
An Experimental Evaluation of Goldreich's One-Way FunctionSaurabh Kumar Panjwani�,Department of Computer Science and Engineering,Indian Institute of Technology,Bombay, India.panjwani@cse.iitb.ac.inJuly 20, 2001AbstractIn this manuscript we present the results of the experimental evaluation of a candidate one-way function suggested in [1] and discuss the behaviour of the function against a few proposedattacks. Speci�cally, we study the collision properties of the function and the performance ofalgorithms designed to invert the function. We also propose an attack on one paricular versionof the function which de�es the lower bound on inversion time, as claimed in [1].

�The work was done while working as a visiting student at the Weizmann Institute of Science, Rehovot, Israel0

1 IntroductionOne-way functions form an integral part of all cryptographic schemes because they abstract thedesired gap between the ease of computation of e�cient algorithms and the computational infea-sibility of the ones designed to break them. Intuitively speaking, a function is called one-way if itis easy to compute in one direction but hard to compute in the other i.e. we can �nd an e�cientalgorithm to compute the value of the one-way function at every point in it's domain but no e�-cient algorithm which �nds the preimage of any point in it's range with non-negligible probability.One-way functions are simple cryptographic toolboxes using which more sophisticated schemes canbe designed.The purpose of this document is to describe the experimental analysis of one particular (sugges-tion for a) one-way function proposed by Oded Goldreich. The detailed description of the functionis given in [1] and our purpose here is to make a useful addendum to the same by providing exper-imental results on the properties of this function. We don't attempt to prove the intractibility ofthe function in any way and we don't even try to challenge the same, even though we are inclinedto believe that the function is a good candidate for being one-way.1.1 A brief description of the function and it's variantsThe suggested one-way function is a function (rather a collection of functions), fn, that maps stringsin f0; 1gn to f0; 1gn. It uses as parameters two sets of values� A collection (of size n) of small overlapping subsets of [n], C def= fSi : jSij = d;Si 2 [n]; i 2 [n]g(typically d is chosen to be of the order of log(n)) and� A predicate � : f0; 1gd ! f0; 1g.For every string, x = x1x2::xn, in f0; 1gn, computing fn(x) involves, �rst, projecting x onto each ofthe subsets on the collection (if Si = fi1; i2; ::; idg then the projection of x on Si, denoted xSi , is astring of length d which is given by xi1xi2 ::xid) and then evaluating the predicate � on each of then projections, thus giving us the n bit values which represent the output string. In other words,fn(x) is the bit string in f0; 1gn equal to�(xS1)�(xS2):::�(xSn) (1)As should be very clear, computing the function in the forward direction is quite simple. Butit appears that if the collection, C, has some desirable combinatorial properties then inverting thefunction is apparently a hard problem. Speci�cally, if C is an expanding collection i.e. for some k,every subset of C containing k subsets of [n] be such that the union of these k subsets is of the formk + �(n), then the problem of inverting the function doesn't seem to have any e�cient solution.We could thus use combinatorial constructions like expander graphs to construct the collection.Speci�cally, if we use the bipartile version of an expander, viz. G(U; V) with jU j = jV j = n withevery vertex in jU j and jV j having a �xed degree d, a natural suggestion would be using the setfN(i)ji 2 Ug, where N(i) denotes the set of neighbors of i in G as C. Such a choice of C satis�esthe desired expansion property spoken of above.It appears that the choice of the predicate used by the function is not so restrictive (we justneed to avoid a few weaknesses mentioned in [1]). In practice, the suggestion implementation is toselect a random predicate and to hardwire 2d values in the form of a lookup table into the function(since d is small 2d values do not increase the space complexity greatly). A few other predicates1

(suggested in [1]) which are relatively easier to hardwire and thus reduce the complexity of thefunction are -� Using a random d-variant low-degree polynomial. Speci�cally, we think of such a polynomialas one having degree k 2 f2; 3g over the �nite �eld of two elements. Such a polynomial canbe described by �dk� bit values, which is signi�cantly less than 2d.� Using a predicate that partitions its input into two equal length strings and takes their innerproduct modulo 2 i.e. �(z1; ::; zd) = (Pd=2i=1 zizi+d=2)mod2. This predicate (we refer to it as�ip) can be described even more concisely but it appears that it renders the function morevulnerable to attacks. We will further discuss the choice of this particular predicate in Section4.1.2 The basic attackBefore we present the more sophisticated attacks we tried on the function, it would be nice tointroduce the reader to the basic suggestion for inversion of the function given in [1]. This basicattack works by examining the given output sequence bit by bit, in stages, and by maintaininga list of (incompletely known) candidate input strings which could cause the output bits (underapplication of the function) examined till a certain stage. For a set S = fi1; i2; ::; ikg � [n] letP (z; S) def= zi1zi2 ::zik denote the projection function that projects z onto S. The the attack worksas followsAttack Basic Attack(y, C, n, d)1. Pick a random bit position, i1 2 [n], and make a list, L1, of strings in f0; 1; �g such that forevery z 2 L1 it holds that �(P (z; Si1)) = yi1 and zj = � if and only if j =2 Si1 .2. Put U1 S1. Put Rem [n] n fi1g.3. For k in f2; 3; ::; ng do the following -� Choose a random ik 2 Rem.� Put Uk Uk�1 [Sik . Initialize list Lk.� For every z 2 Lk�1, consider all possible strings z0 2 f0; 1; �gn for which (a) P (z0; Uk�1) =P (z; Uk�1), (b) z0j = � i� j =2 Uk. Append z0 to Lk if �(P (z0; Sik)) = yik .� Put Rem Rem n fikg.4. Output all strings in Ln.The running time of the attack would depend almost entirely on the size of the list of candidatestrings with maximum size, L(max)k , which needs to be maintained during the process. It wasshown in [1] that the expected size of jLkj is lower bounded by a quantity exponential in E(k) =j [1�j�k Sj j � k and thus L(max)k would have a lower bound corresponding to that k for which E(k)is maximum. Thus, the basic attack (which proceeds by making no assumption on the nature ofC) seems to suggest that a collection which is su�ciently expanding would be a good candidate forbeing used in the function since for such a collection there will exist a k such that E(k) is of theorder of �(n)We now go straight into describing the various experiments we performed on the function. Formore details on the details of the function, the user is encouraged to read [1].2

