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1 IntroductionThis work deals with the oldest and probably most important problem of cryptography: en-abling private and reliable communication among parties that use a public communication channel.Loosely speaking, privacy means that nobody besides the legitimate communicators may learn thedata communicated, and reliability means that nobody may modify the contents of the data com-municated (without the receiver detecting this fact). Needless to say, a vast amount of researchhas been invested in this problem. Our contribution refers to a di�cult and yet natural setting oftwo parameters of the problem: the adversaries and the initial set-up.We consider only probabilistic polynomial-time adversaries. Still even within this framework,an important distinction refers to the type of adversaries one wishes to protect against: passiveadversaries only eavesdrop the channel, whereas active adversaries may also omit, insert and mod-ify messages sent over the channel. Clearly, reliability is a problem only with respect to activeadversaries (and holds by de�nition w.r.t passive adversaries). We focus on active adversaries.The second parameter mentioned above is the initial set-up assumptions. Some assumption ofthis form must exist or else there is no di�erence between the legitimate communicators, called Aliceand Bob, and the adversary (which may otherwise initiate a conversation with Alice pretending tobe Bob). We list some popular initial set-up assumptions and briey discuss what is known aboutthem.Public-key infrastructure: Here one assumes that each party has generated a secret-key anddeposited a corresponding public-key with some trusted server(s). The latter server(s) may beaccessed at any time by any user.It is easy to establish private and reliable communication in this model (cf. [18, 41]). (However,even in this case, one may want to establish \session keys" as discussed below.)Shared (high-quality) secret keys: By high-quality keys we mean strings coming from distribu-tion of high min-entropy (e.g., uniformly chosen 56-bit (or rather 192-bit) long strings, uniformlychosen 1024-bit primes, etc). Furthermore, these keys are selected by a suitable program, andcannot be memorized by humans.In case a pair of parties shares such a key, they can conduct private and reliable communication(cf., [11, 45, 24]).Shared (low-quality) secret passwords: In contrast to high-quality keys, passwords are stringsthat may be easily selected, memorized and typed-in by humans. An illustrating (and simpli�ed)example is the case in which the password is selected uniformly from a relatively small dictionary;that is, the password is uniformly distributed in D � f0; 1gn, where jDj = poly(n).Note that using such a password in the role of a cryptographic key (in schemes as mentionedabove) will yield a totally insecure scheme. A more signi�cant observation is that the adversarymay try to guess the password, and initiate a conversation with Alice pretending to be Boband using the guessed password. So nothing can prevent the adversary from successfully im-personating Bob with probability 1=jDj. But can we limit the adversary's success to about thismuch?The latter question is the focus of this paper.Session-keys: The problem of establishing private and reliable communication is commonly re-duced to the problem of generating a secure session-key (a.k.a \authenticated key exchange").Loosely speaking, one seeks a protocol by which Alice and Bob may agree on a key (to be used3



throughout the rest of the current communication session) so that this key will remain unknownto the adversary.1 Of course, the adversary may prevent such agreement (by simply blocking allcommunication), but this will be detected by either Alice or Bob.1.1 What security may be achieved based on passwordsLet us consider the related (although seemingly easier) task of mutual authentication. Here Aliceand Bob merely want to establish that they are talking to one another. Repeating an observationmade above, we note that if the adversary initiates m � jDj instances of the mutual authenticationprotocol, guessing a di�erent password in each of them, then with probability m=jDj it will succeedin impersonating Alice to Bob (and furthermore �nd the password). The question posed above isrephrased here as follows:Can one construct a password-based scheme in which the success probability of anyprobabilistic polynomial-time impersonation attack is bounded by O(m=jDj)+�(n), wherem is the number of sessions initiated by the adversary, and �(n) is a negligible functionin the security parameter n?We resolve the above question in the a�rmative. That is, assuming the existence of trapdoorone-way permutations, we prove that schemes as above do exist (for any D and speci�cally forjDj = poly(n)). Our proof is constructive. We actually provide a protocol of comparable securityfor the more demanding goal of session-key generation.Main Result (informally stated): Assuming the existence of trapdoor one-way permutations,there exists a session-key generation protocol that satis�es the following properties in the password-only setting:� Key-match: For any (probabilistic polynomial-time) adversary controlling the channel, the prob-ability that the parties output di�erent session-keys without detecting this fact is bounded aboveby O(1=jDj).� Session-key and password secrecy: For any (probabilistic polynomial-time) adversary that triesto distinguish the session-key output by each party from a uniformly distributed n-bit string,the distinguishing gap (i.e., the di�erence in the probability that the adversary outputs 1 inthe two cases) is at most O(1=jDj) + �(n), where �(n) is a negligible function in the securityparameter n. Similarly, the distinguishing gap between the party's password and a uniformlydistributed element of D is at most O(1=jDj) + �(n).Similar claims hold when m sessions (referring to the same password) are conducted sequentially,with O(1=jDj) being replaced by O(m=jDj). This holds also when a polynomial number of othersessions w.r.t independently distributed passwords are conducted concurrently to the above msessions. Additional desirable properties of session-key protocols also hold:� Intrusion detection: if the adversary modi�es any message sent in a session then with probabilityat least 1�O(1=jDj) this is detected.� Forward secrecy: The session-key maintains its security even if the password is revealed afterthe session-key was established.1We stress that many famous key-exchange protocols, such as the one of Di�e and Hellman [18], refer to a passiveadversary. In contrast, this paper refers to active adversaries.4



� Loss of Session-Keys: The current session-key maintains its security even if prior session-keysare revealed. Furthermore, the password maintains its security even if all session-keys arerevealed. (This is also known as security against a known-key attack.)� Improved security in presence of a passive adversary: If the adversary is passive (i.e., does notomit, modify or insert messages) then both the legitimate parties end-up with the same uni-formly distributed session-key. From the adversary's point of view (which includes the messagesexchanged in this session) the session-key is computationally indistinguishable from a uniformlydistributed n-bit string, and the parties' joint password is computationally indistinguishablefrom a uniformly distributed element of D.Caveat: Our protocol is proven secure only when assuming that the same pair of parties (usingthe same password) does not conduct several concurrent executions of the protocol. We stress thatconcurrent sessions of other pairs of parties or of the same pair using a di�erent password, areallowed. See further discussion in section 1.4.1.2 Comparison to prior workThe design of secure mutual authentication and key-exchange protocols is a major e�ort of theapplied cryptography community. In particular, much e�ort has been directed towards the designof password-based schemes that should withstand active attacks.2 An important restricted case ofthe mutual authentication problem is the asymmetric case in which a human user authenticateshimself to a server in order to access some service. The design of secure access control mechanismsbased only on passwords is widely recognized as a central problem of computer practice and hassuch has received much attention.The �rst protocol suggested for password-based session-key generation, was by Bellovin andMerritt [6]. This work was very inuential and became the basis for much future work in thisarea [7, 43, 31, 34, 39, 44]. However, these protocols have not been proven and their security isbased on heuristics. Despite the strong need for secure password-based protocols, the problem wasnot treated rigorously until quite recently. For a survey of works and techniques related to passwordauthentication, see [35, 32] (a very brief survey can be found in [30]).A �rst rigorous treatment of the access control problem was provided by Halevi and Krawczyk [30].They actually considered an asymmetric hybrid model in which one party (the server) may hold ahigh-quality key and the other party (the human) may only hold a password. The human is alsoassumed to have secure access to a corresponding public-key of the server (either by reliable accessto a reliable server or by keeping a \digest" of that public-key, which they call a public-password).3The Halevi{Krawczyk model capitalizes on the asymmetry of the access control setting, and isinapplicable to settings in which communication has to be established between two humans (ratherthan a human and a server). Furthermore, requiring the human to keep the unmemorizable public-password (although not secretly) is undesirable even in the access control setting. Finally, we stress2In particular, a speci�c focus has been on preventing o�-line dictionary attacks. In such an o�-line attack, theadversary records his view from past protocol executions and then scans the dictionary for a password consistentwith this view. If checking consistency in this way is possible and the dictionary is small, then the adversary canderive the correct password.3The public-password is not memorizable by humans, and the human is supposed to carry a record of it. The goodpoint is that this record need not be kept secret (but rather merely needs to be kept reliably). Furthermore, in theHalevi{Krawczyk protocol, the human is never asked to type the public-password; it is only asked to compare thispassword to a string sent by the server during the protocol. (In the Halevi{Krawczyk protocol, the public-passwordis the hash-value of the server's public-key, where hashing is via a (universal) collision-intractable function.)5



that the Halevi{Krawczyk model is a hybrid of the \shared-key model" and the \shared-passwordmodel" (and so their results don't apply to the \shared-password model"). Thus, it is both oftheoretical and practical interest to answer the original question as posed above (i.e., without thepublic-password relaxation): Is it possible to implement a secure access control mechanism (andauthenticated key-exchange) based only on passwords?Positive answers to the original problem have been provided in the random oracle model. In thismodel, all parties are assumed to have oracle access to a totally random (universal) function [1].Secure (password-based) access control schemes in the random oracle model were presented in [5,13]. The common interpretation of such results is that security is likely to hold even if the randomoracle is replaced by a (\reasonable") concrete function known explicitly to all parties.4 We warnthat this interpretation is not supported by any sound reasoning. Furthermore, as pointed outin [16], there exist protocols that are secure in the random oracle model but become insecure if therandom function is replaced by any speci�c function (or even a function uniformly selected fromany family of functions).To summarize, this paper is the �rst to present session-key generation (as well as mutual au-thentication) protocols based only on passwords (i.e., in the shared-password model) and using onlystandard cryptographic assumptions (e.g., the existence of trapdoor one-way permutations, whichin turn follows from the intractability assumption regarding integer factorization).Necessary conditions for mutual authentication: Halevi and Krawczyk [30] proved thatmutual-authentication in the shared-password model implies (unauthenticated) secret-key exchange.Boyarsky [12] further pointed out that in the shared-password model, mutual-authentication impliesOblivious Transfer.51.3 TechniquesOne central idea underlying our protocol is due to Naor and Pinkas [38]. They suggested thefollowing protocol for the case of passive adversaries, based on a secure polynomial evaluation.6 Inorder to generate a session-key, party A �rst chooses a linear polynomial Q(�), uniformly distributedover a large �eld. Next, A and B execute a polynomial evaluation in which B obtains Q(w), wherew is their joint password. The session-key is then set to equal Q(w).In [12] it was suggested to make the above protocol secure against active adversaries, by usingnon-malleable commitments. This suggestion was re-iterated to us by Moni Naor, and in fact ourwork grew out of his suggestion. In order to obtain a protocol secure against active adversaries,we augment the abovementioned protocol of [38] by several additional mechanisms. Indeed, we usenon-malleable commitments [19], but in addition we also use a speci�c zero-knowledge proof [40],ordinary commitment schemes [8], a speci�c pseudorandom generator (of [11, 45, 10]), and mes-sage authentication schemes (MACs). The analysis of the resulting protocol is very complicated,even when the adversary initiates a single session. As explained below, we believe that these4An alternative interpretation is to view the random oracle model literally. That is, assume that such oracleaccess is available to all parties via some trusted third party. However, in such a case, we are no longer in the \trustnobody" model in which the question was posed.5Oblivious Transfer is known to imply (unauthenticated) secret-key exchange [33], but the other direction is notknown to hold.6In the polynomial evaluation functionality, parties A and B have a polynomial Q(�) and an element x for theirrespective inputs. The evaluation is such that A learns nothing, and B learns Q(x) (i.e., the functionality is de�nedby (Q;x) 7! (�;Q(x))). 6



complications are unavoidable given the current state-of-art regarding the concurrent execution ofprotocols.Although not explicit in the problem statement, the problem we deal with actually concernsconcurrent executions of a protocol. Even in case the adversary attacks a single session among twolegitimate parties, its ability to modify messages means that it may actually conduct two concurrentexecutions of the protocol (one with each party).7 Concurrent executions of some protocols wereanalyzed in the past, but these were relatively simple protocols. Although the high-level structure ofour protocol can be simply stated in terms of a small number of modules (say 6), the currently knownimplementations of some of these modules are quite complex. Furthermore, these implementationsare not known to be secure when two copies are executed concurrently. Thus, at the currentstate of a�airs, the analysis cannot proceed by applying some composition theorems to (two-party)protocols satisfying some concurrent-security properties (since neither such adequate theorems norsuch adequate protocols are known). Instead, we have to analyze our protocol directly. We doso by reducing the analysis of (two concurrent executions of) our protocol to the analysis of non-concurrent executions of related protocols. Speci�cally, we show how a successful adversary inthe concurrent setting contradicts the security requirements in the non-concurrent setting. Such\reductions" are performed several times, each time establishing some property of the originalprotocol. Typically, the property refers to one of the two concurrent executions, and it is shownto hold even if the adversary is given some secrets of the legitimate party in the second execution.The adversary is then given these secrets enabling him to e�ectively emulate the second executioninternally. Thus, only the �rst execution remains and the property can be directly proven. We stressthat this procedure is not applied \generically", but is rather applied to the speci�c protocol weanalyze while taking advantage of its speci�c structure (where some of this structure was designedso to facilitate our proof). Thus, our analysis is ad-hoc in nature, but still we believe that it caneventually lead to a methodology of analyzing concurrent executions of protocols.1.4 DiscussionThe thrust of this work is in demonstrating the feasibility of performing session-key generationbased only on (low-quality) passwords. Doing so, this work is merely the �rst step in a researchproject directed towards providing a good solution to this practical problem. We discuss threeaspects of this project that require further study.Concurrent executions: Our protocol is proven secure only when the same pair of parties(using the same password) does not conduct several concurrent executions of the protocol. Thus,actual use of our protocol requires a mechanism for ensuring that the same password is never usedin concurrent executions. A simple mechanism enforcing the above is to disallow a party to enter anexecution with a particular password if less than � units of time have passed since last entering anexecution with the same password. Indeed, it is desirable not to employ such a timing mechanism,and to prove that security holds also when many executions are conducted concurrently using thesame password.The de�nition of security: Our notion of session-key generation is stated in terms of a numberof properties that capture the intuitive security goals. Thus, we provide protocols satisfying (at the7Speci�cally, the adversary may execute the protocol with Alice while claiming to be Bob, concurrently to executingthe protocol with Bob while claiming to be Alice, and when these two executions refer to the same joint Alice{Bobpassword. 7



very least) a reasonable notion of security. Still, it is desirable to use \simulation-based de�nitions";that is, de�nitions that require secure protocols to emulate functionalities de�ned in an appropriateideal model (cf. [9, 36, 14]). We note that �nding the \right" de�nitions for the goals of session-keygeneration is far beyond the scope of this work, and is an ongoing research project even in the simplersetting in which parties may share high-quality keys (and not merely low-quality passwords). Theinterested reader is referred to [2, 3, 4, 42].E�ciency: It is indeed desirable to have more e�cient protocols than the one suggested by us.1.5 OrganizationIn Sections 2 and 3 we present the formal setting and our protocol for password-based session-keygeneration. Then, in Section 4 we present proof sketches of the main properties of our protocol.Following these sketches, we present the full proofs in Sections 5 to 10. The proof sketches arerather detailed and demonstrate our main techniques. Thus, we believe that a reading of the paperuntil the end of Section 4 is enough to obtain a good understanding of the results presented.2 Formal SettingIn this section we present notation and de�nitions speci�c to our setting as well as a de�nitionfor Authenticated Session-Key Generation. Given these, we state our main result. A securityparameter n is often implicit in our notations and discussions. We �rst present the followingnotations:� Let C be the channel (probabilistic polynomial time adversary) through which parties A and Bcommunicate. We adopt the notation of Bellare and Rogaway [2] and model the communicationby giving C oracle access to A and B. We denote by CA(x);B(y), the output of C when hecommunicates with A and B, holding respective inputs x and y. We denote C's view in thisexecution by view �CA(x);B(y)�.� The password dictionary is denoted by D � f0; 1gn. We denote � = 1jDj .� We denote by Un the uniform distribution over strings of length n.� For a set S, we denote x 2R S when x is chosen uniformly from S.� We use \ppt" as shorthand for probabilistic polynomial time.� We denote an unspeci�ed negligible function by �(n). That is, for every polynomial p(�) and forall su�ciently large n's, �(n) < 1p(n) . For functions f and g, we denote f � g if jf(n)� g(n)j <�(n).� We denote computational indistinguishability by c�.Some the de�nitions in Appendix A are presented in the non-uniform model of computation. Anumber of our proofs also seem to be in the non-uniform model, but can actually be carried out inthe uniform model. Thus a naive reading of our proofs makes our main result hold assuming theexistence of trapdoor permutations that cannot be inverted by polynomial size circuits. However,the same result can be achieved under the analogous uniform assumption.
8



2.1 (1� �)-indistinguishability and pseudorandomnessExtending the de�nition of computational indistinguishability, we de�ne the concept of (1 � �)-indistinguishability. Two ensembles are (1 � �)-indistinguishable if for every ppt machine, theprobability of distinguishing between them is at most negligibly greater than �. Thus, computationalindistinguishability coincides with 1-indistinguishability. The formal de�nition is as follows.De�nition 2.1 ((1� �)-indistinguishability): Let fXngn2N and fYngn2N be probability ensembles,so that for any n the distribution Xn (resp., Yn) ranges over strings of length polynomial in n.We say that the ensembles are (1 � �)-indistinguishable if for every probabilistic polynomial timedistinguisher D, for every polynomial p(�), all su�ciently large n's and all auxiliary informationw 2 f0; 1gpoly(n) jPr[D(Xn; 1n; w) = 1]� Pr[D(Yn; 1n; w) = 1]j < �+ 1p(n)De�nition 2.2 ((1 � �)-pseudorandomness): We say that fXngn2N is (1 � �)-pseudorandom if itis (1� �)-indistinguishable from fUngn2N.Similarly, we de�ne (1� �)-pseudorandom functions as follows.De�nition 2.3 ((1 � �)-pseudorandom function ensembles): Let F = fFngn2N be a function en-semble where for every n, the random variable Fn assumes values in the set of functions mappingn-bit long strings to n-bit long strings. Let H = fHngn2N be the uniform function ensemble inwhich Hn is uniformly distributed over the set of all functions mapping n-bit long string to n-bitlong strings.Then, a function ensemble F = fFngn2N is called (1��)-pseudorandom if for every probabilisticpolynomial-time oracle machine D, every polynomial p(�) and all su�ciently large n's���Pr[DFn(1n) = 1]� Pr[DHn(1n) = 1]��� < �+ 1p(n)2.2 Authenticated Session-Key GenerationWe now de�ne the requirements from an authenticated session-key generation protocol. Let C bean arbitrary ppt channel.De�nition 2.4 (Authenticated Session-Key Generation): P is a secure protocol for authenticatedsession-key generation based on passwords if it ful�lls the following requirements:� Input: A and B share a secret w 2R D, where � = 1=jDj.� Output: Each party outputs an n-bit string (called the key), denoted kA and kB respectively,and an accept/reject bit. The accept/reject bit is public (known to the adversary) and the keysare private.� Requirements:1. Viability: If C is passive8, then kA = kB. Furthermore, with respect to C's view, kA ispseudorandom and w is computationally indistinguishable from a random ~w 2R D.8That is, he does not modify, omit or insert any messages sent between A or B. However, he may attempt to learnsecret information from the messages sent. Passive adversaries are also referred to as semi-honest in the literature.9



