On the Number of Monochromatic Close Pairs of Beads in a Rosary

September 1984
(revised May 1986)

Oded Goldreich

MIT – Laboratory for Computer Science
Cambridge, Massachusetts 02139

Abstract — We consider the following problem: Let \(r \) be a \(n \)-bead rosary with \(m \) white beads and \(n - m \) black beads. Let \(t \) be an integer, \(t \ll n \). Denote by \(MC_t(r) \) the number of pairs, of monochromatic beads which are within distance \(t \) apart, in the rosary \(r \). What is the minimum value of \(MC_t(\cdot) \), when the minimum is taken over all \(n \)-bead rosaries which consists of \(m \) white beads and \(n - m \) black beads?

We prove a (reasonably) tight lower bound for this combinatorial problem. Surprisingly, when \(m = n/2 \), the answer is \(\approx (\sqrt{2} - 1) \cdot nt \), rather than \(nt/2 \) that one might have expected.

1. INTRODUCTION

This article addresses the following problem: For integers \(n, m, t \) \((n/2 \leq m < n, \ t \ll n) \) consider cyclic strings of \(m \) ones and \(n - m \) zeros. Count the number of pairs of equal bits which are at most \(t \) places apart. What is the minimum of this count?

As one might have expected, the answer is essentially \(v_t^n \cdot nt \), where \(v_t^n \) is a constant depending only on \(t \) and \(\rho = m/n \) (the fraction of ones in the string). However, the expression we get for \(v_t^n \) is somewhat surprising:

\[
v_t^n = \sqrt{4 + 8\rho^2 - 8\rho} \cdot \frac{t+1}{t} - \frac{t+1}{t}
\]

In particular, \(v_t^n \) converges to \(\sqrt{2} - 1 \approx 0.414 \) (not to \(1/2 \)), when \(t \) grows.

The above combinatorial problem occurred to us when trying to analyze the performance of a special purpose oracle-sampling technique (for more details see our technical report [1]). An alternative formulation of the problem was suggested by one of the referees. Let \(n, m, t \) be integers as above. Let \(G_{n,t} \) be the graph with vertex set \(\{1, 2, \ldots, n\} \), where \(i \) and \(j \) are adjacent if \(|i - j| \leq t \) or \(n - |i - j| \leq t \). What is the largest cut in \(G_{n,t} \) with \(m \) vertices on one side and \(n - m \) vertices on the other side?

* Ignoring additive “error” terms of the form \(O(t^2 + n/t) \).
2. DEFINITIONS AND CONVENTIONS

Let \(s = (s_0, s_1, \ldots, s_{n-1}) \) be a binary string of length \(n = |s| \). Following the description of the introduction, we let \(c_t(s) \) count the number of equal and close bits. Namely

\[
c_t(s) \overset{\text{def}}{=} \left| \{(i, j) : 0 \leq i < j < n \land s_i = s_j \land \delta(i, j) \leq t \} \right|
\]

where \(\delta(i, j) \) is the cyclic distance between \(i \) and \(j \) (i.e., \(\delta(i, j) = \min\{|j - i|, n - |j - i|\} \)). An alternative definition of \(c_t \) follows (indices are computed modulo \(n \))

\[
c_t(s) = \sum_{i=1}^{t} \left| \{j : 0 \leq j < n \land s_j = s_{j+i} \} \right|
\]

Let \(n \) and \(m \) be integers such that \(0.5n \leq m < n \). Let \(\rho \overset{\text{def}}{=} \frac{m}{n} \). We denote by \(S^\rho_n \) the set of \(n \)-bit binary strings with \(m = \rho n \) ones (and \(n - m \) zeros). Denote by \(C(n, \rho, t) \) the minimum value of the count \(c_t(\cdot) \) divided by \(nt \), when minimized over all strings in \(S^\rho_n \). That is

\[
C(n, \rho, t) = \frac{1}{nt} \cdot \min_{s \in S^\rho_n} \{c_t(s)\}
\]

Throughout the article, we assume that \(t < \frac{n}{2} \) and \(t > \rho/(1 - \rho) \). The other cases are less interesting and easily reducible to the case we consider. Further details can be found in our technical report [1].

