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Abstra
t. Informally, an obfus
ator O is an (eÆ
ient, probabilisti
)\
ompiler" that takes as input a program (or 
ir
uit) P and produ
es anew program O(P ) that has the same fun
tionality as P yet is \unintel-ligible" in some sense. Obfus
ators, if they exist, would have a wide vari-ety of 
ryptographi
 and 
omplexity-theoreti
 appli
ations, ranging fromsoftware prote
tion to homomorphi
 en
ryption to 
omplexity-theoreti
analogues of Ri
e's theorem. Most of these appli
ations are based on aninterpretation of the \unintelligibility" 
ondition in obfus
ation as mean-ing that O(P ) is a \virtual bla
k box," in the sense that anything one
an eÆ
iently 
ompute given O(P ), one 
ould also eÆ
iently 
omputegiven ora
le a

ess to P .In this work, we initiate a theoreti
al investigation of obfus
ation. Ourmain result is that, even under very weak formalizations of the above in-tuition, obfus
ation is impossible. We prove this by 
onstru
ting a familyof fun
tions F that are inherently unobfus
atable in the following sense:there is a property � : F ! f0; 1g su
h that (a) given any program that
omputes a fun
tion f 2 F , the value �(f) 
an be eÆ
iently 
omputed,yet (b) given ora
le a

ess to a (randomly sele
ted) fun
tion f 2 F , noeÆ
ient algorithm 
an 
ompute �(f) mu
h better than random guessing.We extend our impossibility result in a number of ways, in
luding evenobfus
ators that (a) are not ne
essarily 
omputable in polynomial time,(b) only approximately preserve the fun
tionality, and (
) only need towork for very restri
ted models of 
omputation (TC0). We also ruleout several potential appli
ations of obfus
ators, by 
onstru
ting \unob-fus
atable" signature s
hemes, en
ryption s
hemes, and pseudorandomfun
tion families.



1 Introdu
tionThe past few de
ades of 
ryptography resear
h has had amazing su

ess inputting most of the 
lassi
al 
ryptographi
 problems | en
ryption, authenti-
ation, proto
ols | on 
omplexity-theoreti
 foundations. However, there stillremain several important problems in 
ryptography about whi
h theory has hadlittle or nothing to say. One su
h problem is that of program obfus
ation. Roughlyspeaking, the goal of (program) obfus
ation is to make a program \unintelligi-ble" while preserving its fun
tionality. Ideally, an obfus
ated program should bea \virtual bla
k box," in the sense that anything one 
an 
ompute from it one
ould also 
ompute from the input-output behavior of the program.The hope that some form of obfus
ation is possible arises from the fa
t thatanalyzing programs expressed in ri
h enough formalisms is hard. Indeed, anyprogrammer knows that total unintelligibility is the natural state of 
omputerprograms (and one must work hard in order to keep a program from deterio-rating into this state). Theoreti
ally, results su
h as Ri
e's Theorem and thehardness of the Halting Problem and Satisfiability all seem to imply thatthe only useful thing that one 
an do with a program or 
ir
uit is to run it (oninputs of one's 
hoi
e). However, this informal statement is, of 
ourse, an over-generalization, and the existen
e of obfus
ators requires its own investigation.To be a bit more 
lear (though still informal), an obfus
ator O is an (eÆ-
ient, probabilisti
) \
ompiler" that takes as input a program (or 
ir
uit) P andprodu
es a new program O(P ) satisfying the following two 
onditions:{ (fun
tionality) O(P ) 
omputes the same fun
tion as P .{ (\virtual bla
k box" property) \Anything that 
an be eÆ
iently 
omputedfrom O(P ) 
an be eÆ
iently 
omputed given ora
le a

ess to P ."While there are heuristi
 approa
hes to obfus
ation in pra
ti
e (
f., Figure 1and [CT00℄), there has been little theoreti
al work on this problem. This isunfortunate, sin
e obfus
ation, if it were possible, would have a wide variety of
ryptographi
 and 
omplexity-theoreti
 appli
ations.#in
lude<stdio.h> #in
lude<string.h> main(){
har*O,l[999℄="'`a
go\177~|xp .-\0R^8)NJ6%K4O+A2M(*0ID57$3G1FBL";while(O=fgets(l+45,954,stdin)){*l=O[strlen(O)[O-1℄=0,strspn(O,l+11)℄;while(*O)swit
h((*l&&isalnum(*O))-!*l){
ase-1:{
har*I=(O+=strspn(O,l+12)+1)-2,O=34;while(*I&3&&(O=(O-16<<1)+*I---'-')<80);put
har(O&93?*I&8||!( I=mem
hr( l , O , 44 ) ) ?'?':I-l+47:32);break;
ase 1: ;}*l=(*O&31)[l-15+(*O>61)*32℄;while(put
har(45+*l%2),(*l=*l+32>>1)>35);
ase 0:put
har((++O,32));}put
har(10);}}Fig. 1. The winning entry of the 1998 International Obfus
ated C Code Contest, anASCII/Morse 
ode translator by Frans van Dorsselaer [vD98℄ (adapted for this paper).



In this work, we initiate a theoreti
al investigation of obfus
ation. We exam-ine various formalizations of the notion, in an attempt to understand what we
an and 
annot hope to a
hieve. Our main result is a negative one, showing thatobfus
ation (as it is typi
ally understood) is impossible. Before des
ribing thisresult and others in more detail, we outline some of the potential appli
ationsof obfus
ators, both for motivation and to 
larify the notion.1.1 Some Appli
ations of Obfus
atorsSoftware Prote
tion . The most dire
t appli
ations of obfus
ators are for variousforms of software prote
tion. By de�nition, obfus
ating a program prote
ts itagainst reverse engineering. For example, if one party, Ali
e, dis
overs a moreeÆ
ient algorithm for fa
toring integers, she may wish to sell another party, Bob,a program for apparently weaker tasks (su
h as breaking the RSA 
ryptosystem)that use the fa
toring algorithm as a subroutine without a
tually giving Bob afa
toring algorithm. Ali
e 
ould hope to a
hieve this by obfus
ating the programshe gives to Bob.Intuitively, obfus
ators would also be useful in watermarking software (
f.,[CT00, NSS99℄). A software vendor 
ould modify a program's behavior in a waythat uniquely identi�es the person to whom it is sold, and then obfus
ate theprogram to guarantee that this \watermark" is diÆ
ult to remove.Homomorphi
 En
ryption. A long-standing open problem is whether homomor-phi
 en
ryption s
hemes exist (
f., [RAD78, FM91, DDN00, BL96, SYY99℄).That is, we seek a se
ure publi
-key 
ryptosystem for whi
h, given en
ryptionsof two bits (and the publi
 key), one 
an 
ompute an en
ryption of any binaryBoolean operation of those bits. Obfus
ators would allow one to 
onvert anypubli
-key 
ryptosystem into a homomorphi
 one: use the se
ret key to 
onstru
tan algorithm that performs the required 
omputations (by de
rypting, applyingthe Boolean operation, and en
rypting the result), and publish an obfus
ationof this algorithm together with the publi
 key.1Removing Random Ora
les. The Random Ora
le Model [BR93℄ is an idealized
ryptographi
 setting in whi
h all parties have a

