
General Cryptographi
 Proto
ols: The Very Basi
sOded Goldrei
hDepartment of Computer S
ien
eWeizmann Institute of S
ien
eRehovot, Israel.oded.goldrei
h�weizmann.a
.ilMar
h 13, 2010Abstra
tWe survey basi
 de�nitions and results
on
erning se
ure multi-party
omputations, wherethe two-party
ase is an important spe
ial
ase. In a nutshell, these results assert that, undera variety of reasonable settings and/or assumptions, it is possible to
onstru
t proto
ols forse
urely
omputing any desirable multi-party fun
tionality. Con�ning ourselves to the verybasi
s of this vast area of study, we fo
us on the stand-alone setting, while leaving the surveyof the study of the se
urity of
on
urrent exe
utions to other surveys.

i

Contents1 Introdu
tion 11.1 The problem in a nutshell : 11.2 Organization and prerequisites : 21.3 Three advan
ed
omments : 31.3.1 Relation to the rest of modern
ryptography : : : : : : : : : : : : : : : : : : 31.3.2 Relevan
e to pra
ti
e : 31.3.3 The issue of
on
urrent exe
utions : 32 The De�nitional Approa
h and Some Models 42.1 Some parameters used in de�ning se
urity models : 52.1.1 The
ommuni
ation
hannels : 52.1.2 Set-up assumptions : 62.1.3 Computational limitations : 62.1.4 Restri
ted adversarial behavior : 62.1.5 Restri
ted notions of se
urity : 72.1.6 Upper bounds on the number of dishonest parties : : : : : : : : : : : : : : : 72.2 Example: Multi-party proto
ols with honest majority : : : : : : : : : : : : : : : : : 72.3 Another example: Two-party proto
ols allowing abort : : : : : : : : : : : : : : : : : 93 Some Known Results 103.1 In the standard
ryptographi
 model : 103.2 In the private
hannels model : 113.3 Additional models : 113.4 Additional
omments : 114 Constru
tion Paradigms and Two Simple Proto
ols 124.1 Constru
ting passively-se
ure proto
ols : 134.1.1 Passively-se
ure
omputation with shares : 134.1.2 Passively-se
ure
omputation with \s
rambled
ir
uits" : : : : : : : : : : : : 154.2 Compilation of passively-se
ure proto
ols into a
tively-se
ure ones : : : : : : : : : : 165 Se
urity of Con
urrent Exe
utions 185.1 De�nitional treatment : 195.2 Some of the known results : 21A
knowledgments 21Referen
es 22
ii

1 Introdu
tionThe modern so
iety is quite preo

upied with various statisti
s like the average, median, anddeviation of various attributes (e.g., salary) of its members.1 On the other hand, individualsoften wish to keep their own attributes se
ret (although they are interested in the aforementionedstatisti
s). Furthermore, on top of being suspi
ious of other people, individuals are growing tobe suspi
ious of all (the so
iety's) establishments and are unwilling to trust the latter with theirse
rets. Under these
ir
umstan
es it is not
lear whether there is a way for the members of theso
iety to obtain various statisti
s (regarding all se
rets) without revealing their individual se
retsto other people.The foregoing question is a spe
ial
ase of a general problem. We are talking about
omputingsome (predetermined) fun
tion of inputs that are s
attered among di�erent parties, without havingthese parties reveal their individual inputs. The mutually suspi
ious parties have to employ somedistributed proto
ol in order to
ompute the fun
tion value, without leaking any other informationregarding their inputs to one another. Furthermore, in some settings, some of the parties maydeviate from the proto
ol, and it is desired that su
h malfun
tioning will not be of any advantageto them. At best, we would like to \emulate" a trusted party (whi
h
olle
ts the inputs from theparties,
omputes the
orresponding outputs, and hand them to the
orresponding parties), anddo so in a distributed setting in whi
h no trusted parties exist. This, in a nutshell, is what se
ure
ryptographi
 proto
ols are all about.The results surveyed in this arti
le des
ribe a variety of reasonable models in whi
h su
h an\emulation" is possible. The models vary by the underlying assumptions regarding the
ommu-ni
ation
hannels, numerous parameters relating to the extent of adversarial behavior, and thedesired level of emulation of the trusted party (i.e., level of \se
urity"). Our fo
us is on generalresults regarding se
ure multi-party (and two-party)
omputations, where general means that we
onsider arbitrary desired fun
tionalities (rather than spe
i�
 ones). In a nutshell, these generalresults assert that it is possible to
onstru
t proto
ols for se
urely
omputing any desired multi-partyfun
tionality. Indeed, what is striking about these results is their generality, and we believe thatthe wonder is not diminished by the (various alternative)
onditions under whi
h these results hold.1.1 The problem in a nutshellA general framework for
asting (m-party)
ryptographi
 (proto
ol) problems
onsists of spe
ifyinga random pro
ess that maps m inputs to m outputs.2 The inputs to the pro
ess are to be thoughtof as the lo
al inputs of m parties, and the m outputs are their
orresponding (desired) lo
aloutputs. The random pro
ess des
ribes the desired fun
tionality. That is, if the m parties wereto trust ea
h other (or trust some external party), then they
ould ea
h send their lo
al inputto the trusted party, who would
ompute the out
ome of the pro
ess and send to ea
h party the
orresponding output. A pivotal question in the area of
ryptographi
 proto
ols is to what extent
an this (imaginary) trusted party be \emulated" by the mutually distrustful parties themselves.1We
omment that it seems that more so
ially useful statisti
s
on
ern the
orrelation between various attributes.Needless to say, these two are
overed by the
urrent dis
ussion.2That is, we
onsider the se
ure evaluation of randomized fun
tionalities, rather than \only" the se
ure evaluationof fun
tions. Spe
i�
ally, we
onsider an arbitrary (randomized) pro
ess F that on input (x1; :::; xm), �rst sele
tsat random (depending only on ` def= Pmi=1 jxij) an m-ary fun
tion f , and then outputs the m-tuple f(x1; :::; xm) =(f1(x1; :::; xm); :::; fm(x1; :::; xm)). In other words, F (x1; :::; xm) = F 0(r; x1; :::; xm), where r is uniformly sele
ted inf0; 1g`0 (with `0 = poly(`)), and F 0 is a fun
tion mapping (m+ 1)-sequen
es to m-sequen
es.1

REAL MODEL IDEAL MODELFigure 1: Se
ure proto
ols emulate a trusted party { an illustration.The results surveyed below des
ribe a variety of models in whi
h su
h an \emulation" is possible.This means that in ea
h of these models the servi
es of an (imaginary) trusted party
an be\emulated" by the mutually distrustful parties themselves. In parti
ular, any desired fun
tionality,whi
h is trivially
omputed with the help of a trusted party,
an be se
urely
omputed by thesemutually distrustful parties.1.2 Organization and prerequisitesSe
tion 2 provides a rather
omprehensive survey of the various de�nitions used in the area of se
uremulti-party
omputation, Se
tion 3 surveys the main known results, and Se
tion 2.2 des
ribes themain ideas that underly these results.Some readers may prefer to
onsider one
on
rete
ase of the de�nitional approa
h beforeen
ountering the general approa
h. Su
h readers are en
ouraged to start with Se
tion 2.2, andpossibly pro
eed to Se
tion 4 before returning to Se
tion 2.1. We mention that on top of presentingthe basi
 ideas that underly the general
onstru
tions, Se
tion 4 also provides sket
hes of a
oupleof
on
rete proto
ols.All the above refers to the se
urity of stand-alone exe
utions. The preservation of se
urity in anenvironment in whi
h many exe
utions of many proto
ols are being atta
ked is brie
y
onsideredin Se
tion 5.Prerequisites and suggestions for further reading: We assume basi
 familiarity with thefoundations of
ryptography. Spe
i�
ally, the more te
hni
al parts of the exposition assume basi
familiarity with the notions of trapdoor permutations,
omputational indistinguishability, zero-knowledge, en
ryption s
hemes, and
ommitment s
hemes. For an introdu
tion to these foun-dations, at the level of the
urrent arti
le, we re
ommend our own primer [37℄.3 A mu
h more
omprehensive treatment
an be found in the two-volume work [35, 36℄. (We also mention that atutorial of zero-knowledge, whi
h suÆ
es for our purposes, appears in this volume [38℄.)3In fa
t, the
urrent arti
le is a revision of [37, Se
. 7℄.
2

1.3 Three advan
ed
ommentsBefore a
tually embarking, we address three advan
ed issues.1.3.1 Relation to the rest of modern
ryptographyThe design of se
ure proto
ols that implement arbitrary desired fun
tionalities is a major part ofmodern
ryptography. Taking the opposite perspe
tive, the design of any
ryptographi
 s
hememay be viewed as the design of a se
ure proto
ol for implementing a suitable fun
tionality. Still, webelieve that it makes sense to di�erentiate between basi

ryptographi
 primitives (whi
h involvelittle intera
tion) like en
ryption and signature s
hemes, on the one hand, and general
ryptographi
proto
ols on the other hand.1.3.2 Relevan
e to pra
ti
eOur fo
us on the general study of se
ure multi-party
omputation (rather than on proto
ols forsolving spe
i�
 problems) is natural in the
ontext of the theoreti
al treatment of the subje
tmatter. We wish to highlight the importan
e of this general study to pra
ti
e. Firstly, this study
lari�es fundamental issues regarding se
urity in a multi-party environment. Se
ondly, it draws thelines between what is possible in prin
iple and what is not. Thirdly, it develops general te
hniquesfor designing se
ure proto
ols. And last, sometimes, it may even yield s
hemes (or modules) thatmay be in
orporated in pra
ti
al systems.1.3.3 The issue of
on
urrent exe
utionsThe bulk of this arti
le is devoted to the \stand-alone" setting. That is, ex
ept in Se
tion 5, wepresuppose that during the exe
ution of the (se
ure) proto
ol the parties that parti
ipate in theexe
ution do not parti
ipate in any other proto
ol exe
ution. Thus, it is not guaranteed that theaforementioned proto
ol maintains its se
urity when exe
uted
on
urrently with other proto
ols (oreven with other instan
es of the same proto
ol): Con
eivably, an adversary that
ontrols partiesin several
on
urrent exe
utions, may gain some illegitimate advantage. Thus, it is desirable (andin some settings imperative) to design proto
ols that maintain their se
urity also when exe
uted
on
urrently to other proto
ols (or to other instan
es of themselves). In Se
tion 5, we brie
y andpartially survey the known results regarding se
urity under
on
urrent exe
utions. At this point,however, we wish to make several
omments:When do
on
urrent exe
utions pose a se
urity problem? The issue of se
urity under
on
urrent exe
ution arises only if the adversary may initiate and
ontrol several
on
urrent ex-e
utions. In
ontrast,
on
urrent exe
utions that are not
ontrolled by the same adversary (orset of
oordinating adversaries) do not introdu
e any new se
urity problem (beyond stand-alonese
urity).An asymmetry between legitimate behavior and adversarial one. Preservation of se
u-rity under
on
urrent exe
utions seems essential in settings, su
h as the Internet, in whi
h many(distributed) pro
esses do take pla
e
on
urrently and it is unreasonable to require these pro
essesto
oordinate their a
tions (in order to
ounter possible atta
ks of an adversary that may
ontrolseveral pro
esses). We stress that although inter-pro
ess
oordination
annot be required of thelegitimate pro
esses, it
annot be assumed that the adversary does not
oordinate its atta
ks on the3