2 Collision Tests on the Iterated/Non-iterated Versions of theFunction2.1 The collision probability of a functionThe collision probability of a function is de�ned as the probability that two elements chosen uni-formly and independantly at random from the domain of the function are mapped to the sameimage under it's application. Thus, the collision probability can be written as -pc = Pr[f(U (1)n) = f(U (2)n)] (2)where U (1)n and U (2)n are independant random variables with uniform distribution over f0; 1gn.Clearly, a high collision probability (for a function, like ours, whose domain and co-domain coincide)implies that the function shrinks it's domain greatly.2.2 Motivation for studying collision probabilityAs suggested in [1], an iterated version of the one-way function can be used for creating a pseudoran-dom function which can, in turn, be used to design cryptographic schemes. For the pseudorandomfunction to be utilizable in such a scheme, it's important that it (the pseudorandom function) andthus, the iterated version of the one-way function, doesn't have a very small range. In other words,it's important that the collision probability of the one-way function (and it's iterated version) below.2.3 Finding the collision probability (pc) by exhaustive searchThe easiest way to determine the collision probability is by exhaustively computing the functionat all points in the domain (f0; 1gn) and by collecting information about the number of pre-imagesevery point in the range, R � f0; 1gn, has. Consider the mapping induced by the function as apartition, P , of the domain where every element of any subset, Sj, in P maps to the same image,j 2 R, under f . Let N (Sj)f be the number of elements in Sj. Let CN denote the number of subsetsin P with cardinality N . (Note that the partition is well-de�ned since the one-way function itselfis well-de�ned). Then the collision probability can be computed as follows (where U (1)n and U (2)nare again independant random variables with uniform distribution over f0; 1gn) -pc = Pr[f(U (1)n) = f(U (2)n)]= Xj2RPr[(f(U (1)n) = j) ^ (f(U (2)n) = j)]Since U (1)n and U (2)n , and hence f(U (1)n) and f(U (2)n), are independant, we havepc = Xj2RPr[f(U (1)n) = j] �Pr[f(U (2)n) = j]= XSj2P Pr[U (1)n 2 Sj] � [U (2)n 2 Sj]= maxP fjSj:S2PgXN=1 XSj :jSj j=N Pr[Un 2 Sj]23

= maxP fjSj:S2PgXN=1 CN � �N2n�22.4 Experimental Observations for the exhaustive approachWe tried the above technique with n equal to 20 and 22 and random expanders. The resultspresented below are both for the iterated (upto 10 iterations) and non-iterated versions of thefunction.2.4.1 Notations used� f i - The function iterated i times.� p(i)c - calculated collision probability for f i� �i - shrinkage in domain size (= jRangej=jDomainj = jRangej=2n) for f iIn all the tables, every column tabulates values of CN corresponding to f i where i is the labelof the column and N is the label of the row. Each experiment corresponds to a di�erent instanceof the function (with parameters as given) and in all the cases the predicate used is a randompredicate. For brevity's sake, we've omitted the detailed statistics of all experiments except for oneof them.� For n = 20; d = 8Experiment 1 - For this experiment, we list only the values for p(�i)c and �i (and not thedetailed statistics).N i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10p(i)c 2�2�20 3�2�20 4�2�20 6�2�20 7�2�20 8�2�20 9�2�20 11�2�20 12�2�20 13�2�20�i 0:5908 0:4235 0:3309 0:2720 0:2311 0:2009 0:1777 0:1593 0:1443 0:1319�i=�i�1 { 0:7168 0:7813 0:8220 0:8500 0:8693 0:8845 0:8965 0:9058 0:9141Experiment 2 - For this particular experiment, we list the values of CN for N = 1; 2; ::; 30for the varios f i's with i in the range [1; 10] in addition to p(i)c and �i.

4

N i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=101 356745 182120 111405 75670 54732 41420 32569 26146 21521 180132 177858 124385 86565 62863 47732 37396 30132 24846 20800 177303 67746 72082 59155 46822 37596 30738 25428 21405 18159 155774 21756 38849 38618 33983 28960 24756 21080 18160 15779 137345 6157 20253 24508 24114 21829 19290 17018 14954 13225 117496 1790 10418 15536 16815 16430 15164 13862 12471 11179 100537 439 5189 9559 11605 12117 11821 11055 10232 9391 86888 103 2655 6031 8277 9076 9249 9008 8609 8101 75529 32 1268 3696 5646 6734 7201 7244 7039 6753 635510 12 624 2329 3997 5090 5688 5840 5784 5679 547311 1 292 1362 2645 3700 4328 4716 4840 4829 470312 1 153 870 1836 2807 3404 3772 3973 4045 402013 0 70 467 1213 1978 2573 3053 3355 3438 348914 0 41 341 924 1499 2084 2478 2743 2894 293215 0 21 210 559 1043 1504 1875 2164 2410 249016 0 5 114 403 779 1190 1546 1854 2057 215317 0 4 80 283 600 897 1217 1473 1625 176918 0 2 41 173 414 706 954 1188 1365 156419 0 0 28 129 326 550 794 982 1176 133320 0 0 14 84 247 450 675 871 1031 115721 0 0 6 53 157 337 486 670 843 97222 0 0 5 47 140 266 440 587 747 84723 0 0 4 30 81 185 317 438 570 68824 0 0 3 18 56 151 255 345 429 55725 0 1 0 13 50 112 209 333 401 49926 0 0 0 4 25 68 147 231 337 44227 0 0 2 4 26 66 147 230 319 38728 0 0 1 9 30 55 100 166 224 28329 0 0 0 4 25 54 91 138 226 29830 0 0 0 1 12 41 59 119 168 218p(i)c 2�2�20 3�2�20 4�2�20 5�2�20 7�2�20 8�2�20 9�2�20 9�2�20 10�2�20 11�2�20�i 0:6033 0:4372 0:3442 0:2844 0:2425 0:2116 0:1877 0:1687 0:1532 0:1403�i=�i�1 { 0:7247 0:7873 0:8263 0:8527 0:8726 0:8871 0:8988 0:9081 0:9158Note that the collision probability obtained for higher iterations is a bit inaccurate becausethe value for N was restricted to less than 30. (The collision probability was computed forN being in f1; 2; ::; 30g and higher values of N were ignored.)� For n = 22; d = 8Experiment 1
5

