 1 (sin
e G is Ck-minor-free).To see that the new set satis�es Condition 2, we need to show that there exist two disjoint pathsbetween ea
h pair of verti
es that are not both in S.uv vw1w2 w1w2 uSS
Figure 4: An illustration for the proof of Claim 5.5.In the
ase that w1 and w2 are both new verti
es (whi
h reside on the aforementioned S-externalpath), we
onne
t them by the dire
t path that resides outside of S as well as by a simple paththat (wlog)
onne
ts w1 to u (via the external path),
onne
ts u and v via S, and
onne
ts v andw2 (via the external path). In the
ase that w1 is new but w2 2 S, we use the external path to
onne
t w1 to u and v, respe
tively, and use the fa
t that there are vertex disjoint paths in GS that
onne
t u and v to w2. For an illustration see Figure 4.5.2 The a
tual redu
tionUsing these fa
ts, we are ready to present our redu
tion.Constru
tion 5.6 (the redu
tion): Given a graph G = ([N ℄; E) (of max degree d), we (lo
ally)
onstru
t the auxiliary graph G0 = ([N ℄[fhSi : S2Sg; E0) su
h that S is the the set of all spots ofG and E0 = E n [S2Sffu; vg : u; v2Sg!! [ffv; hSig : S 2 S; v2Sg : (4)Spe
i�
ally, the set of neighbors of v 2 [N ℄ in G0, denoted �G0(v),
onsists of the following elementsof [N ℄ [fhSi : S2Sg.1. Neighbors of v in G that do not reside in any spot together with v; that is, u 2 �G(v) is in�G0(v) if and only if fu; vg is not a subset of any S 2 S.2. Ea
h spot that
ontains v in G; that is, hSi is in �A(v) if and only if S 2 S and v 2 S.For any S 2 S, the set of neighbors of hSi in G0 equals S. Re
alling that ea
h S 2 S has size atmost dk�1, we view G0 as a graph of maximal degree dk�1.Observe that the set of spots that
ontain a vertex v 2 [N ℄ is determined by the (k + `(k))-neighborhood of v in G, where the t-neighborhood of v
ontains all verti
es that are at distan
e atmost t from v. Thus, we
an determine the set of neighbors of ea
h vertex in G0. We note thatthe pro
ess of determining the spots that
ontain a vertex may fail if a
y
le of length at least kis en
ountered. In su
h a
ase the algorithm
an
learly reje
t. Lastly, note that we
an sele
t avertex of G0 uniformly by using the following pro
edure.17

1. Sele
t uniformly v 2 [N ℄.2. Sele
t one of the following two instru
tions at random with equal probability.(a) (Generating a vertex of G):Output v with probability 1=d.(b) (Generating a spot):Sele
t uniformly a spot S that
ontain v (i.e., S 2 Sv), and output hSi with probabilitypv = jSvjdjSj , where Sv def= fS 2 S : v 2 Sg.In all the other
ases, there is no output.Thus, this pro
ess output ea
h vertex of G with probability N�1 �0:5 �d�1 = 1=(2dN), and outputsea
h spot hSi 2 S with probabilityPv2S N�1 � 0:5 � jSvj�1 � pv = 1=(2dN).Algorithm 5.7 (the Ck-minor-freeness tester): Given input graph G = ([N ℄; E), the tester em-ulates the exe
ution of Algorithm 3.1 on the graph G0 as de�ned in Constru
tion 5.6. In theemulation, verti
es of G0 are sele
ted at random and their neighbors are being explored on the
y,as detailed above.The analysis of Algorithm 5.7 redu
es to an analysis of Constru
tion 5.6.Claim 5.8 (yes-instan
es): If G is Ck-minor-free, then G0 is
y
le-free.Proof: Suppose,
ontrary to the
laim, that v1|v2{ � � � {vt|v1 is a simple
y
le inG0. We
onsidertwo
ases.Case 1: All vi's are verti
es of G. In this
ase, the edges fvi; vi+1g in G0 must be edges of G (sin
ethe only edges in G0 that are not edges in G are in
ident to spot-verti
es). On the other handt < k must hold, be
ause G is Ck-minor-free. But this yields a
ontradi
tion, be
ause, byClaim 5.5, the set fvi : i 2 [t℄g must be a subset of some spot of S, whi
h means that noneof the edges fvi; vi+1g may exist in G0.Case 2: Some vi represents a spot of G. Let vi = hSi, for some S 2 S. Then vi+1; vi�1 2 S. Now,
onsider a minimal sub-path of vi+1; :::; vt; v1; :::; vi�1 that starts in a vertex of S, denoted u,and ends in a vertex of S, denoted v. That is, we
onsider a sub-path that starts and ends inverti
es of S, but has no intermediate verti
es in S. This sub-path (in G0)
annot
onsist ofa single edge (be
ause the edge fu; vg � S
annot appear in G0), it
annot
ontain the vertexhSi (be
ause hSi already appears as vi), and it
annot be a 2-path that goes through anotherspot (be
ause, by Claim 5.4, no other spot may
ontain both u and v). Sin
e this path maynot
ontain intermediate verti
es in S, and sin
e spot-verti
es
annot be adja
ent in G0, itfollows that this path must
ontain a vertex w 2 [N ℄ n S. That is, we get a path in G0 thatgoes from u to v via w, without passing through any vertex in S.We now obtain a
orresponding path in G; that is, a path in G that goes from u to v viaw, without passing through any vertex in S. This is done by repla
ing any length-2 subpathu0|hS0i|v0 (in G0) by a sub-path u0{ � � � {v0 (in G) that does not pass through S, where thelatter path exists by the fa
t that u0; v0 2 S0 are
onne
ted by vertex-disjoint paths (internalto S0) su
h that their interse
tion with S
ontains at most a single vertex (see Claim 5.4).It follows that G itself
ontains a path between u and v that passes through w and does not18

pass through S, where u; v 2 S but w 62 S. Thus, G itself
ontains a simple (non-edge) pathbetween u and v that does not pass through S (i.e., an external path). By the third
onditionin De�nition 5.1, the length of this external path is at least `(k) > k, but this
ontradi
tsthe hypothesis that G is Ck-minor-free (be
ause u and v are
onne
ted in GS and `(k) � k,yielding a simple
y
le of length at least k).The
laim follows.Claim 5.9 (no-instan
es): If G is �-far from being Ck-minor-free, then G0 is
(�)-far from being
y
le-free, where the Omega-notation hides a dk fa
tor.Proof: Suppose that G0 is Æ-
lose to being
y
le-free, where the distan
e refers to the degree boundof G0, whi
h is dk�1. Re
all that jSj � jEj � dN=2. Let R0 be a set of at most Æ �dk�1(N + jSj)=2 <Æ � dkN=2 edges su
h that removing R0 from G0 yields a
y
le-free graph. Let R � E be a set ofedges that
onsists of (1) all edges of E that are in R0, and (2) ea
h edge fv; wg 2 E su
h thatfv; hSig is in R0. Hen
e, jRj � djR0j < Æ � dk+1N=2. We next prove that removing R from G yieldsa graph that is Ck-minor-free, and it follows that G is Æ � dk-
lose to being Ck-minor-free.Suppose,
ontrary to the
laim, that for t � k there exists a simple
y
le v1|v2{ � � � {vt|v1 inthe resulting graph (i.e., in the graph ([N ℄; E nR)). We �rst show that there exists a
orresponding(not ne
essarily simple)
y
le in E0 n R0. Spe
i�
ally, for ea
h fvi; vi+1g 2 E n R, we
onsider two
ases.Case 1: This edge is not a subset of any spot in G. In this
ase, fvi; vi+1g 2 E0 n R0, be
ause thisedge is in E0 and
annot be in R0 (or else it would have been in R). So we just use this edgein the
y
le (in E0 n R0).Case 2: This edge is a subset of a spot S in G. In this
ase, fvi; hSig; fvi+1; hSig 2 E0nR0, be
auseboth these edges are in E0 and
annot be in R0 (or else fvi; vi+1g would have been in R). Inthis
ase, we repla
e the edge fvi; vi+1g 2 E nR by the length-two-path vi|hSi|vi+1.Thus, we obtain a
y
le in ([N ℄[fhSi : S2 Sg; E0 nR0) that
ontains the verti
es v1; :::; vt 2 [N ℄ aswell as (possibly) some elements in fhSi : S2 Sg. Sin
e the latter elements may appear in multiple
opies, the foregoing
y
le is not ne
essarily simple. Note that a simple
y
le in ([N ℄ [fhSi : S2Sg; E0nR0) yields a
ontradi
tion to the hypothesis that this graph is
y
le-free, and thus establishesour
laim that the graph ([N ℄; E n R) is Ck-minor-free. We obtain a simple
y
le, in two steps, asfollows.First, we repla
e every maximal sub-path of the form vi|hSi|vi+1|hSi{ � � � {hSi|vj, wherej 6= i (or else S
ontains a t-
y
le for t � k), by a length-two path vi|hSi|vj. If the resulting
y
le
ontain distin
t spot (representative) verti
es, then we are done (sin
e we obtain a simple
y
le). Otherwise, we obtain a
y
le of the formu1{ � � � {ut1|hS1i|ut1+1{ � � � {ut1+t2|hS2i|ut1+t2+1{ � � � {ut1+t2+t3|hS3i � � � hSmi|u1where the ui's are all distin
t and adja
ent Si's are distin
t (but non-adja
ent Si's may be identi
al).Next, we
onsider a sub-path of the foregoing
y
le su
h that the endpoints of this sub-path are two
opies of the same spot S and no other spot appears more than on
e on this sub-path. This sub-path
annot have length two (be
ause adja
ent Si's are distin
t), whi
h means that it is a
tually asimple
y
le, and we are done. 19

