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2 Oberwolfach Report 26/2005in the recent meetings so that the focus is on interactions in small specializedsessions, maintaining unity via general plenary sessions. While inviting many ofthe most prominent researchers in the �eld, the organizers try to identify andinvite a fair number of promising young researchers. The current meeting marksthe retirement from the organizing team of the last and youngest member of thefounding team (Claus Schnorr).Computational Complexity (a.k.a Complexity Theory) is a central �eld of Com-puter Science with a remarkable list of celebrated achievements as well as vibrantresearch activity. The �eld is concerned with the study of the intrinsic complex-ity of computational tasks, and this study tends to aim at generality : it focuseson natural computational resources, and considers the e�ect of limiting these re-sources on the class of problems that can be solved. Computational complexity isrelated to and has substantial interaction with other areas of mathematics such asnumber theory, algebra, combinatorics, coding theory, and optimization.The workshop has focused on several sub-areas of complexity theory and its na-ture may be best exampli�ed by a brief survey of some of the meeting's highlights.The complexity of Undirected Connectivity. For more than two decades,undirected connectivity was one of the most appealing examples of the computa-tional power of randomness. Whereas every graph (e.g., a planar graph represent-ing a maze) can be e�ciently traversed by a deterministic algorithm, the classicaldeterministic algorithms required an extensive use of (extra) memory (i.e., linear inthe size of the graph). On the other hand, it was known that, with high probability,a random walk (of polynomial length) visits all vertices in the corresponding con-nected component. Thus, the randomized algorithm requires a minimal amountof auxiliary memory (i.e., logarithmic in the size of the graph). Even after morethan a decade of focused attension at the issue, a signi�cant gap remained betweenthe space complexity of randomized and deterministic polynomial-time algorithmsfor this natural and ubiquitous problem. After deterministic polynomial-time pri-mality testing was discovered in 2003, undirected connectivity became the mostfamous example where randomized computations seemed more powerful than de-terministic ones.In the workshop, Omer Reingold presented his recent breakthrough result as-serting that any graph can be traversed by a deterministic polynomial-time algo-rithm that only uses a logarithmic amount of auxiliary memory. His algorithm isbased on a novel approach that departs from previous attempts, where the lattertried to derandomize the random-walk algorithm. Instead, Reingold's algorithmtraverses a virtual graph, which (being an \expander") is easy to traverse (in de-terministic logarithmic-space), and maps the virtual traversal of the virtual graphto a real traversal of the actual input graph. The virtual graph is constructedin (logarithmically many) iterations, where in each iteration the graph becomeseasier to traverse.A new proof of the PCP Theorem. The PCP Theorem is one of the mostin
uential and impressive results of complexity theory. Proven in the early 1990's,the theorem asserts that membership in any NP-set can be veri�ed, with constant



Complexity Theory 3error probability (say 1%), by a veri�er that probes a polynomially long (redun-dant) proof at only a constant number of randomly selected bit locations. ThePCP Theorem led to a breakthrough in the study of the complexity of combina-torial approximation problems. Its original proof is very complex and involves thecomposition of two highly non-trivial proof systems, each minimizing a di�erentparameter of the asserted PCP system (i.e., the proof length and the number ofprobed bits).In the workshop, Irit Dinur presented an alternative approach to the proof of thePCP Theorem. Her recent breakthrough approach leads to a simpler proof of thePCP Theorem as well as to resolving an important open problem regarding PCPsystems (namely, constructing a PCP system having proofs of almost-linear ratherthan polynomial length). Dinur's approach is based on gradually improving theperformance of PCP-like systems, starting with a trivial system and performing(logarithmically) many ampli�cation steps. In each step, the PCP-like system iscomposed with itself in a way that almost preserves all parameters while drasticallyimproving one particular parameter.Extracting randomness. Extracting almost-perfect randomness from weaksources of (imperfect) randomness is crucial for the actual use of randomized proce-dures. The latter are analyzed assuming they are given access to a perfect randomsource, while in reality one typically has access only to sources of weak randomness(e.g., having constant entropy rate). Indeed, the problem has attracted a lot ofattention in the last couple of decades. In the 1990's and early 2000's, the focuswas on single-source extractors that utilize a very short auxiliary random seed.After more than a decade of impressive progress, culminating in an almost opti-mal construction, the focus has shifted back to \seedless' extraction from a fewindependent weak sources. In the workshop, Avi Wigderson surveyed the progressmade on the latter problem in the last couple of years, and the techniques usedtowards this end. His presentation was followed by a specialized session devotedto this subject.Cryptography. Modern Cryptography is intimately related to Complexity The-ory. A new aspect of this relationship was manifested in a talk by Yuval Ishai,which described a recent work by himself, Eyal Kushilevitz and their graduatestudent Benny Applebaum. They showed that, for many central cryptographicprimitives, secure implementations that have moderate complexity (which existsunder standard complexity assumptions) can be transformed into secure imple-mentations that have very low (and in fact minimal) complexity (i.e., each outputbit in these implementations can be computed in constant time). Additional worksin the area of Cryptography were presented and discussed in a specialized sessiondevoted to this area.Holographic Reductions. Standard (many-to-one) reductions between com-putational problems utilize gadgets that enforce a correspondence between globalsolutions and a sequence of partial local solutions (within the gadgets). In theworkshop Les Valiant presented a novel type of reductions, called holographic,



4 Oberwolfach Report 26/2005in which individual global solutions are not a combination of corresponding localsolutions, but rather the set of global solutions is a combination of the sets oflocal solutions. He presented holographic reductions between counting problems,noting that the corresponding gadgets cannot be implemented in the standard(non-holographic) manner. These reductions (to a problem that is solvable inpolynomial-time) yield polynomial-time algorithms for problems that were notknown to be e�ciently solvable.The complexity of Matrix Multiplication. Improved algorithms for matrixmultiplication were the focus of extensive research in the 1970's and 1980's, cul-minating in a n2:38-time algorithm for multiplying two n-by-n matrices. Much ofthe progress on this question has occurred at the various Oberwolfach meetings onComplexity Theory. In the workshop, Chris Umans presented a novel approach tothe design of such algorithms. So far, this approach has not yielded an improvedalgorithm, however it yields signi�cantly a simpler proof of the fact that matrixmultiplication can be performed in n2:41 steps. This is remarkable in light of theformidable complexity of previous proofs in the area. Additional works in thearea of Algebraic Complexity were presented and discussed in a specialized sessiondevoted to this area.Additional topics that were discussed in the workshop include a geometric ap-proach to combinatorial optimization problems (see Sanjeev Arora's extended ab-stract), the pursuit of even stronger PCP systems (see extended abstracts by EliBen-Sasson and Oded Regev), computational problems regarding integer lattices(see specialized session devoted to the topic), the complexity of approximationproblems (see Julia Chuzhoy's extended abstract), computational problems incoding theory (see Eyal Kushilevitz's extended abstract), the relation betweenworst-case and average-case complexity (see extended abstracts by Adi Akaviaand Amnon Ta-Shma), and Quantum Computing (see extended abstracts by ScottAaronson and Ran Raz).This report contains extended abstracts of the sixteen plenary talks as well assummaries of the specialized sessions, which were written by the organizers of thesesessions. In addition, the report includes three extended abstracts of talks givenin the specialized sessions (by Peter Buergisser, Ran Raz, and Ronen Shaltiel).
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Complexity Theory 7AbstractsUndirected ST-Connectivity in Log-SpaceOmer ReingoldWe present a deterministic, log-space algorithm that solves st-connectivity in undi-rected graphs. The previous bound on the space complexity of undirected st-connectivity was log4=3(�) obtained by Armoni, Ta-Shma, Wigderson and Zhou [4].As undirected st-connectivity is complete for the class of problems solvable by sym-metric, non-deterministic, log-space computations (the class SL), this algorithmimplies that SL = L (where L is the class of problems solvable by deterministic log-space computations). Independent of our work (and using di�erent techniques),Trifonov [19] has presented an O(log n log logn)-space, deterministic algorithm forundirected st-connectivity.Our algorithm also implies a way to construct in log-space a �xed sequenceof directions that guides a deterministic walk through all of the vertices of anyconnected graph. Speci�cally, we give log-space constructible universal-traversalsequences for graphs with restricted labelling and log-space constructible universal-exploration sequences for general graphs.1. IntroductionWe resolve the space complexity of undirected st-connectivity (denoted USTCON),up to a constant factor, by presenting a log-space (polynomial-time) algorithm forsolving it. Given as input an undirected graph G and two vertices s and t; theUSTCON problem is to decide whether or not the two vertices are connected bya path in G (our algorithm will also solve the corresponding search problem, of�nding a path from s to t if such a path exists). This fundamental combinatorialproblem has received a lot of attention in the last few decades and was studiedin a large variety of computational models. It is a basic building block for morecomplex graph algorithms and is complete for the class SL of problems solvable bysymmetric, non-deterministic, log-space computations (see [3] for a recent studyof SL and quite a few of its complete problems).The time complexity of USTCON is well understood as basic search algorithms,particularly breadth-�rst search (BFS) and depth-�rst search (DFS), are capableof solving USTCON in linear time. In fact, these algorithms apply to the morecomplex problem of st-connectivity in directed graphs (denoted STCON), whichis complete for NL (non-deterministic log-space computations). Unfortunately,the space required to run these algorithms is linear as well. A much more spacee�cient algorithm is Savitch's [18], which solves STCON in space log2(�) (andsuper-polynomial time).Major progress in understanding the space complexity of USTCON was made byAleliunas, Karp, Lipton, Lov�asz, and Racko� [2], who gave a randomized log-spacealgorithm for the problem. Speci�cally, they showed that a random walk (a paththat selects a uniform edge at each step) starting from an arbitrary vertex of any



8 Oberwolfach Report 26/2005connected undirected graph will visit all the vertices of the graph in polynomialnumber of steps. Therefore, the algorithm can perform a random walk startingfrom s and verify that it reaches t within the speci�ed polynomial number of steps.Essentially all that the algorithm needs to remember is the name of the currentvertex and a counter for the number of steps already taken. With this result weget the following view of space complexity classes: L � SL � RL � NL � L2(where RL is the class of problems that can be decided by randomized log-spacealgorithms with one-sided error and Lc is the class of problems that can be decideddeterministically in space logc(�)).The existence of a randomized log-space algorithm for USTCON puts this prob-lem in the context of derandomization. Can this randomized algorithm be deran-domized without substantial increase in space? Furthermore, the study of thespace complexity of USTCON has gained additional motivation as an importanttest case for understanding the tradeo� between two central resources of compu-tations, namely between memory space and randomness. Particularly, a naturalgoal on the way to proving RL = L is to prove that USTCON 2 L, as USTCONis undoubtedly one of the most interesting problems in RL.Following [2], most of the progress on the space complexity of USTCON indeedrelied on the tools of derandomization. In particular, this line of work greatly ben-e�ted from the development of pseudorandom generators that fool space-boundedalgorithms [1, 5, 10, 7] and it progressed concurrently with the study of the L vs.RL problem. Another very in
uential notion, introduced by Stephen Cook in thelate 70's, is that of a universal-traversal sequence. Loosely, this is a �xed sequenceof directions that guides a deterministic walk through all of the vertices of anyconnected graph of the appropriate size (see further discussion below).While Nisan's space-bounded generator [10], did not directly imply a morespace e�cient USTCON algorithm it did imply quasi-polynomially-long, universal-traversal sequences, constructible in space log2(�). These were extremely instru-mental in the work of Nisan, Szemeredi and Wigderson [11] who showed thatUSTCON 2 L3=2 { The �rst improvement over Savitch's algorithm in terms ofspace (limited of course to the case of undirected graphs). Using di�erent meth-ods, but still heavily relying on [10], Saks and Zhou [17] showed that every RLproblem is also in L3=2 (their result in fact generalizes to randomized algorithmswith two-sided error). Relying on the techniques of both [11] and [17], Armoni,et. al. [4] showed that USTCON 2 L4=3. Their USTCON algorithm was the mostspace-e�cient one previous to this work. We note that the most space-e�cientpolynomial-time algorithm for USTCON previously known was Nisan's [10], whichstill required space log2(�). Independent of our work (and using di�erent tech-niques), Trifonov [19] has presented an O(log n log logn)-space, deterministic al-gorithm for USTCON. 2. Main Idea at a GlanceIn retrospect, the essence of our algorithm is very natural: If you want tosolve a connectivity problem on your input graph, �rst improve its connectivity.



Complexity Theory 9In other words, transform your input graph (or rather, each one of its connectedcomponents), into a expander. We will also insist on the �nal graph being constantdegree. Once the connected component of s is a constant-degree expander, then itis trivial to decide if s and t are connected: Since expander graphs have logarithmicdiameter, it is enough to enumerate all logarithmically long paths starting withs and to see if one of these paths visits t. Since the degree is constant, thenumber of such paths is polynomial and they can easily be enumerated in log space.Our transformation of an arbitrary graph into an expander rely on techniquesdeveloped by Reingold, Vadhan and Wigderson [16] in the context of combinatorialconstructions of constant degree expanders.References[1] Mikl�os Ajtai, J�anos Koml�os, and E. Szemer�edi. Deterministic simulation in LOGSPACE. In Pro-ceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pages 132{140,New York City, 25{27 May 1987.[2] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, L�aszl�o Lov�asz, and Charles Racko�. Ran-dom walks, universal traversal sequences, and the complexity of maze problems. In 20th AnnualSymposium on Foundations of Computer Science, pages 218{223, San Juan, Puerto Rico, 29{31October 1979. IEEE.[3] Carme Alvarez and Raymond Greenlaw. A compendium of problems complete for symmetriclogarithmic space. Electronic Colloquium on Computational Complexity (ECCC), 3(039), 1996.[4] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, and Shiyu Zhou. An o(log(n)4=3) space algorithmfor (s,t) connectivity in undirected graphs. Journal of the ACM, 47(2):294{311, 2000.[5] L�aszl�o Babai, Noam Nisan, and M�ari�o Szegedy. Multiparty protocols, pseudorandom generatorsfor logspace, and time-space trade-o�s. Journal of Computer and System Sciences, pages 204{232, 15{17 May 1989.[6] Oded Goldreich and Avi Wigderson. Derandomization that is rarely wrong from short advice thatis typically good. In RANDOM, pages 209{223, 2002.[7] Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network algorithms.In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of Computing,pages 356{364, Montr�eal, Qu�ebec, Canada, 23{25 May 1994.[8] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential size proofsunless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501{1526, 2002.[9] Michal Koucky. Universal traversal sequences with backtracking. In IEEE Conference on Com-putational Complexity, pages 21{27, 2001.[10] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,12(4):449{461, 1992.[11] Noam Nisan, Endre Szemeredi, and Avi Wigderson. Undirected connectivity in o(log1:5n) space.In Proceedings of the 30th FOCS, pages 24{29, Research Triangle Park, North Carolina, 30October{1 November 1989. IEEE.[12] Noam Nisan and Amnon Ta-Shma. Symmetric logspace is closed under complement. Chicago J.Theor. Comput. Sci., 1995.[13] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer andSystem Sciences, 52(1):43{52, February 1996.[14] Ran Raz and Omer Reingold. On recycling the randomness of the states in space bounded com-putation. In Proceedings of the Thirty-First Annual ACM Symposium on the Theory of Com-puting, Atlanta, GA, May 1999.[15] Omer Reingold, Luca Trevisan, and Salil Vadhan. Pseudorandom walks in biregular graphs andthe RL vs. L problem. Electronic Colloquium on Computational Complexity Technical ReportTR05-022, 2005.[16] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,and new constant-degree expanders. Annals of Mathematics, 155(1), January 2001. Extendedabstract in Proc. of FOCS `00.[17] Michael Saks and Shiyu Zhou. bphspace(S) � dspace(S3=2). Journal of Computer and SystemSciences, 58(2):376{403, 1999. 36th IEEE Symposium on the Foundations of Computer Science(Milwaukee, WI, 1995).[18] J. Savitch. Relationship between nondeterministic and deterministic tape complexities. Journalof Computer and System Sciences, 4(2):177{192, 1970.[19] Vladimir Trifonov. An o(log n log log n) space algorithm for undirected s,t-connectivity. In Pro-ceedings of the 37th ACM Symposium on Theory of Computing (STOC 2005), 2005.



10 Oberwolfach Report 26/2005On Khot's Unique Games ConjectureOded RegevIn 2002, Khot [15] presented a conjecture known as the unique games conjecture.We survey recent progress including applications of this conjecture and attemptsto prove (or disprove) it.We �rst describe some of the known NP-hardness results. Many of the knownresults are tight. For example,� MAX3SAT: a random assignment satis�es 0:875 of the clauses. [14] hasshown a tight hardness of 0:875 + " for any constant " > 0.� E3LIN2: a random assignment satis�es 0:5. [14] has shown a tight hardnessof 0:5 + " for any constant " > 0.� MaxClique: [13] has shown hardness of n1�" for any constant " > 0. This isessentially tight (a trivial algorithm gives n).� SetCover: Hardness result of lnn [8] matching the greedy algorithm.On the other hand, there are many problems for which the known NP-hardnessresults are very far from the best known algorithms. For example,� VertexCover: A simple algorithm gives an approximation of 2. The bestNP-hardness result is 1:36 [7].� Coloring 3-colorable graphs: The best algorithm colors in n3=14 colors [4].The best known hardness result shows that it is NP-hard to color with 5colors [17, 10].� SparsestCut: Best algorithm approximates within (logn)0:5 [2]. No knownNP-hardness results are known.� MaxCut: Best algorithm approximates to within 0:878 [11]. Best knownNP-hardness result is 0:941 [14].For all these problems, the unique games conjecture implies a stronger, andoften tight, hardness result:� VertexCover: Unique-game-hardness of 1:999. [18].1� Coloring 3-colorable graphs: Unique-game-hardness for any constant [6].� SparsestCut: Unique-game-hardness within any constant (and beyond) [5].� MaxCut: Unique-game-hardness to within 0:878 [16].References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and in-tractability of approximation problems. J. ACM, 45(3):501{555, 1998.[2] Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander 
ows, geometric embeddingsand graph partitioning. In Proc. 36th ACM Symp. on Theory of Computing, pages 222{231,2004.[3] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J.ACM, 45(1):70{122, 1998.[4] Avrim Blum and David Karger. An ~O(n3=14)-coloring algorithm for 3-colorable graphs.Inform. Process. Lett., 61(1):49{53, 1997.1We thank Scott Aaronson for suggesting the name `unique-game-hardness' during the Ober-wolfach talk.