Proposition 1: Let \(sh_i(s) = (s_i, s_{i+1}, s_{i+2}, \ldots, s_{i+n-1}) \). Then \(c_t(s) = c_t(sh_i(s)) \).

Prop. 1 follows directly from the definitions which consider strings as if they were cycles. From this point on, we also take the liberty of doing so.

3. LOWER BOUND ON \(C(n, \rho, t) \)

We will analyze \(C(n, \rho, t) \) as follows: first we will show that the minimum of \(c_t(\cdot) \) is acheived by strings which belong to a restricted subset of \(S^\rho_n \), and next we will minimize \(c_t(\cdot) \) over this subset. This will establish a lower bound on \(C(n, \rho, t) \).

When evaluating \(c_t(s) \), it may be of use to consider “lines” which connect positions that contain equal values and are less than \(t \) bits apart in the string \(s \). Since \(t < \frac{n}{2} \), there is only one way to draw the lines. These lines are hereafter called *overlines*. Note that \(c_t(s) \) is nothing but the number of overlines in the string \(s \).

3.1 Reduction into a restricted subset

In this subsection we will show that when analysing \(C(n, \rho, t) \) it suffices to consider strings in \(S^\rho_n \) which have the following two properties:

- [a] The string contains no short 3-alternating substrings (see Definition 1 below).
- [b] The string contains no long homogenous substrings (see Definition 2 below).
Definition 1: A 3-alternating substring is a substring of the form $\sigma^+ \tau^+ \sigma^+ \tau^+$, where $\sigma \neq \tau \in \{0, 1\}$. (Here, and throughout this article, σ^+ denotes a non-empty string of σ's.) A 3-alternating substring is called short if it has length at most $t + 1$.

Definition 2: A long homogenous substring is a substring of the form σ^{t+1}, where $\sigma \in \{0, 1\}$.

We first build up tools to prove that it suffices to consider strings with no short 3-alternating substrings (Prop. 2 through 6, culminating in Lemma 1). Next we prove that with no loss of generality, also the second condition holds (Lemma 2).

3.1.1 Getting rid of short 3-alternating substrings

Proposition 2: Let $\sigma_j \in \{0, 1\}$, for $1 \leq j \leq 2t$. Let α be an arbitrary binary string. Then

$$c_l(\sigma_1 \sigma_2 \cdots \sigma_j 10 \sigma_{j+1} \sigma_{j+2} \cdots \sigma_{2t} \alpha) - c_l(\sigma_1 \sigma_2 \cdots \sigma_j 01 \sigma_{j+1} \sigma_{j+2} \cdots \sigma_{2t} \alpha) = 2 \cdot (\sigma_1 - \sigma_{2t}).$$

Proof: The difference between the two counts is only due to the existence or non-existence of overlines between σ_1 and 1 and between 0 and σ_{2t}, respectively. Details are left to the reader. \qed

Note that switching τ_1 and τ_2 in the string $\sigma_1 \sigma_2 \cdots \sigma_j \tau_1 \tau_2 \sigma_{j+1} \sigma_{j+2} \cdots \sigma_{2t} \alpha$ results in the string $\sigma_1 \sigma_2 \cdots \sigma_j \tau_2 \tau_1 \sigma_{j+1} \sigma_{j+2} \cdots \sigma_{2t} \alpha$. The latter string has more overlines (than the former one) only in the case that $\sigma_1 = \tau_2 \neq \tau_1 = \sigma_{2t}$.

Proposition 3: Let α be a binary string, $\sigma \neq \tau \in \{0, 1\}$ and let x, y, z, u be integers such that $x + y \geq t$ but $y + z < t$. Then:

[a] $c_l(\sigma \tau^x \sigma^y \tau^{z-1} \sigma \tau \alpha) \leq c_l(\sigma \tau^x \sigma^y \tau^z \sigma \alpha)$.

[b] $c_l(\sigma \tau^x \sigma^y \tau^z \sigma \alpha) \leq c_l(\sigma \tau^x \sigma^y \tau^{z+1} \sigma \alpha)$.