N i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10p(i)c 1�2�20 1�2�20 1�2�20 1�2�20 2�2�20 2�2�20 2�2�20 2�2�20 2�2�20 3�2�20�i 0:6087 0:4428 0:3495 0:2893 0:2470 0:2157 0:1915 0:1723 0:1566 0:1435�i=�i�1 { 0:7274 0:7893 0:8278 0:8538 0:8733 0:8878 0:8997 0:9089 0:9163Experiment 2N i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10p(i)c 1�2�20 1�2�20 1�2�20 2�2�20 2�2�20 2�2�20 2�2�20 3�2�20 3�2�20 3�2�20�i 0:5888 0:4189 0:3252 0:2655 0:2242 0:1940 0:1709 0:1527 0:1380 0:1259�i=�i�1 { 0:7114 0:7763 0:8164 0:8444 0:8652 0:8809 0:8935 0:9037 0:91232.5 Finding pc by random sampling of the domainUnfortunately, the limitation of computational capacities does not allow us to obtain estimatesof collision probability by the exhaustive method for values of n signi�cantly larger than 20. Forsuch values, we obtained approximate estimates to pc by randomly sampling points in f0; 1gn andcomputing f at these points only. The size of the sampling set was taken to be p2n = 2n=2, theexpected number of samples after which a repetition in f0; 1gn is observed (by the birthday paradox).Even though with this we couldn't reach very high values of n, it gave us some improvement abovethe limit we could reach with exhaustive search.The actual estimation involved the following algorithm. Let the number of points sampled bedenoted by M (in our case, we used M = 2n=2). Let x1, x2,..,xM denote the values of the samples.Apply the function at each of the xi's and compute the set V = f(i; j)jf(xi) = f(xj)^ i < jg. Thiscomputation can be carried out by maintaining a data structure for all the points, J , in the rangeobtained by applying f on the samples, which also includes information about the number of times,Cj, each point, j 2 J , is obtained. The size of V will be Pj2J �Cj2 �. Output jV jjf(i;j)ji<jgj = jV j(M2) .Analysis : There are two important conditions that the above algorithm should satisfy to be ableto serve as an e�ective technique for estimating the collision probability -� The expected value of the output should be pc or very close to pc.� With high probability, the deviation of the output from it's expectation should not be large.The �rst of the above conditions can be seen to hold in the following manner. Let �ij denote theindicator random variable for two indepandant samples, xi and xj , chosen uniformly at randomfrom f0; 1gn to have the same image under f i.e. �ij = �[f(xi) = f(xj)]. Thus, �ij is 1 withprobability pc (i.e. when f(xi) = f(xj)) and 0 with probability 1 � pc (i.e. when f(xi) 6= f(xj)).Clearly, the expected size of V in the algorithm is the expectation value of the sum of these �ij 'staken over all possible pairs (i; j). Thus,E[Output] = E " jV j�M2 �#= 1�M2 � � E[jV j]6

= 1�M2 � � E 24 Xi;j2[M];i<j �ij35= 1�M2 � � Xi;j2[M];i<jE[�ij]= 1�M2 � � M2 ! � pc= pcTo prove the second part, we'll use Chebyshev's inequality. Since �ij is an indicator randomvariable for two independant random samples, xi and xj , to have the same image under f , �ijand �kl (which has the same distribution as �ij) will be indepandant for every 1 � i; j; k; l � M(i 6= k or j 6= l). Hence the numerator of the output is a sum of m = �M2 � pairwise independantand identically distributed random variables (say �k's) with the same expectation pc and the samevariance, say V ar(�). That is, our output is equal to the following quantity.Pmk=1 �kmUsing Chebyshev's inequality, we get that for every � > 0Pr �jPmk=1 �km � pcj � �� � V ar(�)�2m= pc(1� pc)�2mHence, the probability that the output deviates from its expected value, pc, is bounded above bypc�p2c�2m , which becomes smaller as M , and thus, m, becomes larger. Thus, if � is of the order of pcand we sample M = p2n points in our domain, the probability of our output deviating from pc bya value greater than � will be bounded above by a small constant.2.6 Results obtained for the random sampling techniqueIn all the tables that follow, we tabulate the estimated collision probability for two cases, n =40; d = 10 and n = 20; d = 8. The quantity c refers to the di�erence in the number of pointssampled and the number of images obtained for a paricular sampling set. Recall that the numberof sampled points is 2n=2.� For n=40, d=10{ Experiment 1N i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10c 0 0 1 1 2 2 3 4 4 5p(i)c 1�2�40 1�2�40 3�2�40 3�2�40 5�2�40 5�2�40 7�2�40 9�2�40 9�2�40 11�2�40� For n=20, d=8 7

{ Experiment 1 - In the following 2 tables, we make a comparison of the random sam-pling technique with the exhaustive search technique. The function (rather instance ofthe function) used was same in both cases.(i) Result for the random sampling technique :-N i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10c 0 0 1 2 2 2 3 3 3 3p(i)c 1�2�20 1�2�20 3�2�20 5�2�20 5�2�20 5�2�20 7�2�20 7�2�20 7�2�20 7�2�20(ii) Result for the exhaustive search technique :-N i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10p(i)c 2�2�20 3�2�20 4�2�20 6�2�20 7�2�20 8�2�20 9�2�20 10�2�20 11�2�20 12�2�20�i 0:6007 0:4330 0:3397 0:2796 0:2376 0:2066 0:1827 0:1600 0:1482 0:13542.7 ObservationsSome observations we can make from these results are� The collision probability for the non-iterated version of the function with (i.e. f i) is consis-tently of the order of 2 � 2�n = 2 � (jDomainj)�1, which means that on an average every pointin the range has two preimages. Thus, the size of the range of the function is of the order�(jDomainj), which is good enough for e�ective utilization of the function (in cryptographicschemes).� The shrinkage in size of the domain (for the values of n for which we could perform exhaustivesearch) reduces in value with increase in the number of iterations, as one would expect tohappen.

