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tWe take another step in the study of the testability of small-width OBDDs, initiated by Ronand Tsur (Random'09). That is, we 
onsider algorithms that, given ora
le a

ess to a fun
tionf : f0; 1gn ! f0; 1g, need to determine whether f 
an be implemented by some restri
ted 
lassof OBDDs or is far from any su
h fun
tion.Ron and Tsur showed that testing whether a fun
tion f : f0; 1gn ! f0; 1g is implementableby a width-2 OBDD has query 
omplexity �(logn). Thus, testing width-2 OBDD fun
tions issigni�
antly easier than learning su
h fun
tions (whi
h requires 
(n) queries). We show thatsu
h exponential gaps do not hold for several related 
lasses. Spe
i�
ally:1. Testing whether f : f0; 1gn ! f0; 1g is implementable by a width-4 OBDD requires 
(pn)queries.2. Testing whether f : GF(3)n ! GF(3) is a linear fun
tion with 0-1 
oeÆ
ients requires
(pn) queries. Note that this 
lass of fun
tions is a subset of the 
lass of all linearfun
tions over GF(3), and that ea
h su
h linear fun
tion 
an be implemented by a width-3OBDD.3. There exists a sub
lass C of the linear fun
tions from GF(2)n to GF(2) su
h that testingmembership in C has query 
omplexity �(n). Note that ea
h linear fun
tion over GF(2)
an be implemented by a width-2 OBDD.Re
all that ea
h of these 
lasses has a proper learning algorithm of query 
omplexity O(n).
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1 Introdu
tionIn the last 
ouple of de
ades, the area of property testing has attra
ted mu
h attention (see, e.g., a
ouple of re
ent surveys [18, 19℄). Loosely speaking, property testing typi
ally refers to super-fastprobabilisti
 algorithms for de
iding whether a given obje
t has a predetermined property or is farfrom any obje
t having this property. Su
h algorithms, 
alled testers, obtain lo
al views of theobje
t by making suitable queries. The 
urrent work belongs to the study of property testing, butpursues somewhat di�erent themes than the standard ones.1.1 Testing membership in 
omplexity 
lassesIn the foregoing des
ription, obje
ts are viewed as fun
tions, and so properties are sets of fun
tions.Given this perspe
tive, it is most natural to ask whether various traditional 
omplexity 
lasses aretestable. Interestingly, this question was not addressed till [20℄.1 Instead, whenever (before [20℄)
omputational devi
es were referred to in the 
ontext of property testing, the perspe
tive was thatea
h �xed 
omputational devi
e de�nes a set of strings and the testing problem studied was ofmembership of the input string in this set (
f. [2, 16, 14℄). In 
ontrast, following Ron and Tsur [20℄,we �x a 
omplexity 
lass and study the testing problem that refers to whether the input fun
tionis in this 
lass.To illustrate the di�eren
e re
all that Alon et al. [2℄ �x any regular set, and study the problemof testing whether a given (input) string is in the set. In 
ontrast, Ron and Tsur [20℄ 
onsider the
omplexity 
lass of width-2 OBDDs,2 and study the problem of testing whether a given (input)fun
tion belongs to this 
omplexity 
lass.The main result of [20℄ is that testing width-2 OBDD has query 
omplexity �(logn), wheren denotes the length of the argument to the fun
tion being tested (i.e., the question is whetherf : f0; 1gn ! f0; 1g 
an be implemented by a width-2 OBDD). This should be 
ompared to thequery 
omplexity of learning this very 
lass, whi
h is �(n). Thus, testing this 
omplexity 
lass issigni�
antly easier than learning this 
lass. Two natural questions arise:1. What about width-w OBDDs, for any �xed w > 2?That is, is testing width-w OBDDs signi�
antly easier (i.e., (poly)logarithmi
ally easier)than learning width-w OBDDs? (Re
all that learning width-w OBDDs requires 
(n) queries,whereas proper learning is possible with O(n) queries.)2. What about testing sub
lasses of width-w OBDDs, for any �xed w � 2 (i.e., testing whether agiven fun
tion belongs to a �xed sub
lass of width-w OBDDs)? Spe
i�
ally, is every sub
lassof width-2 OBDDs testable in query 
omplexity O(log n) or poly(logn)?3We provide rather gloomy answers to both questions: We prove that even at low 
omputational
omplexity levels su
h as 
onstant-width OBDDs, testing may not be signi�
antly easier than learn-ing; that is, these 
omplexities are polynomially related rather than being exponentially related.Spe
i�
ally:1Indeed, this is a 
ontroversial statement, whi
h relies on not viewing the 
lasses of di
tatorship fun
tions, juntas,monomials, and 
onstant-term DNFs as traditional 
omplexity 
lasses. The testability of these 
lasses was studiedin various works; see, for example [17, 9, 6℄.2OBDDs are ordered binary de
ision diagrams, whi
h are a restri
ted type of read-on
e bran
hing programs inwhi
h the variables are read in a �xed order (a
ross all possible 
omputation paths). See de�nition in Se
tion 1.4.3Note that the query 
omplexity of testing su
h a sub
lass need not be smaller that the query 
omplexity of testingthe 
lass. 1



Theorem 1 (see Theorem 4.2): Testing width-4 OBDD requires 
(pn) queries.We 
onje
ture that the a
tual query 
omplexity is �(n).Theorem 2 (see Theorem 2.1): There exists a sub
lass of width-2 OBDDs su
h that testing thissub
lass requires 
(n) queries. Furthermore, this sub
lass is a 
lass of linear fun
tions (over GF(2)).1.2 Sub
lasses of linear and quadrati
 fun
tionsA di�erent perspe
tive on our results is best illustrated by a question of Sha� Goldwasser, whoasked whether there is more to algebrai
 property testing than testing low degree. (A
tually, thiswas a rhetori
al question; she meant to advo
ate su
h studies.) We mention that a 
lear exampleof su
h a study was provided by Rubinfeld [22℄ in the mid 1990s, and that various properties ofpolynomials (e.g., di
tatorship fun
tions [17℄, juntas [9, 4℄, sparse polynomials [6, 7℄) were studiedin the last de
ade (although these studies were not viewed from this perspe
tive).In any 
ase, taking this perspe
tive, we view Theorem 2 as saying that a 
ertain property oflinear fun
tions (from GF(2)n to GF(2)) 
annot be tested signi�
antly faster than learning (i.e.,
annot be tested with o(n) queries). More generally, we present a full hierar
hy of properties (or
lasses) of linear fun
tions arranged by their query 
omplexity:Theorem 3 (see Theorem 2.3): For every fun
tion t : N ! N that is at most linear, there existsa property of linear fun
tions (over GF(2)) su
h that testing this property has query 
omplexity�(t+ ��1). Furthermore, learning ea
h of the 
orresponding 
on
ept 
lasses requires 
(n) queries.This leads to the question of how natural are these properties, whi
h build on the property used inthe proof of Theorem 2. Sin
e the property is not very natural, we also prove the following.Theorem 4 (see Theorem 2.7): Testing the set of linear fun
tions from GF(2)n to GF(2) with atmost n=2 in
uential variables requires 
(pn) queries.Here too, we 
onje
ture that the a
tual query 
omplexity is �(n). Another natural property oflinear fun
tions is the subje
t of the following result.Theorem 5 (see Theorem 3.2): Testing the 
lass of linear fun
tions from GF(3)n to GF(3) thathave 0-1 
oeÆ
ients requires 
(pn) queries.Again, we 
onje
ture that the a
tual query 
omplexity is �(n). (Note that the foregoing 
lassis implemented by width-3 OBDDs.) Lastly, we mention that the proof of Theorem 1 a
tuallyestablishes also the following.Theorem 6 (see end of Se
tion 4): Testing the 
lass of linear fun
tions from GF(2)n to GF(2)that have no 
onse
utive in
uential variables requires 
(pn) queries.And, again, we 
onje
ture that the a
tual query 
omplexity is �(n).
2



1.3 Te
hniquesThe proofs of all the foregoing lower bounds, with the ex
eption of Theorem 2, follow a 
ommontheme and 
ope with a similar diÆ
ulty. The 
ommon theme is that in all these 
ases the analysisredu
es to upper-bounding the ability of query-bounded observers to distinguish two spe
i�
 distri-butions of linear fun
tions. In ea
h 
ase, these two distributions are very natural, and the diÆ
ultyis in analyzing the 
orresponding answer distributions (i.e., the distributions of the sequen
e ofanswers obtained by querying ea
h fun
tion distribution).To illustrate the diÆ
ulty, 
onsider the set of linear fun
tions from GF(2)n to GF(2), denotedL. It is well known that if f is uniformly distributed in L, then its values on a sequen
e of t linearlyindependent ve
tors are uniformly distributed over GF(2)t. But it is less 
lear what happens whenf is uniformly distributed in some natural subset L0 � L. In parti
ular, what happens when L0 isthe set of all linear fun
tions that depend on exa
tly n=2 variables? Furthermore, what if these tstrings are sele
ted adaptively?Our proofs deal with these types of problems. For example, in the 
ase of the set of linearfun
tions that depend on either (n� 1)=2 or (n+ 1)=2 variables, we prove that the deviation of tnon-adaptive queries is at most t=n (
f. Proposition 2.10). For t adaptive queries we only prove anupper bound of O(t2=n) (
f. Lemma 2.8 and the proof of Theorem 2.7).1.4 Preliminaries: OBDDs and Property TestingIn this se
tion we review the quite standard de�nitions used in this paper. We merely stress thatwhen we talk of OBDDs, we assume (as in [20℄) that the order of the variables is �xed (and known).1.4.1 OBDDs: Ordered Binary De
ision DiagramsSeveral di�erent de�nitions of this notion appear in the literature, and we adopt the one that 
allsfor a �xed ordering of the variables (knows as \stri
t"). That is, an ordered binary de
ision diagram(OBDD) is a read-on
e bran
hing program in whi
h the order in whi
h the variables are read is �xedfor all 
omputing devi
es in the model. Spe
i�
ally, we shall assume, without loss of generality,that the ith variable is always read at the ith level. This yields the following de�nition.De�nition 7 An OBDD is a dire
ted a
y
li
 graph with labeled edges and marked sinks that satis�esthe following 
onditions:1. The graph 
ontains a single sour
e vertex.2. Ea
h sink vertex in the graph is marked either 0 or 1.3. Ea
h non-sink vertex has two out-going edges (whi
h may be parallel) one labeled 0 and theother labeled 1.4. The graph edges 
onne
t verti
es in 
onse
utive levels, where the level of a vertex is its distan
efrom the sour
e.5. All sinks have the same level, 
alled the graph length.The width of an OBDD is the maximum number of verti
es that have the same level. An OBDDof length n 
omputes the fun
tion f : f0; 1gn ! f0; 1g su
h that, for every x 2 f0; 1gn it holds thatthe sink that is rea
hed from the sour
e by following the path with edge labels x is marked f(x).Indeed, we may view x = x1 � � � xn as a sequen
e of variables, and observe that in the ith step (i.e.,when moving from the i� 1st level to the ith level) the OBDD bran
hes a

ording to the value ofxi. 3



We mention that in a subsequent work, Ron and Tsur [21℄ 
onsidered OBDDs with a variableordering of the variables. Indeed, in su
h a 
ase, one should spe
ify the ordering, and in moregeneral models that allow di�erent variables to be queried along di�erent 
omputation paths it isne
essary to spe
ify the variable queried at ea
h non-sink vertex (by marking the non-sink verti
eswith variable names).1.4.2 Property testingWe merely re
all the standard de�nition.De�nition 8 Let � = Sn2N�n, where �n 
ontains fun
tions de�ned over the domain Dn (andrange Rn). A tester for a property � is a probabilisti
 ora
le ma
hine T that satis�es the followingtwo 
onditions:1. The tester a

