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1 IntroductionThe characterization of NP in terms of Probabilistically Checkable Proofs (PCP systems) [AS,ALMSS], hereafter referred to as the PCP Characterization Theorem, is one of the more fundamentalachievements of complexity theory. Loosely speaking, this theorem states that membership inany NP-language can be veri�ed probabilistically by a polynomial-time machine which inspectsa constant number of bits (in random locations) in a \redundant" NP-witness. Unfortunately,the current proof of the PCP Characterization Theorem is very complicated and, consequently, ithas not been assimilated into complexity theory. Clearly, changing this state of a�airs is highlydesirable.There are two things which make the current proof (of the PCP Characterization Theorem)di�cult. One source of di�culty is the complicated conceptual structure of the proof (most notablythe acclaimed `proof composition' paradigm). Yet, with time, this part seems easier to understandand explain than when it was �rst introduced. Furthermore, the Proof Composition Paradigmturned out to be very useful and played a central role in subsequent works in this area (cf., [BGLR,BS, BGS, H96]). The other source of di�culty is the technically involved analysis of low-degreetests. Here we refer to the di�culty of obtaining strong results regarding low-degree tests; namely,results of the type obtained and used in [AS] and [ALMSS].In this paper, we eliminate the latter di�culty. Although we do not get rid of low-degreetests altogether, using our results it is now possible to prove the PCP Characterization Theoremusing only the weaker and simpler analysis of low-degree tests presented in [GLRSW, RS92, RS96].In other words, we replace the complicated algebraic analysis of low-degree tests presented in[AS, ALMSS] by a combinatorial lemma (which does not refer to low-degree tests or even topolynomials). We believe that this combinatorial lemma is very intuitive and �nd its proof muchsimpler than the algebraic analysis of [AS, ALMSS]. (However, simplicity may be a matter oftaste.)Loosely speaking, our combinatorial lemma provides a way of generating sequences of pairwiseindependent random points so that any assignment of values to the sequences must induce consistentvalues on the individual elements. This is obtained by a \consistency test" which samples a constantnumber of sequences. We stress that the length of the sequences as well as the domain from whichthe elements are chosen are parameters, which may grow while the number of samples remains�xed.1.1 Two Combinatorial Consistency LemmasThe following problem arises frequently when trying to design PCP systems, and in particular whenproving the PCP Characterization Theorem. For some sets S and V , one has a procedure, whichgiven (bounded) oracle access to any function f : S 7! V , tests if f has some desired property.Furthermore, in case f is su�ciently bad (i.e., far from any function having the property), the testdetects this with \noticeable" probability. For example, the function f may be the proof-oraclein a basic PCP system which we want to utilize (as an ingredient in the composition of PCPsystems). The problem is that we want to increase the detection probability (equivalently, reducethe error probability) without increasing the number of queries, although we are willing to allowmore informative queries. For example, we are willing to allow queries in which one supplies asequence of elements in S and expects to obtain the corresponding sequence of values of f on theseelements. The problem is that the sequences of values obtained may not be consistent with anyfunction f : S 7!V .We can now phrase a simple problem of testing consistency. One is given access to a function1



F : S` 7! V ` and is asked whether there exists a function f : S 7! V so that for most sequences(x1; :::; x`) 2S`, F (x1; :::; x`) = (f(x1); :::; f(x`)) :Loosely speaking, we prove that querying F on a constant number of related random sequencessu�ces for testing a relaxion of the above. That is,Lemma 1.1 (combinatorial consistency { simple case): For every � > 0, there exists a constantc = poly(1=�) and a probabilistic oracle machine, T , which on input (`; jSj) runs for poly(` � log jSj)-time and makes at most c queries to an oracle F : S` 7!V `, such that� If there exist a function f : S 7! V such that F (x1; :::; x`) = (f(x1); :::; f(x`)), for all(x1; :::; x`) 2 S`, then T always accepts when given access to oracle F .� If T accepts with probability at least 12 , when given access to oracle F , then there exist afunction f : S 7!V such that the sequences F (x1; :::; x`) and (f(x1); :::; f(x`)) agree on at least`�p` positions, for at least a 1� � fraction of all possible (x1; :::; x`) 2 S`.Speci�cally, the test examines the value of the function F on random pairs of sequences ((r1; :::; r`); (s1; :::; s`)),where ri = si for p` of the i's, and checks that the corresponding values (on these ri's and si's)are indeed equal. For details see Section 4.Unfortunately, this relatively simple consistency lemma does not su�ce for the PCP appli-cations. The reason being that, in that application, error reduction (see above) is done viarandomness-e�cient procedures such as pairwise-independent sequences (since we cannot a�ordto utilize ` � log2 jSj random bits as above). Consequently, the function F is not de�ned on theentire set S` but rather on a very sparse subset, denoted S. Thus, one is given access to a functionF : S 7! V ` and is asked whether there exists a function f : S 7! V so that for most sequences(x1; :::; x`) 2S, the sequences F (x1; :::; x`) and (f(x1); :::; f(x`)) agree on most (continious) subse-quences of length p`. The main result of this paper isLemma 1.2 (combinatorial consistency { sparse case): For every two of integers s; ` > 1, thereexists a set Ss;` � [s]`, where [s] def= f1; :::; sg, so that the following holds:1. For every � > 0, there exists a constant c = poly(1=�) and a probabilistic oracle machine, T ,which on input (`; s) runs for poly(` � log s)-time and makes at most c queries to an oracleF : Ss;` 7!V `, such that� If there exist a function f : [s] 7! V such that F (x1; :::; x`) = (f(x1); :::; f(x`)), for all(x1; :::; x`) 2 Ss;`, then T always accepts when given access to oracle F .� If T accepts with probability at least 12, when given access to oracle F , then there exist afunction f : [s] 7!V such that for at least a 1� � fraction of all possible (x1; :::; x`) 2 Ss;`the sequences F (x1; :::; x`) and (f(x1); :::; f(x`)) agree on at least a 1� � fraction of thesubsequences of length p`.2. The individual elements in a uniformly selected sequence in Ss;` are uniformly distributed in[s] and are pairwise independent. Furthermore, the set Ss;` has cardinality poly(s) and canbe constructed in time poly(s; `). 2



Speci�cally, the test examines the value of the function F on related random pairs of sequences((r1; :::; r`); (s1; :::; s`)) 2 Ss;`. These sequences are viewed as p` � p` matrices, and, looselyspeaking, they are chosen to be random extensions of the same random row (or column). Fordetails see Section 2.In particular, the presentation in Section 2 axiomatizes properties of the set of sequences, Ss;`,for which the above tester works. Thus, we provide a \parallel repetition theorem" which holds forrandom but non-independent instances (rather than for independent random instances as in othersuch results). However, our \parallel repetition theorem" applies only to the case where a singlequery is asked in the basic system (rather than a pair of related queries as in other results). Due tothis limitation, we could not apply our \parallel repetition theorem" directly to the error-reductionof generic proof systems. Instead, as explained below, we applied our \parallel repetition theorem"to derive a relatively strong low-degree test from a weaker low-degree test.We believe that the combinatorial consistency lemma of Section 2 may play a role in subsequentdevelopments in the area.1.2 Application to the PCP Characterization TheoremThe currently known proof of the PCP Characterization Theorem [ALMSS] composes proof systemsin which the veri�er makes a constant number of multi-valued queries. Such veri�ers are constructedby \parallelization" of simpler veri�ers, and thus the problem of \consistency" arises. This problemis solved by use of low-degree multi-variant polynomials, which in turn requires \high-quality" low-degree testers. Speci�cally, given a function f : GF(p)n 7! GF(p), where p is prime, one needs totest if f is close to some low-degree polynomial (in n variables over the �nite �eld GF(p)). It isrequired that any function f which disagrees with every d-degree polynomial on at least (say) 1%of the inputs be rejected with (say) probability 99%. The test is allowed to use auxiliary prooforacles (in addition to f) but it may only make a constant number of queries and the answers musthave length bounded by poly(n; d; logp). Using a technical lemma due to Arora and Safra [AS],Arora et. al. [ALMSS] proved such a result.1 The full proof is quite complex and is algebraic innature. A weaker result due to Gemmel et. al. [GLRSW] (see [RS96]) asserts the existence of ad-degree test which, using d+2 queries, rejects such bad functions with probability at least 
(1=d2).Their proof is much simpler. Combining the result of Gemmel et. al. [GLRSW, RS96] with ourcombinatorial consistency lemma (i.e., Lemma 1.2), we obtain an alternative proof of the followingresultLemma 1.3 (low-degree tester): For every � > 0, there exists a constant c and a probabilisticoracle machine, T , which on input n; p; d runs for poly(n; d; logp)-time and makes at most c queriesto both f and to an auxiliary oracle F , such that� If f is a degree-d polynomial, then there exist a function F so that T always accepts.� If T accepts with probability at least 12 , when given access to the oracles f and F , then fagrees with some degree-d polynomial on at least a 1� 
(1=d2) fraction of the domain.2We stress that in contrast to [ALMSS] our proof of the above lemma is mainly combinatorial. Ouronly reference to algebra is in relying on the result of Gemmel et. al. [GLRSW, RS96] (which is1 An improved analysis was later obtained by Friedl and Sudan [FS].2 Actually, [ALMSS] only prove agreement on an (arbitrary large) constant fraction of the domain.3



