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Abstract

We present a (randomized) test for monotonicity of Boolean functions. Namely, given the
ability to query an unknown function f : f0; 1gn 7! f0; 1g at arguments of its choice, the test
always accepts a monotone f , and rejects f with high probability if it is �-far from being monotone
(i.e., every monotone function differs from f on more than an � fraction of the domain). The
complexity of the test is poly(n=�).

The analysis of our algorithm relates two natural combinatorial quantities that can be measured
with respect to a Boolean function; one being global to the function and the other being local to it.

We also consider the problem of testing monotonicity based only on random examples labeled
by the function. We show an 
(p2n=�) lower bound on the number of required examples, and
provide a matching upper bound (via an algorithm).
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1 Introduction

In this work we address the problem of testing whether a given Boolean function is monotone. A
function f : f0; 1gn 7! f0; 1g is said to be monotone if f(x) � f(y) for every x � y, where �
denotes the natural partial order among strings (i.e., x1 � � �xn � y1 � � � yn if xi � yi for every i andxi < yi for some i). The testing algorithm can request the value of the function on arguments of
its choice, and is required to distinguish monotone functions from functions that are far from being
monotone.

More precisely, the testing algorithm is given a distance parameter � > 0, and oracle access to an
unknown function f mapping f0; 1gn to f0; 1g. If f is a monotone then the algorithm should accept
it with probability at least 2=3, and if f is at distance greater than � from any monotone function then
the algorithm should reject it with probability at least 2=3. Distance between functions is measured in
terms of the fraction of the domain on which the functions differ. The complexity measures we focus
on are the query complexity and the running time of the testing algorithm.

We present a randomized algorithm for testing the monotonicity property whose query complexity
and running time are polynomial in n and 1=�. The algorithm performs a simple local test: It verifies
whether monotonicity is maintained for randomly chosen pairs of strings that differ exactly on a single
bit. In our analysis we relate this local measure to the global measure we are interested in — the
minimum distance of the function to any monotone function.

1.1 Perspective

Property Testing, as explicitly defined by Rubinfeld and Sudan [RS96] and extended in [GGR96], is
best known by the special case of low degree testings [BLR93, GLR+91, RS96, RS97, AS97] which
plays a central role in the construction of probabilistically checkable proofs (PCP) [BFL91, BFLS91,
FGL+96, AS98, ALM+98, RS97, AS97]. The recognition that property testing is a general notion has
been implicit in the context of PCP: It is understood that low degree tests as used in this context are
actually codeword tests (in this case of BCH codes), and that such tests can be defined and performed
also for other error-correcting codes such as the Hadamard code [ALM+98, BGLR93, BS94, BCH+95,
BGS98, Kiw96, Tre98], and the “Long Code” [BGS98, Hås96, Hås97, Tre98].

Forasmuch as error-correcting codes emerge naturally in the context of PCP, they do not seem to
provide a natural representation of familiar objects whose properties we may wish to investigate. That
is, one can certainly encode any given object by an error-correcting code — resulting in a (legitimate
yet) probably unnatural representation of the object — and then test properties of the encoded object.
However, this can hardly be considered as a “natural test” of a “natural phenomena”. For example,
one may indeed represent a graph by applying an error correcting code to its adjacency matrix (or to
its incidence list), but the resulting string is not the “natural representation” of the graph.

The study of Property Testing as applied to natural representation of (non-algebraic) objects was
initiated in [GGR96]. In particular, Property Testing as applied to graphs has been studied in [GGR96,
GR97, GR98] – where the first work considers the adjacency matrix representation of graphs (most
adequate for dense graphs), and the latter works consider the incidence list representation (adequate
for sparse graphs).

In this work we consider property testing as applied to the most generic (i.e., least structured)
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object – an arbitrary Boolean function. In this case the choice of representation is “forced” upon us.

1.2 Monotonicity

In interpreting monotonicity it is useful to view Boolean functions over f0; 1gn as subsets of f0; 1gn,
called concepts. This view is the one usually taken in the PAC Learning literature. Each position
in f1; : : : ; ng corresponds to a certain attribute, and a string x = x1 : : : xn 2 f0; 1gn represents an
instance where xi = 1 if and only if the instance x has the ith attribute. Thus, a concept (subset of
instances) is monotone if the presence of additional attributes maintains membership of instances in
the concept (i.e., if instance x is in the concept C then any instance resulting from x by adding some
attributes is also in C).

The class of monotone concepts is quite general and rich. On the other hand, monotonicity suggests
a certain aspect of simplicity. Namely, each attribute has a uni-directional effect on the value of the
function. Thus, knowing that a concept is monotone may be useful in various applications. In fact,
this form of simplicity is exploited by Angluin’s learning algorithm for monotone concepts [Ang88],
which uses membership queries and has complexity that is linear in the number of terms of the target
concept’s DNF representation.

We note that an efficient tester for monotonicity is useful as a preliminary stage before employing
Angluin’s algorithm. As is usually the case, Angluin’s algorithm relies on the premise that the unknown
target concept is in fact monotone. It is possible to simply apply the learning algorithm without knowing
whether the premise holds, and hope that either the algorithm will succeed nonetheless in finding a
good hypothesis or detect that the target is not monotone. However, due to the dependence of the
complexity of Angluin’s algorithm on the number of terms of the target concept’s DNF representation,
it may be much more efficient to first test whether the function is at all monotone (or close to it).

1.3 The natural monotonicity test

The main result of the paper is that a tester for monotonicity is obtained by repeating the following
for poly(n=�) many times: Uniformly select a pair of strings at Hamming distance 1 and check if
monotonicity is satisfied with respect to the value of f on these two strings. That is,

ALGORITHM 1: On input n; � and oracle access to f : f0; 1gn 7!f0; 1g, repeat the following steps up
to n3=� times

1. Uniformly select x 2 f0; 1gn and i 2 f1; :::; ng.

2. Obtain the values of f(x) and f(y), where y results from x by flipping the ith bit.

3. If x; y; f(x); f(y) demonstrate that f is not monotone then reject.

That is, if either (x�y)^ (f(x)>f(y)) or (y�x) ^ (f(y)>f(x)) then reject.

If all iterations were completed without rejecting then accept.

Theorem 1 (main result): Algorithm 1 is a testing algorithm for monotonicity. Furthermore, if the
function is monotone then Algorithm 1 always accepts.
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Theorem 1 asserts that a (random) local check (i.e., Step 3 above) can establish the existence of a
global property (i.e., the distance of f to the set of monotone functions). Actually, Theorem 1 is proven
by relating two quantities referring to the above: Given f : f0; 1gn 7! f0; 1g, we denote by �M(f)
the fraction of pairs (x; y) in which Step 3 rejects. Observe that �M(f) is actually a combinatorial
quantity (i.e., the fraction of pairs of n-bit strings, differing on one bit, which violate the monotonicity
condition). We then define �M(f) to be the distance of f from the set of monotone functions (i.e.,
the minimum over all monotone functions g of jfx : f(x) 6=g(x)gj=2n). Observing that Algorithm 1
always accepts a monotone function, Theorem 1 follows from Theorem 2, stated below.

Theorem 2 For any f : f0; 1gn 7!f0; 1g,�M(f) � �M(f)n3 :
We comment that a slightly more careful analysis yields a better bound than the one stated in the
theorem: namely, �M(f) = 
 �M(f)n2 log(1=�M(f))! : (1)

As for the reverse direction; that is, lower bounding �M(f) in terms of �M(f), we have

Proposition 3 For every function f : f0; 1gn 7!f0; 1g, �M(f) � �M(f)=2.

Thus, for every function f �M(f)poly(n) � �M(f) � O(�M(f))
A natural question that arises is that of the exact relation between �M(�) and �M(�). We observe that
this relation is not simple; that is, it does not depend only on the values of �M and �M.

Proposition 4 The following holds for every n and every 2�c�n � � � 12 � O( 1pn ), where c is any
constant strictly smaller than 1.

1. There exists a function f : f0; 1gn 7! f0; 1g such that � � �M(f) � 2� and �M(f) =� � �M(f)pn �
.

2. There exists a function f : f0; 1gn 7! f0; 1g such that � � �M(f) � 2� and �M(f) =� (�M(f)).
3. For any � = O(n� 32 ), there exists a function f : f0; 1gn 7!f0; 1g such that � � �M(f) � 2�

and �M(f) = � � �M(f)n �
.

PERSPECTIVE. Analogous quantities capturing local and global properties of functions were analyzed in
the context of linearity testing. For a function f : f0; 1gn 7!f0; 1g (as above), one may define �lin(f) to
be its distance from the set of linear functions and �lin(f) to be the fraction of pairs, (x; y) 2 f0; 1gn�f0; 1gn for which f(x)+f(y) 6= f(x�y). A sequence of works [BLR93, BGLR93, BS94, BCH+95]
has demonstrated a fairly complex behavior of the relation between �lin and �lin. The interested reader
is referred to [BCH+95].
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1.4 Monotonicity testing based on random examples

Algorithm 1 makes essential use of queries. We show that this is no coincidence – any monotonicity
tester that utilizes only uniformly and independently chosen random examples, must have much higher
complexity.

