
On the Randomness Complexity of Property Testing�Oded Goldrei
hyDepartment of Computer S
ien
eWeizmann Institute of S
ien
eRehovot, Israel.oded.goldrei
h�weizmann.a
.il Or She�etzDepartment of Computer S
ien
eCarnegie Mellon UniversityPittsburgh, PA 15213, USA.osheffet�andrew.
mu.eduJanuary 20, 2009Abstra
tWe initiate a general study of the randomness 
omplexity of property testing, aimed at re-du
ing the randomness 
omplexity of testers without (signi�
antly) in
reasing their query 
om-plexity. One 
on
rete motivation for this study is provided by the observation that the produ
tof the randomness and query 
omplexity of a tester determine the a
tual query 
omplexityof implementing a version of this tester that utilizes a weak sour
e of randomness (through arandomness-extra
tor). We present rather generi
 upper- and lower-bounds on the randomness
omplexity of property testing and study in depth the spe
ial 
ase of testing bipartiteness intwo standard property testing models.Keywords: Property Testing, Randomness Complexity, Weak Sour
es of Randomness, Random-ness Extra
tors, Sampling.

�This work is based on the M.S
. thesis of the se
ond author, whi
h was 
ompleted under the supervision of the�rst author. An extended abstra
t has appeared in the pro
eedings of RANDOM'07.yPartially supported by the Israel S
ien
e Foundation (grant No. 460/05).zWork done while Or was a graduate student at the Weizmann Institute of S
ien
e.



Contents1 Introdu
tion 21.1 The Perspe
tive of Average-Estimation : : : : : : : : : : : : : : : : : : : : : : : : : : 21.2 A Con
rete Motivation: Using Weak Sour
es of Randomness : : : : : : : : : : : : : 31.3 Spe
i�
 Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 41.4 Generi
 Bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 51.5 Organization : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62 Preliminaries 62.1 Pairwise and 4-wise independent sequen
es : : : : : : : : : : : : : : : : : : : : : : : 62.2 Randomness-EÆ
ient Hitters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 72.3 Randomness-EÆ
ient Error-Redu
tion : : : : : : : : : : : : : : : : : : : : : : : : : : 72.4 Analysis of the standard use of extra
tors : : : : : : : : : : : : : : : : : : : : : : : : 83 Generi
 Bounds 83.1 Lower Bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93.1.1 Strongly evasive properties : : : : : : : : : : : : : : : : : : : : : : : : : : : : 93.1.2 Relabeling-invariant properties : : : : : : : : : : : : : : : : : : : : : : : : : : 113.1.3 Dis
ussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133.2 Upper Bounds : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133.2.1 A generi
 bound : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 133.2.2 Bounds for 
anoni
al testers of graph properties : : : : : : : : : : : : : : : : 144 Spe
i�
 Algorithms: The Case of Bipartiteness 154.1 In the Adja
en
y Matrix Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154.1.1 The GGR tester : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 164.1.2 A warm-up: randomness-eÆ
ient tester of query 
omplexity eO(��4) : : : : : 174.1.3 The a
tual algorithm: randomness-eÆ
ient tester of query 
omplexity eO(��3) 184.2 In the Bounded-Degree Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22Bibliography 24

1



1 Introdu
tionProperty testing (initiated by Rubinfeld and Sudan [24℄ and Goldrei
h, Goldwasser, and Ron [14℄)is 
on
erned with a relaxed type of de
ision problems. Spe
i�
ally, for a �xed property (resp.,a set) �, the task is to distinguish between obje
ts that have property � (resp., are in �) andobje
ts that are \far" from having property � (resp., are \far" from any obje
t in �). The fo
usof property testing is on sublinear-time algorithms, whi
h in parti
ular 
annot examine the entireobje
t. Instead, these algorithms, 
alled testers, may obtain bits in the representation of the obje
tby issuing adequate queries. Indeed, in this 
ase, the query 
omplexity of testers be
omes a measureof 
entral interest.For natural properties, testers of sublinear query-
omplexity must be randomized (see detailsin Se
tion 3.1). This is a qualitative assertion, and the 
orresponding quantitative question arisesnaturally: for any �xed property � and a sublinear fun
tion q, what is the randomness-
omplexityof testers for � that have query-
omplexity q?In addition to the natural appeal of the foregoing question, there are 
on
rete reasons to 
areabout it. Firstly, the randomness-
omplexity of a tester determines the length of PCPs that are
onstru
ted on top of this tester. Indeed, this was the motivation for the interest of Goldrei
hand Sudan [17℄ and Ben-Sasson, Sudan, Vadhan, and Wigderson [7℄ in redu
ing the randomness
omplexity of low-degree testing. Se
ondly, the randomness-
omplexity of a tester a�e
ts the timeand query 
omplexities of implementing a version of this tester while utilizing a weak sour
e ofrandomness. This motivation is further dis
ussed in Se
tion 1.2.Indeed, the randomness-
omplexity of testers was 
onsidered in some prior work, starting in [17℄.This subje
t is the pivot of [7℄ and is the main topi
 studied by Shpilka and Wigderson [28℄.However, these works refer to spe
i�
 (algebrai
) tasks (i.e., testing low-degree polynomials andgroup homomorphisms). In 
ontrast, our fo
us in this paper is either on general properties (seeSe
tion 1.4) or on spe
i�
 
ombinatorial properties (see Se
tion 1.3).1.1 The Perspe
tive of Average-EstimationProperty testing is a vast generalization of the task of estimating the average value of a fun
tion.Spe
i�
ally, 
onsider the task of distinguishing between fun
tions f : f0; 1gn ! f0; 1g havingaverage value ex
eeding 0:5 and fun
tions that are �-far from having this property (i.e., fun
tionshaving average value below 0:5 � �). Clearly, this task 
an be solved by a randomized algorithmthat queries the fun
tion at O(1=�2) (random) points. This query-
omplexity is optimal and anyalgorithm a
hieving it, 
alled a sampler, must be randomized (see Canetti, Even, and Goldrei
h [9℄).Furthermore, a quantitative study of the randomness-
omplexity of samplers in terms of their query-
omplexity was also 
arried out in [9℄. The 
urrent paper may be viewed as extending this studyto the domain of general property testing.Note that estimating the average value of a fun
tion 
orresponds to very restri
ted properties offun
tions. In parti
ular, these properties are symmetri
 (i.e., are invariant under any relabeling ofthe inputs to the fun
tion). In 
ontrast, most of the study of property testing refers to propertiesthat are not symmetri
 (e.g., being a low-degree polynomial, monotoni
ity, representing a graphthat has a 
ertain graph property, et
). Furthermore, while all symmetri
 properties of Booleanfun
tions are easily testable by straightforward sampling, this 
annot be said about property testingin general (nor about the numerous spe
ial 
ases that were studied in the last de
ade (see surveysof Fis
her [10℄ and Ron [23℄)). 2



1.2 A Con
rete Motivation: Using Weak Sour
es of RandomnessIn the 
ontext of traditional randomized algorithms, a 
on
rete motivation for minimizing therandomness-
omplexity is provided by the exponential e�e
t of the randomness-
omplexity on thetime-
omplexity of a possible derandomization. In 
ontrast, in the 
ontext of property testing,derandomization is typi
ally infeasible, be
ause (as noted above) deterministi
 testers 
annot havesublinear query 
omplexity. Instead, a di�erent motivation (advo
ated by the �rst author [12℄),be
omes very relevant in this 
ontext.We refer to the e�e
t of the randomness-
omplexity on the overhead involved in implementingthe tester when using only weak sour
es of randomness (rather than perfe
t ones). Spe
i�
ally, werefer to the paradigm of implementing randomized algorithms by using (a single sample from) su
ha weak sour
e, and trying all possible seeds to an adequate randomness extra
tor (see below). Weshall see that the overhead 
reated by this method is determined by the randomness-
omplexity ofthe original algorithm.Loosely speaking, a randomness extra
tor is a fun
tion E : f0; 1gn � f0; 1gs ! f0; 1gr thatuses an s-bit long random seed in order to transform an n-bit long (out
ome of a) weak sour
e ofrandomness into an r-bit long string that is almost uniformly distributed in f0; 1gr . Spe
i�
ally,we 
onsider arbitrary weak sour
es that are restri
ted (only) in the sense that, for a parameter k,no string appears as the sour
e out
ome with probability that ex
eeds 2�k. Su
h sour
es are 
alled(n; k)-sour
es (and k is 
alled the min-entropy). Now, E is 
alled a (k; �)-extra
tor if for any (n; k)-sour
e X it holds that E(X;Us) is �-
lose to Ur, where Um denotes the uniform distribution overm-bit strings (and the term `
lose' refers to the statisti
al distan
e between the two distributions).For further details about (k; �)-extra
tors, the interested reader is referred to Shaltiel's survey [25℄.Next, we re
all the standard paradigm of implementing randomized algorithms while usingsour
es of weak randomness. Suppose that the algorithm A has time-
omplexity t and randomness-
omplexity r � t. Re
all that, typi
ally, the analysis of algorithm A refers to what happenswhen A obtains its randomness from a perfe
t random sour
e (i.e., for ea
h possible input �, we
onsider the behavior of A(�;Ur), where A(�; !) denotes the output of A on input � when givenrandomness !). Now, suppose that we have at our disposal only a weak sour
e of randomness;spe
i�
ally, a (n; k)-sour
e for n � k � r (e.g., n = 10k and k = 2r). Then, using a (k; �)-extra
tor E : f0; 1gn � f0; 1gs ! f0; 1gr , we 
an transform the n-bit long out
ome of the weaksour
e into 2s strings, ea
h of length r, and use the resulting 2s strings (whi
h are \random onthe average") in 2s 
orresponding invo
ations of the algorithm A. That is, upon obtaining theout
ome x 2 f0; 1gn from the sour
e, we invoke the algorithm A for 2s times su
h that in the ithinvo
ation we provide A with randomness E(x; i). The results of these 2s invo
ations are pro
essedin the natural manner. For example, if A is a de
ision pro
edure, then we output the majority voteobtained in the 2s invo
ations (i.e., when given the input �, we output the majority vote of thesequen
e hA(�;E(x; i))ii=1;:::;2s). An analysis of the error probability of this pro
edure is providedin Se
tion 2.4.Let us 
onsider the 
ost of the foregoing implementation. We assume, for simpli
ity, that therunning-time of the randomness extra
tor is signi�
antly smaller than the running-time of A. Then,algorithm A 
an be implemented using a weak sour
e, while in
urring an overhead fa
tor of 2s.Thus, we fo
us on providing lower and upper bounds on the aforementioned overhead (i.e., 2s) as afun
tion of r (the number of random bits used by the original tester). Re
alling that s > log2(n�k)and n > k > r� s must hold (
f. [25℄), it follows that for k = n�
(n) the overhead fa
tor (i.e., 2s)is lower bounded by 
(n), whi
h is 
(r). On the other hand, for k = n
(1), eÆ
ient randomness-extra
tors using s = (1+o(1)) log2 n (and providing r = k1�o(1)) are known (see [25, 26℄). It follows3