Proof: Part (a) follows by switching in $\sigma \tau^x \sigma^y \tau^{z-1} \sigma \tau$ the σ on the l.h.s. of α with the τ on the l.h.s. of that σ; and recalling Prop. 2. (Notice that the symbol in $\sigma \tau^x \sigma^y \tau^z \sigma \alpha$ which is t bits to the left of “the switched τ” is also a τ.) Part (b) follows by z sequential applications of part (a). \qed

Prop. 3(b) will be used in order to get rid of short 3-alternating substrings. This will be done by scanning the string from left to right. Suppose that the string has the form $\alpha_1 \tau^x \sigma^y \tau^z \sigma \alpha_2$, where the $\alpha_1 \tau^x \sigma^y$ part contains no short 3-alternating substrings and $y + z < t$ (i.e. $\tau^y \sigma^y \tau^z \sigma$ is a short 3-alternating substring). Applying Prop. 3(b), we transform the string to $\alpha_1 \tau^x \sigma^y \tau^{z+1} \tau \alpha_2$ (without increasing the number of overlines). This is repeated until the $\sigma^+ \tau^+$ substring following $\alpha_1 \tau^x$ has length greater or equal to t.

Minor but crucial details which need to be considered are:

1. The procedure is initiated with α_1 being the empty string. But how is one guaranteed to have a substring of the form $\tau^x \sigma^y$ with $x + y \geq t$? The answer is given by Prop. 4.

2. The procedure is terminated when α_2 is empty. At this point there may be two short 3-alternating substrings. A better analysis shows that there may be only one (see Prop. 5).

Finally, we get rid of the possibly remaining short 3-alternating substring (see Prop. 6).
Proposition 4: Let $s \in S^n_\rho$ be a binary string such that $c_i(s) = nt \cdot C(n, \rho, t)$. Then there exist a string $s' \in S^n_\rho$, such that both the following conditions hold:
[a] The string s' contains a substring of the form $1^t0^+1^t$ the length of which is at least $t + 2$.
[b] $c_i(s') < c_i(s) + t^2$.

proof: W.l.o.g., s is not of the form 0^+1^+. Consider an arbitrary substring, α, of length t in s. Let z denote the number of zeros in α. Replacing α by 0^+1^{t-z} in the string s results in a string s', which satisfies condition (a). It is easy to see that $c_i(s') \leq c_i(s) + t(t - 1)$. \qed

Proposition 5: Let $s' \in S^n_\rho$ be a string, with the minimum number of overlines, which satisfies Prop. 4. (Recall that $c_i(s') < nt \cdot C(n, \rho, t) + t^2.$) Then with no loss of generality, the string s' contains at most one short 3-alternating substring.

proof's sketch: By the hypothesis, s' contains a substring of length at least $t + 2$ which has the form $1^t0^+1^t$. Using the procedure outlined above (after Prop. 3), we scan s' and transform it so that none of the scanned 3-alternating substrings is short. We stop before scanning the last unscanned $0^+1^+0^1$ substring. The reader may easily verify that the above process does not increase the number of overlines, since Prop. 3(b) is used in the substitutions. For more details, see [1]. \qed

Proposition 6: Let $s' \in S^n_\rho$ be a string as in Prop. 5. Then there exist a string $s'' \in S^n_\rho$ satisfying the following two conditions:
[a] The string s'' contains no short 3-alternating substring.
[b] $c_i(s'') < c_i(s') + t^2$.

proof: By the hypothesis s' contains at most one short 3-alternating substring. Assume that such a unique $0^+1^+0^1$ substring of length less than $t + 2$ does exist (i.e. $y + z < t$). Replacing this substring in s' by the substring $0^+1^+1^01$ results in a string s''. Note that s'' satisfies (a). To conclude note that $c_i(s'') < c_i(s') + t^2 - t$. The proposition follows. \qed

Definition: Let R^n_ρ be the set of strings which belong to S^n_ρ and do not have short 3-alternating substrings. $C_R(n, \rho, t)$ will denote $\min_{r \in R^n_\rho} \frac{1}{nt} \cdot c_i(r)$.