Theorem 5 For any � = O(n�3=2), any tester for monotonicity that only utilizes random examples

must use at least 
(q2n=�) such examples.

Interestingly, this lower bound is tight up to a poly(n) factor.

Theorem 6 There exists a tester for monotonicity which only utilizes random examples and uses at

mostO(qn3 � 2n=�) examples. Furthermore, the algorithm runs in time poly(n) �q2n=�.
We note that the above tester is significantly faster than any learning algorithm for the class of all
monotone concepts when the allowed error is O(1=pn): Learning (under the uniform distribution)
requires 
(2n=pn) examples (and even that number of queries) [KLV94].1
1.5 Extensions and Open Problems

TESTING UNATENESS. A function f : f0; 1gn 7! f0; 1g is said to be unate if for every xi (wherex = x1 : : : xn is the input to the function), exactly one of the following holds: whenever the value
of xi is flipped from 0 to 1 then the value of f does not decrease; or whenever the value of xi is
flipped from 1 to 0 then the value of f does not decrease. Thus, unateness is a more general notion
than monotonicity. We show that our algorithm can be extended to test whether a Boolean function is
unate or far from any unate function. The query and time complexities of the (extended) algorithm are
bounded by O(n3:5=�).
OTHER DOMAINS AND RANGES. Let � and � be finite sets, and <� and <� (total) orders on �
and �, respectively. Then we can extend the notion of monotonicity to functions from �n to �, in
the obvious manner: Namely, a function f : �n 7! � is said to be monotone if f(x) �� f(y) for
every x �� y, where x1 � � � xn �� y1 � � � yn if xi �� yi for every i and xi <� yi for some i. Our
algorithm generalizes to testing monotonicity over extended domains and ranges. The complexity of
the generalized algorithm scales quadratically with j�j and linearly with j�j. It is an interesting open
problem whether these dependencies can be removed (or reduced). In particular, we believe that the
dependence on the size of the range � can be removed.

REMOVING THE DEPENDENCE ON n. Our algorithm (even for the base case), has a polynomial depen-
dence on the dimension of the input, n. As shown in Proposition 4, some dependence of the query
complexity on n is unavoidable in the case of our algorithm. However, it is an interesting open problem1The claim follows by considering all possible concepts that contain all instances having bn=2c + 1 or more 1’s,
no instances having bn=2c � 1 or less 1’s, and any subset of the instances having exactly bn=2c 1’s. In contrast,
“weak learning” [KV94] is possible in polynomial time. Specifically, the class of monotone concepts can be learned in
polynomial time with error at most 1=2� 
(1=pn) (though no polynomial-time learning algorithm can achieve an error
of 1=2� !(log(n)=pn)) [BBL98].
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whether other algorithms may have significantly lower query (and time) complexities, and in particular
have query complexity independent of n. A candidate alternative algorithm inspects pairs of stringsx; y, where x is chosen uniformly in f0; 1gn, and y is chosen as follows: First select an index (weight)w 2 f0; : : : ; ng with probability

�nw� � 2�n, and then select y uniformly among the strings having w
1’s, and being comparable to x (i.e., y � x or y � x).

Related Work

The “spot-checker for sorting” presented in [EKK+98, Sec. 2.1] implies a tester for monotonicity with
respect to functions from any fully ordered domain to any fully ordered range, having query and time
complexities that are logarithmic in the size of the domain. We note that this problem corresponds to
the special case of n = 1 of the extension discussed in Subsection 1.5 (to general domains and ranges).

Organization

Theorem 2 is proved in Section 3. Propositions 3 and 4 are proved in Section 4, and Theorems 5 and 6
are proved in Section 5. The extensions are presented in Section 6.

2 Preliminaries

For any pair of functions f; g : f0; 1gn ! f0; 1g, we define the distance between f and g, denoted,dist(f; g), to be the fraction of instances x 2 f0; 1gn on which f(x) 6= g(x). In other words,dist(f; g) is the probability over a uniformly chosen x that f and g differ on x. Thus, �M(f) as defined
in the introduction is the minimum, taken over all monotone functions g of dist(f; g).

A general formulation of Property Testing was suggested in [GGR96], but here we consider a
special case formulated previously in [RS96].

Definition 1 (property tester): Let P = [n�1Pn be a subset (or a property) of Boolean functions, so
that Pn is a subset of the functions mapping f0; 1gn to f0; 1g. A (property) tester forP is a probabilistic
oracle machine2, M , which given n, a distance parameter � > 0 and oracle access to an arbitrary
function f : f0; 1gn 7!f0; 1g satisfies the following two conditions:

1. The tester accepts f if it is in P :

If f 2 Pn then Prob(Mf (n; �)=1) � 23 .

2. The tester rejects f if it is far from P :

If dist(f; g) > � for every g 2 Pn ; then Prob(Mf (n; �)=1) < 13 .

TESTING BASED ON RANDOM EXAMPLES. In case the queries made by the tester are uniformly and
independently distributed in f0; 1gn, we say that it only uses examples. Indeed, a more appealing
way of looking as such a tester is as an ordinary algorithm (rather than an oracle machine) which is
given as input a sequence (x1; f(x1)); (x2; f(x2)); :::where the xi’s are uniformly and independently
distributed in f0; 1gn.2 Alternatively, one may consider a RAM model of computation, in which trivial manipulation of domain and range
elements (e.g., reading/writing an element and comparing elements) is performed at unit cost.
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Definition 2 (the Boolean-Lattice graph): For every string x 2 f0; 1gn, let w(x) denote the weight
of x (i.e., the number of 1’s in x). For each i, 0 � i � n, let Li � f0; 1gn denote the set of n-bit
strings of weight i (i.e., Li = fx 2 f0; 1gn : w(x) = ig). Let Gn be the leveled directed (acyclic)
graph over the vertex set f0; 1gn, where there is a directed edge from y to x if and only if x � y andw(x) = w(y)� 1 (i.e., x and y are in adjacent Li’s).

Given the definition of Gn we may view our algorithm as uniformly selecting edges in Gn and
querying the function f on their end-points. We call an edge directed from y to x in Gn a violating
edge with respect to f if f(x) > f(y) (whereas x � y). Thus, �M(f), as defined in the introduction,
is the fraction of violating edges in Gn with respect to f .

3 Proof of the Main Technical Result

In order to prove Theorem 2 we prove the following two lemmas. The first lemma shows the existence
of a matching between two relatively large (with respect to �M(f)) sets of vertices (strings) belonging
to different layers of Gn where each vertex y in the first set is matched to a vertex x such that x � y
but f(x) > f(y). The second lemma shows that for any such matching there exist vertex disjoint
(directed) paths in Gn between the two sets (though the paths may correspond to a different matching
— see Appendix A for further discussion).

Lemma 7 (existence of large violating matched sets) For any function f : f0; 1gn 7! f0; 1g, there
exist two sets of vertices S � Ls and R � Lr, where s > r, for which the following holds:

1. jSj = jRj � �M(f)2n2 � 2n;

2. For every y 2 S, f(y) = 0, and for every x 2 R, f(x) = 1;

3. There exists a one-to-one mapping � from S to R such that for every y 2 S, �(y) � y.
Lemma 8 (existence of disjoint paths between matched sets) Let r and s be integers satisfying, 0 �r < s � n, and let S � Ls and R � Lr be sets each of size m. Suppose that there exists a 1-to-1
mapping � from S to R such that for every y 2 S, there is a directed path in Gn from y to �(y). Then
there exist m vertex-disjoint directed paths from S to R in Gn.

We prove the two lemmas in the next two subsections. But first we show that Theorem 2 follows
by combining the two lemma.

Proof of Theorem 2: Fixing f we first invoke Lemma 7 to obtain the two matched sets S andR of size
at least m = �M(f)2n2 � 2n. By Lemma 8 this matching implies the existence of m vertex disjoint paths
from S to R. Consider any such path z0 = y; : : : ; zd = x, where y 2 S, x 2 R, and d = s� r. Sincez0 2 S, we have f(z0) = 0. On the other hand, since zd 2 R, we have f(zd) = 1. Therefore, there
must exist some ` 2 f0; :::; d�1g, such that f(z`) = 0 and f(z`+1) = 1. Thus the edge directed fromz` to z`+1 is a violating edge with respect to f . Since the paths from S to R are vertex disjoint, they
are necessarily edge disjoint, and hence there are at least m = �M(f)2n2 � 2n such violating edges (at least
one per path). Because each vertex in Gn has total degree (indegree plus outdegree) n, the number of
edges in Gn is 12 � 2n � n. Therefore, the fraction of violating edges is at least �M(f)n3 , and the theorem
follows.