The indistinguishability of w from ~w is formally stated as follows. If C is passive, thenthe ensembles nview �CA(W );B(W )� ;Wo and nview �CA(W );B(W )� ;fWo are computation-ally indistinguishable, where W;fW are independent and uniformly distributed in D.92. Key-Match: The probability that both A and B output accept and yet kA 6= kB is at mostO(�).3. Secrecy: There are two secrecy conditions:� Session-Key Secrecy: At the conclusion of the protocol, for every ppt channel C, kA andkB are (1�O(�))-pseudorandom with respect to C's view.� Password Secrecy: At the conclusion of the protocol, for every ppt channel C, w is(1�O(�))-indistinguishable from ~w 2R D with respect to C's view.The motivation behind our de�nition is as follows. The viability requirement refers to the caseof a passive adversary and in this case we demand that nothing (signi�cant) be learned of thepassword or the session-key. However, in the case of an active adversary such a level of security isimpossible because the adversary can always guess the password correctly with probability � (andcan verify its guess by seeing if the parties accept). Therefore the session-key generated can only be(1��)-pseudorandom, and no undesired events can be prevented with probability greater than 1��.Aside from this inherent limitation, a successful session-key generation execution must concludewith both parties having the same session-key (key-match). Furthermore, we wish the session-keygenerated to be (1 � O(�))-pseudorandom and that the protocol reveal no more than necessaryabout the password w (secrecy). We stress that the secrecy requirements hold even though theadversary is given the accept/reject bit. This formal requirement is necessary, since in practice thisinformation can be implicitly understood from whether or not the parties continue communicationafter the session-key generation protocol has terminated.We note that the above de�nition also enables mutual-authentication. This is because anadversary cannot cause a party to accept with a key that is not (1 � O(�))-pseudorandom to theadversary (session-key secrecy). As this key is secret, it can be used for explicit authentication viaa (mutual) challenge/response protocol.10 By augmenting the session-key protocol in such a way,we obtain explicit mutual-authentication.Non-Uniform Distributions over D: For simplicity, we assume that the parties share a uni-formly chosen w 2R D. However, our proofs hold for any distribution over any dictionary D0 sothat no element occurs with probability greater than �.2.3 Our Main ResultGiven De�nition 2.4, we can now formally state our main result.Theorem 2.5 Assuming the existence of trapdoor permutations, there exist secure protocols forauthenticated session-key generation based on passwords.9The pseudorandomness of kA, as well as the secrecy requirements below, are formally de�ned in an analogousmanner.10It is easy to show that such a key can be used directly to obtain a (1�O(�))-pseudorandom function which canthen be used in a simple challenge/response protocol. 10



2.4 Multi-Session SecurityThe de�nition above relates to two parties executing a single session-key generation protocol.Clearly, we are interested in the more general case where many di�erent parties run the protocolany number of times. In fact, it is enough to prove that a protocol is secure for a single invocationbetween two parties, by our de�nition, in order to show that it is secure in the multi-party andsequential multi-session case. In this section we briey discuss this issue.2.4.1 Many Invocations by Two PartiesLet A and B be parties who invoke m sequential executions of a session-key generation protocol.Given that we wish that an adversary gains no more than O(1) password guesses upon each invoca-tion, the security upon the m'th invocation should be O(m�) (e.g., the session-key is (1�O(m�))-pseudorandom and analogously for all other requirements). In Section 11 we prove that any securesession-key generation protocol maintains O(m�) security after m invocations. Intuitively, this isdue to the password-secrecy requirement which states that after a single invocation, the passwordis (1�O(�))-indistinguishable from a random password. Then, any \success" greater than O(m�)after m invocations can be reduced to learning more than O(�) about the password in a singleinvocation.Sequential vs Concurrent Executions for Two Parties: Our solution is proven secure only ifA and B do not invoke concurrent executions of the session-key generation protocol (with the samepassword). We stress that a scenario whereby the adversary invokes B twice or more (sequentially)during a single execution with A is not allowed. Therefore, in order to actually use our protocol,some mechanism must be used to ensure that such concurrent executions do not take place. Thiscan be achieved by having A and B wait � units of time between protocol executions (where �is greater than the time taken to run a single execution). Note that parties do not usually needto initiate session-key generation protocols immediately one after the other. Therefore, this delaymechanism need only be employed when an attempted session-key generation execution fails. Thismeans that parties not \under attack" by an adversary are not inconvenienced in any way.We note that this limitation does not prevent the parties from opening a number of di�erent(independently-keyed) communication lines. They may do this by running the session-key protocolsequentially, once for each desired communication line. However, in this case, they incur a delay of� units of time between each execution. Alternatively, they may run the protocol once and obtaina (1 � O(�))-pseudorandom session-key. This key may then be used as a shared, high-quality keyfor (concurrently) generating any polynomial number of (1�O(�))-pseudorandom session-keys; onefor each communication line (simple and e�cient protocols exist for this task).2.4.2 Many PartiesWe now briey discuss a generalization to the case where many parties execute the session-keyprotocol simultaneously. This includes the case that the adversarial channel controls any numberof the legitimate parties.11 Speci�cally, we claim that for m invocations of the protocol (whichmust be sequential for the same pair of parties and may be concurrent otherwise), the security isO(m�).We show this in the case ofm di�erent pairs, each pair executing a single invocation (the generalcase is similar). Consider m pairs of parties (A1; B1); : : : ; (Am; Bm) such that each pair shares a11The importance of this extension was pointed out by Boyarsky [12].11



secret password wi 2R D. (We do not assume that the A's and B's are distinct, yet do assumethat for each i 6= j, the passwords wi and wj are independently chosen.) We �rst focus on thesecurity of a pair of parties (Ai; Bi) when i is �xed. It is clear that the O(�) security holds becauseC can internally simulate all other executions by choosing wj 2R D for every j 6= i, and we obtaina reduction to the single-pair case. The same argument holds regarding the security of a randompair (Ai; Bi), where i 2R f1; : : : ;mg is chosen randomly before the execution begins.In the general case, we wish to analyze the security where i is not �xed or chosen at randomahead of time. Now, assume that there exists an adversary C and an index j 2 f1; : : : ;mg, such thatC succeeds with respect to (Aj ; Bj) with probability greater than O(m�). Then, C can be used tocontradict the O(�) security in the case that i is randomly chosen. This is because with probability1=m we have that i = j and therefore C succeeds with probability greater than O( 1m �m�) = O(�).We conclude that for every j, the security with respect to the (Aj ; Bj) execution is O(m�).3 Our Session-Key Generation ProtocolAll arithmetic below is over the �nite �eld GF(2n) which is identi�ed with f0; 1gn. For a review ofcryptographic tools used and some relevant notations, see Appendix A. In our protocol, we use asecure protocol for evaluating non-constant, linear polynomials. This protocol involves two partiesA and B; A has a non-constant, linear polynomial Q(�) 2 f0; 1g2n and B has a string x 2 f0; 1gn.The functionality is (Q;x) 7! (�;Q(x)); that is, A learns nothing and B learns the value Q(x)(and nothing else). The fact that A is supposed to input a non-constant, linear polynomial can beenforced by simply mapping all possible input strings to the set of such polynomials (this conventionis used for all references to polynomials from here on). We actually augment this protocol byhaving A also input a commitment to the polynomial cA 2 Commit(Q) and its correspondingdecommitment r (i.e., cA = C(Q; r)). Furthermore, B also inputs a commitment value cB . Thisaugmentation is needed to tie the polynomial evaluation to a value previously committed to in themain (higher level) protocol. The functionality is de�ned as follows:De�nition 3.1 (Augmented Polynomial Evaluation):� Input: A inputs a commitment cA and its corresponding decommitment r, and a linear, non-constant polynomial Q. B inputs a commitment cB and a value x.� Output:1. Correct Input Case: If cA = cB and cA = C(Q; r), then B receives Q(x) (and A receivesnothing).2. Incorrect Input Case: If cA 6= cB or cA 6= C(Q; r), then B receives ? (and A receivesnothing).We note that by [46, 27], this functionality can be securely computed (A provides the decommitmentand so the input conditions can be checked in polynomial time).3.1 The ProtocolLet f be a one-way permutation and b a hard-core of f .Protocol 1 (Session-Key Generation Protocol)12



� Input: A and B begin with a joint password w, which is supposed to be uniformly distributedin D.� Output: A and B output an accept/reject bit as well as session-keys kA and kB respectively(kA \should" equal kB).� The Protocol:1. Stage 1: Commit(a) A chooses a random, linear, non-constant polynomial Q over GF(2n).(b) A and B engage in a non-malleable commitment protocol in which A commits to thestring (Q;w) 2 f0; 1g3n. Denote the random coins used by B in the commitmentprotocol by rB and denote B's view of the execution of the commitment protocol byNMC(Q;w).12Following the commitment protocol, B sends his random coins rB to A. This has noe�ect on the security since the commitment protocol has already terminated.2. Stage 2: Pre-Key Exchange - In this stage the parties \exchange" strings �A and �B ,from which the output session-keys (as well as validation checks) are derived. Thus, �A and�B are called pre-keys.(a) A sends B a commitment c = Commit(Q) = C(Q; r) for a random r.(b) A and B engage in an augmented polynomial evaluation protocol. A inputs Q and(c; r); B inputs w and c.(c) We denote B's output by �B . (Note that �B \should" equal Q(w).)(d) A internally computes �A = Q(w).3. Stage 3: Validation(a) A sends the string y = f2n(�A) to B.(b) A proves to B in zero-knowledge that she input the same polynomial in both the non-malleable and ordinary commitments, and that the value y is \consistent" with thenon-malleable commitment. Formally, A proves the following statement:There exists a string (X1; x2) 2 f0; 1g3n and random coins rA;1; rA;2 (where rA;1 andrA;2 are A's random coins in the non-malleable and ordinary commitments respectively)such thati. B's view of the non-malleable commitment, NMC(Q;w), is identical to the re-ceiver's view of a non-malleable commitment to (X1; x2), where the sender andreceiver's respective random coins are rA;1 and rB. (Recall that rB is the string ofB's random coins in the non-malleable commitment.)13ii. c = C(X1; rA;2), andiii. y = f2n(X1(x2)).12Recall that B's view consists of his random coins and all messages received during the commitment protocolexecution.13The view of a protocol execution is a function of the parties' respective inputs and random strings. Therefore,(X1; x2), rA;1 and rB de�ne a single possible view. Furthermore, recall that B sent rB to A following the commitmentprotocol. Thus A has NMC(Q;w) (which includes rB), the committed-to value (Q;w) and rA;1, enabling him toe�ciently prove the statement.
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The speci�c zero-knowledge proof of Richardson and Kilian [40] is used here, with aspeci�c setting of parameters; see Appendix A.4.14(c) Let tA be the entire session transcript as seen by A (i.e., the sequence of all messagessent and received by A) and let MACk be a message authentication code, keyed by k.Then, A computes k1(�A) def= b(�A) � � � b(fn�1(�A)) and sends m = MACk1(�A)(tA) toB.4. Decision Stage(a) A always accepts and outputs k2(�A) def= b(fn(�A)) � � � b(f2n�1(�A)).(b) B accepts if and only if all the following conditions are ful�lled:� y = f2n(�B) where y is the string sent by A to B in step 3(a) above and �B is B'soutput from the polynomial evaluation.(Note that if �B = ? then no string ful�lls this equality and B always rejects.)� he accepts the zero-knowledge proof in step 3(b) above, and� Verifyk1(�B)(tB ;m) = 1, where tB is the session-transcript as seen by B, the stringm is the alleged-MAC value that B receives, and k1(�B) = b(�B) � � � b(fn�1(�B)) isthe MAC key used in veri�cation.If B accepts, then he locally outputs k2(�B) = b(fn(�B)) � � � b(f2n�1(�B)), otherwisehe outputs a random string. (Recall that the accept/reject decision bit is considered apublic output.)It is imperative that A and B always accept or reject based solely on these criteria, andthat they do not halt (before this stage) even if they detect malicious behavior.In our description of the protocol, we have related only to parties A and B. That is, we haveignored the existence of the channel C. Therefore, when A sends a string y to B, we \pretend"that B actually received y and not something else. In a real execution, this may not be the case atall. In the future we will therefore subscript every value by its owner, as we have denoted �A and�B in the protocol. For example, A sends a string yA and we denote the string received by B byyB.3.2 Motivation for the ProtocolWe now briey motivate the design principle and structure of our protocol. The core of the session-key generation is the polynomial evaluation. In the case of a passive channel, executing a securepolynomial evaluation with a random, linear polynomial is a satisfactory protocol. That is, Achooses a random Q and inputs it to a polynomial evaluation with B who inputs w and receivesQ(w). Party A then internally computes Q(w) and both parties use this value as the session-key.The key is uniformly distributed (since Q is random and linear) and due to the secrecy requirements,the protocol reveals nothing of w and Q(w) to a passive C.Attacks by an Adversarial Channel: In our case the channel can alter messages, causing Bto receive Q0(w) 6= Q(w). This clearly contradicts the key-match requirement (see De�nition 2.4),but there are also strategies for which C can contradict the session-key secrecy requirement aswell. For example, C can execute the polynomial evaluation with B, inputting a polynomial Q014The setting of parameters referred to relates to the number of iterations m in the �rst part of the Richardson-Kilian proof. We set m to equal the number of rounds in all other parts of our protocol plus t(n), where t(�) is anynon-constant function. 14



that he chooses (independent of the execution with A). In this case, B's output key is clearly not(1 � O(�))-pseudorandom (unless D is super-polynomial in size). C may distinguish Q0(w) froma uniformly distributed string by scanning the entire dictionary D and comparing Q0(w0) for allw0 2 D to the challenge. Note that this is feasible here since D may be polynomial in size and Cknows Q0.\Controlling" the Channel: The commit and validation stages ensure that C cannot \modify"Q to Q0 6= Q and have B accept. In the commit stage, B is supposed to receive a commitmentto (Q;w). Loosely speaking, the zero-knowledge proof and B's check that yB = f2n(�B), ensurethat if the commitment is to (Q0; w0) where w0 6= w, then B will reject. However, the secrecy of anordinary commitment scheme does not prevent C from generating a commitment to (Q0; w) basedon A's commitment to (Q;w) (even though w is secret and unknown to C). It is for this reasonthat we use non-malleable commitments (see Section A.3). Thus, if C modi�es the commitmentsent by A, the probability that it is of the form (Q0; w) (for Q0 6= Q) is at most negligibly greaterthan �.On the other hand, if C does not modify the commitment sent by A, then the validation stageensures that B will reject unless �B = Q(w) = �A (as desired).Achieving Password-Secrecy: The MAC sent by A in the validation stage is needed in orderto ensure secrecy of the password after the protocol. Otherwise, C can learn information aboutw based on whether B accepts or rejects. In fact, if we modify our protocol so that no MAC issent, then we have an attack on the resulting protocol that enables C to learn one bit of w inevery invocation (and therefore possibly learn w after only log jDj invocations). See Appendix Bfor a description of the attack. By including the MAC, the channel C can itself predict whether Baccepts or rejects based on whether or not C modi�ed any messages sent between A and B. Thismeans that no additional information is revealed by B's accept bit.It is interesting to note that due to the necessity of the MAC, we do not know how to solve theseemingly simpler problem of mutual authentication without �rst generating a session-key.We now explain the motivation behind some speci�c choices we made in designing the protocol.Using the Generator. In the protocol, we implicitly use a pseudorandom generator de�ned byG(s) = b(s) � � � b(f2n�1(s)) � f2n(s). As we discuss in Appendix A.5, this is a seed-committingpseudorandom generator (i.e., f2n(s) uniquely determines s). The string �B received by B fromthe polynomial evaluation is used both for validation and for deriving the session-key. As part ofthe validation stage, some function F of �B is sent by A to B. The properties required from Fare that �rstly it be 1{1 (in order that it be e�ective for validation). Secondly, we require thatpseudorandom keys for the MAC and output session-key may still be obtained, even though theadversary is given F (�B). Viewed in this light, using a seed-committed pseudorandom generatorand taking F (�) as f2n(�) is a natural choice.On the Use of Linear Polynomials. The pre-keys are generated by applying a random, linear,non-constant polynomial on the password. This is for the following reasons. Firstly, we need\random 1{1 functions" that map each dictionary entry to a uniformly distributed n-bit string.The 1{1 property is used in saying that Q and � uniquely determine w such that Q(w) = � .1515In particular, if a constant polynomial is allowed then C could choose a constant Q0 and run the entire protocolwith B using Q0. Since Q0 is constant, �B = Q0(w) is a �xed value and is thus known to C. Furthermore, Ccan execute the zero-knowledge proof in the validation stage correctly because y = f2n(Q0(w)) is consistent withNMC(Q0; w0) for every w0. We conclude that B accepts with a session-key known to C, in contradiction to thesession-key secrecy requirement. 15



Secondly, we desire that for w0 6= w, the values Q(w0) and Q(w) be (almost) independent. Thisensures that if C guesses the wrong password and obtains Q(w0), he will gain no information on theactual key Q(w). (Essentially, any family of 1{1 Universal2 hash functions would be appropriate.)For technical reasons, B outputs a random string in the case that he rejects. This guarantees thathis output string is always (1�O(�))-pseudorandom.3.3 Properties of Protocol 1The main properties of Protocol 1 are captured by the following theorem.Theorem 3.2 Protocol 1 constitutes a secure protocol for authenticated session-key generationbased on passwords (as de�ned in De�nition 2.4).We further prove that Protocol 1 has a number of additional properties desirable for session-keygeneration. Speci�cally, we show that the protocol enables intrusion detection and that it maintainsboth \forward secrecy" and \security if prior session-keys are revealed" (see Section 4.7).Protocol 1 as a feasibility result: All the cryptographic tools used in Protocol 1 can besecurely implemented assuming the existence of trapdoor permutations. Thus, at the very least,Theorem 3.2 implies the feasibility result captured by Theorem 2.5.Protocol 1 as a basis for e�cient solutions: We now briey discuss the e�ciency of ourprotocol. The three main modules of the protocol are a non-malleable commitment, a secure poly-nomial evaluation and a zero-knowledge proof. The number of rounds of communication requiredfor the zero-knowledge proof is m, where m equals the number of rounds in all other parts ofthe protocol plus some non-constant function in the security parameter (say log log n). In fact, asdiscussed in Section 7, this can be reduced to a single additional round assuming that expectedpolynomial-time simulation is su�cient. We thus conclude that the main bottleneck with respectto the number of rounds of communication is due to the non-malleable commitment and securepolynomial evaluation modules.Current implementations for non-malleable commitment [19] and two-party computation [46, 27]require n rounds of communication.16 (It is however remarked in [19] that the non-malleablecommitment protocol can be improved to only log n rounds.) Therefore, any improvements inthe e�ciency of these modules would result in greater e�ciency for our protocol. The same is trueregarding the bandwidth, which is also large for currently known implementations of these modules.We note that if indeed e�cient constructions are found for these modules, then our protocol maybe used as an e�cient solution for password-based session-key generation.We comment that under a stronger set-up assumption that includes a common random string ac-cessible by all parties (including the adversary), our protocol can be implemented more e�ciently.17Speci�cally, the zero-knowledge proof could be replaced by a non-interactive proof improving theround complexity. Furthermore, it is conceivable that in the future, e�cient protocols for non-malleable commitment in this model may exist.1816Some researchers believe that Yao's protocol [46] can be implemented in a constant number of rounds.17We note that it is not clear that the problem of password-based session-key generation is signi�cantly easier inthis common random string model.18E�cient non-malleable commitment schemes have been shown in the common random string model [17, 21].However, the de�nition of non-malleability in [17, 21] is weaker than that of [19]: non-malleability is guaranteed onlyif the adversary is also able to decommit (see [21]). In our protocol, the commitments are never opened and thereforethe stronger de�nition of [19] is required. 16