Lemma 1: $C(n, \rho, t) > C_R(n, \rho, t) - \frac{t^2}{n}$.

proof: Immediate by Prop. 4, 5 and 6. \qed

3.1.2 Getting rid of long homogenous substrings

We now define even a more restricted subset of S^n_ρ:

Definition: The set MR^n_ρ is the subset of strings which belong to R^n_ρ and do not have long homogenous substrings. $C_{MR}(n, \rho, t)$ will denote $\min_{r \in MR^n_\rho} \frac{1}{nt} \cdot c_i(r)$.

Next, we show that a string, $r_0 \in R^n_\rho$, with minimum overlines can be transformed into a string $r'_0 \in MR^n_\rho$, such that $n' \approx n$, $\rho' \approx \rho$ and $c_i(r'_0) \approx c_i(r_0)$.

Proposition 7: Let $r_0 \in R^n_\rho$ be a string with minimum number of overlines (i.e. $c_i(r_0) = nt \cdot C_R(n, \rho, t)$). Then:
[a] For $\sigma \in \{0,1\}$, if r_0 contains a substring of more than t consecutive σ's then r_0 contains no block of less than t consecutive σ's. Furthermore, without loss of generality, r_0 contains at most one substring of more than t consecutive σ's.

[b] The string r_0 has no substring of the form σ^{2t}.

[c] There exist a $k < t$, a $\rho' \geq \rho$ and a $r'_0 \in MR^0_{n+k}$ such that $c_t(r_0) \geq c_t(r'_0) - kt$.

proof:

Part (a): Omitting one σ from a substring that contains more than t σ's decreases the number of overlines by exactly t. Adding one σ to a block of k σ's increases the number of overlines by t if $k \geq t$, and by less than t if $k < t$. Part (a) of the proposition follows easily.

Part (b): Assume on the contrary that r_0 contains a σ^{2t} substring, and let $\tau \neq \sigma \in \{0,1\}$. We first note that in both cases ($\sigma \in \{0,1\}$), the string r_0 contains a $\tau \tau$ substring. We omit a single τ from the $\tau \tau$ substring and insert it in the middle of the $\sigma^t \sigma^t$ substring, decreasing the number of overlines and yielding a contradiction.

Part (c): By part (a), r_0 contain at most one $0^t0^+ [1^t1^+]$ block. Also, if r_0 contains a 0^{t+j} substring then it contains also a 1^{t+j} substring. Let l denote the length of the longest 1^+ substring in r_0. By part (b), $l < 2t$. In case $l \leq t$, we are done. The interesting case is when $t < l < 2t$. Set $k = 2t - l$ and r'_0 to be the string which results from r_0 by the following procedure:

step 1: add k ones to the longest 1^+ block (yielding a 1^{2t} block);

step 2: if r_0 contains a 0^{t+u} block (when $u > 0$) then omit u zeros from the 0^{t+u} block and insert them in the middle of the 1^{2t} block.

step 3 (Recall that r_0 contains a 00 substring): if r_0 does not contain a 0^{t+1} block then omit a single 0 from a 00 substring and insert it in the middle of the 1^{2t} block.

Note that $\rho' = \frac{\rho_{n+k}}{n+k}$ is the fraction of ones in r'_0 (i.e. $r'_0 \in MR^0_{n+k}$). It is easy to see that $c_t(r'_0) < c_t(r_0) + kt$ and that $\rho' = \rho + \frac{(1-\rho)k}{n+k} > \rho$. Part (c) of the proposition follows. \hfill \square

Proposition 8: There exist $0 \leq k < t$ and $\rho' \geq \rho$ such that

$$ C_R(n, \rho, t) > C_{MR}(n + k, \rho', t) - \frac{t}{n}. $$

proof: By Prop. 7, $C_R(n, \rho, t) = \frac{1}{nt} \cdot \frac{1}{nt} \cdot (c_t(r_0) - t^2) \geq C_{MR}(n + k, \rho', t) - \frac{t}{n}$. \hfill \square

Lemma 2: Let $v(\rho, t)$ be a function which increases monotonely with ρ (when $\rho \geq 1/2$).