weaker and has a simpler proof than that of [ALMSS]). Our tester works by performing many (pair-wise independent) instances of the [GLRSW] test in parallel, and by guaranteeing the consistencyof the answers obtained in these tests via our combinatorial consistency test (i.e., of Lemma 1.2).In contrast, prior to our work, the only way to guarantee the consistency of these answers resultedin the need to perform a low-degree test of the type asserted in Lemma 1.3 (and using [ALMSS],which was the only alternative known, this meant losing the advantage of utilizing a low-degreetests with a simpler algebraic analysis).1.3 Related workWe refrain from an attempt to provide an account of the developments which have culminated inthe PCP Characterization Theorem. Works which should certainly be mentioned include [GMR,BGKW, FRS, LFKN, S90, BFL, BFLS, FGLSS, AS, ALMSS] as well as [BF, BLR, LS, RS92]. Fordetailed accounts see surveys by Babai [B94] and Goldreich [G96].Hastad's recent work [H96] contains a combinatorial consistency lemma which is related to ourLemma 1.1 (i.e., the \simple case" lemma). However, Hastad's lemma refers to the case where thetest accepts with very low probability and so its conclusion is weaker (though harder to establish).Raz and Safra [RaSa] claim to have been inspired by our Lemma 1.2 (i.e., the \sparse case" lemma).1.4 OrganizationThe (basic) \sparse case" consistency lemma is presented in Section 2. The application to thePCP Characterization Theorem is presented in Section 3. Section 4 contains a proof of Lemma 1.1(which refers to sequences of totally independent random points).Remark: This write-up reports work completed in the Spring of 1994, and announced at theWeizmann Workshop on Randomness and Computation (January 1995).2 The Consistency Lemma (for the sparse case)In this section we present our main result; that is, a combinatorial consistency lemma which refersto sequences of bounded independence. Speci�cally, we considered k2-long sequences viewed ask-by-k matrices. To emphasize the combinatorial nature of our lemma and its proof, we adoptan abstract presentation in which the properties required from the set of matrices are explicitlystated (as axioms). We comment that the set of all k-by-k matrices over S satis�es these axioms.A more important case is given in Construction 2.3: It is based on a standard construction ofpairwise-independent sequences (i.e., the matrix is a pairwise-independent sequence of rows, whereeach row is a pairwise-independent sequence of elements).General Notation. For a positive integer k, let [k] def= f1; :::; kg. For a �nite set A, the notationa 2R A means that a is uniformly selected in A. In case A is a multiset, each element is selectedwith probability proportional to its multiplicity.2.1 The SettingLet S be some �nite set, and let k be an integer. Both S and k are parameters, yet they will beimplicit in all subsequent notations. 4



Rows and Columns. Let R be a multi-set of sequences of length k over S so that every e 2 Sappears in some sequence of R. For sake of simplicity, think of R as being a set (i.e., each sequenceappears with multiplicity 1). Similarly, let C be another set of sequences (of length k over S). Weneither assume R = C nor R 6= C. We consider matrices having rows in R and columns in C(thus, we call the members of R row-sequences, and those in C column-sequences). We denote byM a multi-set of k-by-k matrices with rows in R and columns in C. Namely,Axiom 1 For every m 2 M and i 2 [k], the ith row of m is an element of R and the ith columnof m is an element of C.For every i 2 [k] and �r 2 R, we denote by Mi(�r) the set of matrices (in M) having �r as the ithrow. Similarly, for j 2 [k] and �c 2 C, we denote by Mj(�c) the set of matrices (in M) having �cas the jth column. For every �r = (r1; :::; rk) 2 R and every �c = (c1; :::; ck) 2 C, so that rj = ci,we denote by Mji (�r; �c) the set of matrices having �r as the ith row and �c as the jth column (i.e.,Mji(�r; �c) =Mi(�r) \Mj(�c)).Shifts. We assume that R is \closed" under the shift operator. Namely,Axiom 2 For every �r = (r1; :::; rk) 2 R there exists a unique �s = (s1; :::; sk) 2 R satisfyingsi = ri�1, for every 2� i�k. We denote this right-shifted sequence by �(�r). Similarly, we assumethat there exists a unique �s = (s1; :::; sk) 2 R satisfying si = ri+1, for every 1� i�k�1. We denotethis left-shifted sequence by ��1(�r). Furthermore3, we assume that shifting each of the rows of amatrix m 2M, to the same direction, yields a matrix m0 that is also in M.We stress that we do not assume that C is \closed" under shifts (in an analogous manner). Forevery (positive) integer i, the notations �i(�r) and ��i(�r) are de�ned in the natural way.Distribution. We now turn to axioms concerning the distribution of rows and columns in auniformly chosen matrix. We assume that the rows (and columns) of a uniformly chosen matrixare uniformly distributed in R (and C, respectively).4 In addition, we assume that the rows (butnot necessarily the columns) are also pairwise independent. Speci�cally,Axiom 3 Let m be uniformly selected in M. Then,1. For every i 2 [k], the ith column of m is uniformly distributed in C.2. For every i 2 [k], the ith row of m is uniformly distributed in R.3. Furthermore, for every j 6= i and �r 2 R, conditioned that the ith row of m equals �r, the jthrow of m is uniformly distributed over R.Finally, we assume that the columns in a uniformly chosen matrix containing a speci�c row-sequenceare distributed identically to uniformly selected columns with the corresponding entry. A formalstatement is indeed in place.Axiom 4 For every i; j 2 [k] and �r = (r1; :::; rk) 2 R, the jth column in a matrix that is uniformlyselected among those having �r as its ith row (i.e., m 2R Mi(�r)), is uniformly distributed among thecolumn-sequences that have rj as their ith element.3 The extra axiom is not really necessary; see remark following the de�nition of the consistency test.4 This, in fact, implies Axiom 1. 5