that (the overhead fa
tor of) 2s is upper bounded by n1+o(1) (i.e., is almost linear in n), even whenutilizing the randomness in the sour
e in an almost optimal manner (i.e., extra
ting r = k1�o(1)almost random bits from any (n; k)-sour
e). We 
omment that in the most natural 
ase of weaksour
es, that is, sour
es of 
onstant min-entropy rate (i.e., k = 
(n)), the extra
tion rate 
an beimproved to linear (i.e., r = 
(k)); see [25, 29℄. Thus, for k = 
(n) (resp., k = n
(1)), the overheadfa
tor (i.e., 2s) is upper bounded by a fun
tion that is almost linear in r (resp., polynomial in r).To summarize, we have established our 
laim that the time-
omplexity of implementing random-ized algorithms when using weak sour
es of randomness is related to the randomness-
omplexity ofthese algorithms. The same applies to the query 
omplexity of testers. Spe
i�
ally, for (n; k)-sour
es satisfying k = 
(n) (resp., satisfying k = n
(1)), the query-
omplexity of implementing atester is almost linear in r � q (resp., is poly(r) � q), where q is the query-
omplexity of the originaltester that uses a perfe
t sour
e of (r bits of) randomness.1.3 Spe
i�
 AlgorithmsThe motivation dis
ussed in Se
tion 1.2 is best illustrated by our results regarding testing bipar-titeness in the bounded-degree model (as initiated by Goldrei
h and Ron [15℄). Spe
i�
ally, �xinga degree bound d, the task is to distinguish (N -vertex) bipartite graphs of maximum degree dfrom (N -vertex) graphs of maximum degree d that are �-far from bipartite (for some parameter�), where �-far means that � � dN edges have to be omitted from the graph in order to yield abipartite graph. We note that no deterministi
 algorithm of o(N) time-
omplexity 
an solve thispromise problem (see Se
tion 3.1.1). Yet, there exists a probabilisti
 algorithm of time-
omplexityeO(pNpoly(1=�)) that solves this problem 
orre
tly (with probability 2=3). This algorithm makesq def= eO(pNpoly(1=�)) in
iden
e-queries to the graph, and (as des
ribed in the work Goldrei
h andRon [16℄) has randomness-
omplexity r > q > pN (yet r < q � log2N).1Let us now turn to the question of implementing the foregoing tester in a setting where we havea

ess only to a weak sour
e of randomness. In this 
ase, the implementation 
alls for invokingthe original tester eO(r) times, whi
h yields a total running time of eO(r) � eO(q) > q2 > N (andthe same bound holds for its query-
omplexity). But in su
h a 
ase we better use the standard(deterministi
) de
ision pro
edure for bipartiteness!Fortunately, a randomness-eÆ
ient implementation of the original tester of [16℄ is possible. Thisimplementation (presented in Se
tion 4.2) has randomness-
omplexity r0 = poly(��1 logN) (ratherthan r = poly(��1 logN) � pN). Thus, the 
ost of the implementation that uses a weak sour
e ofrandomness is eO(r0 � q) = eO(pNpoly(1=�)), whi
h mat
hes the original bound (up to di�eren
eshidden in the eO() and poly() notation).The randomness-eÆ
ient implementation of the [16℄-tester presented in Se
tion 4.2 is basedon pin-pointing the \random features" used in the original analysis, and providing an alternative(randomness-eÆ
ient) implementation that satis�es the same features. In general, su
h featurestypi
ally in
lude various \hitting" and \sampling" 
onditions (see Se
tion 2.2 and Goldrei
h'ssurvey [11℄). In su
h 
ases, using randomness-eÆ
ient hitters and samplers may yield a signi�
antsaving in the randomness-
omplexity of the underlying tester. While this approa
h suÆ
es in many
ases, in other 
ases a more signi�
ant modi�
ation of the original tester yields better results. Thisis indeed the 
ase with respe
t to the randomness-eÆ
ient tester presented in Se
tion 4.1.In Se
tion 4.1 we 
onsider testers for graph properties in the adja
en
y matrix model (as initiatedby Goldrei
h, Goldwasser, and Ron [14℄). Spe
i�
ally, we 
onsider the task of testing bipartiteness.1We 
omment that 
(pN) is a lower-bound on the query-
omplexity of any property tester of bipartiteness (inthe bounded-degree model; see [15℄). 4



We re
all that the tester presented in [14℄ works by sele
ting a random set of eO(��2) verti
esand inspe
ting the (
orresponding) indu
ed subgraph. In fa
t, as shown in [14℄, it suÆ
es tomake eO(��3) queries. A randomness-eÆ
ient implementation of the \random features" used inthe original analysis, allows redu
ing the randomness-
omplexity to eO(��1) + O(logN), where Ndenotes the number of verti
es. In 
ontrast, using an alternative approa
h, we present a tester ofrandomness-
omplexity O(log(1=�)) � logN , while maintaining a query-
omplexity bound of eO(��3).The latter randomness-eÆ
ient tester is the main te
hni
al 
ontribution of this work. In the nextparagraph, we provide an extremely high-level des
ription of the prin
iples underlying its design.The original tester works by �rst sele
ting a random sample of t = eO(��1) verti
es, and theanalysis refers to 2t 
andidate 2-
olorings that are indu
ed by all possible 2-partitions of this sample.The tester then sele
ts an auxiliary sample of eO(t=�) vertex-pairs and 
he
ks whether this samplerules out all these 2t 
andidate 2-
olorings. The analysis boils down to showing that if the graph is�-far from bipartite then, with high probability, all these 
andidate 2-
olorings are ruled out. Thisis shown by applying a union bound on this set of 2t 
andidate 2-
olorings, whi
h means that ea
h
andidate has to be ruled out with probability at least 1� 2�t. Thus, the randomness 
omplexityof any implementation of this tester must ex
eed t. Seeking to a
hieve randomness-
omplexity thatis linearly related to log t, we perform a preliminary step aimed at obtaining a single 2-partitionof the initial t-vertex sample that indu
es a single 
andidate 2-
oloring, whi
h will be 
he
ked asin the original tester. The preliminary step obtains su
h a 2-partition by 
olle
ting 
onstraints onthe mutual pla
ements of pair of verti
es. These 
onstraints are found using the same me
hanismthat underlies the 
he
king of 
andidates in the original tester. The pun
h-line is that here weare dealing with �t2� (rather than 2t) events, whi
h allows us to work with an error probability oft�2=O(1) (rather than 2�t=O(1)) per ea
h event.Thus, Se
tions 4.1 and 4.2 represent two approa
hes to redu
ing the randomness-
omplexity oftesters: Se
tion 4.2 represents the approa
h of merely providing randomness-eÆ
ient implementa-tion of some random features used in the analysis of the original tester. In 
ontrast, Se
tion 4.1represents the approa
h of redesigning the tester (while, indeed, bene�ting from ideas that underlythe design of the original tester).1.4 Generi
 BoundsIn 
ontrast to the spe
i�
 algorithms des
ribed in Se
tion 1.3, we now 
onsider quite generi
 lower-and upper-bounds on the randomness-
omplexity of property testers as a fun
tion of their query-
omplexity. These bounds (as well as the rest of our study) refer to testers with 
onstant errorprobability. We stress that these results do not refer to the time-
omplexity of the testers, whi
hmakes the lower-bounds stronger (and the upper-bound weaker).Lower bounds. We show that, for a wide 
lass of properties of fun
tions de�ned over a domainof size D, the randomness-
omplexity of testing with q queries is at least log2(D=q) � O(1). Theaforementioned 
lass in
ludes all known testers (see details below). Needless to say, the dependen
eon the query-
omplexity is essential, be
ause deterministi
 testers of query-
omplexity D exist forany property. Furthermore, the randomness-
omplexity of any tester 
an be de
reased by anadditive term of t while in
reasing the query 
omplexity by a fa
tor of 2t. The lower-bound assertsthat for natural property testers (where q � D), the randomness-
omplexity should \
ompensate"for not s
anning the entire domain; that is, 2r � q = 
(D), where r denotes the randomness-
omplexity of the tester (and q its query-
omplexity).The lower-bounds established in Se
tion 3.1 apply to two general and natural 
lasses of prop-5



erties. In parti
ular, these lower-bounds apply to testing low-degree polynomials (
f., e.g., Blum,Luby, and Rubinfeld [8℄ and Rubinfeld and Sudan [24℄), lo
ally-testable 
odes (
f., e.g., Goldrei
hand Sudan [17℄), testing graph properties (in both the adja
en
y matrix and in
iden
e-list models,see Goldrei
h, Goldwasser, and Ron [14℄ and Goldrei
h and Ron [15℄, resp.), testing monotoni
ity(
f., e.g., Goldrei
h, Goldwasser, Lehman, Ron, and Samorodnitsky [13℄), and testing of 
lustering(
f., e.g., Alon, Dar, Parnas, and Ron [2℄).Upper bounds. The upper-bound established in Se
tion 3.2 refers to any property and assertthat the randomness-
omplexity of any tester may be redu
ed to log2D+ log2 log2R+O(1), whereR is the size of the range of the fun
tions we refer to (and D is the size of their domain).Note that the gap between the lower and upper bounds is log2 q + log2 log2R+O(1). We notethat in the spe
ial 
ase of evaluating the average of Boolean fun
tions by query-optimal samplers,the gap 
an be redu
ed to a 
onstant by using the improved lower-bound of Radhakrishnan andTa-Shma [22℄ (whi
h implies that the randomness-
omplexity of any sampler is at least log2(D=q)+2 log2(1=�)�O(1), while query-optimal samplers have q = �(��2) (see [9℄)). See further dis
ussionin Se
tion 3.1.3.1.5 OrganizationIn Se
tion 2 we review some basi
 tools (e.g., randomness-eÆ
ient hitters) that are used in thiswork. Our generi
 results are presented in Se
tion 3, where Se
tion 3.1 provides lower bounds andSe
tion 3.2 provides upper bounds. The spe
i�
 testers for the 
ase of bipartiteness are presentedin Se
tion 4, where the Se
tion 4.1 refers to the adja
en
y matrix model and Se
tion 4.2 refers tothe bounded-degree model.2 PreliminariesIn this se
tion we review some basi
 tools that are used in this work. Spe
i�
ally, Se
tion 2.2 reviewsthe basi
 de�nitions and results reagrding randomness-eÆ
ient hitters, whi
h are used extensivelyin Se
tion 4. In addition, 4-wise independent sequen
es are reviewed in Se
tion 2.1 (and used inSe
tion 4.2), whereas randomness-eÆ
ient error-redu
tion is reviewed in Se
tion 2.3 (and used inSe
tion 3.2). We believe that some readers 
an a�ord skipping the 
urrent se
tion.Notation: The notation eO represents an upper bound that is almost linear in the argument; thatis, eO(x) means an upper bound of the form O(poly(log x) � x). Similarly, e� represents a eO upperbound that is tight up to a polylogarithmi
 fa
tor; that is, e�(x) means an upper bound of eO(x)that is mat
hed by a lower bound of the form 
(x=poly(log x)).We often use the phrase \with high probability" without spe
ifying the error bound, whi
h istypi
ally a suÆ
iently small 
onstant. In all 
ases, the meaning of this phrase should be 
lear fromthe 
ontext.2.1 Pairwise and 4-wise independent sequen
esLet S be a �nite set and t � ` be integers. A distribution over S` is 
alled t-wise independent if itsrestri
tion to any t 
oordinates is uniformly distributed over St. That is, a sequen
e of (possiblydependent) random variables (X1; :::;X`), ea
h distributed over S, is 
alled t-wise independent if6