various pro
esses. (Coordination is possible, but too expensive to be required in normal operation.Still the adversary may be willing to invest the ne
essary e�ort if, by
oordinating its atta
k onthe various pro
esses, it
an obtain substantial gain.)When may stand-alone se
urity suÆ
e? It is hasty to
on
lude that \stand-alone se
urity"is worthless in all distributed systems (i.e., is unsatisfa
tory in all reasonable settings). We believethat stand-alone se
urity may be suÆ
ient in some (typi
ally, small) distributed systems.� On the one extreme, stand-alone se
urity suÆ
es in distributed systems in whi
h exe
utionsof se
ure multi-party
omputations are rare and
an be
oordinated su
h that they do nottake pla
e
on
urrently.� On the other extreme, in distributed systems in whi
h exe
utions of se
ure multi-party
om-putations involving all (or most) the pro
essors take pla
e all the time, it may be reasonableto \lump together" all these
omputations into a single (rea
tive) multi-party
omputationthat supports on-line requests for various individual multi-party
omputations.As another (related) example,
onsider a (small) distributed system that operates under asingle distributed operating system. The desired fun
tionality of su
h an operating system
an be
asted as a (rea
tive) multi-party fun
tionality, and as su
h one
an design a se
ureimplementation of it. This means that we obtain a se
ure distributed operating system thatmaintains its fun
tionality even if some of the pro
essors behave in a mali
ious way (e.g., aregoverned by an adversary).42 The De�nitional Approa
h and Some ModelsBefore des
ribing the aforementioned results, we further dis
uss the notion of \emulating a trustedparty", whi
h underlies the de�nitional approa
h to se
ure multi-party
omputation (as initiatedand developed in [45, 56, 4, 5, 14, 15℄) The approa
h
an be tra
ed ba
k to the de�nition of zero-knowledge (
f. [47℄), and even to the de�nition of se
ure en
ryption (
f. [33℄, rephrasing [46℄). Theunderlying paradigm (
alled the simulation paradigm) is that a s
heme is se
ure if whatever afeasible adversary
an obtain after atta
king it, is also feasibly attainable \from s
rat
h". In the
ase of zero-knowledge this amounts to saying that whatever a (feasible) veri�er
an obtain afterintera
ting with the prover on a pres
ribed valid assertion,
an be (feasibly)
omputed from theassertion itself. In the
ase of multi-party
omputation we
ompare the e�e
t of adversaries thatparti
ipate in the exe
ution of the a
tual proto
ol to the e�e
t of adversaries that parti
ipate in animaginary exe
ution of a trivial (ideal) proto
ol for
omputing the desired fun
tionality with thehelp of a trusted party. If whatever the adversaries
an feasibly obtain in the former real setting
analso be feasibly obtained in the latter ideal setting then the proto
ol \emulates the ideal setting"(i.e., \emulates a trusted party"), and so is deemed se
ure. This basi
 approa
h
an be applied ina variety of models, and is used to de�ne the goals of se
urity in these models.54We
omment that in a se
ure distributed operating system as suggested above, all (or most) parties will haveto a
tively parti
ipate in ea
h a
tion taken by the system. A
tually, if one assumes that at most t parties may be
ontrolled by the adversary then it suÆ
es to have O(t) parties parti
ipate in ea
h a
tion taken by the system.5A few te
hni
al
omments are in pla
e. Firstly, we assume that the inputs of all parties are of the same length.We
omment that as long as the lengths of the inputs are polynomially related, the above
onvention
an be enfor
edby padding. On the other hand, some length restri
tion is essential for the se
urity results, be
ause in general it isimpossible to hide all information regarding the length of the inputs to a proto
ol. Se
ondly, we assume that thedesired fun
tionality is
omputable in probabilisti
 polynomial-time, be
ause we wish the se
ure proto
ol to run in4

We �rst dis
uss some of the parameters used in de�ning various models, and next demonstratethe appli
ation of this approa
h in two important models. For further details, see [15℄ or [36,Se
. 7.2 and 7.5.1℄.2.1 Some parameters used in de�ning se
urity modelsThe following parameters are des
ribed in terms of the a
tual (or real)
omputation. In some
ases,the
orresponding de�nition of se
urity is obtained by imposing some restri
tions or provisions onthe ideal model. For example, in the
ase of two-party
omputation (see below), se
ure
omputa-tion is possible only if premature termination is not
onsidered a brea
h of se
urity. In that
ase,the suitable se
urity de�nition is obtained (via the simulation paradigm) by allowing (an analogueof) premature termination in the ideal model. In all
ases, the desired notion of se
urity is de�nedby requiring that for any adequate adversary in the real model, there exist a
orresponding adver-sary in the
orresponding ideal model that obtains essentially the same impa
t (as the real-modeladversary).2.1.1 The
ommuni
ation
hannelsThe parameters of the model in
lude questions like whether or not the
hannels may be tapped byan adversary, whether or not they are tamper-free, and questions referring to the network behavior(in the
ase of multi-party proto
ols).Wire-tapping versus the private-
hannel model. The standard assumption in
ryptographyis that the adversary may tap all
ommuni
ation
hannels (between honest parties). In
ontrast,one may postulate that the adversary
annot obtain messages sent between a pair of honest parties,yielding the so-
alled private-
hannel model (
f. [11, 20℄). The latter postulate may be justi�ed insome settings. Furthermore, it may be viewed as a useful abstra
tion that provides a
lean modelfor the study and development of se
ure proto
ols. In this respe
t, it is important to mention that,in a variety of settings of the other parameters, private
hannels
an be easily emulated by ordinary\tapped
hannels".Broad
ast
hannel. In the multi-party
ontext, one may postulate the existen
e of a broad
ast
hannel (
f. [61℄), and the motivation and justi�
ations are as in the
ase of the private-
hannelmodel.The tamper-free assumption. The standard assumption in the area is that the adversary
annot modify, dupli
ate, or generate messages sent over the
ommuni
ation
hannels (betweenhonest parties). Again, this assumption
an be justi�ed in some settings and
an be emulated inothers (
f. [8, 16℄).Network behavior. Most works in the area assume that
ommuni
ation is syn
hronous and thatpoint-to-point
hannels exist between every pair of pro
essors (i.e., a
omplete network). However,one may also
onsider asyn
hronous
ommuni
ation (
f. [10℄) and arbitrary networks of point-to-point
hannels (
f. [27℄).probabilisti
 polynomial-time (and a proto
ol
annot be more eÆ
ient than the
orresponding
entralized algorithm).Clearly, the results
an be extended to fun
tionalities that are
omputable within any given (time-
onstru
tible) timebound, using adequate padding. 5

2.1.2 Set-up assumptionsUnless stated di�erently, we make no set-up assumptions (ex
ept for the obvious assumption thatall parties have identi
al
opies of the proto
ol's program). However, in some
ases it is assumedthat ea
h party knows a veri�
ation-key
orresponding to ea
h of the other parties (or that apubli
-key infrastru
ture is available). Another assumption, made more rarely, is that all partieshave a

ess to some
ommon (trusted) random string.2.1.3 Computational limitationsTypi
ally, we
onsider
omputationally-bounded adversaries (e.g., probabilisti
 polynomial-timeadversaries). However, the private-
hannel model allows for the (meaningful)
onsideration of
omputationally-unbounded adversaries.We stress that, also in the
ase of
omputationally-unbounded adversaries, se
urity should bede�ned by requiring that for every real adversary, whatever the adversary
an
ompute after parti
i-pating in the exe
ution of the a
tual proto
ol is
omputable within
omparable time by an imaginaryadversary parti
ipating in an imaginary exe
ution of the trivial ideal proto
ol (for
omputing thedesired fun
tionality with the help of a trusted party). That is, although no
omputational re-stri
tions are made on the real-model adversary, it is required that the ideal-model adversary thatobtains the same impa
t does so within
omparable time (i.e., within time that is polynomiallyrelated to the running time of the real-model adversary being simulated). Thus, any
onstru
tionproven se
ure in the
omputationally-unbounded adversary model is (trivially) se
ure with respe
tto
omputationally-bounded adversaries.2.1.4 Restri
ted adversarial behaviorThe parameters of the model in
lude questions like whether or not the adversary is \adaptive" and\a
tive" (where these terms are dis
ussed next).Adaptive versus non-adaptive. The most general type of an adversary
onsidered in the liter-ature is one that may
orrupt parties to the proto
ol while the exe
ution goes on, and does so basedon partial information it has gathered so far (
f. [17℄). A somewhat more restri
ted model, whi
hseems adequate in many settings, postulates that the set of dishonest parties is �xed (arbitrarily)before the exe
ution starts (but this set is, of
ourse, not known to the honest parties). The lattermodel is
alled non-adaptive as opposed to the adaptive adversary dis
ussed �rst. Although theadaptive model is stronger, the author believes that the non-adaptive model provides a reasonablelevel of se
urity in many appli
ations.A
tive versus passive. An orthogonal parameter of restri
tion refers to whether a dishonestparty takes a
tive steps to disrupt the exe
ution of the proto
ol (i.e., sends messages that di�erfrom those spe
i�ed by the proto
ol), or merely gathers information (whi
h it may latter sharewith the other dishonest parties). The latter adversary has been given a variety of names su
has semi-honest, passive, and honest-but-
urious. This restri
ted model may be justi�ed in
ertainsettings, sin
e laun
hing an unrestri
ted atta
k may not be feasible in some
ases.6 Furthermore,the passive adversary model provides a useful methodologi
al lo
us (
f. [42, 43, 34℄ and Se
tion 4).6Note that deviation from the pres
ribed program requires repla
ing the provided software by an alternative one,whereas passive atta
ks
an be
ondu
ted by merely monitoring the exe
ution of the provided software. Thus, passiveatta
ks are mu
h easier to laun
h, whereas designing harmful a
tive atta
ks seems mu
h harder.6

