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1 IntrodutionProperty testing (initiated by Rubinfeld and Sudan [24℄ and Goldreih, Goldwasser, and Ron [14℄)is onerned with a relaxed type of deision problems. Spei�ally, for a �xed property (resp.,a set) �, the task is to distinguish between objets that have property � (resp., are in �) andobjets that are \far" from having property � (resp., are \far" from any objet in �). The fousof property testing is on sublinear-time algorithms, whih in partiular annot examine the entireobjet. Instead, these algorithms, alled testers, may obtain bits in the representation of the objetby issuing adequate queries. Indeed, in this ase, the query omplexity of testers beomes a measureof entral interest.For natural properties, testers of sublinear query-omplexity must be randomized (see detailsin Setion 3.1). This is a qualitative assertion, and the orresponding quantitative question arisesnaturally: for any �xed property � and a sublinear funtion q, what is the randomness-omplexityof testers for � that have query-omplexity q?In addition to the natural appeal of the foregoing question, there are onrete reasons to areabout it. Firstly, the randomness-omplexity of a tester determines the length of PCPs that areonstruted on top of this tester. Indeed, this was the motivation for the interest of Goldreihand Sudan [17℄ and Ben-Sasson, Sudan, Vadhan, and Wigderson [7℄ in reduing the randomnessomplexity of low-degree testing. Seondly, the randomness-omplexity of a tester a�ets the timeand query omplexities of implementing a version of this tester while utilizing a weak soure ofrandomness. This motivation is further disussed in Setion 1.2.Indeed, the randomness-omplexity of testers was onsidered in some prior work, starting in [17℄.This subjet is the pivot of [7℄ and is the main topi studied by Shpilka and Wigderson [28℄.However, these works refer to spei� (algebrai) tasks (i.e., testing low-degree polynomials andgroup homomorphisms). In ontrast, our fous in this paper is either on general properties (seeSetion 1.4) or on spei� ombinatorial properties (see Setion 1.3).1.1 The Perspetive of Average-EstimationProperty testing is a vast generalization of the task of estimating the average value of a funtion.Spei�ally, onsider the task of distinguishing between funtions f : f0; 1gn ! f0; 1g havingaverage value exeeding 0:5 and funtions that are �-far from having this property (i.e., funtionshaving average value below 0:5 � �). Clearly, this task an be solved by a randomized algorithmthat queries the funtion at O(1=�2) (random) points. This query-omplexity is optimal and anyalgorithm ahieving it, alled a sampler, must be randomized (see Canetti, Even, and Goldreih [9℄).Furthermore, a quantitative study of the randomness-omplexity of samplers in terms of their query-omplexity was also arried out in [9℄. The urrent paper may be viewed as extending this studyto the domain of general property testing.Note that estimating the average value of a funtion orresponds to very restrited properties offuntions. In partiular, these properties are symmetri (i.e., are invariant under any relabeling ofthe inputs to the funtion). In ontrast, most of the study of property testing refers to propertiesthat are not symmetri (e.g., being a low-degree polynomial, monotoniity, representing a graphthat has a ertain graph property, et). Furthermore, while all symmetri properties of Booleanfuntions are easily testable by straightforward sampling, this annot be said about property testingin general (nor about the numerous speial ases that were studied in the last deade (see surveysof Fisher [10℄ and Ron [23℄)). 2



1.2 A Conrete Motivation: Using Weak Soures of RandomnessIn the ontext of traditional randomized algorithms, a onrete motivation for minimizing therandomness-omplexity is provided by the exponential e�et of the randomness-omplexity on thetime-omplexity of a possible derandomization. In ontrast, in the ontext of property testing,derandomization is typially infeasible, beause (as noted above) deterministi testers annot havesublinear query omplexity. Instead, a di�erent motivation (advoated by the �rst author [12℄),beomes very relevant in this ontext.We refer to the e�et of the randomness-omplexity on the overhead involved in implementingthe tester when using only weak soures of randomness (rather than perfet ones). Spei�ally, werefer to the paradigm of implementing randomized algorithms by using (a single sample from) suha weak soure, and trying all possible seeds to an adequate randomness extrator (see below). Weshall see that the overhead reated by this method is determined by the randomness-omplexity ofthe original algorithm.Loosely speaking, a randomness extrator is a funtion E : f0; 1gn � f0; 1gs ! f0; 1gr thatuses an s-bit long random seed in order to transform an n-bit long (outome of a) weak soure ofrandomness into an r-bit long string that is almost uniformly distributed in f0; 1gr . Spei�ally,we onsider arbitrary weak soures that are restrited (only) in the sense that, for a parameter k,no string appears as the soure outome with probability that exeeds 2�k. Suh soures are alled(n; k)-soures (and k is alled the min-entropy). Now, E is alled a (k; �)-extrator if for any (n; k)-soure X it holds that E(X;Us) is �-lose to Ur, where Um denotes the uniform distribution overm-bit strings (and the term `lose' refers to the statistial distane between the two distributions).For further details about (k; �)-extrators, the interested reader is referred to Shaltiel's survey [25℄.Next, we reall the standard paradigm of implementing randomized algorithms while usingsoures of weak randomness. Suppose that the algorithm A has time-omplexity t and randomness-omplexity r � t. Reall that, typially, the analysis of algorithm A refers to what happenswhen A obtains its randomness from a perfet random soure (i.e., for eah possible input �, weonsider the behavior of A(�;Ur), where A(�; !) denotes the output of A on input � when givenrandomness !). Now, suppose that we have at our disposal only a weak soure of randomness;spei�ally, a (n; k)-soure for n � k � r (e.g., n = 10k and k = 2r). Then, using a (k; �)-extrator E : f0; 1gn � f0; 1gs ! f0; 1gr , we an transform the n-bit long outome of the weaksoure into 2s strings, eah of length r, and use the resulting 2s strings (whih are \random onthe average") in 2s orresponding invoations of the algorithm A. That is, upon obtaining theoutome x 2 f0; 1gn from the soure, we invoke the algorithm A for 2s times suh that in the ithinvoation we provide A with randomness E(x; i). The results of these 2s invoations are proessedin the natural manner. For example, if A is a deision proedure, then we output the majority voteobtained in the 2s invoations (i.e., when given the input �, we output the majority vote of thesequene hA(�;E(x; i))ii=1;:::;2s). An analysis of the error probability of this proedure is providedin Setion 2.4.Let us onsider the ost of the foregoing implementation. We assume, for simpliity, that therunning-time of the randomness extrator is signi�antly smaller than the running-time of A. Then,algorithm A an be implemented using a weak soure, while inurring an overhead fator of 2s.Thus, we fous on providing lower and upper bounds on the aforementioned overhead (i.e., 2s) as afuntion of r (the number of random bits used by the original tester). Realling that s > log2(n�k)and n > k > r� s must hold (f. [25℄), it follows that for k = n�
(n) the overhead fator (i.e., 2s)is lower bounded by 
(n), whih is 
(r). On the other hand, for k = n
(1), eÆient randomness-extrators using s = (1+o(1)) log2 n (and providing r = k1�o(1)) are known (see [25, 26℄). It follows3



that (the overhead fator of) 2s is upper bounded by n1+o(1) (i.e., is almost linear in n), even whenutilizing the randomness in the soure in an almost optimal manner (i.e., extrating r = k1�o(1)almost random bits from any (n; k)-soure). We omment that in the most natural ase of weaksoures, that is, soures of onstant min-entropy rate (i.e., k = 
(n)), the extration rate an beimproved to linear (i.e., r = 
(k)); see [25, 29℄. Thus, for k = 
(n) (resp., k = n
(1)), the overheadfator (i.e., 2s) is upper bounded by a funtion that is almost linear in r (resp., polynomial in r).To summarize, we have established our laim that the time-omplexity of implementing random-ized algorithms when using weak soures of randomness is related to the randomness-omplexity ofthese algorithms. The same applies to the query omplexity of testers. Spei�ally, for (n; k)-soures satisfying k = 
(n) (resp., satisfying k = n
(1)), the query-omplexity of implementing atester is almost linear in r � q (resp., is poly(r) � q), where q is the query-omplexity of the originaltester that uses a perfet soure of (r bits of) randomness.1.3 Spei� AlgorithmsThe motivation disussed in Setion 1.2 is best illustrated by our results regarding testing bipar-titeness in the bounded-degree model (as initiated by Goldreih and Ron [15℄). Spei�ally, �xinga degree bound d, the task is to distinguish (N -vertex) bipartite graphs of maximum degree dfrom (N -vertex) graphs of maximum degree d that are �-far from bipartite (for some parameter�), where �-far means that � � dN edges have to be omitted from the graph in order to yield abipartite graph. We note that no deterministi algorithm of o(N) time-omplexity an solve thispromise problem (see Setion 3.1.1). Yet, there exists a probabilisti algorithm of time-omplexityeO(pNpoly(1=�)) that solves this problem orretly (with probability 2=3). This algorithm makesq def= eO(pNpoly(1=�)) inidene-queries to the graph, and (as desribed in the work Goldreih andRon [16℄) has randomness-omplexity r > q > pN (yet r < q � log2N).1Let us now turn to the question of implementing the foregoing tester in a setting where we haveaess only to a weak soure of randomness. In this ase, the implementation alls for invokingthe original tester eO(r) times, whih yields a total running time of eO(r) � eO(q) > q2 > N (andthe same bound holds for its query-omplexity). But in suh a ase we better use the standard(deterministi) deision proedure for bipartiteness!Fortunately, a randomness-eÆient implementation of the original tester of [16℄ is possible. Thisimplementation (presented in Setion 4.2) has randomness-omplexity r0 = poly(��1 logN) (ratherthan r = poly(��1 logN) � pN). Thus, the ost of the implementation that uses a weak soure ofrandomness is eO(r0 � q) = eO(pNpoly(1=�)), whih mathes the original bound (up to di�ereneshidden in the eO() and poly() notation).The randomness-eÆient implementation of the [16℄-tester presented in Setion 4.2 is basedon pin-pointing the \random features" used in the original analysis, and providing an alternative(randomness-eÆient) implementation that satis�es the same features. In general, suh featurestypially inlude various \hitting" and \sampling" onditions (see Setion 2.2 and Goldreih'ssurvey [11℄). In suh ases, using randomness-eÆient hitters and samplers may yield a signi�antsaving in the randomness-omplexity of the underlying tester. While this approah suÆes in manyases, in other ases a more signi�ant modi�ation of the original tester yields better results. Thisis indeed the ase with respet to the randomness-eÆient tester presented in Setion 4.1.In Setion 4.1 we onsider testers for graph properties in the adjaeny matrix model (as initiatedby Goldreih, Goldwasser, and Ron [14℄). Spei�ally, we onsider the task of testing bipartiteness.1We omment that 
(pN) is a lower-bound on the query-omplexity of any property tester of bipartiteness (inthe bounded-degree model; see [15℄). 4