Con
lusion. Combining Claims 5.8 and 5.9 with the straightforward observations pre
eding it,we
on
lude that Algorithm 5.7 is a one-sided error tester for Ck-minor-freeness, and its
omplexityis eO(poly(dk=�) � pN). This establishes Theorem 1.2.6 Proof of the Lower BoundRe
all that Goldrei
h and Ron proved a
(pN) query lower bound on the
omplexity of one-sided error testers for
y
le-freeness [GR02, Prop. 4.3℄. As stated in the introdu
tion, Benjamini,S
hramm, and Shapira [BSS08℄ mentioned that this lower bound may hold for testing H-minorfreeness, for any H that is not a forest. This is indeed the
ase, as proved next.Theorem 6.1 For any �xed H that
ontains a simple
y
le, the query
omplexity of one-sidederror testing of H-minor freeness is
(pN).Indeed, as
an been seen easily in the
ase that H is a single edge, the lower bound does not holdin
ase H
ontains no simple
y
les. A general study of testing H-minor freeness for any
y
le-freeH is initiated in Se
tion 7.Proof: Following the proof of [GR02, Prop. 4.3℄, we show that for suÆ
iently large N , withhigh probability, the random N -vertex graphs
onsidered in [GR02, Se
. 7℄ are far from being H-minor free. On
e this is done, the theorem follows, be
ause it was shown in [GR02, Se
. 7℄ that aprobabilisti
 ma
hine that makes o(pN) queries is unlikely to �nd a
y
le in su
h a random graph(and so it must a

ept as otherwise it is not a one-sided error tester). Also note that it suÆ
es toshow that, for any �xed k and suÆ
iently large N , with high probability, su
h a random graph isfar from being Kk-minor free, be
ause
ontaining a minor of the Kk implies
ontaining a minor ofany k-vertex graph H.The random graphs
onsidered in [GR02, Se
. 7℄ are graphs uniformly
hosen in the family GN(whi
h is denoted GN1 in [GR02℄). Ea
h (N -vertex) graph in GN
onsists of the union of a simpleN -vertex (Hamiltonian)
y
le and a perfe
t mat
hing of these N verti
es. (Indeed, ea
h graph inGN is 3-regular.) Furthermore, the
y
le is �xed to be (1; 2; :::; N; 1) and so a random graph inGN
orresponds to a random
hoi
e of a perfe
t mat
hing. Our aim is to prove that, with highprobability, su
h a random graph is far from being Kk-minor free. We start with an overview ofthis proof.Fixing a suÆ
iently small
onstant value � > 0 (i.e., � � 1=3k), we partition the
y
le to kequal-length segments (i.e., (1; 2; :::; (N=k)), ((N=k)+ 1; (N=k)+ 2; :::; (2N=k)), ..., (((k� 1)N=k)+1; ((k�1)N=k)+2; :::; N)). Fo
using on the subgraph indu
ed by ea
h segment, we �rst prove that,with high probability, omitting at most 3�N=2 edges from it yield a graph that has a
onne
ted
omponent that
ontains most of the verti
es (i.e., more than N=2k verti
es). Next, we prove thatfor every pair of
onne
ted
omponents, with high probability, there are more than 3�N=2 edgesgoing from one
omponent to the other one. Contra
ting ea
h of these k
onne
ted
omponents,we get a
opy of Kk that survives the omission of 3�N=2 edges. We now turn to the a
tual proof.We
onsider a pro
ess in whi
h a graph is uniformly sele
ted in GN , and then 3�N=2 edges are(adversarially) omitted from it. Our aim is to show that, with high probability, the resulting graph
ontains a Kk-minor. We shall a
tually
onsider a worse pro
ess in whi
h 3�N=2 edges are omittedfrom the Hamiltonian
y
le and 3�N=2 edges are omitted from the mat
hing. We shall show that,for any
hoi
e of 3�N=2 edges from the Hamiltonian
y
le, with overwhelming high probability,the residual pro
ess (i.e., sele
ting a random perfe
t mat
hing and (adversarially) omitting 3�N=2mat
hing edges) yields a graph that
ontains a Kk-minor.20

Using � < 1=k5 and setting ` = �(k=�), we further partition ea
h of the large k segments into(N=k)=` small segments, ea
h of length `. Note that omitting any 3�N=2 edges (of the Hamiltonian
y
le), leaves all but at most 3�N=2 < N=4`k of these `-segments inta
t. Fixing any
hoi
e ofthese 3�N=2 omitted edges, we
onsider an auxiliary (random) graph that represents the mat
hingedges going between the `-segments. That is, this auxiliary graph has a vertex set that equals theset of the inta
t `-segments, and with (possibly multiple) edges
onne
ting two `-segments if andonly if these segments
ontain verti
es that are mat
hed in the original graph. The main te
hni
alfa
t (proved below) is that for every two disjoint (N=4`k)-sets of `-segments, with probability atleast 1 � exp(�
(N=k4)), there exist at least 2�N edges going between these sets. Applying aunion bound over all possible
hoi
es of these two sets, we infer that, with probability at least1�� N=`N=4`k�2 �exp(�
(N=k4)) > 1�exp(�
(N=k4)), for every two disjoint (N=4`k)-sets of segmentsthere exist at least 2�N edges going between these sets. In this
ase, after omitting any set of 3�N=2mat
hing edges, the auxiliary graph
ontains
onne
ted
omponents that
over more than half theverti
es asso
iated with ea
h large segment and there are edges between ea
h pair of these
onne
ted
omponents. Applying a union bound over all the possible
hoi
es of 3�N=2
y
le edges, the theoremfollows.Thus, it is left to prove the aforementioned te
hni
al fa
t. Let S1 and S2 be disjoint setsof `-segments su
h that jS1j = jS2j = N=4`k. We need to prove that, with probability at least1� exp(�
(N=k4)), there exist at least 2�N mat
hing edges going between S1 and S2. Note thatea
h random mat
hing edge
onne
ts S1 and S2 with probability (4k)�2, and if these events weremutually independent then the fa
t would follow by the Cherno� bound. However, these events arenot independent, yet setting an adequate Martingale and using Azuma's Inequality the fa
t followsjust as well. Details are omitted.7 Testing Tree-Minor FreenessAs noted in Se
tion 6, the
(pN) lower bound of Theorem 6.1 does not hold in the
ase theforbidden minor is a tree. This is easiest to see in the
ase that the forbidden minor is a singleedge. We show that, for any
y
le-free graph H, the set of H-minor free graphs
an be tested withone-sided error with query
omplexity independent of the input graph's size (and only depends onthe proximity parameter and on H).To begin, we provide a redu
tion of the
ase where H is a forest to the
ase where H is a tree.A
tually, this redu
tion works for any H (regardless of
y
le-freeness) allowing to fo
us on the
onne
ted
omponents of H. Next, we turn to two spe
ial
ases (whi
h are easy to handle): the
ase that H is a k-path and the
ase that H is a k-star. Sin
e these
ases
orrespond to the twopossible extremes, it is tempting to hope that all
ases
an be treated easily. We warn, however,that the extreme
ases have simple
hara
terizations, whi
h are not available in non-extreme
ases.Nevertheless, the
ase of stars provides some intuition towards the more
ompli
ated treatmentof general trees. Further intuition
an be obtained from the
ase of depth-two trees, treated inSe
tion 7.5, where we also obtain better
omplexity than in the general
ase.7.1 A redu
tion of un
onne
ted H to
onne
ted HLet H be a graph with
onne
ted
omponents H1; :::;Hm. Then, essentially (but not exa
tly), agraph G is H-minor free if and only if for some i 2 [m℄ the graph G is Hi-minor free; in otherwords, G has an H-minor if and only if for every i 2 [m℄ the graph G
ontains an Hi-minor. Thealternative formulation reveals the small ina