Complexity Theory 11[5] Shuchi Chawla, Robert Krauthgamer, Ravi Kumar, Yuval Rabani, and D. Sivakumar. Onthe hardness of approximating sparsest cut and multicut. In Proc. of 20th IEEE AnnualConference on Computational Complexity (CCC), 2005.[6] Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate color-ing, 2005. Submitted.[7] Irit Dinur and Muli Safra. On the importance of being biased. Annals of Mathematics, 2004.To appear. Conference version appeared in STOC 2002.[8] U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM, 45(4):634{652, 1998.[9] Uriel Feige and Daniel Reichman. On systems of linear equations with two variables perequation. In APPROX, 2004.[10] Venkatesan Guruswami and Sanjeev Khanna. On the hardness of 4-coloring a 3-colorablegraph. In 15th Annual IEEE Conference on Computational Complexity (Florence, 2000),pages 188{197. IEEE Computer Soc., Los Alamitos, CA, 2000.[11] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut andsatis�ability problems using semide�nite programming. JACM, 42:1115{1145, 1995.[12] M. Goemans and D. Williamson. Improved approximation algorithms for maximum cut andsatis�ability problems using semide�nite programming. Journal of the ACM, 42:1115{1145,1995.[13] Johan H�astad. Clique is hard to approximate within n to the power 1�". Acta Mathematica,182(1):105{142, 1999.[14] Johan H�astad. Some optimal inapproximability results. Journal of ACM, 48:798{859, 2001.[15] Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 767{775. ACM Press, 2002.[16] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O'Donnell. Optimal inapproxima-bility results for max-cut and other 2-variable CSPs? In Proceedings of the 45th Symposiumon Foundations of Computer Science (FOCS 2004), ROME, Italy, pages 146{154. IEEEComputer society, 2004.[17] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of approximating thechromatic number. Combinatorica, 20(3):393{415, 2000.[18] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2� ".In Proc. of 18th IEEE Annual Conference on Computational Complexity (CCC), pages379{386, 2003.[19] Subhash Khot and Nisheeth Vishnoi. On embeddability of negative type metrics into l1,2005. Manuscript.[20] Elchanan Mossel, Ryan O'Donnell, and Krzysztof Oleszkiewicz. In preperation, 2005.[21] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763{803, June1998.Extracting Randomness from Few Independent SourcesAvi WigdersonThis abstract surveys recent progress on the problem of extracting almost per-fect randomness from a few independent sources of defected randomness. We referto defected sources that have a constant min-entropy rate, where a distribution Xover binary strings of length n has min-entropy k if every string has probability atmost 2�k in X . We seek to use sources that have constant min-entropy rate (i.e.,min-entropy 
(n)) in order to obtain an almost perfect virtual source of bits, byusing a suitable randomness extractor. A randomness extractor for t independentsources of min-entropy k with error � is a function ext : (f0; 1gn)t ! f0; 1gm such



12 Oberwolfach Report 26/2005that for every t independent sources, X1; :::; Xt, if each Xi has min-entropy atleast k then the distribution ext(X1; :::; Xt) is �-close to the uniform distributionover m-bit strings. Our goal is to obtain such explicit constructions; that is, thefunction ext needs to be polynomial-time computable.The motivation to this problem is evident given the prevalent role of random-ness computer science especially in the design of algorithms, distributed systems,and cryptography. The justi�cation for the use of randomness in computation isthat randomness seems to exist in nature, and thus it is possible to sample naturalphenomena (such as tossing coins) in order to make random choices in compu-tation. However, there is a discrepancy between the type of random input thatwe expect when designing randomized algorithms and protocols, and the type ofrandom data that can be found in nature. While randomized algorithms and pro-tocols expect a stream of independent uniformly distributed random bits, this istoo much to hope for from samples of natural phenomena. Indeed, the aforemen-tioned min-entropy sources are intended to provide a general and 
exible modelof the type of samples one may hope to obtain in reality.Unfortunately, randomness extraction (as de�ned above) is impossible from asingle source (i.e., t = 1), even if the source has min-entropy n�1. Previous workshave dealt with this problem in two ways: The �rst way is to add a short trulyrandom seed as a secondary input to the extractor (see survey article [10]). In algo-rithmic applications, the random seed may be replaced by a deterministic scanningof all possibilities, applying the extractor (on the single source sample) with eachpossible seed, running the algorithm using each resulting string, and using themedian value of the algorithm's output. This strategy is typically impossible indistributed and cryptographic applications, and thus a di�erent approach is calledfor. The second approach is to use no seed, but make further assumptions onthe structure of the weak sources (in addition to the minimal assumption of itcontaining su�cient min-entropy). Indeed, allowing few independent sources maybe viewed as a special case of the second approach, and this motivates the con-struction of multiple-source extractors. Needless to say, we wish to use a smallnumber of sources. Speci�cally, we want the number of sources to be a constant(independent of the sample length, n), and preferably use only two sources.We note that the construction of a 2-source extractor is a generalization of abipartite Ramsey graph. A bipartite graph with N vertices on each side is calledk-Ramsey if, for every choice of 2k vertices on each side, the induced subgraphcontains some edges and misses some other edges. Indeed a 2-source extractor forsources of length n and min-entropy k, yields a bipartite k-Ramsey graph with 2nvertices on each side.It is easy to show that 2-source extractors exists for min-entropyO(1)+log2(n=�2),but explicit constructions were previously known only in case the min-entropiesof both independent sources sum-up to more than n (cf. [5], following [11]). Ex-plicit t-extractors for min-entropy rate below half were not know for any constantt. Here we report of recent results that break this barrier; that is, we discussexplicit constrictions of O(1)-source extractors for any constant min-entropy rate.We mention few of these results:



Complexity Theory 13� Multiple-source extraction for any entropy rate [1]. For every � > 0, thereexists an explicit poly(1=�)-source extractor for sources of min-entropy rate�. The extractor's output (i.e., m) has length n and its error (i.e., �) isexponentially small.� Three-source extraction for any entropy rate [2]. For every � > 0, thereexists an explicit 3-source extractor for sources of min-entropy rate �. Theextractor's output has length slightly greater than any constant and its erroris slightly smaller than any positive constant.� Two-source extraction for entropy rate 0.499 [3]. For some constant � < 1=2,there exists an explicit 2-source extractor for sources of min-entropy rate �.� Extraction in an asymmetric setting [8]. Many results that hold for extrac-tion using a single weak source (even with logarithmic min-entropy) and aperfectly random short seed, extend to the case that the seed has min-entropyrate �, for any constant � > 1=2.These works build on results from additive number theory, which are brie
y re-viewed next.Let A be a subset of some �eld F (or even a ring), and de�ne A+A def= fa+ b :a; b 2 Ag and A � A def= fa � b : a; b 2 Ag. Note that jAj � jA + Aj � jAj2 (andsimilarly jAj � jA � Aj � jAj2). An example for a set A where A + A is small (ofsize about 2jAj) is an arithmetic progression. An example for a set A where A �Ais small is a geometric progression. The Erd}os-Szemer�edi Theorem asserts that forevery �nite set of integers A either A+A or A�A is of size at least jAj1+�0 , for someuniversal constant �0. In some sense, one can view this theorem as saying that aset of integers can't be simultaneously close to both an arithmetic progression anda geometric progression.A natural question is whether this theorem also holds in �nite �elds. A �rstobservation is that this theorem is false in a �eld F that contains a non-trivialsub�eld F 0. This because if we let A = F 0 then A + A = A � A = A. However,Bourgain, Katz and Tao [4] proved that a variant of the Erd}os-Szemer�edi Theoremdoes hold in a �nite �eld with no non-trivial sub�elds. In particular it holds in the�elds GF(p) and GF(2p) for every prime p. That is, they proved a correspondinglower-bound holds provided that A is neither too small nor too big (i.e., jAj 2(jFj� ; jFj1��), for some universal constant � > 0). Konyagin [7] gave a strongerresult for prime �elds, and showed that, as long as jAj < jFj0:99, the lower-boundholds (even if jAj is very small).The foregoing suggests that the function f3(x; y; z) = x � y + z may be a good3-source extractor. For starters, for X;Y and Z that are uniformly and indepen-dently distributed on A, Konyagin's result implies that f3(X;Y; Z) has either avery large support or a signi�cantly larger support than X . Thus, starting with3log 1=� copies of X , which has min-entropy rate �, and combining these copies viaa ternary-tree construction using f3, we obtain a random variable with supportsize jFj0:99. Two extensions are required in order to obtain the desired extractor.Firstly, we need to deal with di�erent sources rather than with identical sources(or copies of the same random variable). More importantly, we need to obtain



14 Oberwolfach Report 26/2005bounds on the min-entropy of the resulting distribution, and not merely on thesize of its support.We note that a straightforward statistical analogs of the foregoing set size resultsdo not hold. For example, consider random variables X and Y that are uniformlydistributed on A and G respectively, where A (resp., G) is an arithmetic (resp.,geometric) progression of size 2k. Then, X and Y have each min-entropy k, butbothX+Y andX �Y assign 1=4 of their probability weight to A andG, respectively,and so their min-entropy is at most k+2. Fortunately, it can be shown that for anyindependent sources X;Y and Z of min-entropy k < 0:9 log jFj, the distributionf3(X;Y; Z) has min-entropy (1 + �) � k, where � > 0 is a universal constant. Infact, this is the main technical result of [1], and its proof utilizes the result ofKonyagin [7] along with some other additive number-theoretic results of Rusza [9]and Gowers [6].Using the aforementioned result, we observe that the recursive tree construc-tion using f3 allows us to obtain a random variable over F having min-entropy0:9 log jFj, using poly(1=�) independent sources of min-entropy rate �. To obtainan extractor, we repeat the construction twice, using di�erent sources, and combinethe results using an explicit 2-source extractor for high min-entropy (cf. [5, 12]).1References[1] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting Randomness from Few IndependentSources. In Proc. 45th FOCS, 2004.[2] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating Independence:New Constructions of Condensers, Ramsey Graphs, Dispersers, and Extractors. In Proc.37th STOC, 2005.[3] J. Bourgain. More on the Sum-Product Phenomenon in Prime Fields and its Applications.Unpublished manuscript, 2005.[4] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in �nite �elds, and applications.Arxiv technical report, http://arxiv.org/abs/math.CO/0301343, 2003. To appear in GAFA.[5] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and Proba-bilistic Communication Complexity. SIAM J. Comput., Vol. 17, 1988. Preliminary versionin FOCS'85.[6] W. T. Gowers. A new proof of Szemer�edi's theorem for arithmetic progressions of lengthfour. Geom. Funct. Anal., 8(3):529{551, 1998.[7] S. Konyagin. A sum-product estimate in �elds of prime order. Arxiv technical report,http://arxiv.org/abs/math.NT/0304217, 2003.[8] R. Raz. Extractors with Weak Random Seeds. In Proc. 37th STOC, 2005.[9] I. Z. Ruzsa. Sums of �nite sets. In Number theory (New York, 1991{1995), pages 281{293.Springer, New York, 1996.[10] R. Shaltiel. Recent developments in extractors. Bulletin of the European Association forTheoretical Computer Science, 2002.[11] U. Vazirani. Strong Communication Complexity or Generating Quasi-Random Sequencesfrom Two Communicating Semi-Random Sources. Combinatorica, Vol. 7, 1987. Preliminaryversion in STOC'85.[12] U. Vazirani. E�ciency Considerations in Using Semi-random Sources. Proc. STOC, 1987.[13] D. Zuckerman. General weak random sources. In Proc. 31st FOCS, pages 534{543, 1990.1 The poly(1=�)-source extractor was proposed before by Zuckerman [13], but his analysisrelies on an unproven number theoretic conjecture. A 2-source extractor for any constant min-entropy rate, follows from a seemingly weaker number theoretic conjecture (cf. [5, Cor. 11]).



Complexity Theory 15The PCP Theorem via gap ampli�cationIrit DinurBackground. The PCP Theorem characterizes the class NP as the set of lan-guages for which membership can be proven with a robust, or `ProbabilisticallyCheckable', Proof. That is, a veri�er can verify correctness of such a proof, by toss-ing O(log n) random coins and reading only a constant number of proof symbols.Equivalently formulated, the PCP theorem asserts the existence of a polynomial-time reduction from SAT to gap-CSP (gap constraint satisfaction) where eachconstraint is (say) over two variables. This means that every satis�able formulais transformed into a system of constraints that is totally satis�able, and everyunsatis�able formula is transformed into a constraint system that only 1�� frac-tion of which can be satis�ed, for some � > 0. This interpretation of the PCPtheorem was discovered by [12, 1], and together with the proof of the PCP The-orem by [2, 1], brought about a revolution of the �eld of inapproximability. Theproof of the theorem followed an exciting sequence of developments in interactiveproofs, [15, 3, 7, 14, 19, 23, 4, 5, 12] to list just a few. The proof techniques weremainly algebraic including low-degree extension, low-degree test, parallelizationthrough curves, a sum-check protocol, and the Hadamard and quadratic functionsencodings.Our approach. In this work we take a di�erent approach for proving the PCPTheorem, which is perhaps natural in the context of inapproximability. For a givensystem of constraints C, we consider the satis�ability gap of the system, denotedsat(C), which is the smallest fraction of constraints that every assignment mustleave unsatis�ed. The outline of our proof is as follows. We start with a constraintsystem C, for which it is NP-hard to decide if C is satis�able or not. Namely, it isNP-hard to distinguish between the cases (i) sat(C) = 0 and (ii) sat(C) � 1=n.Such a statement is immediate from the NP-completeness of, say, 3SAT. Nowrepeatedly apply an ampli�cation step to C, doubling the satis�ability gap at eachiteration (but so that if it was zero it remains zero). We will elaborate on this stepfurther below. The �nal outcome C0 is a constraint system for which in the �rstcase still sat(C0) = 0, and in the second case sat(C0) � � for some � > 0. Theampli�cation step will only incur a linear blowup in the size of C so it is possibleto apply it logn times, with the size of the �nal output still polynomially relatedto the size of the original input. This gives a reduction from 3SAT to gap-3SAT,thus proving the PCP Theorem.Let us describe the ampli�cation step in some more details. Our inductive stepconsists of three operations on constraint systems: (1) Preprocessing, (2) Graphpowering, and (3) Alphabet reduction.The most important step is the middle (graph powering) step which is the onethat doubles the satis�ability gap. In order to describe this step let us focus onsystems of constraints over two variables. Such systems can naturally be describedas constraint graphs, whose vertices are variables that take values from some �nite



16 Oberwolfach Report 26/2005alphabet �, and whose edges are associated with constraints. So each edge carriesa list of pairs of �-values that are `allowed' for the endpoints of that edge. Wenote in passing that it is clearly NP-hard to decide if a given constraint graph iscompletely satis�able or not, e.g., by reduction from 3-colorability (the alphabet� is the set of three colors, and the edges carry inequality constraints).In order to amplify the gap of a constraint graph we simply raise it to the powert, for some t = O(1). The graph powering operation is de�ned as follows: The newunderlying graph is the t-th power of the original graph (with the same vertex-set,and an edge for each length-t path, and we allow parallel edges). Each vertex vwill hold a value over a larger alphabet, that is a vector of dt values from �. Thisvector is interpreted as v's \opinion" about the values of all of its neighbors atdistance � t, including itself. The constraint over two adjacent vertices u; v in thenew graph will be satis�ed i� the values and opinions of u and v are consistentwith an assignment that satis�es all of the constraints induced by u; v and theirneighborhoods.Our main lemma asserts that the satis�ability gap of Gt is at least that of Gmultiplied by a factor of roughly pt. This is true as long as the initial underlyinggraph is su�ciently \well-structured". By this we mean that the graph is d-regularfor a constant d, has self-loops, and is an expander. All of these properties areeasily obtained in the preprocessing stage.The main advantage of this operation is that it does not increase the number ofvariables in each constraint (which stays 2 throughout). Moreover, when appliedto d-regular graphs for d = O(1), it only incurs a linear blowup in the graphsize (the number of edges is multiplied by dt�1), and an a�ordable increase inthe alphabet size (which goes from � to �dt). Combined with an operation thatreduces the alphabet back to �, we get an inductive step that can be repeatedlogn times until a constant gap is attained.Gap ampli�cation lemma. Let us give a high-level description of why the gapof Gt is larger than that of G. The intuitive reason is that each vertex in Gt hasaccess to more information, seeing a vector of dt values instead of just one. Also,it is compared with vertices \further away", so there is a higher chance to detectthe inconsistency inherent in the graph G (which is measured by the satis�abilitygap).The idea of the proof is to �x some \best" assignment A : V ! �dt , whichfalsi�es the smallest fraction of constraints in Gt. We then extract from it anassignment a : V ! �, according to popular opinion (under A).We then relate the fraction of G-constraints that violate a to the fraction ofGt-constraints that violate A. Recall that Gt had a constraint for every length-t path, so we are counting how many bad paths there are, given that there is acertain fraction of bad edges. Already it should seem reasonable that if the densityof bad edges is �, then the probability that a length-t path in a graph that is anexpander would see a bad edge is on the order of t�. The proof is more subtle thanthat because having a path pass through a bad edge, does not yet mean that theconstraint on that path is falsi�ed under A. However, we prove that a constant



Complexity Theory 17fraction of the paths that pass through a �xed bad edge in their middle portion(i.e., the edge is the i-th step in the path, for t=2�pt � i � t=2+pt) reject underA. Here we exploit the connection of A to the popular-vote assignment a.The full inductive step. The inductive step can be illustrated asGi+1 = (prep(Gi))t � Pwhere prep(G) denotes a relatively simple transformation of any constraint-graphG into a constant degree regular expander graph with similar satis�ability gap.The operation G�P denotes composition with a constant-size \PCP" algorithm P ,which is an algorithm that inputs a constraint over a large alphabet, and outputsa system of constraints over a small alphabet. We run P on each constraint in ourconstraint graph, and take the union of the outputs to be the new constraint systemG�P . It is not hard to show that this yields alphabet reduction, without harmingthe satis�ability gap. The point is that since in our setting the input to P alwayshas constant size, P is allowed to be extremely ine�cient. This relaxation makes Pnot too di�cult to construct, and one can choose their favorite implementation, beit Long-code based or Hadamard-code based. In fact, P can be found by exhaustivesearch, provided we have proven its existence in an independent fashion.Short PCPs and Locally Testable Codes. Constructing extremely short Prob-abilistically Checkable Proofs and Locally-Testable Codes (LTCs) has been thefocus of several works [5, 20, 18, 17, 10, 6, 9]. The shortest PCPs/LTCs are dueto [6] and [9], each best in a di�erent parameter setting. We show how to use thegap-ampli�cation lemma to prove that SAT 2 PCP 12 ;1[log2(n � poly logn); O(1)].This construction uses the PCP of [9] as starting point.Final Remarks. This work follows [16, 11] in the attempt to �nd an alternativeproof for the PCP Theorem that is combinatorial and/or simpler.The construction described herein is inspired by Reingold's breakthrough prooffor SL = L [22]. Reingold shows how one iteration of powering / zigzagging,increases the spectral gap of any graph; so after logn iterations the initial graphbecomes an expander. In our proof, the same form of ampli�cation occurs for thesatis�ability gap of a constraint graph. The steady increase of the satis�abilitygap is inherently di�erent from the original proof of the PCP Theorem. There,a constant satis�ability gap (using our terminology) is generated by one powerfultransformation, and then a host of additional transformations are incorporatedinto the �nal result to take care of other parameters.It is interesting to contrast our ampli�cation and the ampli�cation that occursin Raz's parallel repetition theorem [21]. In some weak sense, our ampli�cation canbe viewed as a derandomized parallel repetition, but there are several di�erencesbetween the two approaches. Parallel repetition takes a constraint system of sizen to a new one whose size is nt. Our ampli�cation step takes a system of size ninto a system of size n � const(t). Indeed, this is the largest blowup we can tolerateif we want to repeat the ampli�cation step logn times.



18 Oberwolfach Report 26/2005Applying parallel repetition to a constraint system that has a constant satis-�ability gap, can result in a new system whose gap is 1 � � for arbitrarily small� > 0. We remark that having such a gap of nearly 1 has proved extremely usefulin inapproximability reductions. In our proof, once the satis�ability gap reachedsome constant, it does not continue to grow to reach 1� �. In fact, very recentlyBogdanov [8] gave an example of a constraint graph with a constant satis�abilitygap, for which graph powering does not amplify the gap beyond 1=2. This limi-tation is in agreement with the fact that, generally speaking, derandomization ofthe parallel repetition theorem is impossible [13].References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and in-tractability of approximation problems. J. ACM, 45(3):501{555, 1998.[2] S. Arora and S. Safra. Probabilistic checking of proofs: A new characterization of NP. J.ACM, 45(1):70{122, 1998.[3] L. Babai. Trading group theory for randomness. In Proc. 17th ACM Symp. on Theory ofComputing, pages 421{429, 1985.[4] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-proverinteractive protocols. Computational Complexity, 1:3{40, 1991.[5] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmictime. In Proc. 23rd ACM Symp. on Theory of Computing, pages 21{31, 1991.[6] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan. RobustPCPs of proximity, shorter PCPs and applications to coding. In Proc. 36th ACM Symp. onTheory of Computing, 2004.[7] M. Ben-or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi prover interactive proofs: Howto remove intractability assumptions. In Proc. 20th ACM Symp. on Theory of Computing,pages 113{121, 1988.[8] Anrej Bogdanov. Gap ampli�cation fails below 1/2. Comment on ECCC TR05-046, can befound at http://eccc.uni-trier.de/eccc-reports/2005/TR05-046/commt01.pdf, 2005.[9] Eli Ben-Sasson and Madhu Sudan. Robust PCPs of proximity, shorter PCPs and applicationsto coding. In Proc. 37th ACM Symp. on Theory of Computing, 2005.[10] Eli Ben-Sasson, Madhu Sudan, Salil P. Vadhan, and Avi Wigderson. Randomness-e�cientlow degree tests and short PCPs via epsilon-biased sets. In Proc. 35th ACM Symp. onTheory of Computing, pages 612{621, 2003.[11] Irit Dinur and Omer Reingold. Assignment testers: Towards combinatorial proofs of thePCP theorem. In Proceedings of the 45th Symposium on Foundations of Computer Science(FOCS), 2004.[12] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating clique is almostNP-complete. Journal of the ACM, 43(2):268{292, 1996.[13] Uri Feige and Joe Kilian. Impossibility results for recycling random bits in two-prover proofsystems. In Proc. 27th ACM Symp. on Theory of Computing, pages 457{468, 1995.[14] L. Fortnow, J. Rompel, and M. Sipser. On the power of multi-prover interactive protocols.In Proceedings of the 3rd Conference on Structure in Complexity Theory, pages 156{161,1988.[15] S. Goldwasser, S. Micali, and C. Racko�. The knowledge complexity of interactive proofs.SIAM Journal on Computing, 18:186{208, 1989.[16] Goldreich and Safra. A combinatorial consistency lemma with application to proving thePCP theorem. In RANDOM: International Workshop on Randomization and Approxima-tion Techniques in Computer Science. LNCS, 1997.[17] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost-linear length.In Proc. 43rd IEEE Symp. on Foundations of Computer Science, pages 13{22, 2002.