epts ea
h f 2 � with probability at least 2=3; that is, for every n 2 N andf 2 �n (and every � > 0), it holds that Pr[T f (n; �)=1℄ � 2=3.2. Given � > 0 and ora
le a

ess to any f that is �-far from �, the tester reje
ts with probabilityat least 2=3; that is, for every � > 0 and n 2 N, if f : Dn ! Rn is �-far from �n, thenPr[T f (n; �)=0℄ � 2=3, where f is �-far from �n if, for every g 2 �n, it holds that jfe 2 Dn :f(e) 6= g(e)gj > � � jDnj.If the tester a

epts every fun
tion in � with probability 1, then we say that it has one-sided error;that is, T has one-sided error if for every f 2 � and every � > 0, it holds that Pr[T f (n; �)=1℄ = 1.A tester is 
alled non-adaptive if it determines all its queries based solely on its internal 
oin tosses(and the parameters n and �); otherwise it is 
alled adaptive.Almost all our results are lower bounds on the query 
omplexity of property testing tasks, and theyare obtained for �xed values of the proximity parameter � (i.e., � = 1=16 will do in all). In these
ases we omit mention of the proximity parameter.2 Testing Sub
lasses of Width 2 OBDDsWe 
onsider various sub
lasses of linear fun
tions over GF(2), whi
h in parti
ular are realizableby width-2 OBDDs. For a set of strings S � f0; 1gn we denote by LS the set of linear fun
tionsffv : v 2 Sg, where fv : f0; 1gn ! f0; 1g satis�es fv(x) def= hv; xi =Pni=1 vixi mod 2.We present a hierar
hy of properties of linear fun
tions arranged a

ording to the query 
om-plexity of testing them. Our starting point is a property of linear fun
tions having maximal query
omplexity, and the hierar
hy 
an be derived using any su
h property. (This is indeed reminis
entof [11℄.) After establishing the said hierar
hy (and sin
e it refers to somewhat unnatural properties),we also 
onsider the natural property of linear fun
tion having a bounded number of in
uentialvariables.2.1 A hierar
hy of 
lasses of linear fun
tionsWe start by presenting a 
lass of linear fun
tions that is hard to test, and then exhibit the fullhierar
hy by 
ombining any su
h 
lass with the 
lass of all linear fun
tions.4



2.1.1 Linear fun
tions with 
oeÆ
ients from a small-bias spa
eLet S � f0; 1gn be a small bias sample spa
e [15, 1℄, say, of size 20:99n and bias 2�0:3n. Then, testingLS requires 
(n) queries, even if we allow two-sided error and adaptive testers. More generally, wehave the following.Theorem 2.1 (Theorem 2, restated): Let S � f0; 1gn be a Æ-bias sample spa
e; that is, for every
 2 f0; 1gnnf0ng, it holds that jPrv2S [h
; vi = 1℄�0:5j � Æ. Then, testing LS requires log2((1��)=3Æ)queries, where � = jSj=2n.Typi
ally (e.g., in the following example), � is small (i.e., � � 1=2), and so the lower bound simpli�esto log2(1=6Æ). An appealing example 
onsists of the set of all n-bit long strings having a numberof 1 that is a multiple of 3 (i.e., S = fv 2 f0; 1gn :Pni=1 vi � 0 (mod 3)g), whi
h has exponentiallysmall bias and density � 1=3 (see Proposition A.1). Thus, we getCorollary 2.2 Let S be the set of all n-bit strings having a number of 1-entries that is divisible bythree. Then, testing LS requires 
(n) queries.Proof of Theorem 2.1: The theorem follows by 
ombining the following two observations.1. A random linear fun
tion is unlikely to be in LS, and thus is 0:5-far from LS. Spe
i�
ally,with probability 1� �, a random linear fun
tion is 0:5-far from LS .2. A random linear fun
tion and a fun
tion uniformly sele
ted in LS 
annot be distinguishedwith log2(1=Æ) �O(1) queries. Spe
i�
ally, distinguishing these two distributions with a gapof Æ0 requires log2(Æ0=Æ) queries. This holds be
ause for every sequen
e of queries and everysequen
e of potential answers, the probability that this spe
i�
 answer sequen
e o

urs undera fun
tion sele
ted uniformly in LS deviates by at most Æ from the 
orresponding probabilitythat refers to a random linear fun
tion (see Item 1 of Lemma A.4).Now, on the one hand, the probability that a tester a

epts a random linear fun
tion is at most� � �+ (1 � �) � 13 , where � � 23 denotes the probability that the test a

epts a fun
tion uniformlydistributed in LS . (Indeed, we assume here that � < 1=2, whi
h implies that the tester a

eptslinear fun
tions that are not in LS with probability at most 1=3). On the other hand, if the testdistinguishes random linear fun
tions from fun
tions in LS with gap at most Æ0, then it must a

epta random linear fun
tion with probability at least � � Æ0. We infer that (1 � �)(� � (1=3)) � Æ0,whi
h implies Æ0 � (1 � �)=3. Combing this with the query lower bound of log2(Æ0=Æ), the 
laimfollows.2.1.2 The Hierar
hyThe following hierar
hy theorem follows by 
ombining any set of hard-to-test linear fun
tions (fromGF(2)t to GF(2)) with the 
lass of all linear fun
tions (from GF(2)n�t to GF(2)).Theorem 2.3 (Theorem 3, restated): For every fun
tion t : N ! N that is at most linear, thereexist sets S � f0; 1gn su
h that testing LS has query 
omplexity �(t+ ��1). Furthermore, learningLS requires 
(n) queries.Proof: Letting t = t(n), we start with an arbitrary set H � f0; 1gt su
h that LH is a propertyof linear fun
tions from GF(2)t to GF(2) that requires 
(t) queries for testing. Indeed, su
h a5



property is provided by Corollary 2.2. Next, we 
onsider an arbitrary set G � f0; 1gn�t su
h thatLG is a property of linear fun
tions from GF(2)n�t to GF(2) that 
an be tested in O(1=�) queries(with one-sided error) but requires 
(n � t) queries for learning. Indeed, the set S = f0; 1gn�twill do (and other alternatives are provided by Theorem 2.4). Combining these two properties, we
onsider the set S = H � G, and the 
orresponding property LS. Note that ea
h f 2 LS 
an bewritten as the sum of some h 2 LH and some g 2 LG su
h thatf(x1; :::; xt; xt+1; ::::; xn) = h(x1; :::; xt) + g(xt+1; ::::; xn): (1)Learning LS requires 
(n) queries, sin
e re
overing f requires re
overing both h and g. Formally, we
an redu
e learning h (resp., g) to learning f , by �xing g (resp., h). Similarly (i.e., by �xing g (resp.,h)), we 
an redu
e testing LH (resp., LG) to testing LS, and 
on
lude that the query 
omplexity ofthe latter task is 
(t+��1). It is thus left to show that LS 
an be tested in O(t+��1) queries. Thisis shown by presenting an algorithm that, on input n and proximity parameter � > 0, pro
eeds asfollows.1. Testing if f is linear: The algorithm repeats the basi
 BLR Test for O(1=�) times, where inea
h repetition the algorithm sele
ts uniformly a; b 2 GF(2)n, and reje
ts if f(a) + f(b) 6=f(a+ b). The algorithm 
ontinues to the next steps only if none of these 
he
ks has reje
ted,and so we will assume in these steps that f is �-
lose to linear.Let h : GF(2)t ! GF(2) and g : GF(2)n�t ! GF(2) be linear fun
tions su
h that h(x1:::; xt)+g(xt+1; :::; xn) is the linear fun
tion 
losest to f(x1:::; xt; xt+1; :::; xn).2. Re
onstru
ting the fun
tion h: Using O(t) queries, the algorithm re
onstru
ts h; by usingself-
orre
tion, see details bellow. The algorithm reje
ts if h 62 LH .For starters, 
onsider a naive algorithm that re
overs ea
h 
oeÆ
ient of h with su

ess prob-ability at least 1� (1=10n) by making O(log n) queries. Spe
i�
ally, for every i 2 [t℄, the ith
oeÆ
ient is re
onstru
ted by taking a majority vote of O(log n) experiments, where in ea
hexperiment we sele
t uniformly a 2 GF(2)n, and 
ompute f(a)+f(a+0i�110n�i). Below, weshall des
ribe a more eÆ
ient re
onstru
tion pro
edure, whi
h uses O(t) queries rather thanO(t log n) queries.3. Testing the residual fun
tion g: A
tually, for a random a = (a1; :::; at) 2 GF(2)t, the algorithmtests whether the residual fun
tion fa de�ned as fa(xt+1; :::; xn) = f(a1; :::; at; xt+1; :::; xn)�h(a) belongs to LG. This is done by using the tester of LG.We �rst observe that this algorithm a

epts any f 2 LS with probability 1, sin
e f = h+ g passesthe linearity test (of Step 1) with probability 1, Step 2 always re
onstru
ts h, and Step 3 alwaysa

epts g (assuming that the tester of LG has one-sided error). Thus, we turn to analyze thebehavior of this algorithm when f is �-far from LS .We may assume that f is �-
lose to being linear, sin
e otherwise Step 1 reje
ts with high 
onstantprobability (say, probability at least 2=3). Considering h and g as de�ned at the end of Step 1,we note that either h 62 LH or g 62 LG. In the �rst 
ase (i.e., h 62 LH) Step 2 reje
ts with highprobability, sin
e (with high probability) the re
onstru
ted fun
tion will be h. In the se
ond 
ase,we 
onsider for every a = (a1; :::; at) 2 GF(2)t, the linear fun
tion that is 
losest to fa (wherefa(xt+1; :::; xn) = f(a1; :::; at; xt+1; :::; xn)�h(a)), and note that for at least 1� 4� of the 
hoi
es ofa 2 GF(2)t this linear fun
tion equals g (sin
e f is �-
lose to h + g).4 Assuming that � � 0:01 (or4For a uniformly distributed a, the expe
ted relative distan
e of fa from g is at most �. If fa is 
loser to somelinear fun
tion other than g, then its relative distan
e to g must be at least 1=4.6



else we reset � 0:01), we infer that Step 3 reje
ts with probability at least 0:96 � 0:9 > 2=3, wherewe assume (without loss of generality) that the LG-tester has error probability at most 0:1.It is left to provide a more eÆ
ient implementation of Step 2. Indeed, instead of re
overingea
h 
oeÆ
ient of h with error probability of 1=10n, we re
over ea
h bit in the \en
oding of h's
oeÆ
ients" (via a good linear error-
orre
ting 
ode) with probability at least 0:9, and obtain hby using an error-
orre
ting de
oder. Spe
i�
ally, we use a good linear error-
orre
ting 
ode C :GF(2)t ! GF(2)T , where T = O(t), and let `1; :::; `T : GF(2)t ! GF(2) denote the 
orrespondinglinear fun
tions; that is, C(z) = `1(z) � � � `T (z). Viewing ea
h `i as an element of GF(2)t, we obtainh(`i) via self-
orre
tion; that is, we sele
t uniformly a 2 GF(2)n, and 
ompute f(a)+f(a+ `i0n�t).Thus, we obtain ea
h h(`i), whi
h is a linear 
ombination of h's 
oeÆ
ients, with probability atleast 1�2� > 0:9, and by using error 
orre
tion this yields the values of h(10t�1); :::; h(0t�11) (withoverwhelmingly high probability).52.1.3 Linear fun
tions in a �xed linear spa
eRe
all that the standard linearity property (i.e., the set of all linear fun
tions over GF(2)) istestable by O(1=�) non-adaptive queries. Here we point out that this is not the only property oflinear fun
tions having �(1=�) testing 
omplexity, but is merely a spe
ial 
ase of a larger 
lass ofproperties. Spe
i�
ally, we 
onsider arbitrary 
lasses LS su
h that S is a linear spa
e. That is, letS = fGs : s 2 f0; 1gkg, where G is an k-dimensional generator matrix. Thus, for every s 2 f0; 1gk ,we de�ne the fun
tion gs 2 LS as gs(x) = fGs(x) = hGs; xi, and note that hGs; xi = hs;G>xi.Theorem 2.4 Let S � f0; 1gn be a linear spa
e, and LS = ffv : v 2Sg. Then, LS 
an be testedwith O(1=�) non-adaptive queries.Proof: The 
ase of S = f0; 1gn 
orresponds to linearity testing, whi
h is handled by the BLRlinearity test [5℄, and so we fo
us on the 
ase that S � f0; 1gn. We a
tually present a proximity-oblivious tester (
f. [13℄). When given ora
le a