ura
y: it may be that the Hi-minors
ontained in G21

are not disjoint (and in su
h a
ase G does not ne
essarily have an H-minor). Still, for our purposes(of studying one-sided error testers of sublinear query
omplexity), this problem
an be over
ome(as done next).Indeed, we fo
us on one-sided error testers of sublinear query
omplexity. Given su
h testersfor Hi-minor freeness, we present the following one-sided error tester for H-minor freeness.Algorithm 7.1 (the H-minor-freeness tester for
y
le-free H): On input G = ([N ℄; E) and prox-imity parameter �, set G0 = G and pro
eed in m iterations, as follows. For i = 1 to m,1. Invoke the Hi-minor tester on input Gi�1, using error parameter 1=3m and proximity param-eter �=2.2. If the answer is positive then a

ept.3. Otherwise, omit from Gi�1 all verti
es that were visited by the tester, obtaining a residualgraph Gi.If all iterations reje
ted, then reje
t.If Algorithm 7.1 reje
ts, then (by the one-sided error feature of the tests) the m exploration
ontain
orresponding (disjoint) Hi-minors, and so G
ontains an H-minor. Thus, Algorithm 7.1 satis�esthe one-sided error
ondition. On the other hand, if G is �-far from being H-minor free, then, forevery i 2 [m℄, the graph G must be �-far from being Hi-minor free (be
ause otherwise G is �-
loseto an Hi-minor free graph, whi
h in turn is H-minor free). Furthermore, for every i 2 [m℄, thegraph Gi�1 is �=2-far from being Hi-minor free, be
ause Gi�1 is obtained from G by omitting o(N)edges (sin
e all testers have sublinear query
omplexity). Thus, in ea
h iteration i, with probabilityat least 1� (1=3m), the
orresponding tester reje
ts. It follows that Algorithm 7.1 reje
ts G withprobability at least 2=3 (as required). We thus get the following result.Proposition 7.2 Let H have
onne
ted
omponents H1; :::;Hm, and suppose that Hi-minor free-ness
an be tester by a one-sided error tester of query
omplexity qi(N; �). Suppose that qi(N; �) ismonotoni
ally non-de
reasing with N . Then, H-minor freeness
an be tester by a one-sided errortester of query
omplexity q(N; �) = O(logm) �Pni=1 qi(N; �=2).(The O(logm) fa
tor is due to error redu
tion that is employed on ea
h of the testers.)Detour. For sake of elegan
e, it would be ni
e to prove a similar redu
tion also for the
ase oftwo-sided error testers. Naturally, for testing H-minor freeness with two-sided error, we may justrun all Hi-minor freeness tests (with error probability parameter set to 1=3m) and a

ept if andonly if at least one of these tests a

epted (i.e., reje
t i� all these tests reje
ted). Clearly, if G is�-far from being H-minor free, then, for every i, the graph G must be �-far from being Hi-minorfree (see above), and so in this
ase, with probability at least 2=3, all tests will reje
t, and so willwe. But what is missing is proving that if G is H-minor free, then the above tester a

epts withhigh probability. (Indeed, it is not ne
essarily the
ase that if G is H-minor free then for some i itholds that G is Hi-minor free).
22

7.2 Testing that the graph
ontains no simple k-length pathHere we
onsider the spe
ial
ase where H = Pk, where Pk denotes the k-length path. Note thata graph G is Pk-minor free if and only if G
ontains no simple path of length k. Thus, we justsear
h for su
h a path at random. Spe
i�
ally, we sele
t uniformly a start vertex and take a randomk-step walk, reje
ting if and only if the walk
orresponds to a simple path. Clearly, we never reje
ta Pk-minor free graph.Claim 7.3 If G is �-far from being a Pk-minor free graph, then we reje
t with probability at least�=2dk.Thus, Pk-minor freeness
an be tested by a one-sided error tester of query
omplexity q def= O(dkk=�)and time
omplexity O(q logN).Proof: We
all a vertex v bad if there is a simple path of length k starting at v. Let � denote thedensity of bad verti
es in G. Then, on the one hand, we reje
t G with probability at least �=dk.On the other hand, � � �=2, be
ause omitting all bad verti
es (or rather their in
ident edges) fromG we obtain a graph that has no simple k-length paths.7.3 Testing that the graph
ontains no k-star as a minorHere we
onsider the spe
ial
ase where H = Tk, where Tk denotes the k-star (i.e., the (k+1)-vertextree that has k leaves). The key observation here is a graph G = ([N ℄; E) is Tk-minor free if andonly if for every set S su
h that GS is
onne
ted it holds that the set S has less than k neighbors(in [N ℄ n S). Another important observation is that it suÆ
es to
onsider sets S of size at most4k=�, be
ause a set S of size 4k=� su
h that all its subsets satisfy the
ondition
an be ignored(sin
e GS is Tk-minor free and has less than k edges to the rest of the graph). The latter reasoningwill be the
rux of the formal analysis that follows. Yet another important observation is that the
omplexity of sear
hing for sets that violate the
ondition
an be redu
ed by using a BFS, as inthe following algorithm.Algorithm 7.4 (the k-star-minor-freeness tester): On input G = ([N ℄; E) and proximity parame-ter �, pro
eed as follows.1. Sele
t uniformly a start vertex s 2 [N ℄.2. Perform a BFS starting at s and stopping as soon as either 4k=� layers were explored or alayer with at least k verti
es was en
ountered.Note that it may also be that the BFS terminates before either of these
onditions hold; this
an only happen if s resides in a
onne
ted
omponent of size smaller than 4k2=�.3. A

ept if and only if the explored graph is Tk-minor free.Clearly, Algorithm 7.4 never reje
ts a Tk-minor free graph. In analyzing its performan
e on inputsthat are �-far from Tk-minor free, we shall refer to a weaker reje
tion
riterion that
orresponds tothe motivating dis
ussion (i.e., the existen
e of small sets S that have k neighbors). Step 2 is onlyused in order to improve the
omplexities; it guarantees that Algorithm 7.4 has query
omplexityq def= O(k2=�), and by [RS95℄ the time
omplexity is O(q3 logN). Thus, all that is left is to provethe following. 23

Claim 7.5 If G is �-far from being a Tk-minor free graph, then Algorithm 7.4 reje
ts with proba-bility at least �=4.Thus, Tk-minor freeness
an be tested by a one-sided error tester of query
omplexity O(k2=�2) andtime
omplexity O(k6��4 logN).Proof: We
all a vertex v bad if there exists a set S 3 v su
h that (i) GS is
onne
ted and hasradius at most 4k=� from v (i.e., all verti
es are at distan
e at most 4k=� from v), and (ii) the set Shas at least k neighbors in G (i.e., jfu2 [N ℄ n S : 9w2S s.t. fu;wg2Egj � k). Note that if a badvertex is
hosen in Step 1, then Algorithm 7.4 reje
ts in Step 3 (be
ause either a 4k=�-step BFSof G starting at v rea
hes a layer with at least k verti
es, or it rea
hes all verti
es in the witnessset S). Let � denote the density of bad verti
es in G. By the above, Algorithm 7.4 reje
ts withprobability at least �. We next show that G must be (2� + (�=2))-
lose to Tk-minor free, and so� � �=4 follows.Let G(0) denote the graph obtained from G by omitting all the edges that are in
ident at badverti
es. Indeed, G(0) is 2�-
lose to G. The rest of our analysis pro
eed in iterations. If the
urrentgraph G(i�1) is Tk-minor free, then we are done. Otherwise, we pi
k an arbitrary vertex s(i) thatresides in some Tk-minor. Sin
e s(i) is not bad, it must reside in a
onne
ted
omponent of G(i�1)that has radius at least 4k=� from s(i) (be
ause otherwise the existen
e of a Tk-minor
ontaining s(i)
ontradi
ts the hypothesis that v is not bad). Consider an arbitrary set S(i) 3 s(i) of 4k=� verti
essu
h that G(i�1)S(i) is
onne
ted. Sin
e s(i) is not bad, it follows that S(i) has less than k neighbors (inG(i�1)). We now obtain G(i) by omitting the (less than kd) edges of the
ut (S(i); [N ℄ n S(i)), andobserve that G(i)S(i) is Tk-minor free (and that S(i) will not interse
t with any future S(j)). When thepro
ess ends, we have a Tk-minor free graph. In total, we omitted at most tk � d edges (from G(0)),where t � N=(4k=�) denotes the number of iteration. Noting that tdk � (�=4)dN , we
on
lude thatG(0) is �=2-
lose to G(t) and thus G is (2�+ (�=2))-
lose to Tk-minor free.7.4 The general
ase: Testing T -minor freeness for any tree TFollowing is a presentation of the main result of this se
tion: a one-sided tester for T minor-freeness,where T is an arbitrary rooted tree with k verti
es. The algorithm is an extension of the algorithmfor stars: We perform a BFS from a random starting vertex (but for more levels) and
he
k if we�nd a T -minor.The analysis of this algorithm, in the
urrent (general)
ase, is far more involved; nonetheless,the basi
 intuition remains the same. Suppose our pro
edure is typi
ally unable to �nd a T -minorin G. We shall show that we
an split up the graph into many small pie
es, ea
h being T -minorfree and having few edges leaving it. Removing the few edges going between these pie
es, we get aT -minor graph, whi
h proves that G is
lose to being T -minor free.The main
hallenge is to perform the foregoing de
omposition. For that, we will de�ne anauxiliary pro
edure,
alled find, that attempts to �nd T -minors. This pro
edure will not be usedby our algorithm; it will be used solely in the analysis. But, �rst, let us detail the alleged tester(while assuming that � � 1=2, or else we set � = 1=2).Algorithm 7.6 (the tree-minor-freeness tester): Given as input a proximity parameter � and givenquery a

ess to a graph G = ([N ℄; E) with maximum degree at most d, set D = k � (16d=�)4k+2 andpro
eed as follows.1. Sele
t uniformly, independently at random, 8=� start verti
es in [N ℄.24