8

3 Comparisons between Inversion Time and ExpansionIn this section we will discuss the behaviour of the function with respect to the inversion algorithmgiven in [1] and make observations about the relation between the running time of this algorithmand the expansion of the collection used by the function. The time complexity of the algorithm islower bounded by a quantity exponential in the expansion of the collection and our purpose hereis to determine the seperation of the actual running time from this bound.We stress that when we refer to expansion of a collection, C � fSijSi � [n]; jSij = d; 1 � i � ng,we mean the following quantity (de�ned in [1]) -max1�k�n minI:jIj=kfj [i2I Sij � kg (3)which is somewhat di�erent from the notion of expansion expressed in [2] and [3]. We use theproperties of expander graphs to bound the above quantity i.e. using the fact that the collectionhas been generated from an expander graph, we can derive a lower bound on the expansion (asde�ned above) in terms of certain parameters of the graph. These parameters are the size of thegraph, n, which is the same as the size of C, the degree of each vertex, d, which is the same as thesize of each set in C and the seperation between the �rst and second eigenvalues of the normalisedadjacency matrix of the graph [2].3.1 Computing the lower bound on expansionWe use the bipartile construction of expander graphs for generating C. The construction is givenin [1]. For deriving the lower bound on the expansion we will make use of Tanner's Theorem [2].Let G be a bipartile graph with classes of vertices U and V , where jU j = jV j = n and the degreeof every vertex in U and V is d. Let A be the adjacency matrix of G (A is of dimension n � n).Let �1 and �2 be the two largest eigenvalues of AAT such that �1 > �2. (�1 is known to be alwaysequal to d2). Then, Tanner's Theorem states that for any set of vertices, X � U , if N(X) denotesthe set of all neighbors of X in G, thenjN(X)j � �1jXj(�1 � �2)jXj=n + �2= d2jXj(d2 � �2)jXj=n+ �2For the normalised adjacency matrix, Anorm, of G, the largest eigenvalue is 1 and if we denoteits second largest eigenvalue by �, then the following relation can be seen to hold�2 = d2�2 (4)Using the above two equations, we get the followingjN(X)j � d2jXjd2(1� �2)jXj=n+ d2�2= jXj(1� �2)jXj=n + �2= jXj1� (1� �2) h1� jXjn i9

The above relation suggests that the further �, and, thus �2, is from 1, the largest eigenvalueof Anorm, the larger is the neighboring set for every subset in U and thus, the better expander Gis. Indeed, we can obtain a relationship between the expansion co-e�cient of G and the seperationbetween the two largest eigenvalues of Anorm (or even of AAT) using Tanner's theorem. This evengives us an algebraic de�nition of an expander graph.1We will use the above obtained relation for deriving the expansion bound in terms of the secondlargest eigenvalue of the normalised adjacency matrix. Let c = �2. Let G(U; V) be the expandergraph from which the collection, C, is derived. Then the expansion of C, say E(C), can be writtenas E(C) = maxx2[n] minX:X�U ;jXj=xfjN(X)j � jXjg= maxx2[n]ff minX:X�U ;jXj=x jN(X)jg � xg� maxx2[n]f x(1� c)x=n+ c � xg= maxx2[n]f nx(1� c)x+ cn � xgAssuming the expression being maximized to be a continuous function of x and the expansion tobe continuosly related to x as well, we get that E(C) is maximum for x = x(max) wherex(max)n = pc� c1� c= �� �21� �2and the lower bound on E(C) can be obtained by substituting this value in the expression for x inE(C) as follows E(C) � (�� �21� �2)(1�� �2 + �2)� (�� �21� �2)= �(1 + �2)� 2�2�(1� �2)It is important to note that we don't obtain an exact expression for the expansion but only alower bound on it. This is because Tanner's Theorem itself provides only a bound and indeed thisbound is quite loose. Thus, even our bound for expansion is very loose and experiments revealthat the actual expansion (in the cases we could manage to compute it) is much greater than thisbound.1The advantage of using eigenvalues to obtain a lower bound on the expansion of a graph, as is usually done, isthat they are much easier to compute than the co-e�cient of expansion. They give us an easy-to-prepare certi�catefor an expander, which is a lower bound on the expansion co-e�cient. It is for the same reason that we make use ofthe expansion bound in our analysis. But the utility derived is not much since the bound on expansion we get usingthem is way too loose.
10

3.2 Experimental resultsIn the table given below, we illustrate the results of our experiments with the above mentionedinversion algorithm and compare its running time with the actual expansion (for low values of n)and the expansion bound (for higher values of n). The entries in the column labelled RunningTime are the powers to the base 2 which equal the length of the list of maximum length duringthe course of the attack for that particular case. For each case (i.e. for each choice of parametervalues), we performed the inversion on �ve di�ernt strings and the value of running time tabulatedis the median of the values obtained for all the runs. We have listed the values of � for each caseand the correspondingly derived lower bound on expansion (Expansion Bound), too. For the casesin which we could compute the expansion directly (by exhaustively computing jN(X)j � jXj forevery possible subset, X � [n] and then applying equation (2)), we have also listed the respectivevalues, E(C). The predicate used in all the cases was random.Parameters Expander Used � Expansion Bound E(G) Running Time(t)n = 20; d = 8 Random 0.51 6.49 10 15.03n = 25; d = 8 Random 0.53 7.70 12 18.02n = 25; d = 10 Random 0.41 10.71 14 17.96n = 30; d = 8 Random 0.54 9.00 �� 22.07n = 31; d = 6 Alon's 0.37 14.25 �� 23.62n = 31; d = 6 Random 0.64 6.80 �� 18.20* - Could not computeIt is important to see that the actual value of expansion is greatly seperated from the computedlower bound in all of the cases where we could compute the former. Also, the running time hasvalue much more that what even the exact expansion takes. The latter di�erence in values couldbe reduced greatly by implementing an improved attack on the function and we'll move in thisdirection in the following section.At this point it is important to highlight the fact that in the above mentioned experiments andin the ones we'll talk about in the next section, the collection and the predicate for a particularpair of values of n and d were kept constant. For example, wherever we talk of an instance of thefunction that uses n = 20 and d = 8, we refer to the same instance (the one which we've used in the�rst case above). The observations could be very di�erent for instances with the same parametersand we don't claim that the instances we have used are representative of the typical behaviour ofthe function for the respective values. This was done only for the sake of consistency and ease ofcomparison.