Clearly, if the jth element of �r = (r1; :::; rk) di�ers from the ith element of �c = (c1; :::; ck) thenMji(�r; �c) is empty. Otherwise (i.e., rj = ci), by the above axiom, Mji(�r; �c) is not empty. Further-more, the above axiom implies that (in case rj = ci) for a uniformly chosen m 2MProb(m 2Mji (�r; �c)) = Prob(m 2Mi(�r)) � Prob(m 2Mj(�c) jm 2Mi(�r))= 1jRj � 1jCi(rj)j> 0where Ci(e) denotes the set of column-sequences having e as their ith element. (The second equalityis obtained by Axiom 4.)2.2 The TestLet � be a function assigning matrices in M (which may be a proper subset of all possible k-by-kmatrices over S) values which are k-by-k matrices over some set of values V (i.e., � :M 7! V k�k).The function � is supposed to be \consistent" (i.e., assign each element, e, of S the same value,independently of the matrix in which e appears). The purpose of the following test is to check thatthis property holds in some approximate sense.Construction 2.1 (Consistency Test):1. column test: Select a column-sequence �c uniformly in C, and i; j 2R [k]. Select two randomextensions of this column, namely m1 2R Mi(�c) and m2 2R Mj(�c), and test if the ith columnof �(m1) equals the jth column of �(m2).2. row test (analogous to the column test): Select a row-sequence �r uniformly in R, and i; j 2R[k]. Select two random extensions of this row, namely m1 2R Mi(�r) and m2 2R Mj(�r), andtest if the ith row of �(m1) equals the jth row of �(m2).3. shift test: Select a matrix m uniformly in M and an integer t 2 [k� 1]. Let m0 be the matrixobtained from m by shifting each row by t; namely, the ith row of m0 is �t(�r), where �r denotesthe ith row of m. We test if the k � t �rst columns of �(m) match the k � t last columns of�(m0).The test accepts if all three (sub-)tests succeed.Remark: Actually, it su�ces to use a seemingly weaker test in which the row-test and shift-testare combined into the following generalized row-test:Select a row-sequence �r uniformly in R, integers i; j 2R [k] and t 2R f0; 1; :::; k� 1g.Select a random extension of this row and its shift, namely m1 2R Mi(�r) and m2 2RMj(�t(�r)), and test if the (k�t)-long su�x of the ith row of �(m1) equals the (k�t)-longpre�x of the jth row of �(m2).Our main result asserts that Construction 2.1 is a \good consistency test": Not only that almostall entries in almost all matrices are assigned in a consistent manner (which would have beenobvious), but all entries in almost all rows of almost all matrices are assigned in a consistentmanner. 6



Lemma 2.2 Suppose M satis�es Axioms 1{4. Then, for every constant � > 0, there exist aconstant � > 0 so that if a function � : M 7! V k�k passes the consistency test with probability atleast 1� � then there exists a function � : S 7! V so that, with probability at least 1 � �, the valueassigned by � to a uniformly chosen matrix matches the values assigned by � to the elements of auniformly chosen row in this matrix. Namely,Probi;m(8j : �(m)i;j = �(mi;j)) � 1� �where m 2R M and i 2R [k]. The constant � does not depend on k and S. Furthermore, it ispolynomially related to �.As a corollary, we get Part (1) of Lemma 1.2. Part (2) follows from Proposition 2.4 (below).2.3 Proof of Lemma 2.2As a motivation towards the proof of Lemma 2.2, consider the following mental experiment. Letm 2M be an arbitrary matrix and e be its (i; j)th entry. First, uniformly select a random matrix,denoted m1, containing the ith row of m. Next, uniformly select a random matrix, denoted m2,containing the jth column of m1. The claim is thatm2 is uniformly distributed among the matricescontaining the element e. Thus, if � passes items (1) and (2) in the consistency test then it mustassign consistent values to almost all elements in almost all matrices. Yet, this falls short of evenproving that there exists an assignment which matches all values assigned to the elements of somerow in some matrix. Indeed, consider a function � which assigns 0 to all elements in the �rst �kcolumns of each matrix and 1's to all other elements. Clearly, � passes the row-test with probability1 and the column-test with probability greater than 1� �; yet, there is no � : S 7! V so that for arandom matrix the values assigned by � to some row match � . It is easy to see that the shift-testtakes care of this special counter-example. Furthermore, it may be telling to see what is wrong withsome naive arguments. A main issue these arguments tend to ignore is that for an \adversarial"choice of � and a candidate choice of � : S 7! V , we have no handle on the (column) location ofthe elements in a random matrix on which � disagrees with �. The shift-test plays a central rolein getting around this problem; see subsection 2.3.2 and Claim 2.2.14 (below).Recommendation: The reader may want to skip the proofs of all claims in �rst reading. Webelieve that all the claims are quite believable, and that their proofs (though slightly tedious insome cases) are quite straightforward. In contrast, we believe that the ideas underlying the proof ofthe lemma are to be found in its high level structure; namely, the de�nitions and the claims made.Notation: The following notation will be used extensively throughout the proof. For a k-by-kmatrix, m, we denote by rowi(m) the ith row of m and by colj(m) the jth column of m. Restatingthe conditions of the lemma, we have (from the hypothesis that � passes the column test)Prob�c;i;j;m1;m2(coli(�(m1))=colj(�(m2))) � 1� � (1)where �c; i; j;m1; m2 are uniformly selected in the corresponding sets (i.e., �c2C, i; j2 [k],m1 2Mi(�c)and m2 2Mj(�c)). Similarly, from the hypothesis that � passes the row test, we haveProb�r;i;j;m1;m2(rowi(�(m1)) = rowj(�(m2))) � 1� � (2)where �r 2R R, i; j 2R [k],m1 2R Mi(�r) and m2 2R Mj(�r). It will be convenient to extend the shiftnotation to matrices in the obvious manner; namely, �t(m) is de�ned as the matrix m0 satisfying7



rowi(m0) = �t(rowi(m)) for every i 2 [k]. From the hypothesis that � passes the shift-test, weobtain Probm;t(8j�k � t colj(�(m)) = colj+t(�(�t(m)))) � 1� � (3)where m 2R M and t 2R [k � 1]. Finally, denoting by entryi;j(m) the (i; j)th entry in the matrixm, we restate the conclusion of the lemma as followsProbi;m(9j so that entryi;j(�(m)) 6= �(entryi;j(m))) � � (4)where m 2R M and i 2R [k].2.3.1 Stable Rows and Columns { Part 1For each �r 2 R and �� 2 V k, we denote by p�r(��) the probability that � assigns to the row-sequence�r the value-sequence ��; namely, p�r(��) def= Probi;m(rowi(�(m)) = ��)where i 2R [k] and m 2R Mi(�r). Eq. (2) implies that for almost all row-sequences there is a\typical" sequence of values; see Claim 2.2.3 (below).De�nition 2.2.1 (consensus): The consensus of a row-sequence �r 2 R, denoted con(�r), is de�nedas the value �� for which p�r(��) is maximum. Namely, con(�r) = �� if �� is the (lexicographically �rst)value-sequence for which p�r(��) = max��fp�r(��)g.De�nition 2.2.2 (stable sequences): Let �2 def= p�. We say that the row-sequence �r is stable ifp�r(con(�r)) � 1� �2. Otherwise, we say that �r is unstable.Clearly, almost all row-sequences are stable. That is,Claim 2.2.3 All but at most an �2 fraction of the row-sequence are stable.proof: For each �xed �r we haveProbi;j;m1;m2(rowi(�(m1))=rowj(�(m2))) =X�� p�r(��)2where i; j 2R [k], m1 2R Mi(�r) and m2 2R Mj(�r). Taking the expectation over �r 2R R, and usingEq. (2), we get 1� � � Prob�r;i;j;m1;m2(rowi(�(m1))=rowj(�(m2)))= Exp�r(X�� p�r(��)2)� Exp�r(pmax�r )where pmax�r def= max��fp�r(��)g. Using Markov Inequality, we getProb�r(pmax�r �1� p�) < p�and the claim follows. 2By de�nition, almost all matrices containing a particular stable row-sequence assign this row-sequence the same sequence of values (i.e., its consensus value). We say that such matrices areconforming for this row-sequence. 8