The strengthening of Theorem 2 stated in Equation (1) is justified by the fact that one may actually
show that there exist sets S and R as in Lemma 7 such that jSj = jRj = 
 � �M(f)n log(1=�M(f)� � 2n. We
show how this improvement can be obtained after we prove Lemma 7.
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3.1 Proving the existence of large violating matched sets

Fixing f , let g be a monotone function (over f0; 1gn) for which dist(f; g) = �M(f). Namely, g is a
monotone function that is closest to f . For b 2 f0; 1g, letDb def= fx : f(x) 6= g(x) and g(x) = b g (2)

That is, the set D0 [D1 is a set of minimum size such that if we flip the value of f on all elements in
the set then we obtain a monotone function (i.e., g). Since jD0 [D1j = �M(f) � 2n and D0 \D1 = ;,
we may assume, without loss of generality, that jD1j � �M(f)2 � 2n. Recall that, by definition,D1 = fx : g(x) = 1 and f(x) = 0 g � fx : f(x) = 0g
For any set Y � f0; 1gn, the shadow3 of Y, denoted �(Y), is defined as follows:�(Y) def= fx =2 Y : 9y 2 Y s.t. x � yg (3)

Namely, the shadow of Y is the set of all strings not in Y that are each smaller than some string in Y.
For any Y � D1 define�1(Y) def= fx 2 �(Y) : f(x) = g(x) = 1g � fx : f(x) = 1g (4)

Namely, �1(Y) is the subset of the shadow of Y containing all strings on which both f and g have
value 1. (Note that for any Y � D1, �(Y) n �1(Y) � fx : g(x) = 0g.) As a visualization (see
Figure 3.1), we view g as defining a boundary in the Boolean Lattice (similarly, in Gn), such that all
strings on and above the boundary are labeled 1, and all other strings are labeled 0. The setD1 contains
those strings above the boundary that f labels 0. The set �1(D1) contains all strings in the shadow ofD1 that lie above the boundary. These strings are labeled 1 by f (as otherwise they would be in D1).

Thus, by definition of D1 and �1(D1), we have that for every x 2 �1(D1), there exists y 2 D1
such that the pair (x; y) satisfies: x � y and f(y) < f(x) (i.e., f(y) = 0 and f(x) = 1). We next
show that a stronger statement holds.

Lemma 9 For every Y � D1, there exists a 1-to-1 mapping � from Y into �1(Y), such that for eachy 2 Y, �(y) � y.

Lemma 9 is the main step in proving Lemma 7 (which also requires that all elements in the set S belong
to the same layer in Gn, and that the same hold for all the elements they are mapped to).

Proof: We first show that for every Y � D1, j�1(Y)j � jYj. Assume towards contradiction that, for
some Y � D1, j�1(Y)j < jYj. We show, contrary to our hypothesis on g, that there exists another
monotone function g0 that is (strictly) closer to f .

Define g0 as follows: For every x 2 Y [ �(Y), g0(x) = 0. Otherwise, g0(x) = g(x).
We need to verify the following two claims.

Claim 9.1: g0 is a monotone function.

Claim 9.2: dist(f; g0) < dist(f; g).
Proof of Claim 9.1: We need to show that for every x; y such that x � y, it holds that g0(x) � g0(y).
Consider the following cases.3This is not the standard definition of a shadow, as in [Bol86, Chap. 5].
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The Boundary
of g

g = 0

g = 1

f = 0

f = 1(D )1

D1

1σ

Figure 1: The sets D1 and �1(D1).
Case 1: x 2 Y [ �(Y). In this case g0(x) = 0, and so g0(x) � g0(y) for all y,

Case 2: x =2 Y [ �(Y). Note that in this case g0(x) = g(x). We will show that for every y if x � y
then y =2 Y [ �(Y) as well, and thus g0(y) = g(y) � g(x) = g0(x) as required. Suppose
towards contradiction that for some y 2 Y [ �(Y) it holds that x � y. We consider two
subcases.

1. If y 2 Y then since x � y we have that x 2 Y[�(Y) in contradiction to the case hypothesis.

2. If y 2 �(Y) then there exists z 2 Y such that y � z. Using x � y it follows that x � z and
so again x 2 Y [ �(Y) in contradiction to the case hypothesis.

Claim 9.1 follows. 2
Proof of Claim 9.2: By definition of g0, the functions g and g0 differ on the set of strings � def=(Y [ �(Y)) \ fx : g(x)=1g. Since Y � D1 � fx : g(x)=1g, we have� = Y [ (�(Y) \ fx : g(x)=1g)= Y [ (�(Y) \ fx : g(x)=1 and f(x)=1g) [ (�(Y) \ fx : g(x)=1 and f(x)=0g)= Y [ �1(Y) [ A
where A def= �(Y) \ fx : g(x) = 1 and f(x) = 0g. Consider the three (disjoint) subsets of �: Y,�1(Y), and A.� For every x 2 Y, we have f(x) = 0 and g(x) = 1 (since Y � D1), and g0(x) = 0 (by definition).

Such x contributes to dist(f; g) but not to dist(f; g0).� For every x 2 �1(Y), we have f(x) = g(x) = 1 (by definition of �1(Y)), and again g0(x) = 0.
Such x do not contribute to dist(f; g) but do contribute to dist(f; g0).
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� For every x 2 A, we have f(x) = 0 and g(x) = 1 (by definition of A), and again g0(x) = 0.
Such x contribute to dist(f; g) but not to dist(f; g0).

Thus, 2n � (dist(f; g0)� dist(f; g)) = j�1(Y)j � jY [Aj � j�1(Y)j � jYj < 0
where the strict inequality is due to the assumption that j�1(Y)j < jYj. Claim 9.2 follows. 2
Consider any set Y � D1. We have established that for every Y0 � Y, j�1(Y0)j � jY0j. Lemma 9
follows from Hall’s Theorem (cf. [Eve79, Thm. 6.12]): Consider the auxiliary bipartite graph Bwhose
vertex set is labeled by the strings in Y [ �1(Y), and whose edge set is f(x; y) : x 2 �1(Y); y 2Y; x � yg. By the above, for each Y0 � Y, we have j�(Y0)j � jY0j, where �(Y0) denotes the
neighbor set of Y0 in B. By Hall’s Theorem, this implies that there exists a perfect matching betweenY and a subset of �1(Y). Lemma 9 follows.

Proof of Lemma 7: As noted previously, we may assume that D1 (see Eq. (2)) has size at least�M(f) � 2n�1 (the case jD0j � �M(f) � 2n�1 is analogous). Let Yi def= D1 \ Li, and let s denote the
index of the largest set among the Yi’s. It follows that jYsj � �M(f)2n � 2n.

We now invoke Lemma 9 with Y = Ys. Let Xs def= �(Ys), where � is as guaranteed by the lemma.
Hence, Xs � �1(Ys), and jXsj = jYsj. Note that while all elements of Ys belong to Ls, the elements

of Xs are contained in several Lj ’s, j < s. For each j, 0 � j < s, let Xs;j def= Xs \ Lj . Let Xs;r
be the largest such set. Since jXsj = jYsj � �M(f)2n � 2n, we have jXs;rj � �M(f)2n2 � 2n. Finally, letYs;r def= ��1(Xs;r). Then Lemma 7 holds with S = Ys;r � Ls and R = Xs;r � Lr.
Comment: To obtain the stronger bound on the sizes of S and R we do the following. Letdev def= s12n � ln(8=�M(f)) :
Then we have that the total number of strings in layers Li where i > n2 + dev is at most �M(f)8 � 2n.