Complexity Theory 19[18] Prahladh Harsha and Madhu Sudan. Small PCPs with low query complexity. In STACS,pages 327{338, 2001.[19] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic methods for interactive proofsystems. Journal of the ACM, 39(4):859{868, October 1992.[20] A. Polishchuk and D. Spielman. Nearly linear size holographic proofs. In Proc. 26th ACMSymp. on Theory of Computing, pages 194{203, 1994.[21] Ran Raz. A parallel repetition theorem. SIAM Journal on Computing, 27(3):763{803, June1998.[22] Omer Reingold. Undirected st-connectivity in log-space. In Proc. 37th ACM Symp. on The-ory of Computing, 2005.[23] A. Shamir. IP = PSPACE. Journal of the ACM, 39(4):869{877, October 1992. Prelim.version in 1990 FOCS, pages 11{15.Geometry and expansion: A survey of recent resultsSanjeev AroraGraph expansion occurs as a unifying concept across several areas of theoreticalcomputer science, including theory of communication networks, theory of error-correcting codes, theory of approximation algorithms, and theory of computationalpseudo-randomness. This brief survey concerns new, geometric ways of looking atexpansion that have engendered new breakthroughs in approximation algorithms,geometric embeddings of metric spaces, and probabilistically checkable proofs.In approximation algorithms the breakthrough is new O(plogn)-approximationalgorithms for a host of NP-hard optimization problems, starting with the discov-ery of such an algorithm for sparsest cut in [3]. These new algorithms rely ona new analysis of a family of semide�nite programs.In geometric embeddings new results include an almost-tight embedding of `1-spaces into `2 with distortion O(plogn log logn). There have also been a spate ofresults ruling out certain types of embeddings, most notably a paper of Khot andVishnoi which rules out O(1)-distortion embedding of `22 into `1.Constructions of PCPs in recent years have relied upon theorems in FourierAnalysis which are also geometric in nature, and this has also become clearerthanks to the results on embeddings.Yet another connection between geometry and expansion is that the above re-sults rely upon a geometric analog of the study of expansion, namely, isoperimetricproblems. The simplest is the classical result that every closed set in <2 whosearea is A has perimeter at least 2p�A, the perimeter of the circle of area A. Onecan in fact prove the stronger statement that if this set has perimeter "close to"2p�A, then it "looks like" a circle of area A. The latter type of theorems we bereferred to as Strong Isoperimetric Theorems. Isoperimetric theorems about then-dimensional sphere and the boolean hypercube play an important role in theabove results. References[1] S. Arora, E. Hazan, and S. Kale. O(plog n) approximation to Sparsest Cut in ~O(n2) time.IEEE Foundations of Computer Science.



20 Oberwolfach Report 26/2005[2] Sanjeev Arora, James Lee, and Assaf Naor. Euclidean distortion and the sparsest cut. ACMSTOC 2005.[3] S. Arora, S. Rao, and U. Vazirani. Expander 
ows, geometric embeddings, and graph par-titioning. In ACM STOC 2004, pages 222{231.On Lattices, Learning with Errors, Random Linear Codes, andCryptographyOded RegevOur main result is a reduction from worst-case lattice problems such as SVP andSIVP to a certain learning problem. This learning problem is a natural extensionof the `learning from parity with error' problem to higher moduli. It can also beviewed as the problem of decoding from a random linear code. This, we believe,gives a strong indication that these problems are hard. Our reduction, however, isquantum. Hence, an e�cient solution to the learning problem implies a quantumalgorithm for SVP and SIVP. A main open question is whether this reduction canbe made classical.Using the main result, we obtain a public-key cryptosystem whose hardness isbased on the worst-case quantum hardness of SVP and SIVP. Previous lattice-based public-key cryptosystems such as the one by Ajtai and Dwork were onlybased on unique-SVP, a special case of SVP. The new cryptosystem is muchmore e�cient than previous cryptosystems: the public key is of size ~O(n2) andencrypting a message increases its size by ~O(n) (in previous cryptosystems thesevalues are ~O(n4) and ~O(n2), respectively). In fact, under the assumption that allparties share a random bit string of length ~O(n2), the size of the public key canbe reduced to ~O(n).Main theorem. Let n be some integer and let " � 0 be some real. Consider the`learning from parity with error' problem, de�ned as follows: �nd s 2 Zn2 given alist of `equations with errors' hs; a1i �" b1 (mod 2)hs; a2i �" b2 (mod 2)...where the ai's are chosen independently from the uniform distribution on Zn2 andhs; aii =Pj sj(ai)j is the inner product modulo 2 of s and ai. The input to theproblem consists of the pairs (ai; bi) and the output is a guess for s. By the �"symbol we mean that each equation is independently chosen to be correct withprobability 1� " and incorrect with probability ". Notice that the case " = 0 canbe solved e�ciently by, say, Gaussian elimination. This requires O(n) equationsand poly(n) time.The problem seems to become signi�cantly harder when we take any positive" > 0. For example, let us consider again the Gaussian elimination process andassume we are interested in recovering only the �rst bit of s. Using Gaussian



Complexity Theory 21elimination, we can �nd a set S of O(n) equations such thatPS ai is (1; 0; : : : ; 0).Summing the corresponding values bi gives us a guess for the �rst bit of s. However,a standard calculation shows that this guess is correct with probability 12+2��(n).Hence, in order to obtain the �rst bit with good con�dence, we have to repeat thewhole procedure 2�(n) times. This yields an algorithm that uses 2O(n) equationsand 2O(n) time. In fact, it can be shown that given only O(n) equations, thes0 2 Zn2 that maximizes the number of satis�ed equations is with high probabilitys. This yields a simple maximum likelihood algorithm that requires only O(n)equations and runs in time 2O(n).Blum, Kalai, and Wasserman [8] provided the �rst subexponential algorithmfor this problem. Their algorithm requires only 2O(n= logn) equations/time andis currently the best known algorithm for the problem. It is based on a cleveridea that allows to �nd a small set S of equations (say, O(pn)) among 2O(n= log n)equations, such that PS ai is, say, (1; 0; : : : ; 0). This gives us a guess for the �rstbit of s that is correct with probability 12 + 2��(pn). We can obtain the correctvalue with high probability by repeating the whole procedure only 2O(pn) times.Their algorithm was later shown to have other important applications, such asthe �rst 2O(n)-time algorithm for solving the shortest vector problem in a lattice[11, 5].An important open question is to explain the apparent di�culty in �ndinge�cient algorithms for this learning problem. Our main theorem explains thisdi�culty for a natural extension of this problem to higher moduli, de�ned next.Let p = p(n) � poly(n) be some prime integer and consider a list of `equationswith error' hs; a1i �� b1 (mod p)hs; a2i �� b2 (mod p)...where this time s 2 Znp, ai are chosen independently and uniformly from Znp, andbi 2 Zp. The error in the equations is now speci�ed by a probability distribution � :Zp! R+ on Zp. Namely, for each equation i, bi = hs; aii+ei where each ei 2 Zp ischosen independently according to �. We denote the problem of recovering s fromsuch equations by LWEp;� (learning with error). For example, the learning fromparity problem with error " is the special case where p = 2, �(0) = 1�", and �(1) =". Under a reasonable assumption on � (namely, that �(0) > 1=p + 1=poly(n)),the maximum likelihood algorithm described above solves LWEp;� for p � poly(n)using poly(n) equations and 2O(n logn) time. Under a similar assumption, analgorithm resembling the one by Blum et al. [8] requires only 2O(n) equations/time.This is the best known algorithm for the LWE problem.Our main theorem shows that for certain choices of p and �, a solution toLWEp;� implies a quantum solution to worst-case lattice problems.Theorem 1 (Informal). Let n; p be integers and � 2 (0; 1) be some real such that�p > 2pn. If there exists a polynomial time algorithm that solves LWEp;�	� then



22 Oberwolfach Report 26/2005there exists a quantum algorithm that approximates the shortest vector problem(SVP) and the shortest independent vectors problem (SIVP) to within ~O(n=�) inthe worst case.We de�ne �	� as a distribution on Zp that has the shape of a discrete Gaussiancentered around 0 with standard deviation �p. Also, the probability of 0 (i.e., noerror) is roughly 1=(�p). A possible setting for the parameters is p = O(n2) and� = 1=(pn logn) (in fact, these are the parameters that we use in our crypto-graphic application).The SVP and SIVP are two of the main computational problems on lattices.The best known polynomial time algorithms yield only mildly subexponential ap-proximation factors. It is conjectured that there is no classical polynomial timealgorithm that approximates them to within any polynomial factor. Lattice-basedconstructions of one-way functions, such as the one by Ajtai [2], are based on thisconjecture.One might guess that the same conjecture holds in the quantum world, i.e.,there is no quantum polynomial time algorithm that approximates SVP (or SIVP)to within any polynomial factor. Thus one can interpret the main theorem assaying that based on this conjecture, the LWE problem is hard. The only evidencesupporting this conjecture is that there are no quantum algorithms for latticeproblems that are known to outperform classical algorithms, even though thisis probably one of the most important open questions in the �eld of quantumcomputing. We do not know, however, if this conjecture is true.In fact, one could also interpret our main theorem as a way to disprove thisconjecture: if one �nds an e�cient algorithm for LWE, then one also obtains aquantum algorithm for approximating worst-case lattice problems. Such a resultwould be of tremendous importance on its own. Finally, we would like to stressthat it is possible that our result can be made classical. This would make all ourresults stronger and the above discussion unnecessary.The LWE problem can be equivalently presented as the problem of decodingrandom linear codes. More speci�cally, let m = poly(n) be arbitrary and lets 2 Znp be some vector. Then, consider the following problem: given a randommatrix Q 2 Zm�np and the vector t = Qs+ e 2 Zmp where each coordinate of theerror vector e 2 Zmp is chosen independently from �	�, recover s. The Hammingweight of e is roughly m(1 � 1=(�p)) (since a value chosen from �	� is 0 withprobability roughly 1=(�p)). Hence, the Hamming distance of t from Qs is roughlym(1�1=(�p)). Moreover, it can be seen that for large enoughm, for any other words0, the Hamming distance of t from Qs0 is roughly m(1� 1=p). Hence, we obtainthat approximating the nearest codeword problem to within factors smaller than(1 � 1=p)=(1� 1=(�p)) on random codes is as hard as quantumly approximatingworst-case lattice problems. This gives a partial answer to the important openquestion of understanding the hardness of decoding from random linear codes.



Complexity Theory 23References[1] D. Aharonov and O. Regev. Lattice problems in NP intersect coNP. In Proc. 45th AnnualIEEE Symp. on Foundations of Computer Science (FOCS), pages 362{371, 2004.[2] M. Ajtai. Generating hard instances of lattice problems. In ECCCTR: Electronic Colloquiumon Computational Complexity, technical reports, 1996.[3] M. Ajtai. Representing hard lattices with O(n log n) bits. In Proc. 37th Annual ACM Symp.on Theory of Computing (STOC), 2005.[4] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-case equiva-lence. In Proc. 29th Annual ACM Symp. on Theory of Computing (STOC), pages 284{293,1997.[5] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice vectorproblem. In Proc. 33rd ACM Symp. on Theory of Computing, pages 601{610, 2001.[6] M. Alekhnovich. More on average case vs approximation complexity. In Proc. 44th AnnualIEEE Symp. on Foundations of Computer Science (FOCS), pages 298{307, 2003.[7] A. Blum, M. Furst, M. Kearns, and R. J. Lipton. Cryptographic primitives based on hardlearning problems. In Advances in cryptology|CRYPTO '93 (Santa Barbara, CA, 1993),volume 773 of Lecture Notes in Comput. Sci., pages 278{291. Springer, Berlin, 1994.[8] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and thestatistical query model. Journal of the ACM, 50(4):506{519, 2003.[9] J.-Y. Cai and A. Nerurkar. An improved worst-case to average-case connection for latticeproblems. In Proc. 38th Annual IEEE Symp. on Foundations of Computer Science (FOCS),pages 468{477, 1997.[10] U. Feige. Relations between average case complexity and approximation complexity. In Proc.34th Annual ACM Symp. on Theory of Computing (STOC), pages 534{543, 2002.[11] R. Kumar and D. Sivakumar. On polynomial approximation to the shortest lattice vectorlength. In Proc. 12th Annual ACM-SIAM Symp. on Discrete Algorithms, pages 126{127,2001.[12] D. Micciancio. Improved cryptographic hash functions with worst-case/average-case connec-tion. In Proc. 34th Annual ACM Symp. on Theory of Computing (STOC), pages 609{618,2002.[13] D. Micciancio. Almost perfect lattices, the covering radius problem, and applications toAjtai's connection factor. SIAM Journal on Computing, 2004. Accepted for publication.Available from author's web page at URL http://www.cse.ucsd.edu/users/daniele.[14] D. Micciancio and O. Regev. Worst-case to average-case reductions based on Gaussian mea-sures. In Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS),2004.[15] O. Regev. New lattice based cryptographic constructions. In Proc. 35th Annual ACM Symp.on Theory of Computing (STOC), pages 407{416, 2003.Cryptography in NC0Yuval Ishai(joint work with Benny Applebaum and Eyal Kushilevitz)The e�ciency of cryptographic primitives is of both theoretical and practical in-terest. In this work, we consider the question of minimizing the parallel time-complexity of basic cryptographic primitives such as one-way functions (OWFs)and pseudorandom generators (PRGs) [2, 12]. Taking this question to an extreme,it is natural to ask if there are instances of these primitives that can be computed



24 Oberwolfach Report 26/2005in constant parallel time. Speci�cally, the following fundamental question wasposed in several previous works (e.g., [5, 4, 3, 8, 9]):Are there one-way functions, or even pseudorandom generators, inNC0?Recall that NC0 is the class of functions that can be computed by (a uniformfamily of) constant-depth circuits with bounded fan-in. In an NC0 function eachbit of the output depends on a constant number of input bits. We refer to thisconstant as the output locality of the function and denote by NC0c the class of NC0functions with locality c.The above question is qualitatively interesting, since one might be temptedto conjecture that cryptographic hardness requires some output bits to dependon many input bits. Indeed, this view is advocated by Cryan and Miltersen [3],whereas Goldreich [4] takes an opposite view and suggests a concrete candidatefor OWF in NC0. However, despite previous e�orts, there has been no convincingtheoretical evidence supporting either a positive or a negative resolution of thisquestion.Our Results. As indicated above, the possibility of implementing most crypto-graphic primitives in NC0 was left wide open. We present a positive answer tothis basic question, showing that surprisingly many cryptographic tasks can beperformed in constant parallel time.Since the existence of cryptographic primitives implies that P 6= NP, we cannotexpect unconditional results and have to rely on some unproven assumptions.1However, we avoid relying on speci�c intractability assumptions. Instead, we as-sume the existence of cryptographic primitives in a relatively \high" complexityclass and transform them to the seemingly degenerate complexity class NC0 with-out substantial loss of their cryptographic strength. These transformations areinherently non-black-box, thus providing further evidence for the usefulness ofnon-black-box techniques in cryptography.We now give a more detailed account of our results.A general compiler. Our main result is that any OWF (resp., PRG) in arelatively high complexity class, containing uniform NC1 and even �L=poly, canbe e�ciently \compiled" into a corresponding OWF (resp., sublinear-stretch PRG)in NC04. (The class �L=poly contains the classes L=poly and NC1 and is containedin NC2. In a non-uniform setting it also contains the class NL=poly [11].) Theexistence of OWF and PRG in this class is a mild assumption, implied in particularby most number-theoretic or algebraic intractability assumptions commonly usedin cryptography. Hence, the existence of OWF and sublinear-stretch PRG inNC0 follows from a variety of standard assumptions and is not a�ected by thepotential weakness of a particular algebraic structure. A similar compiler can alsobe obtained for other cryptographic primitives including one-way permutations,encryption, signatures, commitment, and collision-resistant hashing.1This is not the case for non-cryptographic PRGs such as �-biased generators, for which wedo obtain unconditional results.



Complexity Theory 25It is important to note that the PRG produced by our compiler will generallyhave a sublinear additive stretch even if the original PRG has a large stretch.However, one cannot do much better when insisting on an NC04 PRG, as there isno PRG with superlinear stretch in NC04 [9].OWF with optimal locality. The above results leave a small gap between thepossibility of cryptography in NC04 and the known impossibility of implementingeven OWF in NC02. We partially close this gap by providing positive evidence forthe existence of OWF in NC03. In particular, we construct such OWF based onthe intractability of decoding a random linear code.Non-cryptographic generators. Our techniques can also be applied to ob-tain unconditional constructions of non-cryptographic PRGs. In particular, build-ing on an �-biased generator in NC05 constructed by Mossel et al. [9], we obtaina linear-stretch �-biased generator in NC03. This generator has optimal locality,answering an open question posed in [9]. It is also essentially optimal with respectto stretch, since locality 3 does not allow for a superlinear stretch [3]. Our tech-niques apply also to other types of non-cryptographic PRGs such as generatorsfor space-bounded computation [1, 10], yielding such generators (with sublinearstretch) in NC03.Techniques. Our key observation is that instead of computing a given \crypto-graphic" function f(x), it might su�ce to compute a function f̂(x; r) having thefollowing relation to f :1. For every �xed input x and a uniformly random choice of r, the output distri-bution f̂(x; r) forms a \randomized encoding" of f(x), from which f(x) canbe decoded. That is, if f(x) 6= f(x0) then the random variables f̂(x; r) andf̂(x0; r0), induced by a uniform choice of r; r0, should have disjoint supports.2. The distribution of this randomized encoding depends only on the encodedvalue f(x) and does not further depend on x. That is, if f(x) = f(x0) thenthe random variables f̂(x; r) and f̂(x0; r0) should be identically distributed.Furthermore, we require that the randomized encoding of an output valuey be e�ciently samplable given y. Intuitively, this means that the outputdistribution of f̂ on input x reveals no information about x except whatfollows from f(x).Each of these requirements alone can be satis�ed by a trivial function f̂ (e.g.,f̂(x; r) = x and f̂(x; r) = 0, respectively). However, the combination of the tworequirements can be viewed as a non-trivial natural relaxation of the usual notionof computing. In a sense, the function f̂ de�nes an \information-theoreticallyequivalent" representation of f . In the following, we refer to f̂ as a randomizedencoding of f .For this approach to be useful in our context, two conditions should be met.First, we show that a randomized encoding f̂ can be securely used as a substi-tute for f . For instance, if f is a OWF then so is f̂ . Second, we show that thisrelaxation is su�ciently liberal, in the sense that it allows to e�ciently encode



26 Oberwolfach Report 26/2005relatively complex functions f by functions f̂ in NC0. Our main constructions ofrandomized encodings in NC0 build on the machinery of randomizing polynomialsfrom [6, 7], where it was shown that any function f in �L=poly can be e�cientlyencoded by a function f̂ whose algebraic degree is 3. The notion of randomiz-ing polynomials was originally motivated by questions in the seemingly unrelateddomain of information-theoretic secure multiparty computation.References[1] L. Babai, N. Nisan, and M. Szegedy, Multiparty protocols and logspace-hard pseudorandomsequences, Proc. 21st STOC, 1{11, 1989.[2] M. Blum and S. Micali, How to generate cryptographically strong sequences of pseudo-random bits, SIAM J. Comput. 13:850{864, 1984.[3] M. Cryan and P. B. Miltersen, On pseudorandom generators in NC0, Proc. 26th MFCS,2001.[4] O. Goldreich, Candidate one-way functions based on expander graphs, Electronic Collo-quium on Computational Complexity (ECCC) 7(090), 2000.[5] J. H�astad, One-way permutations in NC0, Information Processing Letters 26:153{155, 1987.[6] Y. Ishai and E. Kushilevitz, Randomizing polynomials: A new representation with applica-tions to round-e�cient secure computation, Proc. 41st FOCS, 294{304, 2000.[7] Y. Ishai and E. Kushilevitz, Perfect constant-round secure computation via perfect random-izing polynomials, Proc. 29th ICALP, 244{256, 2002.[8] M. Krause and S. Lucks, On the minimal hardware complexity of pseudorandom functiongenerators (extended abstract), Proc. 18th STACS, 419{430, 2001.[9] E. Mossel, A. Shpilka, and L. Trevisan, On �-biased generators in NC0, Proc. 44th FOCS,136{145, 2003.[10] N. Nisan, Pseudorandom generators for space-bounded computation, Combinatorica,12(4):449{461, 1992.[11] A. Wigderson, NL=poly � �L=poly, Proc. 9th Structure in Complexity Theory Conference,59{62, 1994.[12] A. C. Yao, Theory and application of trapdoor functions, Proc. 23rd FOCS, 80{91, 1982.If NP languages are hard on the worst-case then it is easy to �nd theirhard instancesAmnon Ta-Shma(joint work with Dan Gutfreund, Ronen Shaltiel)It is traditional in computational complexity to measure worst-case complexities,and say that an algorithm is feasible if it can be solved in worst-case polynomialtime (i.e., in P or BPP). A general belief is that all NP-complete languages do nothave feasible algorithms that are correct on every input. Thus under a worst-casemeasure of complexity, these problems are hard. However, this does not meanthat in practice NP-complete problems are hard. It is possible that for a givenproblem, its hard instances are \rare", and in fact it is solvable e�ciently on allinstances that actually appear in practice.Trying to capture the notion of \real-life" instances, we look at input distribu-tions that can be e�ciently generated. Often, we don't have precise knowledgeof the distribution of the inputs, and even worse, this distribution may change