Below we refer to the adversary of the unrestri
ted model as to a
tive; another
ommonly usedname is mali
ious. We also mention the intermediate model of
overt adversaries (
f. [1℄: Covertadversaries may deviate arbitrarily from the pres
ribed behavior as long as they do not run a riskof being
aught doing so.2.1.5 Restri
ted notions of se
urityOne important example is the willingness to tolerate \unfair" proto
ols in whi
h the exe
ution
anbe suspended (at any time) by a dishonest party, provided that it is dete
ted doing so. We stressthat in
ase the exe
ution is suspended, the dishonest party does not obtain more informationthan it
ould have obtained when not suspending the exe
ution. (What may happen is that thehonest parties will not obtain their desired outputs, but rather will dete
t that the exe
ution wassuspended.) We stress that the motivation to this restri
ted model is the impossibility of obtaininggeneral se
ure two-party
omputation in the unrestri
ted model.Additional weaker (than standard) notions of se
urity were proposed with similar motivationand in
lude relaxing the simulation requirement (by allowing quasi-polynomial-time simulation,
f. [2℄) and relaxing the indistinguishability requirement (by allowing a small but noti
eable prob-abilisti
 gap,
f. [41, 52, 49℄).2.1.6 Upper bounds on the number of dishonest partiesIn some models, se
ure multi-party
omputation is possible only if a majority of the parties ishonest (
f. [11, 22℄). Sometimes even a spe
ial majority (e.g., 2/3) is required. General \(resilient)adversarial-stru
tures" have been
onsidered too (
f. [51℄).Mobile adversary. In most works, on
e a party is de
lared dishonest it remains so throughoutthe exe
ution. More generally, one may
onsider transient adversarial behavior (i.e., an adversaryseizes
ontrol of some site and later withdraws from it). This model, introdu
ed in [59℄, allowsto
onstru
t proto
ols that remain se
ure even in
ase the adversary may seize
ontrol of all sitesduring the exe
ution (but never
ontrol
on
urrently, say, more than 10% of the sites). We
ommentthat s
hemes se
ure in this model were later termed \proa
tive" (
f. [18℄).2.2 Example: Multi-party proto
ols with honest majorityHere we
onsider an a
tive, non-adaptive,
omputationally-bounded adversary, and do not assumethe existen
e of private
hannels. Our aim is to de�ne multi-party proto
ols that remain se
ureprovided that the honest parties are in majority. (The reason for requiring a honest majority willbe dis
ussed at the end of this subse
tion.)Consider any multi-party proto
ol. We �rst observe that ea
h party may
hange its lo
al inputbefore even entering the exe
ution of the proto
ol. However, this is unavoidable also when theparties utilize a trusted party. Consequently, su
h an e�e
t of the adversary on the real exe
ution(i.e., modi�
ation of its own input prior to entering the a
tual exe
ution) is not
onsidered a brea
hof se
urity. In general, whatever
annot be avoided when the parties utilize a trusted party, is not
onsidered a brea
h of se
urity. We wish se
ure proto
ols (in the real model) to su�er only fromwhatever is unavoidable also when the parties utilize a trusted party. Thus, the basi
 paradigmunderlying the de�nitions of se
ure multi-party
omputations amounts to requiring that the onlysituations that may o

ur in the real exe
ution of a se
ure proto
ol are those that
an also o

urin a
orresponding ideal model (where the parties may employ a trusted party). In other words,7

the \e�e
tive malfun
tioning" of parties in se
ure proto
ols is restri
ted to what is postulated inthe
orresponding ideal model.When de�ning se
ure multi-party proto
ols with honest majority, we need to pin-point what
annot be avoided in the ideal model (i.e., when the parties utilize a trusted party). This is easy,be
ause the ideal model is very simple. Sin
e we are interested in exe
utions in whi
h the majorityof parties are honest, we
onsider an ideal model in whi
h any minority group (of the parties) may
ollude as follows:1. Firstly this dishonest minority shares its original inputs and de
ides together on repla
edinputs to be sent to the trusted party. (The other parties send their respe
tive original inputsto the trusted party.)2. Upon re
eiving inputs from all parties, the trusted party determines the
orresponding outputsand sends them to the
orresponding parties. (We stress that the information sent betweenthe honest parties and the trusted party is not seen by the dishonest
olluding minority.)3. Upon re
eiving the output-message from the trusted party, ea
h honest party outputs itlo
ally, whereas the dishonest
olluding minority may determine their outputs based on allthey know (i.e., their initial inputs and their re
eived outputs).Note that the foregoing behavior of the minority group is unavoidable in any exe
ution of anyproto
ol (even in presen
e of trusted parties). This is the reason that the ideal model was de�nedas above. Now, a se
ure multi-party
omputation with honest majority is required to emulate thisideal model. That is, the e�e
t of any feasible adversary that
ontrols a minority of the parties in areal exe
ution of the a
tual proto
ol,
an be essentially simulated by a (di�erent) feasible adversarythat
ontrols the
orresponding parties in the ideal model. That is:De�nition 1 (se
ure proto
ols { a sket
h): Let f be an m-ary fun
tionality and � be an m-partyproto
ol operating in the real model.� For a real-model adversary A,
ontrolling some minority of the parties (and tapping all
om-muni
ation
hannels), and an m-sequen
e x, we denote by real�;A(x) the sequen
e of moutputs resulting from the exe
ution of � on input x under atta
k of the adversary A.� For an ideal-model adversary A0,
ontrolling some minority of the parties, and an m-sequen
ex, we denote by idealf;A0(x) the sequen
e of m outputs resulting from the ideal pro
ess de-s
ribed above, on input x under atta
k of the adversary A0.We say that � se
urely implements f with honest majority if for every feasible real-model adversaryA,
ontrolling some minority of the parties, there exists a feasible ideal-model adversary A0,
on-trolling the same parties, so that the probability ensembles freal�;A(x)gx and fidealf;A0(x)gx are
omputationally indistinguishable.7Thus, se
urity means that the e�e
t of ea
h minority group in a real exe
ution of a se
ure proto
olis \essentially restri
ted" to repla
ing its own lo
al inputs (independently of the lo
al inputs of themajority parties) before the proto
ol starts, and repla
ing its own lo
al outputs (depending onlyon its lo
al inputs and outputs) after the proto
ol terminates. (We stress that in the real exe
ution7Note that, as in the
ase of zero-knowledge, the notion of indistinguishability used here refers to probabilityensembles indexed by strings and to distinguishers that are arbitrary polynomial-size
ir
uits. That is, we refer tothe de�nition presented in [35, Def. 3.2.7 (2)℄ and in [38, Def. 3℄.8

the minority parties do obtain additional pie
es of information; yet in a se
ure proto
ol they gainnothing from these additional pie
es of information, be
ause they
an a
tually reprodu
e those bythemselves.)The fa
t that De�nition 1 refers to a model without private
hannels is due to the fa
t thatour (sket
hy) de�nition of the real-model adversary allowed it to tap the
hannels, whi
h in turne�e
ts the set of possible ensembles freal�;A(x)gx. When de�ning se
urity in the private-
hannelmodel, the real-model adversary is not allowed to tap
hannels between honest parties, and thisagain e�e
ts the possible ensembles freal�;A(x)gx. On the other hand, when we wish to de�nese
urity with respe
t to passive adversaries, both the s
ope of the real-model adversaries and thes
ope of the ideal-model adversaries
hanges. In the real-model exe
ution, all parties follow theproto
ol but the adversary may alter the output of the dishonest parties arbitrarily depending onall their intermediate internal states (during the exe
ution). In the
orresponding ideal-model, theadversary is not allowed to modify the inputs of dishonest parties (in Step 1), but is allowed tomodify their outputs (in Step 3).We
omment that a de�nition analogous to De�nition 1
an be presented also in
ase thedishonest parties are not in minority. In fa
t, su
h a de�nition seems more natural, but the problemis that it
annot be satis�ed in general. Furthermore, most natural fun
tionalities do not have aproto
ol for
omputing them se
urely (in the foregoing sense) when at least half of the partiesare dishonest and employ an adequate adversarial strategy. This follows from an impossibilityresult regarding two-party
omputation, whi
h essentially asserts that there is no way to preventa party from prematurely suspending the exe
ution [24℄.8 On the other hand, se
ure multi-party
omputation with dishonest majority is possible if premature suspension of the exe
ution is not
onsidered a brea
h of se
urity (see Se
tion 2.3).2.3 Another example: Two-party proto
ols allowing abortIn light of the last paragraph, we now
onsider multi-party
omputations in whi
h prematuresuspension of the exe
ution is not
onsidered a brea
h of se
urity. For
on
reteness, we fo
us hereon the spe
ial
ase of two-party
omputations.9Intuitively, in any two-party proto
ol, ea
h party may suspend the exe
ution at any point intime, and furthermore it may do so as soon as it learns the desired output. Thus, in
ase theoutput of ea
h parties depends on both inputs, it is always possible for one of the parties to obtainthe desired output while preventing the other party from fully determining its own output. Thesame phenomenon o

urs even in
ase the two parties just wish to generate a
ommon randomvalue. Thus, when
onsidering a
tive adversaries in the two-party setting, we do not
onsider su
hpremature suspension of the exe
ution a brea
h of se
urity. Consequently, we
onsider an idealmodel where ea
h of the two parties may \shut-down" the trusted (third) party at any point intime. In parti
ular, this may happen after the trusted party has supplied the out
ome of the
omputation to one party but before it has supplied it to the other. That is, an exe
ution in theideal model pro
eeds as follows:1. Ea
h party sends its input to the trusted party, where the dishonest party may repla
e itsinput or send no input at all (whi
h
an be treated as sending a default value).8We stress that although the foregoing impossibility result applies to many natural fun
tionalities (e.g.,
ointossing [24℄), it may not apply to other natural fun
tionalities (as demonstrated in [48℄). Furthermore, partialfairness
an be obtained in many other
ases (
f. [49℄).9As in Se
tion 2.2, we
onsider a non-adaptive, a
tive,
omputationally-bounded adversary.9