4 Overview and Partial ProofsRecall that C may omit, insert and modify any message sent between A and B. Thus, in actualityC conducts two separate executions: one with A in which C impersonates B (called the (A;C)execution), and one with B in which C impersonates A (called the (C;B) execution). These twoexecutions are carried out concurrently (by C) and there is no explicit execution between A andB. Furthermore, C has full control of the scheduling of the (A;C) and (C;B) executions (i.e., Cmay maliciously decide when to pause one execution and continue the other). For this reason,throughout the proof we make statements to the e�ect of: \when A executes X in her protocolwith C then...". This reects the fact that the separate (A;C) and (C;B) executions may be atvery di�erent stages.We note that there are currently no tools for dealing with (general) concurrent computationin the two-party case.19 Our solution is therefore based on an ad-hoc analysis of (two) concurrentexecutions of speci�c two-party protocols that are secure as stand-alone (i.e., when only two partiesare involved and they conduct a single execution over a direct communication line). Our analysisof these executions proceeds by using speci�c properties to remove the concurrency and obtain areduction to the stand-alone setting. That is, we show how an adversarial success in the concurrentsetting can be translated into a related adversarial success in the stand-alone setting. This enablesus to analyze the adversary's capability in the concurrent setting, based on the security of two-partystand-alone protocols.We stress that we make no attempt to minimize the constants in our proofs. In fact, some of ourproofs are clearly wasteful in this sense and the results are not tight. Our main objective is to makeour (regrettably complex) proofs as modular and simple as possible.Reliable Channels: For the proof, we de�ne the concept of a reliable channel. We say that achannel C is reliable in a given protocol execution if C runs the (A;C) and (C;B) executions in asynchronized manner and does not modify any message sent by A or B. That is, any message sent byA is immediately forwarded to B (without modi�cation), and visa versa. This property is purelysyntactic and relates only to the bits of the messages sent in a given execution of the protocol.In essence, an execution for which C is reliable looks like an execution via a passive adversary.However, C may decide at any time during the protocol execution to cease being reliable (thisdecision is possibly based on his current view and with some probability). This is in contrast to apassive adversary who by de�nition only eavesdrops on the communication.Organization: Due to the length and complexity of our proof, we leave the full proofs of some ofthe central lemmas (and necessary preliminaries) to later sections. Instead, intuitive proof sketchesare provided in-place. Unless otherwise stated, the sketches are quite accurate and the full proofsare derived from them in a straightforward manner.We begin by proving the viability requirement (in Sections 4.2 and 5). Then, in Section 4.3(and Section 6) we prove that Q(w) is (1 �O(�))-pseudorandom at the conclusion of the Pre-KeyExchange stage between A and C. This is a central results towards proving that Protocol 1 is secureby De�nition 2.4. Using this result, we prove the session-key secrecy requirement (Sections 4.4and 8 with preliminaries from Section 7), the key-match requirement (Sections 4.5 and 9) and thepassword-secrecy requirement (Sections 4.6 and 10). Finally, in Section 4.7 we show additionalproperties that hold for our protocol.19We are aware of work in progress for concurrent, honest-majority computation [15]. However, this does not applyto the two-party case. 17



In Section 7 we show how (and under what circumstances) A's zero-knowledge proof can besimulated in our concurrent setting, proving that C learns nothing from this proof in the pro-tocol. We do not know how to show that C learns nothing when using regular zero-knowledgeproofs, rather than the speci�c proof of Richardson and Kilian. Furthermore, the \zero-knowledgeproperty" of the proof in our setting is not derived merely from the fact that the Richardson andKilian proof provides concurrent zero-knowledge. Concurrent zero-knowledge only refers to a set-ting where many instances of the same proof are run concurrently, but says nothing when the proofis run concurrently with other protocols (as occurs in our case).4.1 Formalizing the SettingIn this subsection, we present formal notations for the setting in which A and B interact via thechannel C. In order to measure what C has learned from a protocol execution, we consider thefollowing mental experiment that works in two stages. First, C invokes protocol executions with Aand B. Then, following these executions, C receives some \challenge" string. This string may, forexample, be either the session-key output by A and B or a random string. Then, C's inability todistinguish these cases points to the pseudorandomness of the output session-key.For this experiment, we separate C into two parts, C1 and C2. The channel C1 interactsconcurrently with A and B for the entire protocol (or parts of it). At the conclusion of thisinteraction, C1 outputs a string s representing its state information. Then, C2 (who plays therole of the distinguisher and outputs a single bit) is given s and the challenge z. For example, inorder to analyze C's capability of distinguishing the session-key from a random string, we considerthe di�erence in the probability that C2 outputs 1 when z equals the session-key and when z is arandomly chosen string.Formally, denote by CA(Q;w);B(w)1 (1n) the setting where the channel C instigates a protocol executionwith parties A and B, who have respective inputs (Q;w) and w. Recall that A's input in the protocolis de�ned to be only w. However, modifying A so that she receives a random Q as additional inputmakes no di�erence to the outcome (recall that Q is chosen randomly by A in the �rst step of theprotocol). This modi�cation is made for the sake of the analysis and enables us to refer explicitlyto Q when, for example, talking about the pseudorandomness of Q(w).Consider the following experiment for a �xed polynomial Q, password w and string z:ExptA(Q;w);B(w)z (C):s CA(Q;w);B(w)1 (1n)return C2(s; z)Then, for example, in order to analyze C's capability of distinguishing between the output session-key k2(Q(w)) and a random string, we bound the following di�erence:���PrQ;w[ExptA(Q;w);B(w)k2(Q(w)) (C) = 1]� PrQ;w[ExptA(Q;w);B(w)Un (C) = 1]���The above experiment template is used many times throughout the proof. In order to simplifynotation, the experiment is sometimes written in a slightly modi�ed form. For example, if Q playsno role in the experiment and C needs no explicit reference, then the experiment may be denotedonly by ExptA(w);B(w)z .
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4.2 ViabilityIn this section, we state the viability requirement of the protocol. That is, if C is passive, then theresult of a protocol execution is a joint session-key known to both parties, and this key is pseudo-random with respect to C's view. Furthermore, given C's view, the password w is indistinguishablefrom a random ~w 2R D. This means that when C is passive, e�ectively nothing is learned aboutthe password or session-key from the protocol execution.We note that the de�nitions of multi-party computation do not immediately imply that Ccannot learn anything in our context. This is because the de�nitions relate to an adversary C who\corrupts" one or more parties. However, here we are dealing with the case that C corrupts zeroparties and we must show that in this case, C learns nothing about any party's inputs or outputs.The experiment referred to in the theorem is de�ned in Section 4.1.Theorem 4.1 (Viability): Let C be a passive channel. Then, both A and B accept and outputthe same session-key k2(Q(w)). Furthermore, the session-key k2(Q(w)) is pseudorandom and thepassword w is indistinguishable from ~w 2R D. That is, for every passive ppt channel C, for everypolynomial p(�) and for all su�ciently large n's���PrQ;w[ExptA(Q;w);B(w)k2(Q(w)) (C) = 1]� PrQ;w;Un[ExptA(Q;w);B(w)Un (C) = 1]��� < 1p(n)and ���PrQ;w[ExptA(Q;w);B(w)w (C) = 1]� PrQ;w; ~w[ExptA(Q;w);B(w)~w (C) = 1]��� < 1p(n)where Q is a random, non-constant linear polynomial, and w and ~w are independently and uniformlydistributed in D.The proof can be found in Section 5. Since C is a passive adversary (in this case), the proof israther straightforward.4.3 Pseudorandomness of Q(w)A central element of our proof is showing that the output keys are (1� O(�))-pseudorandom. Webegin by proving that at the conclusion of Stage (2) of the protocol (pre-key exchange) between Aand C, the string Q(w) is (1 � 2�)-pseudorandom. From this, we derive both the security of theMAC-key k1(Q(w)) and the output-key k2(Q(w)), based on the properties of the seed-committedpseudorandom generator G(s) def= k1(s); k2(s); f2n(s).We note that at the conclusion of the entire protocol, it is not true that the pre-key Q(w) itselfis (1�O(�))-pseudorandom. This is because in the Validation Stage, party A sends y = f2n(Q(w)),which is seen by C. Then, let z be the challenge which is either Q(w) or a random string. Since Cis given z, he can easily distinguish the cases by comparing f2n(z) with y.As in the mental experiment de�ned in Section 4.1, the channel C �rst runs a protocol executionwith A and B. Following this, C is given a challenge z and should decide if z = Q(w) or if z isa random string. However, the experiment must reect the fact that we wish to analyze thepseudorandomness of Q(w) at the conclusion of the (A;C) Pre-Key Exchange (rather than at theend of the entire protocol). We do this by modifying A to another party A2 who only participatesin the �rst two stages of Protocol 1. That is, A2 halts immediately after the pre-key exchangestage. Then, we analyze the setting in which C interacts with A2 and B (rather than A and B)and at the conclusion of these executions is given the challenge. Recall that we denote this setting19



by CA2(Q;w);B(w)1 (1n) and that the distinguisher C2 receives C1's state information and a challengewhich is either Q(w) or a random string.Theorem 4.2 (Pseudorandomness of Q(w)): Let C be an arbitrary ppt adversary interacting withA2 and B. Then, for every polynomial p(�) and for all su�ciently large n's���PrQ;w[ExptA2(Q;w);B(w)Q(w) (C) = 1]� PrQ;w;Un[ExptA2(Q;w);B(w)Un (C) = 1]��� < 2�+ 1p(n)where Q is a random, non-constant, linear polynomial and w 2R D.Proof: The main body of the proof is found in Lemmas 4.3 and 4.4. The theorem states that Ccannot distinguish between Q(w) and Un with any polynomial advantage over 2�. In Lemma 4.3 weshow that C cannot distinguish between Un and Q( ~w) for a random ~w 2R D with any polynomialadvantage over �. Then, Lemma 4.4 states that C also cannot distinguish between Q(w) and Q( ~w)for an independent ~w 2R D with any polynomial advantage over �. Putting these two Lemmastogether we have that C cannot distinguish between Q(w) and Un with any polynomial advantageover 2�.Lemma 4.3 For every polynomial p(�) and for all su�ciently large n's���PrQ;w;Un[ExptA2(Q;w);B(w)Un (C) = 1]� PrQ;w; ~w[ExptA2(Q;w);B(w)Q( ~w) (C) = 1]��� < �+ 1p(n)Proof Sketch: The lemma holds even if C knows w itself. (Intuitively, C must distinguishbetween Q( ~w) and Un, which is related to the secrecy of Q, not of w). Therefore, we can give Cthe password w, enabling him to internally emulate the entire session with B. (This emulationis perfect as knowledge of w is all that is needed to play B's role.) What remains is therefore a(non-concurrent) session with A2 only, which can be analyzed in the stand-alone, two-party setting.It is clear that the only place that C can learn about Q is from the polynomial evaluation itself(the commitments are indistinguishable and so reveal nothing). The security of the polynomialevaluation implies that the receiver can learn nothing beyond the value of Q(�) at a single point.Therefore, unless C inputs ~w itself into the polynomial evaluation receiving Q( ~w), the values Q( ~w)and Un are indistinguishable (recall that Q is a random, non-constant, linear polynomial and so wehave \almost" pairwise independence). However, as ~w is uniformly distributed in D, the probabilitythat C inputs ~w is at most �. This means that C can distinguish Q( ~w) from Un with probabilityat most �. 2(The full proof is presented in Section 6.1 and is derived in a straightforward manner from thesketch.)Lemma 4.4 For every polynomial p(�) and for all su�ciently large n's���PrQ;w[ExptA2(Q;w);B(w)Q(w) (C) = 1]� PrQ;w; ~w[ExptA2(Q;w);B(w)Q( ~w) (C) = 1]��� < �+ 1p(n)
20



Proof Sketch: As in the previous lemma, we �rst remove the concurrency from the setting.The important points to notice here are as follows. Firstly, the lemma holds even if C knows thepolynomial Q (and in such a case, distinguishing Q(w) from Q( ~w) reduces to distinguishing w from~w). Secondly, it is possible to emulate A2 given only knowledge of Q (i.e., without knowing w).This is because the only input used by A2 in the pre-key exchange is Q itself. It is true that A2 usesw in the non-malleable commitment. However, due to the hiding property of the non-malleablecommitment, this can also be simulated without knowing w. Therefore, C can simulate the entiresession with A2 internally. What remains is a single session between C and B which is in thestandard two-party computation setting.In the session between C and B, channel C's view consists of B's accept/reject bit only. Essen-tially, B accepts if during the validation stage he is convinced that C knows the value of w. Thiscan be seen as follows. Let QC be the polynomial that C inputs into the polynomial evaluation.Then, B accepts only if he receives y = f2n(QC(w)). However, since f2n and QC are 1{1 functions,y de�nes a single possible value of w. This implies that B accepts only if C essentially guessesthe value of w correctly. Since w 2R D and C receives nothing from the interaction with B beforesending y, the probability that B accepts is at most �. We therefore have that with probability1 � �, B's output-bit can be correctly simulated (by simply guessing that it equals reject). Thismeans that at most an \� amount of information" can be learned from this bit (which is the onlybit of information learned by C during the execution). 2The full proof is presented in Section 6.2 and is not a direct implementation of the above ideas. Themain di�culty involved is due to the fact that the use of the MAC in the validation stage of ourprotocol precludes the use of currently known composition theorems for secure computation (seeSection 6.2 for details). We must therefore bypass this problem before analyzing C's probability ofsuccess.The theorem follows immediately from Lemmas 4.3 and 4.4.Intermediate Conclusion. At the end of Stage (2) of the protocol, A2 has a uniformly dis-tributed string Q(w) that is (1 � 2�)-pseudorandom with respect to C. We stress that this saysnothing of the string �B obtained by B from the polynomial evaluation. In fact, �B is not necessar-ily (1� 2�)-pseudorandom at all. A strategy for C in which he explicitly chooses a polynomial Q0results in �B = Q0(w) where C knows Q0. Then, upon receiving the challenge z, the channel C cansimply check for every w 2 D, if Q0(w) = z (if D is not too large, then this is feasible) and C woulddistinguish Q0(w) from Un with overwhelming probability. However, as we will show, our protocolis such that the probability that B accepts and �B 6= Q(w) is small (see the key-match condition).Thus, we are assured that typically, either B rejects or �B is also a (1 � 2�)-pseudorandom string(which equals Q(w)).4.4 Session-Key SecrecySession-Key Secrecy for A: The following theorem states that after the protocol execution,A's session-key is (1 � O(�))-pseudorandom with respect to C's view. Recall that Q(w) is (1 �O(�))-pseudorandom after the �rst two stages of the protocol, and that the only messages sentby A in the third and �nal stage are y = f2n(Q(w)), a zero-knowledge proof and a MAC ofthe message transcript. Intuitively, the zero-knowledge proof reveals nothing and since Q(w) is(1�O(�))-pseudorandom after the Pre-Key Exchange, the session-key k2(Q(w)) remains (1�O(�))-pseudorandom even given y = f2n(Q(w)) and the MAC. This is due to the fact that y along with21



the MAC-key and the session-key constitutes a pseudorandom generator. Therefore, the proof ofthe theorem is derived from Theorem 4.2 and the properties of the seed-committed pseudorandomgenerator (see Appendix A.5).The full proof of the fact that nothing is learned from A's zero-knowledge proof can be found inSection 7. We stress that this is not at all obvious and that we do not know whether it holds whenusing an ordinary zero-knowledge proof (rather than the Richardson-Kilian proof). In Section 8,we use Section 7 and the properties of the seed-committed generator to formally prove the followingtheorem for session-key secrecy. (The de�nition of the experiment in the theorem statement belowcan be found in Section 4.1.)Theorem 4.5 (Session-Key Secrecy): Let C be an arbitrary ppt channel. Then,���PrQ;w[ExptA(Q;w);B(w)k2(Q(w)) = 1]� PrQ;w;Un[ExptA(Q;w);B(w)Un = 1]��� < 4�+ 1poly(n)Session-Key Secrecy for B: B's session-key secrecy is shown by combining Theorem 4.5 (A'ssession-key secrecy) together with Theorem 4.6 proven below (the key-match requirement). Recallthat B's session-key, denoted kB , equals k2(�B) in case B accepts and is a uniformly distributedstring in case he rejects. Intuitively, kB is (1 � O(�))-pseudorandom because with probability1 � O(�), party B only accepts when �A = �B . However, in this case kB = k2(�A) and thus B'ssession-key secrecy is reduced to A's session-key secrecy.Formally, in Theorem 4.6 we prove that the probability that B accepts and �A 6= �B (or almostequivalently that kB 6= k2(�A)) is at most negligibly more than 3�. This implies that���PrQ;w[ExptA(Q;w);B(w)kB = 1 ^ B = acc]� PrQ;w;Un[ExptA(Q;w);B(w)k2(�A) = 1 ^ B = acc]��� < 3�+ 1poly(n)(This can be seen by noticing that when kB = k2(�A), the experiments are identical. On the otherhand, when kB 6= k2(�A), then both the probabilities in the di�erence are between 0 and 3� + �.Thus the di�erence can be at most negligibly more than 3�.) We therefore have that���PrQ;w[ExptA(Q;w);B(w)kB = 1 ^ B = acc]� PrQ;w;Un[ExptA(Q;w);B(w)Un = 1 ^ B = acc]���< ���PrQ;w[ExptA(Q;w);B(w)k2(�A) = 1 ^ B = acc]� PrQ;w;Un[ExptA(Q;w);B(w)Un = 1 ^ B = acc]��� (1)+ 3�+ 1poly(n)Now, recall that B's accept bit is part of C's view. Therefore, any success in distinguishingk2(�A) from a uniformly distributed string when B accepts, can be transformed into success indistinguishing k2(�A) from Un in the general case (i.e., where B may accept or reject). By the factthat k2(�A) is (1 � 4�)-pseudorandom, we have that Equation (1) is upper bound 4� + �. Thuswhen B accepts, his session-key kB can be distinguished from a random string with probability atmost 3� + 4� + �. On the other hand, in the case that B rejects, kB is uniformly distributed andthus cannot be distinguished from a random string at all. Combining these facts, we have that���PrQ;w[ExptA(Q;w);B(w)kB = 1]� PrQ;w;Un[ExptA(Q;w);B(w)Un = 1]��� < 7�+ 1poly(n)22



4.5 The Key-Match RequirementWe now prove the key-match requirement which states that the probability that A and B bothaccept, yet have di�erent keys is at most O(�). Recall that �A def= Q(w) and that �B is B's outputfrom the polynomial evaluation.Theorem 4.6 (Key-Match): For every ppt adversarial channel C, every polynomial p(�) and allsu�ciently large n's Pr[B = acc ^ �A 6= �B] < 3�+ 1p(n)Proof Sketch: The proof is divided into two complementary subcases related to the schedulingof the two executions (i.e., C's execution with A and C's execution with B). The schedulingof these two executions may be crucial with respect to the non-malleable commitments. This isbecause the de�nition of non-malleability states that a commitment is non-malleable when executedconcurrently with another commitment.20 In an execution of our protocol, the commitment fromC to B may be executed concurrently with the polynomial evaluation and/or validation stage ofthe (A;C) execution. In this case, it is not clear that the non-malleable property holds at all.We therefore prove the theorem by considering two possible strategies for C with respect tothe scheduling of the (A;C) and (C;B) executions. In the �rst case, we consider what happens ifC completes the polynomial evaluation with A before completing the non-malleable commitmentwith B. In this case, the entire (A;C) execution may be interleaved with the (C;B) non-malleablecommitment. However, according to this scheduling, we are ensured that the (A;C) and (C;B)polynomial evaluation stages are run at di�erent times (with no overlap). Loosely speaking, thismeans that the polynomial QC input by C into the (C;B) evaluation is independent of the polyno-mial Q input by A in the (A;C) evaluation. (Recall that in the (A;C) execution, C only learns thevalue of Q(�) at a single point.) In this case, when QC is independent of Q, the probability thatthe \y" value sent by C to B will match f2n(QC(w)) is at most �. This means that B will rejectwith probability 1� �. We call this case \unsynchronized".In the other possible scheduling, C completes the polynomial evaluation with A after com-pleting the non-malleable commitment with B (and so in this case the two executions are moresynchronized). In this case we show how the (A;C) polynomial evaluation can be simulated, andwe thus remain with a concurrent execution containing two non-malleable commitments only. Non-malleability now holds and this prevents C from modifying the commitment sent by A, if B is toaccept. This yields the key-match property. 2Further details on the proof of Theorem 4.6: What we prove is that according to each ofthe two scheduling cases, the probability that B accepts and there is a key mismatch is at mostO(�). Using the Union Bound, Theorem 4.6 follows.Case (1) (The Unsynchronized Case) In this case, C completes the polynomial evaluationwith A before completing the non-malleable commitment with B.We actually prove a stronger claim here. We prove that according to this scheduling, B acceptswith probability less than 2�+ 1poly(n) irrelevant of the values of �A and �B . This is enough becausePr[B = acc ^ �A 6= �B ^ Case 1] � Pr[B = acc ^ Case 1]20In fact by the de�nition, non-malleability is only guaranteed if the commitments are of the same scheme. Twodi�erent non-malleable commitment schemes are not guaranteed to be non-malleable if executed concurrently.23