11

4 Further Cryptanalysis of the One-Way FunctionIn this section we discuss some attacks that we tried out on the one-way function and it's variations.Most of our experiments revolved around the version of the function which uses the predicate, �ipde�ned by �ip(z1; z2; :::; zd) = (Pd=2i=1 zi �zi+d=2) mod 2, where zk �zl is the product of the 2 bit valueszk and zl. It appears that the usage of this predicate renders the function easier to invert andwe were indeed able to obtain an inverting algorithm that runs in time exponential in a quantitysigni�cantly less than the expansion of the collection of sets used by the function. Our resultsfurther establish the fact that the choice of the predicate is indeed important in the behaviour ofthe function.4.1 The original attack revisitedWe �rst look at the algorithm suggested in [1] for inversion of the function and discuss an im-provement on this algorithm that uses a good choice of the order in which we examine the bits inthe output string. Consider a string y 2 f0; 1gn that we are trying to invert for a version of thefunction, f : f0; 1gn ! f0; 1gn. Let C � fSijSi � [n]; jSij = d; 1 � i � ng be the collection of setsand � : f0; 1gd ! f0; 1g the predicate used by f . For any set S = fi1; i2; ::; ikg � [n] of size k andz 2 f0; 1gn let P (z; S) def= zi1zi2 ::zik denote the projection function that projects z onto S. Ourattack proceeds in the following manner.Attack Invert in good order(y, C, n, d)1. Pick a random bit position, i1 2 [n], and make a list, L1, of strings in f0; 1; �g such that forevery z 2 L1 it holds that �(P (z; Si1)) = yi1 and zj = � if and only if j =2 Si1 .2. Put U1 S1. Put Rem [n] n fi1g.3. For k in f2; 3; ::; ng do the following -� Choose ik 2 Rem such that jSik \ Uk�1j = maxj2RemfjSj \ Uk�1jg.� Put Uk Uk�1 [Sik . Initialize list Lk.� For every z 2 Lk�1, consider all possible strings z0 2 f0; 1; �gn for which (a) P (z0; Uk�1) =P (z; Uk�1), (b) z0j = � i� j =2 Uk. Append z0 to Lk if �(P (z0; Sik)) = yik .� Put Rem Rem n fikg.4. Output all strings in Ln.The only di�erence between this algorithm and the one desribed in [1] is that the current algorithmlooks for a speci�c order in which the bits in the output string are examined depending on thenature of C. In contrast, the previous one chose the given order for inversion oblivious of C(i.e. i1 = 1; i2 = 2; ::; in = n). It was shown in [1] that the length of the list at step k is lowerbounded by a quantity exponential in the expansion of the set fi1; ::; ikg, i.e. j [1�j�k Sij j � k.But experimentation (see section 4.1.1) shows that the algorithm actually behaves much worsethat that. Thus, an obvious choice for the bit position at the kth step would be one that keeps theexpansion smallest, which is what the above algorithm does. Indeed, the running time of the attackis still lower bounded by a quantity exponential in the quantity max1�k�nminI:jIj=kfj[i2I Sij�kg,which is �(n) for an expanding collection. 12

4.1.1 Evaluation of the improved versionOur results show that the introduction of the idea of ordering of bit positions improves the actualrunning time quite signi�cantly. The following table enumerates a few cases of comparison betweenthe two versions of the attack. In all the cases the predicate used was random.The entries in the last two columns (tBasic Attack and tInvert in good order) are the powers tothe base 2 which equal the length of the list, L(max)k , of maximum length during the course of therespective attack on a particular string. Each pair of entries in the third and fourth columns is suchthat for every row (i.e. every set of parameters) the di�erence between these entries is the medianof the di�erences between �ve pairs of such values, each obtained for the same set of parameters(i.e. the same collection and the same predicate) but a di�erent output string being inverted.Parameters Type of Expander Expansion of C tBasic Attack tInvert in good ordern = 20; d = 8 Random 10 15.03 10.90n = 25; d = 8 Random 12 18.02 12.90n = 31; d = 6 Alon's 14:25� 23.62 17.35n = 31; d = 6 Random 6:8� 18.20 13.70� - These entries are not the actual values of the expansion but the bounds on the expansion (section 3.1).4.2 The predicate �ip seems to be weaker than a random predicateWe now turn our attention to the �ip-version of the function and focus entirely on tests with thisversion. Our ultimate aim is to establish the fact that using �ipthe function's inversion can beattained in time signi�cantly less than that for the ordinary version. Our conjecture is that the�ip-version of the function is a weaker version and, thus, should not be used in practice.Intuitively speaking, �ip, even though not perfectly linear, is very close to being a linear pred-icate. To see this, observe that if the values of all the input bits in one half of the positions in aparticular set are known to be either 0 or 1, then the corresponding output bit is linearly relatedto the remaining input bits. Thus, a natural suggestion to invert the �ip-version would be to �xvalues at bit positions (in the input string to the function) one by one and at some stage (afterhaving �xed around n=2 bits) every bit in the output would become a linear combination of theremaining bits. Thus, the problem would then reduce to checking for all possible combinations ofthe �xed bits and solving a linear system for every �xation.Another crucial observation is that the predicate, �ip, is more biased than any random predicatewould be expected to be. The fraction of inputs for which the output is 1 is always less than thatfor which it is 0 (Speci�cally, for every �ip: f0; 1gd ! f0; 1g exactly 2d�1 + � inputs yield a 0 and2d�1 � � yield a 1 where � = 2d=2�1). Thus, if f uses �ipas its predicate, then the distributionof f(X(n)) where X(n) is uniformly distributed over f0; 1gn will have lower entropy than what wewould expect for any random predicate (that is, a predicate for which the 2d possible output valuesare each chosen uniformly at random from the set f0; 1g).Also, experimentation reveals that in most cases and using the same inversion algorithm, In-vert in good order and a particular string x 2 f0; 1gn, an instance of the function fweak : f0; 1gn !f0; 1gn that uses a given collection of sets and �ipas its parameters can be inverted faster (wheninverting fweak(x)) than an instance, fnormal : f0; 1gn ! f0; 1gn which uses the same collection buta random predicate (when inverting fnormal(x)). We obtained such a result in almost all the casesthat we tried and this greatly supports our conjecture that �ipis a weaker predicate than a truelyrandom one. 13