ess to a truly random fun
tion.It is (heuristi
ally) hoped that proto
ols designed in this model will remainse
ure when implemented using an eÆ
ient, publi
ly 
omputable 
ryptographi
hash fun
tion in pla
e of the random fun
tion. While it is known that thisis not true in general [CGH98℄, it is unknown whether there exist eÆ
iently
omputable fun
tions with strong enough properties to be se
urely used in pla
e1 There is a subtlety here, 
aused by the fa
t that en
ryption algorithms must beprobabilisti
 to be semanti
ally se
ure in the usual sense [GM84℄. However, boththe \fun
tionality" and \virtual bla
k box" properties of obfus
ators be
ome more
omplex for probabilisti
 algorithms, so in this work, we restri
t our attention toobfus
ating deterministi
 algorithms. This restri
tion only makes our main (impos-sibility) result stronger.



of the random fun
tion in various spe
i�
 proto
ols (e.g., in Fiat-Shamir types
hemes [FS87℄). One might hope to obtain su
h fun
tions by obfus
ating afamily of pseudorandom fun
tions [GGM86℄, whose input-output behavior is byde�nition indistinguishable from that of a truly random fun
tion.Transforming Private-Key En
ryption into Publi
-Key En
ryption. Obfus
ation
an also be used to 
reate new publi
-key en
ryption s
hemes by obfus
ating aprivate-key en
ryption s
heme. Given a se
ret key K of a private-key en
ryptions
heme, one 
an publish an obfus
ation of the en
ryption algorithm En
K .2 Thisallows everyone to en
rypt, yet only one possessing the se
ret key K should beable to de
rypt.1.2 Our ResultsThe Basi
 Impossibility Result. Most of the above appli
ations rely on the in-tuition that an obfus
ated program is a \virtual bla
k box." That is, anythingone 
an eÆ
iently 
ompute from the obfus
ated program, one should be able toeÆ
iently 
ompute given just ora
le a

ess to the program.Our main result shows that it is impossible to a
hieve this notion of obfus-
ation. We prove this by 
onstru
ting (from any one-way fun
tion) a family Fof fun
tions whi
h is inherently unobfus
atable in the sense that there is someproperty � : F ! f0; 1g su
h that:{ Given any program (
ir
uit) that 
omputes a fun
tion f 2 F , the value �(f)
an be eÆ
iently 
omputed;{ Yet, given ora
le a

ess to a (randomly sele
ted) fun
tion f 2 F , no eÆ
ientalgorithm 
an 
ompute �(f) mu
h better than by random guessing.Thus, there is no way of obfus
ating the programs that 
ompute these fun
-tions, even if (a) the obfus
ation is meant to hide only one bit of informationabout the fun
tion (namely �(f)), and (b) the obfus
ator itself has unbounded
omputation time.We believe that the existen
e of su
h fun
tions shows that the \virtual bla
kbox" paradigm for obfus
ators is inherently 
awed. Any hope for positive re-sults about obfus
ator-like obje
ts must abandon this viewpoint, or at least bere
on
iled with the existen
e of fun
tions as above.Approximate Obfus
ators. The basi
 impossibility result as des
ribed above ap-plies to obfus
ators O for whi
h we require that the obfus
ated program O(P )
omputes exa
tly the same fun
tion as the original program P . However, forsome appli
ations it may suÆ
e that, for every input x, O(P ) and P agree on xwith high probability (over the 
oin tosses of O). Using some additional ideas,our impossibility result extends to su
h approximate obfus
ators.2 This appli
ation involves the same subtlety pointed out in Footnote 1. Thus, our re-sults regarding the (un)obfus
atability of private-key en
ryption s
hemes (des
ribedlater) refer to a relaxed notion of se
urity in whi
h multiple en
ryptions of the samemessage are not allowed (whi
h is 
onsistent with a deterministi
 en
ryption algo-rithm).



Impossibility of Appli
ations. To give further eviden
e that our impossibilityresult is not an artifa
t of de�nitional 
hoi
es, but rather that there is some-thing inherently 
awed in the \virtual bla
k box" idea, we also demonstratethat several of the appli
ations of obfus
ators are also impossible. We do this by
onstru
ting inherently unobfus
atable signature s
hemes, en
ryption s
hemes,and pseudorandom fun
tions. These are obje
ts satisfying the standard de�ni-tions of se
urity (ex
ept for the subtlety noted in Footnote 2), but for whi
hone 
an eÆ
iently 
ompute the se
ret key K from any program that signs (oren
rypts or evaluates the pseudorandom fun
tion, resp.) relative to K. (Hen
ehanding out \obfus
ated forms" of these keyed-algorithms is highly inse
ure.)In parti
ular, we 
omplement Canetti et. al.'s 
ritique of the Random Ora
leMethodology [CGH98℄. They show that there exist (
ontrived) proto
ols that arese
ure in the idealized Random Ora
le Model (of [BR93℄), but are inse
ure whenthe random ora
le is repla
ed with any (eÆ
iently 
omputable) fun
tion. Ourresults imply that for even for natural proto
ols that are se
ure in the randomora
le model (e.g., Fiat-Shamir type s
hemes [FS87℄), there exist (
ontrived)pseudorandom fun
tions, su
h that these proto
ols are inse
ure when the randomora
le is repla
ed with any program that 
omputes the 
ontrived fun
tion.Obfus
ating restri
ted 
omplexity 
lasses. Even though obfus
ation of generalprograms/
ir
uits is impossible, one may hope that it is possible to obfus
atemore restri
ted 
lasses of 
omputations. However, using the pseudorandom fun
-tions of [NR97℄ in our 
onstru
tion, we 
an show that the impossibility resultholds even when the input program P is a 
onstant-depth threshold 
ir
uit (i.e.,is in TC0), under widely believed 
omplexity assumptions (e.g., the hardness offa
toring).Obfus
ating Sampling Algorithms. Another way in whi
h the notion of obfus
a-tors 
an be weakened is by 
hanging the fun
tionality requirement. Until now,we have 
onsidered programs in terms of the fun
tions they 
ompute, but some-times one is interested in other kinds of behavior. For example, one sometimes
onsiders sampling algorithms, i.e. probabilisti
 programs that take no input(other than, say, a length parameter) and produ
e an output a

ording to somedesired distribution. We 
onsider two natural de�nitions of obfus
ators for sam-pling algorithms, and prove that the stronger de�nition is impossible to meet.We also observe that the weaker de�nition implies the nontriviality of statisti
alzero knowledge.Software Watermarking. As mentioned earlier, there appears to be some 
on-ne
tion between the problems of software watermarking and 
ode obfus
ation.In the full version of the paper [BGI+01℄, we 
onsider a 
ouple of formalizationsof the watermarking problem and explore their relationship to our results onobfus
ation.