Similarly, the total number of strings in layers Li where i < n2 � dev is at most �M(f)8 � 2n. Assuming

(without loss of generality) that jD1j � �M(f)2 �2n , we have that the number of strings in D1 that belong

to layers Li where i � n2 + dev is at least 3�M(f)8 � 2n. By invoking Lemma 9 on the setY = D1 \ 0@ [i�n2+devLi1A
we have a one-to-one mapping � from Y to X = �(Y) � �1(Y). Note that by definition of Y,X � [i<n2+devLi :

Since jXj = jYj � 3�M(f)8 � 2n, and the total number of strings in layers Li where i < n2 � dev is

at most �M(f)8 � 2n, we have that ������X \ 0@ n2+dev[i=n2�dev Li1A������ � �M(f)4 � 2n :
10



For each i, n2 � dev � i < n2 + dev, let Xi def= X \ Li and let Xr be the largest such set. ThenjXrj � �M(f)4�2dev �2n. LetYr def= ��1(Xr), and for each i, n2�dev < i � n2+dev, defineYi;r def= Yr\Li.
Then there exists a set Ys;r � Ls such thatjYs;rj � �M(f)16 � dev2 � 2n = 
( �M(f)n � log(1=�M(f)) � 2n :
We then let S = Ys;r and R = Xs;r.
3.2 Existence of disjoint paths between matched sets

Let S � Ls and R � Lr be as stated in Lemma 8, and let d = s� r. Recall that for each 0 � i � n,Li is the set of all vertices in Gn corresponding to strings with exactly i 1’s. We shall prove Lemma 8
by induction on m and d. The base cases, i.e., the case where m = 1 and d � 1, and the case whered = 1 and m � 1, clearly hold. Consider general m > 1 and d > 1, and assume by induction that the
claim holds for every pair m0 and d0 such that eitherm0 < m and d0 � d orm0 � m and d0 < d. Let Q
be the set of vertices in Ls�1 that are on a directed path going from some vertex in S to some vertex inR, and let P be the set of vertices in Lr+1 that are on such directed paths from S to R (see Figure 3.2).
We shall prove the induction claim in two steps. In the first step we use the induction hypothesis (form0 < m and d0 = d) to show that either jQj � m or jPj � m (or both). In the second step we use this
fact together with the induction hypothesis (for m0 < m and d0 = d and for m0 = m and d0 < d) to
prove the induction claim.

.

.

.

.

Level 

Level 

Level 

Level s-1

s

r+1

r

S

R

Q

P

Figure 2: The sets S, R, Q, and P.

Step 1: Either jQj �m or jPj �m.

Proof: Consider the subgraph G0n of Gn containing S, R and all vertices and edges that belong to
paths between S and R.

Claim 8.1: Let v be a vertex in S and let u be a vertex in some level Li, where r+ 1 � i � s� 1; such
that there is a directed path from v to u in G0n. Then the outdegree of v in G0n is at least as large as the
outdegree of u in G0n. Similarly, if w 2 R and z 2 Li where r + 1 � i � s� 1, such that there is a
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directed path from z to w in G0n, then the indegree of w in G0n is at least as large as the indegree of z
in G0n.

Proof: We prove the claim concerning outdegrees. The claim about indegrees is proved analogously.
Let a � 1 be the outdegree of u and consider the vertices u1; : : : ; ua in Li�1 such that there is an edge
in G0n from u to each ui. Recall that by definition of G0n there are paths in G0n from the ui’s to vertices
in R. Therefore, any vertex that is on a path from v to one of the ui’s is in G0n as well.

For each ui, let bi 2 [n] be the index of the bit on which the strings corresponding to u and ui,
differ; i.e., ubi = 1 while uibi = 0. By definition, b1; : : : ; ba are distinct indices, and since ubi = 1 for
every i, it also holds that vbi = 1 for every i. For each bi, let vi be the vertex in Ls�1 that differs fromv on the bi’th bit; i.e., vibi = 0, and for every j 6= bi, vij = vij . Then each of the a vi’s is on a path fromv to ui, and the claim follows. 2

We note that the above claim can be strengthened to show that the outdegree of v (respectively,
indegree of w) is greater than the outdegree of u (respectively, indegree of z), by at least s � i
(respectively, i � r). This is done by taking into account the bits on which v and u (respectively, w
and z) differ.

Let k be the maximum outdegree of vertices in S, and let t be the maximum indegree of vertices
in R. We partition S, R, Q, and P into subsets according to their degrees in G0n as follows. For everyi � k we let Si be the subset of vertices in S that have outdegree exactly i, and for every j � t, we letRi be the subset of vertices in R that have indegree exactly j. Similarly we let Qji (respectively, Pji )
be the subset of vertices in Q (respectively, P) with outdegree exactly i and indegree exactly j. First
note that by Claim 8.1, the maximum outdegree of vertices in Q and P is at most k, and the maximum
indegree is at most t. Therefore, for every j and i > k, jQji j; jPji j = 0, and for every i and j > t,jQji j; jPji j = 0.

Furthermore, by Claim 8.1, for every i, and each vertex v 2 Si, the vertices u in P such that there
exists a directed path from v to u must belong to [i0�i [j Pi0;j . For any q � k, let S�q = [qi=1Si.
By definition of k (as the maximum degree of vertices in S), the set Sk is nonempty and hence for
every q < k, jS�qj < m. Therefore, we can apply the induction hypothesis and obtain that there exist
vertex disjoint paths between S�q and �(S�q) (where � is the matching guaranteed by the hypothesis
of Lemma 8). For any q < k let �(S�q) � Q denote the set of neighbors of vertices in S�q that lie on
these paths to �(S�q). Since these paths are disjoint, j�(S�q)j = jS�qj. Using the above and the fact
that the Si’s are disjoint and the Pji ’s are disjoint, the following inequality holds for every q < k:qXi=1 jSij = jS�qj = j�(S�q)j � ���[qi=1 [1j=1 Pji ��� = qXi=1 1Xj=1 jPji j = qXi=1 kXj=1 jPji j : (5)

Similarly, we can obtain that for every p < s,pXj=1 jRjj � kXi=1 pXj=1 jQji j : (6)

Recall that we would like to show that either jQj � m or jPj � m. Thus, assume in contradiction
that both jQj < m and jPj < m. Therefore, by Equation (5), for every q < k,kXi=q+1 jSij = jSj � qXi=1 jSij = m� qXi=1 jSij � m� qXi=1 tXj=1 jPji j > jPj � qXi=1 tXj=1 jPji j (7)

12



and so kXi=q+1 jSij > kXi=q+1 tXj=1 jPji j : (8)

Similarly, for every p < t, kXj=p+1 jRjj > kXi=1 tXj=p+1 jQji j : (9)

By summing both sides of Equation (8) over all q < k we getk�1Xq=0 kXi=q+1 jSij > k�1Xq=0 kXi=q+1 tXj=1 jPji j (10)

or equivalently, kXi=1 i � jSij > kXi=1 tXj=1 i � jPji j : (11)

Similarly, from Equation (9) we get tXj=1 j � jRjj > kXi=1 tXj=1 j � jQji j : (12)

Summing Equations (11) and (12), we getkXi=1 i � jSij+ tXj=1 j � jRjj > kXi=1 tXj=1 i � jPji j+ kXi=1 tXj=1 j � jQji j : (13)

However, since the number of edges going out of vertices in S equals the number of edges entering
vertices in Q we have that: kXi=1 i � jSij = kXi=1 tXj=1 j � jQji j (14)

and similarly for R and P we have tXj=1 j � jRjj = kXi=1 tXj=1 i � jPji j : (15)

Summing Equations (14) and (15) we getkXi=1 i � jSij+ tXj=1 j � jRjj = kXi=1 tXj=1 j � jQji j+ kXi=1 tXj=1 i � jPji j (16)

contradicting Equation (13). (Step 1.)

Step 2: There exist vertex disjoint paths from S toR.

Proof: From Step 1 we have that either jQj � m or jPj � m. Assume the former is true — we
shall see that this can be done without loss of generality. We next show that (1) there exists a perfect
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matching between S and (a subset of) Q; and (2) there exists a 1-to-1 mapping �0 from the matched
vertices of Q to R so that there is a path from each matched u 2 Q to �0(u). Given (2) we can apply
the induction hypothesis for d0 = d� 1 (and m0 = m) on Q and R, and by combining with (1) we get
the desired paths from S to R.

We actually prove both (1) and (2) together. Consider the following auxiliary network, A. It has
a single source vertex s, a single target vertex t, and the rest of the vertices are partitioned into three
layers corresponding to S, Q and R, respectively. There is an edge from s to each of the vertices in S,
and from each of the vertices in R to t. The edges between S and Q are as in G0n and edges between Q
and R correspond to directed paths in G0n. We show that the minimum s� t vertex-separator in A has
size m. Items (1) and (2) follow by one of the variations of Menger’s Theorem (see [Eve79, Thm. 6.4
and discussion on pp. 130]), which guarantees the existence of m vertex-disjoint paths from s to t.

Assume in contradiction that there exists a vertex-separator C of size smaller than m in A. Letm1 def= jC \ Sj, m2 def= jC \ Qj, and m3 def= jC \ Rj. Consider the subset of vertices S0 � S
that do not belong to C and are not mapped by � to vertices in R \ C. The size of S0 is at leastm0 = m� (m1 +m3) > jCj � (m1 +m3) = m2. Let R0 def= �(S0), and Q0 be the subset of vertices
in Q that are on a directed path in G0n going from some vertex in S0 to a vertex in R0.

We consider two cases. If S0 = S (i.e.,C � Q) thenQ0 = Q, and since jCj < m � jQj, there exists
at least one vertex in Q n C on a path from a vertex in S to a vertex in R, contradicting the assumption
thatC is a vertex separator. If S0 � S, then by the induction hypothesis (form0 = jS0j < m and d0 = d),
there exist vertex disjoint paths in G0n from S0 to �(S0) and hence necessarily jQ0j � jS0j > m2. SincejC \Qj = m2, we again reach contradiction to the assumption that C is a vertex separator.