for every i1 < i2 < � � � < it (in [`℄) and for every (v1; :::; vt) 2 St it holds that Pr[(8j 2 [k℄)Xij =vj ℄ = jSj�t. In 
ase t = 2, we 
all the sequen
e pairwise independent.In the following 
onstru
tion (due to [1℄), we assume that jSj is a power of 2, and identify Swith the 
orresponding �nite �eld. Let �1; :::; �` be (�xed and) distin
t elements of this �eld, and
onsider the distribution generated by uniformly and independently sele
ting s0; s1; :::; st�1 2 S,and outputting the sequen
e (r1; ::::; r`), where ri = Pt�1j=0 �ji sj. Then, this sequen
e is t-wiseindependent. Note that this sequen
e is generated using t log2 jSj random bits.2.2 Randomness-EÆ
ient HittersThe hitting problem is a one-sided version of the (Boolean) sampling problem (see, e.g., [11℄). Givenparameters n (length), � (density) and Æ (error), and ora
le a

ess to any fun
tion f : f0; 1gn !f0; 1g su
h that jfx : f(x)=1gj � �2n, the task is to �nd a string that is mapped to 1.De�nition 2.1 (hitter): A hitter is a randomized algorithm that on input parameters n, � and Æ,and ora
le a

ess to any fun
tion f :f0; 1gn!f0; 1g su
h that jf�1(1)j � �2n, satis�esPr[hitterf (n; �; Æ) 2 f�1(1)℄ > 1� ÆWhen � and Æ are �xed, we say that the resulting algorithm is a hitter for sets of density � with errorprobability Æ.We shall also say that su
h a hitter hits any set of density � with probability (at least) 1� Æ.We brie
y re
all a few known results (and refer the interested reader to [11℄ for details). Forany 
onstant Æ > 0, using a pairwise-independent sequen
e of length O(1=�), we obtain a hitterfor sets of density � with error probability Æ. Thus, this hitter has query-
omplexity O(1=�) andrandomness-
omplexity 2n. An alternative hitter based on the neighborhood of a random vertex inan expander graph has query-
omplexity O(1=�) and randomness-
omplexity n. Combining any ofthese hitters with a random walk (of length O(log(1=Æ))) on an expander graph, we obtain a hitterfor sets of density � and any desired error probability Æ su
h that this hitter has query-
omplexityO(��1 log(1=Æ)) and randomness-
omplexity r + O(log(1=Æ)), where r 2 fn; 2ng depending on thebasi
 hitter we use.Note that ea
h of the foregoing hitters generates a sequen
e of 
andidate strings in f0; 1gn, anduses queries to f merely for the sele
tion of one of these strings. In the subsequent text, we a
tuallyrefer only to the sample-generating part of these hitters.2.3 Randomness-EÆ
ient Error-Redu
tionError-redu
tions are 
losely related to oblivious samplers (see, e.g., [25℄ or [11℄). Intuitively, givena probabilisti
 de
ision pro
edure of (two-sided) error probability � < 1=2, we wish to obtain aprobabilisti
 de
ision pro
edure of (two-sided) error probability Æ < �. Representing the foregoingpro
edure (
oupled with a generi
 input) by a Boolean fun
tion f (whi
h maps the pro
edure'srandomness to its de
ision), we obtain the following de�nition.De�nition 2.2 (error redu
tion): An error redu
tion is a randomized ora
le ma
hine, denoted M ,that on input parameters n and Æ < � < 1=2, and ora
le a

ess to any fun
tion f :f0; 1gn!f0; 1g,satis�es the following 
ondition. If for some � 2 f0; 1g it holds that jf�1(�)j � (1� �) � 2n, thenPr[Mf (n; �; Æ) = �℄ > 1� ÆWhen � and Æ are �xed, we say that the resulting ma
hine redu
es error � to error Æ.7



In Se
tion 3.2 we shall use a randomness-eÆ
ient error-redu
tion that redu
es error 2=5 to error1=3 by making a 
onstant number of ora
le 
alls and using n random bits. This error-redu
tionworks by sele
ting a random vertex in a bounded-degree expander graph (of size 2n) and queryingf on all the neighbours of this vertex. For details, the interested reader is referred to to [11℄.2.4 Analysis of the standard use of extra
torsIn 
ontinuation to Se
tion 1.2, we prove the following 
laim.Claim 2.3 Let A be a randomized de
ision pro
edure of randomness-
omplexity r and error prob-ability p, and E : f0; 1gn �f0; 1gs ! f0; 1gr be an (k; �)-extra
tor. Consider the algorithm A0 that,on input �, obtains a single sample x from an (n; k)-sour
e and rules a

ording to the majorityvalue in hA(�;E(x; i))ii=1;:::;2s. Then, A0 has error probability at most 2(p+ �). Furthermore, if Eis a
tually a (k � t; �)-extra
tor and p+ � < 1=2 then A0 has error probability 2�t.Proof: The analysis of the foregoing implementation is based on the fa
t that \on the average" the2s strings extra
ted from the sour
e approximate a perfe
t r-bit long sour
e (i.e., a random settingof the s-bit seed yields an almost uniformly distributed r-bit string). Spe
i�
ally, by de�nition, if Xis a (n; k)-sour
e then E(X;Us) is �-
lose to Ur. It follows that the probability that A(�;E(X;Us))errs is at most p + �. By Markov Inequality, the probability that the majority of the values inhA(�;E(X; i))ii=1;:::;2s are wrong is at most 2(p+ �). The main part of the 
laim follows.Towards the furthermore 
lause, �xing any �, we 
all a string x 2 f0; 1gn bad if the probabilitythat A(�;E(x;Us)) is wrong is at least 1=2. Using the hypothesis that E is (k � t; �)-extra
tor itfollows that there are at most 2k�t bad strings (otherwise, de�ning X 0 to be uniformly distributedon the set of bad strings, we rea
h a 
ontradi
tion to the hypothesis (be
ause E(X 0; Us) is not�-
lose to Ur)). Hen
e, the out
ome of a (n; k)-sour
e is bad with probability at most 2�t and the
laim follows.Comment. We note that randomized pro
edures with one-sided error probability p 
an be imple-mented using a weak random sour
e as long as p+ � < 1. An important 
ase is of sear
h problemsfor whi
h the randomized algorithm �nds a 
orre
t solution with probability 1�p and halts withoutsolution otherwise. When implementing su
h an algorithm, we may output any solution obtainedin any of the invo
ations of the original algorithm, whi
h means that we \rule by or" rather than\ruling by majority".3 Generi
 BoundsWe 
onsider testing properties of fun
tions from D to R; that is, all fun
tions 
onsidered here havedomain D and range R. Fixing a set of su
h fun
tions, denoted �, and a proximity parameter,denoted � > 0, we fo
us on the task of �-testing � as arises from the following de�nition.De�nition 3.1 (testers): A randomized ora
le ma
hine T is 
alled an �-tester for � if the followingtwo 
onditions hold:1. For every f 2 � it holds that Pr[T f = 1℄ � 2=3.2. For every f that is �-far from � it holds that Pr[T f = 1℄ � 1=3, where f is �-far from � if forevery g 2 � it holds that Prx2D[f(x) 6= g(x)℄ > �.8



In 
ase the �rst 
ondition holds with probability 1, we say that T has one-sided error. A tester is 
allednon-adaptive if it determines its queries based solely on its internal 
oin-tosses (and independentlyof the answers to prior queries).The query and randomness 
omplexities of T are de�ned in the natural manner.Note that we have de�ned property testers for �nite properties and for a �xed value of theproximity parameter �. The de�nition may be extended to in�nite properties and varying �, byproviding the tester with jDj; jRj and � as inputs (and assuming D = [jDj℄). O

asionally, we shallassume that � � jDj�1; otherwise, �-testers 
oin
ide with standard de
ision pro
edures.3.1 Lower BoundsWe provide lower-bounds on the randomness 
omplexity of testing two general 
lasses of properties.3.1.1 Strongly evasive propertiesThe �rst 
lass that we 
onsider 
onsists of properties that are \strongly evasive" in the sensethat the values (of some fun
tion) at any set that 
ontains a 
onstant fra
tion of the domain are
onsistent both with some fun
tion that has the property and with some other fun
tion that is farfrom having the property.De�nition 3.2 (strongly evasive): For �xed parameters � and �, the property � is 
alled stronglyevasive (with respe
t to parameters � and �) if there exists a fun
tion f :D!R su
h that for everyD0 � D of density � (i.e., jDj0 = � � jDj), there exists f1 2 � and f0 :D!R that is �-far from �su
h that for every x 2 D0 it holds that f1(x) = f0(x) = f(x).Many natural properties are strongly evasive (with respe
t to various pairs of parameters); seeexamples below. We mention that De�nition 3.2 is in
omparable to the standard de�nition ofevasiveness (
f., e.g., [20℄): On one hand, strong evasiveness has a non-deterministi
 
avor (i.e., itrefers to all 
hoi
es of D0 after f is �xed) and furthermore it refers to the relaxation of propertytesting (i.e., f0 is far from � rather than only not in �). On the other hand, we shall fo
us on
onstant values of � < 1, whereas standard evasiveness refers to � = 1� jDj�1.We show that testing any strongly evasive property requires randomness 
omplexity that is log-arithmi
 in the ratio of the domain size over the query 
omplexity. This result 
an be easily provedby extending a similar result regarding samplers (proved by Canetti, Even, and Goldrei
h [9℄).Theorem 3.3 Let � be strongly evasive with respe
t to � and �. Then any �-tester for � that hasquery 
omplexity q, must have randomness 
omplexity greater than log2(�jDj=q).Proof: Let T be an arbitrary �-tester of query-
omplexity q and randomness-
omplexity r, andf be a fun
tion witnessing the fa
t that � is strongly evasive (i.e., for every set of density � of thedomain, there exists f1 2 � and f0 : D ! R that is �-far from � su
h that f; f1 and f0 agree onall elements in this set). For every ! 2 f0; 1gr , we 
onsider the set of queries made by T whenthe out
ome of T 's 
oin-tosses equals ! and T is given ora
le a

ess to f . Denoting the latterset by Q!, we let D0 = [!2f0;1grQ!. (Indeed, like the Q!'s, the set D0 depends on f .) Clearly,jD0j � 2r � q. The theorem follows by proving that jD0j > � � jDj.Suppose towards the 
ontradi
tion that jD0j � � � jDj. Then, by our 
hoi
e of the fun
tionf , there exists f1 2 � and f0 : D ! R that is �-far from � su
h that for every x 2 D0 it holdsthat f1(x) = f0(x) = f(x). It follows that T f1 and T f0 behaves exa
tly as T f (be
ause all thesefun
tions agree on D0), whi
h yields a 
ontradi
tion (be
ause T must a