ess to a fun
tion for f , we perform the followingtwo 
he
ks.1. BLR Linearity Che
k: Uniformly sele
t a; b 2 f0; 1gn, and reje
t if f(a) + f(b) 6= f(a+ b).2. Che
king (via self 
orre
ting) that the kernel of G> evaluates to zero: Uniformly sele
t a 2f0; 1gn and b 2 fx : G>x = G>ag, and reje
t if f(a) 6= f(b). (This is a self-
orre
tion of
he
king for a random 
 2 fx : G>x = 0g whether f(
) = 0.)The test a

ept only if none of the foregoing 
he
ks reje
ted. Clearly, any f 2 LS passes both
he
ks with probability 1. Thus, we fo
us on analyzing the probability that a fun
tion f 62 LS isreje
ted, denoting by Æ the distan
e of f to the set of all linear fun
tions.We �rst note that f is reje
ted by the �rst 
he
k with probability at least Æ (
f. [3℄). Denotingthe linear fun
tion 
losest to f by g, we note that if g 62 LS then there exists x su
h that G>x = 0and g(x) 6= 0, sin
e otherwise g is 
onstant on ea
h set S� def= fx : G>x = �g and it follows thatg(x) is linear in G>x (sin
e g is linear and only depends on G>x). Furthermore, at most half ofthe kernel of G evaluates to 0 under g, sin
e these ve
tors form a subgroup. Thus, in this 
ase (i.e.,5Indeed, our reasoning inter
hanges the roles of fun
tion and argument between h and its argument, but re
allingthat h is linear it is a
tually the 
ase that the roles of fun
tion and argument are �
ti
ious, when we asso
iated thelinear fun
tion h with its 
oeÆ
ient sequen
e, denoted u. Indeed, if h(z) = hu; zi = Pti=1 uizi mod 2, then u andz a
tually play the same role. Our re
onstru
tion of the bits of u, viewed as h(10t�1); :::; h(0t�11), by obtaining anoisy version of C(u) = `1(u) � � � `T (u), where ea
h `i(u) equals hu; `ii = h(`i).7



g 62 LS), the se
ond 
he
k reje
ts with probability at least 0:5 � 2 � Æ. It follows that if f is �-farfrom LS , then it is reje
ted with probability at least min(�; 1=6) � �=6, where the �rst term is dueto the 
ase that g 2 LS (sin
e in this 
ase f is reje
ted with probability at least Æ � �) and these
ond term is due to the 
ase that g 62 LS (sin
e in this 
ase f is reje
ted with probability at leastmax(Æ; 0:5 � 2Æ) � 1=6).2.2 Linear fun
tions with at most �n in
uential variablesFor any 
onstant � > 0, let W� denote the 
lass of linear fun
tions with at most �n in
uentialvariables. That is, W� = LS for S = fv : wt(v) � �ng, where wt(v) = jfi : vi = 1gj.Conje
ture 2.5 Testing W0:5 requires 
(n) queries, even when allowing adaptive testers of two-sided error.If true, then (by using te
hniques as in the proof of Theorem 2.3) it will follow that, for any fun
tion� : N! [0; 1℄, testing W� requires 
(�(n) � n) queries. We present two partial results that supportConje
ture 2.5: the �rst is an 
(n) lower bound for non-adaptive testers and the se
ond is an
(pn) lower bound for general (adaptive) testers. In parti
ular, this establishes Theorem 4.2.2.1 Linear lower bound for non-adaptive testersWe show that Conje
ture 2.5 holds when restri
ted to non-adaptive testers.Proposition 2.6 Testing W0:5 requires 
(n) non-adaptive queries, even when allowing two-sidederror.Proof: We 
onsider two 
lasses of linear fun
tions, denoted good and bad, su
h that good �W0:5, whereas bad \W0:5 = ;, whi
h implies that every fun
tion in bad is 0:5-far from W0:5. Form = n=2, ea
h of these fun
tions will be spe
i�ed by an index j0 2 [m℄ and a sequen
e of m bits�1; :::; �m 2 f0; 1g, Spe
i�
ally, we let gj0;�1;:::;�m denote the linear fun
tion fv su
h thatv = �1�1 � � � �j0�1�j0�100�j0+1�j0+1 � � � �m�m; (2)and let good = fgj0;�1;:::;�m : j0 2 [m℄; �1; :::; �m 2 f0; 1gg. Similarly, we let bj0;�1;:::;�m denote thelinear fun
tion fv su
h thatv = �1�1 � � � �j0�1�j0�111�j0+1�j0+1 � � � �m�m; (3)and let bad = fbj0;�1;:::;�m : j0 2 [m℄; �1; :::; �m 2 f0; 1gg. Note thatgj0;�1;:::;�m(x) = Xj 6=j0(�jx2j�1 + (1� �j)x2j) (4)bj0;�1;:::;�m(x) = x2j0�1 + x2j0 + Xj 6=j0(�jx2j�1 + (1� �j)x2j) (5)and that ea
h term in these sums equals (x2j�1 + x2j)�j + x2j. That is, the value of a generi
gj0;�1;:::;�m at a query q 2 f0; 1gn equals Pj 6=j0(q2j�1 + q2j)�j +Pj 6=j0 q2j .Note that elements of good 
an be distinguished from elements of bad by using O(log n)adaptive queries. Spe
i�
ally, every query of the form q1 � � � qn 2 f00; 11gm is answered byPj 6=j0 q2j ,whi
h allows �nding j0 by a binary sear
h (sin
e j0 2 fj 2 [m℄ : q2j = 1g if and only if the answer8



to the query q1 � � � qn 2 f00; 11gm di�ers from Pj2[m℄ q2j). Needless to say, on
e j0 is found, wedistinguish any gj0;� from any bj0;� by the query q = 02j0�110n�2j0 (sin
e gj0;�(q) = 0 whereasbj0;�(q) = 1).Our aim is to prove that 
(n) non-adaptive queries are required in order to distinguish, with
onstant probability gap, between a uniformly sele
ted element of good and a uniformly sele
tedelement of bad. Re
all that an element in either sets is sele
ted by spe
ifying an index j0 2 [m℄and an m-bit string. Fixing any sequen
e of queries q = (q(1); :::; q(t)), we shall show that formost 
hoi
es of j0 2 [m℄ the answers to q are distributed identi
ally in the two distributions. Theex
eptional indi
es j0 are 
alled spe
ial and de�ned next.De�nition 2.6.1 An index j 2 [m℄ is 
alled spe
ial with respe
t to a sequen
e of queries q =(q(1); :::; q(t)) if there exists a linear 
ombination of these queries that yields an n-bit string q su
hthat q 2 f00; 11gj�1 � f01; 10g � f00; 11gm�j .It will be 
onvenient to use matrix notation in our analysis. We present q as a matrix, denoted Q,su
h that the ith row of Q equals q(i). The 
ondition in De�nition 2.6.1 asserts that there exists at-ve
tor v su
h that q = vQ is in f00; 11gj�1 � f01; 10g � f00; 11gm�j . Denoting by I2 an n-by-mbinary matrix in whi
h the (i; j) entry is 1 if and only if j = di=2e (i.e., I2 maps the row ve
torq1 � � � qn to p1 � � � pm su
h that pk = q2k�1+ q2k), the latter 
ondition means that qI2 is the jth unitve
tor (i.e., the ve
tor 0j�110m�j). Using this observation, we immediately getClaim 2.6.2 For any sequen
e of t queries, q, there exists at most t indi
es that are spe
ial withrespe
t to q.Proof: For every spe
ial index j, there exists a t-ve
tor v su
h that vQI2 = 0j�110m�j . Thus, thenumber of spe
ial indi
es is a lower bound on the rank of the matrix Q, whi
h is upper boundedby t. 2Claim 2.6.3 Suppose that j0 is not spe
ial with respe
t to q = (q(1); :::; q(t)). Then, when � =(�1; :::; �m) is sele
ted uniformly in f0; 1gm, the t-tuple (gj0;�(q(1)); :::; gj0 ;�(q(t))) is distributed iden-ti
ally to the t-tuple (bj0;�(q(1)); :::; bj0;�(q(t))).Proof: Let I 02 be as I2 ex
ept that the jth0 
olumn is all zeros. Then the value of gj0;� at any query q(i.e., Pj 6=j0(q2j�1+ q2j)�j+Pj 6=j0 q2j) 
an be written as hqI 02; �i+ hqI 01; 1mi, where I 01 is an n-by-mbinary matrix in whi
h the (i; j) entry is 1 if and only if i = 2j and j 6= j0. Likewise, the valueof bj0;� at q is written as hqI 02; �i+ hqI 01; 1mi+ q2j0�1 + q2j0 , where q2j0�1 + q2j0 = hq(I2 � I 02); 1mi.That is, in both 
ases, the randomness 
omes from the �rst term; that is, hqI 02; �i = qI 02�>, sin
eq is �xed and only � is random (i.e., it is uniformly distributed in f0; 1gm). Looking at the entireve
tor of answers, we have(gj0;�(q(1)); :::; gj0;�(q(t)))> = QI 02�> +QI 011m (6)(bj0;�(q(1)); :::; bj0;�(q(t)))> = QI 02�> +Q(I 01 + I2 � I 02)1m (7)where, again, the �rst term is random and the se
ond term is �xed (but di�erent in the two 
ases).Our goal is to show that these two ve
tors of answers are identi
ally distributed.Considering the matrix Q, we �x an arbitrary maximal set of rows su
h that for 
orresponding(generalized) submatrix Q0 it holds that Q0I 02 is of full rank, denote t0. (For simpli
ity, suppose thatQ0 
onsists of the �rst t0 rows of Q.) Note that QI 02 has rank t0, whereas Q may have rank t � t0.9