We reall that the tester presented in [14℄ works by seleting a random set of eO(��2) vertiesand inspeting the (orresponding) indued subgraph. In fat, as shown in [14℄, it suÆes tomake eO(��3) queries. A randomness-eÆient implementation of the \random features" used inthe original analysis, allows reduing the randomness-omplexity to eO(��1) + O(logN), where Ndenotes the number of verties. In ontrast, using an alternative approah, we present a tester ofrandomness-omplexity O(log(1=�)) � logN , while maintaining a query-omplexity bound of eO(��3).The latter randomness-eÆient tester is the main tehnial ontribution of this work. In the nextparagraph, we provide an extremely high-level desription of the priniples underlying its design.The original tester works by �rst seleting a random sample of t = eO(��1) verties, and theanalysis refers to 2t andidate 2-olorings that are indued by all possible 2-partitions of this sample.The tester then selets an auxiliary sample of eO(t=�) vertex-pairs and heks whether this samplerules out all these 2t andidate 2-olorings. The analysis boils down to showing that if the graph is�-far from bipartite then, with high probability, all these andidate 2-olorings are ruled out. Thisis shown by applying a union bound on this set of 2t andidate 2-olorings, whih means that eahandidate has to be ruled out with probability at least 1� 2�t. Thus, the randomness omplexityof any implementation of this tester must exeed t. Seeking to ahieve randomness-omplexity thatis linearly related to log t, we perform a preliminary step aimed at obtaining a single 2-partitionof the initial t-vertex sample that indues a single andidate 2-oloring, whih will be heked asin the original tester. The preliminary step obtains suh a 2-partition by olleting onstraints onthe mutual plaements of pair of verties. These onstraints are found using the same mehanismthat underlies the heking of andidates in the original tester. The punh-line is that here weare dealing with �t2� (rather than 2t) events, whih allows us to work with an error probability oft�2=O(1) (rather than 2�t=O(1)) per eah event.Thus, Setions 4.1 and 4.2 represent two approahes to reduing the randomness-omplexity oftesters: Setion 4.2 represents the approah of merely providing randomness-eÆient implementa-tion of some random features used in the analysis of the original tester. In ontrast, Setion 4.1represents the approah of redesigning the tester (while, indeed, bene�ting from ideas that underlythe design of the original tester).1.4 Generi BoundsIn ontrast to the spei� algorithms desribed in Setion 1.3, we now onsider quite generi lower-and upper-bounds on the randomness-omplexity of property testers as a funtion of their query-omplexity. These bounds (as well as the rest of our study) refer to testers with onstant errorprobability. We stress that these results do not refer to the time-omplexity of the testers, whihmakes the lower-bounds stronger (and the upper-bound weaker).Lower bounds. We show that, for a wide lass of properties of funtions de�ned over a domainof size D, the randomness-omplexity of testing with q queries is at least log2(D=q) � O(1). Theaforementioned lass inludes all known testers (see details below). Needless to say, the dependeneon the query-omplexity is essential, beause deterministi testers of query-omplexity D exist forany property. Furthermore, the randomness-omplexity of any tester an be dereased by anadditive term of t while inreasing the query omplexity by a fator of 2t. The lower-bound assertsthat for natural property testers (where q � D), the randomness-omplexity should \ompensate"for not sanning the entire domain; that is, 2r � q = 
(D), where r denotes the randomness-omplexity of the tester (and q its query-omplexity).The lower-bounds established in Setion 3.1 apply to two general and natural lasses of prop-5



erties. In partiular, these lower-bounds apply to testing low-degree polynomials (f., e.g., Blum,Luby, and Rubinfeld [8℄ and Rubinfeld and Sudan [24℄), loally-testable odes (f., e.g., Goldreihand Sudan [17℄), testing graph properties (in both the adjaeny matrix and inidene-list models,see Goldreih, Goldwasser, and Ron [14℄ and Goldreih and Ron [15℄, resp.), testing monotoniity(f., e.g., Goldreih, Goldwasser, Lehman, Ron, and Samorodnitsky [13℄), and testing of lustering(f., e.g., Alon, Dar, Parnas, and Ron [2℄).Upper bounds. The upper-bound established in Setion 3.2 refers to any property and assertthat the randomness-omplexity of any tester may be redued to log2D+ log2 log2R+O(1), whereR is the size of the range of the funtions we refer to (and D is the size of their domain).Note that the gap between the lower and upper bounds is log2 q + log2 log2R+O(1). We notethat in the speial ase of evaluating the average of Boolean funtions by query-optimal samplers,the gap an be redued to a onstant by using the improved lower-bound of Radhakrishnan andTa-Shma [22℄ (whih implies that the randomness-omplexity of any sampler is at least log2(D=q)+2 log2(1=�)�O(1), while query-optimal samplers have q = �(��2) (see [9℄)). See further disussionin Setion 3.1.3.1.5 OrganizationIn Setion 2 we review some basi tools (e.g., randomness-eÆient hitters) that are used in thiswork. Our generi results are presented in Setion 3, where Setion 3.1 provides lower bounds andSetion 3.2 provides upper bounds. The spei� testers for the ase of bipartiteness are presentedin Setion 4, where the Setion 4.1 refers to the adjaeny matrix model and Setion 4.2 refers tothe bounded-degree model.2 PreliminariesIn this setion we review some basi tools that are used in this work. Spei�ally, Setion 2.2 reviewsthe basi de�nitions and results reagrding randomness-eÆient hitters, whih are used extensivelyin Setion 4. In addition, 4-wise independent sequenes are reviewed in Setion 2.1 (and used inSetion 4.2), whereas randomness-eÆient error-redution is reviewed in Setion 2.3 (and used inSetion 3.2). We believe that some readers an a�ord skipping the urrent setion.Notation: The notation eO represents an upper bound that is almost linear in the argument; thatis, eO(x) means an upper bound of the form O(poly(log x) � x). Similarly, e� represents a eO upperbound that is tight up to a polylogarithmi fator; that is, e�(x) means an upper bound of eO(x)that is mathed by a lower bound of the form 
(x=poly(log x)).We often use the phrase \with high probability" without speifying the error bound, whih istypially a suÆiently small onstant. In all ases, the meaning of this phrase should be lear fromthe ontext.2.1 Pairwise and 4-wise independent sequenesLet S be a �nite set and t � ` be integers. A distribution over S` is alled t-wise independent if itsrestrition to any t oordinates is uniformly distributed over St. That is, a sequene of (possiblydependent) random variables (X1; :::;X`), eah distributed over S, is alled t-wise independent if6