Complexity Theory 27in the future. A reasonable guarantee is that the inputs are drawn from somesamplable distribution. We say that D is samplable if there exists some proba-bilistic polynomial-time machine that generates the distribution. We would like todesign an algorithm that is guaranteed to succeed with good probability wheneverthe inputs are sampled from some samplable distribution. This gives rise to thefollowing de�nition, due to Kabanets [8].De�nition 1. (Pseudo classes) Let C be a class of algorithms and L a language.We say that L 2 Pseudop(n) C if there exists an algorithm B 2 C such that forevery samplable distributions D = fDngn2N we have that for large enough n,Prx2Dn [B(x) = L(x)] � p(n).When C is a class of probabilistic algorithms, there are subtleties in this de�-nition. In this abstract we ignore these subtleties and we refer the reader to thepaper [5].Our main result is a worst-case to average-case reduction for PseudoBPP.Theorem 2.1. NP 6= P ) NP 6� Pseudo5=6 P2. NP 6= RP ) NP 6� Pseudo97=100 BPPThis worst-case to average-case reduction in the algorithmic setting, stands incontrast to the failure in proving such a reduction in the cryptographic setting (forthe class Avg BPP[4, 3, 9]). To the best of our knowledge, it is the �rst worst-caseto average-case reduction for NP-complete languages under a natural notion ofaverage-case complexity. Stated in words, Theorem 2 says that if NP is hard onthe worst case then for any e�cient algorithm trying to solve some NP completelanguage it is possible to e�ciently sample instances on which the algorithm errs.Overview of the technique. We now give a high level overview of the proof ofTheorem 2. We assume that NP 6= P, our goal is to show that for any deterministicalgorithm BSAT there is a samplable distribution which generates hard instancesfor BSAT. The main step in the proof is a lemma that shows that there is adeterministic procedure R that when given as input the description of BSAT andan input n outputs at most three formulas, and for in�nitely many n, BSAT errson at least one of the formulas. In other words, the procedure R �nds instancessuch that one of them is hard for BSAT.We know that BSAT does not solve SAT, �x some length n on which BSATmakes an error. The basic idea is to consider the following statement denoted �n:\there exists an instance x of length n such that BSAT(x) 6= SAT(x)". Note thatthis statement is a true statement. If this statement was an NP statement thenwe could reduce it into an instance of SAT and feed it to BSAT. If BSAT answers'no' then �n is an instance on which BSAT errs. If BSAT answers 'yes' then insome sense BSAT \admits" that it makes an error on inputs of length n. We canhope to use BSAT to �nd a witness x to �n and such a witness x is a formula onwhich BSAT errs.Note however, that at the moment it is not necessarily the case that deciding �nis in NP. This is because it could be the case that BSAT errs only on unsatis�able



28 Oberwolfach Report 26/2005formulas. (Say for example that BSAT always answers 'yes'.) Verifying that�n holds seems to require verifying that a given formula x is unsatis�able. Weovercome this di�culty by replacing BSAT with an algorithm SSAT that has thefollowing properties:� When SSAT answers 'yes' then it also outputs a satisfying assignment, andin particular it never errs when it answers 'yes'.� If SSAT answers 'no' then BSAT answers 'no'.� If BSAT answers 'yes' on input x then either SSAT answers 'yes' (and �nds asatisfying assignment) or else SSAT outputs three formulas such that BSATerrs on at least one of them.It is easy to construct such an algorithm SSAT by using the standard self-reducibility property of SAT. More precisely, on input x, the algorithm SSATattempts to use BSAT to �nd a satisfying assignment. In every step it holds aformula x that BSAT answers 'yes' on. It then substitutes one variable of x toboth \zero" and \one" and feeds these formulas to BSAT. If BSAT answers 'yes'on one of them, then the search continues on this formula. Otherwise, at least oneof the answers of BSAT on x and the two derived formulas is clearly incorrect.Finally, SSAT accepts if it �nds a satisfying assignment. It is easy to verify thatSSAT has the properties listed above.To �nd a hard instance we change �n to be the following statement: \thereexists an instance x of length n such that SAT(x) = 1 yet SSAT(x) 6= 'yes'". Notethat now deciding �n is in NP and therefore we can reduce it to a formula. To�nd hard instances we run SSAT(�n). There are three possibilities.� SSAT �nds three instances such that on one of them BSAT errs.� SSAT answers 'no', but in this case BSAT answers 'no' and �n is a formulaon which BSAT errs.� SSAT answers 'yes' and �nds a satisfying assignment x.It is important to stress that we're not yet done in the third case. While weknow that SSAT errs on x, it's not necessarily the case that BSAT errs on x. Inthe third case, we run SSAT on x. This time we know that the third possibilitycannot occur (because we are guaranteed that SSAT does not answer 'yes' on x)and therefore we will be able to �nd a hard instance.Extending the argument to the case where BSAT is randomized. isdone as follows. We say that a randomized algorithm conforms with con�dencelevel 2=3 if for every input x, either the algorithm accepts x with probability 2=3or it rejects x with probability 2=3. When given such an algorithm BSAT we caneasily use ampli�cation and get an algorithm BSAT that conforms with con�dencelevel 1 � 2�2n. As in Adelman's argument [1], for almost all choices of randomstrings u, BSAT(�; u)'s answer \captures" whether BSAT accepts or rejects x.Thus, we can do the same argument as above replacing BSAT with BSAT(�; u) fora uniformly chosen u. We will �nd hard instances for BSAT(�; u), and with highprobability (over the choice of u) one of the instances will be a formula on whichBSAT errs with noticeable probability.



Complexity Theory 29In general, we cannot assume that BSAT conforms to some con�dence level.(For example, BSAT is allowed to 
ip a coin on some instances). For the gen-eral case, we use ampli�ed versions of BSAT and SSAT, together with a morecumbersome case-analysis to implement the idea of the deterministic case.References[1] L. Adelman. Two theorems on random polynomial time. In Proceedings of the 19th AnnualIEEE Symposium on Foundations of Computer Science, pages 75{83, 1978.[2] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the theory of average case complexity.In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing, pages 379{386, 1990.[3] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems.In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,pages 308{317, 2003.[4] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM Journalon Computing, 22:994{1005, 1993.[5] D. Gutfreund, R. Shaltiel, and A. Ta-Shma. If NP languages are hard on the worst-case thenit is easy to �nd their hard instances. Proceedings of the Twentieth Annual IEEE Conferenceon Computational Complexity, ??{??, 2005.[6] R. Impagliazzo. A personal view of average-case complexity. In Proceedings of the 10thAnnual Conference on Structure in Complexity Theory, pages 134{147, 1995.[7] R. Impagliazzo and A. Wigderson. Randomness vs. time: de-randomization under a uni-form assumption. In Proceedings of the 39th Annual IEEE Symposium on Foundations ofComputer Science, pages 734{743, 1998.[8] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. Journalof Computer and System Sciences, 63 (2):236{252, 2001.[9] E. Viola. Hardness vs. randomness within alternating time. In Proceedings of the 18th An-nual IEEE Conference on Computational Complexity, pages 53{62, 2003.3-Server Information-Theoretic Private-Information RetrievalEyal Kushilevitz(joint work with A. Beimel, Y. Ishai and J.F. Raymond)We survey the state-of-the-art in information-theoretic Private Information Re-trieval (PIR) protocols. In such protocols there are k servers S1; : : : ; Sk, eachholding an identical copy of an n-bit string x (sometimes referred to as the \data-base") and a user U that holds an index i 2 [n]. The goal of such a protocol isfor the user to learn xi while keeping i secret from each of the servers.1 There isa trivial solution for the problem: let one of the servers, e.g. S1, send the entirestring x to the user. While this indeed solves the problem, the communication1Various natural extensions and generalizations of this problem are discussed in the literaturebut are ignored in this survey. Examples of such extensions include the problem of computationalPIR (where privacy is obtained by using cryptographic assumption and under the assumptionthat the server(s) are limited to e�cient computations) [5, 12, 7], symmetric PIR (where thereis an additional requirement that the user learns no information on x other than the value of xi)[8], PIR against coalitions of t servers [6, 9, 13], etc.



30 Oberwolfach Report 26/2005complexity of this protocol (i.e., n bits of communication) is too large. In con-trast, without the privacy requirement logn + 1 bits su�ce for the user to learnxi. The main goal of PIR research is to get the communication complexity lower(this alone can be shown to require k > 1 servers).The study of PIR protocols was initiated by Chor et al [6] and since then at-tracted a signi�cant amount of attention. Speci�cally, the following results areknown: (1) If the number of servers, k, can be a function of the database size, n,then k =polylog(n) servers su�ce for obtaining polylog(n) communication [6, 2].(2) A protocol for k = 2 servers with communication complexity O(n1=3) andfor general k with communication complexity O(n1=k) [6]. (3) k-server protocolwith communication complexity O(n1=2k�1) [1, 10, 9, 3, 13].2 (4) k-server proto-col with communication complexity O(nc log log k=(k log k)) [4]. Some of these resultsalso have implications for the problem of constructing Locally Decodable Codes(LDCs) [11]. Speci�cally, the best known LDCs are constructed via (binary an-swer) PIR protocols.This survey concentrates on the case of k = 3 servers.3 We present threeprotocols:� A protocol of complexity O(n1=2). This protocol (as well as the followingprotocols) uses as basic ingredients arithmetization and replication secret-sharing. This is a binary-answer PIR protocol (of the type needed to con-struct LDCs) and is still the best known protocol of this type for k = 3.� A protocol of complexity O(n1=5). This protocol balances the communica-tion between the user and servers by making a simple observation aboutthe structure of the (low degree) polynomials that are coming out of thearithmetization and the replication secret-sharing scheme.� A protocol of complexity O(n4=21). This protocol, on top of the above in-gredients, uses recursion in the context of PIR, which is the main idea in[4]. References[1] A. Ambainis. Upper bound on the communication complexity of private information re-trieval. In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proc. of the 24thInternational Colloquium on Automata, Languages and Programming, volume 1256 of Lec-ture Notes in Computer Science, pages 401{407. Springer-Verlag, 1997.[2] D. Beaver and J. Feigenbaum. Hiding instances in multioracle queries. In C. Cho�rut andT. Lengauer, editors, STACS '90, 7th Symp. on Theoretical Aspects of Computer Science,volume 415 of Lecture Notes in Computer Science, pages 37{48. Springer-Verlag, 1990.[3] A. Beimel and Y. Ishai. Information-theoretic private information retrieval: A uni�ed con-struction. In P. G. Spirakis and J. van Leeuven, editors, Proc. of the 28th InternationalColloquium on Automata, Languages and Programming, volume 2076 of Lecture Notes inComputer Science, pages 912{926. Springer, 2001.2Each of the papers in this sequence of works achieves some improvements over the previousones in various aspects; e.g., in the dependency of the complexity in k.3This number of servers is the smallest k where all the currently known techniques alreadya�ect the complexity.
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32 Oberwolfach Report 26/2005or sinks. Also included is the problem of deciding the minimal number of nodesthat need to be removed from a degree three planar graph to make it bipartite,and the problem of counting the parity of approximate solutions of planar linearequations of even length over GF[2].A more radical proposal is that of revisiting the currently accepted conjecturesof computer science, such as that P 6= NP, and seeing whether holographic reduc-tions o�er any insights towards either positive or negative resolutions. The talkreviews complexity theory in this light. We show that there exist in�nite familiesof polynomials with integer coe�cients such that the existence of a solution overthe complex numbers for any one member would imply the existence of �xed sizealgebraic gadgets for certain natural �xed size combinatorial constraints, the exis-tence of which in turn would imply that there are polynomial time algorithms for#P. This relationship may be viewed both as an approach to �nding surprisingnew algorithms, and also as a restricted model of computation for which lowerbound proofs might be sought. References[1] S. A. Cook 1971. The complexity of theorem proving procedures. Proc. 3rd ACM Symp. onTheory of Computing : 151{158.[2] R. M. Karp 1972. Reducibility among combinatorial problems. In Complexity of ComputerComputations (R. E. Miller and J. W. Thatcher, eds.), Plenum Press, New York, pp. 85{103[3] L. G. Valiant 1979b. The complexity of enumeration and reliability problems, SIAM J. onComput. 8, 3: 410{421.[4] V. Strassen 1969. Gaussian elimination is not optimal, Numer. Math. 14(3): 354{356.[5] L.G. Valiant 2004. Holographic algorithms, Proc. 45th Annual IEEE Symposium on Foun-dations of Computer Science. IEEE Press, 306-315.[6] M.R. Jerrum 1987. Two-dimensional monomer-dimer systems are computationally in-tractable, J. Statistical Physics 48, 1/2: 121{134. (Also 1990, 59,3/4: 1087{1088.)Are Quantum States Exponentially Long Vectors?Scott AaronsonI'm grateful to Oded Goldreich for inviting me to the 2005 Oberwolfach ComplexityTheory meeting. In this extended abstract, which is based on a talk that I gavethere, I demonstrate that gratitude by explaining why Goldreich's views aboutquantum computing are wrong.Why should anyone care? Because in my opinion, Goldreich, along with LeonidLevin [6] and other \extreme" quantum computing skeptics, deserves credit forfocusing attention on the key issues, the ones that ought to motivate quantumcomputing research in the �rst place. Personally, I have never lain awake at nightyearning for the factors of a 1024-bit RSA modulus, let alone the class group of anumber �eld. The real reason to study quantum computing is not to learn otherpeople's secrets, but to unravel the ultimate Secret of Secrets: is our universe apolynomial or an exponential place?



Complexity Theory 33Last year Goldreich [5] came down �rmly on the \polynomial" side, in a shortessay expressing his belief that quantum computing is impossible not only in prac-tice but also in principle:As far as I am concern[ed], the QCmodel consists of exponentially-long vectors (possible con�gurations) and some \uniform" (or\simple") operations (computation steps) on such vectors : : : Thekey point is that the associated complexity measure postulatesthat each such operation can be e�ected at unit cost (or unittime). My main concern is with this postulate. My own in-tuition is that the cost of such an operation or of maintainingsuch vectors should be linearly related to the amount of \non-degeneracy" of these vectors, where the \non-degeneracy" mayvary from a constant to linear in the length of the vector (de-pending on the vector). Needless to say, I am not suggesting aconcrete de�nition of \non-degeneracy," I am merely conjectur-ing that such exists and that it capture[s] the inherent cost of thecomputation.My response consists of two theorem-encrusted prongs:1 �rst, that you'd havetrouble explaining even current experiments, if you didn't think that quantumstates really were exponentially long vectors; and second, that for most complexity-theoretic purposes, the exponentiality of quantum states is not that much \worse"than the exponentiality of classical probability distributions, which of course no-body complains about. Due to the length limitation, in this abstract I'll discussonly the �rst prong, which is based on my paper \Multilinear Formulas and Skep-ticism of Quantum Computing" [1], and not the second prong, which is based onmy paper \Limitations of Quantum Advice and One-Way Communication" [2].Prong 1: Quantum States Are ExponentialFor me, the main weakness in the arguments of quantum computing skepticshas always been their failure to suggest an answer to the following question: whatcriterion separates the quantum states we're sure we can prepare, from the statesthat arise in Shor's factoring algorithm? I call such a criterion a \Sure/Shorseparator." To be clear, I'm not asking for a red line partitioning Hilbert spaceinto two regions, \accessible" and \inaccessible." But a skeptic could at leastpropose a complexity measure for quantum states, and then declare that a stateof n qubits is \e�ciently accessible" only if its complexity is upper-bounded by asmall polynomial in n.In his essay [5], Goldreich agrees that such a Sure/Shor separator would be de-sirable, but avers that it's not his job to propose one. Motivated by the \hands-o�"approach of Goldreich and other skeptics, in [1] I tried to carry out the skeptics'research program for them, by proposing and analyzing possible Sure/Shor sep-arators. The goal was to illustrate what a scienti�c argument against quantumcomputing might look like.1Sanjeev Arora asked why I don't have three prongs, thereby forming a  -shaped pitchfork.



34 Oberwolfach Report 26/2005For starters, such an argument would take care to assert the impossibility only offuture experiments, not experiments that have already been done. So for example,it would not dismiss exponentially-small amplitudes as physically meaningless,since one can easily produce such amplitudes by polarizing n photons each at45�. Nor would it appeal to the \absurd" number of particles that a quantumcomputer would need to maintain coherently|since, to give one example, theZeilinger group's C60 experiment [3] has already demonstrated \Schr�odinger catstates," of the form j0i
n+j1i
np2 , for n large enough to be interesting for quantumcomputation.Of course, the real problem is that, once we accept j i and j'i into our set ofpossible states, consistency almost forces us to accept � j i+ � j'i and j i 
 j'ias well. So is there any defensible place to draw a line? This conundrum iswhat led me to investigate \tree states": the class of n-qubit pure states that areexpressible by polynomial-size trees of linear combinations and tensor products.As an example, the state � j0i+j1ip2 �
 � � � 
� j0i+j1ip2 � is a tree state; and indeed, sois any state that can be written succinctly in the Dirac notation, using only thesymbols j0i ; j1i ;+;
; (; ) together with constants (noP's allowed). In evaluatingtree states as a possible Sure/Shor separator, we need to address two questions:�rst, should all quantum states that arise in present-day experiments be seen astree states? And second, would a quantum computer allow the creation of non-treestates?My results imply a positive answer to the second question: not only coulda quantum computer e�ciently generate non-tree states, but such states arisenaturally in several quantum algorithms.2 In particular, let C be a random linearcode over G F 2. Then with overwhelming probability, a uniform superpositionover the codewords of C cannot be represented by any tree of size n" log n, for some�xed " > 0. Indeed, n
(logn) symbols would be needed even to approximate sucha state well in L2-distance, and even if we replaced the random linear code by acertain explicit code (obtained by concatenating the Reed-Solomon and Hadamardcodes). I also showed an n
(logn) lower bound for the states arising in Shor'salgorithm, modulo a number-theoretic conjecture: basically, that the multiples ofa large prime number, when written in binary, constitute a decent erasure code.All of these results rely on a spectacular recent advance in classical theoreticalcomputer science: Raz's superpolynomial lower bounds on multilinear formula size[7] (which were proven about a month before I needed them for my application!).Incidentally, in all of the cases discussed above, I conjecture that the actual treesizes are exponential in n; currently, though, Raz's method can only prove lowerbounds of the form n
(logn).32On the other hand, I do not know whether a quantum computer restricted to tree statesalways has an e�cient classical simulation. All I can show is that such a computer would besimulable in �p3 \ �p3 , the third level of the polynomial-time hierarchy.3I did manage to prove an exponential lower bound, provided we restrict ourselves to linearcombinations � j i + � j'i that are \manifestly orthogonal"|which means that for all compu-tational basis states jxi. either h jxi = 0 or h'jxi = 0.



Complexity Theory 35Perhaps more relevant to physics, I also conjecture that 2-D and 3-D \clusterstates" (informally, 2-D and 3-D lattices of qubits with pairwise nearest-neighborinteractions) have exponential tree size.4 If true, this conjecture suggests thatstates with enormous tree sizes might have already been observed in condensed-matter experiments|for example, those of Ghosh et al. [4] on long-range en-tanglement in magnetic salts. In my personal fantasy land, once the evidencecharacterizing the ground states of these condensed-matter systems became un-deniable, the skeptics would hit back with a new Sure/Shor separator. Thenthe experimentalists would try to refute that separator, and so on. As a result,what started out as a philosophical debate would gradually evolve into a scienti�cone|on which progress not only can be made, but is.References[1] S. Aaronson. Multilinear formulas and skepticism of quantum computing. In Proc. ACMSTOC, pages 118{127, 2004. quant-ph/0311039.[2] S. Aaronson. Limitations of quantum advice and one-way communication. Theory of Com-puting, 1:1{28, 2005. quant-ph/0402095.[3] M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw, and A. Zeilinger. Wave-particle duality of C60 molecules. Nature, 401:680{682, 1999.[4] S. Ghosh, T. F. Rosenbaum, G. Aeppli, and S. N. Coppersmith. Entangled quantum stateof magnetic dipoles. Nature, 425:48{51, 2003. cond-mat/0402456.[5] O. Goldreich. On quantum computing. www.wisdom.weizmann.ac.il/~oded/on-qc.html,2004.[6] L. A. Levin. Polynomial time and extravagant models, in The tale of one-way functions.Problems of Information Transmission, 39(1):92{103, 2003. cs.CR/0012023.[7] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial size.In Proc. ACM STOC, pages 633{641, 2004. ECCC TR03-067.Short PCPsEli Ben-Sasson(joint work with Oded Goldreich, Prahladh Harsha, Madhu Sudan, Salil Vadhan)1. Efficient Verification of ProofsProbabilistically Checkable Proof (PCP) systems [10, 2, 1] (also known as Holo-graphic Proofs [3]) are proof systems that allow e�cient probabilistic veri�cationof proofs. Formally, a PCP system is given by a veri�er, called a PCP veri�er,that probabilistically queries a purported proof of a claimed theorem and acceptsvalid proofs of true theorems with probability one, while accepting any claimedproof of false assertions with low probability, say at most 1=2. In early works onthis subject [3, 10, 2, 1], the notion of e�ciency took on two di�erent meanings.4By contrast, I can show that 1-D cluster states have tree size O �n4�.