We �rst observe that in both distributions, the 
orresponding t0 answers are uniformly dis-tributed in f0; 1gt0 , sin
e Q0I 02�> 2 f0; 1gt0 is uniformly distributed. As for ea
h of the other rows,denoted q, it holds that qI 02 is a linear 
ombination of the rows of Q0I 02; that is, qI 02 = u0Q0I 02 forsome t0-ve
tor u0. (Again, note that q need not equal u0Q0.) The key observation (to be provedbelow) is that hq(I2 � I 02); 1mi = q2j0�1+q2j0 is obtained by the same linear 
ombination (i.e., u0) ofthe 
orresponding (q(i)2j0�1 + q(i)2j0)i2[t0℄; that is, hq(I2 � I 02); 1mi equals hu0Q0(I2 � I 02); 1mi. It followsthat gj0;�(q) = qI 02�> + qI 011m (8)= u0Q0I 02�> + qI 011m (9)= u0(gj0;�(q(1)); :::; gj0;�(q(t0)))> � u0Q0I 011m + qI 011m (10)where the se
ond equality uses qI 02 = u0Q0I 02. Similarly,bj0;�(q) = qI 02�> + qI 011m + q(I2 � I 02)1m (11)= u0Q0I 02�> + u0Q0(I2 � I 02)1m + qI 011m (12)= u0(bj0;�(q(1)); :::; bj0 ;�(q(t0)))> � u0Q0I 011m + qI 011m (13)where the se
ond equality uses both qI 02 = u0Q0I 02 and u0Q0(I2�I 02) = q(I2�I 02). Thus, both gj0;�(q)and bj0;�(q) are obtained by the same linear transformation (i.e., x> 7! u0x> + h(q � u0Q0)I 01; 1mi)on the 
orresponding (gj0;�(q(1)); :::; gj0;�(q(t0))) and (bj0;�(q(1)); :::; bj0;�(q(t0))), whi
h in turn areidenti
ally distributed.Thus, it is left to prove that u0Q0(I2 � I 02) = q(I2 � I 02). Assume, towards the 
ontradi
tionthat q(I2 � I 02) 6= u0Q0(I2 � I 02), whi
h implies (q � u0Q0)(I2 � I 02) 6= 0m. On the other hand, re
allthat qI 02 = u0Q0I 02 (i.e., (q � u0Q0)I 02 = 0m), whi
h implies that (q� u0Q0)I2 = (q � u0Q0)(I2 � I 02) isnon-zero and hen
e equals 0j0�110m�j0 (sin
e the image of I2� I 02 is in f0j0�1�0m�j0 : � 2 f0; 1gg).Denoting by i (i > t0) the row index of q in Q, note that v = u00i�t0�110t�i satis�es vQ = u0Q0 + qand so vQI2 = (q � u0Q0)I2 = 0j0�110m�j0 . But this (i.e., the fa
t that QI2 spans 0j0�110m�j0)
ontradi
ts the hypothesis that j0 is not spe
ial with respe
t to q. 2Combining the 
laims, we 
on
lude that the probability gap observed by a query sequen
e q isupper-bounded by the probability that j0 is spe
ial with respe
t to q.2.2.2 A square root lower bound for adaptive testersFor general (adaptive) testers, we prove a lower bound that is weaker than the one in Conje
ture 2.5.Theorem 2.7 (Theorem 4, restated): Testing W0:5 requires 
(pn) queries, even when allowingadaptive testers of two-sided error.Re
alling that the (stru
tured) distributions used in the proof of Proposition 2.6 
an be distin-guished by O(logn) adaptive queries, we 
onsider instead random permutations of the strings inboth distributions. This destroys the stru
ture used by the aforementioned adaptive distinguisher,and yields a proof of Theorem 2.7. The key to the proof is provided by the following lemma, whi
his of independent interest.Lemma 2.8 Let t < pn=6 and let Q be a t-by-n full rank matrix su
h that its rows do not spanthe ve
tor 1n. Suppose that v is uniformly distributed among all n-bit binary ve
tors having weight10



m = n=2. Then, with probability at least 1� (18t2=n), the ve
tor Qv is uniformly distributed overf0; 1gt; that is, there exists a set G that is a subspa
e of the probability spa
e 
 that underlies the
hoi
e of v (i.e., v = v(!) 2 f0; 1gn for every ! 2 
) su
h that1. jGj � (1� (18t2=n)) � j
j.2. For every � 2 f0; 1gt, it holds that Pr!2G[Qv = �℄ = 2�t, where v = v(!).Furthermore, if G0 is a set as guaranteed for the matrix Q0 obtained by omitting a row of Q, thenthere exists a set G � G0 that satis�es the foregoing 
onditions with respe
t to Q.Note that the requirement that Q is full rank and does not span 1n is essential; spe
i�
ally, for anyv of weight m it holds that h1n; vi = m mod 2.Proof: We view the uniform distribution over fv 2 f0; 1gn : wt(v) = mg as generated by thefollowing two-step random pro
ess:1. Sele
t uniformly a partition � of [n℄ intom ordered pairs, let �(j) denote the jth pair, and �1(j)(resp., �2(j)) denote the �rst (resp., se
ond) element of the jth pair (i.e., �(j) = (�1(j); �2(j))).2. Sele
t uniformly a string v = (v1; :::; vn) 2 f0; 1gn su
h that v�1(j) = 1� v�2(j) holds for everyj 2 [m℄. That is, we sele
t uniformly � = (�1; :::; �m) 2 f0; 1gm and determining v su
h thatv�1(j) = �j (and v�2(j) = 1� �j).For � as sele
ted in Step 1 (and the 
orresponding �1; �2), we let I 0� (resp., I 00�) be an n-by-m binarymatrix su
h that entry (i; j) in I 0� (resp., I 00�) equals 1 if and only if i = �1(j) (resp., i = �2(j)).Then, for v and � as above, it holds that v = I 0�� + I 00�(1m + �), whi
h implies thatQv = QI�� +QI 00�1m (14)where I� = I 0� + I 00� . Noting that QI 00�1m is a �xed ve
tor, it follows that the deviation of Qv fromthe uniform distribution over f0; 1gt equals the deviation of QI�� from the uniform distribution.Lastly, the latter distan
e is upper-bounded by the probability that QI� is not full rank. The restof the proof is devoted to upper-bounding this probability.We upper-bound the probability that QI� is not full rank by the sum taken over all 
 2f0; 1gt nf0tg of the probability that 
QI� equals the all-zero ve
tor. Re
all that, by the hypothesis,the ve
tor 
Q is neither the all-zero ve
tor nor the all-one ve
tor. Furthermore, when we vary 
in f0; 1gt n f0tg and 
onsider any t linearly independent 
olumns of Q, we see all possible 2t � 1non-zero patterns. It follows that, for every k 2 [t℄, the 
ardinality of f
2f0; 1gt nf0tg : wt(
Q)�kgis upper-bounded by Pi2[k℄ �ti�. Similarly, for every k 2 [t℄, the 
ardinality of f
 2 f0; 1gt n f0tg :n� wt(
Q)�kg is upper-bounded by 1 +Pi2[k℄ �ti�, where the added 1 is due to the 
ase that thepattern 1t appears in these k 
olumns (but even then 
Q 6= 1n). Hen
e, for every k 2 [t℄:jf
2f0; 1gt n f0tg : min(wt(
Q); n� wt(
Q))�kgj � 1 + 2 Xi2[k℄ ti!;: (15)Next, �xing any 
 2 f0; 1gt n f0tg, we upper-bound the probability that 
QI� is all-zeros. Notethat 
QI� is all-zeros if and only if all pairs in the partition � are \mono
hromati
" (i.e., forevery j 2 [m℄ it holds that the �1(j)th and �2(j)th positions in 
Q have the same value, where11



�(j) = (�1(j); �2(j))). Letting w = wt(
Q), and denoting by #pairs(x) the number of partitionsof x elements to pairs, we havePr�[
QI� = 0n℄ = #pairs(w) �#pairs(n� w)#pairs(n) = �n=2w=2��nw� (16)Indeed, if w is odd, then this probability equals zero. Using Eq. (16), we getPr�[9
 6= 0t s.t 
QI� = 0n℄ � X
6=0t Pr�[
QI� = 0n℄ (17)� Xw2[m℄\f2i:i2Ng X
 : wt(
Q)2fw;n�wg �n=2w=2��nw� (18)< 3 Xk2[t℄\f2i:i2Ng  tk � 1!+  tk!! � �n=2k=2��nk� (19)where the last inequality optimizes the 
ontribution of the various 
's a

ording to the weight of
Q, while using Eq. (15). Next, using �n=2k=2�2 = o(�nk�), we upper-bound Eq. (19) bytXk=2 tk! �  nk!�1=2 < tXk=2(3t=k)k � (k=n)k=2 (20)= tXk=2(9t2=nk)k=2 (21)Finally, using t < pn=6, we upper-bound Eq. (21) by 2 � (9t2=n), and the lemma follows.Proof of Theorem 2.7: Again, we 
onsider two 
lasses of linear fun
tions, denoted good andbad, su
h that good � W0:5, whereas bad \W0:5 = ;, whi
h implies that every fun
tion in badis 0:5-far from W0:5. This time, however, the partition of [n℄ to blo
ks is not �xed but is ratherrandom.That is, for m = n=2, we 
onsider a uniformly 
hosen mat
hing of [n℄ into m ordered pairs, anddenote the jth pair in � by �(j) = (�1(j); �2(j)). For every su
h � and j0 2 [m℄, we let g�;j0;�1����mdenote the linear fun
tion fv su
h that v = (v1; :::; vn) satis�es (1) v�1(j0) = v�2(j0) = 0 and (2) forevery j 2 [n℄ n fj0g it holds that v�1(j) = 1 � v�2(j) = �j. The fun
tion b�;j0;�1����m is de�nedsimilarly, ex
ept that 
ondition (1) is repla
ed by v�1(j0) = v�2(j0) = 1. Now, good 
onsists of allthe fun
tions g�;j0;�1����m , whereas bad 
onsists of all the fun
tions b�;j0;�1����m .The foregoing des
ription 
orresponds to the des
ription of the distribution of (n� 2)-bit longstrings of weight m� 1 = (n� 2)=2 provided in the proof of Lemma 2.8. Indeed, the distributionsdes
ribed there 
orrespond to setting the 
oordinates �1(j0) and �2(j0) to zero, whi
h indeed �tsthe de�nition of g�;j0;�. Here, however, it will be more 
onvenient to 
onsider the sub
lassesgoodi1;i2 and badi1;i2 de�ned by 
onditioning the distribution over all (�; j0; �)-indexed fun
tionson �(j0) = (i1; i2). We thus 
onsider the following generi
 randomized pro
ess:1. Sele
t i1 6= i2 uniformly in [n℄.2. Uniformly sele
t j0 2 [m℄ and an m-way partition into ordered pairs, �, su
h that �(j0) =(i1; i2). Uniformly sele
t � 2 f0; 1gm. Output g�;j0;� (resp., b�;j0;�).12