1.3 Dis
ussionOur work rules out the standard, \virtual bla
k box" notion of obfus
ators asimpossible, along with several of its appli
ations. However, it does not mean thatthere is no method of making programs \unintelligible" in some meaningful andpre
ise sense. Su
h a method 
ould still prove useful for software prote
tion.Thus, we 
onsider it to be both important and interesting to understandwhether there are alternative senses (or models) in whi
h some form of obfus
a-tion is possible. Towards this end, in the full version of the paper we suggest twoweaker de�nitions of obfus
ators that avoid the \virtual bla
k box" paradigm(and hen
e are not ruled out by our impossibility proof). These de�nitions 
ouldbe the subje
t of future investigations, but we hope that other alternatives willalso be proposed and examined.As is usually the 
ase with impossibility results and lower bounds, we showthat obfus
ators (in the \virtual bla
k box" sense) do not exist by supplyinga somewhat 
ontrived 
ounterexample of a fun
tion ensemble that 
annot beobfus
ated. It is interesting whether obfus
ation is possible for a restri
ted 
lassof algorithms, whi
h nonetheless 
ontains some \useful" algorithms. If we tryto restri
t the algorithms by their 
omputational 
omplexity, then there's notmu
h hope for obfus
ation. Indeed, as mentioned above, we show that (underwidely believed 
omplexity assumptions) our 
ounterexample 
an be pla
ed inTC0. In general, the 
omplexity of our 
ounterexample is essentially the sameas the 
omplexity of pseudorandom fun
tions, and so a 
omplexity 
lass whi
hdoes not 
ontain our example will also not 
ontain many 
ryptographi
ally usefulalgorithms.1.4 Additional Related WorkThere are a number of heuristi
 approa
hes to obfus
ation and software water-marking in the literature, as des
ribed in the survey of Collberg and Thombor-son [CT00℄. A theoreti
al study of software prote
tion was previously 
ondu
tedby Goldrei
h and Ostrovsky [GO96℄, who 
onsidered hardware-based solutions.Hada [Had00℄ gave some de�nitions for 
ode obfus
ators whi
h are strongerthan the de�nitions we 
onsider in this paper, and showed some impli
ationsof the existen
e of su
h obfus
ators. (Our result rules out also the existen
e ofobfus
ators a

ording to the de�nitions of [Had00℄.)Canetti, Goldrei
h and Halevi [CGH98℄ showed another setting in 
ryptog-raphy where getting a fun
tion's des
ription is provably more powerful thanbla
k-box a

ess. As mentioned above, they have shown that there exist proto-
ols that are se
ure when exe
uted with bla
k-box a

ess to a random fun
tion,but inse
ure when instead the parties are given a des
ription of any hash fun
-tion.1.5 Organization of the PaperIn Se
tion 2, we give some basi
 de�nitions along with (very weak) de�nitionsof obfus
ators. In Se
tion 3, we prove the impossibility of obfus
ators by 
on-



stru
ting an inherently unobfus
atable fun
tion ensemble. Other extensions andresults are deferred to the full version of the paper [BGI+01℄.2 De�nitions2.1 PreliminariesTM is shorthand for Turing ma
hine. PPT is shorthand for probabilisti
 polynomial-time Turing ma
hine. For algorithms A and M and a string x, we denote byAM (x) the output of A when exe
uted on input x and ora
le a

ess to M . IfA is a probabilisti
 Turing ma
hine then by A(x; r) we refer to the result ofrunning A on input x and random tape r. By A(x) we refer to the distribu-tion indu
ed by 
hoosing r uniformly and running A(x; r). If D is a distributionthen by x R D we mean that x is a random variable distributed a

ording toD. If S is a set then by x R S we mean that x is a random variable that isdistributed uniformly over the elements of S. Supp(D) denotes the support ofdistribution D, i.e. the set of points that have nonzero probability under D. Afun
tion � : N ! N is 
alled negligible if it grows slower than the inverse ofany polynomial. That is, for any positive polynomial p(�) there exists N 2 Nsu
h that �(n) < 1=p(n) for any n > N . We'll sometimes use neg(�) to denotean unspe
i�ed negligible fun
tion. We will identify Turing ma
hines and 
ir
uitswith their 
anoni
al representations as strings in f0; 1g�.2.2 Obfus
atorsIn this se
tion, we aim to formalize the notion of obfus
ators based on the\virtual bla
k box" property as des
ribed in the introdu
tion. Re
all that thisproperty requires that \anything that an adversary 
an 
ompute from an ob-fus
ation O(P ) of a program P , it 
ould also 
ompute given just ora
le a

essto P ." We shall de�ne what it means for the adversary to su

essfully 
omputesomething in this setting, and there are several 
hoi
es for this (in de
reasingorder of generality):{ (
omputational indistinguishability) The most general 
hoi
e is not to re-stri
t the nature of what the adversary is trying to 
ompute, and merelyrequire that it is possible, given just ora
le a

ess to P , to produ
e an out-put distribution that is 
omputationally indistinguishable from what theadversary 
omputes when given O(P ).{ (satisfying a relation) An alternative is to 
onsider the adversary as tryingto produ
e an output that satis�es an arbitrary (possibly polynomial-time)relation with the original program P , and require that it is possible, givenjust ora
le a

ess to P , to su

eed with roughly the same probability as theadversary does when given O(P ).{ (
omputing a fun
tion) A weaker requirement is to restri
t the previousrequirement to relations whi
h are fun
tions; that is, the adversary is tryingto 
ompute some fun
tion of the original program.