for every i1 < i2 < � � � < it (in [`℄) and for every (v1; :::; vt) 2 St it holds that Pr[(8j 2 [k℄)Xij =vj ℄ = jSj�t. In ase t = 2, we all the sequene pairwise independent.In the following onstrution (due to [1℄), we assume that jSj is a power of 2, and identify Swith the orresponding �nite �eld. Let �1; :::; �` be (�xed and) distint elements of this �eld, andonsider the distribution generated by uniformly and independently seleting s0; s1; :::; st�1 2 S,and outputting the sequene (r1; ::::; r`), where ri = Pt�1j=0 �ji sj. Then, this sequene is t-wiseindependent. Note that this sequene is generated using t log2 jSj random bits.2.2 Randomness-EÆient HittersThe hitting problem is a one-sided version of the (Boolean) sampling problem (see, e.g., [11℄). Givenparameters n (length), � (density) and Æ (error), and orale aess to any funtion f : f0; 1gn !f0; 1g suh that jfx : f(x)=1gj � �2n, the task is to �nd a string that is mapped to 1.De�nition 2.1 (hitter): A hitter is a randomized algorithm that on input parameters n, � and Æ,and orale aess to any funtion f :f0; 1gn!f0; 1g suh that jf�1(1)j � �2n, satis�esPr[hitterf (n; �; Æ) 2 f�1(1)℄ > 1� ÆWhen � and Æ are �xed, we say that the resulting algorithm is a hitter for sets of density � with errorprobability Æ.We shall also say that suh a hitter hits any set of density � with probability (at least) 1� Æ.We briey reall a few known results (and refer the interested reader to [11℄ for details). Forany onstant Æ > 0, using a pairwise-independent sequene of length O(1=�), we obtain a hitterfor sets of density � with error probability Æ. Thus, this hitter has query-omplexity O(1=�) andrandomness-omplexity 2n. An alternative hitter based on the neighborhood of a random vertex inan expander graph has query-omplexity O(1=�) and randomness-omplexity n. Combining any ofthese hitters with a random walk (of length O(log(1=Æ))) on an expander graph, we obtain a hitterfor sets of density � and any desired error probability Æ suh that this hitter has query-omplexityO(��1 log(1=Æ)) and randomness-omplexity r + O(log(1=Æ)), where r 2 fn; 2ng depending on thebasi hitter we use.Note that eah of the foregoing hitters generates a sequene of andidate strings in f0; 1gn, anduses queries to f merely for the seletion of one of these strings. In the subsequent text, we atuallyrefer only to the sample-generating part of these hitters.2.3 Randomness-EÆient Error-RedutionError-redutions are losely related to oblivious samplers (see, e.g., [25℄ or [11℄). Intuitively, givena probabilisti deision proedure of (two-sided) error probability � < 1=2, we wish to obtain aprobabilisti deision proedure of (two-sided) error probability Æ < �. Representing the foregoingproedure (oupled with a generi input) by a Boolean funtion f (whih maps the proedure'srandomness to its deision), we obtain the following de�nition.De�nition 2.2 (error redution): An error redution is a randomized orale mahine, denoted M ,that on input parameters n and Æ < � < 1=2, and orale aess to any funtion f :f0; 1gn!f0; 1g,satis�es the following ondition. If for some � 2 f0; 1g it holds that jf�1(�)j � (1� �) � 2n, thenPr[Mf (n; �; Æ) = �℄ > 1� ÆWhen � and Æ are �xed, we say that the resulting mahine redues error � to error Æ.7



In Setion 3.2 we shall use a randomness-eÆient error-redution that redues error 2=5 to error1=3 by making a onstant number of orale alls and using n random bits. This error-redutionworks by seleting a random vertex in a bounded-degree expander graph (of size 2n) and queryingf on all the neighbours of this vertex. For details, the interested reader is referred to to [11℄.2.4 Analysis of the standard use of extratorsIn ontinuation to Setion 1.2, we prove the following laim.Claim 2.3 Let A be a randomized deision proedure of randomness-omplexity r and error prob-ability p, and E : f0; 1gn �f0; 1gs ! f0; 1gr be an (k; �)-extrator. Consider the algorithm A0 that,on input �, obtains a single sample x from an (n; k)-soure and rules aording to the majorityvalue in hA(�;E(x; i))ii=1;:::;2s. Then, A0 has error probability at most 2(p+ �). Furthermore, if Eis atually a (k � t; �)-extrator and p+ � < 1=2 then A0 has error probability 2�t.Proof: The analysis of the foregoing implementation is based on the fat that \on the average" the2s strings extrated from the soure approximate a perfet r-bit long soure (i.e., a random settingof the s-bit seed yields an almost uniformly distributed r-bit string). Spei�ally, by de�nition, if Xis a (n; k)-soure then E(X;Us) is �-lose to Ur. It follows that the probability that A(�;E(X;Us))errs is at most p + �. By Markov Inequality, the probability that the majority of the values inhA(�;E(X; i))ii=1;:::;2s are wrong is at most 2(p+ �). The main part of the laim follows.Towards the furthermore lause, �xing any �, we all a string x 2 f0; 1gn bad if the probabilitythat A(�;E(x;Us)) is wrong is at least 1=2. Using the hypothesis that E is (k � t; �)-extrator itfollows that there are at most 2k�t bad strings (otherwise, de�ning X 0 to be uniformly distributedon the set of bad strings, we reah a ontradition to the hypothesis (beause E(X 0; Us) is not�-lose to Ur)). Hene, the outome of a (n; k)-soure is bad with probability at most 2�t and thelaim follows.Comment. We note that randomized proedures with one-sided error probability p an be imple-mented using a weak random soure as long as p+ � < 1. An important ase is of searh problemsfor whih the randomized algorithm �nds a orret solution with probability 1�p and halts withoutsolution otherwise. When implementing suh an algorithm, we may output any solution obtainedin any of the invoations of the original algorithm, whih means that we \rule by or" rather than\ruling by majority".3 Generi BoundsWe onsider testing properties of funtions from D to R; that is, all funtions onsidered here havedomain D and range R. Fixing a set of suh funtions, denoted �, and a proximity parameter,denoted � > 0, we fous on the task of �-testing � as arises from the following de�nition.De�nition 3.1 (testers): A randomized orale mahine T is alled an �-tester for � if the followingtwo onditions hold:1. For every f 2 � it holds that Pr[T f = 1℄ � 2=3.2. For every f that is �-far from � it holds that Pr[T f = 1℄ � 1=3, where f is �-far from � if forevery g 2 � it holds that Prx2D[f(x) 6= g(x)℄ > �.8



In ase the �rst ondition holds with probability 1, we say that T has one-sided error. A tester is allednon-adaptive if it determines its queries based solely on its internal oin-tosses (and independentlyof the answers to prior queries).The query and randomness omplexities of T are de�ned in the natural manner.Note that we have de�ned property testers for �nite properties and for a �xed value of theproximity parameter �. The de�nition may be extended to in�nite properties and varying �, byproviding the tester with jDj; jRj and � as inputs (and assuming D = [jDj℄). Oasionally, we shallassume that � � jDj�1; otherwise, �-testers oinide with standard deision proedures.3.1 Lower BoundsWe provide lower-bounds on the randomness omplexity of testing two general lasses of properties.3.1.1 Strongly evasive propertiesThe �rst lass that we onsider onsists of properties that are \strongly evasive" in the sensethat the values (of some funtion) at any set that ontains a onstant fration of the domain areonsistent both with some funtion that has the property and with some other funtion that is farfrom having the property.De�nition 3.2 (strongly evasive): For �xed parameters � and �, the property � is alled stronglyevasive (with respet to parameters � and �) if there exists a funtion f :D!R suh that for everyD0 � D of density � (i.e., jDj0 = � � jDj), there exists f1 2 � and f0 :D!R that is �-far from �suh that for every x 2 D0 it holds that f1(x) = f0(x) = f(x).Many natural properties are strongly evasive (with respet to various pairs of parameters); seeexamples below. We mention that De�nition 3.2 is inomparable to the standard de�nition ofevasiveness (f., e.g., [20℄): On one hand, strong evasiveness has a non-deterministi avor (i.e., itrefers to all hoies of D0 after f is �xed) and furthermore it refers to the relaxation of propertytesting (i.e., f0 is far from � rather than only not in �). On the other hand, we shall fous ononstant values of � < 1, whereas standard evasiveness refers to � = 1� jDj�1.We show that testing any strongly evasive property requires randomness omplexity that is log-arithmi in the ratio of the domain size over the query omplexity. This result an be easily provedby extending a similar result regarding samplers (proved by Canetti, Even, and Goldreih [9℄).Theorem 3.3 Let � be strongly evasive with respet to � and �. Then any �-tester for � that hasquery omplexity q, must have randomness omplexity greater than log2(�jDj=q).Proof: Let T be an arbitrary �-tester of query-omplexity q and randomness-omplexity r, andf be a funtion witnessing the fat that � is strongly evasive (i.e., for every set of density � of thedomain, there exists f1 2 � and f0 : D ! R that is �-far from � suh that f; f1 and f0 agree onall elements in this set). For every ! 2 f0; 1gr , we onsider the set of queries made by T whenthe outome of T 's oin-tosses equals ! and T is given orale aess to f . Denoting the latterset by Q!, we let D0 = [!2f0;1grQ!. (Indeed, like the Q!'s, the set D0 depends on f .) Clearly,jD0j � 2r � q. The theorem follows by proving that jD0j > � � jDj.Suppose towards the ontradition that jD0j � � � jDj. Then, by our hoie of the funtionf , there exists f1 2 � and f0 : D ! R that is �-far from � suh that for every x 2 D0 it holdsthat f1(x) = f0(x) = f(x). It follows that T f1 and T f0 behaves exatly as T f (beause all thesefuntions agree on D0), whih yields a ontradition (beause T must aept f1 with probability atleast 2=3 and aept f0 with probability at most 1=3).9