Indeed, depending on the 
ase used in the last step (i.e., outputting g�;j0;� or b�;j0;�), this pro
essoutputs a fun
tion uniformly distributed in either good or bad. It will be instru
tive to thinkof this sele
tion as 
onsisting of two steps: First, a pair (i1; i2) is sele
ted, and next we sele
t afun
tion uniformly in goodi1;i2 (resp., badi1;i2).We 
onsider the sequen
e of queries in the order they were issued, and evaluate the situationafter ea
h query. For ea
h pre�x of the sequen
e of queries, q = (q(1); :::; q(t)), and every �xed pair(i1; i2) sele
ted as above, we say that the pair (i1; i2) is spe
ial w.r.t q if q(1); :::; q(t) spans a ve
torof weight in f0; 1; 2; n � 2; n � 1; ng with the ex
eptional positions belonging to fi1; i2g. That is, if(i1; i2) is spe
ial w.r.t q then q(1); :::; q(t) span a ve
tor q that satis�es the following 
ondition: thereexists a � 2 f0; 1g su
h that for every i 2 [n℄ n fi1; i2g it holds that qi = � .We may assume that the ve
tors in q are linearly independent, be
ause all fun
tions 
onsid-ered are linear and so their values at any linear 
ombination of the q(j)'s is determined by the
orresponding answers. Likewise, we may assume that the ve
tors in q do not span 1n, sin
e allfun
tions that we 
onsider evaluate to (m � 1) mod 2 at 1n. Thus, if (i1; i2) is spe
ial w.r.t q,then it is the 
ase that q spans a ve
tor q su
h that wt(q) 2 f1; 2; n � 2; n � 1g (i.e., qi = � forevery i 2 [n℄ n fi1; i2g and qi = 1 � � for some i 2 fi1; i2g). We upper-bound the number, M ,of spe
ial pairs (w.r.t q = (q(1); :::; q(t))) as follows. We 
onsider a graph in whi
h these pairs areverti
es and edges 
onne
t pairs that have non-empty interse
tion. Then, ea
h vertex has degree atmost 4n, and hen
e the graph 
ontains an independent set of size M=4n. Considering the ve
tors
orresponding to these pairs (i.e., or ea
h pair (i1; i2) we 
onsider a ve
tor q su
h that qi = � forevery i 2 [n℄ n fi1; i2g and qi = 1 � � for some i 2 fi1; i2g), we obtain at least M=8n independentve
tors (i.e., ve
tors that use the same value � and 
orrespond to disjoint pairs). Thus, M=8n � t,and it follows that the number of spe
ial pairs is at most 8tn.Fixing a pair (i1; i2) and letting Q+ denote the t-by-n matrix obtained by using the q(i)'s asrows in a matrix, we let Q denote the t-by-(n � 2) matrix obtained from Q+ when omitting the
olumns i1 and i2. Note that if (i1; i2) is not spe
ial w.r.t q, then Q is full rank and its rows do notspan 1n�2, be
ause 
Q = �n�2 (for 
 6= 0t) implies that (i1; i2) is spe
ial w.r.t q. Thus, in this 
ase,the 
onditions of Lemma 2.8 hold (ex
ept that here the number of 
olumns is n� 2 rather than n).Our analysis pro
eeds in iterations 
orresponding to the queries made by the adaptive tester. Forevery t, we denote the 
orresponding t-by-n matrix of queries by Q(t), and denote the 
orrespondingset of non-spe
ial pairs of indi
es by P (t). Starting with t = 1, we invoke Lemma 2.8 on the matri
esQ obtained from Q(1) = q(1) by dropping ea
h (i1; i2) 2 P (1), where q(1) is oblivious of everything(sin
e it is the �rst query issued by the tester). We obtain 
orresponding sets G(1)i1;i2 that satisfy thetwo 
onditions of the lemma, whi
h means that for every (i1; i2) 2 P (1) 
onditioned on ! 2 G(1)i1;i2the answer seen by the tester is uniformly distributed (regardless of whether the answer is obtainedfrom a random fun
tion in goodi1;i2 or in badi1;i2). We stress that, for any (i1; i2) 2 P (1), these
ond query of the tester will be distributed identi
ally, when 
onsidering the exe
utions that
orrespond to a uniformly sele
ted ! 2 G(1)i1;i2 . Fo
using only on these exe
utions, we let q(2)des
ribe the distribution of the se
ond query, whi
h is oblivious of (i1; i2) 2 P (1), and 
onsider the
orresponding set P (2). (Indeed, q(2) as well as P (2) are random variables, but we shall treat themas if they were �xed, while noting that their distribution is independent of (i1; i2) 2 P (1).)6Likewise, in the tth iteration, we invoke Lemma 2.8 on the matri
es Q obtained from Q(t) bydropping ea
h (i1; i2) 2 P (t), and obtain sets G(t)i1;i2 � G(t�1)i1;i2 . The fa
t that the sets G(t)i1;i2 satisfythe two 
onditions of the lemma means that, for every (i1; i2) 2 P (t), 
onditioned on ! 2 G(t)i1;i2 the6A
tually, also q(1) and P (1) are random variables, but their independen
e of (i1; i2) introdu
ed later is trivial.13



answer seen by the tester is uniformly distributed (regardless of whether the answer is obtainedfrom a random fun
tion in goodi1;i2 or in badi1;i2). So again, for any (i1; i2) 2 P (t), the next query(i.e., t+1st query) of the tester will be distributed identi
ally, when 
onsidering the exe
utions that
orrespond to a uniformly sele
ted ! 2 G(t)i1;i2 .This foregoing pro
ess makes sense as long as the sets P (t) and G(t)i1;i2 are not empty. A
tually,we wish the sets P (t) and G(t)i1;i2 to be relatively large (i.e., have high density with respe
t to[n℄ � [n℄ and 
, respe
tively), so that the probability mass of the exe
utions that we 
onsider islarge. Re
alling the upper bound on the number of spe
ial pairs, we have jP (t)j = (1 � o(1)) � n2as long as t = o(n), whereas Lemma 2.8 guarantees that jG(t)i1 ;i2 j � (1 � (18t2=n)) � j
j. Thus, fort = pn=9, with probability at least (1 � o(1)) � 7=9 > 2=3, a random pair (i1; i2) is in P (t) and! 2 G(t)i1;i2 . In this 
ase, the answers to the t adaptively 
hosen queries are distributed identi
allyregardless of whether the answers are from a random fun
tion in good or from a random fun
tionin bad. Thus, the statisti
al gap between random fun
tions in good and in bad that 
an beobserved by t adaptive queries is smaller than 1=3, and the theorem follows.On the tightness of the analysis. As we show next (in Proposition 2.9), Lemma 2.8 providesan a

urate pi
ture of the deviation (from the uniform distribution) of the answers to individualqueries (i.e., the 
ase of t = 1). Thus, improvements are possible only with respe
t to the handlingof t > 1, where the hope is to redu
e the deviation upper bound from its 
urrent value of O(t2=n)to a possible value of O(t=n).Proposition 2.9 Suppose that v is uniformly distributed among all n-bit binary ve
tors havingweight m = n=2. Then, for any q 2 f0; 1gn n f0n; 1ng, the value of hq; vi equals 1 with probability12 + �2(wt(q)) � (1� 2�4(wt(q))) � � n=2wt(q)=2�� nwt(q)� (22)where �i(w) def= 1 if w � 0 (mod i) and �i(w) def= 0 otherwise.Note that for odd w = wt(q) the value of Eq. (22) equals 1/2 (sin
e �2(w) = 0), whereas for even wthe value of Eq. (22) deviates from 1/2 (sin
e �2(w) = 1 and 1� 2�4(wt(q) = �1). Spe
i�
ally, forw � 2 (mod 4) the value of Eq. (22) is stri
tly larger than 1/2 (sin
e �2(w) � (1� 2�4(w)) = 1).7Re
all that (n=2w=2)(nw) is �(w�1=2) � �nw��1=2 (and always smaller than �nw��1=2).Proof: We use the same random pro
ess used in the proof of Lemma 2.8. Referring to the m-waypartition � (sele
ted in the �rst step), we 
all � good if it mat
hes some 1-entry of q with a 0-entryof q (i.e., if there exists j 2 [m℄ su
h that fq�1(j); q�2(j)g = f0; 1g). Note that every � is good ifwt(q) is odd, and that if � is good then for a random v (sele
ted in the se
ond step) the valuehq; vi is uniformly distributed (be
ause the 
ase in whi
h v�1(j) = 1 6= v�2(j) is mat
hed with the
ase in whi
h v�1(j) = 0 6= v�2(j), where j satis�es fq�1(j); q�2(j)g = f0; 1g). On the other hand,if � is not good, then the value hq; vi equals (wt(q)=2) mod 2 (be
ause for every j 2 [m℄ it holdsthat q�1(j) = q�2(j) whereas v�1(j) 6= v�2(j)).8 Thus, it remains to 
ompute the probability that� is not good, whi
h was essentially done in the proof of Lemma 2.8 (
f., Eq. (16)). Re
all that7Likewise, for w � 0 (mod 4) the value of Eq. (22) is stri
tly smaller than 1/2 (sin
e �2(w) � (1� 2�4(w)) = �1).8Indeed, it follows thatPi qivi =Pj q�1(j) = wt(q)=2.14



letting w = wt(q), and denoting by #pairs(x) the number of partitions of x elements to pairs, theprobability that � is not good equals#pairs(w) �#pairs(n� w)#pairs(n) = �n=2w=2��nw� : (23)The 
laim follows.An alternative proof of a linear lower bound for non-adaptive testers. Building onProposition 2.9, one 
an derive an alternative proof of Proposition 2.6. The key new 
omponent isthe following Proposition 2.10, whi
h seems of independent interest.Proposition 2.10 Let t < n=2 and let Q be a t-by-n full rank matrix su
h that its rows do notspan the ve
tor 1n. Suppose that v is uniformly distributed among all n-bit binary ve
tors havingweight m = n=2. Then, the variation distan
e between Qv and the uniform distribution over t-bitstrings is at most t=n.Considering the random pro
ess presented in the proof of Theorem 2.7 (whi
h starts by sele
tinga random pair (i1; i2)), and de�ning spe
ial pairs as in that proof, we establish Proposition 2.6 by
onsidering the 
ase that (i1; i2) is not spe
ial, and then invoking Proposition 2.10 on the residualmatrix. Thus, it is left to prove the latter.Proof: By using a variant of the XOR Lemma (i.e., Item 2 of Lemma A.4), we upper-bound thevariation distan
e by the square root of the sum of the square of the 
orresponding biases. Thatis, we use the upper-boundX�2f0;1gt ���Prv[Qv = �℄� 2�t��� � 12 �s X
2f0;1gtnf0tg jPrv[
Qv = 1℄� Prv[
Qv = 0℄j2 (24)= 12 �vuuut X
2f0;1gtnf0tg0�� n=2wt(
Q)=2�� nwt(
Q)� 1A2 (25)where the equality is due to Proposition 2.9. Using the same reasoning as in the justi�
ation ofEq. (19) (in the the proof of Lemma 2.8), we upper bound Eq. (25) by12 �vuuuut3 Xk2[t℄\f2i:i2Ng  tk � 1!+  tk!! �0��n=2k=2��nk� 1A2 < vuuut tXk=2 tk! �0��n=2k=2��nk� 1A2 (26)< vuut12 � tXk=2 �tk��nk� (27)where the last inequality uses �n=2k=2�2 = o(�nk�). Hen
e, we obtain an upper bound of t=n, and the
laim follows.
15



3 Hardness of Testing a Sub
lass of Width 3 OBDDsWe shall 
onsider the 
lass of linear fun
tions over GF(3), 
onsisting of all su
h fun
tions that havebinary 
oeÆ
ients. That is, for every v 2 f0; 1gn, we 
onsider the fun
tion fv : GF(3)n ! GF(3)de�ned by fv(x) =Pni=1 vixi, where the arithmeti
 is modulo 3. Let BL3 = ffv : v 2 f0; 1gng.Conje
ture 3.1 Testing BL3 requires 
(n) queries, even when allowing adaptive testers of two-sided error.Theorem 3.2 (Theorem 5, restated): Testing BL3 requires 
(pn) queries, even when allowingadaptive testers of two-sided error.Proof: We 
onsider the 
lass bad = fbj0;v : j0 2 [n℄; v 2 f0; 1gng su
h that bj0;v(x) def= fv(x)+xj0 .Note that all fun
tions in bad are linear and that exa
tly half of bad is not in BL3 (sin
e bj0;v 2 BL3if and only if vj0 = 0). Hen
e, with probability 1/2, a uniformly sele
ted fun
tion in bad is 2=3-farfrom BL3. Our goal is to prove that distinguishing a uniformly sele
ted fun
tion in BL3 from auniformly sele
ted fun
tion in bad requires 
(pn) queries.Re
all that an element in either sets is sele
ted by spe
ifying an index j0 2 [n℄ and an n-bitstring. Fixing any sequen
e of queries q = (q(1); :::; q(t)), we shall show that if this sequen
e has a
ertain feature with respe
t to j0, then the answers are distributed almost identi
ally in the twodistributions. This feature is de�ned next, where w is an integer (i.e., we shall use w = pn).De�nition 3.2.1 An index j 2 [n℄ is 
alled w-spe
ial with respe
t to a sequen
e of queries q =(q(1); :::; q(t)) if there exists a linear 
ombination of these queries that yields an n-bit string q su
hthat j 2 supp(q) and jsupp(q)j � w, where supp(q) def= fi : qi 6= 0g.It will be 
onvenient to use matrix notation in our analysis. Presenting q as a matrix, denoted Q,su
h that the ith row of Q equals q(i), the foregoing 
ondition asserts that there exists a t-ve
tor 
su
h that supp(
Q) 
ontains j as well as at most w � 1 other indi
es. Thus, we get:Claim 3.2.2 For any sequen
e of t queries, q, there exists at most w � t indi
es that are w-spe
ialwith respe
t to q.Proof: Let S denote the set of w-spe
ial indi
es with respe
t to q. For every j 2 S, there exists at-ve
tor 
(j) su
h that supp(
(j)Q) 
ontains j as well as at most w � 1 other elements of S. Usinga greedy strategy, we 
an obtain a set I of at least jSj=w elements of S su
h that for every j 2 I itholds that supp(
(j)Q) \ I = fjg. Thus, the rank of Q is lower bounded by jSj=w, and the 
laimfollows. 2Claim 3.2.3 Suppose that j0 is not w-spe
ial with respe
t to q = (q(1); :::; q(t)). Then, for every� 2 f0; 1; 2gt, when v = (v1; :::; vn) is sele
ted uniformly in f0; 1gn, it holds thatPrv[(fv(q(1)); :::; fv(q(t))) = �℄ = Prv[(bj0;v(q(1)); :::; bj0;v(q(t))) = �℄� 2�(w�1) : (28)Proof: For every � 2 f0; 1; 2gn, we denote by Dj0;q(�) the di�eren
e between the two probabilitiesin Eq. (28); that is,Dj0;q(�) def= Prv[(fv(q(1)); :::; fv(q(t))) = �℄ � Prv[(bj0;v(q(1)); :::; bj0;v(q(t))) = �℄: (29)16