{ (
omputing a predi
ate) The weakest is to restri
t the previous requirementto f0; 1g-valued fun
tions; that is, the adversary is trying to de
ide someproperty of the original program.Sin
e we will be proving impossibility results, our results are strongest whenwe adopt the weakest requirement (i.e., the last one). This yields two de�ni-tions for obfus
ators, one for programs de�ned by Turing ma
hines and one forprograms de�ned by 
ir
uits.De�nition 2.1 (TM obfus
ator). A probabilisti
 algorithm O is a TM ob-fus
ator if the following three 
onditions hold:{ (fun
tionality) For every TM M , the string O(M) des
ribes a TM that 
om-putes the same fun
tion as M .{ (polynomial slowdown) The des
ription length and running time of O(M) areat most polynomially larger than that of M . That is, there is a polynomial psu
h that for every TM M , jO(M)j � p(jM j), and if M halts in t steps onsome input x, then O(M) halts within p(t) steps on x.{ (\virtual bla
k box" property) For any PPT A, there is a PPT S and anegligible fun
tion � su
h that for all TMs M���Pr [A(O(M)) = 1℄� Pr hSM (1jM j) = 1i��� � �(jM j):We say that O is eÆ
ient if it runs in polynomial time.De�nition 2.2 (
ir
uit obfus
ator). A probabilisti
 algorithm O is a (
ir
uit)obfus
ator if the following three 
onditions hold:{ (fun
tionality) For every 
ir
uit C, the string O(C) des
ribes a 
ir
uit that
omputes the same fun
tion as C.{ (polynomial slowdown) There is a polynomial p su
h that for every 
ir
uitC, jO(C)j � p(jCj).{ (\virtual bla
k box" property) For any PPT A, there is a PPT S and anegligible fun
tion � su
h that for all 
ir
uits C���Pr [A(O(C)) = 1℄� Pr hSC(1jCj) = 1i��� � �(jCj):We say that O is eÆ
ient if it runs in polynomial time.We 
all the �rst two requirements (fun
tionality and polynomial slowdown)the synta
ti
 requirements of obfus
ation, as they do not address the issue ofse
urity at all.There are a 
ouple of other natural formulations of the \virtual bla
k box"property. The �rst, whi
h more 
losely follows the informal dis
ussion above,asks that for every predi
ate �, the probability that A(O(C)) = �(C) is at mostthe probability that SC(1jCj) = �(C) plus a negligible term. It is easy to seethat this requirement is equivalent to the ones above. Another formulation refersto the distinguishability between obfus
ations of two TMs/
ir
uits: ask that for



every C1 and C2, jPr [A(O(C1)) = 1℄ � Pr [A(O(C2))℄ j is approximately equalto jPr �SC1(1jC1j; 1jC2j) = 1��Pr �SC2(1jC1j; 1jC2)� j. This de�nition appears tobe slightly weaker than the ones above, but our impossibility proof also rules itout.Note that in both de�nitions, we have 
hosen to simplify the de�nition byusing the size of the TM/
ir
uit to be obfus
ated as a se
urity parameter. One
an always in
rease this length by padding to obtain higher se
urity.The main di�eren
e between the 
ir
uit and TM obfus
ators is that a 
ir
uit
omputes a fun
tion with �nite domain (all the inputs of a parti
ular length)while a TM 
omputes a fun
tion with in�nite domain. Note that if we had notrestri
ted the size of the obfus
ated 
ir
uit O(C), then the (exponential size)list of all the values of the 
ir
uit would be a valid obfus
ation (provided weallow S running time poly(jO(C)j) rather than poly(jCj)). For Turing ma
hines,it is not 
lear how to 
onstru
t su
h an obfus
ation, even if we are allowed anexponential slowdown. Hen
e obfus
ating TMs is intuitively harder. Indeed, itis relatively easy to prove:Proposition 2.3. If a TM obfus
ator exists, then a 
ir
uit obfus
ator exists.Thus, when we prove our impossibility result for 
ir
uit obfus
ators, the impos-sibility of TM obfus
ators will follow. However, 
onsidering TM obfus
ators willbe useful as motivation for the proof.We note that, from the perspe
tive of appli
ations, De�nitions 2.1 and 2.2are already too weak to have the wide appli
ability dis
ussed in the introdu
tion.The point is that they are nevertheless impossible to satisfy (as we will prove).3 The Main Impossibility ResultTo state our main result we introdu
e the notion of inherently unobfus
atablefun
tion ensemble.De�nition 3.1. An inherently unobfus
atable fun
tion ensemble is an ensem-ble fHkgk2N of distributions Hk on �nite fun
tions (from, say, f0; 1glin(k) tof0; 1glout(k)) su
h that:{ (eÆ
iently 
omputable) Every fun
tion f R Hk is 
omputable by a 
ir
uit ofsize poly(k). (Moreover, a distribution on 
ir
uits 
onsistent with Hk 
an besampled uniformly in time poly(k).){ (unobfus
atability) There exists a fun
tion � : Sk2N Supp(Hk)! f0; 1g su
hthat1. �(f) is hard to 
ompute with bla
k-box a

ess to f : For any PPT SPrf R Hk[Sf (1k) = �(f)℄ � 12 + neg(k)



2. �(f) is easy to 
ompute with a

ess to any 
ir
uit that 
omputes f : Thereexists a PPT A su
h that for any f 2 Sk2N Supp(Hk) and for any 
ir
uitC that 
omputes f A(C) = �(f)We prove in Theorem 3.9 that, assuming one-way fun
tions exist, there existsan inherently unobfus
atable fun
tion ensemble. This implies that, under thesame assumption, there is no obfus
ator that satis�es De�nition 2.2 (a
tuallywe prove the latter fa
t dire
tly in Theorem 3.6). Sin
e the existen
e of aneÆ
ient obfus
ator implies the existen
e of one-way fun
tions (Lemma 3.7), we
on
lude that eÆ
ient obfus
ators do not exist (un
onditionally).However, the existen
e of inherently unobfus
atable fun
tion ensemble haseven stronger impli
ations. As mentioned in the introdu
tion, these fun
tions 
annot be obfus
ated even if we allow the following relaxations to the obfus
ator:1. As mentioned above, the obfus
ator does not have to run in polynomial time| it 
an be any random pro
ess.2. The obfus
ator has only to work for fun
tions in Supp(Hk) and only for anon-negligible fra
tion of these fun
tions under the distributions Hk.3. The obfus
ator has only to hide an a priori �xed property � from an a priori�xed adversary A.Stru
ture of the Proof of the Main Impossibility Result. We shall prove ourresult by �rst de�ning obfus
ators that are se
ure also when applied to several(e.g., two) algorithms and proving that they do not exist. Then we shall modifythe 
onstru
tion in this proof to prove that TM obfus
ators in the sense ofDe�nition 2.1 do not exist. After that, using an additional 
onstru
tion (whi
hrequires one-way fun
tions), we will prove that a 
ir
uit obfus
ator as de�ned inDe�nition 2.2 does not exist if one-way fun
tions exist. We will then observe thatour proof a
tually yields an unobfus
atable fun
tion ensemble (Theorem 3.9).3.1 Obfus
ating two TMs/
ir
uitsObfus
ators as de�ned in the previous se
tion provide a \virtual bla
k box"property when a single program is obfus
ated, but the de�nitions do not sayanything about what happens when the adversary 
an inspe
t more than oneobfus
ated program. In this se
tion, we will 
onsider extensions of those de�ni-tions to obfus
ating two programs, and prove that they are impossible to meet.The proofs will provide useful motivation for the impossibility of the originalone-program de�nitions.De�nition 3.2 (2-TM obfus
ator). A 2-TM obfus
ator is de�ned in thesame way as a TM obfus
ator, ex
ept that the \virtual bla
k box" property isstrengthened as follows:{ (\virtual bla
k box" property) For any PPT A, there is a PPT S and anegligible fun
tion � su
h that for all TMs M;N���Pr [A(O(M);O(N)) = 1℄� Pr hSM;N(1jM j+jN j) = 1i��� � �(minfjM j; jN jg)