36 Oberwolfach Report 26/2005� In the work of Babai et al. [3], which refer to inputs in error-correctingform, e�cient veri�cation meant the running time of the veri�er is small(poly-logarithmic) and the length of the "Holographic" proof is not muchlarger than that of its classical analog (in [3], a classical proof of length n isconverted to a Holographic proof of length n1+�, for arbitrarily small � > 0).However, the query complexity of the veri�er (i.e. the number of bits it readsfrom the proof) was only bounded by its running time.� The work of Feige et al. [10] showed that obtaining a veri�er with small querycomplexity yields hardness of approximation results. The PCP Theorem [2, 1]indeed showed the existence of veri�ers with constant query complexity forany language in NP. Such query e�cient proofs translate to strong non-approximability results for many combinatorial optimization problems (cf. [5,4, 12, 11, 14]). However, in [10, 2, 1] and subsequent works, the running timeof the PCP-veri�er as well as the length of the "probabilistically checkable"proof were allowed to be arbitrary polynomials.In this talk we describe recent research that shows one can obtain e�cientveri�cation under both interpretations. In other words, one gets PCP veri�ers(say, for the NP-complete language 3SAT) that run in poly-logarithmic time andmake a constant number of queries to a proof of sub-polynomial length. Noticewe improve upon [3] in terms of proof-length, while matching the e�ciency of [3]in running time and the e�ciency of [1] in query complexity.2. ResultsWe described the following two results from [8] and [7] respectively.1. Constructions of probabilistically checkable proofs (PCPs) of length n�poly(logn)(to prove satis�ability of circuits of size n) that can veri�ed by query-ing poly(logn) bits of the proof. (Notice this result does not claim poly-logarithmic running time for the veri�er). We also give constructions oflocally testable codes (LTCs) with similar parameters.We pointed out that Dinur [9] recently showed (among other things) thatthe query complexity can be reduced to a constant while retaining the prooflength at n � poly(logn). This result is obtained by applying her novel proofof the PCP Theorem (also presented in this workshop) to our result.2. Every language in NP has a probabilistically checkable proof of proximity(i.e., proofs asserting that an instance is \close" to a member of the lan-guage), where the veri�er's running time is poly-logarithmic in the inputsize and the length of the probabilistically checkable proof is only poly-logarithmically larger that the length of the classical proof. (Such a veri�ercan only query poly-logarithmically many bits of the input instance and theproof. Thus it needs oracle access to the input as well as the proof, andcannot guarantee that the input is in the language | only that it is closeto some string in the language.) The time complexity of the veri�er and thesize of the proof were the original emphases in the de�nition of holographic



Complexity Theory 37proofs, due to Babai et al. (STOC '91), and our work is the �rst to returnto these emphases since their work.3. TechniquesWe focused on (sketching) the proof of the �rst result mentioned above. Previ-ous constructions of short PCPs (from [3] to [6]) relied extensively on propertiesof low degree multi-variate polynomials. In contrast, our constructions rely onnew problems and techniques revolving around the properties of codes based onhigh degree polynomials in one variable (also known as Reed-Solomon codes). Weshow how to convert the problem of verifying the satisfaction of a circuit by agiven assignment to the task of verifying that a given function is close to being aReed-Solomon codeword, i.e., a univariate polynomial of speci�ed degree. This re-duction is simpler than the corresponding steps in previous reductions, and givesa new alternative to using the popular \sum-check protocol". We then give anew PCP for the special task of proving that a function is close to being a Reed-Solomon codeword. This step of the construction is by a self-contained recursion,and the only ingredient needed in the analysis is the bi-variate low-degree test ofPolischuk and Spielman [13].Note that our constructions yield LTCs �rst, which are then converted to PCPs.In contrast, most recent constructions go in the opposite (and less natural) direc-tion of getting LTCs from PCPs. References[1] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof veri�cation and the hardnessof approximation problems, Journal of the ACM 45, 3 (May 1998), 501{555.[2] S. Arora, S. Safra, Probabilistic checking of proofs: A new characterization of NP, Journalof the ACM 45, 1 (Jan. 1998), 70{122.[3] L. Babai, L. Fortnow, L. A. Levin, M. Szegedy, Checking computations in polylogarithmictime. Proc. 23rd ACM Symp. on Theory of Computing (1991), 21{31.[4] M. Bellare, O. Goldreich, M. Sudan, Free bits, PCPs, and nonapproximability|towardstight results. SIAM Journal of Computing 27, (1998), 804{915.[5] M. Bellare, S. Goldwasser, C. Lund, A. Russell E�cient probabilistically checkable proofsand applications to approximation, Proc. 25th ACM Symp. on Theory of Computing (1993),294{304.[6] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, S. Vadhan. Robust PCPs of Proximity,Shorter PCPs and Applications to Coding. Proc. 36th ACM Symp. on Theory of Computing,(2004), 1{10.[7] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, S. Vadhan. Short PCPs veri�able inpolylogarithmic time, Proc. 20th IEEE Conference on Computational Complexity, (2005),120{134.[8] E. Ben-Sasson, M. Sudan. Simple PCPs with Poly-log Rate and Query Complexity, Proc.37th ACM Symposium on Theory of Computing (2005), 266{275.[9] I. Dinur, The PCP theorem by gap ampli�cation. Preliminary version athttp://eccc.uni-trier.de/eccc-reports/2005/TR05-046/index.html[10] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, M. Szegedy. Interactive proofs and the hardnessof approximating cliques. Journal of the ACM 43, 2 (Mar. 1996), 268{292.[11] V. Guruswami, D. Lewin, M. Sudan, L. Trevisan, A tight characterization of NP with 3-query PCPs. Proc. 39th IEEE Symp. on Foundations of Comp. Science (1998), 18{27.



38 Oberwolfach Report 26/2005[12] J. H�astad, Some optimal inapproximability results. Journal of the ACM 48, (2001), 798{859.[13] A. Polishchuk, D. A. Spielman, Nearly-linear size holographic proofs. Proc. 26th ACM Symp.on Theory of Computing (1994), 194{203.[14] A. Samorodnitsky, L. Trevisan, A PCP characterization of NP with optimal amortized querycomplexity. Proc. 32nd ACM Symp. on Theory of Computing (2000), 191{199.A Group-Theoretic Approach to Fast Matrix MultiplicationChris Umans(joint work with Henry Cohn, Robert Kleinberg, Bal�azs Szegedy)The exponent of matrix multiplication is the smallest real number ! such thatfor all � > 0, O(n!+�) arithmetic operations su�ce to multiply two n�n matrices.The standard algorithm for matrix multiplication shows that ! � 3. Strassen'sremarkable result [5] shows that ! � 2:81 : : : , and a sequence of further worksculminating in the work of Coppersmith and Winograd [4] have improved thisupper bound to ! � 2:376 : : : (see [1] for a full history). Most researchers believethat in fact ! = 2, but there have been no further improvements in the knownupper bounds for the past �fteen years.In this talk we describe ongoing work on a new \group-theoretic" approachto matrix multiplication, recently proposed in [2]. The basic idea is to reducematrix multiplication to group algebra multiplication with respect to a suitablenon-abelian group. In the �rst part of the talk we describe this reduction togetherwith a property of groups that is su�cient to admit such a reduction. We sketcha proof that an in�nite family of groups admits such a reduction with parametersthat are necessary (but not yet su�cient) to achieve ! = 2. In the second part ofthe talk we describe further demands on the representation theory of the groupsused in the reduction in order for the overall approach to yield non-trivial boundson !. We end by describing a speci�c group that proves ! < 2:908 : : : in thisframework, and we speculate that generalizing this example may provide a routeto proving ! = 2.Recall that by employing Strassen's framework for recursive matrix multiplica-tion, any method for multiplying k � k matrices A and B that operates by (1)forming linear combinations of the entries of A and linear combinations of the en-tries of B, (2) multiplying m pairs of these sums, and (3) expressing the entries ofthe result matrix C = AB as linear combinations of the m products, immediatelyyields ! � logkm (in Strassen's original algorithm k = 2 and m = 7).Our method follows exactly this strategy. To describe it we need to recall thede�nition of the group algebra C [G]; this is the set of all formal linear combinationsof elements of groupG, with addition and multiplication de�ned naturally on theseformal sums (using the group multiplication law to multiply group elements). Weoften think of elements of C [G] as vectors of length G. The Discrete FourierTransform (DFT) is a linear transform that turns group algebra multiplicationinto block-diagonal matrix multiplication, where the sizes of the blocks are the



Complexity Theory 39character degrees of G. Formally the DFT realizes the isomorphismC [G] ' C d1�d1 � � � C d`�d` ;where the di are the character degrees of G (and then, necessarily,Pi d2i = jGj).Multiplication of k�k matrices \embeds" into C [G] multiplication if there existthree subgroups H1; H2; H3 � G that satisfy the triple product property: for allh1 2 H1; h2 2 H2; h3 2 H3 we haveh1h2h3 = 1, h1 = h2 = h3 = 1:It can be veri�ed that if we index the rows and columns of matrix A by ele-ments of H1 and H2, and de�ne �A = Ph12H1;h22H2 Ah1;h2(h1h�12 ); and if weindex the rows and columns of matrix B by elements of H2 and H3, and de�ne�B =Ph22H2;h32H3 Ah2;h3(h2h�13 ); then the coe�cient on (h1h�13 ) in the product�A �B is exactly the (h1; h3) entry in the result matrix C = AB. Moreover, if we\multiply in the Fourier domain," i.e., we compute the DFT of �A, the DFT of�B, then perform the block-diagonal matrix multiplication, and �nally computethe inverse DFT of the result, then we conform to the framework required forrecursive matrix multiplication. The number m of multiplications required is thenumber of multiplications required for the block-diagonal matrix multiplication,which is roughlyP d!i . Altogether we obtain the following theorem:Theorem 1 (Cohn and Umans [2]). Suppose that subgroups H1; H2; H3 � G, eachof size k, satisfy the triple product property, and let d1; d2; : : : ; d` be the characterdegrees of G. Then k! �Pi d!i .Notice that Pi d2i = jGj is a lower bound on the right hand side of the aboveinequality, and thus to have a hope of proving ! = 2, we need a family of groupsG of size k2+o(1), each containing three subgroups of size k satisfying the tripleproduct property. The following theorem shows that this is in fact possible:Theorem 2 (Cohn and Umans [2]). Let Gn be the symmetric group acting onn(n+1)=2 points arranged in a triangular array with sidelength n. Let H1; H2; H3be the three subgroups of Gn that preserve (set-wise) the rows of points parallelto each of the three sides, respectively. Then H1; H2; H3 satisfy the triple productproperty in Gn, and jH1j = jH2j = jH3j = jGnj1=2�o(1).Unfortunately when plugged into Theorem 1 this family of groups does noteven yield ! < 3, because the character degrees di are too large. The challengethus becomes to �nd a family of groups together with subgroups satisfying thetriple product property and for which the character degrees are small enough forTheorem 1 to yield nontrivial bounds on !.How small is \small enough"? One corollary of Theorem 1 is that if for somefamily of groups admitting k � k matrix multiplication with jGj = k2+o(1), wehave the maximum character degree dmax � jGj
 for some constant 
 < 1=2, then! = 2. Since a priori dmax < jGj1=2 for any group G, this seems like it may bewithin reach. A second corollary of Theorem 1 is that this method proves ! < 3



40 Oberwolfach Report 26/2005i� we can �nd a group G admitting k � k matrix multiplication via H1; H2; H3,and for which jH1jjH2jjH3j >Xi d3i :In fact we can even relax the requirement that H1; H2; H3 are subgroups, andinstead allow subsets of G. If Q(Hi) denotes the set of (right-) quotients of pairsof elements from Hi, then the condition in the triple product property becomesq1q2q3 = 1, q1 = q2 = q3, where qi 2 Q(Hi).In [3] we construct a group and three subsets that \beat the sum of the cubes" ofthe character degrees, and thus prove a non-trivial bound on !. The constructionis as follows. Let A be any abelian group of size m, and consider the semidirectproduct of C2 = f1; zg (the cyclic group of order 2) with A6, where z acts byinterchanging the �rst three and last three coordinates; i.e., if (a; b; c; d; e; f) 2 A6,then z(a; b; c; d; e; f)z = (d; e; f; a; b; c). The three subsets we consider are:F = f(a; 0; 0; 0; a0; 0)zi : a; a0 2 A; a 6= 0; i 2 f0; 1ggG = f(0; b; 0; 0; 0; b0)zj : b; b0 2 A; b 6= 0; j 2 f0; 1ggH = f(0; 0; c; c0; 0; 0)zk : c; c0 2 A; c 6= 0; k 2 f0; 1ggIn [3] we prove that these subsets satisfy the triple product property. The size ofeach of the subsets is 2m(m � 1), so jF jjGjjH j = 8m3(m � 1)3. It is easy to seethat the containing group has dmax = 2, and thusXi d3i � dmaxXi d2i = dmax(2m6) = 4m6;which for su�ciently large m is exceeded by jF jjGjjH j. As argued above sucha construction proves nontrivial bounds on ! and in fact taking m = 17 yields! < 2:908 : : : .This group can also be described as the wreath product of the symmetric groupof order 2 with the abelian group A3. By generalizing this construction in di�erentways, we can prove better bounds (! < 2:48 : : : and ! < 2:41 : : : ) using wreathproducts of the full symmetric group with abelian groups. The di�cult part insuch constructions seems to be apportioning the abelian part among the threesubsets in a way that ensures that the triple product property holds. In [3],we make two conjectures regarding this apportionment that would improve ourexisting constructions to the point that they would yield ! = 2.References[1] P. B�urgisser, M. Clausen, and M. A. Shokrollahi. Algebraic Complexity Theory, volume 315of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1997.[2] H. Cohn and C. Umans. A Group-theoretic Approach to Fast Matrix Multiplication. Pro-ceedings of the 44th Annual Symposium on Foundations of Computer Science, 11{14 October2003, Cambridge, MA, IEEE Computer Society, pp. 438{449, arXiv:math.GR/0307321.[3] H. Cohn, R. Kleinberg, B. Szegedy, and C. Umans. Group-theoretic Algorithms for MatrixMultiplication. To appear in FOCS 2005.



Complexity Theory 41[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J.Symbolic Computation, 9:251{280, 1990.[5] V. Strassen. Gaussian elimination is not optimal. Numerische Mathematik, 13:354{356,1969. On Basing One-Way Functions on NP-HardnessAdi Akavia(joint work with Oded Goldreich, Sha� Goldwasser, Dana Moshkovitz)One-way functions are functions that are easy to compute but hard to invert,where the hardness condition refers to the average-case complexity of the invertingtask. The existence of one-way functions is the cornerstone of modern cryptogra-phy: almost all cryptographic primitives imply the existence of one-way functions,and most of them can be constructed based either on the existence of one-wayfunctions or on related (but seemingly stronger) versions of this assumption.As noted above, the hardness condition of one-way functions is an average-case complexity condition. Clearly, this average-case hardness condition implies aworst-case hardness condition; that is, the existence of one-way functions impliesthat NP is not contained in BPP. A puzzling question of fundamental nature iswhether or not the necessary worst-case condition is a su�cient one; that is, canone base the existence of one-way functions on the assumption that NP is notcontained in BPP.More than two decades ago, Brassard [2] observed that the inverting task as-sociated with a one-way permutation (or, more generally, a 1-1 one-way function)cannot be NP-hard, unless NP = coNP . The question was further addressed(indirectly), in the works of Feigenbaum and Fortnow [3] and Bogdanov and Tre-visan [1], which focused on the study of worst-case to average-case reductionsamong decision problems.Our Main Results. In this work we re-visit the aforementioned question, butdo so explicitly. We study possible reductions from a worst-case decision prob-lem to the task of average-case inverting a polynomial-time computable function(i.e., reductions that are supposed to establish that the latter function is one-waybased on a worst-case assumption regarding the decision problem). Speci�cally,we consider (randomized) reductions of NP to the task of average-case invertinga polynomial-time computable function f , and capitalize on the additional \com-putational structure" of the search problem associated with the inverting task.This allows us to strengthen previously known negative results, and obtain thefollowing two main results:1. If given y one can e�ciently compute jf�1(y)j then the existence of a (ran-domized) reduction of NP to the task of average-case inverting f impliesthat NP � coAM.The result extends to functions for which the preimage size is e�cientlyveri�able via an AM protocol. For example, this includes regular functions



42 Oberwolfach Report 26/2005with e�ciently recognizable range. Recall that AM is the class of sets havingtwo-round interactive proof systems, and that it is widely believed that coNPis not contained in AM (equiv., NP is not contained in coAM). Thus, itfollows that such reductions cannot exist (unless NP � coAM).We stress that this result holds for any reduction, including adaptive ones.We note that the previously known negative results regarding worst-case toaverage-case reductions were essentially con�ned to non-adaptive reductions(cf. [3, 1], where [3] also handles restricted levels of adaptivity).2. For any (polynomial-time computable) function f , the existence of a (ran-domized) non-adaptive reduction of NP to the task of average-case invertingf implies that NP � coAM.This result improves over the previous negative results of [3, 1] that placedNP in non-uniform coAM (instead of in uniform coAM).These negative results can be interpreted in several ways. The straightforwardview is that they narrow down the means by which one can base one-way func-tions on NP-hardness. Namely, under the assumption that NP is not containedin coAM, these results show that (1) non-adaptive randomized reductions arenot suitable for basing one-way functions on NP-hardness, and (2) that one-wayfunctions based on NP-hardness can not have e�cient algorithms for computing(or, more generally, verifying) the preimage size. Another interpretation is thatthese negative results are an indication that (worst-case) complexity assumptionsregarding NP as a whole (i.e., NP 6� BPP) are not su�cient to base one-wayfunctions on. But this does not rule out the possibility of basing one-way func-tions on the worst-case hardness of a subclass of NP (e.g., the conjecture thatNP \ coNP 6� BPP). Yet another interpretation is that these negative resultssuggest that we should turn to \non black-box" reductions for basing one-wayfunctions on NP-hardness.Relation to Feigenbaum-Fortnow and Bogdanov-Trevisan. Our work buildson the previous works of Feigenbaum and Fortnow [3] and Bogdanov and Tre-visan [1], while capitalizing on the additional \computational structure" of thesearch problem associated with the task of inverting polynomial-time computablefunctions. We believe that our results illustrate the gain of directly studying thecontext of one-way functions rather than inferring results for it from a the generalstudy of worst-case to average-case reductions.Although a main motivation of [1] is the question of basing one-way functionson worst-case NP-hardness, its focus (like that of [3]) is on decision problems. Us-ing known reductions between search and decision problems, Bogdanov and Tre-visan [1] also derive implications on the (im)possibility of basing one-way functionson NP-hardness. In particular, they conclude that if there exists an NP-completeset for which deciding any instance is non-adaptively reducible to inverting a one-way function (or, more generally, to a search problem with respect to a sampleabledistribution), then coNP � AMpoly.



Complexity Theory 43The works [1, 3] fall short of a general impossibility result in two ways. First,they only consider non-adaptive reductions, whereas Ajtai's celebrated worst-case to average-case reductions of lattice problems are adaptive. Second, [1, 3]reach conclusions involving a non-uniform complexity class (i.e., AMpoly). Non-uniformity seems an artifact of their techniques, and one may hope to concludethat coNP � AM rather than coNP � AMpoly. (One consequence of the uni-form conclusion is that it implies that the polynomial time hierarchy collapses tothe second level, whereas the non-uniform conclusion only implies a collapse tothe third level.)The Bene�ts of Direct Study of One-Way Functions. Working directlywith one-way functions allows us to remove both the aforementioned shortcom-ings. That is, we get rid of the non-uniformity altogether, and obtain a meaningfulnegative result for the case of general (adaptive) reductions. Speci�cally, work-ing directly with one-way functions allows us to consider natural special cases ofpotential one-way functions, which we treat for general (i.e., possibly adaptive)reductions. One special case of potential one-way functions is that of regular one-way functions. Loosely speaking, in such a function f , each image of f has anumber of preimages that is (easily) determined by the length of the image. Weprove that any reduction (which may be fully adaptive) of NP to inverting a regu-lar polynomial-time computable function that has an e�ciently recognizable range(possibly via an AM-protocol) implies coNP � AM. More generally, this holdsfor any function f for which there is an AM-protocol for determining the numberof inverses jf�1(y)j of each given y. We call such functions size-veri�able, and notethat they contain all functions for which (given y) one can e�ciently computejf�1(y)j.As stated above, we believe that the study of the possibility of basing one-wayfunctions on worst-case NP-hardness is the most important motivation for thestudy of worst-case to average-case reductions for NP . In such a case, one shouldconsider the possible gain from studying the former question directly, rather thanas a special case of a more general study. We believe that the results presented inthis work indicate such gains. Firstly, working directly in the context of one-wayfunction enabled us to get rid of the non-uniformity in all our results (by replacingnon-uniform advice that provide needed statistics with AM-protocols designed toprovide these statistics). Secondly, the context of one-way function enabled usto consider meaningful types of one-way functions and to establish even strongerresults for them. We hope that this framework may lead to resolving the generalquestion of the possibility of basing any one-way function on worst-case NP-hardness via any reduction. In light of the results of this paper, we are temptedto conjecture an impossibility result (pending, as usual, on coNP 6� AM).References[1] A. Bogdanov and L. Trevisan. On worst-case to average-case reductions for NP problems.In Proc. 44th IEEE Symposium on Foundations of Computer Science, pages 308{317, 2003.