Our aim is to prove that the max-norm of Dj0;q(�) is at most 2�(w�1). By using the relation betweenbases (
f. Lemma A.5 (Part 2)),9 it suÆ
es to show that for every 
 2 f0; 1; 2gt it holds thatX�2f0;1;2g ������ X�2S
;� Dj0;q(�)������ � 2�(w�1); (30)where S
;� def= f� 2 f0; 1gt : Pti=1 
i�i = �g denotes the set of all t-bit ve
tors that have 3k + �non-zero entries (for some k). The l.h.s of Eq. (30) equalsX�2f0;1;2g �����Prv " tXi=1 
ifv(q(i)) = �# � Prv " tXi=1 
ibj0;v(q(i)) = �#�����: (31)Using the linearity of both fun
tions, and moving to matrix notation, ea
h term in Eq. (31) equalsPrv[fv(
Q) = � ℄ � Prv[bj0;v(
Q) = � ℄; (32)whi
h equals Prv[
Qv = � ℄� Prv[
Q(v + uj0) = � ℄, where uj0 = 0j0�110n�j0 is the jth0 unit ve
tor.Thus, Eq. (31) equals X�2f0;1;2g ���Prv h
Qv = � ℄ � Prv[
Qv + 
Quj0 = �i���: (33)To upper-bound Eq. (33), we 
onsider two 
ases (regarding the value of 
Quj0). If 
Quj0 = 0,then Eq. (33) equals zero. On the other hand, if 
Quj0 6= 0, then supp(
Q) 
ontains j0, and itfollows that jsupp(
Q)j > w (be
ause otherwise j0 would have been w-spe
ial w.r.t q). But in this
ase, it follows that P�2f0;1;2g jPrv[
Qv = � ℄ � 13 j < 2�w (see Eq. (58)) and the same holds forPrv[
Qv = � � 
Quj0 ℄. Thus, Eq. (33) is upper-bounded by 2 � 2�w, and the 
laim follows. 2Armed with Claims 3.2.2 and 3.2.3, we prove the theorem by 
onsidering the sequen
e of queriesin the order they were issued. Setting w = pn, we evaluate the situation after ea
h additionalquery. Using Claim 3.2.3, we note that as long as j0 is not spe
ial with respe
t to the queries made,the answers are almost oblivious of whether the fun
tion is uniformly sele
ted in bad or in BL3 inthe sense that the probabilisti
 deviation on ea
h possible sequen
e of answers (i.e., �) is at most2�(w�1). Re
alling that the fun
tions in BL3 are oblivious of j0, it follows that the answers obtainedfrom a random fun
tion in bad are also almost oblivious of j0 (as long as j0 is not spe
ial withrespe
t to the queries made). Noting that the answers determine the next query, we infer that thisquery is also almost oblivious of the 
urrently non-spe
ial value of j0, and so the probability thatj0 is spe
ial with respe
t to the augmented sequen
e of queries 
an be bounded using Claim 3.2.2.Details follow.We may assume, (as usual and) without loss of generality, that the tester is deterministi
, andso the query sequen
e is determined adaptively by the previous answers. Intuitively, we 
onsiderthe 3t�1 possible t-query sequen
es that arise from ea
h possible sequen
e of t answers. For ea
hsu
h sequen
e, we �rst dispose of the 
ase that j0 is spe
ial with respe
t to it, whi
h by Claim 3.2.2happens with probability at most tw=n. Assuming that j0 is not spe
ial with respe
t to thatsequen
e, we 
on
lude (by Claim 3.2.3) that the 
orresponding sequen
e of answers o

urs with9Spe
i�
ally, letting ! denote the third root of unity, it suÆ
es to upper-bound jP�2GF(3) !�P�2S
;� Dj0;q(�)j,where S
;� = f� :Pi 
i�i = �g. Instead, we upper-bound ea
h of the three terms of the outer summation (and usej!j = 1). 17



about the same probability in both distributions. Over all, the statisti
al distan
e between theobserved answers is at most (tw=n)+3t�1 �2�(w�1), and the theorem follows. Formally, letX = X(v)be a random variable representing the sequen
e of answers that the tester sees when querying auniformly distributed fun
tion in BL3 (i.e., the fun
tion fv, where v is uniformly distributed inf0; 1gn). Likewise, let Yj = Yj(v) be a random variable representing the sequen
e of answersthat the tester sees when querying bj;v, where v is uniformly distributed in f0; 1gn. Then, we areinterested in � def= 12 � X�2f0;1;2gt ������Pr[X=�℄� 1n � Xj2[n℄Pr[Yj=�℄������ (34)� 12n � X�2f0;1;2gt Xj2[n℄��;j ; (35)where ��;j def= jPr[X=�℄� Pr[Yj=�℄j. (36)For every i 2 [t℄ and � 2 f0; 1; 2gt , we let Si� denote the set of indi
es that are w-spe
ial withrespe
t to the �rst i queries indu
ed by the answer sequen
e � (or rather the (i�1)-trit long pre�xof �), and de�ne S0� = ;. Then, � is upper-bounded by12n � X�2f0;1;2gt tXi=1 Xj2Si�nSi�1� ��;j + 12n � X�2f0;1;2gt Xj2[n℄nSt���;j : (37)The se
ond large sum in Eq. (37) is easily bounded by using Claim 3.2.3; spe
i�
ally, in this 
aseea
h ��;j is upper-bounded by 2�(w�1), and we have at most 3t � n su
h terms. Thus we fo
us onupper-bounding the �rst large sum; that is, we seek to upper-boundX�2f0;1;2gt tXi=1 Xj2Si�nSi�1� ��;j = tXi=1 X�2f0;1;2gt Xj2Si�nSi�1� ��;j : (38)The key observation is that Si� only depends on the (i � 1)-long pre�x of �, denoted �0, and so(abusing notation) we may write Si� = Si�0 . Thus, we write Eq. (38) as Pti=1�(i), where�(i) def= X�02f0;1;2gi�1 Xj2Si�0nSi�1�0 X�002f0;1;2gt�(i�1)��0�00;j ; (39)and upper-bound ea
h �(i) as follows�(i) � X�02f0;1;2gi�1 Xj2Si�0nSi�1�0 X�002f0;1;2gt�(i�1) �Pr[X=�0�00℄ + Pr[Yj=�0�00℄� (40)= X�02f0;1;2gi�1 Xj2Si�0nSi�1�0 �Pr[X 0=�0℄ + Pr[Y 0j =�0℄� (41)where X 0 (resp., Y 0j ) represents the (i�1)-long pre�x of X (resp., Yj). By Claim 3.2.3, for j 62 Si�1�0 ,we have jPr[X 0=�0℄� Pr[Y 0j =�0℄j � 2�(w�1), and so Eq. (41) is upper-bounded byX�02f0;1;2gi�1 Xj2Si�0nSi�1�0 �2 � Pr[X 0=�0℄ + 2�(w�1)� (42)18



= X�02f0;1;2gi�1 �jSi�0 j � jSi�1�0 j� � �2 � Pr[X 0=�0℄ + 2�(w�1)� (43)< X�2f0;1;2gt �jSi�j � jSi�1� j� � �2 � Pr[X=�℄ + 2�(w�1)� ; (44)where the inequality is due to the 2�(w�1) terms (i.e., we used the fa
t that Pr[X 0 = �0℄ equalsP�002f0;1;2gt�(i�1) Pr[X=�0�00℄). Combining Eq. (38){(44), we obtaintXi=1 X�2f0;1;2gt Xj2Si�nSi�1� ��;j < tXi=1 X�2f0;1;2gt �jSi�j � jSi�1� j� � �2 � Pr[X=�℄ + 2�(w�1)� (45)= 3t � 2�(w�1) + 2 � X�2f0;1;2gt Pr[X=�℄ � tXi=1 �jSi�j � jSi�1� j� (46)= 3t � 2�(w�1) + 2 � X�2f0;1;2gt Pr[X=�℄ � jSt�j (47)� 3t � 2�(w�1) + 2wt � X�2f0;1;2gt Pr[X=�℄ ; (48)and so Eq. (37) is upper-bounded by 12n � ((3t � 2�(w�1) + 2wt) + 3t � n � 2�(w�1)), whi
h equals3t�2�(w�1)n + wtn . For w = 2t = pÆn, the statisti
al distan
e between the answer sequen
es is at mostÆ + o(1), and the theorem follows.4 Hardness of Testing the Class of Width 4 Realizable Fun
tionsIn this se
tion we establish Theorems 1 and 6.Conje
ture 4.1 Testing the 
lass of fun
tions that are implementable by width-4 OBDDs requires
(n) queries, even when allowing adaptive testers of two-sided error.Theorem 4.2 (Theorem 1, restated): Testing the 
lass of fun
tions that are implementable bywidth-4 OBDDs requires 
(pn) queries, even when allowing adaptive testers of two-sided error.Proof: We 
onsider Boolean fun
tions of 4n-bit long strings, whi
h are quadrati
 polynomialsover GF(2). Spe
i�
ally, these fun
tions are linear 
ombinations of n quadrati
 expressions, whereea
h quadrati
 expression refers to a distin
t blo
k of four variables. A generi
 blo
k, 
ontainingthe variables x1; x2; x3; x4, will 
ontribute a linear 
ombination of x1x3 and x2x4, where the 
ombi-nation x1x3+x2x4 is 
onsidered bad be
ause the expression x0+x1x3+x2x4 
annot be 
omputedby a width-4 OBDDs. Spe
i�
ally, letting f0(x1; x2; x3; x4) = 0, f1(x1; x2; x3; x4) = x1x3, andf2(x1; x2; x3; x4) = x2x4, we will 
onsider the 
lass good that 
onsists of fun
tions of the formg�1;:::;�n su
h that g�1;:::;�n(x1; :::; x4n) = Xj2[n℄ f�j (x4(j�1)+1; :::; x4(j�1)+4); (49)where �1; :::; �n 2 f0; 1; 2g. Note that ea
h su
h fun
tion 
an be 
omputed by a width-4 OBDD,whi
h uses one \bit" to store the a