Some appliations. Many graph properties are strongly evasive, but sine suh properties willbe at the fous of Setion 3.1.2, we mention �rst a few examples that refer to di�erent types ofproperties.1. Multi-variate polynomial. For every m and d, we onsider the set of m-variate polynomialof total degree d over a �nite �eld F . To see that this set of funtions over Fm is stronglyevasive onsider the all-zero funtion, f , and let f1 = f . Then, for every D0 of density1=2, let f0(x) = 0 if x 2 D0 and f0(x) = 1 otherwise. Assuming jF j > 4d (and usingthe Shwartz{Zippel Lemma), it follows that f0 is 1=4-far from any degree d polynomial(beause any non-zero polynomial of degree d may evaluate to zero on at most a d=jF jfration of its domain). Invoking Theorem 3.3, we onlude that 1=4-testing the set of m-variate polynomials of total degree d over F , while using q queries, requires randomness atleast log2(jFmj=2q) = m log2 jF j � log2 q � 1.We mention that, for every onstant � > 0, the low-degree �-tester of Ben-Sasson, Sudan,Vadhan, andWigderson [7℄ uses q = O(d log jF j) queries andm log2 jF j+log2(m log jF j)+O(1)random bits.2. Codes of linear distane. A binary ode C � f0; 1gn of distane d = 
(n), is viewed as a set offuntions of the form f : [n℄! f0; 1g, where eah funtion orresponds to a odeword. To seethat this set is strongly evasive onsider any odeword f , and let f1 = f . Then, for every D0of density 1� (d=2n), let f0(x) = f(x) if x 2 D0 and f0(x) = 1� f(x) otherwise. Clearly, f0is (d=2n)-far from any odeword. Invoking Theorem 3.3 (and using d � n), we onlude thatd=2n-testing the set of n-bit long odewords of C, while using q queries, requires randomnessat least log2(n=2q).We mention that the odeword tests (for odes) that are obtained from typial PCP onstru-tions (by following the transformation of Goldreih and Sudan [17℄) ahieve suh (minimal)randomness omplexity.3. Monotone funtions. A funtion f : f0; 1gn ! f0; 1g is said to be monotone if f(x) � f(y) forevery x � y, where � denotes the natural partial order among strings (i.e., x1 � � � xn � y1 � � � ynif xi � yi for every i and xi < yi for some i). To see that the set of monotone funtions isstrongly evasive onsider the all-one funtion f , and let f1 = f . Then, for every D0 of density1=4, let f0(�z) = f(�z) if f0z; 1zg \ D0 6= ; and f0(�z) = 1 � � otherwise. Note that iff0z; 1zg \D0 = ; then f0 must be modi�ed at either 0z or 1z in order to obtain a monotonefuntion. Thus, f0 is 1=4-far from being monotone. Invoking Theorem 3.3, we onludethat 1=4-testing the set of monotone funtions over f0; 1gn, while using q queries, requiresrandomness at least log2(2n=2q) = n� log2 q � 1.We mention that the �-tester for monotoniity of Goldreih, Goldwasser, Lehman, Ron, andSamorodnitsky [13℄ uses O(n=�) queries and n+ log2 n random bits.Turning bak to graph properties, we fous on the bounded inidene lists model (of [15℄), beausethe results of Setion 3.1.2 do not apply to it. We mention a few properties of bounded-degree graphsthat are strongly evasive in the (bounded) inidene lists model. Examples inlude onnetivityand being Eulerian (or Hamiltonian), whih an be demonstrated to be strongly evasive by startingwith the N -yle (and omitting edges). Additional examples suh as planarity and bipartitenessan be demonstrated to be strongly evasive by starting with the empty graph (and adding edges).By invoking Theorem 3.3, we onlude that, in all these ases (whih refer to a onstant degree10



bound), 
(1)-testing the set of N -vertex graphs that have the orresponding property by using qqueries requires randomness at least log2(N=q) � O(1). This lower bound is tight in some ases(e.g., onnetivity (see the seond author's thesis [27℄)) but not in others (e.g., bipartiteness (seeSetion 4.2)).3.1.2 Relabeling-invariant propertiesThe seond lass that we onsider onsists of properties that are invariant under some \nie"relabeling of D, where a set of relabelings (or permutation) S is onsidered nie if a random � 2 Smaps eah element in D to the uniform distribution over D (i.e., for every x; y 2 D it holds thatPr�2S [�(x) = y℄ = jDj�1). We omment that a similar notion was onsidered by Kaufman andSudan [19℄.De�nition 3.4 (invariant properties): Let SD be a set of permutations over D. We say that theproperty � is SD-invariant if for every f : D ! R and every � 2 SD it holds that f 2 � if and only(f Æ �) 2 �, where (f Æ �)(x) = f(�(x)).We onsider only sets SD that orrespond to a transitive group of permutations over D; that is, SDis permutation group and for every x; y 2 D there exists a permutation � 2 SD suh that �(x) = y.Needless to say, the set of all permutations is a transitive group of permutations, but so are alsomany other permutation groups (e.g., the group of all yli permutations). Note that, for anytransitive group SD of permutations over D, it holds that Pr�2SD [�(x) = y℄ = 1=jDj, for everyx; y 2 D. (To see this, onsider any x; y; z 2 SD, let px;y = Pr�2SD [�(x) = y℄, and, using � 2 SDsuh that �(z) = y, note that px;y = Pr�2SD [(� Æ �)(x)=y℄ = Pr�2SD [�(x)=z℄ = px;z.)Theorem 3.5 Let SD be a transitive group of permutations over D, and � be a non-empty andSD-invariant property of funtions from D to R. Suppose that, for some � 2 R, the all-� funtionis 2�-far from �. Then any non-adaptive �-tester for � that has query omplexity q, must haverandomness omplexity at least log2(jDj=q)� 1.Proof: Like the proof of Theorem 3.3, the urrent proof is based on deriving a ontradition fromthe hypothesis that the tester never examines most of the funtion (i.e., jD0j � jDj). The di�ereneis in the way that this ontradition is derived, sine we an no longer take the straightforwardroute o�ered by strong evasiveness.Let T be an �-tester for �, and denote its query-omplexity and randomness-omplexity byq and r respetively. Sine T is non-adaptive, its queries are oblivious of the orale. For every! 2 f0; 1gr , we denote by Q! the set of queries made by T when the outome of its oin-tossesequals !, and let D0 = [!2f0;1grQ!. Again, jD0j � 2r � q, and the theorem follows by proving thatjD0j > jDj=2.Let f : D ! R be a funtion in � with the maximum number of � values, among all funtionsin �. By the hypothesis, jfx 2 D : f(x) 6= �gj > 2�jDj. Suppose, for a moment, that jfx 2 D nD0 :f(x) 6= �gj � �jDj, and let h be de�ned suh that h(x) = f(x) if x 2 D0 and h(x) = � otherwise.Then (by the maximality of f), h is �-far from �. However, T h behaves exatly as T f (beause hand f agree on D0), whih yields a ontradition beause T must aept f with probability at least2=3 and aept h with probability at most 1=3.It is left to prove that if jD nD0j � jDj=2 then jfx 2 D nD0 : f(x) 6= �gj � �jDj. This does notneessarily hold, but we shall show that it holds when replaing f by another funtion in � thatalso has a maximum number of � values. Here we use the hypothesis that � is an SD-invariant11



property, where SD is a transitive group of permutations over D. Spei�ally, onsider a randompermutation � 2 SD, and let f 0 = (f Æ�) 2 �. Then, f 0 2 � and jfx 2 D : f 0(x) 6= �gj > 2�jDj. Onthe other hand, sine SD is a transitive group of permutations over D, for every x; y 2 D it holdsthat Pr�2SD [�(x)=y℄ = 1=jDj. It follows that, for a random permutation � 2 SD, the expeted sizeof fx 2 D nD0 : f 0(x) 6= �g equalsjD nD0j � jD n f�1(�)jjDj � �jDj ;where the inequality is due to the hypotheses jD n D0j � jDj=2 and jD n f�1(�)j > 2�jDj. Thus,there exists a f 0 2 � suh that jfx 2 D nD0 : f 0(x) 6= �gj � �jDj, and the theorem follows.Main appliation. As hinted in Setion 3.1.1, the most appealing appliation of Theorem 3.5is to testing graph properties in the adjaeny matrix model (initiated by Goldreih, Goldwasser,and Ron [14℄). In this model, N -vertex graphs are represented by Boolean funtions de�ned over[N ℄ � [N ℄. For tehnial reasons, here (but not elsewhere) we represent suh graphs as Booleanfuntions de�ned over the set of the �N2 � (unordered) vertex-pairs, whih is atually more natural(as well as non-redundant). (Using the set of N2�N ordered pairs of non-idential elements wouldhave worked too.) Note that the set of all permutations over [N ℄ indues a transitive group ofpermutations over these pairs, where the permutation � : [N ℄ ! [N ℄ indues a permutation thatmaps pairs of the form fi; jg to f�(i); �(j)g. Indeed, any graph property is invariant under thisgroup, and Theorem 3.5 an be applied whenever either the empty graph or the omplete graphis far from the property. We note that all the (non-trivial) graph properties onsidered in [14,Se. 6-9℄ fall into the latter ategory (and that the testers of [14℄ are all non-adaptive).Corollary 3.6 (testing graph properties in the adjaeny matrix model): Let � be a graph propertyand suppose that either the empty graph or the omplete graph is 2�-far from �. Then, any non-adaptive �-tester for � that has query omplexity q, must have randomness omplexity at least2 log2N � log2 q �O(1).Note that q adaptive Boolean queries an always be replaed by 2q non-adaptive Boolean queries.We warn, however, that the more query-eÆient transformation that replaes q adaptive (adja-eny matrix) queries by 2q2 non-adaptive queries (see [3, 18℄) is inappliable here, beause thistransformation does not preserve the randomness-omplexity.Other appliations. We note that any property that refers to sets of objets (e.g., sets ofpoints as in Alon, Dar, Parnas, and Ron [2℄) is invariant under the group of all permutations.Another appliation domain onsists of matrix-properties that are preserved under row and olumnpermutations.Generalizations. Theorem 3.5 an be generalized to properties that are SD-invariant under a setof permutations that is \suÆiently mixing" in the sense that a permutation seleted uniformly inSD maps eah element of the domain to a distribution that has high min-entropy. For example, for aparameter � � 1, it suÆes that for every x 2 D and y 2 D it holds that Pr�2SD [�(x) = y℄ � �=jDj.In this ase, we shall prove that jD0j > jDj=2�, and a lower-bound of log2(jDj=q)� log2(2�) on therandomness-omplexity follows. A di�erent generalization is obtained by replaing � with a set ofvalues S � R and referring to properties for whih every funtion f : D ! S is 2�-far from theproperty. 12