ept f1 with probability atleast 2=3 and a

ept f0 with probability at most 1=3).9



Some appli
ations. Many graph properties are strongly evasive, but sin
e su
h properties willbe at the fo
us of Se
tion 3.1.2, we mention �rst a few examples that refer to di�erent types ofproperties.1. Multi-variate polynomial. For every m and d, we 
onsider the set of m-variate polynomialof total degree d over a �nite �eld F . To see that this set of fun
tions over Fm is stronglyevasive 
onsider the all-zero fun
tion, f , and let f1 = f . Then, for every D0 of density1=2, let f0(x) = 0 if x 2 D0 and f0(x) = 1 otherwise. Assuming jF j > 4d (and usingthe S
hwartz{Zippel Lemma), it follows that f0 is 1=4-far from any degree d polynomial(be
ause any non-zero polynomial of degree d may evaluate to zero on at most a d=jF jfra
tion of its domain). Invoking Theorem 3.3, we 
on
lude that 1=4-testing the set of m-variate polynomials of total degree d over F , while using q queries, requires randomness atleast log2(jFmj=2q) = m log2 jF j � log2 q � 1.We mention that, for every 
onstant � > 0, the low-degree �-tester of Ben-Sasson, Sudan,Vadhan, andWigderson [7℄ uses q = O(d log jF j) queries andm log2 jF j+log2(m log jF j)+O(1)random bits.2. Codes of linear distan
e. A binary 
ode C � f0; 1gn of distan
e d = 
(n), is viewed as a set offun
tions of the form f : [n℄! f0; 1g, where ea
h fun
tion 
orresponds to a 
odeword. To seethat this set is strongly evasive 
onsider any 
odeword f , and let f1 = f . Then, for every D0of density 1� (d=2n), let f0(x) = f(x) if x 2 D0 and f0(x) = 1� f(x) otherwise. Clearly, f0is (d=2n)-far from any 
odeword. Invoking Theorem 3.3 (and using d � n), we 
on
lude thatd=2n-testing the set of n-bit long 
odewords of C, while using q queries, requires randomnessat least log2(n=2q).We mention that the 
odeword tests (for 
odes) that are obtained from typi
al PCP 
onstru
-tions (by following the transformation of Goldrei
h and Sudan [17℄) a
hieve su
h (minimal)randomness 
omplexity.3. Monotone fun
tions. A fun
tion f : f0; 1gn ! f0; 1g is said to be monotone if f(x) � f(y) forevery x � y, where � denotes the natural partial order among strings (i.e., x1 � � � xn � y1 � � � ynif xi � yi for every i and xi < yi for some i). To see that the set of monotone fun
tions isstrongly evasive 
onsider the all-one fun
tion f , and let f1 = f . Then, for every D0 of density1=4, let f0(�z) = f(�z) if f0z; 1zg \ D0 6= ; and f0(�z) = 1 � � otherwise. Note that iff0z; 1zg \D0 = ; then f0 must be modi�ed at either 0z or 1z in order to obtain a monotonefun
tion. Thus, f0 is 1=4-far from being monotone. Invoking Theorem 3.3, we 
on
ludethat 1=4-testing the set of monotone fun
tions over f0; 1gn, while using q queries, requiresrandomness at least log2(2n=2q) = n� log2 q � 1.We mention that the �-tester for monotoni
ity of Goldrei
h, Goldwasser, Lehman, Ron, andSamorodnitsky [13℄ uses O(n=�) queries and n+ log2 n random bits.Turning ba
k to graph properties, we fo
us on the bounded in
iden
e lists model (of [15℄), be
ausethe results of Se
tion 3.1.2 do not apply to it. We mention a few properties of bounded-degree graphsthat are strongly evasive in the (bounded) in
iden
e lists model. Examples in
lude 
onne
tivityand being Eulerian (or Hamiltonian), whi
h 
an be demonstrated to be strongly evasive by startingwith the N -
y
le (and omitting edges). Additional examples su
h as planarity and bipartiteness
an be demonstrated to be strongly evasive by starting with the empty graph (and adding edges).By invoking Theorem 3.3, we 
on
lude that, in all these 
ases (whi
h refer to a 
onstant degree10



bound), 
(1)-testing the set of N -vertex graphs that have the 
orresponding property by using qqueries requires randomness at least log2(N=q) � O(1). This lower bound is tight in some 
ases(e.g., 
onne
tivity (see the se
ond author's thesis [27℄)) but not in others (e.g., bipartiteness (seeSe
tion 4.2)).3.1.2 Relabeling-invariant propertiesThe se
ond 
lass that we 
onsider 
onsists of properties that are invariant under some \ni
e"relabeling of D, where a set of relabelings (or permutation) S is 
onsidered ni
e if a random � 2 Smaps ea
h element in D to the uniform distribution over D (i.e., for every x; y 2 D it holds thatPr�2S [�(x) = y℄ = jDj�1). We 
omment that a similar notion was 
onsidered by Kaufman andSudan [19℄.De�nition 3.4 (invariant properties): Let SD be a set of permutations over D. We say that theproperty � is SD-invariant if for every f : D ! R and every � 2 SD it holds that f 2 � if and only(f Æ �) 2 �, where (f Æ �)(x) = f(�(x)).We 
onsider only sets SD that 
orrespond to a transitive group of permutations over D; that is, SDis permutation group and for every x; y 2 D there exists a permutation � 2 SD su
h that �(x) = y.Needless to say, the set of all permutations is a transitive group of permutations, but so are alsomany other permutation groups (e.g., the group of all 
y
li
 permutations). Note that, for anytransitive group SD of permutations over D, it holds that Pr�2SD [�(x) = y℄ = 1=jDj, for everyx; y 2 D. (To see this, 
onsider any x; y; z 2 SD, let px;y = Pr�2SD [�(x) = y℄, and, using � 2 SDsu
h that �(z) = y, note that px;y = Pr�2SD [(� Æ �)(x)=y℄ = Pr�2SD [�(x)=z℄ = px;z.)Theorem 3.5 Let SD be a transitive group of permutations over D, and � be a non-empty andSD-invariant property of fun
tions from D to R. Suppose that, for some � 2 R, the all-� fun
tionis 2�-far from �. Then any non-adaptive �-tester for � that has query 
omplexity q, must haverandomness 
omplexity at least log2(jDj=q)� 1.Proof: Like the proof of Theorem 3.3, the 
urrent proof is based on deriving a 
ontradi
tion fromthe hypothesis that the tester never examines most of the fun
tion (i.e., jD0j � jDj). The di�eren
eis in the way that this 
ontradi
tion is derived, sin
e we 
an no longer take the straightforwardroute o�ered by strong evasiveness.Let T be an �-tester for �, and denote its query-
omplexity and randomness-
omplexity byq and r respe
tively. Sin
e T is non-adaptive, its queries are oblivious of the ora
le. For every! 2 f0; 1gr , we denote by Q! the set of queries made by T when the out
ome of its 
oin-tossesequals !, and let D0 = [!2f0;1grQ!. Again, jD0j � 2r � q, and the theorem follows by proving thatjD0j > jDj=2.Let f : D ! R be a fun
tion in � with the maximum number of � values, among all fun
tionsin �. By the hypothesis, jfx 2 D : f(x) 6= �gj > 2�jDj. Suppose, for a moment, that jfx 2 D nD0 :f(x) 6= �gj � �jDj, and let h be de�ned su
h that h(x) = f(x) if x 2 D0 and h(x) = � otherwise.Then (by the maximality of f), h is �-far from �. However, T h behaves exa
tly as T f (be
ause hand f agree on D0), whi
h yields a 
ontradi
tion be
ause T must a

ept f with probability at least2=3 and a

ept h with probability at most 1=3.It is left to prove that if jD nD0j � jDj=2 then jfx 2 D nD0 : f(x) 6= �gj � �jDj. This does notne
essarily hold, but we shall show that it holds when repla
ing f by another fun
tion in � thatalso has a maximum number of � values. Here we use the hypothesis that � is an SD-invariant11



property, where SD is a transitive group of permutations over D. Spe
i�
ally, 
onsider a randompermutation � 2 SD, and let f 0 = (f Æ�) 2 �. Then, f 0 2 � and jfx 2 D : f 0(x) 6= �gj > 2�jDj. Onthe other hand, sin
e SD is a transitive group of permutations over D, for every x; y 2 D it holdsthat Pr�2SD [�(x)=y℄ = 1=jDj. It follows that, for a random permutation � 2 SD, the expe
ted sizeof fx 2 D nD0 : f 0(x) 6= �g equalsjD nD0j � jD n f�1(�)jjDj � �jDj ;where the inequality is due to the hypotheses jD n D0j � jDj=2 and jD n f�1(�)j > 2�jDj. Thus,there exists a f 0 2 � su
h that jfx 2 D nD0 : f 0(x) 6= �gj � �jDj, and the theorem follows.Main appli
ation. As hinted in Se
tion 3.1.1, the most appealing appli
ation of Theorem 3.5is to testing graph properties in the adja
en
y matrix model (initiated by Goldrei
h, Goldwasser,and Ron [14℄). In this model, N -vertex graphs are represented by Boolean fun
tions de�ned over[N ℄ � [N ℄. For te
hni
al reasons, here (but not elsewhere) we represent su
h graphs as Booleanfun
tions de�ned over the set of the �N2 � (unordered) vertex-pairs, whi
h is a
tually more natural(as well as non-redundant). (Using the set of N2�N ordered pairs of non-identi
al elements wouldhave worked too.) Note that the set of all permutations over [N ℄ indu
es a transitive group ofpermutations over these pairs, where the permutation � : [N ℄ ! [N ℄ indu
es a permutation thatmaps pairs of the form fi; jg to f�(i); �(j)g. Indeed, any graph property is invariant under thisgroup, and Theorem 3.5 
an be applied whenever either the empty graph or the 
omplete graphis far from the property. We note that all the (non-trivial) graph properties 
onsidered in [14,Se
. 6-9℄ fall into the latter 
ategory (and that the testers of [14℄ are all non-adaptive).Corollary 3.6 (testing graph properties in the adja
en
y matrix model): Let � be a graph propertyand suppose that either the empty graph or the 
omplete graph is 2�-far from �. Then, any non-adaptive �-tester for � that has query 
omplexity q, must have randomness 
omplexity at least2 log2N � log2 q �O(1).Note that q adaptive Boolean queries 
an always be repla
ed by 2q non-adaptive Boolean queries.We warn, however, that the more query-eÆ
ient transformation that repla
es q adaptive (adja-
en
y matrix) queries by 2q2 non-adaptive queries (see [3, 18℄) is inappli
able here, be
ause thistransformation does not preserve the randomness-
omplexity.Other appli
ations. We note that any property that refers to sets of obje
ts (e.g., sets ofpoints as in Alon, Dar, Parnas, and Ron [2℄) is invariant under the group of all permutations.Another appli
ation domain 
onsists of matrix-properties that are preserved under row and 
olumnpermutations.Generalizations. Theorem 3.5 
an be generalized to properties that are SD-invariant under a setof permutations that is \suÆ
iently mixing" in the sense that a permutation sele
ted uniformly inSD maps ea
h element of the domain to a distribution that has high min-entropy. For example, for aparameter � � 1, it suÆ
es that for every x 2 D and y 2 D it holds that Pr�2SD [�(x) = y℄ � �=jDj.In this 
ase, we shall prove that jD0j > jDj=2�, and a lower-bound of log2(jDj=q)� log2(2�) on therandomness-
omplexity follows. A di�erent generalization is obtained by repla
ing � with a set ofvalues S � R and referring to properties for whi
h every fun
tion f : D ! S is 2�-far from theproperty. 12