De�nition 2.2.4 (conforming matrix): Let i 2 [k]. A matrix m 2 M is called i-conforming(or conforming for row-position i) if � assigns the ith row of m its consensus value; namely, ifrowi(�(m)) = con(rowi(m)). Otherwise, the matrix is called i-non-conforming (or non-conformingfor row-position i).Claim 2.2.5 The probability that for a uniformly chosen i 2 [k] and m 2 M, the matrix m isi-non-conforming is at most �3 def= 2�2. Furthermore, the bound holds also if we require that the ithrow of m is stable.proof: The stronger bound (on probability) equals the sum of the probabilities of the followingtwo events. The �rst event is that the ith row of the matrix is unstable; whereas the second eventis that the ith row of the matrix is stable and yet the matrix is i-non-conforming. To bound theprobability of the �rst event (by �2), we �x any i 2 [k] and combine Axiom 3 with Claim 2.2.3. Tobound the probability of the second event, we �x any stable �r and use the de�nition of a stablerow. 2Remark: Clearly, an analogous treatment can be applied to column-sequences. In the sequel, wefreely refer to the above notions and to the above claims also when discussing column-sequences.2.3.2 Stable Rows { Part 2 (Shifts)Now we consider the relation between the consensus of row-sequences and the consensus of their(short) shifts. By a short shift of the row-sequence �r, we mean any row-sequence �s = �d(�r) obtainedwith d 2 f�(k � 1); :::;+(k� 1)g. Our aim is to show that the consensus (as well as stability) isusually preserved under short shifts.De�nition 2.2.6 (very-stable row): Let �4 = p�2. We say that a row-sequence �r is very stable if itis stable, and for all but an �4 fraction of d 2 f�(k� 1); :::;+(k� 1)g, the row-sequence �s def= �d(�r)is also stable.Clearly,Claim 2.2.7 All but at most an �4 fraction of the row-sequence are very-stable.proof: By a simple counting argument. 2De�nition 2.2.8 (super-stable row): Let �5 = 3p� and �6 = 2(�4+�5). We say that a row-sequence�r is super-stable if it is very-stable, and, for every j 2 [k], the following holdsfor all but an �6 fraction of the t 2 [k], the row-sequence �s def= �t�j(�r) is stable andconj(�r) = cont(�s), where conj(�r) is the jth element of con(�r).Note that the tth element of �t�j(�r) is rt�(t�j) = rj. Thus, a row-sequence is super-stable if theconsensus value of each of its elements is preserved under almost all (short) shifts.Claim 2.2.9 All but at most an �6 fraction of the row-sequence are super-stable.9



proof: We start by proving that almost all row-sequences and almost all their shifts have approx-imately matching statistics, where the statistics vector of �r 2 R is de�ned as the k-long sequence(of functions), p1�r(�); :::; pk�r(�), so that pj�r(v) is the probability that � assigns the value v to the jthelement of the row �r. Namely, pj�r(v) def= Probi;m(entryi;j(�(m)) = v)where i 2R [k] and m 2R Mi(�r). By the de�nition of consensus, we know that for every stablerow-sequence �r 2 R, we have pj�r(conj(�r)) � 1 � �2, for every j 2 [k]. Thus if both �r and its shift�s = �t(�r) are stable and have approximately matching statistics (i.e., the corresponding (k� t)-longstatistics sub-vectors are close) then their consensus must match (i.e., the corresponding (k�t)-longsubsequences of the consensus are equal).subclaim 2.2.9.1: For all but an �5 fraction of the row-sequences �r, all but an �5 fraction of the shifts�s = �d(�r) (for d 2 [k� 1]), satisfyXv jpj�r(v)� pj+d�s (v)j < 2�5 for every j �k � d.proof of subclaim: Let pref rowi;j(m) denote the j-long pre�x of rowi(m) and su� rowi;j(m) its j-longsu�x. By the shift-test (see Eq. (3) and � = �35)Probm;i;d(pref rowi;k�d(�(m))=su� rowi;k�d(�(m0))) � 1� �35where i 2R [k], m 2R M, d 2R [k � 1] and m0 = �d(m). Using Axiom 3 (Part 2) and an averagingargument, we get that all but a �5 fraction of the �r 2 R, and all but a �5 fraction of d 2 [k � 1],Probi;m(pref rowi;k�d(�(m))=su� rowi;k�d(�(m0))) � 1� �5where i 2R [k],m 2R Mi(�r) and m0 = �d(m). We �x such a pair �r and d, thus �xing also �s = �d(�r).A matrix-pairs (m;m0) for which the equality holds contributes equally to the (appropriate (k�d)-long portion of the) the statistic vectors of the row-sequences �r and �s. The contribution of matrix-pairs for which equality does not hold, to the di�erence Pv jpj�r(v) � pj+d�s (v)j, is at most 2k�jMi(�r)jper each relevant j. The subclaim follows. 3As a corollary we getsubclaim 2.2.9.2: Let us call a row-sequence, �r, infective if for every j 2 [k] all but an 2�5 fractionof the t 2 [k] satisfy Pv jpj�r(v)� pt�s(v)j � 2�5, where �s = �t�j(�r). Then, all but a 2�5 fraction of therow-sequences are infective.proof of subclaim: The proof is obvious but yet confusing. We say that �r is �ne1 if for all but an �5fraction of the d 2 [k] and for every j � k�d, we havePv jpj�r(v)�pj+d�d(�r)(v)j � 2�5. Now, if �r is �ne1then for every j there are at most �5k positions t 2 fj+1; :::; kg so thatPv jpj�r(v)�pt�t�j(�r)(v)j > 2�5.Similarly, �r is �ne2 if for all but an �5 fraction of the d 2 [k] and for every j > d we havePv jpj�r(v) � pj�d��d(�r)(v)j � 2�5, and whenever �r is �ne2 then for every j there are at most �5kpositions t 2 f1; :::; j � 1g so that Pv jpj�r(v) � pt��j+t(�r)(v)j > 2�5. Thus, if a row-sequence �r isboth �ne1 and �ne2 then for every j 2 [k] all but a 2�1 fraction of the positions t 2 [k] satisfyPv jpj�r(v)� pt�t�j (�r)(v)j � 2�5. By subclaim 2.2.9.1, we get that all but an �5 fraction of the row-sequences are �ne1. A similar statement holds for �ne2 (since the shift-test can be rewritten asselecting m0 2R M and d 2R [k� 1] and setting m = ��d(m0)). Combining all these trivialities, thesubclaim follows. 3Clearly, a row-sequence �r that is both very-stable and infective satis�es, for every j 2 [k] and allbut at most �4 � (2k � 1) + 2�5 � k of the t 2 [k], both10



� �s def= �t�j(�r) is stable; it follows that pt�s(cont(�s)) � 1� �2 and pt�s(u) � �2 for all u 6= cont(�s).� pt�s(v) � pj�r(v)� 2�5, for every v and in particular for v = conj(�r).It follows that pt�s(conj(�r)) � 1 � �2 � 2�5 > �2, and therefore conj(�r) = cont(�s) must hold. Thus,such an �r is super-stable. Combining the lower bounds given by Claim 2.2.7 and subclaim 2.2.9.2,the current claim follows (actually, we get a better bound; i.e., �4 + 2�5). 2Summary. Before proceeding let us summarize our state of knowledge. The key de�nitionsregarding row-sequences are of stable, very-stable and super-stable row-sequences (i.e., Defs 2.2.2,2.2.6, and 2.2.8, respectively). Recall that a stable row-sequence is assigned the same value inalmost all matrices in which it appear. Furthermore, most pre�xes (resp., su�ces) of a super-stablerow-sequence are assigned the same values in almost all matrices containing these portions (as partof some row). Regarding matrices, we de�ned a matrix to be i-conforming if it assigns its ith rowthe corresponding consensus value (i.e., it conforms with the consensus of that row-sequence); cf.,De�nitions 2.2.4 and 2.2.1. We have seen that almost all row-sequences are super-stable and thatalmost all matrices are conforming for most of their rows. Actually, we will use the latter fact withrespect to columns; that is, almost all matrices are conforming for most columns (cf., Claim 2.2.5and the remark following it).2.3.3 Deriving the Conclusion of the LemmaWe are now ready to derive the conclusion of the Lemma. Loosely speaking, we claim that thefunction � , de�ned so that �(e) is the value most frequently assigned (by �) to e, satis�es Eq. (4).Actually, we use a slightly di�erent de�nition for the function � .De�nition 2.2.10 (the function �): For a column-sequence �c, we denote by coni(�c) the values thatcon(�c) assigns to the ith element in �c. We denote by Ci(e) the set of column-sequences having eas the ith component. Let qe(v) denote the probability that the consensus of a uniformly chosencolumn-sequence, containing e, assigns to e the value v. Namely,qe(v) def= Probi;�c(coni(�c)=v)where i 2R [k] and �c 2R Ci(e). We consider � : S 7! V so that �(e) def= v if qe(v) = maxufqe(u)g,with ties broken arbitrarily.Assume, on the contrary to our claim, that Eq. (4) does not hold (for this �). Namely, for auniformly chosen m 2M and i 2 [k], the following holds with probability greater that �9j so that entryi;j(�(m)) 6= �(entryi;j(m)) (5)The notion of a annoying row-sequence, de�ned below, plays a central role in our argument. Usingthe above (contradiction) hypothesis, we �rst show that many row-sequences are annoying. Next,we show that lower bounds on the number of annoying row-sequences translate to lower bounds onthe probability that a uniformly chosen matrix is non-conforming for a uniformly chosen columnposition. This yields a contradiction to Claim 2.2.5.De�nition 2.2.11 (row-annoying elements): An element rj in �r = (r1; :::; rk) 2 R, is said to beannoying for the row-sequence �r if the jth element in con(�r) di�ers from �(rj). A row-sequence �r issaid to be annoying if �r contains an element that is annoying for it.11