4 Proofs of Propositions 3 and 4

Below we restate and prove the propositions concerning the relations between �M(f) and �M(f) that
were stated in the introduction.

Proposition 3 For every function f : f0; 1gn 7!f0; 1g, �M(f) � �M(f)=2.

Proof: Let us fix f and consider the set E of its violating edges. In order to make f monotone, we
must modify the value of f on at least one end-point of each of its violating edges. Since each vertex
(string) is incident to at most n violating edges, the number of strings whose value must be modified
is at least jEjn = �M(f) � �12 � 2nn�n = �M(f)2 � 2n
and the proposition follows.

Comment: taking into account the fact that the number of violating edges incident to a vertex is
at most the maximum between its indegree and outdegree and that for most vertices this maximum
values is roughly n=2, the above bound can be improved to yield �M � (1� o(1)) � �M(f), provided�M(f) � 2�cn for any constant c < 1.

Proposition 4 The following holds for every n and every 2�c�n � � � 12 � O( 1pn), where c is any
constant strictly smaller than 1.
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1. There exists a function f : f0; 1gn 7!f0; 1g such that � � �M(f) � 2� and�M(f) = � �M(f)pn ! :
2. There exists a function f : f0; 1gn 7!f0; 1g such that � � �M(f) � 2� and�M(f) = � (�M(f)) :
3. For any � = O(n� 32 ), there exists a function f : f0; 1gn 7!f0; 1g such that � � �M(f) � 2�

and �M(f) = � �M(f)n ! :
Proof:
Items 1 and 2. We start by proving the first two items for the case where � = 12 �O( 1pn).

1. Let f be the (symmetric) function that has value 0 on all vertices belonging to layers Lj wherej � n2 and is 1 on all vertices belonging to layers Li where i < n2 . Then on one hand, all edges
between the layers, Ldn2 e and Ldn2 e�1 are violating edges, and so �M(f) = �( 1pn). On the other

hand, we next show that �M(f) = 12�O( 1pn). Clearly, �M � 12 as the all 0 function is monotone

and at distance at most 12 from f . It remains to show that we cannot do better.

To this end we show the existence of a one-to-one mapping  between the vertices in the layersLi where i > n2 and the vertices in the layers Li where i < n2 so that for every x,  (x) � x.
In particular for each i, 0 � i < n2 , there exists such a one-to-one mapping between Ln�i andLi: Consider the auxiliary bipartite graph over vertex sets Ln�i and Li, where there is an edge
between y 2 Ln�i and x 2 Li if an only if x � y. Since this auxiliary graph is a regular bipartite
graph (with degree

�n�ii �), where both sides are of the same size, there exists a perfect matching
between the two sides. We let  be defined by such dn2e � 1 perfect matchings, where for oddn all strings in f0; 1gn are matched, and for even n only the strings in the middle layer, Ln2 , are
left unmatched. To make f monotone, we must modify the value of at least one vertex in each
matched pair, and since these pairs are disjoint (and their number is at least (1 � O( 1pn ) � 2n),
the claim follows.

2. Let f be the (symmetric) function that has value 0 on all vertices belonging to layers Li wherei is even, and has value 1 on all vertices belonging to layers Li where i is odd. Since all edges
going from even layers to odd layers are violating edges, �M(f) = 1=2. We next show that�M(f) � 12 � O( 1pn) (where once again, �M(f) � 12 since it is at distance at most 1=2 from
the all-0 function or the all-1 function). Consider any pair of adjacent layers such that the top
layer is labeled 0 (so that all edges between the two layers are violating edges). It can be shown
(cf. [Bol86, Chap. 2, Cor. 4]) using Hall’s Theorem, that for any such pair of adjacent layers,
there exists a perfect matching between the smallest among the two layers and a subset of the
larger layer. Since we must modify the value of at least one end-point of each violating edge,
the claim follows.
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To generalize the above two constructions for smaller � we do the following. Let n0 = n �blog(1=(2�))c, and consider the set S of all strings whose last n � n0 bits are set to 0 (thus forming a
sub-cube of the n-dimensional cube). The size of the set S is at least 2� � 2n and at most 4� � 2n.

1. Let f 0 be defined on S analogously to the way f is defined on f0; 1gn in Item 1 above (i.e., it has
value 0 on all strings in S having weight at least n02 and is 1 on all strings having weight less thann02 ). On all strings not in S, the function f 0 has value 1. By this definition, there are no violating
edges (w.r.t. f 0) between vertices not in S and vertices in S, and the only violating edges are
between the middle two layers of the subgraph of Gn induced by S. The number of these edges
is �( jSjpn0 � n02 ), which by our assumption on � (and the definition of n0) is �( �pn0 �n �2n). On the

other hand, as argued in the first item above, we can show that �M(f 0) is approximately 12 � jSj2n ,
which ranges between � and 2� as required.

2. Here too f 0 has value 1 on all strings not in S, and is defined on S analogously to the way f is
defined on f0; 1gn in Item 2 above, alternating between 0 and 1 on the layers of the subgraph ofGn induced by S. The rest of the argument follows as in Item 2 when restricting the attention to
this subgraph.

Item 3. We start by proving the case � = 
(n�3=2). We consider the vertices in Lk and Lk�1, wherek = dn2e. We know that jLkj; jLk�1j = 
(n�1=2 � 2n). As noted in the proof of Item 2, between any
two adjacent layers there exists a matching whose size equals the size of the smaller among the two
layers. Let such a matching, between Lk and Lk�1, be denoted M = f((vi; ui)gti=1, where t = jLk�1j.
Using a greedy approach, we find a large matching M0 = f(vij ; uij)g � M such that there are no
edges (in Gn) between pairs vij and ui` such that ij 6= i`. Since each edge (vij ; uij) 2 M0 “rules out”
at most (k � 1) + (n � (k � 1) � 1) < n other edges in M (i.e., an edge (vi`; ui`) is ruled out if
either (vij ; ui`) or (vi`; uij) is an edge in Gn), we can obtain jM0j � tn = 
(n�3=2 � 2n). Since we can
always drop edges from M0, we can have jM0j = �(n�3=2 � 2n).

Using M0 we define f as follows. For each matched pair (vij ; uij) in M0, the function f has value
0 on vij , and value 1 on uij . All other vertices in layers k and higher have value 1, and those in layersk�1 and lower have value 0. Hence, the violating edges with respect to f are only those that belong toM0, and so �M(f) = jM0j2n�n=2 = �(n�1=2). On the other hand, �M(f) = jM0 j2n = �(n�3=2) (as in order to
make f monotone we must modify the value of at least one end-point of each edge in M0). For smaller
values of � we simply define f based on a subset of M0 of size d� � 2ne.
5 Testing based on Random Examples

In this section we prove Theorems 5 and 6: establishing a lower bound on the sample complexity of
such testers and a matching algorithm, respectively. For convenience, we first restate the theorems.

Theorem 5 For any � = O(n�3=2), any tester for monotonicity which only utilizes random examples

must use at least 
(q2n=�) such examples.

Theorem 6 There exists a tester for monotonicity which only utilizes random examples and uses at

mostO(qn3 � 2n=�) examples. Furthermore, the algorithm runs in time poly(n) �q2n=�.
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5.1 A Lower bound on sample complexity

Let M0 be as defined in the proof of Item 3 in Proposition 4. By possibly dropping edges from M0 we
can obtain a matching M00 so that jM00j is even and of size 2� �2n (recall that � = O(n�3=2)). UsingM00
we define two families of functions. A function in each of the two families is determined by a partition
of M00 into two sets,A and B, of equal size.

1. A function f in the first family is defined as follows� For every (v; u) 2 A, define f(v) = 1 and f(u) = 0.� For every (v; u) 2 B, define f(v) = 0 and f(u) = 1.� For x with w(x) � k, for which f has not been defined, define f(x) = 1.� For x with w(x) � k � 1, for which f has not been defined, define f(x) = 0.

2. A function f in the second family is defined as follows� For every (v; u) 2 A, define f(v) = 1 and f(u) = 1.� For every (v; u) 2 B, define f(v) = 0 and f(u) = 0.� For x’s on which f has not been defined, define f(x) as in the first family.

It is easy to see that every function in the second family is monotone, whereas for every function f in
the first family �M(f) = jBj=2n = �. Theorem 5 is established by showing that an algorithm which

obtains o(qjBj) random examples cannot distinguish a function uniformly selected in the first family
(which needs to be rejected with probability at least 2=3) from a function uniformly selected in the
second family (which needs to be accepted with probability at least 2=3). That is, we show that the
statistical distance between two such samples is too small.