3.1.3 DisussionAlthough Theorems 3.3 and 3.5 are inomparable, most appliations of Theorem 3.5 an be obtainedalso by using Theorem 3.3. Still, in some ases, it is easier to see that the onditions of Theorem 3.5are met. For example, this is the ase when the invariane of the property is obvious from the setting(e.g., as in the ase of any graph property in the adjaeny matrix model).Both Theorems 3.3 and 3.5 yield a lower-bound of the form log2(jDj=q) � O(1), whih is in-dependent of the proximity parameter �. We believe that, for a wide range of parameters, theright lower-bound should be log2(jDj=q) + 
(log(1=�)) � O(1). Furthermore, in some ases whereq = 
(��2), one may hope to obtain a log2 jDj � O(1) lower-bound. Indeed, this is the ase foraverage-estimation (see [22, 30℄), whih in turn is a speial ase of property testing. Spei�ally,in this ase a lower-bound of log2(D=q) + 2 log2(1=�) � O(1) holds [22℄, whereas q = O(��2) holdswhen using query-eÆient testers. (Note that q = 
(��2) must hold [9℄, and so this lower boundannot be improved above log2 jDj�O(1); indeed, the lower bound of [22℄ is tight (up to an additiveonstant) for any q � jDj.)3.2 Upper BoundsWe start with a totally generi bound, and later fous on testing graph properties.3.2.1 A generi boundReall that we refer to properties of funtions from D to R. The following result an be easilyproved by extending a similar result regarding samplers (presented in [9℄), whih in turn is provedusing well-known tehniques (f., e.g., Newman [21℄).Theorem 3.7 If � has an �-tester that makes q queries then it has an �-tester that makes O(q)queries and tosses log2 jDj+ log2 log2 jRj+O(1) oins. Furthermore, one-sided error and/or non-adaptivity are preserved.For Boolean funtions we get an upper-bound of log2 jDj + O(1), whih di�ers from the lower-bounds presented in Setion 3.1 by an additive term of log2 q+O(1). Indeed, the onjeture at theend of Setion 3.1.3 shrinks the gap to a onstant.Proof: Let T be a tester as in the hypothesis, and suppose that it tosses r oins. Consider an2r-by-jRjjDj matrix in whih the rows orrespond to r-bit strings (representing possible outomes ofT 's oin tosses) and the olumns orrespond to possible funtions suh that the entry (!; f) equalsthe verdit of T f (!) (i.e., when T uses randomness ! and has orale aess to the funtion f).Note that the average values in any olumn that orresponds to a funtion in � (resp., a funtionthat is �-far from �) is at least 2=3 (resp., at most 1=3).Using the probabilisti method (see [6℄), we will show that there exists a multi-set 
 ofO(jDj log jRj) rows suh that, for eah olumn, the average of this olumn taken only over therows in 
 is 1=15-lose to the average over the entire olumn. Using this set 
, we onsider theorale mahine that, when given aess to any funtion f , selets uniformly ! 2 
 and emulatesT f (!). This mahine aepts every f 2 � with probability at least (2=3) � (1=15) = 3=5, re-jets every f that is �-far from � with probability at least 3=5, and its randomness omplexityis log2 j
j = log2 jDj+ log2 log2 jRj + O(1). Using a randomness-eÆient error-redution (see Se-tion 2.3), we obtain the desired tester. (Spei�ally, we redue the error probability from 2=5 to 1=3,while inreasing the number of queries by a multipliative onstant and maintaining the number ofoin tosses.) 13



The probabilisti argument proeeds via a union bound over all possible jRjjDj funtions. Fixingany funtion f , we onsider the probability that, for a uniformly distributed multi-set 
 of size s,the following bad event ours:������2�r � X!2f0;1gr T f (!)� s�1 � X!2
T f (!)������ > 115 (1)Using Cherno� bound, the probability that the bad event in Eq. (1) holds is at most exp(�
(s)).Thus, for s = O(jDj log jRj), we onlude that there exists a multi-set of size s suh that, for everyf , the bad event in Eq. (1) does not hold. The theorem follows.Corollary. Applying Theorem 3.7 to testers of graph properties in the adjaeny matrix model(of [14℄), we onlude that if a property of N -vertex graphs is �-testable using q queries then it hasan �-tester that makes O(q) queries and tosses 2 log2N+O(1) oins. We further disuss this modelin Setion 3.2.2.3.2.2 Bounds for anonial testers of graph propertiesThe proof of Theorem 3.7 shows that for every tester T (of randomness omplexity r) there existsa small set of oin-sequenes 
T (� f0; 1gr) that is essentially as good as the original set of oin-sequenes used by this tester (i.e., f0; 1gr). This raises the question of whether there may exists auniversal set 
 that is good for all testers (of randomness omplexity r). Needless to say, the latterformulation is too general and is doomed to yield a negative answer (e.g., by onsidering, for any
, a pathologial tester that behaves badly when fed with any sequene in 
). Still suh universalsets may exist for naturally restrited lasses of testers.One adequate lass of testers was suggested by Goldreih and Trevisan [18℄, and it refers totesting graph properties in the adjaeny matrix model. A anonial �-tester for a property � ofN -vertex graphs is determined by an integer k and a property �0 of k-vertex graphs. Suh a tester,sometimes referred to as k-anonial, selets uniformly a set of k verties in the input graph G andaepts G if and only if the orresponding indued (k-vertex) subgraph has the property �0. It wasshown in [18℄ that if � is �-testable with query omplexity q then � has a k-anonial �-tester withk = O(q). Thus, it is natural to onsider the notion of a \universal set" of k-subsets of [N ℄ that isgood for all k-anonial testers.De�nition 3.8 A multi-set 
 � fS� [N ℄ : jSj=kg is alled (�; k)-universal if for every property �of N -vertex graphs and for every k-anonial �-tester for �, denoted T , the following holds:1. For every G that has property �, it holds that Pr!2
[TG(!) = 1℄ � 3=5, where TG(!) denotesthe exeution of T when given the oin-sequene ! and orale aess to G.2. For every G that is �-far from property �, it holds that Pr!2
[TG(!) = 1℄ � 2=5.Using an (�; k)-universal set, we an redue the randomness omplexity of any k-anonial �-testerT by seleting uniformly ! 2 
 and emulating T (!). The residual orale mahine, denoted T 0, isessentially an �-tester for the same property, exept that T 0 may err with probability at most 2=5(rather than 1=3). Needless to say, T 0 has randomness omplexity log2 j
j and query omplexity�k2�. Furthermore, T 0 preserves the possible one-sided error of T .Clearly, the set of all k-subsets is (�; k)-universal, beause using this set oinides with thede�nition of a k-anonial �-tester. We seek (�; k)-universal sets that are muh smaller; spei�ally,14