umulated sum and another \bit" to 
ompute the value of the19




urrent blo
k. In 
ontrast, the 
lass bad 
onsists of fun
tions of the form bj0;�1;:::;�n su
h thatbj0;�1;:::;�n(x1; :::; x4n) = Xj2[n℄nfj0g f�j (x4(j�1)+1; :::; x4(j�1)+4)+ x4(j0�1)+1x4(j0�1)+3 + x4(j0�1)+2x4(j0�1)+4 (50)Sin
e, ex
ept when �1 � � � �j0�1 = 0j0�1, the jth0 blo
k 
an not be 
omputed by a width-4 OBDD(while maintaining the a

umulated sum), it follows that su
h fun
tions are 1=16-far from the setof fun
tions that are 
omputable by width-4 OBBDs (see Lemma A.6, whi
h is a simple version ofYao's XOR Lemma for OBDDs, whi
h is also an over-kill).Our goal is to prove that a random fun
tion in good is hard to distinguish from a randomfun
tion in bad, where \random" does not ne
essarily refer to the uniform distribution over the
orresponding set (but rather any two distributions will do). Spe
i�
ally, we 
onsider a distributionover good, in whi
h ea
h �i is set to 0 with probability 1=2 and is uniformly distributed in f1; 2gotherwise. (This random sele
tion pro
ess determines a fun
tion g�1;:::;�n 2 good.) We 
onsider arelated distribution over good[bad, where �1; :::; �n are sele
ted as above, the index j0 is sele
teduniformly in [n℄, and the fun
tion being determined is g�1;:::;�n + aj0 , where aj0(x1; :::; x4n) =x4(j0�1)+1x4(j0�1)+3 + x4(j0�1)+2x4(j0�1)+4. Note that the resulting fun
tion is in bad if and onlyif both �1 � � � �j0�1 6= 0j0�1 and �j0 = 0, whi
h means that it is in bad with probability 12 � o(1).Our analysis redu
es to analyzing related families of linear fun
tions de�ned over variablesy1; :::; y2n su
h that y2(j�1)+1 = x4(j�1)+1x4(j�1)+3 and y2(j�1)+2 = x4(j�1)+2x4(j�1)+4. Spe
i�
ally,we �rst show that distinguishing the foregoing two distributions (of quadrati
 fun
tions) leads todistinguishing the two 
orresponding distributions of linear fun
tions, where in both the latterdistributions �1; :::; �n and j0 are sele
ted as above (i.e., j0 is distributed uniformly in [n℄ andea
h �i is set to 0 with probability 1=2 and is uniformly distributed in f1; 2g otherwise). Lettingf 00(y1; y2) = 0, f 01(y1; y2) = y1, and f 02(y1; y2) = y2, the linear fun
tions in these two distributionsare: g0�1;:::;�n(y1; :::; y2n) = Xj2[n℄f 0�j (y2(j�1)+1; y2(j�1)+2) (51)b0j0;�1;:::;�n(y1; :::; y2n) = g0�1;:::;�n(y1; :::; y2n) + y2(j0�1)+1 + y2(j0�1)+2 : (52)The redu
tion between these distinguishing problems is quite straightforward: Given a distinguisherD for the original distinguishing problem (i.e., regarding quadrati
 fun
tions), we obtain a distin-guisherD0 for the distinguishing problem regarding linear fun
tions. The new distinguisher (i.e., D0)invokes D and serves ea
h query q = (q1; :::; q4n) that it issues (to its quadrati
 ora
le) by forwardingthe query q0 = (q01; :::; q02n) to the a
tual (linear fun
tion) ora
le, where q02(j�1)+1 = q4(j�1)+1q4(j�1)+3and q02(j�1)+2 = q4(j�1)+2q4(j�1)+4 for every j 2 [n℄. Thus, when given ora
le a

ess to g0�1;:::;�n,we emulate an exe
ution of D with g�1;:::;�n, whereas when given ora
le a

ess to b0j0;�1;:::;�n, weemulate an exe
ution of D with bj0;�1;:::;�n.We now turn to prove that distinguishing the two aforementioned distributions on linear fun
-tions requires 
(pn) queries. Our proof follows the stru
ture of the proof of Theorem 3.2. Spe
if-i
ally, in analogy to De�nition 3.2.1, we say that j 2 [n℄ is w-spe
ial with respe
t to a sequen
eof queries q if there exists a linear 
ombination of these queries that yields a 2n-bit string q su
hthat f2j � 1; 2jg \ supp(q) 6= ; and jsupp(q)j � w. Analogously to Claim 3.2.2, the number ofw-spe
ial indi
es with respe
t to a sequen
e of t queries is bounded by w � t. Next, analogously toClaim 3.2.3 we upper-bound the deviation of the answers whenever j0 is not w-spe
ial with respe
tto the sequen
e of queries. 20



Claim 4.2.1 Suppose that j0 is not w-spe
ial with respe
t to q = (q(1); :::; q(t)) 2 (f0; 1g2n)t. Then,for every � 2 f0; 1gt, when � = (�1; :::; �n) is sele
ted as above, it holds thatPr[(g0�(q(1)); :::; g0�(q(t))) = �℄ = Pr[(b0j0;�(q(1)); :::; bj0;�(q(t))) = �℄� 2�
(w) : (53)Proof: Like in the proof of Claim 3.2.3, it suÆ
es to show that, for every 
 2 f0; 1gt,���Pr� �g0�(
Q) = 1� � Pr� hb0j0;�(
Q) = 1i��� � 2�
(w); (54)where Q is the matrix with the q(i)'s as rows. Let q = 
Q and re
all that b0j0;�(q) = g0�(q)+q2j0�1+q2j0 . We 
onsider two 
ases. If q2j0�1 = q2j0 = 0, then the l.h.s of Eq. (54) equals zero. Otherwise(i.e., f2j0�1; 2j0g\ supp(q) 6= ;), sin
e j0 is not w-spe
ial, it holds that jsupp(q)nf2j0�1; 2j0gj �w � 1. Hen
e, there exists at least (w � 1)=2 indi
es j in [n℄ n fj0g su
h that (q2j�1; q2j) 6= (0; 0),whi
h means that for ea
h su
h j the value of f 0�j (q2(j�1)+1; q2(j�1)+2) is not �xed when �j is randomas above. Spe
i�
ally, for ea
h su
h j (i.e., j su
h that (q2j�1; q2j) 6= (0; 0)), it holds thatPr�j hf 0�j (q2(j�1)+1; q2(j�1)+2) = 1i = ( 14 if q2(j�1)+1 + q2(j�1)+2 = 112 otherwise (i.e., q2(j�1)+1 = q2(j�1)+2 = 1) (55)and these events, whi
h refer to di�erent j's, are independent. Re
alling Eq. (51)&(52), we 
on
ludethat ea
h of the two probabilities in the l.h.s of Eq. (54) is 12 � 2�
(w), and the 
laim follows. 2The rest of the analysis mimi
s the proof of Theorem 3.2.Establishing Theorem 6. In the 
ourse of the proof of Theorem 4.2 we a
tually established alower bound on the 
omplexity of testing the set of linear fun
tions de�ned in Eq. (51). Lettingg00�(z1; :::; z3n) equal g0�(z1; z2; z4; z5; :::; z3n�2; z3n�1) we obtain a set of linear fun
tions in whi
hthere are no 
onse
utive in
uential variables. Theorem 6 follows by observing that the argumentestablishing the hardness of testing the former property also establishes the hardness of testing thelatter property.A
knowledgmentsPart of this work is based on joint resear
h with Dana Ron, who refused to 
o-author it.
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Appendix: Te
hni
al Ba
kgroundThis appendix 
ontains ba
kground material that is known, but may not be easily a

essible oth-erwise. In parti
ular, Se
tion A.1 reprodu
es Guy Even's upper bound on the bias of random n-bitstrings of weight that is a multiple of 3 (
f. [8℄); Se
tion A.2 reprodu
es a known proof of UmeshVazirani's Information Theoreti
 XOR Lemma (as well as its generalization to GF(p) for any primep); and Se
tion A.3 provides a simple proof of Yao's XOR Lemma for OBDDs (and other relatedmodels of 
omputation).A.1 The bias of the Mod 3 Sample Spa
eReferring to the uniform distribution over n-bit strings having weight that is a multiple of 3, wepresent a proof that this distribution has an exponentially vanishing bias, where the bias of adistribution is as de�ned in Eq. (60).Proposition A.1 [8℄: Let S be the set of all n-bit strings having a number of 1-entries that isdivisible by three. Then, S is an 2�O(n)-bias sample spa
e.Proof: We let X = X1 � � �Xn denote a uniformly distributed n-bit string. We �rst 
onsider thedistribution of Pni=1Xi mod 3. Letting p�(n) def= Pr[Pni=1Xi � � (mod 3)℄, we note thatp�(n) = 12 � p�(n� 1) + 12 � p��1(n� 1) = 12 � p�+1(n� 1)2 (56)and it follows that jp�(n)� 13 j = 12 � jp�+1(n� 1)� 13 j. Thus, we getX�2f0;1;2g ����p�(n)� 13 ���� = 12 � X�2f0;1;2g ����p�(n� 1)� 13 ���� (57)and similarly for max�2f0;1;2gfjp�(n � 1) � 13 jg. Re
alling that p0(1) = p1(1) = 12 , it follows thatp�(n) = 13 � 2�n. We also mention (for use in the proof of Claim 3.2.3) thatX�2f0;1;2g ����p�(n)� 13 ���� = 23 � 2�(n�1) (58)We now turn to analyze the bias of the various XORs. That is, for any �xed non-zero stringq 2 f0; 1gn, we 
onsider the probabilityPr "hq;Xi=0 ���� nXi=1Xi � 0 (mod 3)# = Pr[hq;Xi=0 ^Pni=1Xi � 0 (mod 3)℄Pr[Pni=1Xi � 0 (mod 3)℄We know that the denominator is 13 � 2�n, and so we fo
us on the numerator. We distinguish two
ases, a

ording to the weight of q, where we assume (w.l.o.g.) that q = 1wt(q)0n�wt(q).Case 1: w def= wt(q) � n=2. In this 
ase, we havePr "hq;Xi=0 ^ nXi=1Xi � 0 (mod 3)# = Pr " wXi=1Xi � 0 (mod 2) ^ nXi=1Xi � 0 (mod 3)#= 12 � Pr " nXi=1Xi � 0 (mod 3) ���� wXi=1Xi � 0 (mod 2)#24