If $C_{MR}(n, \rho, t) \geq v(\rho, t)$ then $C_R(n, \rho, t) \geq v(\rho, t) - \frac{t}{n}$.

proof: Immediate by Prop. 8. \hfill \square
3.2 Lower bound for $C_{MR}(n, \rho, t)$

Recall that each of the strings in $MR_n^\rho \subset S_n^\rho$ has the following properties:

[a] The string contains no short 3-alternating substrings.
[b] The string contains no long homogenous substrings.

3.2.1 Introducing localized counting

We will rely on the above properties of the strings in MR_n^ρ in order to bound $C_{MR}(n, \rho, t)$. Given a string $r \in MR_n^\rho$ we will introduce an expression, for $c_i(r)$, which depends only on the numbers of bits in each maximal substring of consecutive equal bits. In other words, we will introduce a localized counting of $c_i(r)$.

Definition: We say that b is a block (an all-σ-block) of the string r if it is a maximal substring of equal bits. That is $b = \sigma^+$ and $r = \tau b \tau a$, where $\tau \neq \sigma$ and a is an arbitrary string.

Notations: Let q denote the number of all-zero [all-one] blocks in r. Beginning from an arbitrary position between an all-one block and an all-zero block and going cyclically from left to right; number the blocks of consecutive zeros [ones] by $0, 1, 2, \ldots, (q - 1)$. Denote by z_i the number of zeros in the i-th all-zero-block and by y_i the number of ones in the i-th all-one-block. That is, $r = 0^{z_0}1^{y_0}0^{z_1}1^{y_1} \ldots 0^{z_{q-1}}1^{y_{q-1}}$.

Proposition 9: Let $r \in MR_n^\rho$. Overlines occur (in r) only either within a block or between two consecutive blocks (of the same bit).

proof: Immediate from the fact that r does not contain short 3-alternating substrings. \square

The above suggests evaluating the number of overlines (in r) by counting the “contribution” of each block to it. This counting proceeds as follows:

Block-Localized Counting (with respect to a block of length l in r):

[a] The number of overlines within the block, denoted I_l.
[b] The number of overlines between bits of the blocks neighbouring this block (i.e. the first block on its left and the first block on its right), denoted B_l.

Notations: Let $f(l)$ denote the total “contribution” of a l-bit long block. That is

$$f(l) \overset{\text{def}}{=} I_l + B_l$$

Proposition 10: Let $r \in MR_n^\rho$.

[a] $c_i(r) = \sum_{i=0}^{q-1} f(y_i) + \sum_{i=0}^{q-1} f(z_i)$, where $r = 0^{z_0}1^{y_0}0^{z_1}1^{y_1} \ldots 0^{z_{q-1}}1^{y_{q-1}}$.
[b] For $l < t$, $I_l = \binom{t}{l}$ and $B_l = \sum_{i=0}^{t-l} i$. For $l = t$, $I_l = \binom{t}{t}$ and $B_l = 0$.
[c] If $1 \leq l \leq t$ then $f(l) = l^2 - (t + 1)l + \frac{t^2 + t}{2}$.

proof: Part (a) follows by Prop. 9. One can easily verify the validity of Parts (b). Part (c) follows immediately from Part (b). \square
3.2.2 Finding the minimum

Notations: Let

\[g(x_0, x_1, \ldots, x_{q-1}) \overset{\text{def}}{=} \sum_{i=0}^{q-1} f(x_i) \]

Proposition 11: For fixed \(q, t \) and \(k \), the minimum value of the function \(g(x_0, x_1, \ldots, x_{q-1}) \), subject to the constraints \(0 < x_0, x_{q-1} < t \) and \(\sum_{j=0}^{q-1} x_j = k \), is obtained at \(x_0 = \cdots = x_{q-1} = \frac{k}{q} \).