3.1.3 Dis
ussionAlthough Theorems 3.3 and 3.5 are in
omparable, most appli
ations of Theorem 3.5 
an be obtainedalso by using Theorem 3.3. Still, in some 
ases, it is easier to see that the 
onditions of Theorem 3.5are met. For example, this is the 
ase when the invarian
e of the property is obvious from the setting(e.g., as in the 
ase of any graph property in the adja
en
y matrix model).Both Theorems 3.3 and 3.5 yield a lower-bound of the form log2(jDj=q) � O(1), whi
h is in-dependent of the proximity parameter �. We believe that, for a wide range of parameters, theright lower-bound should be log2(jDj=q) + 
(log(1=�)) � O(1). Furthermore, in some 
ases whereq = 
(��2), one may hope to obtain a log2 jDj � O(1) lower-bound. Indeed, this is the 
ase foraverage-estimation (see [22, 30℄), whi
h in turn is a spe
ial 
ase of property testing. Spe
i�
ally,in this 
ase a lower-bound of log2(D=q) + 2 log2(1=�) � O(1) holds [22℄, whereas q = O(��2) holdswhen using query-eÆ
ient testers. (Note that q = 
(��2) must hold [9℄, and so this lower bound
annot be improved above log2 jDj�O(1); indeed, the lower bound of [22℄ is tight (up to an additive
onstant) for any q � jDj.)3.2 Upper BoundsWe start with a totally generi
 bound, and later fo
us on testing graph properties.3.2.1 A generi
 boundRe
all that we refer to properties of fun
tions from D to R. The following result 
an be easilyproved by extending a similar result regarding samplers (presented in [9℄), whi
h in turn is provedusing well-known te
hniques (
f., e.g., Newman [21℄).Theorem 3.7 If � has an �-tester that makes q queries then it has an �-tester that makes O(q)queries and tosses log2 jDj+ log2 log2 jRj+O(1) 
oins. Furthermore, one-sided error and/or non-adaptivity are preserved.For Boolean fun
tions we get an upper-bound of log2 jDj + O(1), whi
h di�ers from the lower-bounds presented in Se
tion 3.1 by an additive term of log2 q+O(1). Indeed, the 
onje
ture at theend of Se
tion 3.1.3 shrinks the gap to a 
onstant.Proof: Let T be a tester as in the hypothesis, and suppose that it tosses r 
oins. Consider an2r-by-jRjjDj matrix in whi
h the rows 
orrespond to r-bit strings (representing possible out
omes ofT 's 
oin tosses) and the 
olumns 
orrespond to possible fun
tions su
h that the entry (!; f) equalsthe verdi
t of T f (!) (i.e., when T uses randomness ! and has ora
le a

ess to the fun
tion f).Note that the average values in any 
olumn that 
orresponds to a fun
tion in � (resp., a fun
tionthat is �-far from �) is at least 2=3 (resp., at most 1=3).Using the probabilisti
 method (see [6℄), we will show that there exists a multi-set 
 ofO(jDj log jRj) rows su
h that, for ea
h 
olumn, the average of this 
olumn taken only over therows in 
 is 1=15-
lose to the average over the entire 
olumn. Using this set 
, we 
onsider theora
le ma
hine that, when given a

ess to any fun
tion f , sele
ts uniformly ! 2 
 and emulatesT f (!). This ma
hine a

epts every f 2 � with probability at least (2=3) � (1=15) = 3=5, re-je
ts every f that is �-far from � with probability at least 3=5, and its randomness 
omplexityis log2 j
j = log2 jDj+ log2 log2 jRj + O(1). Using a randomness-eÆ
ient error-redu
tion (see Se
-tion 2.3), we obtain the desired tester. (Spe
i�
ally, we redu
e the error probability from 2=5 to 1=3,while in
reasing the number of queries by a multipli
ative 
onstant and maintaining the number of
oin tosses.) 13



The probabilisti
 argument pro
eeds via a union bound over all possible jRjjDj fun
tions. Fixingany fun
tion f , we 
onsider the probability that, for a uniformly distributed multi-set 
 of size s,the following bad event o

urs:������2�r � X!2f0;1gr T f (!)� s�1 � X!2
T f (!)������ > 115 (1)Using Cherno� bound, the probability that the bad event in Eq. (1) holds is at most exp(�
(s)).Thus, for s = O(jDj log jRj), we 
on
lude that there exists a multi-set of size s su
h that, for everyf , the bad event in Eq. (1) does not hold. The theorem follows.Corollary. Applying Theorem 3.7 to testers of graph properties in the adja
en
y matrix model(of [14℄), we 
on
lude that if a property of N -vertex graphs is �-testable using q queries then it hasan �-tester that makes O(q) queries and tosses 2 log2N+O(1) 
oins. We further dis
uss this modelin Se
tion 3.2.2.3.2.2 Bounds for 
anoni
al testers of graph propertiesThe proof of Theorem 3.7 shows that for every tester T (of randomness 
omplexity r) there existsa small set of 
oin-sequen
es 
T (� f0; 1gr) that is essentially as good as the original set of 
oin-sequen
es used by this tester (i.e., f0; 1gr). This raises the question of whether there may exists auniversal set 
 that is good for all testers (of randomness 
omplexity r). Needless to say, the latterformulation is too general and is doomed to yield a negative answer (e.g., by 
onsidering, for any
, a pathologi
al tester that behaves badly when fed with any sequen
e in 
). Still su
h universalsets may exist for naturally restri
ted 
lasses of testers.One adequate 
lass of testers was suggested by Goldrei
h and Trevisan [18℄, and it refers totesting graph properties in the adja
en
y matrix model. A 
anoni
al �-tester for a property � ofN -vertex graphs is determined by an integer k and a property �0 of k-vertex graphs. Su
h a tester,sometimes referred to as k-
anoni
al, sele
ts uniformly a set of k verti
es in the input graph G anda

epts G if and only if the 
orresponding indu
ed (k-vertex) subgraph has the property �0. It wasshown in [18℄ that if � is �-testable with query 
omplexity q then � has a k-
anoni
al �-tester withk = O(q). Thus, it is natural to 
onsider the notion of a \universal set" of k-subsets of [N ℄ that isgood for all k-
anoni
al testers.De�nition 3.8 A multi-set 
 � fS� [N ℄ : jSj=kg is 
alled (�; k)-universal if for every property �of N -vertex graphs and for every k-
anoni
al �-tester for �, denoted T , the following holds:1. For every G that has property �, it holds that Pr!2
[TG(!) = 1℄ � 3=5, where TG(!) denotesthe exe
ution of T when given the 
oin-sequen
e ! and ora
le a

ess to G.2. For every G that is �-far from property �, it holds that Pr!2
[TG(!) = 1℄ � 2=5.Using an (�; k)-universal set, we 
an redu
e the randomness 
omplexity of any k-
anoni
al �-testerT by sele
ting uniformly ! 2 
 and emulating T (!). The residual ora
le ma
hine, denoted T 0, isessentially an �-tester for the same property, ex
ept that T 0 may err with probability at most 2=5(rather than 1=3). Needless to say, T 0 has randomness 
omplexity log2 j
j and query 
omplexity�k2�. Furthermore, T 0 preserves the possible one-sided error of T .Clearly, the set of all k-subsets is (�; k)-universal, be
ause using this set 
oin
ides with thede�nition of a k-
anoni
al �-tester. We seek (�; k)-universal sets that are mu
h smaller; spe
i�
ally,14



by prior results we may hope to have (�; k)-universal sets of size O(N2). By extending the proof ofTheorem 3.7, we 
an prove the following result.Theorem 3.9 There exist (�; k)-universal sets (of subsets of [N ℄) having size O(2k2 +N2).The randomness 
omplexity of the derived �-tester is max(k2; 2 log2N) + O(1), whi
h is typi-
ally smaller than the randomness 
omplexity of the k-
anoni
al �-tester (i.e., k log2N). Fork = o(plogN), whi
h holds whenever k only depends on � (and � is 
onstant) as in [14, 3, 4℄,we get randomness-
omplexity 2 log2N +O(1), whi
h is optimal sin
e the domain size is N2.Proof: The key observation is that a k-
anoni
al tester is determined by the property �0 thatit de
ides (for the indu
ed k-vertex subgraph), while �0 
an be des
ribed by K = 2(k2) < 2k2 bitswhi
h determine for ea
h k-vertex graph whether it is in �0. Thus, when applying a union boundas in the proof of Theorem 3.7, the number of k-
anoni
al testers that we need to 
onsider is lessthan 2K . Hen
e, it suÆ
es to have 2K � 2N2 � exp(�
(s)) < 1, where 2K upper-bounds the numberof testers, 2N2 upper-bounds the number of N -vertex graphs, and exp(�
(s)) upper-bounds theprobability that a multi-set of size s is bad (as in Eq. (1)) with respe
t to a �xed tester and a �xedgraph. Using s = O(K +N2), the 
laim follows.Open problems. Can the upper-bound of Theorem 3.9 be improved; in parti
ular, do there exist(�; k)-universal sets (of subsets of [N ℄) having size O(poly(k) �N2) or even O(N2)? Can universalsets of small size (e.g., as in Theorem 3.9) be eÆ
iently 
onstru
ted?Extension. Theorem 3.9 extends to any 
lass of non-adaptive testers (for any property of fun
-tions from D to R) whose �nal de
ision only depends on the ora
le answers. The point is that ea
hsu
h tester that makes q queries 
an be des
ribed by a fun
tion f : Rq ! f0; 1g, and thus the numberof su
h testers is 2jRjq . Hen
e, the size of the 
orresponding \universal set" is O(jRjq + jDj log jRj).4 Spe
i�
 Algorithms: The Case of BipartitenessIn this se
tion we demonstrate two approa
hes to redu
ing the randomness-
omplexity of testers.Se
tion 4.2 demonstrates the approa
h of merely providing a randomness-eÆ
ient implementationof some random features that are used in the analysis of the original tester. In 
ontrast, Se
tion 4.1demonstrates the approa
h of redesigning the tester (while, indeed, bene�ting from ideas thatunderly the design of the original tester).In both se
tions we 
onsider testing graph properties, but in two di�erent standard models:In Se
tion 4.1 we refer to the adja
en
y matrix model (introdu
ed in Goldrei
h, Goldwasser, andRon [14℄), while in Se
tion 4.2 we refer to the bounded-degree model (introdu
ed in Goldrei
hand Ron [15℄). In both se
tions, we fo
us on the problem of testing bipartiteness. Further detailsand additional testers are provided in the se
ond author's thesis [27℄. We make extensive use ofrandomness-eÆ
ient hitters as de�ned and dis
ussed in Se
tion 2.2.4.1 In the Adja
en
y Matrix ModelIn the adja
en
y matrix model an N -vertex graphG = (V;E) is represented by the Boolean fun
tiong : [N ℄�[N ℄! f0; 1g su
h that g(u; v) = 1 if and only if u and v are adja
ent in G (i.e., fu; vg 2 E).In this se
tion we present a randomness-eÆ
ient bipartite tester for graphs in the adja
en
y matrix15



model. This tester is strongly in
uen
ed by the tester of Goldrei
h, Goldwasser, and Ron [14℄, butdi�ers from it in signi�
ant ways. Still, it is instru
tive to start with a des
ription of the testerof [14℄, hereafter referred to as the GGR tester.4.1.1 The GGR testerEssentially, the GGR tester sele
ts a random set of e�(��2) verti
es, inspe
ts the subgraph of Gindu
es by this set, and a

epts if and only if this indu
ed subgraph is bipartite. The analysisin [14℄ a
tually refers to the following des
ription, whi
h also has a lower query-
omplexity.Algorithm 4.1 On input parameters N and �, and ora
le a