2. For ea
h sele
ted start vertex s, perform a BFS starting at s and stop as soon as D layersare explored (or the BFS rea
hes all the verti
es of a
onne
ted
omponent in G).3. A

ept if and only if all explored subgraphs are T -minor free.Clearly, Algorithm 7.6 never reje
ts a T -minor free graph. Its query
omplexity is exponential inD, and its time
omplexity is polynomial in its query
omplexity (by [RS95℄). The
orre
tness ofthe algorithm thus follows from the next lemma.Lemma 7.7 If G is �-far from being a T -minor free graph, then Algorithm 7.6 reje
ts with proba-bility at least 2=3.As stated above, the heart of the proof of this lemma is a pro
edure
alled find that tries to�nd small T -minors. When invoked at a
ertain vertex and failing to �nd a small T -minor, thepro
edure provides us with a sort of \explanation for it failure" in the form of a sparse
ut. Thus,if the graph G is a

epted by the tester with high probability, then we
an use this pro
edure toget the desired de
omposition. As may be expe
ted, the pro
edure find is designed by a (tedious,but not obvious) indu
tion on the size of T . Following is an overview of our approa
h.Consider the tree T and remove an edge to two trees T1 and T2. Let the roots of these treesbe the endpoints of the edge removed. A T -minor
an be broken up into a T1-minor and T2-minorwith a path
onne
ting the two respe
tive roots. So, it seems that we should try to �nd \rootedminors", where we spe
ify a vertex v that must be present in the
onne
ted
omponent that is theroot. Indu
tively, assume that we have a pro
edure find for T1 and T2. We
an use find to getthese minors and try to
onne
t the roots by a path. The problem is that we have to get disjointminors to get a T -minor. Suppose we �nd a T1-minor in the original graph. Be
ause we want to �nda disjoint T2-minor, we make the verti
es in this minor a forbidden set F (and e�e
tively removethem from G). This means that find is not allowed to use the verti
es of F in the T2-minor. Butnow, find may return a sparse
ut, instead of T2-minor, in the modi�ed graph. This
ut is onlysparse in the modi�ed graph (without F), but may be dense in the graph G. To get around this,we somehow need to ensure that whenever a
ut is found, the number of verti
es in the smaller sideis mu
h larger than jF j. Then, a sparse
ut in the modi�ed graph remains sparse in the original.We will give an indi
ation of how this is done when we des
ribe the parameters of find.First, we introdu
e some de�nitions and notation. For a graph H = (V (H); E(H)) and a subsetof verti
es S � V (H), we use the standard notation HS to denote the subgraph of H that is indu
esby S.De�nition 7.8 (Distan
es) Let H = (V (H); E(H)) be a �xed graph. For any pair of verti
esv; u 2 V (H), let distH(v; u) be the shortest-path distan
e between u and v in H. Given a set ofverti
es T � V (H) and a vertex v 2 V (H), let �H(v; T) def= maxu2T fdistH(v; u)g. More generally,for two sets of verti
es S; T � V (H), let �H(S; T) def= maxu2T minv2S distH(v; u).De�nition 7.9 (Sparse Cuts) For a graph H = (V (H); E(H)) with degree bound d, a
ut(S; V (H) n S) is sparse with respe
t to H, if the number of edges in E(H) that
ross the
ut isat most �jSjd=4. For V (H) = [N ℄ we denote the
ut (S; [N ℄ n S) by
ut(S).To di�erentiate from the original input graph G, the input graph to find will be the graphG0. We usually refer to
uts in G0, and hen
e, in su
h
ases we remove the expli
it referen
e to G0(i.e., we shall say that
ut(R) is sparse rather than say that it is sparse with respe
t to G0).25

The parameters of find: The pro
edure find takes as input a vertex v in a graph G0 =([N ℄; E0), a set of verti
es U
ontaining v, a rooted tree T with k nodes, and a set of forbiddenverti
es F (not
ontaining v). Let f = maxfjF j; k(16d=�)4k+2g, and G00 = G0[N ℄nF . The pro
edureworks under the
onditions that U is disjoint from F , jU j � 16f=�, and �G00(v; U) � (16=�) ln(f=�).The pro
edure find(v; U; T; F) outputs a pair (�; S) su
h that � 2 fminor;
utg and S � [N ℄nF ,where there is a path in G00 between v and every vertex in S. It will be
onvenient to expressquantities in terms of k̂ = 4k � 2.The requirement from find: The output of find(v; U; T; F) should satisfy the following
on-ditions.� = minor. The graph G0S
ontains a T -minor not involving F that is rooted at v (i.e., v residesin the
onne
ted
omponent that is
ontra
ted to �t the root r of T). We have �G00(v; S) �(16d=�)k̂ ln(f=�).� =
ut. The
ut
ut(S) is sparse and �G00(v; S) � (16d=�)k̂ ln(f=�).Intuitively, the set U a
ts as a kind of large bu�er around v. This deals with the issue that weraised earlier. When we try to �nd a T2-minor by making the verti
es of the T1-minor forbidden,we
ould get a sparse
ut in this modi�ed graph. The bu�er U ensures that this
ut
ontainssuÆ
iently many verti
es.Claim 7.10 There exists a pro
edure find that satis�es the foregoing properties.Before proving Claim 7.10 we state and prove some preliminary
laims. In what follows, whenwe say we perform a BFS in a graph H = (V (H); E(H)) from a subset of verti
es M , we mean thefollowing. Consider the graphH 0(M) whose vertex set is (V (H)nM)[fv(M)g (so thatM is repla
edby a single vertex v(M)), and whose edge set is f(u;w) 2 E(H) : u;w 2 V (H)nMg[f(u; v(M)) :u =2 M and 9w 2 M s.t. (u;w) 2 E(H)g. A BFS from M in H
orresponds to a BFS in H 0(M)that starts from v(M).Claim 7.11 Let F and M be two disjoint subsets of verti
es in G0 su
h that jM j � (8=�)jF j.Suppose we perform a BFS up to depth t in G0[N ℄nF , starting from M , and let ` be the size of thelast level rea
hed. Then either there exists a subset of verti
es R that are rea
hed by the BFS andsu
h that
ut(R) is sparse, or ` � jM j � e(�=9)t.Proof: Consider some intermediate level in the BFS, and let R be the set of verti
es rea
hed upto that level (in
luding it). Suppose that the next level has at most �jRj=8 verti
es. All edges in
ut(R) are either in
ident to verti
es in the next level (whi
h
ontains at most �jRj=8 verti
es) orto F . Sin
e jRj � jM j � 8jF j=�, the size of the
ut is at most �jRjd=4, and hen
e it is sparse.Otherwise, the size of the levels keeps expanding by a fa
tor of at least (1 + �=8). Sin
e thedepth of the BFS is t, the size of the last level is at least jM j � (1 + �=8)t � jM j � e(�=9)t.De�nition 7.12 (Boundaries) Given sets of verti
es S and F , let �F (S) denote the boundary ofS in G0[N ℄nF . That is, �F (S) def= fu 2 S : 9w 2 [N ℄ n (S [F) s.t. (u;w) 2 E(G0)g . We use �F (S)to denote the set S n �F (S). 26