2-
ir
uit obfus
ators are de�ned by modifying the de�nition of 
ir
uit obfus-
ators in an analogous fashion.Proposition 3.3. Neither 2-TM nor 2-
ir
uit obfus
ators exist.Proof. We begin by showing that 2-TM obfus
ators do not exist. Suppose, forsake of 
ontradi
tion, that there exists a 2-TM obfus
ator O. The essen
e ofthis proof, and in fa
t of all the impossibility proofs in this paper, is that thereis a fundamental di�eren
e between getting bla
k-box a

ess to a fun
tion andgetting a program that 
omputes it, no matter how obfus
ated: A program isa su

in
t des
ription of the fun
tion, on whi
h one 
an perform 
omputations(or run other programs). Of 
ourse, if the fun
tion is (exa
tly) learnable viaora
le queries (i.e., one 
an a
quire a program that 
omputes the fun
tion byquerying it at a few lo
ations), then this di�eren
e disappears. Hen
e, to getour 
ounterexample, we will use a fun
tion that 
annot be exa
tly learned withora
le queries. A very simple example of su
h an unlearnable fun
tion follows.For strings �; � 2 f0; 1gk, de�ne the Turing ma
hineC�;�(x) def= n � x = �0k otherwiseWe assume that on input x, C�;� runs in 10 � jxj steps (the 
onstant 10 isarbitrary). Now we will de�ne a TM D�;� that, given the 
ode of a TM C, 
andistinguish between the 
ase that C 
omputes the same fun
tion as C�;� fromthe 
ase that C 
omputes the same fun
tion as C�0;�0 for any (�0; �0) 6= (�; �).D�;�(C) def= n 1 C(�) = �0 otherwise(A
tually, this fun
tion is un
omputable. However, as we shall see below, we 
anuse a modi�ed version of D�;� that only 
onsiders the exe
ution of C(�) forpoly(k) steps, and outputs 0 if C does not halt within that many steps, for some�xed polynomial poly(�). We will ignore this issue for now, and elaborate on itlater.) Note that C�;� and D�;� have des
ription size �(k).Consider an adversaryA, whi
h, given two (obfus
ated) TMs as input, simplyruns the se
ond TM on the �rst one. That is, A(C;D) = D(C). (A
tually, like wemodi�ed D�;� above, we also will modify A to only run D on C for poly(jCj; jDj)steps, and output 0 if D does not halt in that time.) Thus, for any �; � 2 f0; 1gk,Pr [A(O(C�;�);O(D�;�)) = 1℄ = 1 (1)Observe that any poly(k)-time algorithm S whi
h has ora
le a

ess to C�;�and D�;� has only exponentially small probability (for a random � and �) ofquerying either ora
le at a point where its value is nonzero. Hen
e, if we let Zkbe a Turing ma
hine that always outputs 0k, then for every PPT S,��Pr �SC�;�;D�;� (1k) = 1�� Pr �SZk ;D�;� (1k) = 1��� � 2�
(k); (2)where the probabilities are taken over � and � sele
ted uniformly in f0; 1gk andthe 
oin tosses of S. On the other hand, by the de�nition of A we have:Pr [A(O(Zk);O(D�;�)) = 1℄ = 0 (3)



The 
ombination of Equations (1), (2), and (3) 
ontradi
t the fa
t that O is a2-TM obfus
ator.In the above proof, we ignored the fa
t that we had to trun
ate the runningtimes of A and D�;� . When doing so, we must make sure that Equations (1) and(3) still hold. Equation (1) involves exe
uting (a) A(O(D�;�);O(C�;�)), whi
h inturn amounts to exe
uting (b) O(D�;�)(O(C�;�)). By de�nition (b) has the samefun
tionality asD�;�(O(C�;�)), whi
h in turn involves exe
uting (
) O(C�;�)(�).Yet the fun
tionality requirement of the obfus
ator de�nition assures us that (
)has the same fun
tionality as C�;�(�). By the polynomial slowdown property ofobfus
ators, exe
ution (
) only takes poly(10 � k) = poly(k) steps, whi
h meansthat D�;�(O(C�;�)) need only run for poly(k) steps. Thus, again applying thepolynomial slowdown property, exe
ution (b) takes poly(k) steps, whi
h �nallyimplies that A need only run for poly(k) steps. The same reasoning holds forEquation (3), using Zk instead of C�;� .3 Note that all the polynomials involvedare �xed on
e we �x the polynomial p(�) of the polynomial slowdown property.The proof for the 2-
ir
uit 
ase is very similar to the 2-TM 
ase, with arelated, but slightly di�erent subtlety. Suppose, for sake of 
ontradi
tion, thatO is a 2-
ir
uit obfus
ator. For k 2 N and �; � 2 f0; 1gk, de�ne Zk, C�;� andD�;� in the same way as above but as 
ir
uits rather than TMs, and de�nean adversary A by A(C;D) = D(C). (Note that the issues of A and D�;�'srunning times go away in this setting, sin
e 
ir
uits 
an always be evaluated intime polynomial in their size.) The new subtlety here is that the de�nition ofA as A(C;D) = D(C) only makes sense when the input length of D is largerthan the size of C (note that one 
an always pad C to a larger size). Thus, forthe analogues of Equations (1) and (3) to hold, the input length of D�;� mustbe larger than the sizes of the obfus
ations of C�;� and Zk. However, by thepolynomial slowdown property of obfus
ators, it suÆ
es to let D�;� have inputlength poly(k) and the proof works as before.3.2 Obfus
ating one TM/
ir
uitOur approa
h to extending the two-program obfus
ation impossibility results tothe one-program de�nitions is to 
ombine the two programs 
onstru
ted aboveinto one. This will work in a quite straightforward manner for TM obfus
ators,but will require new ideas for 
ir
uit obfus
ators.Combining fun
tions and programs. For fun
tions, TMs, or 
ir
uits f0; f1 : X !Y , de�ne their 
ombination f0#f1 : f0; 1g �X ! Y by (f0#f1)(b; x) def= fb(x).Conversely, if we are given a TM (resp., 
ir
uit) C : f0; 1g � X ! Y , we 
an3 Another, even more minor subtlety that we ignored is that, stri
tly speaking, A onlyhas running time polynomial in the des
ription of the obfus
ations of C�;�, D�;� ,and Zk, whi
h 
ould 
on
eivably be shorter than the original TM des
riptions. Buta 
ounting argument shows that for all but an exponentially small fra
tion of pairs(�; �) 2 f0; 1gk � f0; 1gk, O(C�;�) and O(D�;�) must have des
ription size 
(k).