by prior results we may hope to have (�; k)-universal sets of size O(N2). By extending the proof ofTheorem 3.7, we an prove the following result.Theorem 3.9 There exist (�; k)-universal sets (of subsets of [N ℄) having size O(2k2 +N2).The randomness omplexity of the derived �-tester is max(k2; 2 log2N) + O(1), whih is typi-ally smaller than the randomness omplexity of the k-anonial �-tester (i.e., k log2N). Fork = o(plogN), whih holds whenever k only depends on � (and � is onstant) as in [14, 3, 4℄,we get randomness-omplexity 2 log2N +O(1), whih is optimal sine the domain size is N2.Proof: The key observation is that a k-anonial tester is determined by the property �0 thatit deides (for the indued k-vertex subgraph), while �0 an be desribed by K = 2(k2) < 2k2 bitswhih determine for eah k-vertex graph whether it is in �0. Thus, when applying a union boundas in the proof of Theorem 3.7, the number of k-anonial testers that we need to onsider is lessthan 2K . Hene, it suÆes to have 2K � 2N2 � exp(�
(s)) < 1, where 2K upper-bounds the numberof testers, 2N2 upper-bounds the number of N -vertex graphs, and exp(�
(s)) upper-bounds theprobability that a multi-set of size s is bad (as in Eq. (1)) with respet to a �xed tester and a �xedgraph. Using s = O(K +N2), the laim follows.Open problems. Can the upper-bound of Theorem 3.9 be improved; in partiular, do there exist(�; k)-universal sets (of subsets of [N ℄) having size O(poly(k) �N2) or even O(N2)? Can universalsets of small size (e.g., as in Theorem 3.9) be eÆiently onstruted?Extension. Theorem 3.9 extends to any lass of non-adaptive testers (for any property of fun-tions from D to R) whose �nal deision only depends on the orale answers. The point is that eahsuh tester that makes q queries an be desribed by a funtion f : Rq ! f0; 1g, and thus the numberof suh testers is 2jRjq . Hene, the size of the orresponding \universal set" is O(jRjq + jDj log jRj).4 Spei� Algorithms: The Case of BipartitenessIn this setion we demonstrate two approahes to reduing the randomness-omplexity of testers.Setion 4.2 demonstrates the approah of merely providing a randomness-eÆient implementationof some random features that are used in the analysis of the original tester. In ontrast, Setion 4.1demonstrates the approah of redesigning the tester (while, indeed, bene�ting from ideas thatunderly the design of the original tester).In both setions we onsider testing graph properties, but in two di�erent standard models:In Setion 4.1 we refer to the adjaeny matrix model (introdued in Goldreih, Goldwasser, andRon [14℄), while in Setion 4.2 we refer to the bounded-degree model (introdued in Goldreihand Ron [15℄). In both setions, we fous on the problem of testing bipartiteness. Further detailsand additional testers are provided in the seond author's thesis [27℄. We make extensive use ofrandomness-eÆient hitters as de�ned and disussed in Setion 2.2.4.1 In the Adjaeny Matrix ModelIn the adjaeny matrix model an N -vertex graphG = (V;E) is represented by the Boolean funtiong : [N ℄�[N ℄! f0; 1g suh that g(u; v) = 1 if and only if u and v are adjaent in G (i.e., fu; vg 2 E).In this setion we present a randomness-eÆient bipartite tester for graphs in the adjaeny matrix15



model. This tester is strongly inuened by the tester of Goldreih, Goldwasser, and Ron [14℄, butdi�ers from it in signi�ant ways. Still, it is instrutive to start with a desription of the testerof [14℄, hereafter referred to as the GGR tester.4.1.1 The GGR testerEssentially, the GGR tester selets a random set of e�(��2) verties, inspets the subgraph of Gindues by this set, and aepts if and only if this indued subgraph is bipartite. The analysisin [14℄ atually refers to the following desription, whih also has a lower query-omplexity.Algorithm 4.1 On input parameters N and �, and orale aess to an adjaeny prediate of anN -vertex graph, G = (V;E), proeed as follows:1. Uniformly selet a sample U of e�(��1) verties.2. Uniformly selet a sample S of e�(��2) vertex-pairs.3. For eah u 2 U and (v1; v2) 2 S, hek whether fu; v1g; fu; v2g and fv1; v2g are edges.4. Aept if and only if the subgraph viewed in Step 3 is bipartite.Clearly, this algorithm never rejets a bipartite graph, and thus its analysis fouses on the asethat G is �-far from being bipartite. One key observation is that eah 2-partition, (U1; U2), of Uindues a 2-partition of the entire graph in whih all neighbors of U1 are on one side and all theother verties are on the other side. A pair of verties (v1; v2) detets that the latter partition isnot a valid 2-oloring of G if there exists u1; u2 2 U1 (resp., u1; u2 2 U2) suh that fu1; v1g; fv1; v2gand fv2; u2g are all edges of G. In suh a ase, we all the pair (v1; v2) a witness against (U1; U2).The analysis in [14℄ shows that if G is �-far from being bipartite then, with high probability, forevery 2-partition of U there exists a pair in S that is a witness against this 2-partition. Let usbriey reall how this is done.The �rst step is proving that, with high probability (say, with probability at least 5=6), the setU dominates all but an �=8 fration of the verties of G that have degree at least �N=8, where aset U dominates a vertex v if v is adjaent to some vertex in U . This step is quite straightforward.The next step is proving that this implies that for every 2-partition of U there exists at least �N2=2(ordered) vertex-pairs that are eah a witness against this 2-partition. The impliation is proved byonfronting the following two fats:1. Sine G is �-far from being bipartite, the 2-partition of V indued by any 2-partition of Uhas at least �N2 (ordered) vertex-pairs that reside on the same side of the partition and yetare onneted by an edge.2. The number of (ordered) vertex-pairs (v1; v2) suh that fv1; v2g 2 E but either v1 or v2 is notdominated by U is at most �N2=2, beause eah low-degree vertex ontributes at most �N=4suh (ordered) pairs and there are at most �N=8 high-degree verties that are not dominatedby U .Having established the existene of at least �N2=2 vertex-pairs that onstitute a witness againstany �xed 2-partition of U , it is lear that eah random pair of verties will be a witness withprobability at least �=2, and seleting enough random pairs will do the job. The point, however, isthat we need to rule out eah of the 2jU j possible 2-partitions of U . Thus, the number of seleted16



pairs is set suh that the probability that we do not �nd a witness against any spei� 2-partitionis smaller than 2�jU j. Indeed, setting jSj = O(jU j=�) will do. This ompletes our review of [14℄.As stated in Setion 1.3, the foregoing approah supports a randomness-eÆient implementation(of Algorithm 4.1). Spei�ally, U needs to be seleted so that sets of density �=8 are avoided withprobability at most �=48, while S is seleted suh that sets of density �=8 are avoided with probabilityat most 2�jU j=6. This yields randomness-omplexity eO(��1) + O(logN). The problem with theforegoing approah is that it is impossible to implement it using randomness-omplexity below jU j,whih in turn is 
(��1). Reall, however, that our aim is to obtain randomness-omplexity that islinearly related to O(log(1=�)).4.1.2 A warm-up: randomness-eÆient tester of query omplexity eO(��4)A loser look at the foregoing argument reveals that a pair (v1; v2) suh that fu1; v1g; fv1; v2g andfv2; u2g are all edges of G is not merely a witness against a spei� 2-partition of U that plaes u1and u2 on the same side. It is atually a witness against any 2-partition of U that plaes u1 andu2 on the same side. Viewed from a di�erent perspetive, suh a pair (v1; v2) imposes a onstrainton the \relevant" 2-partition of U ; the onstraint being that u1 and u2 should not be plaed on thesame side. It will be useful to onsider the graph of these onstraints, whih has the vertex-setU and edges between eah pair of verties to whih suh a onstraint is applied (i.e., there is anedge between u1 and u2 if there exists a pair (v1; v2) 2 V � V that imposes a onstraint on thepair (u1; u2)). Indeed, the 2-partitions of U that satisfy the set of these onstraints are exatly the2-olorings of this auxiliary graph.The foregoing perspetive suggests that it may be useful to try to aumulate onstraints. Atthe very extreme, the graph of onstraints will not be bipartite, whih de�nitely allows us to rejet(beause it indiates that there are witnesses against eah 2-partition of U).2 Disarding this ase,we onsider another extreme ase in whih the graph of onstraints is onneted, leaving us with asingle allowed 2-partition of U (i.e., a single 2-oloring of the onstraint graph), whih an be hekedas in Algorithm 4.1. The point, however, is that in this ase it will suÆe to set jSj = O(��1) andmore importantly to have a sample that rules out the remaining partition with onstant probability(rather than with probability 2�jU j). This opens the door to a randomness-eÆient implementation.But what if the graph of onstraints that we found is not onneted? Unless this event is due tosheer lak of luk, it indiates that there are few pairs in V � V that impose onstraints regardingvertex-pairs in U � U that are in di�erent onneted omponents of the onstraint graph. Thisimplies that, for every 2-partition of U that is onsistent with the onstraint graph (i.e., every2-oloring of this graph), there are many pairs in V � V that onstitute a witness against the2-partition of some of the onneted omponents. That is, eah suh pair imposes a onstraint thatrefers to verties that reside in the same onneted omponent, and furthermore this onstraintontradits the onstraints that are already present regarding this onneted omponent.Needless to say, for the foregoing to work, we should determine adequate thresholds for thenotion of \few pairs in V � V that impose a onstraint regarding vertex-pairs" (in U � U). Letus start by spelling out the notion of imposing (or rather foring) a onstraint. We say that thepair (v1; v2) 2 V � V onstrains the pair (u1; u2) 2 U � U if fu1; v1g; fv1; v2g and fv2; u2g are alledges of G. Next, we say that a pair (u1; u2) 2 U � U is �-onstrained if there are at least � � N2vertex-pairs in V � V that onstrain (u1; u2). Leaving � unspei�ed for a moment, we make thefollowing observations:2We note that it follows from [5℄ that this ase holds with high probability provided that U is seleted uniformlyamong all eO(1=�)-size subsets. However, we annot a�ord to selet U in this manner.17