Claim 10 The statistical difference between the distributions induced by the following two random
processes is bounded above by

�m2� � jM00j22n . The first process (resp., second process) is define as follows� Uniformly select a function f in the first (resp., second) family.� Uniformly and independently select m strings, x1; :::; xm, in f0; 1gn.� Output (x1; f(x1)); :::; (xm; f(xm)).
Proof: The randomness in both processes amounts to the choice of B (uniform among all (jM00j=2)-
subsets ofM00) and the uniform choice of the sequence of xi’s. The processes differ only in the labelings
of the xi’s which are matched by M00, yet for u (resp., v) so that (u; v) 2 M00 the label of u (resp., v)
is uniformly distributed in both processes. The statistical difference is due merely to the case in which
for some i; j the pair (xi; xj) resides in M00. The probability of this event is bounded by

�m2� times the

probability that a specific pair (xi; xj) resides in M00. The latter probability equals jM00j2n � 2�n. 2
Conclusion. By the above claim, m < 2n=q3jM00j implies that the statistical difference between these

processes is less than m22 � jM00j22n < 1=6 and thus an algorithm utilizing m queries will fail to work for
the parameter � = jBj=2n. Theorem 5 follows.
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5.2 A matching algorithm

The algorithm consists of merely emulating Algorithm 1. That is, the algorithm is given m def=O(qn3 � 2n=�) uniformly selected examples and tries to find a violating pair as in Step 3 of Algorithm 1.

ALGORITHM 2: Input n; � and (x1; f(x1)); :::; (xm; f(xm)).
1. Place all (xj; f(xj))’s on a heap arranged according to any ordering on f0; 1gn.

2. For j = 1; :::;m and i = 1; :::; n, try to retrieve from the heap the value y def= xj � 0i�110n�i .
If successful then consider the values xj; y; f(xj); f(y) and in case they demonstrate that f is
not monotone then reject.

If all iterations were completed without rejecting then accept.

ANALYSIS. Clearly, Algorithm 2 always accepts a monotone function, and can be implemented in
time poly(n) � m. Using a Birthday Paradox argument, we show that for a suitable choice of m,
Algorithm 2 indeed rejects �-far from monotone functions with high probability. We merely need to
show the following.

Lemma 11 There exists a constant c so that the following holds. If m � qcn32n=�M(f) and if thexi’s are uniformly and independently selected in f0; 1gn then Algorithm 2 rejects the function f with
probability at least 2=3.

Proof: We use the fact that the proof of Theorem 2 provides two disjoint sets, V and U, with the
following properties

1. Each set has size at least �M(f)2n3 � 2n.

2. There is 1-1 mapping,  , of V to U.

3. For every v 2 V it holds that f(v) = 0, f( (v)) = 1, and  (v) is obtained from v by setting a
single bit to 0.

We will show that with probability at least 2=3, there exist i and j so that xi 2 V and xj =  (xi) 2 U,
and the lemma will follow.

We split the sample into two equal parts. Using a Multiplicative Chernoff Bound,4 with probability
at least 0:9 the number of xi’s in the first part which hit V is at least 12 � m2 � jVj2n . Denote the set of
examples hitting V by V0, and consider the set U0 � U of vertices which are matched by  to V0.
Then, the probability that none of the m=2 examples in the second part hits U0 is at most 1 � jU0j2n !m=2 =  1� jV0j2n !m=2 < exp �jV0j2n � m2 ! � exp � jVj4 � 22n �m2! (17)

The lemma follows by substituting jVj with �M(f)2n3 � 2n and m2 with cn32n=�M(f). 24We assume for simplicity that �M(f)� n3=2n, which implies m� n3=�M(f). Otherwise, �M(f) = O(n3=2n), in
which casem = 
(pn32n=�M(f)) = 
(2n), which in turn suffices to hit even a single edge with constant probability.
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6 Extensions

6.1 Testing whether a function is unate

By our definition of monotonicity (used throughout the paper), a function is said to be monotone if,
for any string, flipping any bit of the string from 0 to 1, does not decrease the value of the function.
A more general notion is that of unate functions. A function f is unate if there exists a string� = �1 : : : �n 2 f0; 1gn for which the following holds: For any string x = x1 : : : xn, and for any i
such that xi = �i, if we let y = x1; : : : ; xi�1;:xi; xi+1; : : : ; xn (i.e., y is the same as x except for theith bit, which is flipped from �i to :�i), then f(y) � f(x). We say in such a case the f is monotone
with respect to � . In particular, if a function is monotone with respect to the all-0 string, then we
simply say that it is a monotone function, and if a function is monotone with respect to some � , then
it is unate. Thus, the generalization of monotonicity to unateness allows that for each position there
be a (possibly different) direction (i.e., not necessarily the 0 ! 1 direction), such that the value of the
function cannot decrease when the bit is flipped in that direction.

Similarly to Algorithm 1 (for testing monotonicity), which searches for evidence to non-monotonicity,
the testing algorithm for unateness tries to find evidence to non-unateness. However, here it does not
suffice to find a pair of strings x; y that differ on the ith bit such that x < y while f(x) > f(y), sincef could be monotone with respect to � such that �i = 1. Instead we search for two pairs of strings,x1 < y1 and x2 < y2, where each pair differs on the (same) ith bit, such that f(x1) > f(y1) andf(x2) < f(y2) (or vica versa). This implies that there is no � such that f is monotone with respect to� (since, in particular, �i can be neither 0 nor 1).

ALGORITHM 3 (TESTING UNATENESS): On input n; � and oracle access to f : f0; 1gn 7!f0; 1g, do the
following:

1. Uniformly select m = O(n3:5=�) strings in f0; 1gn, denoted x1; : : : ; xm, and m indices inf1; : : : ; ng. denoted i1; : : : ; im.

2. For each selected xj , obtain the values of f(xj) and f(yj), where yj results from xj by flipping
the ij’th bit.

3. If unateness is found to be violated then reject.

Violation occurs, if among the string-pairs fxj; yjg, there exist two pairs and an index i, such
that in both pairs the strings differ on the ith bit, but in one pair the value of the function increases
when the bit is flipped for 0 to 1, and in the other pair the value of the function increases when
the bit is flipped from 1 to 0.

If no contradiction to unateness was found then accept.

Theorem 12 Algorithm 3 is a testing algorithm for unateness. Furthermore, if the function is unate,
then Algorithm 3 always accepts.

We shall need the following notation. For � 2 f0; 1gn, let �� denote the partial order on strings
with respect to � . Namely, x �� y if and only if x � � � y � � . Let �M;�(f) denote the minimum
distance between f and any function g that is monotone with respect to � , and let �M;�(f) denote the
fraction of pairs x; y that differ on a single bit such that x �� y but f(x) > f(y). It follows from the

19



above definitions that for any f and � , �M;�(f) = �M(f�) and �M;�(f) = �M(f�), where f� is defined
by f�(x) = f(x� �). Hence, as a corollary to Theorem 2, we have

Corollary 13 For any f : f0; 1gn 7!f0; 1g, and for any � 2 f0; 1gn, �M;�(f) � �M;� (f)n3 .

Proof of Theorem 12: For each i 2 f1; : : : ; ng, let i;0(f) denote the fraction, among all pairs of
strings that differ on a single bit, of the pairs x; y such that x and y differ only on the ith bit, xi = 0,yi = 1, and f(x) > f(y). Similarly, let i;1(f) denote the fraction of pairs of strings x; y such thatx and y differ only on the ith bit, xi = 1, yi = 0, and f(x) > f(y). In other words, i;0(f) is the
fraction of pairs that can serve as evidence to f not being monotone with respect to any � such that�i = 0, while i;1(f) is the fraction of pairs that can serve as evidence to f not being monotone with
respect to any � such that �i = 1. Note that in case f is monotone with respect to some � , then for
every i, i;�i(f) = 0. More generally, �M;�(f) = Pni=1 i;�i(f) holds for every � 2 f0; 1gn (since
each edge contributing to �M;�(f) contributes to exactly one i;�i).

Let us define �U(f) to be min�(�M;�(f)) so that it equals the minimum distance of f to any unate
function (i.e., any function that is monotone with respect to some �).

Claim 12.1.
Pni=1min(i;0(f); i;1(f)) � �U(f)n3 .

Proof: Let � = �1 : : : �n be defined as follows: For each i, if i;0(f) � i;1(f) then �i = 0, and
otherwise, �i = 1. In other words, �i = argminb2f0;1g(i;b). The key observation is�M;�(f) = nXi=1 i;�i = nXi=1min(i;0(f); i;1(f))
where the first equality holds for any � , and the second follows from the definition of this specific � .
Invoking Corollary 13, we have �M;�(f) � �M;� (f)n3 � �U(f)n3 . 2

For each i, let �i;0(f) be the set of all pairs of strings x; y that differ only on the ith bit, wherexi = 0 and yi = 1, and such that f(x) > f(y). Similarly, let �i;1(f) be the set of all pairs x; y that
differ only on the ith bit, where xi = 1 and yi = 0, and such that f(x) > f(y). Claim 12.1 gives us
a lower bound on the sum

Pimin(j�i;0j; j�i;1j). To prove Theorem 12, it suffices to show that if we
uniformly select 
(n3:5=�U(f)) pairs of strings that differ on a single bit, then with probability at least2=3, for some i we shall obtain both a pair belonging to �i;0(f) and a pair belonging to �i;1(f). The
above is derived from the following technical claim, which can be viewed as a generalization of the
Birthday Paradox.