Lemma 4.7 (Case 1 - Unsynchronized): Let C be a ppt channel and de�ne Case 1 to be a schedulingof the protocol execution by which C completes the polynomial evaluation with A before concludingthe non-malleable commitment with B. Then for every polynomial p(�) and all su�ciently large n'sPr[B = acc ^ Case 1] < 2�+ 1p(n)Proof Sketch: In this case, the (C;B) polynomial evaluation stage is run strictly after the (A;C)polynomial evaluation stage, and the executions are thus \independent" of each other. That is, thepolynomial evaluations are executed sequentially and not concurrently. For the sake of simplicity,assume that the entire protocol consists of a single polynomial evaluation between A and C and asingle polynomial evaluation between C and B. Then, since the evaluations are run sequentially,a party P can interact with C and play A's role in the (A;C) execution and B's role in the (C;B)execution. Thus, what we actually have is a two-party setting between C and P . As in previousproofs, we analyze what happens in this two-party setting and derive the result regarding ourconcurrent setting.The actual reduction is more complex, as the (A;C) and (C;B) protocols involve other stepsbeyond the polynomial evaluation. Furthermore, some of these steps may be run concurrently(unlike the polynomial evaluations which are executed sequentially according to this scheduling).Therefore, the main di�culty in the proof is in de�ning the two-party protocol between C and Pso that it correctly simulates the concurrent execution of our entire protocol. 2The full proof is presented in Section 9.1.Case (2) (The Synchronized Case) We now show that the probability that C completesthe polynomial evaluation with A after completing the non-malleable commitment with B and Baccepts and �A 6= �B, is less than �+ 1poly(n) .Lemma 4.8 (Case 2 - Synchronized): Let C be a ppt channel and de�ne Case 2 to be a schedulingof the protocol by which C completes the polynomial evaluation with A after completing the non-malleable commitment with B. Then for every polynomial p(�) and for all su�ciently large n's,Pr[B = acc ^ Case 2 ^ �A 6= �B] < �+ 1p(n)Proof Sketch: As we have mentioned, in this scheduling case we can show that the non-malleability property holds with respect to A's commitment to the pair (Q;w). Loosely speaking,this means that A's commitment does not help C in generating a commitment to a related pair.(This holds unless C simply copies A's commitment unmodi�ed; however, then we can show that Brejects unless �A = �B , in which case key-match holds). Now, denote C's non-malleable commitmentby (Q0; w0). Then, we are interested in the probability that Q0 6= Q and w0 = w (i.e., the secondelement in the pair is A and B's shared secret password).21 Since A's commitment does not help21As we have mentioned, in the case that C copies A's commitment unmodi�ed and thus (Q0; w0) = (Q;w), wecan show that unless �A = �B, party B rejects with overwhelming probability. This is because the validation stageenforces that �B = Q0(w0) and thus when (Q0; w0) = (Q;w), we have that �B = Q0(w0) = Q(w) = �A. In this sketch,we therefore only relate to the case that (Q0; w0) 6= (Q;w).24



C in generating this commitment and w is uniformly distributed in D with respect to C's view,the probability that C generates such a commitment is at most negligibly more than �. If C indeedgenerates such a commitment, then he may cause B to accept, even when �A 6= �B . However, theprobability that C succeeds in this is less than �+ 1poly(n) .On the other hand, if C fails to generate such a related commitment and B receives a non-malleable commitment to (Q0; w0) where w0 6= w, then the validation stage ensures that B willreject. This is because, essentially, the (C;B) validation stage enforces that B's output from thepolynomial evaluation be consistent with the non-malleable commitment he received. That is, itensures that B will reject unless he receives �B = Q0(w0) from the polynomial evaluation. Thevalidation stage also enforces that the polynomial input by C into the polynomial evaluation is Q0.That is, the respective inputs of C and B into the polynomial evaluation are Q0 and w. By thecorrectness of the evaluation, it must hold that B receives Q0(w). Therefore if B accepts it mustbe the case that Q0(w0) = Q0(w) which implies that w0 = w. In other words, if C's commitment issuch that w0 6= w, then B rejects with overwhelming probability. We conclude that B only acceptsif C's (non-malleable) commitment was to (Q0; w) and that this can occur with probability at mostnegligibly more than �. 2The full proof of Lemma 4.8 is presented in Section 9.2 and is signi�cantly more involved than theabove sketch.Theorem 4.6 follows by combining Lemmas 4.7 and Lemma 4.8.4.6 Password SecrecyWe now prove that at the conclusion of the protocol, the password w is (1�O(�))-indistinguishablefrom a random ~w 2R D.Before beginning, we state below a corollary (proven at the end of Section 8), that relates tothe security of the MAC. We note that, for simplicity, our proofs (throughout) refer to a MACthat is implemented by a pseudorandom function. However, all claims carry through for anyimplementation of a MAC. The corollary below states that it is \hard" for C to generate a correctMAC-value for any value other than that sent by A. Speci�cally, the function MACk1(�A)(�) is(1 � 4�)-pseudorandom. Therefore for any value t, unless t is the exact (A;C)-message-transcript(and thus A herself sends this value in the protocol), the probability that C generates a pair(t;MACk1(�A)(t)) is at most negligibly greater than 4�.The pseudorandomness of the MAC function is based on the fact that at the conclusion ofthe (A;C) pre-key exchange stage �A is (1 � 2�)-pseudorandom (Theorem 4.2) and that k1(�A)is (1 � 4�)-pseudorandom, even given y = f2n(�A) (recall that A sends y during the protocol).Intuitively, this is because f2n(�A) �k1(�A) is a (1�O(�))-pseudorandom sequence, and thus k1(�A)remains (1�O(�))-pseudorandom even given f2n(�A).Corollary 4.9 Let C be an arbitrary ppt channel. Then, for every string t that di�ers from the(A;C)-message-transcript, the value MACk1(�A)(t) is (1 � 4�)-pseudorandom with respect to C'sview.We now prove that for every ppt channel C, at the conclusion of the protocol, with respect to C'sview the actual password is (1�O(�))-indistinguishable from a uniformly chosen (new) password.Theorem 4.10 (Password Secrecy): Let C be a ppt channel interacting with A and B. Then, for25



every polynomial p(�) and for all su�ciently large n's���Prw[ExptA(w);B(w)w (C) = 1]� Prw; ~w[ExptA(w);B(w)~w (C) = 1]��� < 26�+ 1p(n)where w and ~w are independently and uniformly distributed in D.Proof Sketch: We prove this theorem by �rst \removing" the concurrent (C;B) execution. Thisis done in a way that a�ects C's capability of distinguishing w from ~w) by at most O(�).The (C;B) validation is �rst removed by showing that C can actually predict B's accept/rejectbit itself (this is enough as this bit is B's only output from this stage). This is shown by combiningthe following facts:� Theorem 4.6 states that the probability that B accepts and �A 6= �B is at most O(�).� Let tA and tB be the (A;C) and (C;B) message-transcripts respectively. Then, Corollary 4.9states that if tA 6= tB, then MACk1(�A)(tB) is (1 � O(�))-pseudorandom with respect to C'sview.� B only accepts if he receives MACk1(�B)(tB) (keyed by �B) in the last step of the protocol. Notethat if �A = �B, then Corollary 4.9 holds regarding this MAC.Putting these together, we have that if �A = �B and C is not reliable, then B rejects with probability1 � O(�). On the other hand, if �A 6= �B , then B anyway rejects with probability 1 � O(�) (key-match). Therefore, the probability that B accepts and tA 6= tB is at most O(�). On the other hand,if tA = tB (i.e., C was reliable), then B certainly accepts. By noticing that C always knows whethertA = tB or tA 6= tB holds, we have that C can predict B's accept/reject bit itself by \guessing"that B accepts if and only if tA = tB . Since, channel C is wrong in this guess with probability atmost O(�), the di�erence in C's view in the case that C really receives B's output bit or guesses ithimself, is at most O(�).Next, the remainder of the (C;B) evaluation is removed. Intuitively this is possible because (inthe remaining �rst two stages) the only place that B uses w is in the (C;B) polynomial evaluation.However, C receives no output from this evaluation and thus nothing is revealed about w. Weconclude that B's role in the remaining execution can be simulated using any w0 2 D and thissimulation is indistinguishable from a real execution.We now remain with a non-concurrent setting involving only A and C. In this setting, we showthat C can distinguish w from ~w 2R D with probability at most O(�). As before, the (A;C)validation stage is �rst removed by simulating the zero-knowledge proof given by A and next bynoticing that both y and the MAC sent by A are (1 � O(�))-pseudorandom to C. Then, if Creceives random strings instead, this can make a di�erence of at most O(�). Therefore, A's partin the validation stage can be replaced by the zero-knowledge simulator and random strings. (Asexplained in Section 4.4 this simulation of A's proof is not immediate, see Section 7.)We now remain with a protocol between A, restricted to the �rst two stages, and C. Now,notice that in the �rst two stages of the protocol, A only uses w in her non-malleable commitment.Thus, due to the hiding property of the commitment, w remains computationally indistinguishablefrom ~w 2R D. This completes the proof sketch. 2The full proof is presented in Section 10.
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4.7 Additional PropertiesIn this section, we show additional desirable properties of our protocol. Namely, we show that ourprotocol satis�es Intrusion Detection, Forward Secrecy and security in the face of Session-Key Loss(also known as a \Known-Key Attack").Intrusion Detection: If the adversary modi�es any message sent in a session, then with prob-ability at least (1�O(�)) this is detected.This property is immediately derived from Claim 10.4 (see Section 10), that states that the prob-ability that B accepts and C is not reliable is at most O(�). This prevents C from carrying outany undetected active attack (where an active attack is one in which C is not reliable). However,it does not mean that C cannot learn about the password and session-key by only eavesdropping.(We have already shown that C can learn at most O(�) in Theorems 4.5 and 4.10, however thismay be signi�cant if it can go undetected.)We now show that in actuality, C can only \signi�cantly learn something" about w by beingunreliable. Therefore, we are ensured that a channel C cannot learn anything noticeable aboutw, without us detecting adversarial behavior with probability at least 1 � O(�). Recall that apassive channel is always reliable but the reverse is not true. Furthermore, an active channel maydynamically decide to be reliable or not, possibly depending on what occurs during the protocolexecution. Despite this, the following claim states that in a given execution for which the channelis reliable, he can learn no more than if he was passive.Claim 4.11 For every ppt active channel C there exists a passive channel C 0 such that for everyrandomized process z = Z(Q;w)Pr[C reliable ^ ExptA(Q;w);B(w)z (C) = 1] = Pr[ExptA(Q;w);B(w)z (C 0) = 1]From Theorem 4.1 (viability) we know that a passive channel learns nothing signi�cant about thepassword w or the session-key. Therefore, this is also true of a reliable channel. This implies thatin order for C to learn something, he must act unreliably. (Recall that even when C is unreliable,he can learn at most O(�) about the password and session-key.)The proof of the above claim is based on having C 0 emulate an execution for C. Recall that C 0is passive and therefore receives a message transcript of messages sent between A and B. ChannelC 0's emulation involves passing the messages of the transcript (in order) to C and observing thatC forwards all messages immediately and unchanged to their intended receiver. If at any pointC is not reliable (and thus C 0 cannot continue the emulation), then C 0 halts and outputs 0. Onthe other hand, if C is reliable for the entire execution, then C 0 outputs whatever C does fromthe experiment. The equality is obtained because when C is reliable, C 0's emulation is perfect andwhen C is unreliable, C 0 never outputs 1. 2Before discussing the properties of Session-Key Loss and Forward Secrecy, we consider a versionof Protocol 1 augmented to include mutual authentication (as discussed in Section 2.2). Theaugmentation is such that if B rejects, then with probability 1�O(�), A also rejects. (Recall thatwhen a party rejects, he outputs a uniformly distributed session-key, chosen independently of theprotocol execution and password.) The following discussion relates to this augmented protocol.27



Loss of Session-Keys: The current session-key remains secure even if prior session keys arerevealed. Furthermore, the password maintains its security even if all session-keys are revealed.First, recall that Claim 10.4 states that the probability that B accepts and C is not reliable is atmost O(�). Then, due to the augmentation, it also holds that the probability that A accepts and Cis not reliable is at most O(�). We continue by relating separately to session-keys generated fromexecutions in which C was reliable and in which C was not reliable.First, in executions for which C was not reliable, with probability 1 � O(�) per execution, wehave that the output session-keys are uniformly distributed. Therefore, these session-keys revealno information about the current session-key or password.We now show that session-keys generated from executions in which C was reliable also revealnothing signi�cant about the current session-key or password. At the conclusion of the full proofof viability (Section 5), we show that the password w is indistinguishable from a random ~w 2R D,given an entire session-transcript and the resulting session-key. This refers to a passive channel;however, by Claim 4.11 we have that this also holds for sessions in which C is reliable. Althoughthis is shown for a single session, the proof can be extended to any polynomial number of sessions.We therefore have that the password is secure even if all session-keys are revealed.The fact that the current session-key also remains secure (when all prior session-keys are re-vealed), is derived directly from the password security just shown, and the fact that the polynomialQ is chosen randomly and independently in each session. 2Forward Secrecy: The session-key remains secure even if the password is revealed at a latertime.As in the case of Session-Key Loss, we need only relate to a session-key generated from an executionin which C is reliable. (Otherwise, with probability 1�O(�) the session-key is independent of thepassword.) At the conclusion of the full proof of viability, we show this property for a passivechannel C. As previously described, by applying Claim 4.11 we have that this also holds forsessions in which C is reliable. 25 Full Proof of ViabilityIn this section, we present the proof of the viability requirement. The requirement for viabilityrelates to a passive channel C who can only eavesdrop on protocol executions between honest partiesA and B. This means that C receives the transcript of messages sent by A and B and tries to\learn something" based on this transcript alone. We show that such a C will fail except withnegligible probability; that is:Theorem 5.1 (Theorem 4.1 { restated): Let C be a ppt passive channel. Then, both A and Baccept and output the same session-key k2(Q(w)). Furthermore, for every polynomial p(�) and forall su�ciently large n's���PrQ;w[ExptA(Q;w);B(w)k2(Q(w)) (C) = 1]� PrQ;w;Un[ExptA(Q;w);B(w)Un (C) = 1]��� < 1p(n) (2)and ���PrQ;w[ExptA(Q;w);B(w)w (C) = 1]� PrQ;w; ~w[ExptA(Q;w);B(w)~w (C) = 1]��� < 1p(n) (3)where Q is a random, non-constant linear polynomial, and w and ~w are independently and uniformlydistributed in D. 28



Proof: Clearly, if C is passive then both parties accept and output the same session-key, asrequired. Theorems 4.5 and 4.10 (session-key and password secrecy) immediately give us thatk2(Q(w)) is (1�O(�))-pseudorandom and that w is (1�O(�))-indistinguishable from a random ~w 2RD. However, we wish to prove something stronger: that the session-key is (fully) pseudorandomand that the password is (fully) indistinguishable from a random password.As we have mentioned, since C is passive, C receives a message transcript and based on thistranscript alone must distinguish the session-key from a random string (resp., the password w from~w 2R D). We begin by showing that Q is pseudorandom and w is indistinguishable from ~w 2R Dgiven the transcript of the �rst two stages of the protocol.Notation: The message-transcript of a protocol execution (by honest parties) is a function ofthe inputs Q and w and the respective random coins of A and B, denoted rA and rB . We denotethe message transcript of the �rst two stages of the protocol by t2(Q;w; rA; rB). Furthermore, wedenote by T2(Q;w) def= ft2(Q;w; rA; rB)grA;rB the uniform distribution over all possible transcriptsfor a given Q and w. (Note that the security parameter n, and thus the lengths of Q,w,rA and rBare implicit in all these notations.)The pseudorandomness of Q and indistinguishability of w mentioned above amounts to sayingthat the distribution ensembles induced by the probability distributions fQ1; w1; T2(Q1; w1)gQ1;w1and fQ2; w2; T2(Q1; w1)gQ1;Q2;w1;w2 are computationally indistinguishable.22 This is proved in thefollowing claim. After establishing the claim we show that Equations (2) and (3) in the Theoremhold when C is given a transcript of the entire protocol execution (rather than just the �rst twostages as shown in the claim).Claim 5.2 The distribution ensemble ffQ1; w1; T2(Q1; w1)gQ1;w1gn2N is computationally indistin-guishable from ffQ2; w2; T2(Q1; w1)gQ1;Q2;w1;w2gn2N. That is, for every ppt distinguisher D, everypolynomial p(�) and all su�ciently large n'sjPr[D(Q1; w1; t2(Q1; w1; rA; rB)) = 1]� Pr[D(Q2; w2; t2(Q1; w1; rA; rB)) = 1]j < 1p(n)where Q1 and Q2 are random non-constant, linear polynomials over GF (2n), w1; w2 2R D and rAand rB are uniform random strings.Proof: Equivalently, we establish that ffQ1; w1; T2(Q1; w1)gQ1;w1gn2N is computationally indis-tinguishable from ffQ1; w1; T2(Q2; w2)gQ1;Q2;w1;w2gn2N. The proof is based on the security of thedi�erent modules in the protocol. We actual prove something stronger in that the distributions areindistinguishable for every pair of polynomials Q1; Q2 and passwords w1; w2 (i.e., not only whenthey are randomly chosen). We note that since C is passive, there is no concurrency in this setting.Therefore, we can directly analyze our protocol relying on the security of the di�erent modules.The Commitments: Due to the hiding property of string commitments, a non-malleable commit-ment to (Q1; w1) is indistinguishable from one to (Q2; w2), and likewise an ordinary commitmentto Q1 is indistinguishable from one to Q2.22Notice that it is not true that the distributions fQ1; w1; T (Q1; w1)gQ1;w1 and fQ2; w2; T (Q1; w1)gQ1;Q2;w1;w2 areindistinguishable, where T (Q;w) denotes the distribution of message transcripts for the entire protocol (including thevalidation stage). This is because the string y = f2n(Q(w)) is sent during the validation stage. Now, given (Qi; wi),a distinguisher need only compare f2n(Qi(wi)) to the y-value of the transcript to know whether or not the transcriptis based on (Qi; wi) or another pair (Q2�i; w2�i). 29