Claim 7.13 Let F and M be two disjoint subsets of verti
es su
h that jM j � (8=�)jF j, and leteF = �F (M) [F . There is a pro
edure that, given an integer parameter t, outputs one of thefollowing:� A set R su
h that the
ut(R) is sparse and �G0[N℄nF (�F (M); R) � t.� A vertex v 2 �F (M) and a set Uv disjoint from eF su
h that v 2 Uv, jUvj � e(�=9)t, and�G0[N℄n eF (v; Uv) � tProof: We start by performing a BFS from M in G00 = G0[N ℄nF up to depth t. By the de�nition ofthe BFS, all the verti
es rea
hed in levels 1; : : : ; t are disjoint fromM and F . Applying Claim 7.11,in the pro
ess of this BFS either we �nd a sparse
ut, thus satisfying the �rst
ondition, or the sizeof the last level is at least jM j � e(�=9)t. In the latter
ase, for ea
h vertex v 2 �F (M), perform aBFS in G0[N ℄n eF up to depth t, and let Uv be the set of verti
es rea
hed. Sin
e the last level of theoriginal BFS is
ontained in Sv Uv, we have that Pv2�F (M) jUvj � jM j � e(�=9)t. Therefore, thereexists a vertex v 2 �F (M) su
h that jUvj � jM j � e(�=9)t=j�F (M)j � e(�=9)t.With these tools in hand, we are ready to des
ribe the pro
edure find.Proof of Claim 7.10. We prove the
laim by indu
tion over the size of the tree T . For the base
ase, let T be a singleton vertex. Then, the pro
edure find just outputs the pair (minor; U). Nowfor the indu
tion step.Take an edge e of T that is in
ident to the root r. Removing this edge gives us two trees T1 andT2 with roots r1 and r2 (these are the respe
tive endpoints of e). We let T1 be the tree still rootedat r (so that r1 = r). Using subs
ripts to denote the respe
tive size parameters of these trees, wehave k̂ = k̂1 + k̂2 + 2 (re
all that k̂ = 4k � 2). We also have that k̂1; k̂2 � 2.We will des
ribe the pro
edure find(v; U; T; F) using the respe
tive pro
edures for T1 and T2.We set D1 = (16d=�)k̂1 ln(18f=�2) (re
all that f = maxfjF j; k(16d=�)4k+2g). We will be dealingmainly with the graph G00 = G0[N ℄nF and hen
e all our boundaries are in this graph. For ease ofnotation, for a set S, we shall use the shorthand �(S) for �F (S) and �(S) for �F (S). We also usethe shorthand �(�; �) for �G00(�; �) (and if distan
es are measured with respe
t to another graphthen we'll state this expli
itly). Re
all that the pro
edure is required to work under the
onditionsthat U is disjoint from F , jU j � 16f=�, and �(v; U) � (16=�) ln(f=�). We may a
tually assumethat jU j = 16f=�. Suppose this is not the
ase. Take the vertex in U farthest from v and remove itfrom U . We keep repeating this until jU j = 16f=�. Note that the upper bound on �(v; U) remains.We now des
ribe the steps of the pro
edure find. Refer to Figure 5 to understand the varioussteps of the pro
edure.1. Initiate a BFS in the residual graph G00 = G0[N ℄nF starting from U for 2D1 steps. Let A denotethe set of all verti
es rea
hed (in
luding U). We now invoke Claim 7.11 with F , M := U ,and t := 2D1. If we �nd a sparse
ut
ut(R), then observe that �(v;R) � �(v; U) + 2D1 �(16d=�)k̂ ln(f=�). In this
ase, we output (
ut; R). Otherwise, the BFS rea
hes 2D1 levels,and jAj � jU j �e(�=2)D1 . We trivially bound jAj � jU j �e2D1 ln d, and
ontinue to the next stage.2. We invoke Claim 7.13 with F , M := A, and t := (9=�) ln(16jF2j=�), where observe thatjF2j = j�(A) [F j � jAj � jU j � e2D1 ln d. If we get a sparse
ut
ut(R), then we have�(v;R) � �(v; U) + �(U; �(A)) + (9=�) ln(16jAj=�)27

PSfrag repla
ements v v1 v2
�U

�A
U A 2D1P

S2

Figure 5: The various sets in find� (16=�) ln(f=�) + 2D1 + (9=�) ln(16jU j=�) + 18D1 lnd=�� (64=�) ln(f=�) + (18d=�)(16d=�)k̂1 ln(18f=�2)� (16d=�)k̂ ln(f=�)In this
ase we output (
ut; R). Otherwise, we get a vertex v2 2 �(A) and a set U2su
h that v2 2 U2, jU2j � 16jF2j=�, and �G0[N℄nF2 (v2; U2) � (9=�) ln(16jF2j=�). Letf2 = maxfjF2j; k2(16d=�)4k2+2g. Sin
e jF2j � jU j = 16f=�, we have that f2 = jF2j, sothat jU2j � 16f2=� and �G0[N℄nF2 (v2; U2) � (16=�) ln(f2=�). Therefore, the
onditions for
all-ing find(v2; U2; F2; T2) are met. Let (�; S2) be the output of this pro
edure. By the indu
tionhypothesis:�(v; S2) � �(v; U) +�(U; �A) + �(v2; S2)� 16 ln(f=�)=�+ 2D1 + (16d=�)k̂2 ln(f2=�)� 16 ln(f=�)=�+ 2D1 + (16d=�)k̂2 � (ln(jU j=�) + 2D1 lnd)� 16 ln(f=�)=�+ 2D1 + (16d=�)k̂2 � (ln(16f=�2) + 2D1 lnd)� (16d=�)k̂ ln(f=�)If (
ut; S2) is output, then the main pro
edure also returns (
ut; S2). Otherwise, the set S2(disjoint from F2)
ontains a T2-minor su
h that v2 belongs to the subset whose
ontra
tion
orresponds to the root r2 of T2, and we
ontinue to the next stage.3. Consider the shortest path P from U to v2 (in G00). By
onstru
tion, jP j � 2D1. Note thatother than v2, the path P is disjoint from S2. We also have f = maxfjF j; k(16d=�)4k+2g �(16d=�)k̂ ln(f=�) � 2D1. Hen
e, jF [P j � 2f . Let F 0 := F [P , F1 := �(U) [F 0 and28

f1 = maxfjF1j; k1(16d=�)4k1+2g. We invoke Claim 7.13 with F 0 as the forbidden set, M := U ,and t := (9=�) ln(16f1=�). Sin
e jF1j � 16f=� + 2f (re
all that we assumed without loss ofgenerality that jU j = 16f=�), we have that t = (9=�) ln(16f1=�) < (16d=�)k̂1 ln(18f=�2) = D1If we get a sparse
ut
ut(R), we output (
ut; R).Otherwise, we get a vertex v1 2 �(U) and a set U1 3 v1 disjoint from F1 su
h thatjU1j � 16jf1j=� and �G0[N℄nF1 (v1; U1) � t � 16 ln(f1=�)=�. We thus have the ne
essary
on-ditions to
all find(v1; U1; F1; T1). By the indu
tion hypothesis, for the set S1 returned,�G0[N℄nF1 (v1; S1) � D1. Hen
e �(v; S1) � �(v; U) +D1 < 2D1 � (16d=�)k̂ ln(f=�). If we get(
ut; S1), then the main pro
edure returns the same.4. Otherwise, S1
ontains a T1 minor su
h that v1 belongs to a
onne
ted subset in S1 whose
ontra
tion
orresponds to r1 (the root of T1). Re
all that we also have that S2
ontains aT2 minor su
h that v2 belongs to a
onne
ted subset in S2 whose
ontra
tion
orresponds tor2 (the root of T2) We next show how to
onstru
t a T -minor using U , S1, S2, and P . Notethat all these sets are disjoint from F , and S1 is disjoint from S2 [P .Our aim is to
onne
t v1 to v2 (in G00) by a path that is disjoint to S1 [S2. If this path
ontains v, we will get a T -minor rooted at v that involves no vertex of F . Take the path Pin G00 that
onne
ts �F (U) to v2. This path is disjoint to S1 [S2. The vertex v1 is in �F (U)and v is
onne
ted to all of U in G00. We take a path from v to P and a path from v to v1.This
onne
ts v1 to v2 (via v) in G00 and
ompletes the
onstru
tion of the T -minor.Proof of Lemma 7.7. Re
all that D = k � (16d=�)4k+2, and that Algorithm 7.7 performs a BFSfrom 8=� start verti
es, up to depthD for ea
h, and reje
ts if any of the subgraphs observed
ontainsa T minor. We
all a vertex v bad if its D-neighborhood (i.e., the subgraph indu
ed by all verti
esat distan
e at most D from v)
ontains a T -minor, and denote the fra
tion of bad verti
es (in G)by �. We shall show that G is (2�+ �=2)-
lose to being T -minor free. The lemma follows sin
e thisimplies that if G is �-far from being T -minor free, then � > �=4. In su
h a
ase, the probability thatno bad vertex is sele
ted as a start vertex by the algorithm is at most (1� �=4)8=� < e�2 < 1=3.In order to prove that G is (2� + �=2)-
lose to being T -minor free, we will remove at most(�+ �=4)dN edges from G to make it T -minor free. We start by removing all edges in
ident to badverti
es, so that the number of edges removed at this stage is at most �dN . Let the resulting graphbe G(0). The rest of our analysis pro
eed in iterations. We have a
urrent graph G0 = G(i�1) wheresome
onne
ted
omponents are marked \minor free". These
omponents are
erti�ed to have noT -minor. If all the
omponents are marked, then we are done. Otherwise,
onsider some unmarked
omponent C. Suppose there is v 2 C, su
h that �G0(v; C) � D. If C
ontains a T -minor, then vmust be bad. This
ontradi
ts that fa
t that C is a
onne
ted
omponent
ontaining v. ThereforeC has no T -minor, and
an be marked. We pro
eed in this fashion till we get a
omponent C that
annot be marked.We take an arbitrary vertex s(i) 2 C and observe that �G0(s(i); C) > D. Let F be initializedto ;. We perform a BFS from s(i) up to depth D0 = (9=�) ln(16f=�) steps, and invoke Claim 7.11with M = fs(i)g, F = ;, and t = D0. Suppose we get a set S(i) su
h that
ut(S(i)) is sparse. Sin
e�G0(s(i); S(i)) = D0 � D, the subgraph GS(i)
annot
ontain a T -minor. We remove all edges inthe
ut
ut(S(i)) and mark the
onne
ted
omponents in GS(i) as minor free. This gives us thegraph G(i), and we
ontinue with the next iteration.Otherwise, the BFS gives a set U , su
h that jU j � e(�=9)D0 � 16f=�, and �G0(s(i); U) � D0 �(16=�) ln(f=�), and we
all find(s(i); U; T; F). If it outputs (minor; S(i)), then v must be bad. This29