Using Claim 2.2.9, we getClaim 2.2.12 Suppose that Eq. (4) does not hold (for �). Then, at least a �1 def= �� �6� �2 fractionof the row-sequences are both super-stable and annoying.proof: Axiom 3 (part 2) is extensively used throughout this proof (with no explicit reference).Combining Eq. (5) and Claim 2.2.9, with probability at least � � �6 � �2 = �1, a uniformly chosenpair (m; i) 2M� [k] satis�es the following1. there exists a j so that �(entryi;j(m)) is di�erent from entryi;j(�(m));2. rowi(m) is super-stable;3. matrix m is i-conforming; i.e., entryi;j(�(m)) equals conj(rowi(m)), for every j 2 [k].Combining conditions (1) and (3), we get that e = entryi;j(m) is annoying for the ith row of m.The current claim follows. 2A key observation is that each stable row-sequence which is annoying yields many matrices whichare non-conforming for the \annoying column position" (i.e., for the column position containingthe element which annoys this row-sequence). Namely,Claim 2.2.13 Suppose that a row-sequence �r = (r1; :::; rk) is stable and that rj is annoying for �r.Then, at least a 12 � �2 fraction of the matrices, containing the row-sequence �r, are non-conformingfor column-position j.We stress that the row-sequence �r in the above claim is not necessarily very-stable (let alone super-stable).proof: Let us denote by v the value assigned to rj by the consensus of �r (i.e., v def= conj(�r)).Since rj annoys �r it follows that v is di�erent from �(rj). Consider the probability space de�nedby uniformly selecting i 2 [k] and m 2Mi(�r). Since �r is stable it follows that in almost all of thesematrices the value assigned to rj by the matrix equals v. Namely,Probi;m(entryi;j(�(m))=v)) � 1� �2 (6)where i 2R [k] and m 2R Mi(�r). By Axiom 4, the jth column of m is uniformly distributed inCi(rj), and thus we may replace �c 2R Ci(rj) by the jth column of m 2R Mi(�r). Now, using thede�nition of the function � and the accompanying notations, we getProbi;m(coni(colj(m))=v) = qrj (v) � 12 (7)where, again, i 2R [k] and m 2R Mi(�r). The inequality holds since v 6= �(rj) and by � 's de�nitionqrj (v) � qrj (�(rj)).Combining Eq. (6) and (7), we getProbi;m(entryi;j(�(m)) 6=coni(colj(m))) � 12 � �2and the claim follows. 2Another key observation is that super-stable row-sequences which are annoying have the property of\infecting" almost all their shifts with their annoying positions, and thus spreading the \annoyance"over all column positions. Namely, 12



Claim 2.2.14 Suppose that a row-sequence �r is both super-stable and annoying. In particular,suppose that the jth element of �r = (r1; :::; rk) is annoying for �r. Then, for all but at most an�6 fraction of the t 2 [k], the the row-sequence �s = �t�j(�r) is stable and its tth element (which isindeed rj) is annoying for �s.proof: Since �r is super-stable, we know that for all but an �6 fraction of the t's, conj(�r) = cont(�s)and �s is stable (as well), where �s = (s1; :::; sk) = �t�j(�r). Since rj is annoying for �r, we haveconj(�r) 6= �(rj) and cont(�s) 6= �(rj) = �(st) follows (recall rj = st). 2Combining Claims 2.2.12 and 2.2.14, we derive, for almost all positions t 2 [k], a lower bound forthe number of stable row-sequences that are annoyed by their tth element.Claim 2.2.15 Suppose that Eq. (4) does not hold (for �). Then, there exists a set T � [k] so thatjT j � (1� 2�6) � k and for every t 2 T there is a set of at least �12k � jRj stable row-sequences so thatthe tth position is annoying for each of these sequences.proof: Combining Claims 2.2.12 and 2.2.14, we get that there is a set of super-stable row-sequences A � R so that A contains at least a �1 fraction of R, and for every �r 2 A thereexist a j�r 2 [k] so that for all but a �6 of the t 2 [k], the row-sequence �s def= �t�j�r(�r) is stable andthe tth position is annoying for it (i.e., for �s). By a counting argument it follows that there is aset T so that jT j � (1� 2�6) � k, and for every t 2 T at least half of the �r's in A satisfy the above(i.e., �s def= �t�j�r(�r) is stable and the tth position is annoying for �s). Fixing such a t 2 T , we considerthe set, denoted At, containing these �r's; namely, for every �r 2 At the row-sequence �s def= �t�j�r(�r)is stable and the tth position is annoying for it (i.e., for �s). Thus, we have established a mappingfrom At to a set of stable row-sequences which are annoyed by their tth position; speci�cally, �ris mapped to �t�j�r(�r). Each row-sequence in the range of this mapping has at most k preimages(corresponding to the k possible shifts which maintain its tth element). Recalling that At containsat least �12 � jRj sequences, we conclude that the mapping's range must contain at least �12k � jRjsequences, and the claim follows. 2Combining Claims 2.2.15 and 2.2.13, we get a lower bound on the number of matrices which arenon-conforming for the jth column, 8j 2 T (where T is as in Claim 2.2.15). Namely,Claim 2.2.16 Let T be as guaranteed by Claim 2.2.15 and suppose that j 2 T . Then, at least a�16 fraction of the matrices are non-conforming for column-position j.proof: By Claim 2.2.15, there are at least �12k � jRj stable row-sequences that are annoyed bytheir jth position. Out of these row-sequences, we consider a subset, denoted A, containing exactly�12k � jRj row-sequences. By Claim 2.2.13, for each �r 2 A, at least a 12 � �2 fraction of the matricescontaining the row-sequence �r are non-conforming for column-position j. We claim that almost allof these matrices do not contain another row-sequence in A (here we use the fact that A isn't toolarge); this will allow us to add-up the matrices guaranteed by each �r 2 A without worrying aboutmultiple counting. Namely,subclaim 2.2.16.1: For every �r 2 RProbi;m(9i0 6= i s.t. rowi0(m)2A) < �12where i 2R [k] and m 2R Mi(�r). 13