2. Upon re
eiving inputs from both parties, the trusted party determines the
orrespondingoutputs, and sends the �rst output to the �rst party.3. In
ase the �rst party is dishonest, it may instru
t the trusted party to halt, otherwise italways instru
ts the trusted party to pro
eed. If instru
ted to pro
eed, the trusted partysends the se
ond output to the se
ond party.4. Upon re
eiving the output-message from the trusted party, the honest party outputs it lo
ally,whereas the dishonest party may determine its output based on all it knows (i.e., its initialinput and its re
eived output).A se
ure two-party
omputation allowing abort is required to emulate this ideal model. That is,as in De�nition 1, se
urity is de�ned by requiring that for every feasible real-model adversary A,there exists a feasible ideal-model adversary A0,
ontrolling the same party, so that the proba-bility ensembles representing the
orresponding (real and ideal) exe
utions are
omputationallyindistinguishable. This means that ea
h party's \e�e
tive malfun
tioning" in a se
ure proto
ol isrestri
ted to supplying an initial input of its
hoi
e and aborting the
omputation at any point intime. (Needless to say, the
hoi
e of the initial input of ea
h party may not depend on the inputof the other party.)We mention that an alternative way of dealing with the problem of premature suspension ofexe
ution (i.e., abort) is to restri
t our attention to single-output fun
tionalities; that is, fun
tionali-ties in whi
h only one party is supposed to obtain an output. The de�nition of se
ure
omputationof su
h fun
tionalities
an be made identi
al to De�nition 1, with the ex
eption that no restri
tionis made on the set of dishonest parties (and in parti
ular one may
onsider a single dishonest partyin the
ase of two-party proto
ols). For further details, see [36, Se
. 7.2.3℄.3 Some Known ResultsWe next list some of the models for whi
h general se
ure multi-party
omputation is known tobe attainable (i.e., models in whi
h one
an
onstru
t se
ure multi-party proto
ols for
omputingany desired fun
tionality). We mention that the �rst set of results of this type were obtained byGoldrei
h, Mi
ali, Wigderson and Yao [42, 64, 43℄.3.1 In the standard
ryptographi
 modelAssuming the existen
e of enhan
ed trapdoor permutations10 , se
ure multi-party
omputation ispossible in the following models (
f. [42, 64, 43℄ and details in [34, 36℄):1. Passive adversary, for any number of dishonest parties (
f. [36, Se
. 7.3℄).2. A
tive adversary that may
ontrol only a minority of the parties (
f. [36, Se
. 7.5.4℄).3. A
tive adversary, for any number of bad parties, provided that suspension of exe
ution isnot
onsidered a violation of se
urity (i.e., as dis
ussed in Se
tion 2.3). (See [36, Se
. 7.4and 7.5.5℄.)10Loosely speaking, the enhan
ement refers to the hardness
ondition of a standard
olle
tion of trapdoor permu-tations, denoted ffi :Di ! f0; 1g�gi2I , and requires that it be hard to re
over f�1i (y) also when given the
oins usedto sample y (rather than merely y itself). See [36, Apdx. C.1℄.10

In all these
ases, the adversary is
omputationally-bounded and non-adaptive. On the other hand,the adversary may tap the
ommuni
ation lines between honest parties (i.e., we do not assume\private
hannels" here).The results for a
tive adversaries assume a broad
ast
hannel. Indeed, the latter
an be im-plemented (while tolerating any number of bad parties) using a signature s
heme and assuming apubli
-key infrastru
ture (or that ea
h party knows the veri�
ation-key
orresponding to ea
h ofthe other parties).3.2 In the private
hannels modelMaking no
omputational assumptions and allowing
omputationally-unbounded adversaries, butassuming private
hannels, se
ure multi-party
omputation is possible in the following models(
f. [11, 20℄):1. Passive adversary that may
ontrol only a minority of the parties.2. A
tive adversary that may
ontrol only less than one third of the parties.11In both
ases the adversary may be adaptive (
f. [11, 17℄).3.3 Additional modelsSe
ure multi-party
omputation is possible against an a
tive, adaptive and mobile adversary thatmay
ontrol a small
onstant fra
tion of the parties at any point in time [59℄. This result makes no
omputational assumptions, allows
omputationally-unbounded adversaries, but assumes private
hannels.Assuming the existen
e of trapdoor permutations, se
ure multi-party
omputation is possiblein a model allowing an a
tive and adaptive
omputationally-bounded adversary that may
ontrolonly less than one third of the parties [17, 25℄. We stress that this result does not assume \private
hannels".Results for asyn
hronous
ommuni
ation and arbitrary networks of point-to-point
hannels werepresented in [10, 12℄ and [27℄, respe
tively.3.4 Additional
ommentsNote that the implementation of a broad
ast
hannel
an be
ast as a
ryptographi
 proto
olproblem (i.e., for the fun
tionality (v; �; :::; �) 7! (v; v; :::; v), where � denotes the empty string).Thus, it is not surprising that the results regarding a
tive adversaries either assume the existen
eof su
h a
hannel or require a setting in whi
h the latter
an be implemented.Se
ure rea
tive
omputation: All the above results extend to a rea
tive model of
omputationin whi
h ea
h party intera
ts with a high-level pro
ess (or appli
ation). The high-level pro
esssupplies ea
h party with a sequen
e of inputs, one at a time, and expe
t to re
eive
orrespondingoutputs from the parties. That is, a rea
tive system goes through (a possibly unbounded numberof) iterations of the following type:� Parties are given inputs for the
urrent iteration.11Fault-toleran
e
an be in
reased to a regular minority if a broad
ast
hannel exists [61℄.11

� Depending on the
urrent inputs, the parties are supposed to
ompute outputs for the
urrentiteration. That is, the outputs in iteration j are determined by the inputs of the jth iteration.A more general formulation allows the outputs of ea
h iteration to depend also on a global state,whi
h is possibly updated in ea
h iteration. The global state may in
lude all inputs and outputsof previous iterations, and may only be partially known to individual parties. (In a se
ure rea
tive
omputation su
h a global state may be maintained by all parties in a \se
ret sharing" manner.)For further dis
ussion, see [36, Se
. 7.7.1℄.EÆ
ien
y
onsiderations: One important eÆ
ien
y measure regarding proto
ols is the numberof
ommuni
ation rounds in their exe
ution. The aforementioned results were originally obtainedusing proto
ols that use an unbounded number of rounds. In some
ases, subsequent works ob-tained se
ure
onstant-round proto
ols: for example, in the
ase of multi-party
omputations withhonest majority (
f. [6℄) and in the
ase of two-party
omputations allowing abort (
f. [53℄). Otherimportant eÆ
ien
y
onsiderations in
lude the total number of bits sent in the exe
ution of a pro-to
ol, and the lo
al
omputation time. The (
ommuni
ation and
omputation)
omplexities of theaforementioned se
ure proto
ols are related to the
omputational
omplexity of the
omputation,but alternative relations (e.g., where the
omplexities of the se
ure proto
ols are related to the(inse
ure)
ommuni
ation
omplexity of the
omputation) may be possible (
f. [58℄).Theory versus pra
ti
e (or general versus spe
i�
): This arti
le is fo
used on presentinggeneral notions and general feasibility results. Needless to say, pra
ti
al solutions to spe
i�
 prob-lems (e.g., voting [50℄, se
ure payment systems [7℄, and threshold
ryptosystems [31℄) are typi
allyderived by spe
i�

onstru
tions (and not by applying general results of the abovementioned type).Still, the (abovementioned) general results are of great importan
e to pra
ti
e be
ause they
hara
-terize a wide
lass of se
urity problems that are solvable in prin
iple, and provide te
hniques thatmay be useful also towards
onstru
ting reasonable solutions to spe
i�
 problems.4 Constru
tion Paradigms and Two Simple Proto
olsWe brie
y sket
h a
ouple of paradigms used in the
onstru
tion of se
ure multi-party proto
ols. Wefo
us on the
onstru
tion of se
ure proto
ols for the model of
omputationally-bounded and non-adaptive adversaries [42, 64, 43℄. These
onstru
tions pro
eed in two steps (see details in [34, 36℄).First a se
ure proto
ol is presented for the model of passive adversaries (for any number of dishonestparties), and next su
h a proto
ol is \
ompiled" into a proto
ol that is se
ure in one of the twomodels of a
tive adversaries (i.e., either in a model allowing the adversary to
ontrol only a minorityof the parties or in a model in whi
h premature suspension of the exe
ution is not
onsidered aviolation of se
urity). These two steps are presented in the following two
orresponding subse
tions,in whi
h we also present two relatively simple proto
ols for two spe
i�
 tasks, whi
h are usedextensively in the general proto
ols.Re
all that in the model of passive adversaries, all parties follow the pres
ribed proto
ol, butat termination the adversary may alter the outputs of the dishonest parties depending on all theirintermediate internal states (during the exe
ution). Below, we refer to proto
ols that are se
ure inthe model of passive (resp., a
tive) adversaries by the term passively-se
ure (resp., a
tively-se
ure).
12

4.1 Constru
ting passively-se
ure proto
olsFor any m � 2, suppose that m parties, ea
h having a private input, wish to obtain the value ofa predetermined m-argument fun
tion evaluated at their sequen
e of inputs. Below, we outline apassively-se
ure proto
ol for a
hieving this goal. We mention that the design of passively-se
uremulti-party proto
ol for any fun
tionality (allowing di�erent outputs to di�erent parties as well ashandling also randomized
omputations) redu
es easily to the aforementioned task.We present two alternative
onstru
tions of passively-se
ure proto
ols, where the �rst
onstru
-tion applies to any m � 2 and the se
ond
onstru
tion applies only to the two-party
ase (i.e.,m = 2). Furthermore, while the proto
ols resulting from the �rst
onstru
tion are symmetri
 withrespe
t to the operation of the m parties, the proto
ols resulting from the se
ond
onstru
tion arehighly asymmetri
. This asymmetry o�ers various advantages (
f. [55℄ and the referen
es therein).4.1.1 Passively-se
ure
omputation with sharesWe assume that the parties hold a
ir
uit for
omputing the value of the fun
tion on inputs of theadequate length, and that the
ir
uit
ontains only and and not gates. The key idea is to haveea
h party \se
retly share" its input with everybody else, and \se
retly transform" shares of theinput wires of the
ir
uit into shares of the output wires of the
ir
uit, thus obtaining shares of theoutputs (whi
h allows for the re
onstru
tion of the a
tual outputs). The value of ea
h wire in the
ir
uit is shared in a way su
h that all shares yield the value, whereas la
king even one of the shareskeeps the value totally undetermined. That is, we use a simple se
ret sharing s
heme (
f. [63℄) su
hthat a bit b is shared by a random sequen
e of m bits that sum-up to b mod 2. First, ea
h partyshares ea
h of its input bits with all parties (by se
retly sending ea
h party a random value andsetting its own share a

ordingly). Next, all parties jointly s
an the
ir
uit from its input wires tothe output wires, pro
essing ea
h gate as follows:� When en
ountering a gate, the parties already hold shares of the values of the wires enteringthe gate, and their aim is to obtain shares of the value of the wires exiting the gate.� For a not-gate this is easy: the �rst party just
ips the value of its share, and all other partiesmaintain their shares.� Sin
e an and-gate
orresponds to multipli
ation modulo 2, the parties need to se
urely
om-pute the following randomized fun
tionality (in whi
h the xi's denote shares of one entry-wire,the yi's denote shares of the se
ond entry-wire, the zi's denote shares of the exit-wire, andthe shares indexed by i belongs to Party i):((x1; y1); :::; (xm; ym)) 7! (z1; :::; zm) (1)where Pmi=1 zi = (Pmi=1 xi) � (Pmi=1 yi), (2)and all arithmeti
 operations are mod 2. That is, the zi's are random subje
t to Eq. (2).Finally, the parties send their shares of ea
h
ir
uit-output wire to the designated party, whi
hre
onstru
ts the value of the
orresponding bit. Thus, the parties have propagated shares of theinput wires into shares of the output wires, by repeatedly
ondu
ting privately-se
ure
omputationof the m-ary fun
tionality of Eq. (1)& (2). That is, se
urely evaluating the entire (arbitrary)
ir
uit\redu
es" to se
urely
ondu
ting a spe
i�
 (very simple) multi-party
omputation. But things geteven simpler: the key observation is that mXi=1 xi! � mXi=1 yi! = mXi=1 xiyi + X1�i<j�m (xiyj + xjyi) (3)13