44 Oberwolfach Report 26/2005[2] G. Brassard. Relativized Cryptography. In 20th IEEE Symposium on Foundations of Com-puter Science, pages 383{391, 1979.[3] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM Journal onComputing, 22:994{1005, 1993. Extended Abstract appeared in Proc. of IEEE Structures'91.Hardness of Undirected Routing ProblemsJulia ChuzhoyIn this talk we present several recent hardness of approximation results forundirected routing problems, with a focus on the Edge Disjoint Paths and relatedproblems.In general, the input to a routing problem consists of a graph G (directed orundirected), and a number of source-sink pairs (s1; t1); : : : ; (sk; tk) that need to beconnected. In the Edge Disjoint Paths problem (EDP), the objective is to connectas many pairs as possible via edge-disjoint paths.The best approximation algorithm for EDP in directed graphs has a ratioof O(min(n2=3;pm)) [12, 5, 13] where n and m denote the number of verticesand edges respectively in the input graph. This upper bound is matched by an
(m1=2��)-hardness due to Guruswami et al. [10]. Therefore, the directed versionof the problem is quite well-understood. However, this is not the case with undi-rected graphs, for which the problem is still widely open. The best current upperbound is O(pn) [6], while on the negative side, until recently, only APX-hardnesshas been known.A related routing problem is Congestion Minimization. The input to this prob-lem is exactly the same as in the EDP problem, namely graph G and a collection ofsource-sink pairs. The goal is to connect each source to its sink by a single path,such that the edge congestion is minimized, where edge congestion is the maximumnumber of paths sharing an edge. For this problem, Raghavan and Thompson'srandomized rounding technique [14] gives an O( lognlog logn )-approximation algorithmfor both directed and undirected versions. When the input graph is directed,an 
(log logn)-hardness was proved by Chuzhoy and Naor [8]. However, untilrecently no non-trivial lower bounds were known for the undirected version.The last few years have seen a signi�cant progress in understanding the hard-ness of undirected routing problems. In particular, Andrews [1] introduced anew approach for proving hardness of undirected routing problems, and showed
(log1=2��)-hardness of the Buy-at-Bulk problem. Following [1], Andrews andZhang [3] proved 
(log log1�� n) hardness of undirected Congestion Minimization.Andrews and Zhang [2] also showed that undirected EDP is 
(log1=3�� n)-hardto approximate. This result was recently improved to 
(log1=2��)-hardness byChuzhoy and Khanna [7].We demonstrate this new approach on the hardness of Edge Disjoint Pathsproblem. Consider the following reduction from the Maximum Independent Setproblem (MIS) to EDP: for each vertex in the MIS instance, we create a source-sink pair and a canonical path that connects this pair. The canonical paths are



Complexity Theory 45de�ned in such a way that whenever there is an edge between vertices u and vin the MIS instance, the two corresponding canonical paths share an edge. It iseasy to see that if the solution to the resulting EDP instance consists of canonicalpaths only, then it can be translated into a solution of the MIS instance of thesame cost. The opposite is also true: any solution to the MIS instance naturallyde�nes a solution to the EDP instance. The problem is that in general, solutionsof the EDP instance do not necessarily follow the canonical paths, and if such asolution has many non-canonical paths, then it cannot be translated into a largecardinality independent set. The main idea is to convert the above EDP instanceinto a random graph with \almost" high girth. Roughly speaking, in order tocreate the random instance, we make many copies of each vertex from the originalEDP instance. Each edge in the original EDP instance is then replaced by arandom matching between the copies of its endpoints. In the new instance, we canbound the number of non-canonical paths in any solution as follows: the number oflong non-canonical paths is restricted due to the graph capacity. As for the shortnon-canonical paths, each such path forms a small cycle with some canonical path.The number of such small cycles can be bounded due to the random structure ofthe graph.An interesting variation of the EDP and the Congestion Minimization problemsis EDP with congestion. In this problem, we are given an input graph G, acollection of source-sink pairs (s1; t1); : : : ; (sk; tk), and an integer c. The goal is toroute maximum number of s� t pairs, while the congestion on any edge is at mostc. We are interested in a bi-criteria setting here, where the optimal solution usesedge disjoint paths only, while the algorithm is allowed congestion up to c. Sincethe Edge Disjoint Paths problem seems to be hard to approximate, it is interestingwhether a better approximation can be found for its natural relaxation, namelyEDP with congestion. Recently, an 
(log 1��c+2 )-hardness was proved independentlyby [7, 4, 11]. We present the construction of [7] in this talk.Finally, we study the multicommodity 
ow relaxation of the Edge Disjoint Pathsproblem. It is known that the linear program has integrality gap of 
plogn [9].However, even for c = 2, so far no superconstant lower bounds on the integralitygap of the multicommodity 
ow relaxation has been known. The hardness resultsof [7, 4, 11] naturally show that the integrality gap is at least 
(log 1��c+2 ). However,the constructions are unnecessarily complex. In this talk we describe a directsimple construction of 
�� lognlog log2 n�1=(c+1) =c2� integrality gap due to [7].References[1] M. Andrews, Hardness of Buy-at-bulk Network Design, Proc. of FOCS, 2004.[2] M. Andrews and L. Zhang, Hardness of the Undirected Edge-Disjoint Paths Problem, Proc.of STOC, 2005.[3] M. Andrews and L. Zhang, Hardness of the undirected congestion minimization problem,Proc. of STOC. 2005.[4] M. Andrews and L. Zhang, Hardness of Edge-Disjoint Paths with Congestion, manuscript,2005.



46 Oberwolfach Report 26/2005[5] C. Chekuri and S. Khanna, Edge Disjoint Paths Revisited, Proc. of SODA, 2003.[6] C. Chekuri, S. Khanna and F. B. Shepherd, personal communication.[7] J. Chuzhoy and S. Khanna, New Hardness Results for Undirected Edge Disjoint Paths,manuscript, 2005.[8] J. Chuzhoy and J. Naor, New inapproximability results for congestion minimization andmachine scheduling, Proc. of STOC, 2004.[9] N. Garg, V. Vazirani, M. Yannakakis. Primal-Dual Approximation Algorithms for IntegralFlow and Multicut in Trees, Algorithmica, 18(1) (1997), 3-20. Preliminary version appearedin Proc. of ICALP, (1993).[10] V. Guruswami, S. Khanna, R. Rajaraman, F. B. Shepherd, and M. Yannakakis, Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Re-lated Problems, To appear in JCSS. Preliminary version appeared in Proc. of STOC,1999.[11] V. Guruswami, K. Talwar, personal communication.[12] J. M. Kleinberg, Approximation algorithms for disjoint paths problems, PhD thesis, MIT,Cambridge, MA, May 1996.[13] K. Varadarajan and G. Venkataraman, Graph Decomposition and a Greedy Algorithm forEdge-disjoint Paths, Proc. of SODA, 2004.[14] P. Raghavan and C. D. Thompson. Randomized rounding: A technique for provably goodalgorithms and algorithmic proofs, Combinatorica, 7 (1987), 365{374.



Complexity Theory 47Quantum Information and the PCP TheoremRan RazWe present the recent paper: "Quantum Information and the PCP Theo-rem" [1].Probabilistic Checkable Proofs with an additional quantum witness.Our main result is that the membership x 2 SAT (for x of length n) can beproved by a combination of the following two witnesses:1. A logarithmic-size quantum witness2. A polynomial-size classical witness consisting of blocks of length polylog(n)bits each, s.t. only one of these blocks is read by the veri�erIn other words, after seeing the logarithmic-size quantum witness the veri�er onlyneeds to read one of the blocks of the classical witness in order to verify themembership x 2 SAT .Interactive proofs with quantum advice. We also study the power of inter-active proofs with quantum advice and we show that the class QIP=qpoly containsall languages. That is, for any language L (even non-recursive), the membershipx 2 L (for x of length n) can be proved by a polynomial-size quantum interactiveproof, where the veri�er is a polynomial-size quantum circuit with working spaceinitiated with some quantum state j	L;ni (depending only on L and n).Moreover, the interactive proof that we give is of only one round, and themessages communicated are classical.Interactive proofs with randomized advice. The quantum advice in the lastresult can be replaced by a randomized advice. The last result can hence bepresented as a classical result.Our protocol shows that the class IP=rpoly contains all languages. That is,for any language L, the membership x 2 L (for x of length n) can be proved bya polynomial-size classical interactive proof, where the veri�er is a polynomial-size circuit with working space initiated with a random string chosen from somedistribution DL;n (depending only on L and n). Moreover, the interactive proofthat we give is of only one round.It is important to note that the classical result only holds if the setting is suchthat the prover (of the interactive proof) cannot see the advice that was given tothe veri�er. In other words, the result holds only if the class IP=rpoly is de�nedwith an advice that is kept as a secret from the prover.Representation of classical bits by a quantum or random string. Both ofthe above results are based on a new representation of an exponential number ofclassical bits by a short quantum or random string.We show how to encode 2n (classical) bits a1; :::; a2n by a single quantum statej	i of size O(n) qubits, such that: for any constant k and any i1; :::; ik 2 f1; :::; 2ng,



48 Oberwolfach Report 26/2005the values of the bits ai1 ; :::; aik can be retrieved from j	i by a one-round Arthur-Merlin interactive protocol of size polynomial in n. This shows how to go aroundHolevo-Nayak's Theorem, using Arthur-Merlin proofs.As before, the quantum advice in the last result can be replaced by a randomizedadvice. The last result can hence be presented as a classical result.Our protocol hence shows how to encode 2n (classical) bits a1; :::; a2n by a singlerandom string � of size O(n), such that: for any constant k and any i1; :::; ik 2f1; :::; 2ng, the values of the bits ai1 ; :::; aik can be retrieved from � by a one-roundArthur-Merlin interactive protocol of size polynomial in n.As before, the classical result only holds if the setting is such that the string �is kept as a secret from the prover.A quantum low degree test. Our main result also relies on a new machineryof quantum low-degree-test that may be interesting in its own right. Technically,this is the hardest part of the paper.References[1] R. Raz. Quantum Information and the PCP Theorem, Mansucript (2005)The Computational Complexity of the Euler characteristic and theHilbert PolynomialPeter B�urgisser(joint work with Felipe Cucker and Martin Lotz)The talk presented results from [10, 11, 12].Motivation. The Euler characteristic �(V ) of a topological space V is one ofthe most basic invariants in algebraic topology and occurs in many branches ofgeometry. Remarkably, it can be characterized in various di�erent ways. Forinstance, for spaces V admitting a �nite triangulation, it is the alternating sumof the number of i-simplices of the triangulation. The Hilbert polynomial is animportant discrete object attached to a complex projective variety V � Pn. Amongother things, it encodes the dimension, the degree and the arithmetic genus of V .Previous Work. S. Basu [3] gave the �rst single exponential time algorithm forthe computation of the Euler characteristic of a semialgebraic set. Algorithms forcomputing Hilbert polynomials were described in [17, 6, 5]. These algorithms arebased on the computation of Gr�obner bases, which leads to bad upper complexityestimates. Currently, no upper bound better than exponential space is known forthe computation of the Hilbert polynomial of a projective variety.In [9] a systematic study of the inherent complexity of computing algebraic ortopological invariants of (semi)algebraic sets was initiated, with the goal of char-acterizing the complexity of various such problems by completeness results in asuitable hierarchy of complexity classes. Versions of L. Valiant's counting com-plexity class #P [18], tailored to the Blum-Shub-Smale model of computation [8],



Complexity Theory 49turned out to be relevant for this purpose. Over the reals, such a counting classwas �rst introduced by K. Meer [16].For instance, the problem #HNC of counting the number of complex commonzeros of a �nite set of multivariate polynomials is complete for the counting class#PC over C . One of the results of [9] states that the computation of the modi�edEuler characteristic of a semialgebraic set is polynomial time equivalent to theproblem of counting the number of real common zeros of a multivariate polynomial.Our results. We show that the problem EULERC of computing the topologicalEuler characteristic of a complex algebraic variety is polynomial time equivalentto the problem #HNC . Moreover, we prove that the problem Hilbertsm of com-puting the Hilbert polynomial of a smooth equidimensional complex projectivevariety can be reduced in polynomial time to the problem #HNC . We can proveanalogous statements in the Turing model of computation. Finally, we show thatthe more general problem of computing the Hilbert polynomial of a homogeneousideal is polynomial space hard. This implies polynomial space lower bounds forboth the problems of computing the rank and the Euler characteristic of cohomol-ogy groups of coherent sheaves on projective space as well as for the problem ofcomputing the corresponding Euler characteristic, thus improving the #P-lowerbound in E. Bach [2].Proof Ideas. The class #PC captures the complexity of counting the number ofcomplex solutions to systems of polynomial equations. It is therefore not surprisingthat some of the ideas and tools of intersection theory, enumerative geometry, andSchubert calculus are salient for our purposes.A �rst ingredient of our proofs is a complexity framework for analyzing generalposition arguments (generic parsimonious reductions). E�cient algorithms forquanti�er elimination elimination over R are essential in this context, see [4].The reduction from EULERC to HNC crucially depends on a recent result dueto P. Alu� [1]. This result characterizes the Euler characteristic of a (possiblysingular) projective hypersurface Z(f) in terms of the multidegrees of the projec-tive gradient map of f . Our reduction from Hilbertsm to #HNC consists of thefollowing three steps:1. We interpret the value pV (d) of the Hilbert polynomial of V � Pn on d 2 Zas the Euler characteristic �(OV (d)) of the twisted sheaf OV (d).2. The Hirzebruch-Riemann-Roch Theorem [13] gives an explicit combinatorialdescription of �(OV (d)) in terms of certain determinants ��(c) (related toSchur polynomials) in the Chern classes ci of the tangent bundle of V .3. The homology class corresponding to the cohomology class ��(c) can berealized up to sign by a degeneracy locus, which is de�ned as the pullbackof a Schubert variety under the Gauss map [14].We call the geometric degree of such a degeneracy locus a projective character.The above observation allows to express the coe�cients of the Hilbert polynomialas rational linear combinations of projective characters. We now use the factthat the computation of the geometric degree of varieties is essentially possible



50 Oberwolfach Report 26/2005in the complexity class #PC , and that the class #PC is closed under exponentialsummation. References[1] P. Alu�, Computing characteristic classes of projective schemes, J. Symbolic Comput.35(1) (2003), 3{19.[2] E. Bach, Sheaf cohomology is #P-hard, J. Symbolic Comput. 27(4) (1999), 429{433.[3] S. Basu, On bounding the Betti numbers and computing the Euler characteristic of semi-algebraic sets, Discrete Comput. Geom. 22 (1999), 1{18.[4] S. Basu, R. Pollack and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms andComputation in Mathematics 10 (2003), Springer Verlag.[5] D. Bayer and M. Stillman, Computation of Hilbert functions, J. Symb. Comp. 14 (1992),31{50.[6] A.M. Bigatti, M. Caboara, and L. Robbiano, On the computation of Hilbert-Poincar�e series,Appl. Algebra Engrg. Comm. Comput. 2(1) (1991), 21{33.[7] D. Bayer and D. Mumford,What can be computed in algebraic geometry?, In Computationalalgebraic geometry and commutative algebra (Cortona, 1991), Sympos. Math., XXXIV,pages 1{48. Cambridge Univ. Press, Cambridge, 1993.[8] L. Blum and M. Shub and S. Smale, On a theory of computation and complexity over thereal numbers, Bulletin of the AMS 21 (1989), 1{46.[9] P. B�urgisser and F. Cucker, Counting complexity classes for numeric computations II: Al-gebraic and semialgebraic sets, Proc. 36th Ann. ACM STOC (2004), 475{485. Full versionat http://www.arxiv.org/abs/cs/cs.CC/0312007.[10] P. B�urgisser, F. Cucker, M. Lotz, The Complexity to Compute the Euler Characteristic ofComplex Varieties, Comptes rendus de l'Acad�emie des sciences Paris, Ser. I 339 (2004),371{376.[11] P. B�urgisser, F. Cucker, M. Lotz, Counting Complexity Classes for Numeric ComputationsIII: Complex Projective Sets, Foundations of Computational Mathematics, to appear.[12] P. B�urgisser, M. Lotz, The complexity of computing the Hilbert polynomial of smooth equidi-mensional complex projective varieties, http://www.arxiv.org/abs/cs/cs.CC/0502044.[13] F. Hirzebruch, New Topological Methods in Algebraic Geometry, Die Grundlehren der Math-ematischen Wissenschaften 131 (1966), Springer Verlag.[14] G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132(1974), 153{162.[15] E.W. Mayr, Some Complexity Results for Polynomial Ideals, J. Compl. 13 (1997), 303{325.[16] K. Meer, Counting problems over the reals, Theoretical Computer Science 242 (2000), 41{58.[17] F. Mora and H.M. M�oller, The computation of the Hilbert function, Proc. EUROCAL,Lecture Notes in Computer Science 162 (1983), Springer, 157{167.[18] L.G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8(1979), 189{201.



Complexity Theory 51Simulating Independence: New Constructions of Condensers, RamseyGraphs, Dispersers, and ExtractorsRonen Shaltiel(joint work with Boaz Barak, Guy Kindler, Benny Sudakov, Avi Wigderson)A distribution X over binary strings of length n has min-entropy k if everystring has probability at most 2�k in X . We say that X is a �-source if its ratek=n is at least �. In this work we continue a long line of research concerned with\extracting randomness from high entropy distributions" (see survey article [8]).Main results. We give the following new explicit constructions (namely, poly(n)-time computable functions) of deterministic extractors, dispersers and related ob-jects. All work for any �xed rate � > 0. No previous explicit construction wasknown for either of these, for any � < 1=2. The �rst two constitute major progressto very long-standing open problems.1. Bipartite Ramsey graph Ramsey : (f0; 1gn)2! f0; 1g, such that for anytwo independent �-sources X1; X2 we have Ramsey(X1; X2) = f0; 1g.A corollary is a new explicit construction of bipartite Ramsey graphs.That is, a 2-coloring of the edges of the complete N by N bipartite graphwith N = 2n, such that no induced N � by N� subgraph is monochromatic.This improves a previous construction by [5] which achieves � = 1=2�1=pn.2. Three source extraction Ext : (f0; 1gn)3! f0; 1g, such that for any threeindependent �-sources X1; X2; X3 we have that Ext(X1; X2; X3) is (o(1)-close to being) an unbiased random bit.This result improves previous results by [1] that requires O(1=�2) sources(although that result achieves smaller error). The aforementioned construc-tion is used as a componenet in our constructions together with incomparableresults by [2, 9, 3] that for � > 1=2 require only two sources.3. Constant seed condenser1 Con : f0; 1gn ! (f0; 1gm)c, such that for any�-source X , one of the c output distributions Con(X)i, is a 0:9-source overf0; 1gm. Here c is a constant depending only on �.In the rest of this abstract, we provide an overview of our techniques.A constant seed condenser. Our basic condenser bcon will take strings oflength n with n = 3p for some prime p. For every x 2 f0; 1gn let x = x1x2x3 itsnatural partition to three length p blocks. De�ne bcon : f0; 1g3p ! (f0; 1gp)4 bybcon(x) = x1; x2; x3; x1 � x2 + x3 (with arithmetic in GF (2p)).We prove that if X is a �-source with � < 0:9, then at least one of the outputblocks is a (� + 
(�2))-source. Iterating it a constant number of times on a �-source allows us to increase to rate (of some output block) above 0:9 and achievethe aforementioned result.The proof heavily relies on the main lemma of [1], who proved x1 � x2 + x3 iscondensed assuming that the xi's are independent. We certainly cannot assume1This result was also independently obtained by Ran Raz.