proof of subclaim: By Axiom 3 (part 3), we get that for every i0 6= i the i0-th row of m 2R Mi(�r) isuniformly distributed in R. Thus, for every i0 6= iProbm(rowi0(m)2A) = �12kwhere m 2R Mi(�r). The subclaim follows. 3Using the subclaim, we conclude that for each �r 2 A, at least a 12 � �2 � �12 (> 13) fraction ofthe matrices containing the row-sequence �r are non-conforming for column-position j and do notcontain any other row-sequence in A. The desired lower bound now follows. Namely, let B denotethe set of matrices which are non-conforming for column-position j, let Bi(�r) def= B \Mi(�r) andB0i(�r) denote the set of matrices in Bi(�r) which do not contain any row in A except for the ith row;then jBj � j [�r2A [ki=1B0i(�r)j= X�r2A kXi=1 jB0i(�r)j> X�r2A 13 kXi=1 jMi(�r)j= jAj � �13 � k � jMjjRj �= �16 � jMjThe claim follows. 2The combination of Claims 2.2.15 and 2.2.16, yields that a uniformly chosen matrix is non-conforming for a uniformly chosen column position with probability at least (1 � 2�6) � �16 . Fora suitable choice of constants (e.g., � = (�=30)4), this yields contradiction to Claim 2.2.5. Thus,Eq. (4) must hold for � as de�ned in Def. 2.2.10, and the lemma follows.2.4 A Construction that Satis�es the AxiomsClearly, the set of all k-by-k matrices over S satis�es Axioms 1{4. A more interesting and usefulset of matrices is de�ned as follows.Construction 2.3 (basic construction): We associate the set S with a �nite �eld and supposek � jSj. Furthermore, [k] is associated with k elements of the �eld so that 1 is the multiplicativeunit and i 2 [k] is the sum of i such units. Let M be the set of matrices de�ned by four �eldelements as follows. The matrix associated with the quadruple (x; y; x0; y0) has the (i; j)th entryequal (x+ jy) + i(x0 + jy0).Remark: The column-sequences correspond to the standard pairwise-independent sequences fr+is : i 2 [k]g, where r; s 2 S. Similarly, the row-sequences are expressed as fr + js : j 2 [k]g, wherer; s 2 S.Proposition 2.4 The Basic Construction satis�es Axioms 1{4.14



proof: Axioms 1 is obvious from the above remark. The right-shift of the sequence fr+js : j2 [k]gis f(r + s) + js : j 2 [k]g and Axiom 2 follows. To prove that Axiom 3 holds, we rewrite the ithrow as fsi + j � ri : j2 [k]g, where si = x + ix0 and ri = y + iy0. Now, for every i 6= i0 2 [k], whenx; y; x0; y0 2R S, the pairs (si; ri) and (si0 ; ri0) are pairwise independent and uniformly distributedin S � S which corresponds to the set of row-sequences. It remains to prove that Axiom 4 holds.We start by proving the following.Fact 2.4.1: Consider any i; j 2 [k] and two sequences �r = (r1; :::; rk) 2 R and �c = (c1; :::; ck) 2 C sothat rj = ci. Then, jMji(�r; �c)j equals jSj.proof of fact: By the construction, there exists a unique pair (a; b) 2 S � S so that a+ j 0b = rj0 forevery j 0 2 [k] (existence is obvious and uniqueness follows by considering any two equations; e.g.,a + b = r1 and a + 2b = r2). Similarly, there exist a unique pair (�; �) so that � + i0� = ci0 forevery i0 2 [k]. We get a system of four linear equations in x; x0; y; y0 (i.e., x+ ix0 = a, y + iy0 = b,x+ jy = � and x0+ jy0 = �). This system has rank 3 and thus jSj solutions, each de�ning a matrixin Mji(�r; �c). 3Using Fact 2.4.1, Axiom 4 follows sincejMji (�r; �c)jjMi(�r)j = jSjjS � Sj= 1jSj= 1jCi(rj)jand so does the proposition.3 A Stronger Consistency Test and the PCP ApplicationTo prove Lemma 1.3, we need a slightly stronger consistency test than the one analyzed inLemma 2.2. This new test is given access to three related oracles, each supplying assignmentsto certain classes of sequences over S, and is supposed to establish the consistency of these oracleswith one function � : S 7! V . Speci�cally, one oracle assigns values to k2-long sequences viewed astwo-dimensional arrays (as before). The other two oracles assign values to k3-long sequences viewedas 3-dimensional arrays, whose slices (along a speci�c coordinate) correspond to the 2-dimensionalarrays of the �rst oracle. Using Lemma 2.2 (and the auxiliary oracles) we will present a test whichveri�es that the �rst oracle is consistent in an even stronger sense than established in Lemma 2.2.Namely, not only that all entries in almost all rows of almost all 2-dimensional arrays areassigned in a consistent manner, but all entries in almost all 2-dimensional arrays are assignedin a consistent manner.3.1 The SettingLet S, k, R, C and M be as in the previous section. We now consider a family, Mc, of k-by-kmatrices with entries is C. The family Mc will satisfy Axioms 1{4 of the previous section. Inaddition, its induced multi-set of row-sequences, denoted R, will correspond to the multi-set M;namely, each row of a matrix in Mc will form a matrix in M (i.e., the sequence of elements of Ccorresponding to a row in a Mc-matrix will correspond to a M-matrix). Put formally,15



Axiom 5 For every m 2 Mc and every i 2 [k], there exists m 2 M so that for every j 2 [k],the (i; j)th entry of m equals the jth column of m (i.e., entryi;j(m) = colj(m), or, equivalently,rowi(m) �= m). Furthermore, this matrix m is unique.Analogously, we consider also a family, Mr, of k-by-k matrices the entries of which are elements inR so that the rows5 of each m 2 Mr correspond to matrices in M.3.2 The TestAs before, � is a function assigning (k-by-k) matrices in M values which are k-by-k matrices oversome set of values V (i.e., � : M 7! V k�k). Let �c (resp., �r) be (the supossedly corresponding)function assigning k-by-k matrices over C (resp., R) values which are k-by-k matrices over V def= V k(i.e., �c :Mc 7! V k�k).Construction 3.1 (Extended Consistency Test):1. consistency for sequences: Apply the consistency test of Construction 2.1 to �c. Same for �r.2. correspondence test: Uniformly select a matrix m 2 Mc and a row i 2 [k], and compare the ithrow in �c(m) to �(m), where m 2 M is the matrix formed by the C-elements in the ith rowof m. Same for �r.The test accepts if both (sub-)tests succeed.Lemma 3.2 Suppose M;Mc;Mr satisfy Axioms 1{5. Then, for every constant 
 > 0, there exista constant � so that if a function � : M 7! V k�k (together with some functions �c : Mc 7! V k�kand �r :Mr 7! V k�k) passes the extended consistency test with probability at least 1� � then thereexists a function � : S 7! V so that, with probability at least 1 � 
, the value assigned by � to auniformly chosen matrix m 2 M matches the values assigned by � to each of the elements of m.Namely, Probm �8i; j entryi;j(�(m)) = �(entryi;j(m))� � 1� 
where m 2R M. The constant � does not depend on k and S. Furthermore, it is polynomiallyrelated to 
.The proof of the lemma starts by applying Lemma 2.2 to derive assignments to C (resp., R) whichare consistent with �c (resp., �r) on almost all rows of almost all k3-dimensional arrays (ie., Mcand Mr, respectively). It proceeds by applying a degenerate argument of the kind applied in theproof of Lemma 2.2. Again, the reader may want to skip the proofs of all claims in �rst reading.3.3 Proof of Lemma 3.2We start by considering item (1) in the Extended Consistency Test. By Lemma 2.2, there existsa function �c : C 7! V k (resp., �r : R 7! V k) so that the value assigned by �c (resp., �r), to auniformly chosen row in a uniformly chosen matrixMc (resp.,Mr), matches with high probabilitythe values assigned by �c (resp., �r) to each of the C-elements (resp., R-elements) appearing in this5 Alternatively, one can consider a family,Mr, of k-by-k matrices the entries of which are elements in R so that thecolumns of each m 2 Mr correspond to matrices in M. However, this would require to modify the basic consistencytest (of Construction 2.1), for these matrices, so that it shifts columns instead of rows.16