We note that, for any �xing of values to X1; :::;Xw and every � 2 f0; 1; 2g, it holds thatPr24 nXi=w+1Xi � � (mod 3)35 = p�(n� w) = 13 � 2�(n�w)and using w � n=2 we get that Pr[hq;Xi=0 ^Pni=1Xi � 0 (mod 3)℄ = 16 � 2�n=2.Case 2: w def= wt(q) � n=2. In this 
ase, we usePr "hq;Xi=0 ^ nXi=1Xi � 0 (mod 3)# = Pr" nXi=1Xi � 0 (mod 6)#and observe thatPni=1Xi � 0 (mod `) represents a random walk on a dire
ted `-
y
le wherewe traverse an edge with probability 1=2 and otherwise remain in pla
e. It 
an be easily seenthat the 
orresponding Markov Chain has a se
ond eigenvalue of 1 � �(`�2), and so theprobability of rea
hing any �xed node in an n-step random walk is 1̀ � 2�
(n=`2).The 
laim follows.A.2 The Information Theoreti
 XOR-LemmaThe Information Theoreti
 XOR-Lemma, 
ommonly attributed to Umesh Vazirani (see also [1,Apdx℄), relates two measures of the \randomness" of distributions over n-bit long strings.� The statisti
al di�eren
e from uniform; namely, the statisti
al di�eren
e (variation di�eren
e)between the \target" distribution and the uniform distribution.� The maximum bias of the xor of 
ertain bit positions; namely, the bias of a 0-1 randomvariable obtained by taking the ex
lusive-or of 
ertain bits in the \target" distribution.The Information Theoreti
 XOR-Lemma asserts that the statisti
al di�eren
e from uniform isupper-bounded by p2n times the maximum bias of the XOR's.Formal setting. Let � be a an arbitrary probability distribution over f0; 1gn and let � denotethe uniform distribution over f0; 1gn (i.e., �(x) = 2�n for every x 2 f0; 1gn). Let x = x1 � � � xn andN def= 2n. The XOR-Lemma relates two \measures of 
loseness" of � to �.� The statisti
al di�eren
e (\variation di�eren
e") between � and �; namely,stat(�) def= 12 �Xx j�(x)� �(x)j (59)� The \maximum bias" of the ex
lusive-or of 
ertain bit positions in strings 
hosen a

ordingto the distribution �; namely,maxbias(�) def= maxS 6=; fj�(fx : �i2Sxi = 0g)� �(fx : �i2Sxi = 1g)jg (60)The XOR-Lemma states that stat(�) � pN � maxbias(�). Its proof is based on viewing distribu-tions as elements in an N -dimensional ve
tor spa
e and observing that the two measures 
onsideredby the lemma are merely two norms taken with respe
t to two di�erent orthogonal bases. Hen
e,the XOR-Lemma follows from a (more general and quite straightforward) te
hni
al 
laim thatrelates norms taken with respe
t to di�erent orthonormal bases.25



The XOR-Lemma and ve
tor spa
es. Probability distributions over f0; 1gn are fun
tionsfrom f0; 1gn to the reals. Su
h fun
tions form a N -dimensional ve
tor spa
e. The standard basis,denoted K, for this spa
e is the orthonormal basis de�ned by the \Kroniker fun
tions" (i.e., theBoolean fun
tions fk� : � 2 f0; 1gng where k�(x) = 1 if x = �). The statisti
al di�eren
ebetween two distributions equals (half) the norm L1 of their di�eren
e taken in the above Kbasis. On the other hand, the maxbias of a distribution equals the maximum \Fourier 
oeÆ
ient"of the distribution, whi
h in turn 
orresponds to the max-norm (norm L1) of the distributiontaken in a di�erent basis. The basis is de�ned by the fun
tions fbS : S � f1; 2; :::; ngg, wherebS(x) = (�1)�i2Sxi . Note that bS(x) = 1 if the ex
lusive-or of the bits fxi : i 2 Sg is 0 andbS(x) = �1 otherwise. The new basis is orthogonal but not orthonormal. We hen
e 
onsider thenormalized basis, denoted F , 
onsisting of the fun
tions fS = 1pN � bS.Notation: Let B be an orthonormal basis and r an integer. We denote by NBr (v) the norm Lrof v with respe
t to the basis B. Namely, NBr (v) = (Pe2Bhe; vir)(1=r), where he; vi is the absolutevalue of the inner produ
t of the ve
tors e and v. We denote by NB1(v) the limit of NBr (v) whenr !1 (i.e., NB1(v) is maxe2Bhe; vi).Clearly, stat(�) = 12 � NK1 (� � �), whereas maxbias(�) = pN � NF1(� � �). Following isa proof of the se
ond equality. Let Æ(x) = �(x) � �(x). Clearly, maxbias(�) = 0, and hen
emaxbias(�) = maxbias(Æ). Also Px Æ(x) = 0, and so Px f;(x) � Æ(x) = 0. We getmaxbias(Æ) = maxS 6=; fjÆ(fx : bS(x)=1g) � Æ(fx : bS(x)=�1g)jg (61)= maxS 6=; (�����Xx bS(x) � Æ(x)�����) (62)= pN �maxS (�����Xx fS(x) � Æ(x)�����) (63)= pN � NF1(Æ) (64)The proof of the XOR-Lemma. The XOR-Lemma follows from the following te
hni
al 
laimClaim A.2 (on bases and norms): For every two orthogonal bases A and B and every ve
tor vNA1 (v) � N � NB1(v) (65)This te
hni
al 
laim has a three line proof:1. For every orthogonal basis A, NA1 (v) � pN � NA2 (v).2. For every pair of orthonormal bases A and B, NA2 (v) = NB2 (v).3. For every orthogonal basis B, NB2 (v) � pN � NB1(v).Using Claim A.2, we getLemma A.3 (The XOR-Lemma): stat(�) � 12 � pN � maxbias(�).Proof: By the above stat(�) = 12 � NK1 (� � �) and maxbias(�) = pN � NF1(� � �), whereasNK1 (� � �) � N � NF1(� � �). 26



Variants. Using small variations on the proof of the Claim A.2, we obtain the following.Lemma A.4 (variants of the XOR-Lemma):1. maxx2f0;1gnfj�(x)� �(x)jg � maxbias(�).2. stat(�) � 12 �qPS 6=; biasS(�)2, where biasS(�) =Px bS(x) � �(x).Proof: The �rst part follows by using NA1(v) � NA2 (v) (instead of NA1 (v) � pN � NA2 (v)), andobtaining NK1(� � �) � pN � NF1(� � �). The se
ond part follows by using NA1 (v) � pN � NB2 (v)and NF2 (� � �) = qPS 6=; biasS(�)2. In both parts we also use bias;(� � �) = 0.Generalization to GF(p), for any prime p. The entire treatment 
an be generalized to dis-tributions over GF(p)n. In this 
ase, we rede�ne N def= pn, and stat(�) denote the statisti
aldi�eren
e between � and the uniform distribution over GF(p)n (
f. Eq. (59)). Letting ! denote thepth root of unity, we generalize Eq. (60) tomaxbias(�) def= max�2GF(3)nnf0gn8<:������ Xe2GF(p)!e � � �nx :Pi2[n℄�ixi � e (mod p)o�������9=; (66)The Fourier basis is generalized analogously: The new basi
 
onsists of the fun
tions fb� : � 2GF(p)ng, where b�(x) = !�i2[n℄�ixi . The normalized basis, denoted F , 
onsists of the fun
tionsf� = N�1=2 � b�. Note that, in the 
ase of p = 2, these de�nitions 
oin
ides with the de�nitionspresented before. By following exa
tly the same manipulations as in the 
ase of p = 2, we obtainthe following generalization.Lemma A.5 (The XOR-Lemma, generalized to GF(p)): Let � be an arbitrary distribution overGF(p)n, and let � denote the uniform distribution over GF(p)n.1. stat(�) � 12 � pN � maxbias(�).2. maxx2f0;1gnfj�(x)� �(x)jg � maxbias(�).3. stat(�) � 12 �qPS 6=; biasS(�)2, where biasS(�) =Px bS(x) � �(x).A.3 Yao's XOR Lemma for OBDDsLoosely speaking, Yao's Lemma asserts that unpredi
tability is ampli�ed by taking the ex
lusive-orof values that are individually hard to predi
t. The lemma holds in various 
omputational models(
f., e.g., [12℄), and essentially says that if the predi
ates f1 and f2 
annot be approximated byalgorithms of a 
ertain 
lass any better than with su

ess probability 1+�12 and 1+�22 , respe
tively,then f(y; z) = f1(y) � f2(z) 
annot be approximated by algorithms of a 
ertain 
lass any betterthan with su

ess probability 1+�1�22 . In this appendix we provide a simple proof of this result forthe 
ase of OBDDs.A
tually, the phrasing of the following lemma avoids referen
e to any 
omplexity 
lass. Itonly assumes (unidire
tional) on-line a

ess to the input in the sense that the value of F (y; z) =f1(y) � f2(z) is predi
ted by a fun
tion of the form G(y; z) = g2(g1(y); z), whi
h means that thealgorithm �rst pro
esses y, produ
ing g1(y), and outputs its �nal verdi
t based solely on g1(y) and27



z. Indeed, the reader should 
onsider the 
ase that jg1(y)j � jyj. This applies, in parti
ular, to thebounded-width OBDD model. The a
tual statement is in terms of a redu
ibility argument. It saysthat G might as well have the form �(g1(y)) � g2(a; z), where � : f0; 1g� ! f0; 1g and a 2 f0; 1g�are �xed. This presupposes that 
omputing � Æ g1 is not more 
omplex that 
omputing g1, andthat hardwiring 
onstants is for free. Both assumptions holds in the bounded-width OBDD model.As is usually the 
ase with the XOR Lemma, it is more 
onvenient to work with the �1 notation.Thus, � 2 f0; 1g is repla
ed by (�1)� , and � is repla
ed by multipli
ation.Lemma A.6 Let f1; f2 : f0; 1g� ! f�1g, and g1 : f0; 1g� ! f0; 1g�, g2 : f0; 1g� �f0; 1g� ! f�1g.Then, there exists � : f0; 1g� ! f�1g and a 2 f0; 1g� su
h thatEy;z[(f1(y)f2(z))g2(g1(y); z)℄ � Ey;z[f1(y)f2(z)�(g1(y))g2(a; z)℄ (67)= Ey[f1(y)�(g1(y))℄ �Ez[f2(z)g2(a; z)℄ (68)where y and z are arbitrarily distributed in f0; 1g�, but are independent of one another.In parti
ular, it follows that if f1 and f2 
annot be 
orrelated by a width-w OBDD better than p1and p2, respe
tively, then f(y; z) = f1(y)f2(z) 
annot be 
orrelated by this 
lass better than p1p2.For our purposes, it suÆ
es to have the (even simpler) spe
ial 
ase in whi
h either p1 or p2 equals 1.Proof: The equality is obvious, and so we fo
us on the inequality. Let p1 = max�fEy[f1(y)�(g1(y))gand p2 = maxa;s2f�1gfs � Ez[f2(z)g2(a; z)℄g.De�ne � : f0; 1g� ! R su
h that �(x) def= Ez[f2(z)g2(x; z)℄=p2. Note that by the de�nition of p2we have �(x) 2 [�1;+1℄ for every x (be
ause otherwise jEz[f2(z)g2(x; z)℄j > p2). Combining thede�nition of p1 and a simple probabilisti
 fa
t10, we haveEy[f1(y)�(g1(y))℄ � p1: (69)Substituting �(g1(y)) in Eq. (69), we getEy[f1(y)Ez[f2(z)g2(g1(y); z)℄=p2℄ � p1 (70)whi
h implies Ey;z[f1(y)f2(z)g2(g1(y); z)℄ � p1p2 (71)Plugging in the de�nitions of p1 and p2, we getEy;z[f1(y)f2(z)g2(g1(y); z)℄ � max�;a;sfs �Ey[f1(y)�(g1(y))℄ � Ez[f2(z)g2(a; z)℄g (72)= max�;a fEy[f1(y)�(g1(y))℄ �Ez[f2(z)g2(a; z)℄g (73)and the lemma follows.10The fa
t is that if for every � : f0; 1g� ! f�1g it holds that E[Y �(Z)℄ � p, then the same holds for � :f0; 1g� ! [�1;+1℄. The proof follows by the 
ounterpositive. Assuming that E[Y �(Z)℄ > p holds for some � :f0; 1g� ! [�1;+1℄, we �rst de�ne a random pro
ess � su
h that �(x) = 1 with probability (1 + �(x))=2 and�(x) = �1 otherwise. Then, E[Y�(Z)℄ = E[Y �(Z)℄ > p, be
ause E[�(z)℄ = �(z), and it follows that there exists a� : f0; 1g� ! f�1;+1g (in the support of �) that 
ontradi
ts the hypothesis.28