eÆ
iently de
ompose C into C0#C1 by setting Cb(x) def= C(b; x); note that C0and C1 have size and running time essentially the same as that of C. Observethat having ora
le a

ess to a 
ombined fun
tion f0#f1 is equivalent to havingora
le a

ess to f0 and f1 individually.Theorem 3.4. TM obfus
ators do not exist.Proof Sket
h: Suppose, for sake of 
ontradi
tion, that there exists a TM ob-fus
ator O. For �; � 2 f0; 1gk, let C�;� , D�;�, and Zk be the TMs de�ned in theproof of Proposition 3.3. Combining these, we get the TMs F�;� = C�;�#D�;�and G�;� = Zk#C�;� .We 
onsider an adversary A analogous to the one in the proof of Proposi-tion 3.3, augmented to �rst de
ompose the program it is fed. That is, on inputa TM F , algorithm A �rst de
omposes F into F0#F1 and then outputs F1(F0).(As in the proof of Proposition 3.3, A a
tually should be modi�ed to run in timepoly(jF j).) Let S be the PPT simulator for A guaranteed by De�nition 2.1. Justas in the proof of Proposition 3.3, we have:Pr [A(O(F�;�)) = 1℄ = 1 and Pr [A(O(G�;�)) = 1℄ = 0��Pr �SF�;� (1k) = 1�� Pr �SG�;� (1k) = 1��� � 2�
(k);where the probabilities are taken over uniformly sele
ted �; � 2 f0; 1gk, and the
oin tosses of A, S, and O. This 
ontradi
ts De�nition 2.1. 2There is a diÆ
ulty in trying to 
arry out the above argument in the 
ir
uitsetting. (This diÆ
ulty is related to (but more serious than) the same subtletyregarding the 
ir
uit setting dis
ussed earlier.) In the above proof, the adversaryA, on input O(F�;�), attempts to evaluate F1(F0), where F0#F1 = O(F�;�) =O(C�;�#D�;�). In order for this to make sense in the 
ir
uit setting, the sizeof the 
ir
uit F0 must be at most the input length of F1 (whi
h is the same asthe input length of D�;�). But, sin
e the output F0#F1 of the obfus
ator 
anbe polynomially larger than its input C�;�#D�;� , we have no su
h guarantee.Furthermore, note that if we 
ompute F0, F1 in the way we des
ribed above (i.e.,Fb(x) def= O(F�;�)(b; x)) then we'll have jF0j = jF1j and so F0 will ne
essarily belarger than F1's input length.To get around this, we modify D�;� in a way that will allow A, when givenD�;� and a 
ir
uit C, to test whether C(�) = � even when C is larger than theinput length of D�;�. Of 
ourse, ora
le a

ess to D�;� should not reveal � and�, be
ause we do not want the simulator S to be able to test whether C(�) = �given just ora
le a

ess to C and D�;� . We will 
onstru
t su
h fun
tions D�;�based on pseudorandom fun
tions [GGM86℄.Lemma 3.5. If one-way fun
tions exist, then for every k 2 N and �; � 2f0; 1gk, there is a distribution D�;� on 
ir
uits su
h that:1. Every D 2 Supp(D�;�) is a 
ir
uit of size poly(k).



2. There is a polynomial-time algorithm A su
h that for any 
ir
uit C, and anyD 2 Supp(D�;�), AD(C; 1k) = 1 i� C(�) = �.3. For any PPT S, Pr �SD(1k) = �� = neg(k), where the probability is takenover �; � R f0; 1gk, D R D�;�, and the 
oin tosses of S.Proof. Basi
ally, the 
onstru
tion implements a private-key \homomorphi
 en-
ryption" s
heme. More pre
isely, the fun
tions in D�;� will 
onsist of threeparts. The �rst part gives out an en
ryption of the bits of � (under some private-key en
ryption s
heme). The se
ond part provides the ability to perform binaryBoolean operations on en
rypted bits, and the third part tests whether a se-quen
e of en
ryptions 
onsists of en
ryptions of the bits of �. These operationswill enable one to eÆ
iently test whether a given 
ir
uit C satis�es C(�) = �,while keeping � and � hidden when only ora
le a

ess to C and D�;� is provided.We begin with any one-bit (probabilisti
) private-key en
ryption s
heme(En
;De
) that satis�es indistinguishability under 
hosen plaintext and non-adaptive 
hosen 
iphertext atta
ks. Informally, this means that an en
ryptionof 0 should be indistinguishable from an en
ryption of 1 even for adversariesthat have a

ess to en
ryption and de
ryption ora
les prior to re
eiving the
hallenge 
iphertext, and a

ess to just an en
ryption ora
le after re
eiving the
hallenge 
iphertext. (See [KY00℄ for formal de�nitions.) We note that su
hen
ryptions s
hemes exist if one-way fun
tions exist; indeed, the \standard" en-
ryption s
heme En
K(b) = (r; fK(r) � b), where r R f0; 1gjKj and fK is apseudorandom fun
tion, has this property.Now we 
onsider a \homomorphi
 en
ryption" algorithm Hom, whi
h takesas input a private-key K and two 
iphertexts 
 and d (w.r.t. this key K), anda binary boolean operation � (spe
i�ed by its 2� 2 truth table). We de�neHomK(
; d;�) def= En
K(De
K(
)�De
K(d)):It 
an be shown that su
h an en
ryption s
heme retains its se
urity even if theadversary is given a

ess to a Hom ora
le. This is formalized in the following
laim:Claim. For every PPT A,��Pr �AHomK ;En
K (En
K(0)) = 1�� Pr �AHomK ;En
K (En
K(1)) = 1��� � neg(k):Proof of 
laim: Suppose there were a PPT A violating the 
laim.First, we argue that we 
an repla
e the responses to all of A'S HomK-ora
le queries with en
ryptions of 0 with only a negligible e�e
t on A'sdistinguishing gap. This follows from indistinguishability under 
hosenplaintext and 
iphertext atta
ks and a hybrid argument: Consider hy-brids where the �rst i ora
le queries are answered a