52 Oberwolfach Report 26/2005that in our case, as X is a general source. Still, we use that lemma to show thatif none of these �rst 3 blocks is more condensed than the input source, then theyare \independent enough" for using that main lemma.A 2-source constant-seed/\somewhere" extractor. Our two main deter-ministic constructions in this paper are a 3-source extractor and a bipartite Ram-sey. For both, an essential building block, is a constant seed 2-source extractors ext (short for \somewhere extractor") for constant entropy rate, which we de-scribe next.What we prove is that for every � > 0 there are integers c; d and a poly(n)-time computable function s ext : (f0; 1gn)2 ! (f0; 1gn=c)d, such that for everytwo �-sources X1; X2 there is at least one output block s ext(X1; X2)i which is(exponentially close to) uniform.Constructing the somewhere extractor s ext is simple, given the condenser conof the previous subsection. To compute s ext(X1; X2), compute the output blocksof con(X1) and con(X2). By de�nition, some output block of each has rate > :9.We don't know which, but we can try all pairs! For each pair we apply a 2-sourceextractor which expects its sources to have entropy rate > 1=2. (Recall that thereare such explicit constructions). We obtain a constant number of linear lengthblocks, one of which is very close to uniform. Formally, if d is the number ofoutput block of con, then s ext will produce d2 blocks, with s ext(X1; X2)i;j =2-src-ext(con(X1)i; con(X2)j).A 4-source extractor. In the paper we construct a 3-source extractor. For thepurpose of explaining some of the ideas in the construction it is easier to show a4-source extractor. Recall that our 2-source somewhere extractor s ext producesa constant number (say) d of linear length output blocks, one of which is random.First we note that producing shorter output blocks maintains this property as apre�x of a random string is random.Let us indeed output only a constant b bits in every block (satisfying b �log(db)). Concatenating all output blocks of this s ext(X1; X2) gives us a dis-tribution (say Z1) on db bits with min-entropy � b. If we have 4 sources, wecan get another independent such distribution Z2 from s ext(X3; X4). But notethat these are two independent distributions on a constant number of bits withsu�cient min-entropy for (existential) 2-source extraction. Now apply an optimal(non-constructive) 2-source extractor on Z1; Z2 to get a uniform bit; as db is onlya constant, such an extractor exists by the probabilistic method and can be foundin constant time by brute-force search! We denote it by opt. To sum up, our4-source extractor is4ext((X1; X2); (X3; X4)) = opt(s ext(X1; X2); s ext(X3; X4))The Construction of bipartite Ramsey graphs. This construction uses thecomponents above but is signi�cantly more complicated. In the next paragraphwe try to highlight some (but not all) of the ideas that are used.



Complexity Theory 53We �rst observe that our 4-source extractor can extract randomness even whengiven two independent block-wise sources.2 We then use methods from [7] to showthat for any source X there exists a way to partition it into two contingent blocks(X1; X2) that form a block wise source. Thus, given two independent sources wecan hope to partition each one of them into a block-wise source and apply our4-source extractor. An obvious problem is that we do not know where to split agiven source X . The main construction of the paper gives a technique that giventwo samples x and y from two independent sources X and Y with rate � � �nds away to partition the two strings so that the resulting distributions are independentblock-wise source (at least on a non-negligible fraction of the original probabilityspace). Applying this method gives a construction of a bipartite Ramsey graph.References[1] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting Randomness from Few IndependentSources. In Proc. 45th FOCS. IEEE, 2004.[2] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and Proba-bilistic Communication Complexity. In Proc. 26th FOCS, pages 429{442. IEEE, 1985.[3] Y. Dodis, A. Elbaz, R. Oliveira, and R. Raz. Improved Randomness Extraction from TwoIndependent Sources. In Proc. of 8th RANDOM, 2004.[4] P. Frankl and R. M. Wilson. Intersection theorems with geometric consequences. Combina-torica, 1(4):357{368, 1981.[5] P. Pudl�ak and V. R�odl. Pseudorandom sets and explicit constructions of Ramsey graphs,2004. Submitted for publication.[6] R. Raz. Extractors with Weak Random Seeds, 2005. To appear.[7] M. Saks, A. Srinivasan, and S. Zhou. Explicit OR-dispersers with polylogarithmic degree.Journal of the ACM, 45(1):123{154, January 1998.[8] R. Shaltiel. Recent developments in extractors. Bulletin of the European Association forTheoretical Computer Science, 2002.[9] U. Vazirani. Strong Communication Complexity or Generating Quasi-Random Sequencesfrom Two Communicating Semi-Random Sources. Combinatorica, 7, 1987. Preliminary ver-sion in STOC' 85.Multi-Linear Formulas for Permanent and Determinant are ofSuper-Polynomial SizeRan RazAn arithmetic formula is multi-linear if the polynomial computed by each of itssub-formulas is multi-linear. We prove that any multi-linear arithmetic formula forthe permanent or the determinant of an n� n matrix is of size super-polynomialin n. Previously, super-polynomial lower bounds were not known (for any explicitfunction) even for the special case of multi-linear formulas of constant depth.The talk presented lower bounds and methods from [3, 4].2A block-wise source is a distribution X = (X1;X2) where X1 has \large" entropy and X2has large entropy conditioned on any �xing of X1.



54 Oberwolfach Report 26/2005Introduction. Arithmetic formulas for computing the permanent and the deter-minant of a matrix have been studied since the 19th century. Are there polynomialsize formulas for these functions ? Although the permanent and the determinantare among the most extensively studied computational problems, polynomial sizeformulas for these functions are not known. The smallest known formula for thepermanent of an n � n matrix is of size O(n22n). The smallest known formulafor the determinant of an n � n matrix is of size nO(logn). An outstanding openproblem in complexity theory is to prove that polynomial size formulas for thesefunctions do not exist. Note, however, that super-polynomial lower bounds for thesize of arithmetic formulas are not known for any explicit function and that ques-tions of this type are considered to be among the most challenging open problemsin theoretical computer science.We prove super-polynomial lower bounds for the subclass of multi-linear for-mulas. An arithmetic formula is multi-linear if the polynomial computed by eachof its sub-formulas is multi-linear (as a formal polynomial), that is, in each of itsmonomials the power of every input variable is at most one.Multi-Linear Formulas. Let F be a �eld, and let fx1; :::; xmg be a set of inputvariables. An arithmetic formula is a binary tree whose edges are directed towardsthe root. Every leaf of the tree is labelled with either an input variable or a �eldelement. Every other node of the tree is labelled with either + or � (in the �rstcase the node is a plus gate and in the second case a product gate).An arithmetic formula computes a polynomial in the ring F[x1; :::; xm] in thefollowing way. A leaf just computes the input variable or �eld element that labelsit. A plus gate computes the sum of the two polynomials computed by its sons. Aproduct gate computes the product of the two polynomials computed by its sons.The output of the formula is the polynomial computed by the root. The size ofthe formula is de�ned to be the number of nodes in the tree.A polynomial in the ring F[x1; :::; xm] is multi-linear if in each of its monomialsthe power of every input variable is at most one. An arithmetic formula is multi-linear if the polynomial computed by each gate of the formula is multi-linear.Motivation. Multi-linear formulas are restricted, as they do not allow the inter-mediate use of higher powers of variables in order to �nally compute a certainmulti-linear function. Note, however, that for many multi-linear functions, formu-las that are not multi-linear are very counter-intuitive, as they require a "magical"cancellation of all high powers of variables. For many multi-linear functions, itseems "obvious" that the smallest formulas should be multi-linear.Multi-linear polynomials are very powerful and are extensively used in theoret-ical computer science. Hence, the class of multi-linear formulas seems to be quitestrong and it is very interesting to study its computational power.Note also that both the permanent and the determinant are multi-linear func-tions in the input variables and that many of the well known formulas for thesefunctions are multi-linear formulas. In particular, the smallest known arithmeticformula for the permanent is multi-linear. (For the determinant, the smallest



Complexity Theory 55known formulas are not multi-linear. Sub-exponential size multi-linear formulasfor the determinant are not known.)Finally, we note that several classes of formulas that were studied in the past aresubclasses of multi-linear formulas. One example is monotone arithmetic formulas.It is easy to see that a monotone arithmetic formula for a multi-linear function isalways multi-linear.Our Results. We prove that over any �eld, any multi-linear arithmetic formulafor the permanent or the determinant of an n � n matrix is of size n
(logn). Anobvious corollary of our result is that over any �eld, any multi-linear arithmetic cir-cuit for the permanent or the determinant of an n�n matrix is of depth 
(log2 n).Our method is quite general and can be applied for many other functions.Previous Work. Multi-linear arithmetic formulas were formally de�ned in [2].Previous to our result, lower bounds for the size of multi-linear formulas were notknown even for formulas of constant depth. Exponential lower bounds for a variantof constant depth multi-linear formulas were obtained in [2]. Lower bounds forseveral other restricted subclasses of multi-linear formulas were obtained in [1, 2, 5].Methods. The starting point for our proof is the partial derivatives method ofNisan and Wigderson [1, 2]. It was suggested in [2] that for certain restricted sub-classes of arithmetic formulas (and circuits), the dimension of the space spannedby all partial derivatives of the output is quite small. The method was usedin [1, 2, 5] to obtain lower bounds for several subclasses of formulas and circuits.Note, however, that for multi-linear formulas the dimension of the space spannedby all partial derivatives may be very large, even if the formula is of linear size.In particular, that dimension may be much larger than the dimension of the spacespanned by all partial derivatives of the permanent or the determinant. Neverthe-less, the set of partial derivatives still plays a crucial roll in our proof.To handle sets of partial derivatives, we make use of the partial derivativesmatrix. The partial derivatives matrix was �rst used for proving lower bounds byNisan [1], and was later on used in several other works.In our proof, we also use rank arguments as well as random restrictions. Boththese methods were used for proving lower bounds in numerous of works. However,we use them here in a completely di�erent way. For example, random restrictionswere used in many works in order to eliminate gates. Here, we use random re-strictions in order to make gates unbalanced without eliminating even a singlegate. References[1] N. Nisan. Lower Bounds for Non-Commutative Computation, STOC (1991), 410{418[2] N. Nisan, A. Wigderson. Lower Bounds on Arithmetic Circuits Via Partial Derivatives,Computational Complexity 6(3) (1996), 217{234.[3] R. Raz. Multi-Linear Formulas for Permanent and Determinant are of Super-PolynomialSize, STOC (2004), 633{641[4] R. Raz. Multilinear-NC1 6= Multilinear-NC2, FOCS (2004), 344{351



56 Oberwolfach Report 26/2005[5] R. Raz, A. Shpilka. Deterministic Polynomial Identity Testing in Non Commutative Models,Conference on Computational Complexity (2004), 215{222Specialized Session on CryptographyShafi Goldwasser and Moni Naor (Session Chairs)Cryptography and complexity have been fertilizing each other for the last threedecades. Therefore, there were two sessions concentrating on the connection be-tween complexity and cryptography, an afternoon and an evening one. The talksand the abstracts are listed below.1. Yael Kalai Tauman: On the Impossibility of Obfuscation withAuxiliary InputsBarak et. al. [1] formulated the notion of obfuscation, and showed that there ex-ist (contrived) classes of functions that cannot be obfuscated. In contrast, Canetti[7] and Wee [19] showed how to obfuscate point functions, under various complex-ity assumptions. Thus, it would seem possible that most programs of interest canbe obfuscated even though in principle general purpose obfuscators do not exist.We show that this is unlikely to be the case. In particular, we consider thenotion of "obfuscation w.r.t. auxiliary inputs," which corresponds to the settingwhere the adversary, which is given the obfuscated circuit, may have some a prioriinformation. This is essentially the case of interest in any usage of obfuscationwe can imagine. We prove that there exist many natural classes of functions thatcannot be obfuscated w.r.t. auxiliary inputs, both when the auxiliary input isdependent on the function being obfuscated and even when the auxiliary input isindependent of the function being obfuscated.2. Boaz Barak: Concurrent Composition Using Super-PolynomialSimulation [2]We consider the problem of constructing a secure protocol for any multi-partyfunctionality, which remains secure when executed concurrently with multiplecopies of itself and other protocols, without any assumptions on existence of trustedparties, honest majority or synchronicity of the network. Recently it was shownby Lindell [13] that such a protocol is impossible to obtain under the standardde�nition of security, namely, polynomial-time simulation by an ideal adversary.We construct a protocol for this problem which is secure in this setting, undera relaxed de�nition security, namely, quasi-polynomial-time simulation by an idealadversary. Quasi-polynomial-time simulation seems to su�ce for the canonicalapplication of multi-party secure computation; that is obtaining protocols for anytask whose privacy, integrity and input independence cannot broken by e�cientadversaries under reasonable cryptographic assumptions. We emphasize that thesecurity of our protocol does not rely on setup conditions such as the existence of



Complexity Theory 57a common reference string, nor does it require an existence of honest majority ofparties.Our construction is the �rst such protocol under reasonably standard crypto-graphic assumptions (i.e., existence of a hash function collection that is collisionresistent with respect to circuits of subexponential size, and existence of trapdoorpermutations which are secure with respect to circuits of quasi-polynomial size).The main new technique introduced is \protocol condensing". That is, tak-ing a protocol that has strong security properties but requires super-polynomialcommunication and computation, and then transforming it into a protocol withpolynomial communication and computation that still inherits the strong securityproperties of the original protocol. Our main result is obtained by combining thistechnique with previous results of Pass [17] and Canetti et al [8].3. Guy Rothblum: The Complexity of Online Memory Checking[16]We consider the problem of storing a large �le on a remote and unreliable server.To verify that the �le has not been corrupted, a user could store a small private(randomized)\�ngerprint" on his own computer. This is the setting for the well-studied authentication problem, and the size of the required private �ngerprint iswell understood. We study the problem of sub-linear authentication: suppose theuser would like to encode and store the �le in a way that allows him to verify thatit has not been corrupted, but without reading the entire �le. If the user onlywants to read t bits of the �le, how large does the size s of the private �ngerprintneed to be? We de�ne this problem formally, and show a tight lower boundon the relationship between s and t when the adversary is not computationallybounded, namely: s� t = 
(n), where n is the �le size. The problem of sublinearauthentication is an easier case of the online memory checking problem, introducedby Blum et al. [6] in 1991, and hence the same (tight) lower bound applies also tothis problem.It was shown by [6] that when the adversary is computationally bounded, underthe assumption that one-way functions exist, it is possible to construct muchbetter online memory checkers and sub-linear authentication schemes. It wasnot previously known, however, whether one-way functions are required for theimplementation of e�cient online checkers. The study of which computationalassumptions are necessary for implementing cryptographic tasks was initiated byImpagliazzo and Luby [12]. We continue this study and show that the existenceof one-way functions is also a necessary condition for implementing e�cient onlinememory checker: even slightly breaking the lower bound in a computational settingimplies the existence of one-way functions.To show lower bounds we reduce the problems of online memory checking andsublinear authentication to a communication complexity problem. We show thesecryptographic primitives are related to the simultaneous messages (SM) commu-nication model, introduced by Yao [18]. Newman and Szegedy [15] showed tight



58 Oberwolfach Report 26/2005bounds for the SM complexity of the equality function, and their result was gen-eralized by Babai and Kimmel [4]. To prove a lower bound for sublinear authenti-cation, we generalize Yao's SM model, introducing a Consecutive Messages modelof communication complexity. We then extend Babai and Kimmel's result to thenew model. We also show that breaking the lower bound in a computational set-ting implies the existence of one-way functions. Another essential ingredient ofour results is an algorithm for learning adaptively changing distributions (ACDs),see Naor and Rothblum [14]. We use this learning algorithm to show that an ad-versary can \learn" the distribution of addresses that the sublinear authenticatorwill read in its next run.4. Sergey Yekhanin: A Geometric Approach toInformation-Theoretic Private Information Retrieval [20]A t-private information retrieval (PIR) scheme allows a user to retrieve the i'thbit of an n-bit string x replicated among k servers, while any coalition of up tot servers learns no information about i. We present a new geometric approachto PIR, and obtain (1) A t-private k-server protocol with smaller communica-tion complexity, (2) A 2-server protocol with O(n1=3) communication, polynomialpreprocessing, and online work O(n= logr n) for any constant r, improving thepreviously known bound of O(n= log2 n), (3) Smaller communication for instancehiding, PIR with a polylogarithmic number of servers, robust PIR, and PIR with�xed answer sizes. Finally, our techniques are of independent interest, and mayserve as a tool for obtaining better upper bounds. As an example of the model'spower we give a new geometric proof of the best known upper bound for 1-privatek-server PIR protocols of [3] for k < 26.5. Moni Naor: Using Complexity Lower Bounds for Fighting Spam -Pebbling and Proofs of Work [11]In 1992 Dwork and Naor proposed that e-mail messages be accompanied byeasy-to-check proofs of computational e�ort in order to discourage junk e-mail, nowknown as spam [10],and suggested speci�c CPU-bound functions for this purpose.Noting that memory access speeds vary across machines much less than do CPUspeeds, Abadi, et al. [5] initiated a fascinating new direction: replacing CPU-intensive functions with memory-bound functions, an approach that treats sendersmore equitably. Memory-bound functions were further explored by by Dwork,Goldberg, and Naor [9], who designed a class of functions based on pointer chasingin a very large shared random table T . We may think of T as part of the de�nitionof their functions. Using hash functions modelled as truly random functions (i.e.`random oracles'), they proved lower bounds on the amortized number of memoryaccesses that an adversary must expend per proof of e�ort.The drawbacks to the use of a large random table in the de�nition of thefunction is that it makes distributing the software for proof-of-e�ort harder to dis-tributed and to modify. We answer an open question of [9] by designing a compactrepresentation for the table. The paradox, compressing an incompressible table,



Complexity Theory 59is resolved by embedding a time/space tradeo� into the process for constructingthe table from its representation. Roughly speaking, our approach is to gener-ate T using a memory-bound process. Sources for such processes are time/spacetradeo�s, such as those o�ered by graph pebbling, and sorting. We exploit knowndramatic time/space tradeo�s for pebbling in constructing a theoretical solution,with provable complexity bounds; the solution uses a hash function, modelled bya random oracle in the proof. References[1] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.Vadhan, Ke Yang, On the (Im)possibility of Obfuscating Programs. CRYPTO 2001, LectureNotes in Computer Science, Springer, pages 1{18.[2] B. Barak and A. Sahai. How to Play Almost Any Mental Game Over the Net - ConcurrentComposition Using Super-Polynomial Simulation, 2005. To appear in FOCS' 05.[3] A. Beimel, Y. Ishai, E. Kushelevitz, and J. F. Raymond, Breaking the O(n1=(2k�1)) barrierfor information theoretic private information retrieval, In Proc. of the 43rd IEEE Sympo-sium on Foundations of Computer Science (FOCS), pp. 261-270, 2002.[4] L�aszl�o Babai and Peter G. Kimmel. Randomized Simultaneous Messages: Solution of aProblem of Yao in Communication Complexity, IEEE Conference on Computational Com-plexity 1997 239-246.[5] M. Abadi, M. Burrows, M. Manasse, and T. Wobber. Moderately hard, memory-boundfunctions. In Proc. 10th NDSS, 2003.[6] M. Blum, W. S. Evans, P. Gemmell, S. Kannan and M. Naor, Checking the Correctness ofMemories, Algorithmica 12(2/3): 225-244 (1994)[7] R. Canetti, Towards Realizing Random Oracles: Hash Functions That Hide All PartialInformation, CRYPTO 1997, pages 455{469.[8] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. Universally Composable Two-partyComputation. In Proc. 34th STOC, pages 494{503. ACM, 2002.[9] C. Dwork, A. V. Goldberg, and M. Naor. On memory-bound functions for �ghting spam,Advances in Cryptology { CRYPTO'03, Lecture Notes in Computer Science, Springer, pages426{444, 2003.[10] C. Dwork and M. Naor. Pricing via processing, or, combatting junk mail. In Advances inCryptology { CRYPTO'92, pages 139{147, 1993.[11] C. Dwork, M. Naor and H. Wee, Pebbling and Proofs of Work, to appear, Advances inCryptology { CRYPTO'05.[12] Russell Impagliazzo and Michael Luby. One-way Functions are Essential for ComplexityBased Cryptography, FOCS 1989 230-235[13] Y. Lindell. General Composition and Universal Composability in Secure Multi-Party Com-putation, Proc. 44th FOCS. IEEE, 2003.[14] Moni Naor and Guy N. Rothblum. \Simulating Secret Knowledge: Learning AdaptivelyChanging Distributions". Manuscript (2005). Available from authors' webpages.[15] Ilan Newman and Mario Szegedy. \Public vs. Private Coin Flips in One Round Communi-cation Games". STOC 1996 561-570[16] M. Naor and G. N. Rothblum, The Complexity of Online Memory Checking, to appear inFOCS' 05.[17] R. Pass, Bounded-concurrent secure multi-party computation with a dishonest majority,Proc. 36th STOC, pages 232{241. ACM, 2004.[18] Andrew Chi-Chih Yao. \Some Complexity Questions Related to Distributive Computing".STOC 1979 209-213[19] H. Wee, On Obfuscating Point Functions, Proc. 37th STOC, 2005.