The Polynomial Evaluation: The inputs to the polynomial evaluation are Q;w and Commit(Q).Denote by TP (Q;w), the distribution of transcripts for this evaluation. We claim that for everyQ1; Q2; w1; w2, we have that fQ1; w1; TP (Q1; w1)g and fQ1; w1; TP (Q2; w2)g are indistinguishable.This can be derived from the following two facts (and is based on the security of the polynomialevaluation that states that A learns nothing and that B learns Q(w) only):1. For every non-constant, linear polynomial Q, password w 2 D and string x 2 f0; 1gn, we havethat fQ;w; x; TP (Q;w)g c� fQ;w; x; TP (Q;x)g (4)where c� denotes computational indistinguishability. This is based directly on the fact that Alearns nothing of B's input (which is either w or x) from the evaluation. Therefore, A mustnot be able to distinguish w from x given her message transcript. Equation (4) follows.2. For every two non-constant, linear polynomials Q1; Q2 and string x 2 f0; 1gn such thatQ1(x) = Q2(x), it holds thatfQ1; Q2; x; TP (Q1; x)g c� fQ1; Q2; x; TP (Q2; x)g (5)This is because B obtains only Q(x) from the evaluation, where A inputs Q 2 fQ1; Q2g.Since Q1(x) = Q2(x), party B cannot distinguish the case that A inputs Q1 or Q2 into theevaluation (otherwise he learns more than just Q(x)). Equation (5) follows.Now, for every two non-constant polynomials Q1 and Q2, there exists a value x such that Q1(x) =Q2(x). Therefore, we have that for every two non-constant linear polynomials Q1; Q2 and everytwo passwords w1; w2 2 DfQ1; Q2; w1; w2; x; TP (Q1; w1)g c� fQ1; Q2; w1; w2; x; TP (Q1; x)gc� fQ1; Q2; w1; w2; x; TP (Q2; x)gc� fQ1; Q2; w1; w2; x; TP (Q2; w2)gwhere x is such that Q1(x) = Q2(x) and where the �rst and third \ c�" are due to Equation (4) andthe second is from Equation (5). We therefore have that fQ1; w1; TP (Q1; w1)g c� fQ1; w1; TP (Q2; w2)gCombining this with what we have shown regarding the commitments, The claim follows.Loosely speaking, the above claim shows that the transcript of the �rst two stages of the pro-tocol reveals nothing signi�cant about both the polynomial Q and the password w. It remainsnow to analyze the additional messages from the third stage of the protocol. Recall that thethird stage (validation) consists of A sending y = f2n(Q(w)), a MAC of the session-transcriptkeyed by k1(Q(w)) and a zero-knowledge proof. To simplify the exposition, we will assume that Asends the MAC-key itself. This makes no di�erence as C can compute the MAC value from theMAC-key and the visible session-transcript. Intuitively, the zero-knowledge proof reveals nothingand the session-key k2(Q(w)) remains pseudorandom even given f2n(Q(w)) and k1(Q(w)) becauseG(Q(w)) def= �f2n(Q(w)); k1(Q(w)); k2(Q(w))� constitutes a pseudorandom generator. Further-more, the password w is \masked" by Q and therefore remains secret, even given Q(w) itself.Details follow.By the de�nition of zero-knowledge, there exists a simulator that generates transcripts indistin-guishable from real proofs. This implies that this part of the validation stage reveals nothing of Qand w, and we therefore ignore it for the rest of the proof. That is, we may assume that the entire30



session-transcript consists of T2(Q;w) and the pair �f2n(Q(w)); k1(Q(w))�. We are now ready toshow that Equations (2) and (3) hold.Equation (2): Using Claim 5.2 and the fact that for a random Q2, the value Q2(w2) is uniformlydistributed in f0; 1gn, we havefQ1(w1); T2(Q1; w1)g c� fQ2(w2); T2(Q1; w1)g c� fUn; T2(Q1; w1)g (6)In particular,fT2(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w))g c� fT2(Q;w); f2n(Un); k1(Un); k2(Un)gc� fT2(Q;w); f2n(U (1)n ); k1(U (1)n ); U (2)n gwhere the last \ c�" is by pseudorandomness of the generator G(s) = �f2n(s); k1(s); k2(s)� and U (1)nand U (2)n denote independent uniform distributions over n-bit strings. Using Equation (6), we alsohave fT2(Q;w); f2n(U (1)n ); k1(U (1)n ); U (2)n g c� fT2(Q;w); f2n(Q(w)); k1(Q(w)); UngCombining these two corollaries we obtain thatfT2(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w))g c� fT2(Q;w); f2n(Q(w)); k1(Q(w)); UngThat is, the session-key k2(Q(w)) is pseudorandom with respect to C's view, even given the entireprotocol transcript.Equation (3): Q is pseudorandom given T2(Q;w) and therefore Q(w) completely hides w. (Herewe use the fact that for every x 2 f0; 1gn, the value of a random (non-constant) linear poly-nomial at x is uniformly distributed.) That is, fT2(Q;w); Q(w); wgQ;w is indistinguishable fromfT2(Q;w); Q(w); ~wgQ;w; ~w. This immediately implies thatfT2(Q;w); f2n(Q(w)); k1(Q(w)); wg c� fT2(Q;w); f2n(Q(w)); k1(Q(w)); ~wgand we thus have that the password w is indistinguishable from ~w 2R D with respect to C's view.A Note Regarding Loss of Session Keys: Loosely speaking, the property of security in theface of session-key loss (described in Section 4.7) states that the password w remains secure even ifthe session-key is revealed. Our proof of Equation (3) is used to show this. That is, we have shownthat fT2(Q;w); Q(w); wgQ;w is indistinguishable from fT2(Q;w); Q(w); ~wgQ;w; ~w. This implies thatfT2(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w)); wg c� fT2(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w)); ~wgThat is, w is indistinguishable from ~w 2R D even given the entire session-transcript and theresulting session-key k2(Q(w)).A Note Regarding Forward Secrecy: The property of forward secrecy (described in Sec-tion 4.7) states that the session-key remains secure even if the password is later revealed. As in the
31



property of session-key loss, the proof of Equation (3) can be used to show that forward secrecyholds. That is,fT2(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w)); wg c� fT2(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w)); ~wg (7)c� fT2(Q;w); f2n(Q(w)); k1(Q(w)); Un; ~wg (8)c� fT2(Q;w); f2n(Q(w)); k1(Q(w)); Un; wg (9)where Equation (7) is exactly as in the loss of session-keys, Equation (8) is due to the pseudo-randomness of k2(Q(w)) (Equation (2) in Theorem 4.1) and Equation (9) is due to the indistin-guishability of w (Equation (3) in Theorem 4.1). This means that k2(Q(w)) is pseudorandom withrespect to the view of a passive channel, even when given the password w.6 Full Proof of Pseudorandomness of Q(w)Theorem 4.2 states that at the conclusion of Stage 2 of the (A;C)-execution, the value Q(w) is(1 � 2�)-pseudorandom with respect to C's view. As described in Section 4.3, the theorem isobtained by combining Lemmas 4.3 and 4.4 which are proved in full here.6.1 Proof of Lemma 4.3Lemma 6.1 (Lemma 4.3 { restated): For every ppt channel C, every polynomial p(�) and for allsu�ciently large n's���PrQ;w;Un[ExptA2(Q;w);B(w)Un (C) = 1]� PrQ;w; ~w[ExptA2(Q;w);B(w)Q( ~w) (C) = 1]��� < �+ 1p(n)Proof: The lemma holds even if C knows the password w, and so we prove the lemma for a channelC who is given w for auxiliary input. Since the password w is known to C, and this constitutes allof B's secret input, the (C;B)-execution can be perfectly emulated by C himself. This means thatC (with auxiliary input w) can distinguish between Q( ~w) and Un in a two-party setting (involvingonly A2 and C) with the same probability as in our concurrent setting (where B is also involved).Formally, consider the following two-party experiment between A2 and C (we stress that B doesnot participate in the execution): ExptA2(Q;w)z (C(w)):s CA2(Q;w)1 (w; 1n)return C2(s; z)Formally, for every ppt channel C there exists a ppt machine C 0 such that for every randomizedprocess z = Z(Q;w)PrQ;w[ExptA2(Q;w)z (C 0(w)) = 1] = PrQ;w[ExptA2(Q;w);B(w)z (C) = 1] (10)C 0 works by emulating the CA2(Q;w);B(w)1 setting for C. This is done by interacting with A2 andplaying the role of B (with input w) in the (C;B) execution. Since C 0 knows w, the emulation isperfect and thus the output from the experiment is identical. By applying Equation (10) to theprobabilities in the lemma (once setting z = Un and once setting z = Q( ~w)), we have that it is32



enough to prove that for every C 0 interacting only with A2 (where there is no concurrent executionwith B), the following holds���PrQ;w;Un[ExptA2(Q;w)Un (C 0(w)) = 1]� PrQ;w; ~w[ExptA2(Q;w)Q( ~w) (C 0(w)) = 1]��� < �+ 1poly(n) (11)We now prove Equation (11). First note that the non-malleable commitment sent by A2 in thissetting plays no role in the continuation of the protocol. Due to the hiding property of the commit-ment, if A2 commits to random values instead of to (Q;w), this makes at most a negligible di�erenceto C 0's success. This enables us to remove the non-malleable commitment entirely because C 0 caninternally simulate receiving a random commitment.What remains is thus the (A2; C) pre-key exchange, consisting of A2 sending Commit(Q) to Cfollowed by a single secure polynomial evaluation. Since the polynomial evaluation is secure, C 0 canlearn at most a single point of Q(�), but otherwise gains no other knowledge of the random Q. Asdescribed in the proof sketch, this implies that C 0 can distinguish Q( ~w) from Un with probability atmost negligibly greater than � (where the � advantage comes from the case that ~w turns out to equalthe input fed by C 0 into the polynomial evaluation). We now formally show how the limitation onC 0's distinguishing capability is derived from the security of the polynomial evaluation.The security of the polynomial evaluation states that C 01 can learn no more in a real execution thanin an ideal scenario where the polynomial evaluation is replaced by an ideal module computed bya trusted third party. Denote the ideal model parties by Â2 and Ĉ 01 (Ĉ 01 is adversarial). By thede�nition of secure two-party computation, for every real adversary C 01 interacting with A2, thereexists an ideal adversary Ĉ 01 interacting with Â2 such that the output distributions of C 01 and Ĉ 01 areindistinguishable. Denote the outputs of C 01 and Ĉ 01 by s and ŝ respectively. It therefore holds thatfor every ppt distinguishing machine D, Pr[D(s) = 1] � Pr[D(ŝ) = 1]. However, by the de�nitionof secure computation, the distinguishing machine D also receives the parties' respective inputs Qand w. Therefore, it likewise holds that for every randomized process z = Z(Q;w), we have thatPr[D(s; z) = 1] � Pr[D(ŝ; z) = 1]. This is true for every D and in particular for C 02 (who receives(s; z) by the experiment de�nition). That is, for every such z = Z(Q;w),���Pr[ExptA2(Q;w)z (C 0(w)) = 1]� Pr[ExptÂ2(Q;w)z (Ĉ 0(w)) = 1]��� < 1poly(n)We conclude that it is enough to show that for every ppt party Ĉ 0 interacting with Â2 in an idealexecution, it holds that����PrQ;w;Un[ExptÂ2(Q;w)Un (Ĉ 0(w)) = 1]� PrQ;w; ~w[ExptÂ2(Q;w)Q( ~w) (Ĉ 0(w)) = 1]���� < �+ 1poly(n)We thus consider an ideal execution of the pre-key exchange consisting of Â2 sending Ĉ 0 a com-mitment to Q followed by an ideal augmented polynomial evaluation. The view of Ĉ 01 in such anexecution consists only of a commitment to Q and the result of the polynomial evaluation. (Theexact de�nition of the augmented polynomial evaluation can be found in Section 3.)Assume for now that the execution of the polynomial evaluation is such that Ĉ 01 always receivesQ(wC) for some wC input by it into the evaluation (and not ? as in the case of incorrect inputs).Then, Ĉ 01's view is exactly (r;Commit(Q); Q(wC )), where r is the string of his random coin tossesand wC is determined by Ĉ 01 based on r and Commit(Q). For sake of clarity, we augment theview by wC itself (i.e, we write Ĉ 01's view as (r;Commit(Q); wC ; Q(wC))). Assuming without lossof generality that Ĉ 01 always outputs his entire view, we conclude that Ĉ 02 receives as input either33



(r;Commit(Q); wC ; Q(wC); Un) or (r;Commit(Q); wC ; Q(wC); Q( ~w)), where ~w 2R D. We now showthat if wC 6= ~w, then the above two tuples are indistinguishable. That is,fr;Commit(Q); wC ; Q(wC); UngQ;Un c� fr;Commit(Q); wC ; Q(wC); Q( ~w) j wC 6= ~wgQ; ~wFirst, by the hiding property of the commitment scheme, we can replace the commitment to Q in theabove distributions with a commitment to 02n. (If this makes a non-negligible di�erence, then Ĉ 0can be used to distinguish a commitment to Q from a commitment to 02n.) Next, notice that thedistributions fr;Commit(02n); wC ; Q(wC); Q( ~w) j wC 6= ~wg and fr;Commit(02n)wC ; Q(wC); Ungare statistically close.23 Then, by returning the commitment to Q in place of the commitment to02n, we have that for every ppt Ĉ 02PrQ;Un [Ĉ 02(r;Commit(Q); wC ; Q(wC); Un) = 1]� PrQ; ~w[Ĉ 02(r;Commit(Q); wC ; Q(wC); Q( ~w)) = 1 j wC 6= ~w]or equivalentlyPrQ;Un[ExptÂ2(Q;w)Un (Ĉ 0(w)) = 1] � PrQ; ~w[ExptÂ2(Q;w)Q( ~w) (Ĉ 0(w)) = 1 j wC 6= ~w]Since ~w 2R D and it is chosen independently of the Ĉ 0A2(Q;w)1 (w; 1n) execution, we have thatPr[wC = ~w] � � (with equality when wC is chosen from D). Therefore����Pr[ExptÂ2(Q;w)Un (Ĉ 0(w)) = 1]� Pr[ExptÂ2(Q;w)Q( ~w) (Ĉ 0(w)) = 1]���� < �+ 1poly(n) (12)(The exact calculation is derived by breaking the probability into two conditional cases; the �rstwhere wC = ~w and the second where wC 6= ~w.) This completes the analysis of the simpli�ed casein which the polynomial evaluation always outputs Q(wC) for some wC (and never outputs ?).However, Ĉ 01 may cause the result of the evaluation to be ? and we must show that this cannothelp him. Intuitively, if Ĉ 01 were to receive ? then he would learn nothing about Q and this wouldthus be a \bad" strategy. However, it must be shown that Ĉ 01 cannot learn anything by the merefact that he received ? and not Q(wC).This can be seen by noticing that the bit indicating whether Ĉ 01 receives ? or Q(wC), denoted�C , is almost independent of Q (by the hiding property of the commitment). Therefore, �C is alsoalmost independent of the values Q( ~w) and Un. Thus, augmenting the distinguisher's view by �Cdoes not change the situation analyzed above and we havefr;Commit(Q); wC ; Q(wC); Un; �CgQ;Un c� fr;Commit(Q); wC ; Q(wC); Q( ~w); �C j wC 6= ~wgQ; ~wNoting that the state output by Ĉ 01 is polynomial time computable from (r;Commit(Q); wC ; Q(wC); �C),it follows that in also in the general case (where the polynomial evaluation outputs?), Equation (12)holds.23If Q was randomly chosen from all linear polynomials (rather than only from those that are non-constant),then due to pairwise independence the distributions would be identical. However, because Q cannot be constant,w 6= ~w implies that Q(wC) 6= Q( ~w) always. On the other hand, Q(wC) = Un with probability 2�n. Therefore, withprobability 2�n the two distributions can be distinguished by seeing if the last two elements are equal or not. Thisis the only di�erence between the distributions and they are therefore statistically close.34



6.2 Proof of Lemma 4.4Lemma 6.2 (Lemma 4.4 { restated): For every ppt channel C, every polynomial p(�) and for allsu�ciently large n's���PrQ;w[ExptA2(Q;w);B(w)Q(w) (C) = 1]� PrQ;w; ~w[ExptA2(Q;w);B(w)Q( ~w) (C) = 1]��� < �+ 1p(n)Proof: The outline of the proof is as follows. As in the previous lemma, the lemma holds evenif C knows some secret information: in this case, the value of the polynomial Q. Given Q, weshow how C can internally emulate the (A2; C)-execution and we therefore remain only with the(C;B)-execution. Now we have a standard two-party setting and we wish to analyze the probabilitythat, in this setting, C distinguishes Q(w) from Q( ~w). Seemingly, we should be able to derive thisdirectly from the security of the polynomial evaluation. However, we encounter a technical di�cultydue to the fact that currently known composition theorems for secure computation do not applyto our speci�c scenario. We discuss the reason for this and then show how to bypass the problemin this particular case.As mentioned above, the lemma holds even if C knows Q and this enables us to remove the (A2; C)execution. Formally, consider the following experiment in which A2 does not participate:ExptB(w)z (C(Q)):s CB(w)1 (Q; 1n)return C2(s; z)We claim that for every ppt channel C, there exists a ppt machine C 0 with auxiliary input Q, suchthat for every randomized process z = Z(Q;w)���PrQ;w[ExptB(w)z (C 0(Q)) = 1]� PrQ;w[ExptA2(Q;w);B(w)z = 1]��� < 1poly(n) (13)The party C 0 works by simply playing A2's role to C; C 0 is able to do this because A2's only inputinto the pre-key exchange is the polynomial Q (and the commit stage can be simulated su�cientlywell without any input). Speci�cally, C 0's simulation works by �rst non-malleably committing to arandom value (instead of to (Q;w)). Then, C 0 continues exactly as A2 would by sending an ordinarycommitment to Q and participating in the polynomial evaluation with C, inputting Q. The onlydi�erence in C's view is with respect to the non-malleable commitment, and this can make onlya negligible di�erence.24 We thus obtain Equation (13). It remains to show that for every ppt C 0interacting only with B, the channel C 0 can distinguish Q(w) from Q( ~w) with probability less than�+ 1poly(n) .24Assume by contradiction that C behaves di�erently when he receives a commitment to (Q;w) or to U3n. Wenow show that C can be used to distinguish such commitments. First notice that the non-malleable commitment isreferred to by A only during the zero-knowledge proof in the validation stage. Since A2 does not reach this stage, thecommitment is not used at all. This is a crucial point enabling any non-negligible di�erence in C's behavior to be usedto distinguish commitments to (Q;w) from random commitments. Now, let D be a distinguisher given a commitmentto either (Q;w) or U3n. Then, D can perfectly simulate CA(Q;w);B(w)1 (1n) (he knows Q and w), except instead ofsimulating a commitment by A to (Q;w) in the (A;C) commit stage, D uses his input (challenge) commitment. Asthe rest of the simulation by D is independent of the value in this commitment, the only di�erence is with respect tothis step. Therefore, any non-negligible di�erence in C's output implies distinguishability of the commitments. Thisargument is used a number times during our proof.We note that this is in contrast to a situation where A does run her zero-knowledge proof (and speci�cally in areal execution), where the value of the commitment is crucial.35