ess to an adja
en
y predi
ate of anN -vertex graph, G = (V;E), pro
eed as follows:1. Uniformly sele
t a sample U of e�(��1) verti
es.2. Uniformly sele
t a sample S of e�(��2) vertex-pairs.3. For ea
h u 2 U and (v1; v2) 2 S, 
he
k whether fu; v1g; fu; v2g and fv1; v2g are edges.4. A

ept if and only if the subgraph viewed in Step 3 is bipartite.Clearly, this algorithm never reje
ts a bipartite graph, and thus its analysis fo
uses on the 
asethat G is �-far from being bipartite. One key observation is that ea
h 2-partition, (U1; U2), of Uindu
es a 2-partition of the entire graph in whi
h all neighbors of U1 are on one side and all theother verti
es are on the other side. A pair of verti
es (v1; v2) dete
ts that the latter partition isnot a valid 2-
oloring of G if there exists u1; u2 2 U1 (resp., u1; u2 2 U2) su
h that fu1; v1g; fv1; v2gand fv2; u2g are all edges of G. In su
h a 
ase, we 
all the pair (v1; v2) a witness against (U1; U2).The analysis in [14℄ shows that if G is �-far from being bipartite then, with high probability, forevery 2-partition of U there exists a pair in S that is a witness against this 2-partition. Let usbrie
y re
all how this is done.The �rst step is proving that, with high probability (say, with probability at least 5=6), the setU dominates all but an �=8 fra
tion of the verti
es of G that have degree at least �N=8, where aset U dominates a vertex v if v is adja
ent to some vertex in U . This step is quite straightforward.The next step is proving that this implies that for every 2-partition of U there exists at least �N2=2(ordered) vertex-pairs that are ea
h a witness against this 2-partition. The impli
ation is proved by
onfronting the following two fa
ts:1. Sin
e G is �-far from being bipartite, the 2-partition of V indu
ed by any 2-partition of Uhas at least �N2 (ordered) vertex-pairs that reside on the same side of the partition and yetare 
onne
ted by an edge.2. The number of (ordered) vertex-pairs (v1; v2) su
h that fv1; v2g 2 E but either v1 or v2 is notdominated by U is at most �N2=2, be
ause ea
h low-degree vertex 
ontributes at most �N=4su
h (ordered) pairs and there are at most �N=8 high-degree verti
es that are not dominatedby U .Having established the existen
e of at least �N2=2 vertex-pairs that 
onstitute a witness againstany �xed 2-partition of U , it is 
lear that ea
h random pair of verti
es will be a witness withprobability at least �=2, and sele
ting enough random pairs will do the job. The point, however, isthat we need to rule out ea
h of the 2jU j possible 2-partitions of U . Thus, the number of sele
ted16



pairs is set su
h that the probability that we do not �nd a witness against any spe
i�
 2-partitionis smaller than 2�jU j. Indeed, setting jSj = O(jU j=�) will do. This 
ompletes our review of [14℄.As stated in Se
tion 1.3, the foregoing approa
h supports a randomness-eÆ
ient implementation(of Algorithm 4.1). Spe
i�
ally, U needs to be sele
ted so that sets of density �=8 are avoided withprobability at most �=48, while S is sele
ted su
h that sets of density �=8 are avoided with probabilityat most 2�jU j=6. This yields randomness-
omplexity eO(��1) + O(logN). The problem with theforegoing approa
h is that it is impossible to implement it using randomness-
omplexity below jU j,whi
h in turn is 
(��1). Re
all, however, that our aim is to obtain randomness-
omplexity that islinearly related to O(log(1=�)).4.1.2 A warm-up: randomness-eÆ
ient tester of query 
omplexity eO(��4)A 
loser look at the foregoing argument reveals that a pair (v1; v2) su
h that fu1; v1g; fv1; v2g andfv2; u2g are all edges of G is not merely a witness against a spe
i�
 2-partition of U that pla
es u1and u2 on the same side. It is a
tually a witness against any 2-partition of U that pla
es u1 andu2 on the same side. Viewed from a di�erent perspe
tive, su
h a pair (v1; v2) imposes a 
onstrainton the \relevant" 2-partition of U ; the 
onstraint being that u1 and u2 should not be pla
ed on thesame side. It will be useful to 
onsider the graph of these 
onstraints, whi
h has the vertex-setU and edges between ea
h pair of verti
es to whi
h su
h a 
onstraint is applied (i.e., there is anedge between u1 and u2 if there exists a pair (v1; v2) 2 V � V that imposes a 
onstraint on thepair (u1; u2)). Indeed, the 2-partitions of U that satisfy the set of these 
onstraints are exa
tly the2-
olorings of this auxiliary graph.The foregoing perspe
tive suggests that it may be useful to try to a

umulate 
onstraints. Atthe very extreme, the graph of 
onstraints will not be bipartite, whi
h de�nitely allows us to reje
t(be
ause it indi
ates that there are witnesses against ea
h 2-partition of U).2 Dis
arding this 
ase,we 
onsider another extreme 
ase in whi
h the graph of 
onstraints is 
onne
ted, leaving us with asingle allowed 2-partition of U (i.e., a single 2-
oloring of the 
onstraint graph), whi
h 
an be 
he
kedas in Algorithm 4.1. The point, however, is that in this 
ase it will suÆ
e to set jSj = O(��1) andmore importantly to have a sample that rules out the remaining partition with 
onstant probability(rather than with probability 2�jU j). This opens the door to a randomness-eÆ
ient implementation.But what if the graph of 
onstraints that we found is not 
onne
ted? Unless this event is due tosheer la
k of lu
k, it indi
ates that there are few pairs in V � V that impose 
onstraints regardingvertex-pairs in U � U that are in di�erent 
onne
ted 
omponents of the 
onstraint graph. Thisimplies that, for every 2-partition of U that is 
onsistent with the 
onstraint graph (i.e., every2-
oloring of this graph), there are many pairs in V � V that 
onstitute a witness against the2-partition of some of the 
onne
ted 
omponents. That is, ea
h su
h pair imposes a 
onstraint thatrefers to verti
es that reside in the same 
onne
ted 
omponent, and furthermore this 
onstraint
ontradi
ts the 
onstraints that are already present regarding this 
onne
ted 
omponent.Needless to say, for the foregoing to work, we should determine adequate thresholds for thenotion of \few pairs in V � V that impose a 
onstraint regarding vertex-pairs" (in U � U). Letus start by spelling out the notion of imposing (or rather for
ing) a 
onstraint. We say that thepair (v1; v2) 2 V � V 
onstrains the pair (u1; u2) 2 U � U if fu1; v1g; fv1; v2g and fv2; u2g are alledges of G. Next, we say that a pair (u1; u2) 2 U � U is �-
onstrained if there are at least � � N2vertex-pairs in V � V that 
onstrain (u1; u2). Leaving � unspe
i�ed for a moment, we make thefollowing observations:2We note that it follows from [5℄ that this 
ase holds with high probability provided that U is sele
ted uniformlyamong all eO(1=�)-size subsets. However, we 
annot a�ord to sele
t U in this manner.17



1. Using a sample of O(��1 �log jU j) vertex-pairs in V �V , with high probability, it holds that forevery �-
onstrained pair (u1; u2) 2 U �U , the sample 
ontains a pair that 
onstrains (u1; u2).This holds even if the sample is generated using a randomness-eÆ
ient hitter (whi
h hitsany set of density � with probability at least 1 � (jU j�2=10), using randomness-
omplexityO(log jV j + log jU j) = O(log jV j)). The point is that there are at most jU j2 relevant pairs(i.e., pairs that are �-
onstrained), and we may apply a Union Bound as long as we fail onea
h su
h pair with probability at most jU j�2=10 (or so).2. Consider the graph GU;� 
onsisting of the vertex-set U and edges 
orresponding to the �-
onstrained pairs of verti
es. Then, the number of vertex-pairs in V �V that 
onstrain somepair of verti
es (in U) that does not belong to the same 
onne
ted 
omponent of GU;� is atmost jU j2 � �N2.Re
all that if G is �-far from bipartite and U is good (i.e., U dominates almost all high-degree verti
es) then, for every 2-partition of U , there are at least �N2=2 pairs that 
onstrainsome pair of verti
es that are on the same side of this 2-partition. It follows that at least((�=2)� jU j2�) �N2 of these pairs 
onstrain pairs that are in the same 
onne
ted 
omponentof GU;�. Setting � = �=(4jU j2), we need to hit a set of density �=4, whi
h is easy to do usinga randomness-eÆ
ient hitter.This analysis leads to an algorithm that resembles Algorithm 4.1, ex
ept that it uses a se
ondarysample S that has di�erent features than in the original version. In Algorithm 4.1 the set S hadto hit any �xed set of density �=2 with probability at least 1 � 2�jU j. Here the set S needs to hitany �xed set of density � = �=(4jU j2) < �3 with probability at least 1� (jU j�2=10). Thus, while inAlgorithm 4.1 we used jSj = O(jU j=�) but generating the set S required at least jU j random bits,here jSj = eO(jU j2=�) = eO(��3) but generating the set S 
an be done using O(logN) random bits.(The set U is generated with the same aim as in Algorithm 4.1; that is, hitting a set of density �with probability at least 1� ��1. Su
h a set 
an be generated using O(logN) random bits.)Thus, we obtain a (
omputationally eÆ
ient) �-tester with randomness-
omplexity O(logN)and query-
omplexity O(jU j � jSj) = eO(��4). Our aim in the next se
tion is to redu
e the query-
omplexity to eO(��3) while essentially maintaining the randomness-
omplexity.4.1.3 The a
tual algorithm: randomness-eÆ
ient tester of query 
omplexity eO(��3)The query-
omplexity bottlene
k in Se
tion 4.1.2 is due to the size of S, whi
h in turn needs tohit sets of density � = O(�3). Our improvement will follow by using a larger value of the threshold� (essentially � = O(�2)). Re
all that in Se
tion 4.1.2 we used � = O(�3) in order to bound thetotal number of pairs that 
onstrain pairs that are not �-
onstrained. Thus, using � = O(�3) seemsinherent to an analysis that refers to ea
h pair separately, and indeed we shall deviate from thatparadigm in this se
tion.The planned deviation is quite natural. After all, we not not 
are about having spe
i�
 edges inour 
onstraint graph, but rather 
are about the 
onne
ted 
omponents of that graph. For example,looking at any vertex u 2 U , any pair in V �V that 
onstrains any pair (u; u0), where u0 2 U nfug,in
reases the 
onne
ted 
omponent in whi
h u resides. That is, let 
(u1; u2) denote the fra
tion ofvertex-pairs in V �V that 
onstrain (u1; u2), and re
all that a pair (u1; u2) was 
alled �-
onstrainedif 
(u1; u2) � �. Thus, we (tentatively) say that u 2 U is �-
onstrained if Pu02Unfug 
(u; u0) � �.Let us now see what happens.1. Using a sample of O(��1 �log jU j) vertex-pairs in V �V , with high probability, it holds that forevery �-
onstrained vertex u 2 U , the sample 
ontains a pair that 
onstrains (u; u0), for some18