is a
ontradi
tion, and hen
e the output must be (
ut; S(i)). We have �G0(s(i); S(i)) � D, where
ut(S(i)) is sparse. We pro
eed as before by removing all edges in
ut(S(i)) to get G(i).When the pro
ess ends, we have a T -minor free graph. Sin
e all the S(i)'s
onsidered aredisjoint, in total, we omitted at most Pi �djS(i)j=4 � �dN=4 edges (from G(0)), and thus G is(2�+ �=2)-
lose to T -minor freeness.The
ombinatorial
ore of the analysis. We observe that the features of find imply that,if a graph
ontain an \expanding neighborhood" (i.e., \lo
ally looks as an expander"), then thisneighborhood
ontains all possible tree-minors (of a related size). More formally,De�nition 7.14 Let G be a graph of maximum degree d and s be a vertex of G. We say that theR-neighborhood of s in G is �-expanding for every vertex set S su
h that �(v; S) � R, it holds thatthe number of edges in the
ut (S; [N ℄ n S) is at least �jSjd=4.Theorem 7.15 For any k and d, if the k(16d=�)4k+2-neighborhood of s in G is �-expanding, thenthis neighborhood
ontains a T -minor of any tree T of at most k verti
es.Note that Lemma 7.7
an be derived from Theorem 7.15 similarly to the way it was derived fromClaim 7.10. This is hardly surprising sin
e Theorem 7.15 is
losely related to Claim 7.10.Proof: Indeed, the theorem follows from Claim 7.10, where the key observation is that findworks well for any k-vertex tree T and that find may not return a sparse
ut (be
ause no su
h
ut exists by the hypothesis). Spe
i�
ally, set F = ; and let U be a set su
h that jU j � 16f=�and �G(v; U) � (16=�) ln(f=�) (whi
h exists sin
e the said neighborhood
ontains no sparse
uts).Now, for any k-vertex tree T , we run find(v; U; T; F) and get the output (�; S), where � 6=
ut.Thus, we get the desired T -minor.7.5 Testing T -minor freeness for any depth-two tree TLet T be an arbitrary depth-two tree with k verti
es; that is, T
onsists of a root, denoted r, andm stars, denoted T1; :::; Tm, that are rooted at neighbors of r, where here we
onsider also thesingleton vertex as a star (with 0 leaves). Denote the m
orresponding roots by r1; :::; rm, anddenote the number of leaves in these stars by k1; :::; km (i.e., k = 1+m+Pi2[m℄ ki). The followingalgorithm is tailored for this tree T .Algorithm 7.16 (tailored for the foregoing T): On input G = ([N ℄; E) and proximity parameter�, set D = (5d2k=�)2 and pro
eed as follows.1. Sele
t uniformly a start vertex s 2 [N ℄.2. Perform a BFS starting at s and stopping as soon as D layers are explored.3. A

ept if and only if the explored graph is T -minor free.Clearly, Algorithm 7.16 never reje
ts a T -minor free graph. Its query
omplexity is exponential inD, and its time
omplexity is polynomial in its query
omplexity (by [RS95℄).Lemma 7.17 If G is �-far from being a T -minor free graph, then Algorithm 7.16 reje
ts withprobability at least �=4. 30

Proof: We
all a vertex v bad if its D-neighborhood (i.e., the verti
es of distan
e at most D fromv)
ontains a T -minor, and denote the fra
tion of bad verti
es (in G) by �. As in the proof ofClaim 7.5, it suÆ
es to show that G is (2�+ (�=2))-
lose to being T -minor free, and we again startby omitting all edges in
ident at bad verti
es and
onsidering the resulting graph, denoted G(0).Indeed, G(0) is 2�-
lose to G.The rest of our analysis pro
eed in iterations. If the
urrent graph G(i�1) is T -minor free, thenwe are done. Otherwise, we pi
k an arbitrary vertex s(i) that resides in (the root of) some T -minor.Sin
e s(i) is not bad, it must reside in a
onne
ted
omponent of G(i�1) that has radius at least Dfrom s(i). We shall show how to identify a set S(i) su
h that G(i�1)S(i) has radius at most D and the
ut (S(i); [N ℄ n S(i)) has less that �djS(i)j=4 edges. Omitting these
uts edges yields a graph G(i)su
h that G(i)S(i) is T -minor free (and S(i) will not interse
t with any future S(j)). When the pro
essends, we have a T -minor free graph. In total, we omitted at most Pi �djS(i)j=4 � �dN=4 edges(from G(0)), and thus G is (2�+ (�=2))-
lose to T -minor free.The
rux of the proof is indeed the pro
ess of identifying a suitable set S0 = S(i) in G0 def= G(i�1).The identi�
ation pro
edure is initiated at s0 = s(i) and pro
eeds in two stages. In the �rst stage,the pro
edure tries to �nd either a set S0 of size at least 4m=� su
h that the
ut (S0; [N ℄ n S0) hasless than m edges or a set S0 of size at most 4dm=� su
h that G0S0
ontains a m-star as a minorrooted at s0. (Clearly, in the �rst
ase we are done.) In the se
ond
ase, we get to the se
ond stageof the pro
edure, whi
h explores G0 (somewhat) beyond S0 in an attempt to extend the m-starminor into a T -minor, but this attempt is bound to fail, and this failure will allow �nding thedesired
ut. Loosely speaking, this se
ond stage pro
eeds by trying to �nd disjoint Tj-minors, forj = 1; :::;m. This is done by invoking a \k0-star-minor �nding" pro
edure, denoted FSk0 , whi
hgeneralizes the pro
edure that is des
ribed in the proof of Claim 7.5, The pro
edure FSk0 is invokedon a vertex, v, and a set of forbidden verti
es, denoted F , and tries to either �nd a k0-star rooted atv in G0[N ℄nF or �nd a good
ut. Indeed, F will
ontain the set S0 as well as adequate sets that willprevent the
urrent sear
h from entering any of the previously found star minors. We �rst providea spe
i�
ation of FS, and then turn to it a
tual implementation.Spe
i�
ation of the pro
edure FS. On input a vertex v and a forbidden set F , the pro
edure FSk0outputs a triplet (�;R0; F 0) su
h that � 2 fminor;
ut; freeg and F 0 � R0 � [N ℄ n F su
h thatjF 0j < dk0 and jR0j < (5dk0=�) � (jF j + 1). In addition, it always holds that all verti
es of G0R0 are
onne
ted to v, and one of the following
ases holds.� = minor. The graph G0R0
ontains a k0-star as a minor that is rooted at v (i.e., v resides in the
onne
ted
omponent that is
ontra
ted to �t the root of the k0-star). Furthermore, all edgesof the
ut (R0 n F 0; [N ℄ n (R0 n F 0)) are in
ident at F [F 0.� =
ut. The
ut (R0; [N ℄ n R0)
ontains less that �djR0j=4 edges.� = free. All edges of the
ut (R0; [N ℄ n R0) are in
ident at F .Let T 0 denote a generi
 k0-star, where we may assume that k0 � 1.Implementing the pro
edure FS. Our aim is to either �nd a (relatively small) T 0-minor or �nd aset with a relatively small
ut from the rest of the graph. This is done by initiating a BFS in theresidual graph G0[N ℄nF starting at v, and stopping as soon as one of the following three
ases o

urs.Case 1: A layer
ontaining at least k0 verti
es is found before 4(jF j+k0)=� verti
es are en
ountered.In this
ase the pro
edure returns (minor; R0; F 0), where R0 is the set of en
ountered verti
esand F 0 is the set of verti
es in the last BFS layer.31