row. Here \with high probability" means with probability at least 1� �, where � > 0 is a constant,related to � as speci�ed by Lemma 2.2. Namely,Probi;m(8j entryi;j(�c(m)) = �c(entryi;j(m))) � 1� � (8)where i 2R [k] and m 2R Mc.3.3.1 Perfect Matrices and Typical SequencesEq. (8) relates �c to �c (resp., �c to �c). Our next step is to relate �c (resp., �r) to �. This is doneeasily by referring to item (2) in the Extended Consistency Test. Speci�cally, it follows that thevalue assigned by �, to a uniformly chosen matrix m 2 M, matches, with high probability, thevalues assigned by �c (resp., �r) to each of the columns (resp., rows) of m. That isDe�nition 3.2.1 (perfect matrices): A matrix m 2 M is called perfect (for columns) if for ev-ery j 2 [k], the jth column of �(m) equals the value assigned by �c to the jth column of m(i.e., colj(�(m)) = �c(colj(m))). Similarly, m 2 M is called perfect (for rows) if rowi(�(m)) =�r(rowi(m)), for every i 2 [k].Claim 3.2.2 (perfect matrices): Let �1 def= � + �.(c) All but a �1 fraction of the matrices in M are perfect for columns.(r) All but a �1 fraction of the matrices in M are perfect for rows.proof: By the Correspondence (sub)Test, with probability at least 1� �, a uniformly chosen rowin a uniformly chosen m 2 Mc is \given" the same values by �c and by � (i.e., rowi(�c(m)) = �(m),for i 2R [k], where m �= rowi(m)). On the other hand, by Eq. (8), with probability at least 1 � �,a uniformly chosen row in a uniformly chosen m 2 Mc is \given" the same values by �c and by�c (i.e., entryi;j(�c(m)) = �c(entryi;j(m)), for i 2R [k] and all j 2 [k]). Thus, with probabilityat least 1 � (� + �), a uniformly chosen row in a uniformly chosen m 2 Mc is \given" the samevalues by � and by �c (i.e., colj(�(rowi(m))) = �c(entryi;j(m)), for i 2R [k] and all j 2 [k]). UsingAxiom 3 (part 2 { regarding Mc) and the \furthermore" part of Axiom 5, we get part (c) of theclaim (i.e., colj(�(m)) = �c(colj(m)), for all j 2 [k]). A similar argument holds for part (r). 2A perfect (for columns) matrix \forces" all its columns to satisfy some property � (speci�cally, thevalue assigned by �c to its column-sequences must match the value � of the matrix). Recall thatwe have just shown that almost all matrices are perfect and thus force all their columns to satisfysome property �. Using a counting argument, one can show that all but at most a 1k fraction ofthe column-sequences must satisfy � in almost all matrices in which they appear. Namely,De�nition 3.2.3 (typical sequences): Let �2 def= 2p�1. We say that the column-sequence �c (resp.,row-sequence �r) is typical if Probj;m(colj(�(m))=�c(�c)) � 1� �2where j 2R [k] and m 2R Mj(�c). Otherwise, we say that �c is non-typical.Claim 3.2.4 All but at most an �22k fraction of the column-sequence (resp., row-sequences) aretypical. 17



We will only use the bound for the fraction of typical row-sequences.proof: We mimic part of the counting argument of Claim 2.2.16. Let N be a set of non-typicalrow-sequences, containing exactly �22k � jRj sequences. Fix any �r 2 N and consider the set of matricescontaining �r. By Axiom 3 (part 3 { regarding M), at most a �22 fraction of these matrices containsome other row in N . On the other hand, by de�nition (of non-typical row-sequence), at least a �2fraction of the matrices containing �r, have � disagree with �r(�r) on �r, and thus are non-perfect (forrows). It follows that at least a �22 fraction of the matrices containing �r are non-perfect (for rows)and contain no other row in N . Combining the bounds obtained for all �r 2 N , we get that at leasta �22 � �22 fraction of the matrices are not perfect (for rows). This contradicts Claim 3.2.2(r), and sothe current claim follows (for row-sequences and similarly for column-sequences). 23.3.2 Deriving the Conclusion of the LemmaWe are now ready to derive the conclusion of the Lemma. Loosely speaking, we claim that thefunction � , de�ned so that �(e) is the value most frequently assigned by �c to e, satis�es the claimof the lemma.De�nition 3.2.5 (the function �): Let �c(�c)i denote the value assigned by �c to the ith element of�c 2 C. De�ne qe(v) def= Probi;�c(�c(�c)i=v)where i 2R [k] and �c 2R Ci(e) (recall that Ci(e) denotes the set of column-sequences having e asthe ith component). We consider � : S 7! V so that �(e) def= v if qe(v) = maxufqe(u)g, with tiesbroken arbitrarily.The proof that � satis�es the claim of Lemma 3.2 is a simpli�ed version of the proof of Lemma 2.2.6We assume, on the contrary to our claim, that, for a uniformly chosen m 2MProbm �9i; j so that entryi;j(�(m)) 6= �(entryi;j(m))� > 
 (9)As in the proof of Lemma 2.2, we de�ne a notion of an annoying row-sequence. Using the above(contradiction) hypothesis, we �rst show that many row-sequences are annoying. Next, we showthat lower bounds on the number of annoying row-sequences translate to lower bounds on theprobability that a uniformly chosen matrix is non-perfect (for columns). This yields a contradictionto Claim 3.2.2(c).De�nition 3.2.6 (a new de�nition of annoying rows): A row-sequence �r = (r1; :::; rk) is said to beannoying if there exists a j 2 [k] so that the jth element in �r(�r) di�ers from �(rj).Using Claim 3.2.2(r), we getClaim 3.2.7 Suppose that Eq. (9) hold and let 
1 def= 
 � �1. Then, at least a 
1k fraction of therow-sequences are annoying.6 The reader may wonder how it is possible that a simpler proof yields a stronger result; as the claim concerningthe current � is stronger. The answer is that the current � is de�ned based on a more restricted function over C andthere are also stronger restrictions on �. Both restrictions are due to facts that we have inferred using Lemma 2.2w.r.t �c and �r. 18



proof: Combining Eq. (9) and Claim 3.2.2(r), we get that with probability at least 
 � �1 = 
1,a uniformly chosen matrix m 2 M is perfect for rows and contains some entry, denoted (i; j), forwhich the � value is di�erent from the � value (i.e., entryi;j(�(m)) 6= �(entryi;j(m))). Since the�r-value of all rows of m matches the � value, it follows that the ith row of m is annoying. Thus,at least a 
1 fraction of the matrices contain an annoying row-sequence. Using Axiom 3 (part 2 {regarding M), we conclude that the fraction of annoying row-sequences must be as claimed. 2A key observation is that each row-sequence that is both typical and annoying yields many matriceswhich are non-perfect for columns. Namely,Claim 3.2.8 Suppose that a row-sequence �r is both typical and annoying. Then, at least a 12 � �2fraction of the matrices, containing the row-sequence �r, are non-perfect for columns.proof: Since �r = (r1; :::; rk) is annoying, there exists a j 2 [k] so that the the jth component of�r(�r) (which is the value assigned to rj) is di�erent from �(rj). Let us denote by v the value �r(�r)assigns to rj. Note that v 6= �(rj). Consider the probability space de�ned by uniformly selectingi 2 [k] and m 2 Mi(�r). Since �r is typical it follows that in almost all of these matrices the valueassigned to rj by the � equals v; namely,Probi;m(entryi;j(�(m))=v) � 1� �2 (10)By Axiom 4 (regarding M), the jth column of m is uniformly distributed in Ci(rj). Now, usingthe de�nition of the function � and the accompanying notations, we getProbi;m(�c(colj(m))i=v) = qrj (v) � 12 (11)The inequality holds since v 6= �(rj) and by � 's de�nition qrj (v) � qrj (�(rj)). Combining Eq. (10)and (11), we get Probi;m(entryi;j(�(m)) 6=�c(colj(m))i) � 12 � �2and the claim follows. 2Combining Claims 3.2.7, 3.2.4 and 3.2.8, we get a lower bound on the number of matrices whichare non-perfect for columns. Namely,Claim 3.2.9 Suppose that Eq. (9) hold and let 
2 def= 
1 � �22 . Then, at least a 
23 fraction of thematrices are non-perfect for columns.proof: By Claims 3.2.7 and 3.2.4, at least a 
1k � �22k (= 
2k ) fraction of the row-sequences areboth annoying and typical. Let us consider a set of exactly 
2k � jRj such row-sequences, denotedA. Mimicking again the counting argument part of Claim 2.2.16, we bound, for each �r 2 A, thefraction of non-perfect (for columns) matrices which contain �r but no other row-sequence in A.Using an adequate setting of �2 and 
2, this fraction is at least 13 . Summing the bounds achievedfor all �r 2 A, the claim follows. 2Using a suitable choice of 
 (as a function of �), Claim 3.2.9 contradicts Claim 3.2.2(c), and soEq. (9) can not hold. The lemma follows. 19