ording to HomKand the rest with en
ryptions of 0. Any advantage in distinguishing twoadja
ent hybrids must be due to distinguishing an en
ryption of 1 froman en
ryption of 0. The resulting distinguisher 
an be implemented using



ora
le a

ess to en
ryption and de
ryption ora
les prior to re
eiving the
hallenge 
iphertext (and an en
ryption ora
le afterwards).On
e we have repla
ed the HomK-ora
le responses with en
ryptionsof 0, we have an adversary that 
an distinguish an en
ryption of 0 froman en
ryption of 1 when given a

ess to just an en
ryption ora
le. This
ontradi
ts indistinguishability under 
hosen plaintext atta
k. 2Now we return to the 
onstru
tion of our 
ir
uit family D�;� . For a key K,let EK;� be an algorithm whi
h, on input i outputs En
K(�i), where �i is thei'th bit of �. Let BK;� be an algorithm whi
h when fed a k-tuple of 
iphertexts(
1; : : : ; 
k) outputs 1 if for all i, De
K(
i) = �i, where �1; : : : ; �k are the bits of�. A random 
ir
uit from D�;� will essentially be the algorithmDK;�;� def= EK;�#HomK#BK;�(for a uniformly sele
ted key K). One minor 
ompli
ation is that DK;�;� isa
tually a probabilisti
 algorithm, sin
e EK;� and HomK employ probabilisti
en
ryption, whereas the lemma requires deterministi
 fun
tions. This 
an besolved in the usual way, by using pseudorandom fun
tions. Let q = q(k) be theinput length of DK;�;� and m = m(k) the maximum number of random bitsused by DK;�;� on any input. We 
an sele
t a pseudorandom fun
tion fK0 :f0; 1gq ! f0; 1gm, and let D0K;�;�;K0 be the (determinsti
) algorithm, whi
h oninput x 2 f0; 1gq evaluates DK;�;�(x) using randomness fK0(x).De�ne the distribution D�;� to be D0K;�;�;K0 , over uniformly sele
ted keys Kand K 0. We argue that this distribution has the properties stated in the lemma.By 
onstru
tion, ea
h D0K;�;�;K0 is 
omputable by 
ir
uit of size poly(k), soProperty 1 is satis�ed.For Property 2, 
onsider an algorithm A that on input C and ora
le a

ess toD0K;�;�;K0 (whi
h, as usual, we 
an view as a

ess to (deterministi
 versions of)the three separate ora
les EK;�, HomK , and BK;�), pro
eeds as follows: First,with k ora
le queries to the EK;� ora
le, A obtains en
ryptions of ea
h of thebits of �. Then, A uses the HomK ora
le to do a gate-by-gate emulation of the
omputation of C(�), in whi
h A obtains en
ryptions of the values at ea
h gateof C. In parti
ular, A obtains en
ryptions of the values at ea
h output gate of C(on input �). It then feeds these output en
ryptions to DK;� , and outputs theresponse to this ora
le query. By 
onstru
tion, A outputs 1 i� C(�) = �.Finally, we verify Property 3. Let S be any PPT algorithm. We must showthat S has only a negligible probability of outputting � when given ora
le a

essto D0K;�;�;K0 (over the 
hoi
e of K, �, �, K 0, and the 
oin tosses of S). By thepseudorandomness of fK0 , we 
an repla
e ora
le a

ess to the fun
tion D0K;�;�;K0with ora
le a

ess to the probabilisti
 algorithm DK;�;� with only a negligiblee�e
t on S's su

ess probability. Ora
le a

ess to DK;�;� is equivalent to ora
lea

ess to EK;�, HomK , and BK;� . Sin
e � is independent of � and K, theprobability that S queries BK;� at a point where its value is nonzero (i.e., at asequen
e of en
ryptions of the bits of �) is exponentially small, so we 
an removeS's queries to BK;� with only a negligible e�e
t on the su

ess probability. Ora
le



a

ess to EK;� is equivalent to giving S polynomially many en
ryptions of ea
h ofthe bits of �. Thus, we must argue that S 
annot 
ompute � with nonnegligibleprobability from these en
ryptions and ora
le a

ess to HomK . This follows fromthe fa
t that the en
ryption s
heme remains se
ure in the presen
e of a HomKora
le (Claim 3.2) and a hybrid argument.Theorem 3.6. If one-way fun
tions exist, then 
ir
uit obfus
ators do not exist.Proof. Suppose, for sake of 
ontradi
tion, that there exists a 
ir
uit obfus
atorO. For k 2 N and �; � 2 f0; 1gk, let Zk and C�;� be the 
ir
uits de�ned in theproof of Proposition 3.3, and let D�;� be the distribution on 
ir
uits given byLemma 3.5. Fer ea
h k 2 N, 
onsider the following two distributions on 
ir
uitsof size poly(k):Fk: Choose � and � uniformly in f0; 1gk, D R D�;�. Output C�;�#D.Gk: Choose � and � uniformly in f0; 1gk, D R D�;� . Output Zk#D.Let A be the PPT algorithm guaranteed by Property 2 in Lemma 3.5, and
onsider a PPT A0 whi
h, on input a 
ir
uit F , de
omposes F = F0#F1 andevaluates AF1(F0; 1k), where k is the input length of F0. Thus, when fed a 
ir
uitfrom O(Fk) (resp., O(Gk)), A0 is evaluating AD(C; 1k) where D 
omputes thesame fun
tion as some 
ir
uit from D�;� and C 
omputes the same fun
tion asC�;� (resp., Zk). Therefore, by Property 2 in Lemma 3.5, we have:Pr [A0(O(Fk)) = 1℄ = 1 Pr [A0(O(Gk)) = 1℄ = 0:We now argue that for any PPT algorithm S��Pr �SFk(1k) = 1�� Pr �SGk(1k) = 1��� � 2�
(k);whi
h will 
ontradi
t the de�nition of 
ir
uit obfus
ators. Having ora
le a

essto a 
ir
uit from Fk (respe
tively, Gk) is equivalent to having ora
le a

ess toC�;� (resp., Zk) and D R D�;�, where �; � are sele
ted uniformly in f0; 1gk.Property 3 of Lemma 3.5 implies that the probability that S queries the �rstora
le at � is negligible, and hen
e S 
annot distinguish that ora
le being C�;�from it being Zk.We 
an remove the assumption that one-way fun
tions exist for eÆ
ient
ir
uit obfus
ators via the following (easy) lemma (proven in the full version ofthe paper).Lemma 3.7. If eÆ
ient obfus
ators exist, then one-way fun
tions exist.Corollary 3.8. EÆ
ient 
ir
uit obfus
ators do not exist (un
onditionally).As stated above, our impossibility proof 
an be 
ast in terms of \inherentlyunbfus
atable fun
tions":Theorem 3.9 (inherently unobfus
atable fun
tions). If one-way fun
tionsexist, then there exists an inherently unobfus
atable fun
tion ensemble.