Note that in this
ase G0R0
ontains a T 0-minor rooted at v, and that jF 0j < dk0 (as otherwisethe BFS would have terminated in a previous layer). Furthermore, by stru
ture of the BFS,all edges of the
ut (R0 n F 0; [N ℄ n (R0 n F 0)) are in
ident at F [F 0.Case 2: The sear
h en
ountered at least 4(jF j + k0)=� verti
es, while Case 1 does not hold. In this
ase the pro
edure returns (
ut; R0; ;), where R0 is the set of en
ountered verti
es.Note that in this
ase the
ut (R0; [N ℄ nR0)
ontains less than (jF j+ k0) � d � �djR0j=4 edges.Case 3: The sear
h
annot be extended any further, while Cases 1 and 2 do not hold. In this
asethe pro
edure returns (free; R0; ;), where R0 is the set of en
ountered verti
es.Note that in this
ase the
ut (R0; [N ℄ n R0)
ontains only edges that are in
ident at F .In all
ases jR0j � 4d(jF j+ k0)=� < 4dk0(jF j+1)=�, be
ause if more than 4d(jF j+ k0)=� verti
es areen
ountered then either Case 1 or Case 2 holds. Thus, this implementation satis�es the spe
i�
ation.We note that the above des
ription applies also in
ase k0 2 f0; 1g, where k0 = 0 is trivial17 (i.e.,always return (minor; fvg; fvg)) and k0 = 1 is almost trivial (i.e., return (minor; fv; wg;�G0 (v) nF)if v has a neighbor w in G0[N ℄nF and (free; fvg; ;) otherwise).Using the star �nding pro
edure FS, we now turn to the main identi�
ation pro
edure, whi
his invoked on input vertex s0 = s(i) and aims at �nding an adequate set S0 = S(i). Re
all thatr denotes the root of T , and r1; :::; rm denote the roots of the subtrees T1; :::; Tm, where Tj is akj-star. The main pro
edure operates as follows.1. It initiates a BFS in the graph G0 starting at s0, stopping as soon as at least B = 4dk=�verti
es are en
ountered. Let S0 denote the set of en
ountered verti
es. Note that jS0j � Bmust hold, be
ause s0 = s(i) resides in root of some T -minor having radius greater than D.Note that it holds that jS0j < dB (be
ause otherwise we would have stopped at the previousBFS-layer).2. Let F0 denote the last layer in the BFS performed in the previous step. If jF0j < m, then wejust use S0 as the desired set (i.e., let S(i) = S0).Note that, in this
ase, the
ut (S0; [N ℄ n S0)
ontains less than m � d edges, whereas by the
ase hypothesis jS0j � B > 4m=�. So the
onditions regarding this set are satis�ed.We
ontinue to the next step only if jF0j � m.3. (The purpose of the
urrent step is to generate
alls to FS that will eventually lead to returninga set as in the se
ond output
ase (i.e.,
ut), whi
h
an serve as S(i) (see above). Thepresentation, however, pretends that we attempt to �nd a T -minor as in the �rst output
ase(i.e., minor). Observing that S0 n F0
an serve as a
ontra
tion of the root of T , we attemptto �nd disjoint sets Sj that
ontain Tj-minors rooted at some vj 2 F0.)For j = 1; :::;m, we try to �nd Sj as follows. Let F 0 = Sa2[j�1℄ Fa and V 0 = fv1; :::; vj�1g.For every v 2 F0 n V 0, we pro
eed as follows.We invoke FSkj , letting (�;X; Y) FSkj ((F0 n fvg) [F 0; v).We note that jXj � (5dkj=�) � (jF0j + jF 0j + 1) and jY j � dkj . Re
all that jF0j <jS0j < dB = 4d2k=� and jF 0j = Pa2[j�1℄ jFaj < dPa2[j�1℄ ka < d(k � m), wherek = 1 +m+Pa2[m℄ ka. Thus, jXj < (5d2k=�)2.17A
tually, this
ase never o

urs; that is, we never invoke FS0. The
ase k0 = 1 may o

ur, but we
ould haveavoided it too, but a dire
t treatment. 32

We
onsider the following three
ases regarding �.� = minor. In this
ase we set vj v and (Sj ; Fj) (X;Y), and pro
eed to the nextvalue of j (i.e., j j + 1); see
omment below.Note that jSj j < (5dk=�)2. In fa
t, the same upper bound
an be proved forPja=0 jSaj.Note that this
ase
annot o

ur when j = m, be
ause this would yield a smallT -minor rooted in s0 in
ontradi
tion to the hypothesis that s0 = s(i) is not bad.� =
ut. In this
ase we just use X as the desired set (i.e., let S(i) = X).Note that, by the spe
i�
ation of FS, the
ut (S(i); [N ℄ nS(i))
ontains relatively fewedges.� = free. In this
ase we do nothing, and
ontinue to the next
andidate v.Note that we halted with a desired
ut if either Step 2 found su
h a
ut or any of theinvo
ations of FS returned an
ut-value. Furthermore, as noted, it
annot be the
ase thatin Step 3 we obtained a minor-value for ea
h j 2 [m℄. Thus, we remain with the
ase that,for some j 2 [m℄, all invo
ations of FS returned a free-value. In this
ase, we let X 0 be theunion of all sets X that were returned in the
orresponding jF0j � (j � 1) invo
ations, anduse S0 [X 0 as the desired set (i.e., let S(i) = S0 [X 0).In this
ase, the size of the
ut (S(i); [N ℄ n S(i)) is at most d � jF 0j < d2k, be
ause for ea
h Xall edges of the
ut (X; [N ℄nX) are in
ident at F0[F 0 � S0[F 0. Thus, the
ut is suÆ
ientlysmall, be
ause jS(i)j � jS0j � B = 4dk=�. On the other hand, the size of S0 [X 0 is at mostjF0j � (5dk=�) � jF 0j < (5dk=�)2.This
ompletes the des
ription of the operation of the pro
edure I as well as the showing that itsatis�es its spe
i�
ation. It follows that for any s(i) that reside in the root of some T -minor inG(i�1), we obtain a set S(i) su
h that the
ut (S(i); [N ℄ n S(i)) has less than 4djS(i)j=� edges. Usingthe fa
t jS(i)j < D, it follows that G(i�1)S(i) is T -minor free, and the lemma follows.8 The unbounded-degree graph modelIn this se
tion we
onsider testing
y
le-freeness in what we shall refer to as the unbounded-degreein
iden
e-lists model [PR02℄. In this model, the maximum degree d may be as large as N � 1, sothere is e�e
tively no degree-bound, and a graph G is represented by a fun
tion g : [N ℄� [N �1℄!f0; : : : ; Ng. Similarly to the bounded-degree model, the algorithm may ask for the identity of theith neighbor of a vertex v, for any v 2 [N ℄ and i 2 [N � 1℄ of its
hoi
e, by querying the fun
tiong. (If v has less than i neighbors, then the answer returned is `0'). For the sake of simpli
ity, weassume that the algorithm
an also query the degree of any vertex of its
hoi
e (where su
h a query
an, of
ourse, be repla
ed by O(logN) neighbor queries).The main and
ru
ial di�eren
e between the unbounded-degree model and the bounded-degreemodel is in the distan
e measure between graphs. Rather than measuring distan
e between graphsin terms of the size of the domain of g, as done in the bounded-degree model, we measure it withrespe
t to the number of edges jEj in G = ([N ℄; E). That is, we shall say that a graph G is�-far from being
y
le-free (in the unbounded-degree model), if the number of edges that must beremoved in order to make it
y
le-free is greater than �jEj. Letting davg denote the average degreein G, this is equivalent to saying that the number of edges in G is greater than (N � 1)+ �davgN=2.We note that while the bounded-degree model is appropriate for testing graphs in whi
h themaximum degree is of the same order as the average degree (and in parti
ular
onstant-degree33