4.3 An attack that breaks the expansion bound for the �ip-versionWe now present the main result of this section, namely an inversion algorithm on the �ip-versionof our function which defeats the lower bound in terms of expansion as given in [1]. Our result alsohelps us in establishing the signi�cance of the predicate in the overall structure of the function.The attack we present here has been tried and tested for various parameters of the function (andalso for various input strings) and in all the cases drastic di�erences between the expansion boundand the running time of the attack were observed. In the discussion that follows we refer to the�ip-version of the function (rather any instance of the function which uses �ip) as fip.4.3.1 Capitalization on the simple structure of �ip: Motivating DiscussionTo begin with, let us see and analyze what happens when our original attack trying to invert fipona string �xes a few of the bits in the input string being attempted to �nd. We refer to the bitsin the input string which have been guessed (whether correctly or incorrectly) by the attack asthe known bits and those that are yet to be guessed as the undiscovered bits. The list of stringsthat it maintains are referred to as candidate inputs (for the given output) and each candidateinput has some known bits, with the rest being undiscovered. Speci�cally, consider the case fora particular set, Si, in C for which some (but not all) of its elements (say a subset S0i) are bitpositions corresponding to known bits. Even though there may be quite a few bit positions in Sifor which the values are undiscovered, we can obtain vital information about these values using S0i.Our aim here is to capitalize on this vital information.The structure of �ipordains some restrictions on the values that the undiscovered bits' positionsin Si can have if the known values are from a particular class. The restrictions on theses values arethere for any general predicate but what's important is that for some cases the values are mucheasier to discover with �ipthan with other predicates. For example, if all the bit positions in the �rsthalf of Si (i.e. the positions with indices 1; 2; ::; d=2 in the vector that Si represents) have values0 in a particular candidate string then the output bit position, yi, corresponding to Si, must havevalue 0. If such is not the case, the candidate string can be ruled out immediately.Let's put things more formally now. For any candidate input, z, and with Si = fi1; i2; ::; idg,we try to evaluate the predicate on the bit positions in Si i.e. we try and �nd ei = (Pd=2j=1 zij �zij+d=2)mod2. We use variables, i.e. zik 's for the undiscovered bits' positions and substitute valuesfor the known bits' positions. The expression, ei, we equate to the bit value yi which correspondsto Si in the output string being inverted. We may end up in either of the following four classes bydoing this1. ei may turn out to be a constant, with this constant not being equal to yi. In such a case,our candidate gets disquali�ed.2. ei may turn out to be linear in exactly one variable, zik , in which case the resulting equationwill be something like zik = c where c is a constant. The vital information we get here is thatif our candidate has to remain a candidate then zik must have value c. Thus, we beni�t bydiscovering exactly one additional bit in the candidate.3. ei may be quadratic in exactly two variables, zik and zil and the resulting equation is of theform zik � zil = 1. This can only happen if both the variables have values 1 and, thus, we canobtain a beni�t of discovering 2 additional bits here.4. Any other form that the equation takes will not give us immediately utilizable beni�t and wedon't look at such forms. 14

It is important to observe that we can derive such beni�ts owing only to the oversimpli�ed structureof �ip. This is because �ipis essentially a sum over d=2 pairs of values and if all but one of thesepairs get zeroed out or some of them yield a 1, we are in good luck. Furthermore, our luck greatlyimproves with an increase in the number of known bits.What increases the utility of the beni�ts spoken of above is the fact that the discovered values ofa few undiscovered bits can, in turn, cause other undiscovered bits to be discovered. In other words,once we know the values at some bit positions over and above the ones for which the values werealready known, cases 1, 2 and 3 above may become applicable to sets in the collection for whichthey weren't applicable before knowing these values. Intuitively speaking, this triggers a chainprocess of discovering bits and eliminating candidates and in some suitably triggered cases, wemay end up discovering all the bits in the input. A good triggering set of known bits would be onewhich is (a) reasonably large and (b) has a su�ciently large fraction of 0's. It is not clear how wecould quantify reasonably/su�ciently large here - these are just intuitions which come to the mind.It is not even clear what the �xpoint of the chain process would be and whether it can be expresseddirectly in terms of the fraction of 1's in the known bits, the collection, C, and the output string,y. Indeed, the analysis of this chain process is quite di�cult because it is likely to behave verydi�erently for even a small variation in the values of the known bits or the output string.4.3.2 Some de�nitions and notationsWe will make some preliminary de�nitions with respect to our attack before we actually presentit. Let fip, �ip, C and P be as de�ned earlier in this section. Speci�cally, from now on we considerfipand �ipto be �xed instances with respect to some given values of n and d. Let y 2 f0; 1gn be thestring being attempted to invert. We'll use z 2 f0; 1; �gn to denote candidate inputs with every �representing an undiscovered bit. De�ne -� Sz as the set of bit positions in z corresponding to discovered bits i.e. Sz def= fiji 2 [n]; zi 6= �g.� discoverable(z; y) as the string z0max 2 f0; 1; �gn which is the string with the maximumpossible value of Sz0 that can be obtained by applying the chain process spoken of above i.e.by repeatedly applying cases 2 and 3 as long as they are applicable. discoverable(z; y) is nullif at any stage of this repeated application, the string gets disquali�ed (case 1).4.3.3 The inversion algorithm Invert fipWe are now set to present the entire algorithm with implementation details. We hope that theidea is clear to the reader by now and that we can skip detailed explanation of the algorithm. Animportant di�erence between the candidates in this attack and those in the original one is that hereat every stage the known bits in the candidates are di�erent for all of them and thus need to bederived seperately for each candidate (Recall that for the previous case, the known bits at stage kwere only the ones in the positions of [j2fi1;::;ikgSj). This makes one part of the algorithm a bitmore intensive than the previous one but the advantage we get from discovering undiscovered bitsusing the known bits makes up for more than this loss.Attack Invert fip(y, C, n, d)1. Choose a random bit position, i1, in the output sequence to invert on. (Alternatively, we canbegin with the �rst bit in y). 15

2. Form a list L1 of candidate inputs as in Invert in good order.3. For every z 2 L1 -(a) Put z0 discover(z; y; C; n; d).(b) If z0 = null, delete z from L1.(c) If z0 6= null, replace z with z0 in L1.4. For k in f2; 3; ::; ng do the following -(a) Initialize list Lk.(b) For every z 2 Lk�1 do the following -i. Put Known known bits(z; n). Compute Known sets = [n] n flj8j 2 Sl; zj 2Knowng.(* Known is the set of bit positions for which the values are known inthe current candidate *)(* Known sets is the set of sets for which the values at bit positionscorresponding to all their elements are known *)ii. Put Rem [n] nKnown sets.iii. Choose i(z)k such that jSi(z)k \Knownj = maxj2Rem jSj \Knownj.iv. Put Known new Known [Si(z)k .v. Consider all possible strings z0 2 f0; 1; �gn for which (a) P (z0;Known) = P (z;Known),(b) z0j = � i� j =2 Known new.vi. If �ip(P (z0; Si(z)k)) = yi(z)k thenPut z00 discover(z0; y; C; n; d).If z00 = null thenDiscard z00.Else if known bits(z00; n) = n thenOutput z00.ElseAppend z00 to Lk.5. Output all strings, if any, in Ln.The above presented algorithm uses, as subroutines two important procedures, namely� discover(z; y; C; n; d) - This procedure returns discoverable(z; y), as de�ned previously. Theidea is to keep performing iterations over all the sets in the collection and checking if any ofthe cases 1, 2 or 3 (section 4.3.1) hold for any of the collections at every iteration. If case 1is found to hold, we return null. If cases 2 or 3 hold we modify z as the case demands andcarry on iterating. We keep performing iterations till a stage is reached where z cannot bemodi�ed any further. This is the desired �xpoint of the procedure.Procedure discover(z, y, C, n, d)1. Put t z.2. Do the following - 16