1. Using a sample of O(��1 �log jU j) vertex-pairs in V �V , with high probability, it holds that forevery �-onstrained pair (u1; u2) 2 U �U , the sample ontains a pair that onstrains (u1; u2).This holds even if the sample is generated using a randomness-eÆient hitter (whih hitsany set of density � with probability at least 1 � (jU j�2=10), using randomness-omplexityO(log jV j + log jU j) = O(log jV j)). The point is that there are at most jU j2 relevant pairs(i.e., pairs that are �-onstrained), and we may apply a Union Bound as long as we fail oneah suh pair with probability at most jU j�2=10 (or so).2. Consider the graph GU;� onsisting of the vertex-set U and edges orresponding to the �-onstrained pairs of verties. Then, the number of vertex-pairs in V �V that onstrain somepair of verties (in U) that does not belong to the same onneted omponent of GU;� is atmost jU j2 � �N2.Reall that if G is �-far from bipartite and U is good (i.e., U dominates almost all high-degree verties) then, for every 2-partition of U , there are at least �N2=2 pairs that onstrainsome pair of verties that are on the same side of this 2-partition. It follows that at least((�=2)� jU j2�) �N2 of these pairs onstrain pairs that are in the same onneted omponentof GU;�. Setting � = �=(4jU j2), we need to hit a set of density �=4, whih is easy to do usinga randomness-eÆient hitter.This analysis leads to an algorithm that resembles Algorithm 4.1, exept that it uses a seondarysample S that has di�erent features than in the original version. In Algorithm 4.1 the set S hadto hit any �xed set of density �=2 with probability at least 1 � 2�jU j. Here the set S needs to hitany �xed set of density � = �=(4jU j2) < �3 with probability at least 1� (jU j�2=10). Thus, while inAlgorithm 4.1 we used jSj = O(jU j=�) but generating the set S required at least jU j random bits,here jSj = eO(jU j2=�) = eO(��3) but generating the set S an be done using O(logN) random bits.(The set U is generated with the same aim as in Algorithm 4.1; that is, hitting a set of density �with probability at least 1� ��1. Suh a set an be generated using O(logN) random bits.)Thus, we obtain a (omputationally eÆient) �-tester with randomness-omplexity O(logN)and query-omplexity O(jU j � jSj) = eO(��4). Our aim in the next setion is to redue the query-omplexity to eO(��3) while essentially maintaining the randomness-omplexity.4.1.3 The atual algorithm: randomness-eÆient tester of query omplexity eO(��3)The query-omplexity bottlenek in Setion 4.1.2 is due to the size of S, whih in turn needs tohit sets of density � = O(�3). Our improvement will follow by using a larger value of the threshold� (essentially � = O(�2)). Reall that in Setion 4.1.2 we used � = O(�3) in order to bound thetotal number of pairs that onstrain pairs that are not �-onstrained. Thus, using � = O(�3) seemsinherent to an analysis that refers to eah pair separately, and indeed we shall deviate from thatparadigm in this setion.The planned deviation is quite natural. After all, we not not are about having spei� edges inour onstraint graph, but rather are about the onneted omponents of that graph. For example,looking at any vertex u 2 U , any pair in V �V that onstrains any pair (u; u0), where u0 2 U nfug,inreases the onneted omponent in whih u resides. That is, let (u1; u2) denote the fration ofvertex-pairs in V �V that onstrain (u1; u2), and reall that a pair (u1; u2) was alled �-onstrainedif (u1; u2) � �. Thus, we (tentatively) say that u 2 U is �-onstrained if Pu02Unfug (u; u0) � �.Let us now see what happens.1. Using a sample of O(��1 �log jU j) vertex-pairs in V �V , with high probability, it holds that forevery �-onstrained vertex u 2 U , the sample ontains a pair that onstrains (u; u0), for some18



u0 2 U n fug. Again, this holds even if the sample is generated using a randomness-eÆienthitter.2. The number of vertex-pairs in V � V that onstrain some pair of verties (u1; u2) 2 U � Usuh that either u1 or u2 is not �-onstrained is at most 2jU j � �N2. This means that we anignore suh vertex-pairs (in V � V ) even when setting � = O(�=jU j) or so.Thus, taking a sample S0 as in Item 1, will result in having a onstraint graph GU;S0 in whih eah�-onstrained vertex resides in non-singleton onneted omponents. In partiular, the number ofnon-singleton onneted omponents is at most jU j=2.Note, however, that unlike in Setion 4.1.2, the foregoing fats do not yield an upper-bound onthe number of vertex-pairs in V �V that onstrain some pair of verties (in U) that does not belongto the same onneted omponent of GU;S0 . Loosely speaking, we shall iterate the same proesson the non-singleton onneted omponents of GU;S0 , while realling that the only verties thatform singleton onneted omponents in GU;S0 are not �-onstrained (and thus an be ignored).This suggests an iterative proess, whih will halt after at most log2 jU j iterations in a situationanalogous to having no �-onstrained verties. At this point we may proeed with a �nal sampleof pairs that, with high probability, will yield a onstraint that onits with the existing ones.Clarifying the foregoing iterative proess requires generalizing the notion of �-onstrained ver-ties suh that it will apply to the onneted omponents determined in the previous iteration. Con-sider a partition of U , denoted U = (U (0); U (1); :::; U (k)), where U (0) may be empty and k may equal0, but for every i 2 [k℄ it holds that U (i) 6= ;. In the �rst iteration, we use U = (;; fu1g; :::; futg),where U = fu1; :::; utg. In later iterations, U (1); :::; U (k) will orrespond to onneted omponentsof the urrent onstraint graph and U (0) will ontain verties that were ast aside at some point.De�nition 4.2 (being onstrained w.r.t a partition): For i 2 f0; 1; :::; kg, we say that u 2 U (i)is �-onstrained w.r.t U if Pu02U 0 (u; u0) � �, where U 0 = [j2[k℄nfigU (j). Reall that (u1; u2)denote the fration of vertex-pairs in V �V that onstrain (u1; u2), where the pair (v1; v2) 2 V �Vonstrains the pair (u1; u2) 2 U � U if fu1; v1g; fv1; v2g and fv2; u2g are all edges of G.We stress that the foregoing sum does not inlude verties in either U (0) or U (i). Our analy-sis will refer to the following algorithm, whih an be implemented within randomness-omplexityO(log(1=�)) � log2N and query-omplexity eO(��3).Algorithm 4.3 (The bipartite tester, revised):1. Selet a sample U of eO(��1) verties by using a hitter that hits any set of density �=8 withprobability at least 1� (�=100).2. For i = 1; :::; ` + 1, where ` = log2 jU j, selet a sample Si of eO(��2) vertex-pairs by using ahitter that hits any set of density � = �= eO(jU j) with probability at least 1 � eO(jU j)�1. (Thishitter has randomness-omplexity O(logN + log jU j) = O(logN).) Let S = [`+1i=1Si.3. For eah u 2 U and (v1; v2) 2 S, hek whether fu; v1g; fu; v2g and fv1; v2g are edges.4. Aept if and only if the subgraph viewed in Step 3 is bipartite.Needless to say, the peuliar way in whih S is seleted is aimed to support the analysis.Lemma 4.4 If G is �-far from being bipartite then Algorithm 4.3 rejets with probability at least2=3. 19



Proof: We may assume that U is good in the sense that it dominates all but �N=8 of the vertiesthat have degree at least �N=8. As argued above (and shown in [14℄), there are at most �N2=2vertex pairs that have an endpoint that is not dominated by U = fu1; :::; utg. Starting withU = (;; fu1g; :::; futg), we shall proeed in iterations proving that in eah iteration one of thefollowing two events our:1. There are 
(�N2) vertex pairs that form onstraints that ontradit the existing onstraints.In this ase, with very high probability, the algorithm will selet suh a pair and will rejet(beause the subgraph that it sees is not 2-olorable).2. There exist �-onstrained verties with respet to the urrent partition U = (U (0); U (1); :::; U (k)),where U (1); :::; U (k) are onneted omponents of the urrent onstraint graph and U (0) on-tains verties that were ast aside in previous iterations. We shall also show that �-onstrained(w.r.t U) verties annot be in U (0). In this ase, with very high probability, the algorithm will�nd new onstraints and in partiular it will �nd suh a onstraint between every �-onstrained(w.r.t U) vertex and some vertex that is in one of the other k onneted omponents.We shall shortly take a loser look at what happens in the seond ase (i.e., Case 2) and prove thatindeed at least one of the foregoing ases must hold. But before doing so, we note that the seondase (i.e., Case 2) beomes impossible one we reah a situation in whih k = 1, at whih point thealgorithm must rejet due to the �rst ase (i.e., Case 1).Let us �rst take a loser look at what happens in Case 2. Suppose that u 2 U (i) is �-onstrainedw.r.t the urrent U . Then by the foregoing, due to a newly found onstraint, vertex u gets onnetedto some vertex in [j2[k℄nfigU (j). This means that eah U (i) (i 6= 0) that ontains some �-onstrainedvertex gets merged to some U (j) (j 6= 0 and j 6= i). We will not add any onstraint that refers toverties that were ast aside (i.e., those in U (0)). Thus, verties that were ast aside in the past(sine they were not �-onstrained w.r.t a previous partition) will remain in U (0), and indeed theyare also not �-onstrained w.r.t any later partition. (This is the ase beause in a later partition,some omponents get merged and some move to U (0), whih an only derease the \onstrainsount" towards being �-onstrained.) For i 6= 0, if U (i) was not merged with any other U (j) (j 6= 0and j 6= i) then it ontains no �-onstrained vertex, and we ast it aside (i.e., move it to the newU (0)). Thus, in eah iteration, the number of onneted omponents not ast aside (i.e., k) shrinksby a fator of at least two (beause eah suh onneted omponent merges with at least one suhother onneted omponent).We now prove that at least one of the two aforementioned onditions must hold. Lookingat the urrent partition U , we �rst note that if one of the onneted omponents (inluding thoseontained in U (0)) is not bipartite then we already have a set of onstraints that is self-ontraditory(i.e., does not allow a 2-oloring of the subgraph we have seen so far). This situation is a speialase of Case 1, and indeed in this sub-ase the algorithm rejets. Disposing of this sub-ase, wenow onsider an arbitrary 2-oloring of the onstraint graph, and the 2-partition that it indues onthe rest of G (i.e., we put on the �rst side all the verties that are dominated by some vertex of Uthat was olored by the seond olor). Then, there are at least �N2 vertex-pairs that are adjaentand were put on the same side, and at least �N2=2 of these vertex-pairs have both its vertiesdominated by U . Eah suh (v1; v2) is of one of the following two types.(i) The vertex-pair (v1; v2) onstrains a pair of verties (u1; u2) where both verties are in thesame onneted omponent of the onstraint graph. As showed next, suh a pair imposes aonstraint that ontradits the onstraints of the urrent graph. Thus, this pair ontributesto the pairs ounted in Case 1. 20