Thus, the m-ary fun
tionality of Eq. (1) & (2)
an be
omputed as follows:1. Ea
h Party i lo
ally
omputes zi;i def= xiyi.2. Next, ea
h pair of parties (i.e., Parties i and j) se
urely
ompute random shares of xiyj+yixj .That is, Parties i and j (holding (xi; yi) and (xj ; yj), respe
tively), need to se
urely
omputethe randomized two-party fun
tionality ((xi; yi); (xj ; yj)) 7! (zi;j ; zj;i), where the z's are ran-dom subje
t to zi;j + zj;i = xiyj + yixj. Equivalently, Party j uniformly sele
ts zj;i 2 f0; 1g,and Parties i and j se
urely
ompute the deterministi
 fun
tionality ((xi; yi); (xj ; yj; zj;i)) 7!(zj;i + xiyj + yixj ; �), where � denotes the empty string.The latter simple two-party
omputation
an be se
urely implemented using a 1-out-of-4Oblivious Transfer (
f. [44℄ and [36, Se
. 7.3.3℄), whi
h in turn
an be implemented using en-han
ed trapdoor permutations (see below). Loosely speaking, a 1-out-of-k Oblivious Transferis a proto
ol enabling one party to obtain one of k se
rets held by another party, without these
ond party learning whi
h se
ret was obtained by the �rst party. That is, we refer to thetwo-party fun
tionality (i; (s1; :::; sk)) 7! (si; �) (4)Note that any deterministi
 fun
tionality of the form f : [k℄ � f0; 1g� ! f0; 1g� � f�g
an be privately-
omputed by invoking a 1-out-of-k Oblivious Transfer on inputs i and(f(1; y); :::; f(k; y)), where i (resp., y) is the initial input of the �rst (resp., se
ond) party.3. Finally, for every i = 1; :::;m, summing-up all the zi;j's yields the desired share of Party i.The above
onstru
tion is analogous to a
onstru
tion that was brie
y des
ribed in [43℄. A detaileddes
ription and full proofs appear in [34, 36℄.We mention that an analogous
onstru
tion has been subsequently used in the private
hannelmodel and withstands
omputationally unbounded a
tive (resp., passive) adversaries that
ontrolless than one third (resp., a minority) of the parties [11℄. The basi
 idea is to use a more sophis-ti
ated se
ret sharing s
heme; spe
i�
ally, via a low degree polynomial [63℄. That is, the Boolean
ir
uit is viewed as an arithmeti

ir
uit over a �nite �eld having more than m elements, and ase
ret element s of the �eld is shared by sele
ting uniformly a polynomial of degree d = b(m� 1)=3
(resp., degree d = b(m� 1)=2
) having a free-term equal to s, and handing ea
h party the value ofthis polynomial evaluated at a di�erent (�xed) point (e.g., party i is given the value at point i).Addition is emulated by (lo
al) point-wise addition of the (se
ret sharing) polynomials represent-ing the two inputs (using the fa
t that for polynomials p and q, and any �eld element e (and inparti
ular e = 0; 1; :::;m), it holds that p(e) + q(e) = (p + q)(e)). The emulation of multipli
ationis more involved and requires intera
tion (be
ause the produ
t of polynomials yields a polynomialof higher degree, and thus the polynomial representing the output
annot be the produ
t of thepolynomials representing the two inputs). Indeed, the aim of the intera
tion is to turn the sharesof the produ
t polynomial into shares of a degree d polynomial that has the same free-term as theprodu
t polynomial (whi
h is of degree 2d). This
an be done using the fa
t that the
oeÆ
ients ofa polynomial are a linear
ombination of its values at suÆ
iently many arguments (and the otherway around), and the fa
t that one
an privately-
ompute any linear
ombination (of se
ret values).For details see [11, 32℄.A passively-se
ure 1-out-of-k Oblivious Transfer. Using a
olle
tion of enhan
ed trapdoorpermutations, denoted ff� : D� ! D�g�2I (along with a
orresponding hard-
ore predi
ate [40℄,14

denoted b), we outline a passively-se
ure implementation of the fun
tionality of Eq. (4). Theimplementation originates in [30℄ (and a full des
ription is provided in [36, Se
. 7.3.2℄).12Inputs: The sender has input (�1; �2; :::; �k) 2 f0; 1gk , the re
eiver has input i 2 f1; 2; :::; kg.Step S1: The sender sele
ts at random permutations f�1 ; ::; f�k along with
orresponding trapdoors,denoted t1; :::; tk, and sends the permutations (i.e., their indi
es �1; :::; �k) to the re
eiver.Step R1: Upon re
eiving (�1; :::; �k), the re
eiver uniformly and independently sele
ts xj 2 D�jfor every j 2 f1; :::; kg, sets yi = f�i(xi) and yj = xj for every j 6= i, and sends (y1; y2; :::; yk)to the sender.Thus, the re
eiver knows f�1�i (yi) = xi, but
annot predi
t b(f�1�j (yj)) for any j 6= i. Of
ourse,the last assertion presumes that the re
eiver follows the proto
ol (i.e., is semi-honest).Step S2: Upon re
eiving (y1; y2; :::; yk), using the inverting-with-trapdoor algorithm (and the trap-doors t1; :::; tk), the sender
omputes zj = f�1�j (yj), for every j 2 f1; :::; kg. It sends thek-tuple (�1 � b(z1); �2 � b(z2); :::; �k � b(zk)) to the re
eiver.Step R2: Upon re
eiving (
1;
2; :::;
k), the re
eiver lo
ally outputs
i � b(xi).We �rst observe that the above proto
ol
orre
tly
omputes 1-out-of-k Oblivious Transfer; that is,the re
eiver's lo
al output (i.e.,
i�b(xi)) indeed equals (�i�b(f�1�i (f�i(xi))))�b(xi) = �i. Next, weo�er some intuition as to why the above proto
ol
onstitutes a privately-se
ure implementation of 1-out-of-k Oblivious Transfer. Intuitively, the sender gets no information from the exe
ution be
ause,for any possible value of i, the senders sees the same distribution; spe
i�
ally, a k-sequen
e that isuniformly distributed in D�1 � � � � � � � � �D�k . (Indeed, the key observation is that applying f� toa uniformly distributed element of D� yields a uniformly distributed element of D�.) Intuitively,the re
eiver gains no
omputational knowledge from the exe
ution be
ause, for j 6= i, the onlyinformation that the re
eiver has regarding �j is the triplet (�j ; xj; �j � b(f�1�j (xj))), where xj isuniformly distributed in D�, and from this information it is infeasible to predi
t �j better than bya random guess. The latter intuition presumes that sampling D� is trivial (i.e., that there is aneasily
omputable
orresponden
e between the
oins used for sampling and the resulting sample),whereas in general the
oins used for sampling may be hard to
ompute from the
orrespondingout
ome (whi
h is the reason that an enhan
ed hardness assumption is used in the general analysisof the the above proto
ol). (See [36, Se
. 7.3.2℄ for an a
tual proof of se
urity.)4.1.2 Passively-se
ure
omputation with \s
rambled
ir
uits"The following te
hnique refers mainly to two-party
omputation; that is, we assume here thatm = 2. The idea is to have one party
onstru
t an \s
rambled" form of the
ir
uit so that theother party
an propagate en
rypted values through the \s
rambled gates" and obtain the outputin the
lear (while all intermediate values remain se
ret). Note that the roles of the two parties arenot symmetri
, and re
all that we are des
ribing a proto
ol that is se
ure (only) with respe
t topassive adversaries. An implementation of this idea pro
eeds as follows:� Constru
ting a \s
rambled"
ir
uit: The �rst party
onstru
ts a \s
rambled" form of theoriginal
ir
uit. The \s
rambled"
ir
uit
onsists of pairs of en
rypted se
rets that
orrespond12The following presentation di�ers from the one in [36, Se
. 7.3.2℄ in that k di�erent permutations are used ratherthan one. As pointed out by Ron Rothblum, the version of [36, Se
. 7.3.2℄ is se
ure only in the
ase that k = 2 (whi
hdoes suÆ
e via additional redu
tions). 15