Relying on the Security of Two-Party Computation: As described, we now have a two-party setting in which C and B interact according to our protocol. In this setting, we wish toshow that C can distinguish Q(w) from Q( ~w) with probability at most negligibly greater than �.Intuitively this is due to the security of the polynomial evaluation which ensures that C learnsnothing from it. As for the rest of the (C;B) execution (i.e., the validation and decision stages),all that C can learn is B's accept/reject bit. The proof is thus based on showing that due to thedesign of the validation stage, C gains a distinguishing advantage of at most � from the accept bitof B. We would therefore expect to proceed by replacing the polynomial evaluation by an idealmodule computed by a trusted third party. By analyzing C's distinguishing probability in this idealsetting, we would then derive his distinguishing probability when the ideal polynomial evaluationis replaced by a (real) secure evaluation. Any di�erence in the probabilities would contradict thesecurity of the polynomial evaluation and we would thus obtain the lemma.However, this argument does not quite work here. First notice that if the polynomial evaluationwas run by itself then, as a secure protocol, we know that C learns nothing of w from it. However,this is not the case; rather the evaluation is run as part of a larger protocol. The fact that in thislarger setting, C learns nothing of w from the polynomial evaluation, must be formally justi�ed.Loosely speaking, this is the objective of the Sequential Composition Theorem [14]. We begin bydiscussing the formulation of this theorem, upon which our above argument rests.The starting point of the composition theorem is an arbitrary protocol � that involves an idealsubroutine call to a functionality f (the protocol with the ideal call is denoted �f ).25 Now considerthe protocol �� that is derived by replacing the ideal call to f with a secure protocol � for computingf . The crucial point here to notice is that, outside of the � subprotocol, the protocol �� dependsonly on the output of �, and not on any intermediate messages sent during its computation. Thisis because � directly takes the place of f , for which there are no intermediate messages (it is anideal oracle call). The composition theorem states that, in this setting, attacking �� is not moreadvantageous than attacking the ideal protocol �f .Unfortunately, our protocol does not �t into this scenario. In the validation stage of our protocolC 0 must send B a MAC of the entire message transcript, including the messages belonging to thesecure polynomial evaluation. That is, the protocol de�nition depends on intermediate messagesbelonging to a secure two-party protocol. As discussed above, the composition theorem of [14] doesnot apply to such a case.26 It is possible to generalize the Sequential Composition Theorem toinclude such protocols; we leave this for future work. For now, we show how to bypass this problemin our speci�c protocol.\Removing" the Validation Stage: The above problem is caused by the MAC sent by C 0during the validation stage. We therefore �rst show how we can remove the validation stage so thatthis a�ects C 0's probability of distinguishing Q(w) from Q( ~w) by at most � (once the validationstage is removed, we can just apply a standard analysis). First notice that if C 0 can predict B'soutput bit perfectly, then the (C 0; B)-validation stage is meaningless with respect to C 0's view. Thisis because B's only private output from this stage is his accept/reject bit (B also sends messages inthe role of the verifer in a zero-knowledge proof; however, B is an honest veri�er and his messagesare thus simulatable). Therefore, C 0 can internally simulate B's role in this stage, using his perfect25For simplicity we relate to the case of an arbitrary protocol that uses a single ideal call; the full theorem, however,relates to the more general case of many sequential ideal calls to f1; : : : ; fm.26We stress that in our protocol, the message transcript of the secure polynomial evaluation is a vital part of thecontinuation of the protocol. In fact, if the MAC were only to be applied to the message transcript excluding theinternal messages of the polynomial evaluation then the protocol would no longer be correct (see Appendix B).36



prediction for B's accept/reject bit. Taking this a step further, if C 0 can predict B's output bit andbe correct with probability at least 1� �, then the (C 0; B)-validation stage can be removed, with adi�erence of at most � to C 0's view. We therefore proceed by showing how C 0 can indeed predictB's output bit by himself, with accuracy 1 � �. This is possible because when C 0 interacts withB in this non-concurrent setting, the probability that B accepts is at most negligibly more than �.That is, C 0 can predict that B always rejects and he will be correct with probability 1� �. Recallthat in this scenario, A2 is not involved and therefore C 0 must attempt to have B accept withoutany \help" from A2.Claim 6.3 For every ppt channel C 0 playing in C 0B(w)1 (Q; 1n), for every polynomial p(�) and forall su�ciently large n's Pr[B = acc] < �+ 1p(n)Proof: We prove the claim by considering a modi�ed party B0 who executes everything in thesame way as B except that in the validation stage he only checks that y = f2n(�B) (ignoring theMAC and the zero-knowledge proof). Recall that �B is B's output from the polynomial evaluation.Since we only omitted checks that may make B reject, we have thatPr[B = acc] � Pr[B0 = acc]Next we show that B0 accepts with probability at most � + 1poly(n) . This is based on the securityof the polynomial evaluation which ensures that C learns nothing of w before the validation stage.That is, we show that the validation stage (which now amount to B0 checking if f2n(�B) = y wherey is sent by C in this stage) ensures that if w is uniformly distributed in D (with respect to C'sview), then party B0 accepts with probability at most �.As this claim is due to the security of the polynomial evaluation, we analyze the probabilitythat B0 accepts in an ideal execution. Denote the ideal model parties by Ĉ 0 and B̂0. We claimthat for every ppt Ĉ 0, it holds that Pr[B̂0 = acc] � �. The channel Ĉ 0's view of the protocol isessentially empty (apart from his own randomness). This is because Ĉ 0 receives nothing from thepolynomial evaluation and the only other messages sent by B are as the receiver of a non-malleablecommitment. Since this involves no secrets from B̂0's part, party Ĉ 0 learns nothing from them.Now, B̂0 accepts only if y = f2n(QC(w)) where QC is the polynomial input by Ĉ 0 to the secureevaluation (recall that if B̂0 receives ? from the polynomial evaluation then he always rejects).Since Ĉ 0 learns nothing of w in the execution, with respect to his view the string f2n(QC(w)) isuniformly distributed in the set ff2n(QC(w0)) : w0 2 Dg. As f2n and QC are 1{1 functions (QCis a non-constant linear polynomial), this set contains exactly jDj elements. We therefore concludethat for every Ĉ 0 interacting with B̂0 in an ideal execution,Pr[B̂0 = acc] � 1jDj = �By the security de�nition of multi-party computation, for every adversary C 0 interacting with B0in the real model, there exists an adversary Ĉ 0 interacting with B̂0 in the ideal model, such thatthe outputs of B0 and B̂0 are indistinguishable. This is the correctness requirement described inSection A.1. This implies that���Pr[B0 = acc]� Pr[B̂0 = acc]��� < 1poly(n)37



(Otherwise, one can distinguish the real and ideal executions with non-negligible probability bysimply outputting the accept/reject bit.) We conclude that for every ppt adversary C 0 in a realexecution Pr[B0 = acc] < �+ 1poly(n)and the lemma follows.We are now ready to remove the entire validation stage from the protocol.27 We do this formallyby modifying B so that he does not output any accept/reject bit. We call the modi�ed party B2(as with A2, he only participates in the �rst 2 stages). Now, there exists a ppt channel C 00 suchthat PrQ;w[ExptB2(w)Q(w) (C 00(Q)) = 1] = PrQ;w[ExptB(w)Q(w)(C 0(Q)) = 1 j B = rej] (14)PrQ;w; ~w[ExptB2(w)Q( ~w) (C 00(Q)) = 1] = PrQ;w; ~w[ExptB(w)Q( ~w)(C 0(Q)) = 1 j B = rej] (15)The strategy for C 00 is to simply run C 0B2(w)1 and continue by \assuming" that B2 outputs reject.Thus in executions for which B rejects, the output of C 00 (interacting with B2) equals the outputof C 0 (interacting with B).Once the validation step is removed, C 00 cannot distinguish Q( ~w) from Q(w) since he obtainsno output from the polynomial evaluation (and this is the only part of the protocol where B usesw). This is captured by the following.Claim 6.4 For every ppt channel C 00, every polynomial p(�) and for all su�ciently large n's���PrQ;w[ExptB2(w)Q(w) (C 00(Q)) = 1]� PrQ;w; ~w[ExptB2(w)Q( ~w) (C 00(Q)) = 1]��� < 1p(n)We now put everything together in order to show that C cannot distinguish Q(w) from Q( ~w) withprobability noticeably greater than � (and so establish Lemma 4.4).���Pr[ExptA2(Q;w);B(w)Q(w) = 1]� Pr[ExptA2(Q;w);B(w)Q( ~w) = 1]��� (16)� ���Pr[ExptB(w)Q(w)(C 0(Q)) = 1]� Pr[ExptB(w)Q( ~w)(C 0(Q)) = 1]��� (17)= ����Pr[ExptB(w)Q(w)(C 0(Q)) j B = acc]� Pr[ExptB(w)Q( ~w)(C 0(Q)) j B = acc]� � Pr[B = acc] (18)+ �Pr[ExptB(w)Q(w)(C 0(Q)) = 1 j B = rej]� Pr[ExptB(w)Q( ~w)(C 0(Q)) = 1 j B = rej]� � Pr[B = rej]���� Pr[B = acc] + ���Pr[ExptB2(w)Q(w) (C 00(Q)) = 1]� Pr[ExptB2(w)Q( ~w) (C 00(Q)) = 1]��� (19)< �+ 1poly(n) (20)where the soft equality between lines 16 and 17 is as shown in Equation (13), the equality betweenlines 18 and 19 is by Equations (14) and (15), and the inequality between lines 19 and 20 is due toClaim 6.3 (for the �rst part), and Claim 6.4 (for the second part).27This is in contrast to the proof of Claim 6.3 where we removed only the zero-knowledge proof and MAC from thevalidation stage. 38



7 On Simulating A's Zero-Knowledge ProofIn some of the proofs that follow, we wish to \remove" the (A;C) validation stage, which includesa zero-knowledge proof. Since the proof (given by A to C) is zero-knowledge, it seems that thechannel C (who plays the veri�er in the proof) should be able to simulate it himself. This is true (byde�nition) if the zero-knowledge proof is executed as stand alone. However, the de�nitions of zero-knowledge guarantee nothing in our setting, where the proof is run concurrently with other relatedprotocols (belonging to the (C;B)-execution). Technically speaking, the zero-knowledge simulationof A typically requires rewinding C. However, messages belonging to the (C;B)-execution may beinterleaved with the proof. For example, C's queries to A in the proof may depend on messagesreceived by B. Rewinding C would thus also require rewinding B. However, as B is an externalparty, he cannot be rewound.We remark that concurrent zero-knowledge does not solve this problem either, since it relates toconcurrent executions of a (zero-knowledge) protocol with itself and not concurrently with arbitraryprotocols. Still, we use the ideas underlying the concurrent zero-knowledge proof of Richardsonand Kilian [40] in order to address the problem for our speci�c application.We refer the reader to Appendix A.4 for a description of the Richardson and Kilian (RK) proofsystem. Recall that we set the parameter m (the number of iterations in the �rst part of the RKproof) to be equal to the total number of rounds in our protocol (not including the zero-knowledgeproof itself) plus t = t(n), where t(n) equals any non-constant function of the security parametern (say t(n) = log n).To motivate how the proof simulation is done in our scenario, consider the following mentalexperiment in which the (C;B)-execution does not include the zero-knowledge proof (given by Cto B). In such a case, the total number of rounds in the (C;B) execution equals m � t. On theother hand, the number of iterations in the �rst part of the RK proof given by A to C equalsm. Therefore there are t complete iterations in the �rst part of this proof in which C receivesno messages from B. In these iterations it is possible to rewind C without rewinding B. This isenough to establish zero-knowledge, since the Richardson-Kilian construction is such that as soonas rewinding is possible in one iteration, the entire proof may be simulated. The crucial point isthat we are not required to rewind B (which is not possible, since B is an outside party).The above reasoning can be applied in the following scenario. Consider a modi�ed party B6zkwho is exactly the same as B, except that his protocol de�nition does not include verifying a zero-knowledge proof from C. Then, as we have described in the above mental experiment, when Cinteracts with A and B 6zk, the proof given by A to C can be simulated by C himself.7.1 The Main ResultThe Modi�ed Parties A 6zk and B 6zk: In our above description we described a modi�ed partyB 6zk, whose protocol de�nition does not include verifying C's zero-knowledge proof. Furthermore,when we say that A's proof can be simulated by C himself, this means that A too can be modi�edto a party A 6zk, whose protocol de�nition does not include proving any statement in the validationstage. Before continuing, we formally de�ne what we mean by these modi�cations of A and B toA 6zk and B 6zk respectively. This needs to be done carefully because the transcript (and not just theresult) of the zero-knowledge proof a�ects other parts of our protocol. Speci�cally, in the validationstage, A sends a MAC of her entire message-transcript to C (and likewise, C should send such aMAC to B). This message-transcript includes the messages of the zero-knowledge proof. Therefore,the protocols of A 6zk and B 6zk must be appropriately rede�ned to take this issue into account.39



The A 6zk Modi�cation: In the zero-knowledge proof with C, party A plays the prover. The essenceof the modi�cation of A to A 6zk is in replacing A's prover role in the (A;C)-proof by a simulator.This modi�cation works only if C's view in a protocol execution with A6zk is indistinguishablefrom his view in an execution with A. As mentioned, the MAC sent by A in the validation stageis computed on the entire message transcript, including messages from the zero-knowledge proof.Therefore, the MAC sent by A6zk must also include messages from the simulated proof. However,A 6zk does not see these messages as the simulation is internal in C; therefore the message transcriptof the proof must be explicitly given to her.In light of this discussion, we de�ne the modi�ed A6zk to be exactly the same as A, except thatshe has no zero-knowledge proof in her validation stage. Instead, at the point in which A's zero-knowledge proof takes place, she receives a string s which she appends to her message transcript.This means that the only di�erence between A and A6zk's message transcripts is that A's transcriptincludes messages from a zero-knowledge proof andA 6zk's transcript includes s instead. Intuitively, ifs is the transcript of the simulated proof, thenA andA 6zk's message transcripts are indistinguishable.This ensures that the MACs sent by A and A6zk respectively are indistinguishable.The B 6zk Modi�cation: In the zero-knowledge proof with C, party B plays the veri�er. We wish tomodify B to B6zk so that the only di�erence between the parties is that B6zk does not participatein the zero-knowledge proof. The modi�cation should be such that B6zk has the same behavior asa party who plays the veri�er in the zero-knowledge proof, but always considers the veri�cation tobe successful (irrespective of the real outcome). A problem arising in de�ning B 6zk is that the zero-knowledge proof has inuence on B's protocol de�nition beyond the mere result of the veri�cationprocedure. Again, this \inuence" is due to the MAC that B receives in the validation stage; thisMAC is computed on the entire message transcript, including the messages from the zero-knowledgeproof. Furthermore, this MAC is part of B's decision process in whether to output accept or reject.Therefore, our modi�cation of B is such that the resulting message transcripts for B and B6zk areidentical. That is, similarly to A6zk, instead of playing the veri�er in the proof, B6zk expects toreceive a string s which he then appends to his message transcript. Then, if s equals a valid prooftranscript, the message transcripts of B and B 6zk are identical.We begin by showing that with respect to the \distinguishing experiments" de�ned in Section 4.1,there is no di�erence if C interacts with A and B or with A and B 6zk. Intuitively, this is becauseB always plays an honest-veri�er in the zero-knowledge proof and C knows whether the proofsucceeded or not. Therefore, C can simulate the proof and the a�ects of its result by himself.Lemma 7.1 Let B 6zk be the above-de�ned modi�ed party. Then, for every ppt channel C thereexists a ppt channel C 0 such that for every randomized process z = Z(Q;w)PrQ;w[ExptA(Q;w);B(w)z (C) = 1] = PrQ;w[ExptA(Q;w);B 6zk(w)z (C 0) = 1]Proof: The equality in the lemma is obtained by having the channel C 0 (who interacts with A andB 6zk) simulate the scenario in which C interacts with A and B. This simulation is de�ned so thatC's view is identical to the setting where C really interacts with A and B. Notice �rst that in bothsettings, C and C 0 interact with A (and not with a modi�ed party). Therefore, with respect tothe (A;C)-execution, channel C 0 need do nothing beyond forwarding all messages between A andC (without modi�cation). Furthermore, until the zero-knowledge proof is reached in the (C;B)-execution stage, there is also no di�erence between B and B6zk. Therefore, the simulation of thispart just involves C 0 forwarding all messages between C and B 6zk.40



The interesting part of the simulation is from the (C;B) zero-knowledge proof until the con-clusion of the (C;B)-execution. This includes the zero-knowledge proof from C to B, and B'saccept/reject bit. We stress that the simulation must ensure that C receives the same accept/rejectbit from B 6zk that B would have output. (Notice that in general B6zk's output-bit may not be thesame as B's, because if the (C;B) zero-knowledge proof fails B always rejects. On the other hand,B 6zk does not have such a proof and may therefore accept in the same situation.) The simulationis thus as follows:The Simulation:1. Zero-Knowledge with C: C 0 emulates B's role as the veri�er in the proof with C. The basis forthis emulation is the fact that B plays an honest veri�er. Therefore, C 0's emulation consistsof being an honest veri�er in B's place.C 0 plays the veri�er in this proof and therefore either accepts or rejects the proof. Let zk-accept be a random variable such that zk-accept = 1 if and only if C 0 accepts the proof.2. The String s Received by B 6zk: By the de�nition of B6zk, party B 6zk expects to receive a strings at the point of B's zero-knowledge proof. This string is then appended to B 6zk's messagetranscript. Channel C 0 sets s to equal the transcript of messages belonging to the internalzero-knowledge proof execution it had conducted in Step 1.3. The MAC from C: In the last step of the protocol, C sends a MAC to B. The MAC forwardedby C 0 to C depends on whether or not C 0 accepted the zero-knowledge proof (i.e., if zk-accept= 1 or not).� Case zk-accept = 1: In this case, channel C 0 forwards (to B 6zk) the MAC sent by C.� Case zk-accept = 0: In this case, channel C 0 sends an invalid string in place of the MAC.(This ensures that B 6zk will reject.)4. B 6zk's Output Bit: C 0 receives B6zk's accepts/reject bit and forwards it to C.This concludes the simulation. We now show that C's view in this simulation is identical to hisview in a real execution with B. As discussed above, we need only consider the last part of the(B;C) execution. Firstly, C's view of the zero-knowledge proof with B is identical to the viewsimulated by C 0, since C 0 emulates B perfectly. Next, note that C 0 accepts the zero-knowledgeproof with the same probability that B would have; this is a central point in showing that C's viewof the rest remains unchanged. Consider the following two cases:28� Case zk-accept = 1: Channel C 0 accepted the proof and thus B would have accepted it (with thesame probability). Party B therefore accepts if he received yB = f2n(�B) where �B is his outputfrom the polynomial evaluation, and if the MAC is correct. The modi�cation has no e�ect onthe y-value and therefore this makes no di�erence. It remains to show that the probability thatB accepts the MAC from C equals the probability that B6zk accepts this same MAC. This istrue if the message transcripts that both B and B 6zk hold are the same (by the \same", wemean that they are identically distributed). Apart the zero-knowledge proof, the transcripts are28Let B-zk-accept be a random variable such that B-zk-accept = 1 if and only if B accepts his zero-knowledge prooffrom C. Then, formally we show below that for b 2 f0; 1g, the probability that ExptA(Q;w);B(w)z (C) = 1 conditionedon B-zk-accept = b equals the probability that ExptA(Q;w);B6zk(w)z (C0) = 1 conditioned on zk-accept = b. Now, sincefor b 2 f0; 1g, we have that Pr[B-zk-accept = b] = Pr[zk-accept = b], we obtain the equality in the lemma.41



identical by de�nition. Furthermore, B 6zk appends the messages from C 0's internal emulation ofthe proof (with C) to his message transcript. As C 0 plays an honest veri�er exactly as B wouldhave, this means that their message transcripts are identically distributed. We conclude thatthe probability that B 6zk accepts in this case equals the probability that B accepts.� Case zk-accept = 0: Channel C 0 rejected the proof and thus B would have rejected it (with thesame probability). In this case B's output-bit is always reject. Since C 0 sends B 6zk an invalidMAC value in this case, B 6zk also always rejects.We have shown that when the result of C 0's veri�cation is the same as B, then B 6zk's accept/reject bitis the same as B's. Given that the probability that C 0 accepts the proof is equal to the probabilitythat B accepts it, we have that B and B6zk's output-bits equal accept with the same probability.This means that C's view is identical in both cases and this completes the proof.We now show that when C interacts with B6zk, modifying A to A6zk makes no di�erence to his view.This is done by showing how the proof from A can be simulated by C himself. A key observationregarding B6zk is that the number of messages it sends is strictly less than the number of iterationsof the zero-knowledge proof that takes place in the (A;C) execution.Lemma 7.2 Let A 6zk and B 6zk be the above-de�ned modi�ed parties. Then, for every ppt channel Cthere exists a ppt channel C 0 such that for every randomized process z = Z(Q;w), every polynomialp(�) and all su�ciently large n's���PrQ;w[ExptA(Q;w);B6zk(w)z (C) = 1]� PrQ;w[ExptA6zk(Q;w);B 6zk(w)z (C 0) = 1]��� < 1p(n)Proof: In both experiments, B 6zk does not participate in the zero-knowledge proof. As we have de-scribed above (in the motivating discussion), this enables A's zero-knowledge proof to be simulatedfor C, who is the veri�er. We now formally show how C 0 executes this simulation for C.The key observation is that the number of iterations in the �rst part of the RK-proof is m,whereas the number of messages sent between C and B6zk is m� t. Therefore, there are t iterationsfor which no message is sent between C and B 6zk (these iterations may not be �xed but rather canbe determined by C 0 during the execution). In these iterations, since B 6zk is not active, C 0 is ableto rewind C. The RK-proof is such that if the veri�er can be rewound for any iteration during the�rst part, then a successful simulation of the proof is achieved.To see why the above holds, recall that the RK-proof consists of two parts. The �rst partconsists of m iterations, where in each iteration the veri�er (who is C in this case) sends the provera commitment to a random string vi. The prover then sends a commitment to pi and the veri�erdecommits. In the second part of the proof, the prover proves (with a witness-indistinguishableproof [20]) that either there exists an i such that pi = vi or that the \target" statement is correct.In a real proof, the prover will not be able to set pi = vi except with negligible probability. Thisthen implies that the statement is correct. On the other hand, if there is just one iteration of the�rst part in which the simulator can rewind the veri�er, he can then set pi = vi (because he rewindsafter obtaining the decommitment value vi and can thus set his commitment pi to equal vi). Inthis case, he can successfully prove the witness-indistinguishable proof (without knowing a proofof the target statement).Now, in our case there are t iterations in which no messages are sent to B. In these iterations itis possible to rewind C. The only problem remaining is that C may refuse to decommit. If duringthe execution of a real proof, C refuses to decommit, then the prover halts. During the simulation,42