(a) Put extrabit 0.(b) For all k 2 f1; 2; ::; ng do the following -i. Let Sk = fj1; ::; jdgii. ek (Pd=2i=1 zj1 � tj1+d=2) mod 2.(* ek will be in terms of constants and variables *)iii. Consider equation ek = yk and see if it satis�es any of the conditions in cases 1,2, or 3.iv. If case 1 holds then� Return null.v. If cases 2 or 3 hold then� Modify t as the respective case demands.� Put extrabit 13. Repeat until extrabit is 04. Return t.� known bits(z; n) - This procedure returns Sz. We simply iterate over all the bits in z andmaintain a counter to count the bits which are not �.Procedure known bits(z, n)1. Put counter 0.2. For k 2 f1; ::; ng do the following -(a) If zk 6= � thencounter counter + 13. Return counterWe repeat that the number and nature of known bits could be drastically di�erent for di�erentcandidates even during the same stage of the attack (i.e. when k has a �xed value in the loopbeginning in step 4 of Invert fip). This is because the success of the procedure discover dependslargely on the speci�c values of the bits (i.e. the known bits) in z and y, besides depending on thenature of C. Indeed, the procedure discover is the core of the entire algorithm and without it thealgorithm is absolutely the same as Invert in good order.It should be noted that we need to carry on running Invert fip till the very end and that wecannot a�ord to stop it the moment we discover the �rst candidate string, z1, with Sz1 = n. Thisis because our function is not a permutation and as already established in section 2, typically everyoutput string would have more than one preimages.4.3.4 Experimental results and comparison with the original attackOur results reveal that the running time of Invert fip is less than that of Invert in good order bya factor which is exponential in 35% of what the logarithm to the base 2 of the running time ofInvert in good order is. Since the actual expansion of the collection (we refer to the de�nition inSection 3) is very close to the latter quantity (for the cases where we could compute expansion),this means that the algorithm is defeating the originally de�ned lower bound on inversion time (in[1]) by a signi�cant quantity.The following table illustrates a comparison between the two attacks for various choices of pa-rameters. (In the discussion that follows, when we refer to running time of either of the inversion17

algorithms being considered, we mean the logarithms to the base 2 of the maximum list sizes main-tained in the respective algorithm). The values presented in the columns labelled tInvert in good orderand tInvert fip , as before, are such that for every choice of parameters (i.e. every row in the table)the di�erence between the running times for the listed pairs is the median of the di�erences betweenthe running times for �ve di�erent pairs corresponding to runs of the attacks with �ve di�erentoutput strings but the same choice of parameters. We also tabulate (in the last column) the valueof k (as used in the listing of the algorithm i.e. k is the variable on which the for loop in step 4iterates), kcomplete, at which Invert fip manages to complete outputting all the preimages of thegiven output and the listed value is again the median of the values obtained in �ve di�erent runsof the attack.Parameters Expander Used Expansion Bound tInvert in good order tInvert fip kcompleten = 20; d = 8 Random 6:49� 10.90 4.91 2n = 25; d = 8 Random 7:70� 12.90 7.71 3n = 30; d = 8 Random 9.0 14.96 9.03 4n = 40; d = 8 Random 10.00 18.32 11.99 4n = 46; d = 8 Random 12.73 21.72 14.06 5n = 31; d = 6 Alon's 14.25 15.56 7.55 4n = 31; d = 6 Random 6.80 12.48 6.44 5n = 57; d = 8 Alon's 22.71 c:n:c:�� 20.53 4n = 57; d = 8 Random 12.48 c:n:c:�� 17.53 8� For these cases we could actually compute the expansion and it was found to be 10 and 12 for n = 20 andn = 25 respectively, which is much greater (for both cases) than what the bound gives us and is almost equalto the running time of Invert in good order. Based on these observations, we could hope that even for therest of the cases the running time of Invert in good order is a close approximation to the expansion.� � c:n:c �Could not compute (due to memory limitations)A crucial observation to make from the table is that the value of kcomplete is extremely small(compared to n) in all the cases. This means that we were able to determine the complete inputstring much early on than one would typically expect to, which further implies that our chainprocess works extremely fast in practice. Also, we could observe that after running the for loop (instep 4 of the attack) only twice we were able to obtain at least one preimage in almost all the cases(even for some cases using n = 57).Another important point is that the di�erence between the actual running times of the twoalgorithms is less than the di�erence between the maximum list sizes for them. This is becauseInvert fip is relatively more intensive in execution and also because we did not try to optimize onthe implementation of the algorithm. One could, however, come up with an implementation forwhich the actual running times are of the order of close powers, to the base 2, of the quantitieswe've tabulated above.It should be kept in mind that the values tabulated for a particular choice of parameters donot represent the average performance of the function for that choice. They just represent theperformance of the instance of the function we used. Of course, for the case of Alon's expandersthere can be only one instance of the function with the same choice of parameters but this doesnot hold for the random expanders.
18