u0 2 U n fug. Again, this holds even if the sample is generated using a randomness-eÆ
ienthitter.2. The number of vertex-pairs in V � V that 
onstrain some pair of verti
es (u1; u2) 2 U � Usu
h that either u1 or u2 is not �-
onstrained is at most 2jU j � �N2. This means that we 
anignore su
h vertex-pairs (in V � V ) even when setting � = O(�=jU j) or so.Thus, taking a sample S0 as in Item 1, will result in having a 
onstraint graph GU;S0 in whi
h ea
h�-
onstrained vertex resides in non-singleton 
onne
ted 
omponents. In parti
ular, the number ofnon-singleton 
onne
ted 
omponents is at most jU j=2.Note, however, that unlike in Se
tion 4.1.2, the foregoing fa
ts do not yield an upper-bound onthe number of vertex-pairs in V �V that 
onstrain some pair of verti
es (in U) that does not belongto the same 
onne
ted 
omponent of GU;S0 . Loosely speaking, we shall iterate the same pro
esson the non-singleton 
onne
ted 
omponents of GU;S0 , while re
alling that the only verti
es thatform singleton 
onne
ted 
omponents in GU;S0 are not �-
onstrained (and thus 
an be ignored).This suggests an iterative pro
ess, whi
h will halt after at most log2 jU j iterations in a situationanalogous to having no �-
onstrained verti
es. At this point we may pro
eed with a �nal sampleof pairs that, with high probability, will yield a 
onstraint that 
on
i
ts with the existing ones.Clarifying the foregoing iterative pro
ess requires generalizing the notion of �-
onstrained ver-ti
es su
h that it will apply to the 
onne
ted 
omponents determined in the previous iteration. Con-sider a partition of U , denoted U = (U (0); U (1); :::; U (k)), where U (0) may be empty and k may equal0, but for every i 2 [k℄ it holds that U (i) 6= ;. In the �rst iteration, we use U = (;; fu1g; :::; futg),where U = fu1; :::; utg. In later iterations, U (1); :::; U (k) will 
orrespond to 
onne
ted 
omponentsof the 
urrent 
onstraint graph and U (0) will 
ontain verti
es that were 
ast aside at some point.De�nition 4.2 (being 
onstrained w.r.t a partition): For i 2 f0; 1; :::; kg, we say that u 2 U (i)is �-
onstrained w.r.t U if Pu02U 0 
(u; u0) � �, where U 0 = [j2[k℄nfigU (j). Re
all that 
(u1; u2)denote the fra
tion of vertex-pairs in V �V that 
onstrain (u1; u2), where the pair (v1; v2) 2 V �V
onstrains the pair (u1; u2) 2 U � U if fu1; v1g; fv1; v2g and fv2; u2g are all edges of G.We stress that the foregoing sum does not in
lude verti
es in either U (0) or U (i). Our analy-sis will refer to the following algorithm, whi
h 
an be implemented within randomness-
omplexityO(log(1=�)) � log2N and query-
omplexity eO(��3).Algorithm 4.3 (The bipartite tester, revised):1. Sele
t a sample U of eO(��1) verti
es by using a hitter that hits any set of density �=8 withprobability at least 1� (�=100).2. For i = 1; :::; ` + 1, where ` = log2 jU j, sele
t a sample Si of eO(��2) vertex-pairs by using ahitter that hits any set of density � = �= eO(jU j) with probability at least 1 � eO(jU j)�1. (Thishitter has randomness-
omplexity O(logN + log jU j) = O(logN).) Let S = [`+1i=1Si.3. For ea
h u 2 U and (v1; v2) 2 S, 
he
k whether fu; v1g; fu; v2g and fv1; v2g are edges.4. A

ept if and only if the subgraph viewed in Step 3 is bipartite.Needless to say, the pe
uliar way in whi
h S is sele
ted is aimed to support the analysis.Lemma 4.4 If G is �-far from being bipartite then Algorithm 4.3 reje
ts with probability at least2=3. 19



Proof: We may assume that U is good in the sense that it dominates all but �N=8 of the verti
esthat have degree at least �N=8. As argued above (and shown in [14℄), there are at most �N2=2vertex pairs that have an endpoint that is not dominated by U = fu1; :::; utg. Starting withU = (;; fu1g; :::; futg), we shall pro
eed in iterations proving that in ea
h iteration one of thefollowing two events o

ur:1. There are 
(�N2) vertex pairs that form 
onstraints that 
ontradi
t the existing 
onstraints.In this 
ase, with very high probability, the algorithm will sele
t su
h a pair and will reje
t(be
ause the subgraph that it sees is not 2-
olorable).2. There exist �-
onstrained verti
es with respe
t to the 
urrent partition U = (U (0); U (1); :::; U (k)),where U (1); :::; U (k) are 
onne
ted 
omponents of the 
urrent 
onstraint graph and U (0) 
on-tains verti
es that were 
ast aside in previous iterations. We shall also show that �-
onstrained(w.r.t U) verti
es 
annot be in U (0). In this 
ase, with very high probability, the algorithm will�nd new 
onstraints and in parti
ular it will �nd su
h a 
onstraint between every �-
onstrained(w.r.t U) vertex and some vertex that is in one of the other k 
onne
ted 
omponents.We shall shortly take a 
loser look at what happens in the se
ond 
ase (i.e., Case 2) and prove thatindeed at least one of the foregoing 
ases must hold. But before doing so, we note that the se
ond
ase (i.e., Case 2) be
omes impossible on
e we rea
h a situation in whi
h k = 1, at whi
h point thealgorithm must reje
t due to the �rst 
ase (i.e., Case 1).Let us �rst take a 
loser look at what happens in Case 2. Suppose that u 2 U (i) is �-
onstrainedw.r.t the 
urrent U . Then by the foregoing, due to a newly found 
onstraint, vertex u gets 
onne
tedto some vertex in [j2[k℄nfigU (j). This means that ea
h U (i) (i 6= 0) that 
ontains some �-
onstrainedvertex gets merged to some U (j) (j 6= 0 and j 6= i). We will not add any 
onstraint that refers toverti
es that were 
ast aside (i.e., those in U (0)). Thus, verti
es that were 
ast aside in the past(sin
e they were not �-
onstrained w.r.t a previous partition) will remain in U (0), and indeed theyare also not �-
onstrained w.r.t any later partition. (This is the 
ase be
ause in a later partition,some 
omponents get merged and some move to U (0), whi
h 
an only de
rease the \
onstrains
ount" towards being �-
onstrained.) For i 6= 0, if U (i) was not merged with any other U (j) (j 6= 0and j 6= i) then it 
ontains no �-
onstrained vertex, and we 
ast it aside (i.e., move it to the newU (0)). Thus, in ea
h iteration, the number of 
onne
ted 
omponents not 
ast aside (i.e., k) shrinksby a fa
tor of at least two (be
ause ea
h su
h 
onne
ted 
omponent merges with at least one su
hother 
onne
ted 
omponent).We now prove that at least one of the two aforementioned 
onditions must hold. Lookingat the 
urrent partition U , we �rst note that if one of the 
onne
ted 
omponents (in
luding those
ontained in U (0)) is not bipartite then we already have a set of 
onstraints that is self-
ontradi
tory(i.e., does not allow a 2-
oloring of the subgraph we have seen so far). This situation is a spe
ial
ase of Case 1, and indeed in this sub-
ase the algorithm reje
ts. Disposing of this sub-
ase, wenow 
onsider an arbitrary 2-
oloring of the 
onstraint graph, and the 2-partition that it indu
es onthe rest of G (i.e., we put on the �rst side all the verti
es that are dominated by some vertex of Uthat was 
olored by the se
ond 
olor). Then, there are at least �N2 vertex-pairs that are adja
entand were put on the same side, and at least �N2=2 of these vertex-pairs have both its verti
esdominated by U . Ea
h su
h (v1; v2) is of one of the following two types.(i) The vertex-pair (v1; v2) 
onstrains a pair of verti
es (u1; u2) where both verti
es are in thesame 
onne
ted 
omponent of the 
onstraint graph. As showed next, su
h a pair imposes a
onstraint that 
ontradi
ts the 
onstraints of the 
urrent graph. Thus, this pair 
ontributesto the pairs 
ounted in Case 1. 20



To see that the said 
onstraint 
ontradi
ts the 
onstraints of the 
urrent graph, re
all thatsin
e (v1; v2) 
onstrains the pair (u1; u2) 2 U � U it holds that the edges fu1; v1g, fv1; v2g,and fv2; u2g form an odd-length path between u1 and u2. On the other hand, v1 and v2were pla
ed on the same side of the 2-partition of V , whi
h implies that u1 and u2 wereassigned the same 
olor by a 2-
oloring of the 
urrent 
onstraint graph. Sin
e u1 and u2 arein the same 
onne
ted 
omponent of that graph, it follows that they are 
onne
ted by aneven-length path (whi
h re
e
ts an even-length path in G). Thus, the new set of 
onstraintsform an odd-length 
y
le.(ii) The vertex-pair (v1; v2) 
onstrains a pair of verti
es (u1; u2) that belong to di�erent 
onne
ted
omponent of the 
onstraint graph. As showed next, the existen
e of more than �N2=4 su
hpairs implies Case 2 (i.e., the existen
e of �-
onstrained verti
es, whi
h in parti
ular are notin U (0)).We �rst re
all that a vertex in U (0) 
an not be �-
onstrained with respe
t to the 
urrentpartition, be
ause it is not �-
onstrained with respe
t to some previous partition and be
ausethe previous partition allows more pairs to be 
ounted.As for the main 
laim, note that ea
h pair of the 
urrent type is 
ounted towards determiningwhether u1 (resp., u2) is �-
onstrained with respe
t to the 
urrent partition. The total \pair
ount" of ea
h vertex that is not �-
onstrained is smaller than �N2. Thus, for � = �=(4jU j),there are less than jU j � �N2 = �N2=4 pairs of the 
urrent type that refer to verti
es that arenot �-
onstrained. It follows if there are more than �N2=4 pairs of the 
urrent type, then�-
onstrained verti
es must exist, whi
h imply that Case 2 holds.We 
on
lude that either there are more than �N2=4 verti
es of type (ii), whi
h imply that Case 2holds, or there are more than �N2=4 verti
es of type (i), whi
h imply that Case 1 holds.Re
all that if Case 2 holds then the number of non-dis
arded 
onne
ted 
omponents (i.e., k)shrinks by a fa
tor of at least 2. Thus, after log2 jU j iterations, the 
urrent partition must satisfyk � 1, and thus Case 2 
annot hold in the next iteration. The lemma follows.Con
lusion. Using Algorithm 4.3 and its analysis as provided by Lemma 4.4, we obtain:Theorem 4.5 There exists a bipartite tester (in the adja
en
y matrix model) of time-
omplexitypoly(��1 � logN), query-
omplexity eO(��3) and randomness-
omplexity O(log(1=�)) � log2N . Fur-thermore, as Algorithm 4.1, this tester always a

epts a bipartite graph, and in 
ase of reje
tion itprovides a witness of length eO(��2) � log2N (that the graph is not bipartite).Theorem 4.5 improves over the randomness-eÆ
ient implementation of Algorithm 4.1 (whi
h hasrandomness-
omplexity eO(��1) +O(logN)) whenever � < 1= eO(logN).Open problem. Needless to say, we are aware of the bipartite tester of Alon and Krivelevi
h [5℄,whi
h has better query-
omplexity than the GGR tester (as well as our tester). Spe
i�
ally, thequery-
omplexity of the tester of [5℄ is eO(��2) rather than eO(��3). Theorem 3.7 implies that thetester of [5℄ has a randomness-eÆ
ient implementation, but it does not provide an expli
it one.We 
onje
ture that there exists a randomness-eÆ
ient bipartite tester that has query-
omplexityeO(��2) and time-
omplexity poly(��1 logN). 21