to the wires of the original
ir
uit and gadgets that
orrespond to the gates of the original
ir
uit. The se
rets asso
iated with the wires entering a gate are used (in the gadget that
orresponds to this gate) as keys in the en
ryption of the se
rets asso
iated with the wireexiting this gate. Furthermore, there is a random
orresponden
e between ea
h pair of se
retsand the Boolean values (of the
orresponding wire). That is, wire w is assigned a pair ofse
rets, denoted (s0w; s00w), and there is a random 1-1 mapping, denoted �w, between this pairand the pair of Boolean values (i.e., f�w(s0w); �w(s00w)g = f0; 1g).Ea
h gadget is
onstru
ted su
h that knowledge of a se
ret that
orrespond to ea
h wireentering the
orresponding gate (in the
ir
uit) yields a se
ret
orresponding to the wire thatexits this gate. Furthermore, the re
onstru
tion of se
rets using ea
h gadget respe
ts thefun
tionality of the
orresponding gate. For example, if one knows the se
ret that
orrespondsto the 1-value of one entry-wire and the se
ret that
orresponds to the 0-value of the otherentry-wire, and the gate is an or-gate, then one obtains the se
ret that
orresponds to the1-value of exit-wire.Spe
i�
ally, ea
h gadget
onsists of 4 templets that are presented in a random order, whereea
h templet
orresponds to one of the 4 possible values of the two entry-wires. A templetmay be merely a double en
ryption of the se
ret that
orresponds to the appropriate outputvalue, where the double en
ryption uses as keys the two se
rets that
orrespond to the inputvalues. That is, suppose a gate
omputing f : f0; 1g2 ! f0; 1g has input wires w1 and w2, andoutput wire w3. Then, ea
h of the four templets of this gate has the form Esw1 (Esw2 (sw3)),where f(�w1(sw1); �w2(sw2)) = �w3(sw3).� Sending the \s
rambled"
ir
uit: The �rst party sends the \s
rambled"
ir
uit to the se
ondparty. In addition, the �rst party sends to the se
ond party the se
rets that
orrespond toits own (i.e., the �rst party's) input bits (but not the values of these bits). The �rst partyalso reveals the
orresponden
e between the pair of se
rets asso
iated with ea
h output (i.e.,
ir
uit-output wire) and the Boolean values.13 We stress that the random
orresponden
ebetween the pair of se
rets asso
iated with ea
h other wire and the Boolean values is keptse
ret (by the �rst party).� Oblivious Transfer of adequate se
rets: Next, the �rst party uses a 1-out-of-2 Oblivious Trans-fer proto
ol (see Eq. (4)) in order to hand the se
ond party the se
rets
orresponding to these
ond party's input bits (without the �rst party learning anything about these bits).� Lo
ally evaluating the \s
rambled"
ir
uit: Finally, the se
ond party \evaluates" the \s
ram-bled"
ir
uit gate-by-gate, starting from the top (
ir
uit-input) gates (for whi
h it knows onese
ret per ea
h wire) and ending at the bottom (
ir
uit-output) gates (for whi
h, by
onstru
-tion, the
orresponden
e of se
rets to values is known). Thus, the se
ond party obtains theoutput value of the
ir
uit (but nothing else), and sends it to the �rst party.For more details, see [55℄.4.2 Compilation of passively-se
ure proto
ols into a
tively-se
ure onesWe show how to transform any passively-se
ure proto
ol into a
orresponding a
tively-se
ure pro-to
ol. The
ommuni
ation model in both proto
ols
onsists of a single broad
ast
hannel. Note13This
an be done by providing, for ea
h output wire, a su

in
t 2-partition (of all strings) that separates the twose
rets asso
iated with this wire. 16

that the messages of the original proto
ol may be assumed to be sent over a broad
ast
hannel, be-
ause the adversary may see them anyhow (by tapping the point-to-point
hannels), and be
ause abroad
ast
hannel is trivially implementable in the
ase of passive adversaries. As for the resultinga
tively-se
ure proto
ol, the broad
ast
hannel it uses
an be implemented via an (authenti
ated)Byzantine Agreement proto
ol [28, 54℄, thus providing an emulation of this model on the standardpoint-to-point model (in whi
h a broad
ast
hannel does not exist). We mention that authenti
atedByzantine Agreement is typi
ally implemented using a signature s
heme (and assuming that ea
hparty knows the veri�
ation-key
orresponding to ea
h of the other parties).Turning to the transformation itself, the main idea is to use zero-knowledge proofs in order tofor
e parties to behave in a way that is
onsistent with the (passively-se
ure) proto
ol. A
tually,we need to
on�ne ea
h party to a unique
onsistent behavior (i.e., a

ording to some �xed lo
alinput and a sequen
e of
oin tosses), and to guarantee that a party
annot �x its input (and/or its
oins) in a way that depends on the inputs of honest parties. Thus, some preliminary steps haveto be taken before the step-by-step emulation of the original proto
ol may start. Spe
i�
ally, the
ompiled proto
ol (whi
h like the original proto
ol is exe
uted over a broad
ast
hannel) pro
eedsas follows:1. Committing to the lo
al input: Prior to the emulation of the original proto
ol, ea
h party
ommits to its input (using a
ommitment s
heme [57℄). In addition, using a zero-knowledgeproof-of-knowledge [47, 9, 42℄, ea
h party also proves that it knows its own input; that is, thatit
an de
ommit to the
ommitment it sent. (These zero-knowledge proof-of-knowledge are
ondu
ted sequentially to prevent dishonest parties from setting their inputs in a way thatdepends on inputs of honest parties; a more round-eÆ
ient method was presented in [23℄.)2. Generation of lo
al random tapes: Next, all parties jointly generate a sequen
e of random bitsfor ea
h party su
h that only this party knows the out
ome of the random sequen
e generatedfor it, but everybody gets a
ommitment to this out
ome. These sequen
es will be used asthe random-inputs (i.e., sequen
e of
oin tosses) for the original proto
ol. Ea
h bit in therandom-sequen
e generated for Party X is determined as the ex
lusive-or of the out
omes ofinstan
es of an (augmented)
oin-tossing proto
ol (
f. [13℄ and [36, Se
. 7.4.3.5℄) that Party Xplays with ea
h of the other parties. The latter proto
ol provides the other parties with a
ommitment to the out
ome obtained by Party X.3. E�e
tive prevention of premature termination: In addition, when
ompiling (the passively-se
ure proto
ol to an a
tively-se
ure proto
ol) for the model that allows the adversary to
ontrol only a minority of the parties, ea
h party shares its input and random-input with allother parties using a \Veri�able Se
ret Sharing" (VSS) proto
ol (
f. [21℄ and [36, Se
. 7.5.5.1℄).Loosely speaking, a VSS proto
ol allows to share a se
ret in a way that enables ea
h parti
-ipant to verify that the share it got �ts the publi
ly posted information, whi
h in
ludes (ontop of the
ommitments posted in Steps 1 and 2)
ommitments to all shares. The use of VSSguarantees that if Party X prematurely suspends the exe
ution, then the honest parties
antogether re
onstru
t all Party X's se
rets and
arry on the exe
ution while playing its role.This step e�e
tively prevents premature termination, and is not needed in a model that doesnot
onsider premature termination a brea
h of se
urity.4. Step-by-step emulation of the original proto
ol: After all the foregoing steps were
ompleted,we turn to the main step in whi
h the new proto
ol emulates the original one. In ea
h step,ea
h party augments the message determined by the original proto
ol with a zero-knowledgeproof that asserts that the message was indeed
omputed
orre
tly. Re
all that the next17

message (as determined by the original proto
ol) is a fun
tion of the sender's own input,its random-input, and the messages it has re
eived so far (where the latter are known toeverybody be
ause they were sent over a broad
ast
hannel). Furthermore, the sender'sinput is determined by its
ommitment (as sent in Step 1), and its random-input is similarlydetermined (in Step 2). Thus, the next message (as determined by the original proto
ol) is afun
tion of publi
ly known strings (i.e., the said
ommitments as well as the other messagessent over the broad
ast
hannel). Moreover, the assertion that the next message was indeed
omputed
orre
tly is an NP-assertion, and the sender knows a
orresponding NP-witness (i.e.,its own input and random-input as well as the
orresponding de
ommitment information).Thus, the sender
an prove in zero-knowledge (to ea
h of the other parties) that the messageit is sending was indeed
omputed a

ording to the original proto
ol.The above
ompilation was �rst outlined in [42, 43℄. A detailed des
ription and full proofs appearin [34, 36℄.A se
ure
oin-tossing proto
ol. Using a
ommitment s
heme, we outline a se
ure (ordinaryas opposed to augmented)
oin-tossing proto
ol, whi
h originates in [13℄.Step C1: Party 1 uniformly sele
ts � 2 f0; 1g and sends Party 2 a
ommitment, denoted
, to �.Step C2: Party 2 uniformly sele
ts �0 2 f0; 1g, and sends �0 to Party 1.Step C3: Party 1 outputs the value ���0, and sends � along with the de
ommitment information,denoted d, to Party 2.Step C4: Party 2
he
ks whether or not (�; d) �t the
ommitment
 it has obtained in Step 1. Itoutputs � � �0 if the
he
k is satis�ed and halts with output ? otherwise (indi
ating thatParty 1 has essentially aborted the proto
ol prematurely).Outputs: Party 1 always outputs b def= � � �0, whereas Party 2 either outputs b or ?.Intuitively, Steps C1{C2 may be viewed as \tossing a
oin into the well". At this point (i.e., afterStep C2) the value of the
oin is determined (essentially as a random value), but only one party(i.e., Party 1) \
an see" (i.e., knows) this value. Clearly, if both parties are honest then they bothoutput the same uniformly
hosen bit, re
overed in Steps C3 and C4, respe
tively. Intuitively, ea
hparty
an guarantee that the out
ome is uniformly distributed, and Party 1
an
ause prematuretermination by improper exe
ution of Step 3. Formally, we have to show how the e�e
t of everyreal-model adversary
an be simulated by an adequate ideal-model adversary (whi
h is allowedpremature termination). This is done in [36, Se
. 7.4.3.1℄.5 Se
urity of Con
urrent Exe
utionsThe de�nitions and results surveyed so far refer to a setting in whi
h, at ea
h time, only a singleexe
ution of a
ryptographi
 proto
ol takes pla
e (or only one exe
ution may be
ontrolled bythe adversary). In
ontrast, in many distributed settings (e.g., the Internet), many exe
utionsare taking pla
e
on
urrently (and several of them may be
ontrolled by the same adversary).Furthermore, it is undesirable (and sometimes even impossible) to
oordinate these exe
utions (soto e�e
tively enfor
e a single-exe
ution setting). Still, the de�nitions and results obtained in the18