however, we must ensure that the probability that we halt due to C's refusal to decommit is thesame as in a real execution. This prevents us from simply halting if after a rewind, C refuses todecommit (since before rewinding he did decommit).Before we continue, we de�ne the concepts of promising and successful iterations. Throughthis, we di�erentiate what happens during the �rst execution of a given iteration (i.e., before anyrewinding when the veri�er receives a commitment to a random string pi) and during repeatedexecutions after rewinding (when the veri�er receives a commitment to pi such that pi = vi). Thatis,� An iteration i is called promising if when C receives a commitment to a random pi, the iterationis such that no messages are sent to B 6zk and C decommits properly. (This occurs before anyrewinding.)� An iteration i is called successful if when C receives a commitment to pi such that pi = vi, theiteration is such that no messages are sent to B 6zk and C decommits properly. (This typicallyoccurs after rewinding when pi can be set to vi.)Now, notice that when an iteration is successful, we can complete a full simulation of the proof.This is because the �rst part of the proof is such that there exists an i for which pi = vi. Thereforethe simulator (having an adequate NP-witness) can prove the necessary witness-indistinguishableproof. Loosely speaking, the probability that a promising iteration is not successful must be negligi-ble. This is because the only di�erence between the two cases is whether C receives a commitmentto pi or vi. Now, assume that there is a veri�er V � for whom the probabilities that an iterationis promising or successful are non-negligibly far apart. Then, V � can be used to distinguish acommitment to pi from a commitment to vi, contradicting the security of the commitment scheme.This point is crucial because unless C refuses to decommit before any rewinding, we know thatthere must be at least t promising iterations. We can conclude that with overwhelming probability,some of these are also successful, allowing us to complete the simulation.The Actual Simulator: We now show how C 0 runs the simulation for C. The channel C 0 playsthe prover to C; in each iteration i he receives a commitment to vi from C and replies with acommitment to a random string pi. If an iteration is not promising, then there are two possiblereasons why: (1) C refused to decommit and in this case C 0 halts the simulation; (2) C sent amessage to B 6zk during the iteration { in this case C 0 simply continues to the next iteration.On the other hand, if an iteration is promising, then C 0 obtains the decommitted value vi,rewinds C and commits to pi = vi. That is, C 0 attempts to obtain a successful iteration. If therewinded iteration is successful, then as we have shown C 0 can complete the simulation successfully.However, the iteration may not be successful after the rewinding. That is, C may refuse to decommitor may send messages to B6zk. As long as the rewinded iteration is not successful, C 0 continuesto rewind up to N times (where N = poly(n) and the exact polynomial taken is discussed in theanalysis). If none of the rewinds were successful then he resends his original commitment to arandom pi and continues to the next iteration. We note that each rewinding is independent in thatC 0 sends an independent random commitment to pi = vi each time.We stress that C 0 must block any message sent by C to B6zk during a rewinding. This is becauseC cannot be rewound beyond a point in which he sent a message to B6zk. However, since C mayrefuse to decommit, further rewindings may be necessary. Thus, in the case that C sends a messageto B 6zk during a rewinding, C 0 halts the iteration (without forwarding the message) and rewindsagain, up to N times. 43



Motivation for the Analysis: As we have mentioned, if an iteration is not promising because Crefused to decommit, then the simulation terminates successfully (as the prover would also simplyhalt in a real proof). On the other hand, we know that there are at least t iterations for which Cdoes not send any messages to B 6zk (recall that there are only m� t messages sent between C andB 6zk). We therefore have at least t promising iterations (or C refused to decommit and anyway thesimulation succeeds). The simulation fails only if all these promising iterations are not successful;we show that for a correct choice of N (the number of rewindings of a promising iteration), thisoccurs with at most negligible probability.The Analysis: Our aim is to show that the simulation fails with negligible probability. That is,for every positive polynomial p, we show that (for all but �nitely many n's) the simulation failswith probability smaller than 1=p(n). In the rest of the analysis we assume that m < pn (this iseasy to enforce, possibly, by arti�cially increasing the original security parameter n to a polynomialin n). We use the following notation:� Let X1; : : : ;Xm be random variables such that Xi = 1 if and only if C sends no messages toB 6zk during iteration i when pi is a random commitment (i.e., before rewinding).� Let Y1; : : : ; Ym be random variables such that Yi = 1 if and only if C agrees to decommit duringiteration i when pi is a random commitment (i.e., before rewinding).We therefore have that an iteration i is promising if Xi = Yi = 1. We now introduce similarnotations for iterations after rewinding:� Let X 01; : : : ;X 0m be random variables such that X 0i = 1 if and only if C sends no messages to B 6zkduring iteration i when pi is a commitment such that pi = vi (i.e., typically after rewinding).� Let Y 01 ; : : : ; Y 0m be random variables such that Y 0i = 1 if and only if C agrees to decommit duringiteration i when pi is a commitment such that pi = vi (i.e., typically after rewinding).We therefore have that an iteration i is successful if X 0i = Y 0i = 1.We start by showing that the success event X 0i = Y 0i = 1 occurs essentially as often as the promisingevent Xi = Yi = 1. We wish to establish this not only for the a-priori probabilities but also whenconditioned on any past event that occurs with noticeable probability. Speci�cally, we prove thefollowing.Claim 7.3 For every polynomial q, every i �m, and every � 2 f0; 1gi�1 eitherPr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �] < 1q(n) (21)or if Pr[Xi = Yi = 1 jY1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �] � 1nthen Pr[X 0i = Y 0i = 1 jY1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �] > 12n (22)Proof: The claim follows by the hiding property of the commitment scheme. Speci�cally, analgorithm violating the hiding property is derived by emulating the �rst i�1 iterations (of the realexecution) with the hope that Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = � holds, which indeed occurs withnoticeable probability. Given that this event occurs, the algorithm can distinguish a commitmentto a random value from a commitment to a given vi. More precisely, contradiction to the hidingproperty is derived by presenting two algorithms. The �rst algorithm emulates the real interaction44



for i iterations, and obtains vi from the veri�er decommitment in the ith iteration, in case suchan event has occured. The second algorithm is given the view of the �rst algorithm along with achallenge commitment and distinguishes the case in which this commitment is to a random valuefrom the case this commitment is to the value vi.Our aim is to upper bound the probability that the simulation fails, by considering all possiblevalues that X = X1 � � �Xm can obtain in such a case. Denoting the simulator's failure event byfail, we have: Pr[fail] = X�2f0;1gm Pr[fail&X = �]= X�2S Pr[fail&X1 � � �Xj�j = �]where S is any maximal pre�x-free subset of f0; 1gm. (Recall that a set S is pre�x-free if for every�; � 2 S it holds that � is not a pre�x of �. By maximality, we mean that every � 2 f0; 1gm has apre�x in S (or else this � could have been added to S without violating the pre�x-free condition).)The last equality holds since the strings in f0; 1gm can be partitioned to subsets such that thestrings in each subset have a unique pre�x in the set S.For a constant k < t to be determined later, we de�ne Hk to be the set of all strings havinglength at most m � 1 and hamming weight exactly k. Let S1 def= f�01 : �0 2 Hkg (i.e., strings oflength at most m and hamming weight k + 1 that have no strict pre�x satisfying this condition),and S2 be the set of all m-bit long strings having hamming weight at most k. Then S1 [ S2 is amaximal pre�x-free subset of f0; 1gm, and so we have:Pr[fail] = X�2S1[S2 Pr[fail&X1 � � �Xj�j = �]= X�02Hk Pr[fail&X1 � � �Xj�0j+1 = �01]where the last equality follows since Pr[fail&X 2 S2] = 0 (i.e., unless C refuses to properlydecommit in some iteration, in which case the simulation never fails, there must be at least t � k+1iterations/indices i in which Xi = 1 holds). Since jHkj < mk, we havePr[fail] < mk � max�02HkfPr[fail&X1 � � �Xj�0j+1 = �01]g� mk � max�02HkfPr[fail&X1 � � �Xj�0j = �0]gWe will show that for every �0 2 Hk, it holds thatPr[fail&X1 � � �Xj�0j = �0] < 1mk � p(n) (23)which establishes our claim that the simulation fails with probability smaller than 1=p(n).In order to establish Eq. (23), we �x an arbitrary �0 2 Hk, let i = j�0j+1, and we consider twocases:Case 1: Pr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �0] < 1mk�p(n) . In this case, using the fact that thesimulation never fails if any of the Yj's equals 0, it follows that Pr[fail&X1 � � �Xi�1 = �0] <1mk �p(n) as desired. 45



Case 2: Pr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �0] � 1mk�p(n) . In this case, setting q(n) = mk � p(n),we conclude that Eq. (22) holds. Furthermore, for every j � i, it holds that Pr[Y1 � � � Yj�1 =1j�1&X1 � � �Xj�1 = �00] � 1mk�p(n) holds, where �00 is the the (j � 1)-bit long pre�x of �0.Thus, Eq. (22) holds for �00 too. We are particularly interested in pre�ces �00 such that �001is a pre�x of �0. We know that there are k such pre�ces �001 and we denote the set of theirlengths by J (i.e., j 2 J if the j-bit long pre�x of �0 ends with a one). We consider twosubcases:1. If for some j 2 J , it holds that Pr[Xj = Yj = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 = �00] �1n then (by Eq. (22)) it holds that Pr[X 0j = Y 0j = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 =�00] > 12n . This means that a rewinding attempt at iteration j succeeds with probabilitygreater than 1=2n, and the probability that we fail in O(n2) attempts is exponentiallyvanishing. Thus, in this subcase Pr[fail&X1 � � �Xi�1 = �0] < 2�n < 1mk�p(n) as desired.2. The other subcase is that for every j 2 J , it holds that Pr[Xj = Yj = 1 jY1 � � � Yj�1 =1j�1&X1 � � �Xj�1 = �00] < 1n . Recalling that failure may occur only if all Yj 's equalone, and letting �0 = �1 � � � �i�1, we get (using �j = 1 for j 2 J)Pr[fail&X1 � � �Xi�1 = �0]� Pr[Y1 � � � Yi�1 = 1i�1&X1 � � �Xi�1 = �0]= i�1Yj=1Pr[Xj = �j &Yj = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 = �1 � � � �j�1]� Yj2J Pr[Xj = 1&Yj = 1 jY1 � � � Yj�1 = 1j�1&X1 � � �Xj�1 = �1 � � � �j�1]< (1=n)kBy a suitable choice of k (e.g., k = 2 limn!1 logn p(n)) and recalling that m < pn, wehave 1nk < 1mk�p(n) as desired.Thus, we have established the desired bound of Eq. (23) in all possible cases.Concluding the (A;C) Simulation: Following the zero-knowledge proof, A 6zk sends a MAC ofthe entire session-transcript. The channel C 0 must ensure that C receives a MAC that is indis-tinguishable from the MAC that he would have received from A. Recall that by the de�nition ofthe A6zk modi�cation, the party A6zk expects to receive a string s in place of the zero-knowledgeproof. C 0 de�nes s to be the transcript of the zero-knowledge simulation. This means that A 6zk'sresulting message-transcript is identical to the transcript held by C. Furthermore, this transcriptis indistinguishable from a transcript that C would hold after a real execution with A (rather thanin this simulated interaction). This implies that the MAC sent by A6zk is indistinguishable fromone that A would have sent. This completes the proof.7.2 Corollaries and RemarksThe above proof is identical for a party B2 who does not participate at all in the validation stage.We now restate Lemma 7.2 in this case (this is used in Section 10).46



Lemma 7.4 Let A 6zk be the above-de�ned modi�ed party and let B2 be a party who halts before thevalidation stage. Then, for every ppt channel C there exists a ppt channel C 0 such that for everyrandomized process z = Z(Q;w), every polynomial p(�) and all su�ciently large n's���PrQ;w[ExptA(Q;w);B2(w)z (C) = 1]� PrQ;w[ExptA6zk(Q;w);B2(w)z (C 0) = 1]��� < 1p(n)An immediate corollary from Lemmas 7.1 and 7.2 is that if we modify both A and B to A 6zk andB 6zk respectively, then this has at most a negligible a�ect on C's output.Corollary 7.5 Let A 6zk and B6zk be the modi�ed parties de�ned above. Then, for every ppt chan-nel C there exists a ppt channel C 0 such that for every randomized process z = Z(Q;w), everypolynomial p(�) and all su�ciently large n's���PrQ;w[ExptA(Q;w);B(w)z (C) = 1]� PrQ;w[ExptA6zk(Q;w);B 6zk(w)z (C 0) = 1]��� < 1p(n)A Note on the Number of Rounds: Our simulator works given that the number of roundsin the �rst part of the RK-proof is any non-constant function of the security parameter n (saylog log n). We note that if only an expected (rather than strictly) polynomial-time simulator isdesired, then a single additional round su�ces. This can be shown using the techniques of [25].Pseudorandomness of Q(w) Restated: We now restate Theorem 4.2 in the case that C inter-acts with A2 and B6zk, rather than with A2 and B (recall that A2 is a party that halts before thevalidation stage). The restated theorem is used for the session-key secrecy (proved in Section 8),and is presented here only due to the de�nition of the modi�ed party B 6zk.Theorem 7.6 (Pseudorandomness of Q(w) with B 6zk): Let C be an arbitrary ppt adversary inter-acting with A2 and B 6zk. Then, for every polynomial p(�) and for all su�ciently large n's���PrQ;w[ExptA2(Q;w);B 6zk(w)Q(w) = 1]� PrQ;w;Un[ExptA2(Q;w);B 6zk(w)Un = 1]��� < 2�+ 1p(n)where Q is a random, non-constant, linear polynomial and w 2R D.The proof of this theorem is identical to the proof of Theorem 4.2.8 Full Proof of Session-Key SecrecyTheorem 4.2 states that Q(w) is (1�O(�))-pseudorandom prior to the validation stage of the (A;C)-execution. In this section we prove that the session-key k2(Q(w)) is (1 � O(�))-pseudorandomat the conclusion of the entire protocol. Recall that in the validation stage A sends the stringy = f2n(Q(w)), proves a statement in zero-knowledge and sends a MAC (keyed by k1(Q(w))) ofthe entire message transcript. In order to simplify the proof, we consider that A sends the MAC-keyk1(Q(w)) itself during the validation stage. Given the MAC-key (i.e., k1(Q(w))), the channel Ccan always compute the MAC itself. Therefore, this can only \help" C distinguish the session-keyfrom a random string. 47



The proof relies on the fact that since G(s) = (f2n(s); k1(s); k2(s)) is a pseudorandom gener-ator, the output key k2(Q(w)) is (1 � O(�))-pseudorandom, even given f2n(Q(w)) and k1(Q(w)).This must be justi�ed, as in our case the generator is seeded by Q(w) which is only (1 � 2�)-pseudorandom, whereas a generator is usually seeded by a uniformly random string. In the follow-ing proposition we show that if Q(w) is (1 � 2�)-pseudorandom (as previously shown), then givenf2n(Q(w)) and k1(Q(w)), the string k2(Q(w)) is (1 � 4�)-pseudorandom. (By \given" we meanthat a ppt distinguishing machine is given these strings, along with the challenge string which iseither k2(Q(w)) or Un.) Applied to the analysis of our protocol, this means that even after A sendsthe string f2n(Q(w)) and the MAC in the validation stage, the output session-key k2(Q(w)) is still(1� O(�))-pseudorandom. We also show that given f2n(Q(w)), the string k1(Q(w)) is (1 �O(�))-pseudorandom. This means that the MAC-key is (1 � O(�))-pseudorandom even after A sendsf2n(Q(w)). The validation stage also contains a zero-knowledge proof and we deal with this later.PreliminariesWe model any information that C may have learned aboutQ and w during the protocol by a randomprocess I(�). This can be seen by de�ning I((Q;w)) to equal the output of CA2(Q;w);B 6zk(w)1 (1n). (Thereason we de�ne the random process over A2 and B 6zk, rather than A and B, will become evidentlater.) Now, we model the inputs Q and w by a random variable Yn and the value Q(w) by a relatedrandom variable Xn (i.e., for Yn = (�; �), the random variable Xn is de�ned to be �(�)). Then,the fact that Q(w) is (1�2�)-pseudorandom with respect to C's view after interacting with A2 andB 6zk (as stated in Theorem 7.6), is represented by the saying that Xn is (1� 2�)-pseudorandom toa distinguisher given I(Yn).Proposition 8.1 Let fXng and fYng be (possibly) related random variables such that fXng is(1� �)-pseudorandom to a distinguisher given I(Yn). Then� (I(Yn); f2n(Xn); k1(Xn); k2(Xn)) is (1�2�)-indistinguishable from (I(Yn); f2n(Xn); k1(Xn); Un),and� (I(Yn); f2n(Xn); k1(Xn)) is (1� 2�)-indistinguishable from (I(Yn); f2n(Xn); Un).Proof: We begin by showing that (I(Yn); f2n(Xn); k1(Xn)) is (1 � 2�)-indistinguishable from(I(Yn); f2n(Xn); Un). This is shown in three steps ( �� denotes (1 � �)-indistinguishability and c�denotes computational indistinguishability):1. (I(Yn); f2n(Xn); k1(Xn)) �� (I(Yn); f2n(Un); k1(Un))This is because by the hypothesis (I(Yn);Xn) is (1� �)-indistinguishable from (I(Yn); Un).2. (I(Yn); f2n(Un); k1(Un)) c� (I(Yn); f2n(U (1)n ); U (2)n ) (where U (1)n and U (2)n are two independentuniform distributions)This is derived directly from the fact that (f2n(Un); k1(Un)) is pseudorandom.3. (I(Yn); f2n(U (1)n ); U (2)n ) �� (I(Yn); f2n(Xn); U (2)n )As in the �rst step, this is because (I(Yn);Xn) is (1� �)-indistinguishable from (I(Yn); Un).Putting it all together we have that (I(Yn); f2n(Xn); k1(Xn)) and (I(Yn); f2n(Xn); Un) are (1�2�)-indistinguishable.An analogous argument is used to show that (I(Yn); f2n(Xn); k1(Xn); k2(Xn)) is (1�2�)-indistinguishablefrom (I(Yn); f2n(Xn); k1(Xn); Un). 48