60 Oberwolfach Report 26/2005[20] D. Woodru�, S. Yekhanin. A geometric approach to information theoretic private informa-tion retrieval, In Proc. of the 20th IEEE Conference on Computational Complexity, pp.275{284, 2005.Specialized Session on Complexity of Lattice ProblemsOded Regev (Session Chair)This specialized session consisted of four talks. The �rst talk [1], presented byHenrik Koy of Frankfurt University, focused on a new method for lattice basisreduction. Unlike more traditional method for block basis reduction (such as thatof Schnorr), Koy's basis reduction uses the dual basis throughout the reductionalgorithm. This method yields improved running time, on the order of n3kk=2when blocks of size k are used.In the second talk [2], Claus P. Schnorr of Frankfurt University presented sev-eral approaches to lattice basis reduction based on the birthday method. Thesemethods yield greatly improved running times. However, some of them have thedrawback that their space requirement is very large, essentially the same as thetime requirement. This forms the main bottleneck is applying these method prac-tically, and it is an interesting open question to reduce the space requirement.In the third talk [3], Oded Regev of Tel Aviv University presented reductionsamong lattice problems of di�erent norms. The result is based on the method ofrandom embedding. It shows a gap-preserving reduction from the l2 norm of latticeproblems to the corresponding problem in the lp norm for any 1 � p � 1. Thisimplies that it is enough to prove NP-hardness in the l2 norm as this automaticallyimplies NP-hardness in all other norms.In the fourth talk [4], Johannes Bl�omer of University of Paderborn, describedan improved reduction between the two main lattice problems: the shortest vec-tor problem (SVP) and the closest vector problem (CVP). More precisely, thereduction is from approximating CVP to within n � f(n) to approximating SVPto within f(n) where f(n) � 1 is any function of n. This improves on earlierwork of Kannan. However, unlike Kannan's reduction, Bl�omer's reduction onlysolves the optimization version of CVP (where the goal is to �nd the distance ofthe target vector from the lattice) as opposed to the search version of CVP. Thereason for this has to do with the use of non-constructive transference theoremsin the reduction. References[1] H. Koy. Primal-dual segment reduction of lattice bases. Manuscript.[2] C.P. Schnorr. General Birthday Reduction Reconsidered. Manuscript.[3] O. Regev and R. Rosen. Lattices, Norms, and Embeddings. Manuscript.[4] J. Bl�omer. Reductions between two lattice problems. Manuscript.



Complexity Theory 61Specialized Session on Algebraic ComplexityPeter B�urgisser (Session Chair)The talks in this session on algebraic complexity were dealing with a variety oftopics centering around the evaluation and factorization of polynomials, problemsin (semi)algebraic geometry, and derandomization in the context of arithmeticcircuits.Although the permanent and the determinant are among the most extensivelystudied computational problems, polynomial size formulas for these functions arenot known. The talk by Ran Raz presented an exciting super-polynomial lowerbound on the size of multilinear formulas for the permanent and determinantfrom [18, 19]. Previous lower bounds results for restricted subclasses of multi-linear formulas were obtained in [16, 17, 20]. The lower bound proof is basedon rank arguments and a novel use of random restrictions, which are used tounbalance gates (instead of eliminating them as usual).Joos Heintz discussed some new aspects of e�ective elimination theory (jointwork with Bart Kuijpers). He presented a model in the spirit of Constraint Data-base Theory [13], which allows the descriptive speci�cation of the most funda-mental tasks of e�ective elimination theory in algebraic and semialgebraic geome-try. This requires a suitable extension and re�nement of the traditional databasemodel. In particular, polynomial equation solving is modeled by so called \samplepoint queries". By means of a suitable genericity condition the notion of "geomet-ric query" is introduced [10]. This notion allows a fairly realistic repesentation oftraditional elimination tasks and in particular the descriptive speci�cation of elim-ination polynomials (di�erent from their more traditional operative speci�cations).In this model, it is possible to prove the intrinsic exponential time character ofgeometric elimination procedures, under the restriction that they are parsimoniouswith respect to branchings. As a byproduct one obtains that the branching-freeinterpolation of polynomials of given arithmetic circuit complexity requires expo-nential time (compare with [8]).Peter B�urgisser studied the computational complexity of two of the most fun-damental invariants of complex algebraic varieties: the Euler characteristic andthe Hilbert polynomial. He presented results from [3, 4, 5, 6] (joint work withFelipe Cucker and Martin Lotz). A version #PC of Valiant's counting complexityclass #P [21], tailored to the Blum-Shub-Smale model of computation [7] over C ,is de�ned and studied. (Over R, such a counting class was �rst introduced byMeer [15].) The problem #HNC of counting the number of complex common zerosof a �nite set of multivariate polynomials turns out to be complete for #PC . The�rst main result states that the problem EULERC of computing the topologicalEuler characteristic of a complex algebraic variety is polynomial time equivalentto the problem #HNC . The second main result establishes a polynomial timereduction from the problem Hilbertsm of computing the Hilbert polynomial ofa smooth equidimensional complex projective variety to #HNC . Analogous state-ments are shown for the Turing model of computation.



62 Oberwolfach Report 26/2005The reduction fromEULERC toHNC crucially depends on a recent result due toAlu� [1]. This result characterizes the Euler characteristic of a (possibly singular)projective hypersurface Z(f) in terms of the multidegrees of the projective gradientmap of f . The reduction from Hilbertsm to #HNC is based on ideas and tools ofintersection theory, enumerative geometry, and Schubert calculus. In particular,the Hirzebruch-Riemann-Roch Theorem [11] is used.Erich Kaltofen presented a new result about factoring sparse polynomials (jointwork with Pascal Koiran). H.W. Lenstra Jr. [14] had found a polynomial timealgorithm for �nding the small degree factors of a sparse univariate rational poly-nomial The new algorithm by Kaltofen and Koiran [12] allows to compute therational linear factors of sparse bivariate rational polynomials with rational co-e�cients in deterministic polynomial time. The essence of the proof is a \gaptheorem" based on the Bogomolov property of cyclotomic extensions [2], whichseparates the Weil height for non-roots of unity by a constant from 1.The talk by Zeev Dvir was motivated by the fundamental Polynomial Iden-tity Testing (PIT) problem: given a circuit computing a multivariate polynomial,determine whether the polynomial is identically zero. It is well known that thistask can be solved in polynomial time by randomized algorithms. Two results fordepth-3 circuits with a bounded top fan-in were shown: a deterministic algorithmthat runs in quasipolynomial time, and a randomized algorithm that runs in poly-nomial time and uses only polylogarithmic number of random bits (joint work withAmir Shpilka). The proof is based on a relation to Locally Decodable Codes. Thoseare codes that allow the recovery of each message bit from a constant number ofentries of the codeword. Along the way, known results on locally decodable codeswere improved, cf. [9]. References[1] P. Alu�, Computing characteristic classes of projective schemes, J. Symbolic Comput.35(1) (2003), 3{19.[2] F. Amoroso and R. Dvornicich, A lower bound for the height in Abelian extensions, J.Number Theory 80 (2000), 260{272.[3] P. B�urgisser and F. Cucker, Counting complexity classes for numeric computations II: Al-gebraic and semialgebraic sets, Proc. 36th Ann. ACM STOC (2004), 475{485. Full versionat http://www.arxiv.org/abs/cs/cs.CC/0312007.[4] P. B�urgisser, F. Cucker, M. Lotz, The Complexity to Compute the Euler Characteristic ofComplex Varieties, Comptes rendus de l'Acad�emie des sciences Paris, Ser. I 339 (2004),371{376.[5] P. B�urgisser, F. Cucker, M. Lotz, Counting Complexity Classes for Numeric ComputationsIII: Complex Projective Sets, Foundations of Computational Mathematics, to appear.[6] P. B�urgisser, M. Lotz, The complexity of computing the Hilbert polynomial of smooth equidi-mensional complex projective varieties, http://www.arxiv.org/abs/cs/cs.CC/0502044.[7] L. Blum and M. Shub and S. Smale, On a theory of computation and complexity over thereal numbers, Bulletin of the AMS 21 (1989), 1{46.[8] D. Castro, M. Giusti, J. Heintz, G. Matera, L. M. Pardo, The hardness of polynomialequation solving, Foundations of Computational Mathematics 3 (2003), 1-74.[9] Oded Goldreich, Howard J. Karlo�, Leonard J. Schulman, and Luca Trevisan, Lower boundsfor linear locally decodable codes and private information retrieval, Electronic Colloquiumon Computational Complexity (ECCC) 080 (2001).



Complexity Theory 63[10] J. Heintz, B. Kuijpers, Constraint data bases, data structures and e�cient query elim-ination, in Proceedings of the 1st International Symposium Applications of ConstraintDatabases (CDB'04), B. Kuijpers, P. Revesz, eds., Springer Lecture Notes in ComputerScience 3074 (2004), 1-24.[11] F. Hirzebruch, New Topological Methods in Algebraic Geometry, Die Grundlehren der Math-ematischen Wissenschaften 131 (1966), Springer Verlag.[12] Erich Kaltofen and Pascal Koiran, On the complexity of factoring bivariate supersparse(lacunary) polynomials, in Proc. Internat. Symp. Symbolic Algebraic Comput. 2005, ACMPress, New York, to appear.[13] G. M. Kuper, J. Paredans, L. Libkin, Constraint databases, Springer Verlag 2000.[14] H. W. Lenstra, Jr, Finding small degree factors of lacunary polynomials, in Number The-ory in Progress, volume 1 Diophantine Problems and Polynomials, K�alm�an Gy}ory, HenrykIwaniec, and Jerzy Urbanowicz, eds., Stefan Banach Internat. Center, Walter de GruyterBerlin, New York (1999), 267{276.[15] K. Meer, Counting problems over the reals, Theoretical Computer Science 242 (2000), 41{58.[16] N. Nisan, Lower Bounds for Non-Commutative Computation, STOC (1991), 410{418.[17] N. Nisan, A. Wigderson, Lower Bounds on Arithmetic Circuits Via Partial Derivatives,Computational Complexity 6(3) (1996), 217{234.[18] R. Raz, Multi-Linear Formulas for Permanent and Determinant are of Super-PolynomialSize, STOC (2004), 633{641.[19] R. Raz, Multilinear-NC1 6= Multilinear-NC2, FOCS (2004), 344{351.[20] R. Raz, A. Shpilka. Deterministic Polynomial Identity Testing in Non Commutative Models,Conference on Computational Complexity (2004), 215{222.[21] L.G. Valiant, The complexity of computing the permanent, Theoretical Computer Science 8(1979), 189{201.Specialized Session on Randomness ExtractorsBoaz Barak (Session Chair)Let X be a family of distributions over f0; 1gn (e.g., the family of distributionsover a�ne subspaces of a certain dimension; the family of products of indepen-dent distributions of a certain entropy). A randomness extractor w.r.t. X is adeterministic function E : f0; 1gn ! f0; 1gm such that for every random variableX 2 X , E(X) is close to the uniform distribution. In recent years, construct-ing explicit, e�ciently computable randomness extractors for interesting familiesof distributions has been an important research direction in theoretical ComputerScience, with many important connections and applications. In this session severalnew results in this direction were reported. In addition, a talk about the relatednotion of randomness dispersers was also presented in a di�erent session of thesame workshop by Ronen Shaltiel. The following talks were given in this session:Extracting Randomness Using Few Independent Sources | Boaz Barak.In this work we give the �rst deterministic extractors from a constant number ofweak sources whose entropy rate is less than 1/2. Speci�cally, for every � > 0we give an explicit construction for extracting randomness from a constant (de-pending polynomially on 1=�) number of distributions over f0; 1gn, each havingmin-entropy �n. These extractors output n bits, which are 2�n close to uniform.



64 Oberwolfach Report 26/2005This construction uses several results from additive number theory, and in partic-ular a recent one by Bourgain, Katz and Tao [3] and of Konyagin [4].Joint work with Russell Impagliazzo and Avi Wigderson. An extended abstractof this work appeared in the FOCS' 2004 conference [1].Linear Degree Extractors and the Inapproximability of Max Clique andChromatic Number | David Zuckerman. A randomness extractor is analgorithm which extracts randomness from a low-quality random source, usingsome additional truly random bits. We construct new extractors which requireonly logn + O(1) additional random bits for sources with constant entropy rate.We further construct dispersers, which are similar to one-sided extractors, whichuse an arbitrarily small constant times logn additional random bits for sourceswith constant entropy rate.We use our dispersers to derandomize the results of Hastad [6] and Feige-Kilian[5] and show that approximating Max Clique and Chromatic Number to withinn1�� are NP-complete, for any � > 0. We also derandomize the results of Khot [7]and show that there is a 
 > 0 such that no quasi-polynomial time algorithm ap-proximates the clique number or chromatic number to within n=2(logn)1�
 , unlessN~P = ~P.Our constructions rely on recent results in additive number theory and extrac-tors by Bourgain-Katz-Tao [3], Barak-Impagliazzo-Wigderson [1], Barak-Kindler-Shaltiel-Sudakov-Wigderson [2], and Raz [8]. We also simplify and slightly strengthenkey lemmas in the second and third of these papers.Deterministic Extractors for A�ne Sources over Large Fields | ArielGabizon. An (n; k)-a�ne source over a �nite �eld F is a random variable X =(X1; :::; Xn) 2 Fn , which is uniformly distributed over an (unknown) k-dimensionala�ne subspace of Fn . For the case of su�ciently large �elds, we improve over [2]and show how to (deterministically) extract practically all the randomness froma�ne sources, for any �eld of size larger than nc (where c is a large enough con-stant). Our main results are as follows:1. (For arbitrary k): For any n; k and any F of size larger than n20, we givean explicit construction for a function D : Fn ! Fk�1 , such that for any(n; k)-a�ne source X over F, the distribution of D(X) is �-close to uniform,where � is polynomially small in jFj.2. (For k = 1): For any n and any F of size larger than nc, we give an explicitconstruction for a function D : Fn ! f0; 1g(1��) log2 jFj, such that for any(n; 1)-a�ne source X over F, the distribution of D(X) is �-close to uniform,where � is polynomially small in jFj. Here, � > 0 is an arbitrary smallconstant, and c is a constant depending on �.Joint work with Ran Raz. References[1] B. Barak, R. Impagliazzo, and A. Wigderson. Extracting randomness from few independentsources. In Proc. 45th FOCS , 2004.



Complexity Theory 65[2] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, and A. Wigderson. Simulating independence:New constructions of condensers, Ramsey graphs, dispersers, and extractors. In Proceedingsof the 37th Annual ACM Symposium on Theory of Computing, pages 1{10, 2005.[3] J. Bourgain, N. Katz, and T. Tao. A sum-product estimate in �nite �elds, and applications.Geometric and Functional Analysis, 14:27{57, 2004.[4] S. Konyagin. A sum-product estimate in �elds of prime order. Arxiv technical report,http://arxiv.org/abs/math.NT/0304217, 2003.[5] U. Feige and J. Kilian. Zero knowledge and the chromatic number. Journal of Computerand System Sciences, 57:187{199, 1998.[6] J. H�astad. Clique is hard to approximate within n1��. Acta Mathematica, 182:105{142,1999.[7] S. Khot. Improved inapproximability results for MaxClique, Chromatic Number and Ap-proximate Graph Coloring. In Proceedings of the 42nd Annual IEEE Symposium on Foun-dations of Computer Science, pages 600{609, 2001.[8] R. Raz. Extractors with weak random seeds. In Proceedings of the 37th Annual ACM Sym-posium on Theory of Computing, pages 11{20, 2005.Specialized Session on PseudorandomnessRonen Shaltiel (Session Chair)This summary covers two talks which were given in the informal \pseudoran-domness session". The �rst given by Ronen Shaltiel is based on the paper [1] andthe second given by Avi Wigderson is based on the paper [2].Pseudorandomness for approximate counting and sampling - RonenShaltiel. We study computational procedures that use both randomness and non-determinism. Examples are Arthur-Merlin games and approximate counting andsampling of NP-witnesses. The goal of this paper is to derandomize such proce-dures under the weakest possible assumptions.Our main technical contribution allows one to \boost" a given hardness as-sumption. One special case is a proof thatEXP 6� NP=poly) EXP 6� PNPjj =poly:In words, if there is a problem in EXP that cannot be computed by poly-sizenondeterministic circuits then there is one which cannot be computed by poly-size circuits which make non-adaptive NP oracle queries. This in particular showsthat the various assumptions used over the last few years by several authors toderandomize Arthur-Merlin games (i.e., show AM = NP) are in fact all equiva-lent. In addition to simplifying the framework of AM derandomization, we showthat this \uni�ed assumption" su�ces to derandomize several other probabilisticprocedures.For these results we de�ne two new primitives that we regard as the naturalpseudorandom objects associated with approximate counting and sampling of NP-witnesses. We use the \boosting" theorem (as well as some hashing techniques) toconstruct these primitives using an assumption that is no stronger than that usedto derandomize Arthur-Merlin games. As a consequence, under this assumption,



66 Oberwolfach Report 26/2005there are deterministic polynomial time algorithms that use non-adaptive NP-queries and perform the following tasks:� approximate counting of NP-witnesses: given a Boolean circuit A, output rsuch that (1� �)jA�1(1)j � r � jA�1(1)j.� pseudorandom sampling of NP-witnesses: given a Boolean circuit A, pro-duce a polynomial-size sample space that is computationally indistinguish-able from the uniform distribution over A�1(1).We also present applications. For example, we observe that Cai's proof thatSp2 � ZPPNP and the learning algorithm of Bshouty et al. can be seen as areduction to sampling that is not probabilistic. As a consequence they can bederandomized under the assumption stated above, which is weaker than the as-sumption that was previously known to su�ce.Joint work with Chris Umans.A Randomness-E�cient Sampler for Matrix-valued Functions and Ap-plications - Avi Wigderson. In this paper we give a randomness e�cient sam-pler for matrix-valued functions. Speci�cally, we show that the random walk on anexpander approximates the recent Cherno�-like bound for matrix-valued functionsof Ahlswede and Winter, in a manner which depends optimally on the spectralgap. The proof uses perturbation theory, and is a generalization of Gillman's andLezaud's analysis of the Ajtai-Komlos-Szemeredi sampler for real-valued functions.Derandomizing our sampler gives a few applications, yielding deterministicpolynomial time algorithms for problems in which derandomizing independentsampling gives only quasipolynomial time deterministic algorithms. The �rst(which was our original motivation) is to a polynomial-time derandomization ofthe Alon-Roichman theorem: given a group of size n, �nd O(log n) elementswhich generate it as an expander. This implies a second application - e�cientlyconstructing a randomness-optimal homomorphism tester, signi�cantly improvingthe previous result of Shpilka andWigderson. The third is to a \non-commutative"hypergraph covering problem - a natural extension of the set-cover problem whicharises in quantum information theory, in which we e�ciently attain the integralitygap when the fractional semi-de�nite relaxation cost is constant.Joint work with David Xiao. References[1] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling. InProc. of 20th IEEE conference on computational complexity, 2005.[2] A. Wigderson and D. Xiao. A Randomness-E�cient Sampler for Matrix-valued Functionsand Applications. To appear in Proc. of 46th IEEE conference on foundations of computerscience, 2005.



Complexity Theory 67Specialized Session on the Complexity of Low Distortion EmbeddingsMuli Safre (Session chair)Embeddings of one metric space into another have been investigated for manyyears, as an active area of Banach spaces, (see Johnson-Lindenstrauss lemma, andBourgain's upper-bound). One considers a mapping of one metric space M to ametric space M' with the smallest distortion, namely when all distances betweenany pair of mapped points are within some factor of the distances between the orig-inal preimage points. Embeddings recently were shown to be a proli�c algorithmicmethodology [6, 1]The shortest path between points in an undirected graph is a metric. One canconsider embedding such a given metric in another, simpler metric, and applyinga known algorithmic on that simpler metric, so as to altogether solve the problemat hand. The simplest metric possible for such purposes is the L1 metric. A lowdistortion embedding into L1 amounts to an embedding into the binary hypercube,hence translates shortest distance into Hamming distance.There are many other potential ways by which to apply embedding techniques toe�ciently solve computational problems. In fact, Semi De�nite Programming [4]can be thought of as a related technique, where one maps a graph into the Eu-clidean sphere. Recent results regarding computing the expansion of a graph, ormore generally the sparsest cut [1] in a graph, namely, where a set of demand isimposed and the cut need to satisfy as many of those as possible.It is therefore worthwhile to consider whether one metric embeds into anotherwith as low as possible distoryion. And if indeed that is the case what is thecomputational complexity of such embeddings. Such results were shown recentlyby Khot and Vishnoy and by Khot and Naor (in as of yet unpublished papers)for the L1 metric. An exciting aspect of these results is their use of Analysis ofBoolean Functions [5, 3, 2]. Speci�cally, in order to prove such non embedabil-ity results one should apply one of the theorems proved regarding in
uences oflow-degree functions, namely Boolean function whose Fourier transform weight isconcentrated of small characters. It also seems to be the case that in order to im-prove such results one have to rely on and hopefully prove some open conjectureregarding the distribution of the Fourier weight of Boolean functions with ratherhigh degree. References[1] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander 
ows, geometric embeddingsand graph partitioning.[2] J. Bourgain. On the distribution of the fourier spectrum of boolean functions. to appear inIsrael J. of Math., 2001.[3] Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates.Combinatorica, 18(1):27{35, 1998.[4] Michel X. Goemans and David P. Williamson. Improved Approximation Algorithms for Max-imum Cut and Satis�ability Problems Using Semide�nite Programming. J. Assoc. Comput.Mach., 42:1115{1145, 1995.



68 Oberwolfach Report 26/2005[5] J. Kahn, G. Kalai, and N. Linial. The in
uence of variables on Boolean functions. In IEEE,editor, 29th annual Symposium on Foundations of Computer Science, October 24{26, 1988,White Plains , New York, pages 68{80. IEEE Computer Society Press, 1988.[6] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of itsalgorithmic applications. Combinatorica, 15:215{245, 1995.
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