single-exe
ution setting serve as a good starting point for the study of se
urity in the setting of
on
urrent exe
utions.As in the
ase of stand-alone se
urity, the notion of zero-knowledge provides a good test
asefor the study of
on
urrent se
urity. Indeed, in order to demonstrate the se
urity issues arisingfrom
on
urrent exe
ution of proto
ols, we
onsider the
on
urrent exe
ution of zero-knowledgeproto
ols. Spe
i�
ally, we
onsider a party P holding a random (or rather pseudorandom) fun
tionf : f0; 1g2n!f0; 1gn, and willing to parti
ipate in the following proto
ol (with respe
t to se
urityparameter n).14 The other party,
alled A for adversary, is supposed to send P a binary valuev 2 f1; 2g spe
ifying whi
h of the following
ases to exe
ute:For v = 1: Party P uniformly sele
ts � 2 f0; 1gn, and sends it to A, whi
h is supposed to replywith a pair of n-bit long strings, denoted (�;
). Party P
he
ks whether or not f(��) =
.In
ase equality holds, P sends A some se
ret information (e.g., the se
ret-key
orrespondingto P 's publi
-key).For v = 2: Party A is supposed to uniformly sele
t � 2 f0; 1gn, and sends it to P , whi
h sele
tsuniformly � 2 f0; 1gn, and replies with the pair (�; f(��)).Observe that P 's strategy (in ea
h
ase) is zero-knowledge (even w.r.t auxiliary-inputs): Intuitively,if the adversary A
hooses the
ase v = 1, then it is infeasible for A to guess a passing pair (�;
)with respe
t to a random � sele
ted by P . Thus, ex
ept with negligible probability (when it mayget se
ret information), A does not obtain anything from the intera
tion. On the other hand, ifthe adversary A
hooses the
ase v = 2, then it obtains a pair that is indistinguishable from auniformly sele
ted pair of n-bit long strings (be
ause � is sele
ted uniformly by P , and for any �the value f(��) looks random to A). In
ontrast, if the adversary A
an
ondu
t two
on
urrentexe
utions with P , then it may learn the desired se
ret information: In one session, A sends v = 1while in the other it sends v = 2. Upon re
eiving P 's message, denoted �, in the �rst session, Asends it as its own message in the se
ond session, obtaining a pair (�; f(��)) from P 's exe
utionof the se
ond session. Now, A sends the pair (�; f(��)) to the �rst session of P , this pair passesthe
he
k, and so A obtains the desired se
ret.An atta
k of the foregoing type is
alled a relay atta
k: During su
h an atta
k the adversaryjust invokes two exe
utions of the proto
ol and relays messages between them (without any modi�-
ation). However, in general, the adversary in a
on
urrent setting is not restri
ted to relay atta
ks.For example,
onsider a minor modi�
ation to the above proto
ol so that, in
ase v = 2, partyP replies with (say) the pair (�; f(��)), where � = � � 1j�j, rather than with (�; f(��)). Themodi�ed strategy P is zero-knowledge and it also withstands a relay atta
k, but it
an be \abused"easily by a more general
on
urrent atta
k.The foregoing example is merely the tip of an i
eberg, but it suÆ
es for introdu
ing the mainlesson: an adversary atta
king several
on
urrent exe
utions of the same proto
ol may be able to
ause more damage than by atta
king a single exe
ution (or several sequential exe
utions) of thesame proto
ol. This leads to the need to de�ne resilien
e to su
h atta
ks (i.e., de�ne se
urity of
on
urrent exe
utions), and provide proto
ols that satisfy the
orresponding de�nition of se
urity.5.1 De�nitional treatmentOne may say that a proto
ol is
on
urrently se
ure if whatever the adversary may obtain by in-voking and
ontrolling parties in real
on
urrent exe
utions of the proto
ol is also obtainable by a14In fa
t, assuming that P shares a pseudorandom fun
tion f with his friends, the foregoing proto
ol is an abstra
-tion of a natural \mutual identi�
ation" proto
ol. (The example is adapted from [39℄.)19

orresponding adversary that
ontrols
orresponding parties making
on
urrent fun
tionality
allsto a trusted party (in a
orresponding ideal model).15 More generally, one may
onsider
on
urrentexe
utions of many sessions of several proto
ols, and say that a set of proto
ols is
on
urrently se
ureif whatever the adversary may obtain by invoking and
ontrolling su
h real
on
urrent exe
utions isalso obtainable by a
orresponding adversary that invokes and
ontrols
on
urrent
alls to a trustedparty (in a
orresponding ideal model). Consequently, a proto
ol is said to be se
ure with respe
tto
on
urrent
ompositions if adding this proto
ol to any set of
on
urrently se
ure proto
ols yieldsa set of
on
urrently se
ure proto
ols.A mu
h more appealing approa
h was suggested by Canetti [16℄. Loosely speaking, Canettisuggests to
onsider a proto
ol to be se
ure (
alled environmentally-se
ure (or Universally Com-posable se
ure [16℄)) only if it remains se
ure when exe
uted within any (feasible) environment.Following the simulation paradigm, we get the following de�nition:De�nition 2 (environmentally-se
ure proto
ols [16℄ { a rough sket
h): Let f be an m-ary fun
-tionality and � be an m-party proto
ol, and
onsider the following real and ideal models.In the real model the adversary
ontrols some of the parties in an exe
ution of � and all parties
an
ommuni
ate with an arbitrary probabilisti
 polynomial-time pro
ess, whi
h is
alled anenvironment (and possibly represents other exe
utions of various proto
ols that are taking pla
e
on
urrently). Honest parties only
ommuni
ate with the environment before the exe
utionstarts and when it ends; they merely obtain their inputs from the environment and pass theiroutputs to it. In
ontrast, dishonest parties may
ommuni
ate freely with the environment,
on
urrently to the entire exe
ution of �.In the ideal model the (simulating) adversary
ontrols the same parties, whi
h use an ideal (trusted-party) that behaves a

ording to the fun
tionality f (as in Se
tion 2.2). All parties
an
om-muni
ate with the (same) environment (as in the real model). Indeed, the dishonest partiesmay
ommuni
ate extensively with the environment before and after their single
ommuni
a-tion with the trusted party.We say that � is an environmentally-se
ure proto
ol for
omputing f if for every probabilisti
 polynomial-time adversary A in the real model there exists a probabilisti
 polynomial-time adversary A0
on-trolling the same parties in the ideal model su
h that no probabilisti
 polynomial-time environment
an distinguish the
ase in whi
h it is a

essed by the parties in the real exe
ution from the
ase itis a

essed by parties in the ideal model.As hinted above, the environment may a

ount for other exe
utions of various proto
ols that aretaking pla
e
on
urrently to the main exe
ution being
onsidered. The de�nition requires that su
henvironments
annot distinguish the real exe
ution from an ideal one. This means that anythingthat the real adversary (i.e., operating in the real model) gains from the exe
ution and someenvironment,
an be also obtained by an adversary operating in the ideal model and having a

essto the same environment. Indeed, Canetti proves that environmentally-se
ure proto
ols are se
urewith respe
t to
on
urrent
ompositions [16℄.15One spe
i�

on
ern (in su
h a
on
urrent setting) is the ability of the adversary to \non-trivially
orrelatethe outputs" of
on
urrent exe
utions. This ability,
alled malleability, was �rst investigated by Dolev, Dwork andNaor [26℄. We
omment that providing a general de�nition of what \
orrelated outputs" means seems very
hallenging(if at all possible). Indeed the fo
us of [26℄ is on several important spe
ial
ases su
h as en
ryption and
ommitments
hemes. 20

5.2 Some of the known resultsIt is known is that environmentally-se
ure proto
ols for any fun
tionality
an be
onstru
ted forsettings in whi
h more than two-thirds of the a
tive parties are honest [16℄. This holds un
ondition-ally for the private
hannel model, and under standard assumptions (e.g., allowing the
onstru
tionof publi
-key en
ryption s
hemes) for the standard model (i.e., without private
hannel). The im-mediate
onsequen
e of this result is that general environmentally-se
ure multi-party
omputationis possible, provided that more than two-thirds of the parties are honest.In
ontrast, general environmentally-se
ure two-party
omputation is not possible (in the stan-dard sense).16 Still, one
an salvage general environmentally-se
ure two-party
omputation in thefollowing reasonable model: Consider a network that
ontains servers that are willing to parti
ipate(as \helpers", possibly for a payment) in
omputations initiated by a set of (two or more) users.Now, suppose that two users wishing to
ondu
t a se
ure
omputation
an agree on a set of serversso that ea
h user believes that more than two-thirds of the servers (in this set) are honest. Then,with the a
tive parti
ipation of this set of servers, the two users
an
ompute any fun
tionality inan environmentally-se
ure manner.Other reasonable models where general environmentally-se
ure two-party
omputation is possi-ble in
lude the
ommon random-string (CRS) model [19℄ and variants of the publi
-key infrastru
-ture (PKI) model [3℄. In the CRS model, all parties have a

ess to a universal random string (oflength related to the se
urity parameter). We stress that the entity trusted to post this universalrandom string is not required to take part in any exe
ution of any proto
ol, and that all exe
utionsof all proto
ols may use the same universal random string. The PKI models
onsidered in [3℄require that ea
h party deposits a publi
-key with a trusted
enter, while proving knowledge of a
orresponding private-key. This proof may be
ondu
ted in zero-knowledge during spe
ial epo
hsin whi
h no other a
tivity takes pla
e.A
knowledgmentsI wish to than Ron Rothblum for dis
overing an error in the presentation provided in [36, Se
. 7.3.2℄.

16Of
ourse, some spe
i�
 two-party
omputations do have environmentally-se
ure proto
ols. See [16℄ for severalimportant examples (e.g., key ex
hange). 21

Referen
es[1℄ Y. Aumann and Y. Lindell. Se
urity Against Covert Adversaries: EÆ
ient Proto
ols forRealisti
 Adversaries. Journal of Cryptology, Vol. 23, N. 2, April 2010.[2℄ B. Barak and A. Sahai. How To Play Almost Any Mental Game Over The Net { Con
urrentComposition via Super-Polynomial Simulation. In 46th IEEE Symposium on Foundations ofComputer S
ien
e, pages 543{552, 2005.[3℄ B. Barak, R. Canetti and J.B. Nielsen. Universally
omposable proto
ols with relaxed set-upassumptions. In 45th IEEE Symposium on Foundations of Computer S
ien
e, pages 186{195,2004.[4℄ D. Beaver. Foundations of Se
ure Intera
tive Computing. In Crypto91, Springer-Verlag Le
tureNotes in Computer S
ien
e (Vol. 576), pages 377{391.[5℄ D. Beaver. Se
ure Multi-Party Proto
ols and Zero-Knowledge Proof Systems Tolerating aFaulty Minority. Journal of Cryptology, Vol. 4, pages 75{122, 1991.[6℄ D. Beaver, S. Mi
ali and P. Rogaway. The Round Complexity of Se
ure Proto
ols. In 22ndACM Symposium on the Theory of Computing, pages 503{513, 1990. See details in [62℄.[7℄ M. Bellare. Ele
troni
 Commer
e and Ele
troni
 Payments. Webpage of a
ourse.http://www-
se.u
sd.edu/users/mihir/
se291-00/[8℄ M. Bellare, R. Canetti and H. Kraw
zyk. A Modular Approa
h to the Design and Analysisof Authenti
ation and Key-Ex
hange Proto
ols. In 30th ACM Symposium on the Theory ofComputing, pages 419{428, 1998.[9℄ M. Bellare and O. Goldrei
h. On De�ning Proofs of Knowledge. In Crypto92, Springer-VerlagLe
ture Notes in Computer S
ien
e (Vol. 740), pages 390{420.[10℄ M. Ben-Or, R. Canetti and O. Goldrei
h. Asyn
hronous Se
ure Computation. In 25th ACMSymposium on the Theory of Computing, pages 52{61, 1993. See details in [14℄.[11℄ M. Ben-Or, S. Goldwasser and A. Wigderson. Completeness Theorems for Non-Cryptographi
Fault-Tolerant Distributed Computation. In 20th ACM Symposium on the Theory of Comput-ing, pages 1{10, 1988.[12℄ M. Ben-Or, B. Kelmer and T. Rabin. Asyn
hronous Se
ure Computations with OptimalResilien
e. In 13th ACM Symposium on Prin
iples of Distributed Computing, pages 183{192,1994.[13℄ M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February 1982.See also SIGACT News, Vol. 15, No. 1, 1983.[14℄ R. Canetti. Studies in Se
ure Multi-Party Computation and Appli
ations. Ph.D. Thesis,Department of Computer S
ien
e, Weizmann Institute of S
ien
e, Rehovot, Israel, June 1995.Available from http://www.wisdom.weizmann.a
.il/�oded/PS/ran-phd.ps.[15℄ R. Canetti. Se
urity and Composition of Multi-party Cryptographi
 Proto
ols. Journal ofCryptology, Vol. 13, No. 1, pages 143{202, 2000.22