To see that the said onstraint ontradits the onstraints of the urrent graph, reall thatsine (v1; v2) onstrains the pair (u1; u2) 2 U � U it holds that the edges fu1; v1g, fv1; v2g,and fv2; u2g form an odd-length path between u1 and u2. On the other hand, v1 and v2were plaed on the same side of the 2-partition of V , whih implies that u1 and u2 wereassigned the same olor by a 2-oloring of the urrent onstraint graph. Sine u1 and u2 arein the same onneted omponent of that graph, it follows that they are onneted by aneven-length path (whih reets an even-length path in G). Thus, the new set of onstraintsform an odd-length yle.(ii) The vertex-pair (v1; v2) onstrains a pair of verties (u1; u2) that belong to di�erent onnetedomponent of the onstraint graph. As showed next, the existene of more than �N2=4 suhpairs implies Case 2 (i.e., the existene of �-onstrained verties, whih in partiular are notin U (0)).We �rst reall that a vertex in U (0) an not be �-onstrained with respet to the urrentpartition, beause it is not �-onstrained with respet to some previous partition and beausethe previous partition allows more pairs to be ounted.As for the main laim, note that eah pair of the urrent type is ounted towards determiningwhether u1 (resp., u2) is �-onstrained with respet to the urrent partition. The total \pairount" of eah vertex that is not �-onstrained is smaller than �N2. Thus, for � = �=(4jU j),there are less than jU j � �N2 = �N2=4 pairs of the urrent type that refer to verties that arenot �-onstrained. It follows if there are more than �N2=4 pairs of the urrent type, then�-onstrained verties must exist, whih imply that Case 2 holds.We onlude that either there are more than �N2=4 verties of type (ii), whih imply that Case 2holds, or there are more than �N2=4 verties of type (i), whih imply that Case 1 holds.Reall that if Case 2 holds then the number of non-disarded onneted omponents (i.e., k)shrinks by a fator of at least 2. Thus, after log2 jU j iterations, the urrent partition must satisfyk � 1, and thus Case 2 annot hold in the next iteration. The lemma follows.Conlusion. Using Algorithm 4.3 and its analysis as provided by Lemma 4.4, we obtain:Theorem 4.5 There exists a bipartite tester (in the adjaeny matrix model) of time-omplexitypoly(��1 � logN), query-omplexity eO(��3) and randomness-omplexity O(log(1=�)) � log2N . Fur-thermore, as Algorithm 4.1, this tester always aepts a bipartite graph, and in ase of rejetion itprovides a witness of length eO(��2) � log2N (that the graph is not bipartite).Theorem 4.5 improves over the randomness-eÆient implementation of Algorithm 4.1 (whih hasrandomness-omplexity eO(��1) +O(logN)) whenever � < 1= eO(logN).Open problem. Needless to say, we are aware of the bipartite tester of Alon and Krivelevih [5℄,whih has better query-omplexity than the GGR tester (as well as our tester). Spei�ally, thequery-omplexity of the tester of [5℄ is eO(��2) rather than eO(��3). Theorem 3.7 implies that thetester of [5℄ has a randomness-eÆient implementation, but it does not provide an expliit one.We onjeture that there exists a randomness-eÆient bipartite tester that has query-omplexityeO(��2) and time-omplexity poly(��1 logN). 21



4.2 In the Bounded-Degree ModelThe bounded-degree model refers to a �xed degree bound, denoted d. An N -vertex graph G =(V;E) (of maximum degree d) is represented in this model by a funtion g : [N ℄� [d℄! f0; 1; :::; Ngsuh that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has less than i neighbors.In this setion we provide a randomness-eÆient implementation of the bipartite tester of Goldreihand Ron [16℄, whih refers to the bounded-degree model. Thus, we start with a desription of thattester.Algorithm 4.6 (The bipartite tester of [16℄): On input parameters N , d, �, and orale aess toan inidene funtion for an N -vertex graph, G = (V;E), of degree bound d, repeat T def= �(1� )times:1. Uniformly selet a (\start") vertex s in V .2. (Try to �nd an odd-length yle through vertex s):(a) Perform K def= poly((logN)=�) � pN random walks starting from vertex s, where eahwalk is of length L def= poly((logN)=�).(b) Let R0 (respetively, R1) denote the set of verties that were reahed from vertex s inan even (respetively, odd) number of steps in any of these walks.() If R0 \R1 is not empty then rejet.If the algorithm did not rejet in any one of the above T iterations, then it aepts.Clearly, this algorithm never rejets a bipartite graph. Indeed, the analysis of [16℄ fouses on thease that the graph G is �-far from bipartite, and shows that the algorithm will rejet G with highprobability. The rather involved analysis breaks down to two omplementary fats that refer to anotion of a good start vertex. Loosely speaking, a start vertex is alled good if, when the testerselets it in Step 1, the probability that the tester �nds an odd-length yle in Step 2 is somewhatsmall (say, below 1=10). This is indeed the de�nition used in [16, Se. 4℄, but the analysis thereatually refers to a tehnial ondition that is stated in [16, Lem. 4.5℄ and refers to what happenswhen taking two independent random walks from the start vertex. Thus, here we all a start vertexgood if it does not satisfy the said ondition (stated in [16, Lem. 4.5℄), and it is not good if itsatis�es this ondition.Most of [16, Se. 4℄ is devoted to establishing the fat that if G is �-far from bipartite then an
(�) fration of the verties are not good. It is ruial for us that this tehnially involved analysis(provided in [16, Se. 4.2{4.4℄) does not refer at all to the algorithm; it rather refers to the de�nitionof a good vertex, whih (as stressed above) refers to a mental experiment in whih one takes twoindependent random walks from this vertex. Thus, this analysis remains intat regardless of howwe hose to implement Algorithm 4.6.The omplementary fat regarding good verties is that when the tester selets a vertex thatis not good (in Step 1), the probability that it �nds an odd-length yle in Step 2 is not toosmall (say, at least 1=10). Indeed, this fat refers to Algorithm 4.6 itself, but its rather simpleproof (provided in [16, Se. 4.5℄) only presumes that the K random walks are distributed in a4-wise independent manner. Spei�ally, the analysis in [16, Se. 4.5℄ de�nes a random variablefor eah pair of walks suh that this random variable represents the event of �nding an odd-lengthyle via the orresponding two walks. Then, Chebyshev's Inequality is applied while relying on22



the expetation and variane of the sum of these random variables. As one may guess, the saidexpetation and variane are omputed by only relying on the expetation of the individual randomvariables and the o-varianes of all possible pairs of random variables. Thus, the analysis remainsvalid as long as the said expetation and o-variane maintain their value, whih is de�nitely thease provided that eah pair of random variables maintains its behavior. Noting that eah pair ofrandom variables refers to at most four di�erent random walks, we establish our laim that theanalysis of [16℄ only presumes that the K random walks are distributed in a 4-wise independentmanner.The foregoing disussion suggests the following implementation of Algorithm 4.6. For Step 1use a randomness-eÆient hitter that hits any set of density 
(�) with onstant probability. Moreimportantly, for Step 2 use a randomness-eÆient onstrution of K four-wise independent randomstrings, eah speifying a random walk of length L (i.e., eah being a string of length L log2 d).By the foregoing disussion, this implementation preserves the performane guarantees of Algo-rithm 4.6; that is, this implementation is also an �-tester for bipartiteness. The ruial point,however, is that Step 2 is now implemented using 4 � L log2 d = poly((logN)=�) random oins(rather than K � L log2 d = 
(pN) random oins). Thus, we obtain:Theorem 4.7 There exists a bipartite tester (in the inidene funtion model) of time-omplexitypoly(��1 � logN) �pN and randomness-omplexity poly(��1 � logN). Furthermore, as Algorithm 4.6,this tester always aepts a bipartite graph, and in ase of rejetion it provides a witness of lengthpoly(��1 � logN) (that the graph is not bipartite).AknowledgmentsWe are grateful to the anonymous referees for their useful omments and suggestions.
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