graphs), the unbounded-degree model is appropriate for testing graphs in whi
h the maximumdegree may be mu
h higher than the average degree. We mention that the model
onsideredin [KKR04℄ (see also Se
tion 8.3) also allows adja
en
y queries (as in [GGR98℄), but su
h queriesare useless when the degree is smaller than pN .8.1 Testing
y
le-freenessIn this subse
tion, we show that the result of Theorem 1.5 (and thus also Theorem 1.1) extendsto the unbounded-degree (in
iden
e lists) model. This will be done by viewing the randomizedredu
tion that underlies Algorithm 3.1 in a slightly di�erent way, whi
h a
tually yields an alterna-tive tester (whi
h is
losely related to but di�erent from Algorithm 3.1). We then show that thisalgorithm extends easily to the unbounded-degree model.The pivot of our exposition is the following generalization of 2-
olorability in whi
h edges of thegraph are labeled by either eq or neq. That is, an instan
e of this problem is a graph G = ([N ℄; E)along with a labeling � : E ! feq; neqg. We say that � : [N ℄! f0; 1g is a legal 2-
oloring of thisinstan
e if for every fu; vg 2 E it holds that �(u) = �(v) if and only if �(fu; vg) = eq. That is, alegal 2-
oloring (of the verti
es) is one in whi
h every two verti
es that are
onne
ted by an edgelabeled eq (resp. neq) are assigned the same
olor (resp., opposite
olors). Note that the standardnotion of 2-
olorability
orresponds to the
ase in whi
h all edges are labeled neq.We observe that the Bipartite testers of [GR99℄ and [KKR04℄
an be extended to test thisgeneralization of 2-
olorability.18 All that is needed is to de�ne edges labeled neq as having evenlength (say, length zero or two), whereas edges labeled eq are de�ned as having odd length (say,length one). Modulo this de�nition, the entire analysis of [GR99℄ remains inta
t. Spe
i�
ally, allreferen
es in [GR99℄ to the length of paths and
y
les are re-interpreted as referring to the foregoingde�nition. In parti
ular, an odd length
y
les (under this label-dependent de�nition of length)indi
ates that the graph
annot be 2-
olored (under the
orresponding labeling of edges), whereasthe non-existen
e of odd length
y
les enables su
h a 2-
oloring. (The same holds for [KKR04℄,whi
h operates by a (lo
al) redu
tion to [GR99℄.)Lastly, we observe that the randomized redu
tion that underlies Algorithm 3.1
an be viewedas a randomized redu
tion of
y
le-freeness to generalized 2-
oloring, while keeping the graphinta
t. Spe
i�
ally, the graph G = ([N ℄; E) is mapped to a random instan
e of the generalized2-
oloring problem su
h that the graph equals G itself and the labeling is sele
ted uniformly amongall possible � : E ! feq; neqg. Invoking the generalized 2-
oloring tester (derived from [KKR04℄)on the resulting instan
e, we are done. (Indeed, in this
ase, unlike in the
ase of Algorithm 3.1,the emulation of the generalized 2-
oloring tester is straightforward.)8.2 Testing tree-minor-freenessIn
ontrast to Se
tion 8.1, we show that the result of Theorem 1.3
annot be extended to theunbounded-degree model. This follows by
onsidering an N -vertex graph G that
onsists of a
y
leof length N � pN and a
lique of size pN (i.e., G = CN�pN + KpN). Denoting the 3-star byT3, note that G is
(1)-far from being T3-minor-free (sin
e we must omit pN � 3 edges fromea
h vertex of the pN-
lique in order to eliminate all
opies of T3 itself). On the other hand, noo(pN)-query tester
an �nd a T3-minor in a random isomorphi

opy of G, ex
ept with probability18A similar observation refers to the k-
olorability testers of [GGR98℄, whi
h operate in the dense graph model.Thus, for every k � 2, the foregoing generalization of k-
olorability
an be tested in the dense graph model by usingpoly(1=�) queries. 34

o(1), Furthermore, any algorithm of query
omplexity o(pN)
annot distinguish a random
opy ofG from a random
opy of a N -vertex graph that
onsists of a
y
le of length N � pN and pNisolated verti
es.We mention that an O(pN)-query one-sided tester for Tk-minor-freeness does exist for anyk (where Tk denotes the k-star). This tester may be obtained by
ombining the tester for thebounded-degree model (for d = k, as presented in Se
tion 7.3) with an O(pN)-query pro
edurefor �nding a vertex of degree at least k. Clearly, if the former tester ever sees a vertex of degreeat least k, then the
ombined tester reje
ts; otherwise, the analysis of Se
tion 7.3 applies to thegraph indu
ed by the low degree verti
es. Thus, we should only worry about the
ase that distan
efrom being Tk-minor-free is mostly due to verti
es of degree at least k. In this
ase (i.e., at least�jEj=2 edges are in
ident at verti
es of degree at least k), sampling a random edge and
he
kingthe degree of its endpoints will do, whereas su
h sampling
an be performed using eO(pN) queries(see [KKR04℄).8.3 Testing with adja
en
y queriesHere we
onsider an augmentation of the model with adja
en
y queries. This augmentation was�rst
onsidered in [KKR04℄, and it was shown to be useful (for testing bipartitness) when theaverage degree, davg, ex
eeds pN . We observe that the same holds with respe
t to testing
y
le-freeness (see details below). We also stress that in the bare model (i.e., without adja
en
y queries)the results presented in Se
tion 8.1 are optimal.We note that the redu
tion presented in Se
tion 8.1 remains valid, ex
ept that in this
ase thegeneralized 2-
oloring tester (derived from [KKR04℄) may use adja
en
y queries. In this
ase, theresulting
y
le-freeness tester will have
omplexity min(eO(pN); eO(N)=davg) �poly(1=�) (just as the2-
oloring tester of [KKR04℄).Referen
es[AS03℄ N. Alon and A. Shapira. Testing satis�ability. Journal of Algorithms, 47:87{103, 2003.[BSS08℄ I. Benjamini, O. S
hramm, and A. Shapira. Every minor-
losed property of sparsegraphs is testable. In Pro
eedings of the Fourtieth Annual ACM Symposium on theTheory of Computing, pages 393{402, 2008.[Fis01℄ E. Fis
her. The art of uninformed de
isions: A primer to property testing. Bulletin ofthe European Asso
iation for Theoreti
al Computer S
ien
e, 75:97{126, 2001.[FP87℄ J. Friedman and N. Pippenger. Expanding graphs
ontain all small trees. Combinator-i
a, 7:71{76, 1987.[GGR98℄ O. Goldrei
h, S. Goldwasser, and D. Ron. Property testing and its
onne
tion tolearning and approximation. Journal of the ACM, 45(4):653{750, 1998.[GR99℄ O. Goldrei
h and D. Ron. A sublinear bipartite tester for bounded degree graphs.Combinatori
a, 19(3):335{373, 1999.[GR02℄ O. Goldrei
h and D. Ron. Property testing in bounded degree graphs. Algorithmi
a,pages 302{343, 2002. 35

[GS07℄ O. Goldrei
h and O. She�et. On the randomness
omplexity of property testing. In Pro-
eedings of the Eleventh International Workshop on Randomization and Computation(RANDOM), pages 296{310, 2007.[GT03℄ O. Goldrei
h and L. Trevisan. Three theorems regarding testing graph properties.Random Stru
tures and Algorithms, 23(1):23{57, 2003.[HKNO09℄ A. Hassidim, J. Kelner, H. Nguyen, and K. Onak. Lo
al graph partitions for approxi-mation and testing. In Pro
eedings of the Fiftieth Annual Symposium on Foundationsof Computer S
ien
e (FOCS), 2009.[KKR04℄ T. Kaufman, M. Krivelevi
h, and D. Ron. Tight bounds for testing bipartiteness ingeneral graphs. SIAM Journal on Computing, 33(6):1441{1483, 2004.[Kur30℄ K. Kuratowski. Sur le probl�eme des
ourbes gau
hes en topologie. Fundamenta Math-emati
a, 15:271{283, 1930.[Lov06℄ L. Lov�asz. Graph minor theory. Bulletin of the Ameri
an Mathemati
al So
iety,43(1):75{86, 2006.[PR02℄ M. Parnas and D. Ron. Testing the diameter of graphs. Random Stru
tures andAlgorithms, 20(2):165{183, 2002.[Ron08a℄ D. Ron. Property testing: A learning theory perspe
tive. Foundations and Trends inMa
hine Learning, 1(3):307{402, 2008.[Ron08b℄ D. Ron. Some te
hniques in property testing. Presentation. Available fromhttp://www.eng.tau.a
.il/�danar/talks.html, 2008.[RS95℄ N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.Journal of Combinatorial Theory Series B, 63(1):65{110, 1995.[RS04℄ N. Robertson and P. D. Seymour. Graph minors. XX. Wagner's
onje
ture. Journal ofCombinatorial Theory Series B, 92(1):325{357, 2004.[Wag37℄ K. Wagner. �Uber eine eigens
haft der ebenen komplexe. Mathematis
he Annalen,114:570{590, 1937.

36