Claim 12.2. Let S1; : : : ;Sn;T1; : : : ;Tn be disjoint sets of elements belonging to domain X. For eachi, let the probability of selecting an element x in Si (when x is chosen uniformly in X), be pi, and the
probability of selecting an element in Ti, be qi. Suppose that for all i, qi � pi, and that

Pi pi � �
for some � > 0. Then, for some constant c, if we uniformly select c � pn=� elements in X, then with
probability at least 2=3, for some i we shall obtain one element in Si and one in Ti.
Proof: As a mental experiment, we partition the sample of elements into two parts of equal size,c � pn=(2�). Let I be a random variable denoting the (set of) indices of sets Si hit by the first part of
the sample. We show below that with probability at least 5=6 over the choice of the first part of the
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sample, Xi2I pi � �pn (18)

The claim then follows since conditioned on Equation (18) holding, and by Claim 12.2’s hypothesis
that qi � pi for all i, the probability that the second part of the sample does not include any elements
from

Si2ITi, is at most 1�Xi2I qi!c�pn=(2�) �  1 � �pn!c�pn=(2�) < exp(�c=2)
which is less than 1=6 for an appropriate choice of c.

To prove that Equation (18) holds with probability at least 5=6, we assume without loss of generality
that the sets Si are ordered according to size. Let S1; : : : ;Sk be all sets with probability weight at
least �=(2n) each (i.e., p1 � : : : � pk � �=(2n)). Then, the total probability weight of all other setsSk+1; : : : ;Sn is less than �=2, and

Pki=1 pi � �=2 follows. We first observe that by a (multiplicative)
Chernoff bound (for an appropriate choice of c), with probability at least 11=12, the first part of the

sample contains at least 4 � pn elements in �S def= Ski=1 Si.
Let I0 def= I \ f1; : : : ; kg. That is, I0 is a random variable denoting the indices of sets Si, i 2f1; : : : ; kg that are hit by the first part of the sample. Conditioned on there being at least 4 � pn

elements from �S in the first part of the sample, we next show that with probability at least 11=12,Pi2I0 pi � �pn (from which Equation (18) follows). Since conditioned on an element belonging to �S
it is uniformly distributed in that set, we may bound the probability of the above event, when selecting4pn elements uniformly in �S. Consider the choice of the jth element from �S, and let I0j�1 denote the
indices of sets Si, i 2 f1; : : : ; kg, among the first j � 1 selected elements of �S. IfXi2I0j�1 pi � 2 �Pki=1 pipn
then, since

Pki=1 pi � �2 , we are done. Otherwise (
Pi2I0j�1 pi < (2Pki=1 pi)=pn), the probability that

the jth element belongs to I0 n I0j�1 (i.e., it hits a set in fS1; : : : ;Skg that was not yet hit), is at least1 � 2=pn, which is at least 3=4 for n � 36. Since we are assuming that the first part of the sample
includes at least 4 � pn elements from �S, with probability at least 11=12, we succeed in obtaining a
new element in at least 2 � pn of these trials. Since the sets S1; : : : ;Sk all have probability weight at
least �=(2n), the claim follows. 2
6.2 Other Domains and Ranges

As defined in the introduction, for finite sets � and � and orders <� and<� on � and �, respectively,
we say that a function f : �n 7! � is monotone if f(x) �� f(y) for every x �� y, wherex1 � � �xn �� y1 � � � yn if xi �� yi for every i and xi <� yi for some i.

Without loss of generality we may think of � as being the set f0; : : : ; j�j � 1g (so that <� is
simply the order < over integers). Similarly to the � = f0; 1g case, the partial order �� induces a
layered directed graph, denoted Gn;�, where the ith layer Li contains all strings x such that

Pj xj = i.
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Hence, this graph has n � (j�j � 1) layers. For each vertex x and every j such that xj > 0, there is an
edge directed from x to x0 = x1; : : : ; xj�1; xj � 1; xj+1; : : : ; xn.

The algorithm we analyze is very similar to Algorithm 1. It uniformly selects �(n3 � j�j2 � j�j=�)
strings and for each string x chosen it performs the following local test: It uniformly selects an indexj 2 1; : : : ; n, and queries the function f on x and on either x0 = x1; : : : ; xj�1; xj � 1; xj+1; : : : ; xn
or on x0 = x1; : : : ; xi�1; xj + 1; xi+1; : : : ; xn (where this decision is done randomly unless xj = 0 orxj = j�j � 1). The algorithm rejects if for some x, f(x) >� f(x0) while x �� x0 (or f(x0) >� f(x)
while x0 �� x).

6.2.1 General Domains

Consider first the case in which � may be any finite ordered set, but � = f0; 1g. As in the case� = f0; 1g, we want to bound �M(f) in terms of �M(f), where �M(f) and �M(f) are generalized in
the straightforward manner. Here we have that

Theorem 14 For any finite ordered set �, and for every f : �n 7! f0; 1g, �M(f) � �M(f)n3�(j�j�1)2 .

(Where similarly to the � = f0; 1g case a slightly stronger bound actually holds.)

The proof of Theorem 14 is analogous to the proof of Theorem 2. In particular, the theorem follows
by combining slightly modified versions of Lemmas 7 and 8, as done in the proof of Theorem 2. In the
modified version of Lemma 7, the only change is in Item 1, where the sets S and R are of size at least�M(f)2(n�(j�j�1))2 � j�jn (recall that j�jn is the size of the domain). The cause for this modification is that the
number of layers in the graph Gn;� is n � (j�j � 1). More precisely, when invoking Lemma 9 (which
can be easily verified to hold as is) in order to prove Lemma 7, we “break” the set D1 (as defined in
Equation (2)) into subsets according to the layers of Gn;�. We then take the largest such subset Y,
whose size we can bound by �M(f)2(n(j�j�1)) � j�jn. When breaking �(Y) into layers, we lose another factor
of n � (j�j � 1).

Lemma 8 essentially holds as stated. The only part of the proof that directly depends on the
underlying graph is Claim 8.1, and it is easily verified that Claim 8.1 (in the proof of Lemma 8) is in
fact still true in this case. The rest of the proof remains unaltered.

6.2.2 General Ranges

Let � be any ordered set, and for ease of the exposition, assume � = f0; 1g (the generalization to
other domains is done as described above in Subsection 6.2.1). In this case we can show that

Theorem 15 For any finite ordered set �, and for every f : f0; 1gn 7! �, �M(f) � �M(f)n3�j�j , where�M(f) and �M(f) are generalized in the natural manner.

In case� is not finite, we can replace j�j in the above expression with the size of the “effective” domain
of f (that is, the number of different values assigned by f .)

The proof of Theorem 15 also follows similar lines to those in the proof of Theorem 2. The
statement of Lemma 8 and its proof remain unaltered, since the underlying graph, Gn is the same. The
statement of Lemma 7 is modified as follows:
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Lemma 16 For any ordered set �, and for any function f : f0; 1gn 7! �, there exist two sets of
vertices S � Ls and R � Lr , where s > r, for which the following holds:

1. jSj = jRj � �M(f)2n2 � 2n;

2. There exists a one-to-one mapping � from S to R such that for every y 2 S, �(y) � y, whilef(�(y)) >� f(y).
We prove Lemma 16 momentarily, but first show how it can be applied together with Lemma 8 to

obtain Theorem 15. Fixing f we invoke Lemma 7 to obtain the two matched sets S and R of size at
least m = �M(f)2n2 � 2n. Unfortunately, we cannot continue by simply applying Lemma 8 to the sets S
and R as done in the proof of Theorem 2. The reason is that Lemma 8 only tells us that there exist
some vertex-disjoint paths between S and R, but these paths do not necessarily respect the matching�. In the case of a Boolean range, this was sufficient. However, when the range is larger, the disjoint
paths might be from y 2 S to x 2 R such that f(y) >� f(x), and the argument breaks down.
Thus, instead of invoking Lemma 8 directly on S and R, we do the following. For each � 2 �, letS� def= fy 2 S : f(y) = �g. Let S0 be the largest among these subsets of S, so that jS0j � m=j�j. Since
the value of f is constant on S0, we have that for every y 2 S0 and every x 2 �(S0), f(y) <� f(x).
We then invoke Lemma 8 on S0 and R0 def= �(S0), and the proof of Theorem 15 follows by the same
argument used in the proof of Theorem 2.