Proof. Let Fk and Gk be the distributions on fun
tions in the proof of The-orem 3.6,and let Hk be the distribution that, with probability 1=2 outputs asample of Fk and with probability 1=2 outputs a sample of Gk . We 
laim thatfHkgk2N is an inherently unobfus
atable fun
tion ensemble.The fa
t that fHkgk2N is eÆ
iently 
omputable is obvious. We de�ne �(f) tobe 1 if f 2 Sk Supp(Fk) and 0 otherwise (note that (Sk Supp(Fk))\(Sk Supp(Gk)) =; and so �(f) = 0 for any f 2 Sk Supp(Gk)). The algorithm A0 given in the proofof Theorem 3.6 shows that �(f) 
an be 
omputed in polynomial time from any
ir
uit 
omputing f 2 Supp(Hk). Be
ause ora
le a

ess to Fk 
annot be dis-tinguished from ora
le a

ess to Gk (as shown in the proof of Theorem 3.6), itfollows that �(f) 
annot be 
omputed from an ora
le for f R Hk with probabilitynoti
eably greater than 1=2.A
knowledgmentsWe are grateful to Lu
a Trevisan for 
ollaboration at an early stage of thisresear
h. We also thank Dan Boneh, Ran Canetti, and Ya
ov Ya
obi for helpfuldis
ussions and 
omments.This work was partially supported by the following funds: Oded Goldrei
hwas supported by the Minerva Foundation, Germany; Salil Vadhan (at the timeat MIT) was supported by a DOD/NDSEG Graduate Fellowship and an NSFMathemati
al S
ien
es Postdo
toral Resear
h Fellowship.Referen
es[BGI+01℄ Boaz Barak, Oded Goldrei
h, Russell Impagliazzo, Steven Rudi
h, AmitSahai, Salil Vadhan, and Ke Yang. On the (im)possibility of obfus
at-ing programs. Te
hni
al report, Ele
troni
 Colloquium on ComputationalComplexity, 2001. http://www.e


.uni-trier.de/e


.[BR93℄ Mihir Bellare and Phillip Rogaway. Random ora
les are pra
ti
al: Aparadigm for designing eÆ
ient proto
ols. In Pro
eedings of the FirstAnnual Conferen
e on Computer and Communi
ations Se
urity. ACM,November 1993.[BL96℄ Dan Boneh and Ri
hard Lipton. Algorithms for bla
k-box �elds andtheir appli
ations to 
ryptography. In M. Wiener, editor, Advan
es inCryptology|CRYPTO '96, volume 1109 of Le
ture Notes in Computer S
i-en
e, pages 283{297. Springer-Verlag, August 1996.[CGH98℄ Ran Canetti, Oded Goldrei
h, and Shai Halevi. The random ora
le method-ology, revisited. In Pro
eedings of the Thirtieth Annual ACM Symposiumon Theory of Computing, pages 209{218, Dallas, 23{26 May 1998.[CT00℄ Christian Collberg and Clark Thomborson. Watermarking, tamper-proo�ng, and obfus
ation { tools for software prote
tion. Te
hni
al ReportTR00-03, The Department of Computer S
ien
e, University of Arizona,February 2000.[DDN00℄ Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable 
ryptography.SIAM Journal on Computing, 30(2):391{437 (ele
troni
), 2000.



[FM91℄ Joan Feigenbaum and Mi
hael Merritt, editors. Distributed 
omputing and
ryptography, Providen
e, RI, 1991. Ameri
an Mathemati
al So
iety.[FS87℄ Amos Fiat and Adi Shamir. How to prove yourself: pra
ti
al solutionsto identi�
ation and signature problems. In Advan
es in 
ryptology|CRYPTO '86 (Santa Barbara, Calif., 1986), pages 186{194. Springer,Berlin, 1987.[GGM86℄ Oded Goldrei
h, Sha� Goldwasser, and Silvio Mi
ali. How to 
onstru
trandom fun
tions. Journal of the Asso
iation for Computing Ma
hinery,33(4):792{807, 1986.[GO96℄ Oded Goldrei
h and Rafail Ostrovsky. Software prote
tion and simulationon oblivious RAMs. Journal of the ACM, 43(3):431{473, 1996.[GM84℄ Sha� Goldwasser and Silvio Mi
ali. Probabilisti
 en
ryption. Journal ofComputer and System S
ien
es, 28(2):270{299, April 1984.[Had00℄ Satoshi Hada. Zero-knowledge and 
ode obfus
ation. In T. Okamoto, editor,Advan
es in Cryptology { ASIACRYPT ' 2000, Le
ture Notes in ComputerS
ien
e, pages 443{457, Kyoto, Japan, 2000. International Asso
iation forCryptologi
 Resear
h, Springer-Verlag, Berlin Germany.[KY00℄ Jonathan Katz and Moti Yung. Complete 
hara
terization of se
urity no-tions for private-key en
ryption. In Pro
eedings of the 32nd Annual ACMSymposium on Theory of Computing, pages 245{254, Portland, OR, May2000. ACM.[NSS99℄ David Na

a
he, Adi Shamir, and Julien P. Stern. How to 
opyright afun
tion? In H. Imai and Y. Zheng, editors, Publi
 Key Cryptography|PKC '99, volume 1560 of Le
ture Notes in Computer S
ien
e, pages 188{196. Springer-Verlag, Mar
h 1999.[NR97℄ Moni Naor and Omer Reingold. Number-theoreti
 
onstru
tions of eÆ
ientpseudo-random fun
tions. In 38th Annual Symposium on Foundations ofComputer S
ien
e, pages 458{467, Miami Bea
h, Florida, 20{22 O
tober1997. IEEE.[RAD78℄ Ronald L. Rivest, Len Adleman, and Mi
hael L. Dertouzos. On data banksand priva
y homomorphisms. In Foundations of se
ure 
omputation (Work-shop, Georgia Inst. Te
h., Atlanta, Ga., 1977), pages 169{179. A
ademi
,New York, 1978.[SYY99℄ Thomas Sander, Adam Young, and Moti Yung. Non-intera
tive 
rypto
om-puting for NC1. In 40th Annual Symposium on Foundations of ComputerS
ien
e, pages 554{566, New York, NY, 17{19 O
tober 1999. IEEE.[vD98℄ Frans van Dorsselaer. Obsoles
ent feature. Winning entry for the 1998International Obfus
ated C Code Contest, 1998. http://www.io


.org/.