4.3.5 Dependance of the attack on the value of dAs one would expect, the performance of Invert fip deteriorates with increase in the value of d usedby the function. With larger values of d, we would expect fewer candidates in every stage of theattack to be such that for a su�cient number of sets in the collection, C, we can apply either case1, 2 or 3 of Section 4.3.1. To put it in another way, our function becomes more secure against thisattack when the value of d is increased and thus, we could (rather should) use larger values for dwhen using �ipto trade o� the insecurity introduced by it. Increasing the value of d does not a�ectthe complexity of the function (in terms of the substance of information hard-wired into it) sinceusing �iprequires no lookup table to be maintained inside the function. In the case of a randompredicate we are forced to maintain a lookup table and the size of this table is exponential in thevalue of d used. Thus, for a random predicate, we would prefer to keep d small (of the order oflog n) so that the internally maintained information is of space complexity O(n).The following table illustrates results of a few tests carried out to distinguish between the casesof d = 8 and d = 12. We have also tabulated results obtained for the same cases (i.e. the same choiceof parameters) when working with a random predicate (�random) and using Invert in good order asthe inversion algorithm. The purpose is to illustrate the trado� between the insecurity introducedby �ipand the complexity introduced by a random predicate. As before, the entries are runningtimes in terms of the maximum list length and the values enterred in every row correspond to themedian observation with �ve di�erent strings for the same choice of parameters. t�random denotesthe running time of Invert in good order on the �random-version of the function and t�ip denotesthe running time of Invert fip on the �ip-version.Value of n t�random t�ipd = 8 d = 12 d = 8 d = 1225 12.98 17.01 7.71 10.6131 15.06 19.03 11.59 14.0640 18.19 23.03 14.46 17.28Points worth observing are� The increase in value of d improves the security of the �random-version of the function muchmore than of the �ip-version (the gap between the running times for d = 8 and d = 12 ismuch less for the �ip-version than for the �random-version).� The running times for d = 8 in the �random-version are close to the corresponding runningtimes for d = 12 (in the �ip-version). Thus, by increasing d for the �ip-version, we could reachthe security attained by lower values of d in the �random-version.4.3.6 An alternate implementationWe have presented Invert fip in a form that closely resembles Invert in good order for the sake ofconsistency. In general, there can be many more tricks one could try using the ideas presented in4.3.1. One speci�c variation would be to begin by guessing a particular number, say n=k, of bitsin the input string and then invoking discover on the resulting string. In case we still end up withsome undiscovered bits, we continue (a) by guessing more bits or (b) by reverting to examiningbits in the output string and following the course of Invert fip after that. We carry this on till thestage where we know the input completely. The time complexity of such an attack would dependlargely on the number of bits guessed initially (if k is small enough) and would be lower bounded19

by O(2n=k) since we would need to try all possible guesses on the input bits previously guessed.We tried this version of the attack (for subversions (a) and (b) and k = 3; 4) but it didn'tprovide us any improvement over Invert fip. The running time of both versions were roughly thesame in almost all the cases (that is, while making comparisons with a �xed output string and a�xed collection) and in most cases Invert fip worked better than the current version.4.3.7 Candidates for improvement on Invert fipIn section 4.2, we gave an intuition for why �ipcould be weaker than any random predicate and thatit is almost linear in some sense. Based upon this intuition one improvement on Invert fip thatappears natural is to check every candidate input for not only the possibility of any one set causingan easy-to-capitalize-upon situation with it (i.e. giving us either of cases 1, 2 or 3 spoken of before)but also for the possibility of a set of sets causing some other similarly-easy-to-capitalize-upon situ-ation. What we mean here is that for every candidate input we could check (after invoking discoverand discovering as many undiscovered bits as possible) if the set of equations (each equation beingof the form ei = yi) we obtain by applying the predicate for some subset of C and equating thesevalues to the corresponding output bits turns out to be a linear system of equations in jRemj vari-ables, where Rem is the set of undiscovered bits in the candidate being considered. If this linearsystem has enough number of equations (speci�cally, if the number of equations is greater than orequal to jRemj itself) then we have a chance of solving it and obtaining a unique solution (if thereexists one) or otherwise declaring the candidate invalid (if the system turns out to be unsolvable).It is of no use to look at a case where the number of equations is less that jRemj because even if insuch a case the system is solvable, it'll have more than one solutions.In terms of the listing of the algorithm, what we could do is to introduce a new procedurechecklinear(z; y; C; n; d) which checks if the system of equations obtained by applying the predi-cate for all the sets in C over the candidate, z, is linear in the jRemj variables representing theundiscovered bits with the required minimum number of equations and if so returns the uniquesolution, if there exists one and null if there exist none. The procedure would return nonlinearotherwise. It would be invoked right at the beginning of the for loop at line number 4(b) in thelisting.Experiments reveal that this candidate for improving the attack, though pretty attractive, givesus absolutely no beni�t with the reason being that at no stage do we get a candidate for whichthe set of equations (spoken of above) is linear and has size greater than or equal to jRemj. Fur-thermore, the number of such candidates is too small to be of any great use. We experimentedwith various strings and di�erent parameters to the function but in all the cases we saw exactlythe same behaviour. Intuitively, we could explain this as occurring because we don't get too manylinear equations, each being linear in more than one variable resulting from this procedure. Theclause "being linear in more than one variable" is important - when looking for a linear system wewill be able to �nd only such equations. Any equation linear in only one variable is equivalent tocase 2 of section 4.3.1 and, thus, would be taken care of by invoking discover itself. It is in keepingwith all this that we do not illustrate results with this inclusion.In general, one could come up with more sophisticated ideas to take advantage of the partiallinearity of �ip(in the intuitive sense as we've spoken of it before) but we feel that they can bedefeated by increasing the value for d substantially.
20

5 Conclusion and AcknowledgementsThe experimental analysis of the function seems to suggest that it is indeed a good candidate fora one-way function. The fact that it appears to become more vulnerable to attacks for one partic-ular version does not make us loose hope in it's utility because for the more generalise description(that using the random predicate and a lookup table) there seems to be no e�cient way to invertit. We stress that besides using a good collection (i.e. one with a su�ciently large expansion) itis also important to make sure that the predicate is not too weakly designed. In particular, themore unrelated the output of the predicate is to it's input bits, the better it is, for we could (in afew cases, like the �ip-version) capitalize upon such relations and improve the original attack. Anabsolutely random predicate seems to be the best choice.We are grateful to Oded Goldreich for useful guidance and fruitful discussions o�ered duringthis work. We would also like to thank Adi Shamir for suggestions and pointers on the cryptanalysisof the function.References[1] O. Goldreich. Candidate One-Way Functions Based on Expander Graphs.[2] N. Alon. Eigenvalues, Geometric Expanders, Sorting in Rounds, and Ramsey Theory.Combinatorica, Vol. 6, pages 207{219, 1986.[3] N. Alon and V.D. Milman. �1, Isoperimetric Inequalities for Graphs and Supercon-centrators, J. Combinatorial Theory, Ser. B, Vol. 38, pages 73{88, 1985.

21