4.2 In the Bounded-Degree ModelThe bounded-degree model refers to a �xed degree bound, denoted d. An N -vertex graph G =(V;E) (of maximum degree d) is represented in this model by a fun
tion g : [N ℄� [d℄! f0; 1; :::; Ngsu
h that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has less than i neighbors.In this se
tion we provide a randomness-eÆ
ient implementation of the bipartite tester of Goldrei
hand Ron [16℄, whi
h refers to the bounded-degree model. Thus, we start with a des
ription of thattester.Algorithm 4.6 (The bipartite tester of [16℄): On input parameters N , d, �, and ora
le a

ess toan in
iden
e fun
tion for an N -vertex graph, G = (V;E), of degree bound d, repeat T def= �(1� )times:1. Uniformly sele
t a (\start") vertex s in V .2. (Try to �nd an odd-length 
y
le through vertex s):(a) Perform K def= poly((logN)=�) � pN random walks starting from vertex s, where ea
hwalk is of length L def= poly((logN)=�).(b) Let R0 (respe
tively, R1) denote the set of verti
es that were rea
hed from vertex s inan even (respe
tively, odd) number of steps in any of these walks.(
) If R0 \R1 is not empty then reje
t.If the algorithm did not reje
t in any one of the above T iterations, then it a

epts.Clearly, this algorithm never reje
ts a bipartite graph. Indeed, the analysis of [16℄ fo
uses on the
ase that the graph G is �-far from bipartite, and shows that the algorithm will reje
t G with highprobability. The rather involved analysis breaks down to two 
omplementary fa
ts that refer to anotion of a good start vertex. Loosely speaking, a start vertex is 
alled good if, when the testersele
ts it in Step 1, the probability that the tester �nds an odd-length 
y
le in Step 2 is somewhatsmall (say, below 1=10). This is indeed the de�nition used in [16, Se
. 4℄, but the analysis therea
tually refers to a te
hni
al 
ondition that is stated in [16, Lem. 4.5℄ and refers to what happenswhen taking two independent random walks from the start vertex. Thus, here we 
all a start vertexgood if it does not satisfy the said 
ondition (stated in [16, Lem. 4.5℄), and it is not good if itsatis�es this 
ondition.Most of [16, Se
. 4℄ is devoted to establishing the fa
t that if G is �-far from bipartite then an
(�) fra
tion of the verti
es are not good. It is 
ru
ial for us that this te
hni
ally involved analysis(provided in [16, Se
. 4.2{4.4℄) does not refer at all to the algorithm; it rather refers to the de�nitionof a good vertex, whi
h (as stressed above) refers to a mental experiment in whi
h one takes twoindependent random walks from this vertex. Thus, this analysis remains inta
t regardless of howwe 
hose to implement Algorithm 4.6.The 
omplementary fa
t regarding good verti
es is that when the tester sele
ts a vertex thatis not good (in Step 1), the probability that it �nds an odd-length 
y
le in Step 2 is not toosmall (say, at least 1=10). Indeed, this fa
t refers to Algorithm 4.6 itself, but its rather simpleproof (provided in [16, Se
. 4.5℄) only presumes that the K random walks are distributed in a4-wise independent manner. Spe
i�
ally, the analysis in [16, Se
. 4.5℄ de�nes a random variablefor ea
h pair of walks su
h that this random variable represents the event of �nding an odd-length
y
le via the 
orresponding two walks. Then, Chebyshev's Inequality is applied while relying on22



the expe
tation and varian
e of the sum of these random variables. As one may guess, the saidexpe
tation and varian
e are 
omputed by only relying on the expe
tation of the individual randomvariables and the 
o-varian
es of all possible pairs of random variables. Thus, the analysis remainsvalid as long as the said expe
tation and 
o-varian
e maintain their value, whi
h is de�nitely the
ase provided that ea
h pair of random variables maintains its behavior. Noting that ea
h pair ofrandom variables refers to at most four di�erent random walks, we establish our 
laim that theanalysis of [16℄ only presumes that the K random walks are distributed in a 4-wise independentmanner.The foregoing dis
ussion suggests the following implementation of Algorithm 4.6. For Step 1use a randomness-eÆ
ient hitter that hits any set of density 
(�) with 
onstant probability. Moreimportantly, for Step 2 use a randomness-eÆ
ient 
onstru
tion of K four-wise independent randomstrings, ea
h spe
ifying a random walk of length L (i.e., ea
h being a string of length L log2 d).By the foregoing dis
ussion, this implementation preserves the performan
e guarantees of Algo-rithm 4.6; that is, this implementation is also an �-tester for bipartiteness. The 
ru
ial point,however, is that Step 2 is now implemented using 4 � L log2 d = poly((logN)=�) random 
oins(rather than K � L log2 d = 
(pN) random 
oins). Thus, we obtain:Theorem 4.7 There exists a bipartite tester (in the in
iden
e fun
tion model) of time-
omplexitypoly(��1 � logN) �pN and randomness-
omplexity poly(��1 � logN). Furthermore, as Algorithm 4.6,this tester always a

epts a bipartite graph, and in 
ase of reje
tion it provides a witness of lengthpoly(��1 � logN) (that the graph is not bipartite).A
knowledgmentsWe are grateful to the anonymous referees for their useful 
omments and suggestions.

23



Referen
es[1℄ N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem. J. of Algorithms, Vol. 7, pages 567{583, 1986.[2℄ N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of Clustering. SIAM Journal on Dis
reteMathemati
s, Vol. 16 (3), pages 393{417, 2003.[3℄ N. Alon, E. Fis
her, M. Krivelevi
h, and M. Szegedy. EÆ
ient testing of large graphs. In 40thIEEE Symposium on Foundations of Computer S
ien
e, pages 645{655, 1999.[4℄ N. Alon, E. Fis
her, I. Newman, and A. Shapira. A Combinatorial Chara
terization of theTestable Graph Properties: It's All About Regularity. In 38th ACM Symposium on the Theoryof Computing, pages 251{260, 2006.[5℄ N. Alon and M. Krivelevi
h. Testing k-Colorability. SIAM Journal on Dis
rete Mathemati
s,Vol. 15 (2), pages 211{227, 2002.[6℄ N. Alon and J.H. Spen
er. The Probabilisti
 Method. John Wiley & Sons, In
., 1992. Se
ondedition, 2000.[7℄ E. Ben-Sasson, M. Sudan, S. Vadhan, and A. Wigderson. Randomness-eÆ
ient low degreetests and short PCPs via epsilon-biased sets. In Pro
. 35th ACM Symposium on the Theoryof Computing, June 2003, pp. 612{621.[8℄ M. Blum, M. Luby, and R. Rubinfeld. Self-testing/
orre
ting with appli
ations to numeri
alproblems. Journal of Computer and System S
ien
e, Vol. 47, pages 549{595, 1993.[9℄ R. Canetti, G. Even, and O. Goldrei
h. Lower Bounds for Sampling Algorithms for Estimatingthe Average. Information Pro
essing Letters, Vol. 53, pages 17{25, 1995.[10℄ E. Fis
her. The art of uninformed de
isions: A primer to property testing. Bulletin of theEuropean Asso
iation for Theoreti
al Computer S
ien
e, Vol. 75, pages 97{126, 2001.[11℄ O. Goldrei
h. A Sample of Samplers { A Computational Perspe
tive on Sampling. ECCC,TR97-020, May 1997.[12℄ O. Goldrei
h. Another motivation for redu
ing the randomness 
omplexity of algorithms.Position paper, ECCC, 2006.[13℄ O. Goldrei
h, S. Goldwasser, E. Lehman, D. Ron, and A. Samorodnitsky. Testing Monotoni
ity.Combinatori
a, Vol. 20 (3), pages 301{337, 2000.[14℄ O. Goldrei
h, S. Goldwasser, and D. Ron. Property testing and its 
onne
tion to learning andapproximation. Journal of the ACM, pages 653{750, July 1998.[15℄ O. Goldrei
h and D. Ron. Property testing in bounded degree graphs. Algorithmi
a, pages302{343, 2002.[16℄ O. Goldrei
h and D. Ron. A sublinear bipartite tester for bounded degree graphs. Combina-tori
a, Vol. 19 (3), pages 335{373, 1999.[17℄ O. Goldrei
h and M. Sudan. Lo
ally testable 
odes and PCPs of almost linear length. Journalof the ACM, Vol. 53 (4), pages 558{655, 2006.24



[18℄ O. Goldrei
h and L. Trevisan. Three theorems regarding testing graph properties. RandomStru
tures and Algorithms, Vol. 23 (1), pages 23{57, 2003.[19℄ T. Kaufman and M. Sudan. Algebrai
 Property Testing: The Role of Invarian
es. In 40thACM Symposium on the Theory of Computing, 2008, pages 403{412.[20℄ L. Lov�asz and N. Young. Le
ture Notes on Evasiveness of Graph Properties. Te
hni
al Re-port TR-317-91, Prin
eton University, Computer S
ien
e Department, 1991. Available fromhttp://arxiv.org/abs/
s.CC/0205031[21℄ I. Newman. Private vs. Common Random Bits in Communi
ation Complexity. InformationPro
essing Letters, Vol. 39 (2), pages 67{71, 1991.[22℄ J. Radhakrishnan and A. Ta-Shma. Bounds for Dispersers, Extra
tors, and Depth-Two Su-per
on
entrators. SIAM Journal on Dis
rete Mathemati
s, Vol. 13 (1), pages 2{24, 2000.[23℄ D. Ron. Property testing. In Handbook on Randomization, Volume II, pages 597{649, 2001.(Editors: S. Rajasekaran, P.M. Pardalos, J.H. Reif and J.D.P. Rolim.)[24℄ R. Rubinfeld and M. Sudan. Robust 
hara
terization of polynomials with appli
ations toprogram testing. SIAM Journal on Computing, Vol. 25 (2), pages 252{271, 1996.[25℄ R. Shaltiel. Re
ent Developments in Expli
it Constru
tions of Extra
tors. Bulletin of theEuropean Asso
iation for Theoreti
al Computer S
ien
e, Vol. 77, pages 67{95, 2002.[26℄ R. Shaltiel and C. Umans. Simple Extra
tors for All Min-Entropies and a New Pseudo-RandomGenerator. In 32nd IEEE Symposium on Foundations of Computer S
ien
e, pages 648{657,2001.[27℄ O. She�et. Redu
ing the Randomness Complexity of Property Testing, with an Emphasis onTesting Bipartiteness. M.S
. Thesis, Weizmann Institute of S
ien
e, De
ember 2006.Available from http://www.wisdom.weizmann.a
.il/�oded/ms
-os.html[28℄ A. Shpilka and A. Wigderson. Derandomizing Homomorphism Testing in General Groups.SIAM Journal on Computing, Vol. 36-4, pages 1215{1230, 2006.[29℄ A. Ta-Shma, D. Zu
kerman, and S. Safra. Extra
tors from Reed-Muller Codes. In 32nd IEEESymposium on Foundations of Computer S
ien
e, pages 638{647, 2001.[30℄ D. Zu
kerman. Randomness-Optimal Oblivious Sampling. Journal of Random Stru
tures andAlgorithms, Vol. 11, Nr. 4, De
ember 1997, pages 345{367.

25