[16℄ R. Canetti. Universally Composable Se
urity: A New Paradigm for Cryptographi
 Proto
ols.In 42nd IEEE Symposium on Foundations of Computer S
ien
e, pages 136{145, 2001. Fullversion (with di�erent title) is available from Cryptology ePrint Ar
hive, Report 2000/067.[17℄ R. Canetti, U. Feige, O. Goldrei
h and M. Naor. Adaptively Se
ure Multi-party Computation.In 28th ACM Symposium on the Theory of Computing, pages 639{648, 1996.[18℄ R. Canetti and A. Herzberg. Maintaining Se
urity in the Presen
e of Transient Faults. InCrypto94, Springer-Verlag Le
ture Notes in Computer S
ien
e (Vol. 839), pages 425{439.[19℄ R. Canetti, Y. Lindell, R. Ostrovsky and A. Sahai. Universally Composable Two-Party andMulti-Party Se
ure Computation. In 34th ACM Symposium on the Theory of Computing,pages 494{503, 2002.[20℄ D. Chaum, C. Cr�epeau and I. Damg�ard. Multi-party un
onditionally Se
ure Proto
ols. In20th ACM Symposium on the Theory of Computing, pages 11{19, 1988.[21℄ B. Chor, S. Goldwasser, S. Mi
ali and B. Awerbu
h. Veri�able Se
ret Sharing and A
hievingSimultaneity in the Presen
e of Faults. In 26th IEEE Symposium on Foundations of ComputerS
ien
e, pages 383{395, 1985.[22℄ B. Chor and E. Kushilevitz. A Zero-One Law for Boolean Priva
y. SIAM J. on Dis
. Math.,Vol. 4, pages 36{47, 1991.[23℄ B. Chor and M.O. Rabin. A
hieving independen
e in logarithmi
 number of rounds. In 6thACM Symposium on Prin
iples of Distributed Computing, pages 260{268, 1987.[24℄ R. Cleve. Limits on the Se
urity of Coin Flips when Half the Pro
essors are Faulty. In 18thACM Symposium on the Theory of Computing, pages 364{369, 1986.[25℄ I. Damgard and J. B. Nielsen. Improved non-
ommitting en
ryption s
hemes based on general
omplexity assumption. In Crypto00, Springer-Verlag Le
ture Notes in Computer S
ien
e(Vol. 1880), pages 432{450.[26℄ D. Dolev, C. Dwork, and M. Naor. Non-Malleable Cryptography. SIAM Journal on Computing,Vol. 30, No. 2, pages 391{437, 2000. Preliminary version in 23rd STOC, 1991.[27℄ D. Dolev, C. Dwork, O. Waarts, and M. Yung. Perfe
tly se
ure message transmission. Journalof the ACM, Vol. 40 (1), pages 17{47, 1993.[28℄ D. Dolev and H.R. Strong. Authenti
ated Algorithms for Byzantine Agreement. SIAM Journalon Computing, Vol. 12, pages 656{666, 1983.[29℄ C. Dwork, M. Naor, and A. Sahai. Con
urrent Zero-Knowledge. In 30th ACM Symposium onthe Theory of Computing, pages 409{418, 1998.[30℄ S. Even, O. Goldrei
h, and A. Lempel. A Randomized Proto
ol for Signing Contra
ts. Com-muni
ations of the ACM, Vol. 28, No. 6, 1985, pages 637{647.[31℄ P.S. Gemmell. An Introdu
tion to Threshold Cryptography. In CryptoBytes, RSA Lab., Vol. 2,No. 3, 1997. 23

[32℄ R. Gennaro, M. Rabin and T. Rabin. Simpli�ed VSS and Fast-tra
k Multiparty Computationswith Appli
ations to Threshold Cryptography. In 17th ACM Symposium on Prin
iples ofDistributed Computing, pages 101{112, 1998.[33℄ O. Goldrei
h. A Uniform Complexity Treatment of En
ryption and Zero-Knowledge. Journalof Cryptology, Vol. 6, No. 1, pages 21{53, 1993.[34℄ O. Goldrei
h. Se
ure Multi-Party Computation. Working draft, June 1998. Available fromhttp://www.wisdom.weizmann.a
.il/�oded/pp.html.[35℄ O. Goldrei
h. Foundations of Cryptography { Basi
 Tools. Cambridge University Press, 2001.[36℄ O. Goldrei
h. Foundations of Cryptography { Basi
 Appli
ations. Cambridge University Press,2004.[37℄ O. Goldrei
h. Foundations of Cryptography { A Primer. Foundations and Trends in Theoreti
alComputer S
ien
e, Volume 1, Issue 1, 2005.[38℄ O. Goldrei
h. Zero-Knowledge Twenty Years After its Invention. Quaderni di Matemati
a,Vol. 13 (Complexity of Computations and Proofs, ed. J. Kraji
ek), pages 249{304, 2004. Seealso ECCC, TR02-063, 2002.[39℄ O. Goldrei
h and H. Kraw
zyk. On the Composition of Zero-Knowledge Proof Systems. SIAMJournal on Computing, Vol. 25, No. 1, February 1996, pages 169{192.[40℄ O. Goldrei
h and L.A. Levin. Hard-
ore Predi
ates for any One-Way Fun
tion. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.[41℄ O. Goldrei
h and Y. Lindell. Session-Key Generation using Human Passwords Only. Journalof Cryptology, Vol. 19, No. 3, pages 241{340, 2006.[42℄ O. Goldrei
h, S. Mi
ali and A. Wigderson. Proofs that Yield Nothing but their Validity or AllLanguages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38, No. 1,pages 691{729, 1991. Preliminary version in 27th FOCS, 1986.[43℄ O. Goldrei
h, S. Mi
ali and A. Wigderson. How to Play any Mental Game { A CompletenessTheorem for Proto
ols with Honest Majority. In 19th ACM Symposium on the Theory ofComputing, pages 218{229, 1987. See details in [34℄.[44℄ O. Goldrei
h and R. Vainish. How to Solve any Proto
ol Problem { An EÆ
ien
y Improvement.In Crypto87, Springer Verlag, Le
ture Notes in Computer S
ien
e (Vol. 293), pages 73{86.[45℄ S. Goldwasser and L.A. Levin. Fair Computation of General Fun
tions in Presen
e of ImmoralMajority. In Crypto90, Springer-Verlag Le
ture Notes in Computer S
ien
e (Vol. 537), pages77{93.[46℄ S. Goldwasser and S. Mi
ali. Probabilisti
 En
ryption. Journal of Computer and SystemS
ien
e, Vol. 28, No. 2, pages 270{299, 1984. Preliminary version in 14th STOC, 1982.[47℄ S. Goldwasser, S. Mi
ali and C. Ra
ko�. The Knowledge Complexity of Intera
tive ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary version in17th STOC, 1985. 24

[48℄ S.D. Gordon, C. Hazay, J. Katz, and Y. Lindell. Complete Fairness in Se
ure Two-PartyComputation. In 40th STOC, pages 413{422, 2008.[49℄ S.D. Gordon and J. Katz. Partial Fairness in Se
ure Two-Party Computation. To appear inEuroCrypt10, 2010.[50℄ R. Greenstadt. Ele
troni
 Voting Bibliography, 2000.http://theory.l
s.mit.edu/�
is/voting/greenstadt-voting-bibliography.html.[51℄ M. Hirt and U. Maurer. Complete
hara
terization of adversaries tolerable in se
ure multi-party
omputation. Journal of Cryptology, Vol. 13, No. 1, pages 31{60, 2000.[52℄ J. Katz. On A
hieving the "Best of Both Worlds" in Se
ure Multiparty Computation. In 39thSTOC, pages 11{20, 2007.[53℄ Y. Lindell. Parallel Coin-Tossing and Constant-Round Se
ure Two-Party Computation. InCrypto01, Springer Le
ture Notes in Computer S
ien
e (Vol. 2139), pages 171{189, 2001.[54℄ Y. Lindell, A. Lysyanskaya and T. Rabin. On the Composition of Authenti
ated ByzantineAgreement. In 34th ACM Symposium on the Theory of Computing, pages 514{523, 2002.[55℄ Y. Lindell and B. Pinkas. A Proof of Se
urity of Yao's Proto
ol for Se
ure Two-Party Com-putation. Journal of Cryptology, Vol. 22, No. 2, pages 161{188, 2009.[56℄ S. Mi
ali and P. Rogaway. Se
ure Computation. In Crypto91, Springer-Verlag Le
ture Notesin Computer S
ien
e (Vol. 576), pages 392{404. Ellaborated working draft available from theauthors.[57℄ M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4,pages 151{158, 1991.[58℄ M. Naor and K. Nissim. Communi
ation preserving proto
ols for se
ure fun
tion evaluation.In 33rd ACM Symposium on the Theory of Computing, 2001, pages 590{599.[59℄ R. Ostrovsky and M. Yung. How to Withstand Mobile Virus Atta
ks. In 10th ACM Symposiumon Prin
iples of Distributed Computing, pages 51{59, 1991.[60℄ M.O. Rabin. How to Ex
hange Se
rets by Oblivious Transfer. Te
h. Memo TR-81, AikenComputation Laboratory, Harvard U., 1981.[61℄ T. Rabin and M. Ben-Or. Veri�able Se
ret Sharing and Multi-party Proto
ols with HonestMajority. In 21st ACM Symposium on the Theory of Computing, pages 73{85, 1989.[62℄ P. Rogaway. The Round Complexity of Se
ure Proto
ols. MIT Ph.D. Thesis, June 1991.Available from http://www.
s.u
davis.edu/�rogaway/papers.[63℄ A. Shamir. How to Share a Se
ret. Communi
ations of the ACM, Vol. 22, Nov. 1979, pages612{613.[64℄ A.C. Yao. How to Generate and Ex
hange Se
rets. In 27th IEEE Symposium on Foundationsof Computer S
ien
e, pages 162{167, 1986. 25