Proof: By Prop. 10(c), \(g(x_0, x_1, \ldots, x_{q-1}) = \sum_{j=0}^{q-1} x_j^2 - (t+1) \cdot k + \frac{1}{2} t (t+1) \cdot q \) (Use \(0 < x_i \leq t \)). The function \(g(\cdot, \cdot, \cdot) \) is a quadratic form in the \(x_i \)'s. \(\square \)

Notation:

\[h_n^\rho(q) \overset{\text{def}}{=} q \cdot \left(f\left(\frac{n}{q} \right) + f\left(\frac{n - \rho n}{q} \right) \right) \]

Proposition 12: Let \(Q \) be the set of integers \(q \), satisfying \(\frac{\rho n}{t} \leq q \leq n - \rho n \). Then

\[
C_{MR}(n, \rho, t) \geq \frac{1}{nl} \cdot \min_{q \in Q} \{ h_n^\rho(q) \}
\]

Proof: Immediate by combining Prop. 10(a) and 11, using the fact that \(r \in MR_n^\rho \) contains no long homogeneous substrings. \(\square \)

Proposition 13:

\[
h_n^\rho(q) = \frac{t+1}{n} \cdot q + \frac{(1 + 2\rho^2 - 2\rho)n}{t} \cdot \frac{1}{q} \cdot \frac{t+1}{t}.
\]

The minimum of the function \(h_n^\rho(\cdot) \), over \(q \in Q \), is obtained at:

\[
q_{min} \overset{\text{def}}{=} \sqrt{\frac{1 + 2\rho^2 - 2\rho}{t(t+1)}} \cdot n.
\]

The minimum value, \(h_n^\rho(q_{min}) \), is:

\[
v_t^\rho \overset{\text{def}}{=} \sqrt{(4 + 8\rho^2 - 8\rho) \cdot \frac{t+1}{t} - \frac{t+1}{t}}
\]

Combining Prop. 12 and 13, we get

Lemma 3: \(C_{MR}(n, \rho, t) \geq v_t^\rho \).

3.3 The Lower Bound Theorem

Combining Lemmas 1, 2 and 3, we get

Theorem 1: \(C(n, \rho, t) \) is at least

\[
\left(\sqrt{\left(2 + 8(\rho - \frac{1}{2})^2 \right) \cdot \frac{t+1}{t} - \frac{t+1}{t}} \right) - \frac{3t}{n}
\]
4. UPPER BOUND ON $C(n, \rho, t)$

In this section we demonstrate the tightness of the lower bound presented above. Namely,

Theorem 2: $C(n, \rho, t)$ is at most

$$
\left(\sqrt{(2 + 8(\rho - \frac{1}{2})^2) \cdot \frac{t + 1}{t}} - \frac{t + 1}{t} \right) + \frac{t + 1}{n} + \frac{1}{2t^2}
$$

proof: The Theorem follows from observing that the proof of the lower bound specifies the structure of a string which achieves minimum $c_t(\cdot)$ among all strings in MR_n^n. The only problem in constructing such a string is that non-integer numbers, of blocks and block sizes, may appear. The reader can easily verify that the “overline” added by rounding-up the number of blocks and their sizes is less than $\frac{t + 1}{n}$ and $\frac{1}{2t^2}$, respectively. For more details, see our technical report [1].

5. CONCLUSIONS

The reader may easily verify that the gap between the lower and upper bounds is $O(\frac{1}{t} + \frac{1}{n})$. Let us approximate the expressions given by the Theorems, ignoring these additive error terms. We get

[a] $C(n, 1, t) \approx \sqrt{2} - 1 \approx 0.414$

[b] $C(n, 0.676, t) < \frac{1}{t}$.

[c] $C(n, 0.677, t) > \frac{1}{t}$.

ACKNOWLEDGMENTS

I am indebted to Tom Leighton for teaching me how to count (overlaps). It is my pleasure to thank Michael Ben-Or, Benny Chor, Shafi Goldwasser, Hans Heller, Silvio Micali, Gary Miller, Ron Rivest and Avi Wigderson for very helpful discussions, useful ideas and consistent encouragement. I would also like to thank the referees for their suggestions.

REFERENCES