One possible way to avoid the introduction of the factor of j�j, is by proving the following conjecture
which is a variation of Lemma 8: While we relax the requirement that the paths between the matched
sets be vertex disjoint to being edge disjoint (which suffices for our purposes), we ask that these paths
respect the matching.

Conjecture 1 Let r and s be integers satisfying, 0 � r < s � n, and let S � Ls and R � Lr be sets
each of size m. Suppose that there exists a 1-to-1 mapping � from S to R such that for every y 2 S,
there is a directed path in Gn from y to �(y). Then there exist m edge-disjoint directed paths in Gn
connecting each y 2 S with �(y) 2 R.

In fact, it would be interesting to show even the existence ofm=poly(n) edge-disjoint paths that respect
the matching � (instead of exactly m).

Proof of Lemma 16: Fixing f , we let g be a monotone function closest to f , so that dist(f; g) =�M(f). The proof of Lemma 16 is analogous to the proof of Lemma 7. We start by extending the
definition of D0 and D1 (as given in Equation (2)) to a non-Boolean range. We define:D> def= fx : g(x) > f(x)g and D< def= fx : g(x) < f(x)g (19)

so that jD>j+ jD<j = �M(f) � 2n. Without loss of generality we assume jD>j � �M(f) � 2n�1. We
next extend the operator �1 (defined in Equation (4)). For any Y � D> let�>(Y) def= fx : 9y 2 Y s.t. y � x and f(x) > f(y)g
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where recall that �(Y) denotes the shadow of Y (and is defined in Equation (3)). Thus, �>(Y) can be
viewed as the cause (or witness set) to the need to change (raise) the value of f on the points in Y.

We next slightly depart from the course taken in the proof of Lemma 7. Namely, instead of showing
analogously to Lemma 9 that for every subset Y of D>, there exists a 1-to-1 mapping that maps each
element y 2 Y to an x 2 �>(Y) such that x � y, we prove this claim only for sets Y whose elements
all belong to a single layer in Gn. While this suffices for our purposes (as it actually did for the proof
of Lemma 7), it is still interesting to note that it is not clear whether the stronger claim (referring to
all subsets of D>) holds for a general range or not. In particular, the proof technique we use does not
seem to be extendible (as we note in the proof below).

Lemma 17 For every s, 0 < s � n, and for every Y � (D> \ Ls), there exists a 1-to-1 mapping �
from Y into �>(Y), such that for each y 2 Y, �(y) � y.

Proof: We follow the same proof strategy of Lemma 9. Fixing s, we first show that for everyY � (D> \ Ls), j�>(Y)j � jYj. Assume towards contradiction that for some Y � (D> \ Ls),j�>(Y)j < jYj. We show, contrary to our hypothesis on g, that there exists another monotone functiong0 that is (strictly) closer to f .

Define g0 as follows:� For every y 2 Y, g0(y) = f(y);� For every x 2 �(Y), g0(x) = min(g(x);miny2Y;y�xff(y)g);5� For z =2 Y [ �(Y), g0(z) = g(z);
Thus, while g raises the value f has on points in Y so as to obtain monotonicity, g0 maintains the value
of f on points in Y but reduced the value of points below Y.6
We need to verify the following two claims.

Claim 17.1: g0 is a monotone function.

Claim 17.2: dist(f; g0) < dist(f; g).
Proof of Claim 17.1: We need to show that for every x; y such that x � y, it holds that g0(x) � g0(y).
Consider the following four cases.

Case 1: x; y =2 Y [ �(Y). In this case g0(x) = g(x) � g(y) = g0(y), where g(x) � g(y) follows
from the monotonicity of g, and the two equalities from the third item in the definition of g0.

Case 2: x 2 Y [ �(Y) and y =2 Y [ �(Y). If x 2 Y then g0(x) = f(x) < g(x) � g(y) = g0(y),
where the inequality f(x) < g(x) follows from Y � D> and the equalities from the first and
third item, respectively, in the definition of g0. If x 2 �(Y) then g0(x) � g(x) � g(y) = g0(y),
where g0(x) � g(x) follows from the second item in the definition of g0.

Case 3: x =2 Y [ �(Y) and y 2 Y [ �(Y). By definition of �(�), this case does not occur for x � y.5Note that in the Boolean case, this minimum is always 0.6Here we encounter the main difficulty in trying to prove the lemma for arbitrary Y � D>. In particular, if, as done
above, we set g0 to equal f on all points in Y, then it might not be monotone.
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Case 4: x; y 2 Y [ �(Y). Since x � y and Y � Ls, it cannot be the case that both x and y belong toY. Thus we have two sub-cases.

1. If y 2 Y and x 2 �(Y) then g0(x) � minz2Y;z�xff(z)g � f(y) = g0(y), where the first
inequality is due to the second item in the definition of g0, and the last equality is due to the
first item in the definition.

2. If x; y 2 �(Y), then since g(x) � g(y) (as g is monotone), and minz2Y;z�xff(z)g �minz2Y;z�yff(z)g (as the first minimum is taken over a larger set containing all z � y � x),
by definition of g0 we have (by the second item in the definition of g0),g0(x) = min�g(x); minz2Y;z�xff(z)g� � min�g(y); minz2Y;z�yff(z)g� = g0(y) :

Claim 17.1 follows. 2
Proof of Claim 17.2: By definition of g0, the functions g and g0 differ on the set of strings � def= Y [A,

where A def= �(Y) \ fx : g(x) > miny2Y;y�xff(y)gg. For each x 2 Y, we have g0(x) = f(x) andg(x) 6= f(x), so that such x contributes to dist(f; g) but not to dist(f; g0). Next consider any x 2 A.
Since A � �(Y), by the second item in the definition of g0, g0(x) = min (g(x);minz2Y;z�xff(z)g),
and since by definition ofA, g(x) > miny2Y;y�xff(y)g, we have g0(x) = miny2Y;y�xff(y)g < g(x).
There are hence three sub-cases.

1. If f(x) = g0(x) (< g(x)), then x does not contribute to dist(f; g0) but does contributed todist(f; g).
2. If f(x) < g0(x) (< g(x)), then x contributes both to dist(f; g0) and to dist(f; g).
3. If f(x) > g0(x) then x contributes to dist(f; g0), and may or may not contribute to dist(f; g).
Thus, 2n � (dist(f; g0)� dist(f; g)) � j�>(Y)j � jYj < 0

where the strict inequality is due to the assumption that j�>(Y)j < jYj. Claim 17.2 follows. 2
Consider any set Y � (D> \ Ls). We have established that for every Y0 � Y, j�>(Y0)j � jY0j.
Similarly to the proof of Lemma 9, Lemma 17 follows from Hall’s Theorem.

The proof of Lemma 16 follows from Lemma 17 similarly to the way Lemma 7 was shown to
follows from Lemma 9, and is hence omitted.
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A Paths that Respect the Mapping

It is interesting to note that Lemma 8 does not hold if one requires that the vertex-disjoint paths fromS to R respect the given 1–1 mapping � (i.e., that the paths connect each y 2 S to the corresponding�(y)). An example is depicted in Figure A. For the given example jSj = jRj = 8, and there are no 8
vertex-disjoint paths that respect the given matching. More generally, it can be shown [DL98] that if
the paths are required to correspond to a particular matching then the number of disjoint paths can be
as small as O(m=n) where m is the number of matched vertices.

However, if we only require that the paths be edge-disjoint (which actually suffices for our purposes),
then we have no counter-example to the conjecture that such paths always exist (i.e., Conjecture 1).
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1110 1100 1100 
1011

1100 1100 1100 0110

1100 10001100 00011100 0010

1101 1100 1011 1100 0111 1100 1100 1110 1100 0111 1100 1101

1001 1100 0011 1100 0110 1100 1100 0011 1100 1001

1000 1100 0001 1100 0010 1100 0100 1100 1100 0100

1000 1101

Figure 3: An example in which there aren’t enough disjoint paths respecting a particular 1–1 mapping (and
so the disjoint paths guaranteed by Lemma 7 correspond to a different mapping). The given 1-1 mapping is
from each 8-bit long string at the top level to the 8-bit long string that is aligned with it in the bottom level.
For each such “matched” pair there are (two) paths from the top vertex to the corresponding bottom one. All
possible paths connecting these matched pairs appear in the picture in solid arrows. (There are only two paths
between each pair of strings that are at Hamming distance 2.) Since the paths that respect the matching use only
7 intermediate vertices, there exist no 8 vertex-disjoint paths respecting this mapping. However, there are other
1–1 mappings for which vertex-disjoint paths from the top vertices to the bottom one do exist. For example,
consider the “circular shift-to-right mapping” and use the auxiliary vertex on the right.
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