3.4 Application to Low-Degree TestingAgain, the set of all k-by-k-by-k arrays over S satis�es Axioms 1{5. A more useful set of 3-dimensional arrays is de�ned as follows.Construction 3.3 (main construction): Let M be as in the Basic Construction (i.e., Construc-tion 2.3). We let Mc = Mr be the set of matrices de�ned by applying the Basic Constructionto the element-set C = R. Speci�cally, a matrix in Mc is de�ned by the quadruple (x; y; x0; y0),where each of the four elements is a pair over S, so that the (i; j)th entry in the matrix equals(x+ jy) + i(x0 + jy0). Here x; y; x0; y0 are viewed as two-dimensional vectors over the �nite �eld Sand i; j are scalars in S. The (i; j)th entry is a pair over S which represents a pairwise independentsequence (which equals an element in C = R).Clearly,Claim 3.4 Construction 3.3 satis�es Assuptions 1{5.Combining all the above with the low-degree test of [GLRSW, RS96] using the results claimedthere7, we get a low-degree test which is su�ciently e�cient to be used in the proof of the PCP-Characterization of NP.Construction 3.5 (Low Degree Test): Let f : Fn 7! F , where F is a �eld of prime cardinality,and d be an integer so that jF j > 4(d+ 2)2. Let M, Mc and Mr be as in Construction 3.3, withS = Fn, V = F and k def= 4(d+ 2)2. Let � : M 7! F k�k, �r : Mr 7! F k3 and �c : Mc 7! F k3 beauxiliary tables (which should contain the corresponding f -values). The low degree test consists of1. Applying the Extended Consistency Test to � : M 7! F k�k, �r :Mr 7! F k3 and �c : Mc 7!F k3.2. Selecting uniformly a matrix m 2 M and testing that the Polynomial Interpolation Condition(cf., [GLRSW]) holds for each row; namely, we test thatd+2Xi=1 �i � entryi;j(�(m)) = 0for all j 2 [k], where �i = (�1)i � �d+1i�1�.3. Select uniformly a matrix in M and test matching of random entry to f . Namely, selectuniformly m 2M, and i; j 2 [k], and check if entryi;j(�(m)) = f(entryi;j(m)).The test accepts if and only if all the above three sub-tests accept.Proposition 3.6 Let f : Fn 7! F , where F is a �eld, and let ` def= n � log2 jF j. Then, the LowDegree Test of Construction 3.5 requires O(`) randomness and query length, poly(`) answer lengthand satis�es:completeness: If f is a degree-d polynomial, then there exist � :M 7! F k�k, �r :Mr 7! F k3 and�c :Mc 7! F k3 so that the test always accepts.7 Rather than using much stronger results obtained via a more complicated analysis, as in [ALMSS], which relyon the Lemma of [AS]. 20



soundness: For every � > 3=(d+2)2 there exists an � > 0 so that for every f which is at distanceat least � from any degree-d polynomial and for every � : M 7! F k�k, �r : Mr 7! F k3 and�c : Mc 7! F k3, the test rejects with probability at least �. Furthermore, the constant � is apolynomial in � which does not depend on n; d and F .As a corollary, we get Lemma 1.3.proof: As usual, the completeness clause is easy to establish. We thus turn to the soundnessrequirement. By Claim 3.4, we may apply Lemma 3.2 to the �rst sub-test and infer that either the�rst sub-test fails with some constant probability (say �1) or there exists a function � : Fn 7! F sothat with very high constant probability (say 1� �1)entryi;j(�(m)) = �(entryi;j(m)) (12)holds for all i 2 [d+ 2] and j 2 [k]. On the other hand, by [GLRSW] (see also [S95, Thm 3.3] and[RS96, Thm 5]), either Probx;y2Fn  d+2Xi=1 �i � �(x+ iy) 6= 0! > 12(d+ 2)2 (13)or � is very close (speci�cally at distance at most 1=(d+ 2)2) to some degree-d polynomial. A keyobservation is that the Main Construction (i.e., Construction 3.3) has the property that rows inm 2R M are distributed identically to the distribution in Eq. (13). Thus, for every j 2 [k] eitherProbm2M  d+2Xi=1 �i � �(entryi;j(m)) 6= 0! > 12(d+ 2)2 (14)or � is at distance at most �2 def= 1=(d + 2)2 from some degree-d polynomial. However, we claimthat in case Eq. (14) holds, the second sub-test will reject with constant probability. The claimis proven by �rst considering k = 4(d+ 2)2 copies of the GLRSW Test (i.e., the test in Eq. (14)).Using Chebishev's Inequality and the hypothesis by which each copy rejects with probability atleast 1=2(d + 2)2, we conclude that the probability that none of these copies rejects is boundedabove by 2(d+2)24(d+2)2 = 12 . Thus, the second sub-test must reject with probability at least �2 def= 12 � �1,where �1 accounts for the substitution of the � values by the entries in �(�). We conclude that �must be �2-close to a degree-d polynomial or else the test rejects with too high probability (i.e.,�2). Finally, we claim that if f disagrees with � on �3 > �1 of the inputs then the third sub-testrejects with probability at least �3 def= �3� �1 (since the distance from f to � is bounded by the sumof the distances of f to the matrix and of � to the matrix). The proposition follows using somearithmetics: Speci�cally, we set �1 = �=3, �3 = 2�1, �1 = poly(�1) (as in Lemma 3.2), and verifythat �3 + �2 � � (since �=3 � (d+ 2)�2 = �2), and � = minf�1; �2; �3g = poly(�) (since �2 � 1=6 and�3 = �=3).4 Proof of Lemma 1.1There should be an easier and direct way of proving Lemma 1.1. However, having proven Lemma 2.2,we can apply it8 to derive a short proof of Lemma 1.1. To this end we view `-multisets over S8 This is indeed an over-kill. For example, we can avoid all complications regarding shifts (in the proof ofLemma 2.2). 21



as k-by-k matrices, where k = p`. Recall that the resulting set of matrices satis�es Axioms 1{4.Thus, by Lemma 2.2, in case the test accepts with probability at least 1� �, there exists a function� : S 7! V such that ProbA2RSk;B2REk2 (A)(8e 2 A, �(B)e = �(e)) � 1� �where Sk is the set of all k-multisets over S and El(A) is the set of all l-multisets extending A. Wecan think of this probability space as �rst selecting B 2R Sk2 and next selecting a k-subset A inB. Thus, ProbB2RSk2 ;A2RCk(B)(9e 2 A s.t. �(B)e 6= �(e)) � � (15)where Ck(B) denotes the set of all k-multisets contained in B. This impliesProbB2RSk2 (jfe 2 B : �(B)e 6= �(e)gj > k) � 2�as otherwise Eq. (15) is violated. (The probability that a random k-subset hits a subset of density1k is at least 12 .) The lemma follows.A previous version of this paper [GS96] has stated a stronger version of Lemma 1.1, where thesequences F (x1; :::; x`) and (f(x1); :::; f(x`)) are claimed to be identical (rather than di�erent onat most k locations), for a 1 � � fraction of all possible (x1; :::; x`) 2 S`. Unfortunately, the proofgiven there was not correct { a mistake in the concluding lines of the proof of Claim 4.2.9 wasfound by Madhu Sudan. Still we conjecture that the stronger version holds as well, and that it canbe established by a test which examines two random (2k � 1)-extensions of a random k-subset.AcknowledgmentWe are grateful to Madhu Sudan for pointing out an error in an earlier version, and for other helpfulcomments.
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