Session-Key Secrecy w.r.t. A6zk and B 6zkWe now show that when C interacts with A6zk and B6zk (where A 6zk and B6zk are as de�ned inSection 7), the session-key is (1�O(�))-pseudorandom.Corollary 8.2 Let C be an arbitrary ppt channel interacting with A 6zk and B6zk, as de�ned inSection 7. Then, for every polynomial p(�) and all su�ciently large n's���PrQ;w[ExptA 6zk(Q;w);B 6zk(w)k2(Q(w)) = 1]� PrQ;w;Un[ExptA 6zk(Q;w);B 6zk(w)Un = 1]��� < 4�+ 1poly(n)Proof: Theorem 7.6 (from Section 7) states that for any ppt channel C interacting with A2 andB 6zk ���PrQ;w[ExptA2(Q;w);B 6zk(w)Q(w) = 1]� PrQ;w;Un[ExptA2(Q;w);B 6zk(w)Un = 1]��� < 2�+ 1poly(n)That is, the string Q(w) is (1 � 2�)-pseudorandom with respect to C's view at the conclusionof the protocol execution. Now, the only di�erence between A2 and A 6zk is that A 6zk sends thefollowing two messages in the validation stage: f2n(Q(w)) and the MAC-key k1(Q(w)). Usingthe notation of Proposition 8.1, the channel C's view of the execution CA6zk;B 6zk1 (1n) can be rep-resented by (I(Q;w); f2n(Q(w)); k1(Q(w))) (de�ne I(Q;w) def= CA2(Q;w);B 6zk(w)1 (1n)). Now, Propo-sition 8.1 states that (I(Q;w); f2n(Q(w)); k1(Q(w)); k2(Q(w))) is (1 � 4�)-indistinguishable from(I(Q;w); f2n(Q(w)); k1(Q(w)); Un). In other words,���PrQ;w[ExptA 6zk(Q;w);B 6zk(w)k2(Q(w)) = 1]� PrQ;w;Un[ExptA 6zk(Q;w);B 6zk(w)Un = 1]��� < 4�+ 1poly(n)That is, the corollary is obtained by combining Theorem 7.6 with Proposition 8.1.Session-Key Secrecy w.r.t. A and BIt remains to show that when C interacts with A and B (and not the modi�ed parties A6zk andB 6zk), then the session-key k2(Q(w)) is (1�O(�))-pseudorandom. This is immediately derived fromCorollary 7.5 that states that for every ppt channel C there exists a ppt channel C 0 such that forevery randomized process z = Z(Q;w)���PrQ;w[ExptA(Q;w);B(w)z (C) = 1]� PrQ;w[ExptA6zk(Q;w);B 6zk(w)z (C 0) = 1]��� < 1poly(n)By applying Corollary 7.5 twice to Corollary 8.2, replacing z once with k2(Q(w)) and once withUn, we have the following theorem for session-key secrecy.Theorem 8.3 (Theorem 4.5 restated): Let C be an arbitrary ppt channel. Then,���PrQ;w[ExptA(Q;w);B(w)k2(Q(w)) = 1]� PrQ;w;Un[ExptA(Q;w);B(w)Un = 1]��� < 4�+ 1poly(n)49



Divertion: Security of the MAC ValueWe now divert and prove a corollary needed for Sections 4.6 and 10 (password secrecy). We prove ithere because its proof is almost identical to that of Theorem 8.3. Recall that the last message sentby A in the protocol is a MAC (implemented via a pseudorandom function keyed with k1(Q(w)))applied to her entire message transcript. The corollary states that for any other string t, the valueMACk1(Q(w))(t) is (1� 4�)-pseudorandom with respect to C's view.Corollary 8.4 (Corollary 4.9 restated): Let C be an arbitrary ppt channel. Then, for every string tthat di�ers from the (A;C)-message transcript, the value MACk1(Q(w))(t) is (1�4�)-pseudorandomwith respect to C's view.Proof: In the proof of Theorem 8.3 we show that k2(Q(w)) is (1�4�)-pseudorandom with respectto C's view. Using the same argument, we have that before A sends the MAC in the validationstage, the MAC-key k1(Q(w)) is (1�4�)-pseudorandom with respect to C's view. Formally, considera modi�ed party A6mac who is exactly the same as A except that she does not send the MAC in thevalidation stage. Then, the same proof as above can be used to show that���PrQ;w[ExptA6mac(Q;w);B(w)k1(Q(w)) = 1]� PrQ;w;Un[ExptA6mac(Q;w);B(w)Un = 1]��� < 4�+ 1poly(n) (24)(Recall that this is proved in two stages. We �rst consider a scenario in which C interacts witha party A6zk;6mac, who sends neither the MAC or zero-knowledge proof, and with B 6zk. In thisscenario, we show that k1(Q(w)) is (1 � 4�)-pseudorandom with respect to C's view. Then, byapplying Corollary 7.5, we have that the above holds also when C interacts with A 6mac and B.)In the proposition below we show that Equation (24) implies that the MAC used is a (1� 4�)-pseudorandom function. Then, even when C is given the MAC for the (A;C)-message transcript,all other MAC values are (1�4�)-pseudorandom with respect to his view. This completes the proofas the only di�erence between A and A 6mac is that A sends a MAC on the (A;C)-message transcriptin the validation stage.It remains to prove that the MAC used is a (1 � 4�)-pseudorandom function. We use the samenotation as in Proposition 8.1. (Recall that I(�) is a random process that represents the informationlearned by C during a protocol execution, Yn is a random variable taking on pairs (Q;w) and Xnis a related random variable taking on values Q(w).)Proposition 8.5 Let fXng and fYng be (possibly) related random variables such that fXng is (1��)-pseudorandom to a distinguisher given I(Yn). Furthermore, let gr(�) be a pseudorandom functionwhen r is uniformly distributed. Then, given I(Yn), the function gXn(�) is (1� �)-pseudorandom.Proof: The proof is based on the idea that a string distinguisher that needs to distinguish Xnfrom Un can simulate oracle queries to gXn(�) or gUn(�) depending on its input. Since we knowthat gUn(�) is indistinguishable from a random function (by de�nition), distinguishing gXn(�) froma random function essentially means distinguishing Xn from Un. Details follow.Let D be a ppt oracle machine who receives the output of the random process I(Yn) and oracleaccess to either gXn or a random function f . Then,���Prob[DgXn (I(Yn); 1n) = 1]� Prob[Df (I(Yn); 1n) = 1]���� jProb[DgXn (I(Yn); 1n) = 1]� Prob[DgUn (I(Yn); 1n) = 1]j (25)+ ���Prob[DgUn (I(Yn); 1n) = 1]� Prob[Df (I(Yn); 1n) = 1]��� (26)50



Equation (26) is negligible by the de�nition of a pseudorandom function. On the other hand,Equation (25) must be less than � + 1poly(n) because otherwise a ppt machine D0 that, given I(Yn)attempts to distinguish Xn from Un, can invoke D on input (I(Yn); 1n) and answer all oracle queriesaccording to its input string (which is either Xn or Un).9 Full Proof of the Key-Match RequirementThe key-match requirement captured in Theorem 4.6 states that the probability that A and Bboth accept, yet have di�erent keys is at most O(�). Recall that �A def= Q(w) and that �B is B'soutput from the polynomial evaluation. We prove this theorem by considering two complementaryschedulings of the concurrent executions. We show that for each scheduling, the probability thatB accepts and �A 6= �B is at most O(�). (In fact, the �rst scheduling is such that B accepts withprobability at most O(�), irrespective of whether or not �A = �B .)9.1 Proof of Lemma 4.7Lemma 9.1 (Lemma 4.7 { restated; Case 1 { Unsynchronized): Let C be a ppt channel and de�neCase 1 to be a scheduling of the protocol execution by which C completes the polynomial evaluationwith A before concluding the non-malleable commitment with B. Then, for every polynomial p(�)and all su�ciently large n's Pr[B = acc ^ Case 1] < 2�+ 1p(n)Proof: As in our previous proofs, we reduce the concurrent setting to a two-party stand-alonesetting. However, before doing this we remove the zero-knowledge proofs and modify parties A andB to A6zk and B6zk respectively, as de�ned in Section 7 (loosely speaking, the modi�ed parties actexactly as A and B but do not participate in the zero-knowledge proofs). Corollary 7.5 states thatfor every channel C interacting with A and B, there exists a channel C 0 interacting with A6zk andB 6zk such that the channels' views in the two cases are indistinguishable. Since B's accept/rejectbit is part of C's view, we have that the probability that B6zk accepts (in an execution with C 0and A 6zk) is negligibly close to the probability that B accepts (in an execution with C and A). Wetherefore continue by proving the theorem in the setting whereby C interacts with A6zk and B6zk(rather than with A and B).As mentioned, our �rst step now is to reduce the concurrent setting to a two-party stand-alonesetting. In previous proofs this was done by having C simulate one of the concurrent executionswith A or B. For example, C would internally simulate the (C;B)-execution while interacting withA. The reduction here is di�erent in that a party P will incorporate parts of both the (A;C) and(C;B) executions. The key point in this reduction is in noticing that according to the scheduling ofCase 1, the two polynomial evaluations are run sequentially without any overlap. Speci�cally, the(A 6zk; C)-evaluation terminates before the (C;B 6zk)-evaluation begins. Consider now a simpli�edcase in which the entire (A6zk; C)-protocol consists only of a single polynomial evaluation; likewisefor the (C;B 6zk)-protocol. Then, when the scheduling is as mentioned, a party P , can execute twosequential polynomial evaluations with C; in the �rst he plays A 6zk's role and in the second he playsB 6zk's role. That is, when this scheduling occurs the above two-party setting perfectly simulatesthe concurrent setting. 51



The actual reduction is more complex as the (A 6zk; C) and (C;B 6zk) protocols involve other stepsbeyond the polynomial evaluation. The protocol that we de�ne between P and C must correctlysimulate these other steps as well. As we shall see, some of the additional steps are internallysimulated by C and some are played by P . Speci�cally, apart from playing in both polynomialevaluations, P plays A6zk's role in the (A 6zk; C)-commitment stage and B 6zk's role in the (C;B 6zk)-validation stage. What remains is B6zk's role in the (C;B 6zk)-commitment stage and A 6zk's role inthe (A 6zk; C)-validation stage; these are internally simulated by C. The following table shows whichparty (P or C) simulates A 6zk and B 6zk's respective roles.Stage A6zk B 6zk1. Commitment P C2. Pre-Key Exchange P P3. Validation C PParty P 's input consists of Q and w and this therefore enables him to play A6zk and B 6zk's roles, asrequired. We also give C some auxiliary input that enables him to internally simulate the remainingparts of the execution.This reduction makes sense when the scheduling of Case 1 occurs. Loosely speaking, we showthat according to this scheduling, the two-party protocol between P and C accurately simulatesour concurrent setting. (When Case 1 does not occur, then nothing can be said about the (P;C)protocol. However, for the lemma we need to bound B6zk's accepting probability in Case 1 only.This is therefore enough.)We now present the protocol for parties P and C; the protocol is speci�cally designed to simulatethe concurrent CA 6zk(Q;w);B 6zk(w)1 setting, according to the scheduling of Case 1. What we show isthat every adversary C1 in the concurrent setting can be \simulated" (in some adequate sense) byan adversary C 0 to the following protocol.Protocol-(P;C):Input:� P has (Q;w), where Q is a linear (non-constant) polynomial and w 2 D.� C receives the string Q(w) for input.The Protocol:1. Emulation of Stage 1 of the (A 6zk; C)-execution (commitment stage):� P sends C a non-malleable commitment to (Q;w).2. Emulation of Stage 2 of the (A 6zk; C)-execution (pre-key exchange):� P sends C a commitment c1 = Commit(Q) = C(Q; r1) for a random r1.� P and C invoke an augmented polynomial evaluation, where P inputs the polynomial Qand (c1; r1) and C inputs c1 and some value wC . Party C then receives the output valueQ(wC) (or ? in the case of incorrect inputs).3. Emulation of Stage 2 of the (C;B 6zk)-execution (pre-key exchange):� C sends P a commitment c2 = C(QC ; r2) for some polynomial QC and a random r2.52



� C and P invoke another augmented polynomial evaluation (in the other direction) whereC inputs the polynomial QC and (c2; r2) and P inputs c2 and w. Party P receives � (whichequals either QC(w) or ?) from the evaluation.4. Partial Emulation of Stage 3 of the (C;B 6zk)-execution (validation stage):� C sends a string y to P , and P outputs accept if and only if y = f2n(�).We say that C succeeds if P outputs accept at the conclusion of the protocol execution. We nowshow that any C succeeding in having B6zk accept in the concurrent protocol with the schedulingof Case 1, can be used by a party C 0 to succeed with at least the same probability in the aboveprotocol with P .Claim 9.2 Let C be a ppt channel interacting with A 6zk and B 6zk. Then there exists a ppt party C 0interacting with P in Protocol-(P;C 0) such thatPrQ;w[P = acc] � PrQ;w[B 6zk = acc ^ Case 1]Proof: We begin by considering a modi�cation of party B6zk to B0 who ignores the MAC sent tohim in the validation stage. That is, B0 is the same as B except that he decides whether to acceptor reject based solely on the y-string he receives in the validation stage. As B0 only omits checks,we have that PrQ;w[B0 = acc ^ Case 1] � PrQ;w[B 6zk = acc ^ Case 1]We continue by proving that for every C interacting with A6zk and B0, there exists a C 0 interactingwith P such that PrQ;w[B0 = acc ^ Case 1] = PrQ;w[P = acc]The party C 0 incorporates C internally and perfectly simulates the concurrent setting with A 6zkand B0 for C (i.e., CA6zk;B01 ). First notice that Step (4) of the (P;C 0) protocol constitutes the fullvalidation stage of the (C;B0)-protocol (whereas it is only partial for the (C;B 6zk)-protocol). Thismeans that the (P;C 0) protocol contains all stages of the (A 6zk; C) and (C;B 6zk) protocols exceptfor the the �rst stage of the (C;B 6zk)-protocol and the third stage of the (A 6zk; C)-protocol. Asmentioned, these stages are internally simulated by C 0.The C 0 Simulation: We now describe how C 0 runs the simulation. Party C 0 invokes C andemulates the CA 6zk(Q;w);B0(w) setting for him. This involves separately simulating the (A6zk; C) and(C;B0) executions. This is done as follows (recall that C fully controls the scheduling):� The (A 6zk; C) Execution:1. Stages 1 and 2: All messages from these stages of the execution are passed between C andP (without any change). That is, C 0 forwards any messages sent from C to A 6zk to P andlikewise, messages from P are forwarded to C.2. Stage 3: C 0 internally emulates A6zk's role here, and thus P is not involved at all. In thisstage C expects to receive the string y = f2n(Q(w)) and a MAC of the (A 6zk; C) session-transcript keyed by k1(Q(w)). Party C 0 can send these messages since he knows Q(w) andcan therefore compute both the y-string and the MAC-key (and so the MAC value).� The (C;B0) Execution: 53



1. Stage 1: C 0 internally emulates B0's role here, and thus P is not involved at all. B0's role inthis stage is as the receiver of a non-malleable commitment; therefore no secret informationis needed by C 0 to emulate this part.2. Stages 2 and 3: When C sends the �rst message belonging to Stage 2 of the (C;B0)-execution, party C 0 acts as follows:� Failure Case: If this �rst message was sent before the completion of Stage 2 of the(A6zk; C) execution, then C 0 halts (the simulation fails).� Success Case: If this �rst message was sent after the completion of Stage 2 of the(A6zk; C) execution, then C 0 continues the simulation by forwarding this and all con-sequent messages belonging to these stages to P (and returning messages from P toC).This completes the simulation. We begin by noting that when the simulation succeeds, C's viewis identical to a real execution with A 6zk and B0. Recall that the (P;C)-protocol emulates Stages 1and 2 of the (A 6zk; C) protocol before Stages 2 and 3 of the (C;B0) protocol. Therefore, the simulationsucceeds as long as C's scheduling is such that Stage 2 of the (A6zk; C) execution is completed beforeStage 2 of the (C;B0) execution begins. However this is exactly the de�nition of the scheduling ofCase 1. In other words, the simulation is successful if and only if the scheduling is according toCase 1. Now, if the simulation is not successful (i.e., Case 1 did not occur) then P never accepts.On the other hand, when the simulation succeeds P accepts with the same probability as B0 wouldhave. We conclude that the probability that P accepts is exactly equal to the probability that thescheduling is according to Case 1 and B0 accepts.It remains to bound the probability that P accepts in the above (P;C 0)-protocol.Claim 9.3 For every ppt party C 0 interacting with P in Protocol-(P;C 0) we have that for everypolynomial p(�) and all su�ciently large n'sPr[P = acc] < 2�+ 1p(n)Proof: We analyze the probability that P accepts in the two-party protocol for P and C 0 de�nedabove. This is an ordinary two-party setting and as such can be analyzed by directly consideringthe security of the di�erent modules. (We stress that this protocol's connection to the concurrentexecution of our protocol with A,B and C has already been established in Claim 9.2 and is notrelevant in the analysis here.)We �rst modify the protocol so that in Step 1, party P sends a random commitment, insteadof a commitment to (Q;w). Due to the hiding property of the commitment, this can make at mosta negligible di�erence (this replacement is possible since the commitment is not used anywhere inthe continuation of the protocol). Therefore, C 0 can internally emulate this commitment and thisstage can be removed from the protocol. We thus remain with a protocol consisting of the followingstages:� (Emulation of Stage 2 of (A 6zk; C)): P sends C 0 a commitment to Q and then P and C 0 executean augmented polynomial evaluation in which C 0 receives either Q(wC), for some wC , or ?. Bythe security of the evaluation, C 0 receives Q(wC) (or ?) and nothing more.� (Emulation of Stage 2 of (C;B0)): C 0 sends P a commitment to some polynomial QC and thenC 0 and P execute an augmented polynomial evaluation in which P receives QC(w) or ?. Bythe security of the evaluation, C 0 receives nothing in this stage.54



� (Emulation of Stage 3 of (C;B0)): C 0 sends a string y to P and P accepts if y = f2n(QC(w)).The intuition behind showing that P accepts with probability at most negligibly greater than 2� isas follows: C 0 must send the \correct" y based solely on the value Q(wC) that he (possibly) receivedfrom the �rst evaluation (and his auxiliary input Q(w)). Now, if wC 6= w, then the only thing thatparty C 0 learns about w is that it does not equal wC . This is due to the pairwise independence ofthe random polynomial Q. Therefore, C must guess the correct value for y from jDj�1 possibilities(i.e., f2n(QC(w0)) for every w0 6= wC). On the other hand, the probability that wC = w is at most� as nothing is revealed of w during the protocol. (Note that C can indeed determine whether ornot wC = w by comparing Q(wC) to his auxiliary input Q(w).)The above argument is based on the security of the polynomial evaluations. We therefore proceed byanalyzing the probability that P accepts in an ideal execution where the two polynomial evaluationsare replaced by ideal evaluations. We denote the ideal model parties by P̂ and Ĉ 0. By the sequentialcomposition theorem of multi-party computation [14], we have that the accepting probabilities ofP (in a real execution) and P̂ (in an ideal execution) are at most negligibly di�erent.We now upper bound the probability that P̂ accepts in an ideal execution. Party Ĉ 0 is givenQ(w) for auxiliary input and in the �rst polynomial evaluation Ĉ 0 inputs a value wC . We di�er-entiate between the case that wC = w and wC 6= w and separately upper bound the followingprobabilities:1. Pr[P̂ = acc ^ wC = w]2. Pr[P̂ = acc ^ wC 6= w]Bounding the probability that P̂ = acc and wC = w: We actually show that Pr[wC = w] �� + � for some negligible function �. The only message received by Ĉ 0 prior to sending wC is acommitment to the polynomial Q. That is, Ĉ 0's entire view at this point consists of his auxiliaryinput Q(w) and Commit(Q). Due to the hiding property of the commitment, Commit(Q) can bereplaced by Commit(02n) and this makes at most a negligible di�erence. We therefore remove thecommitment and bound the probability that wC = w where Ĉ 0 is given Q(w). Since Q is a randomlinear polynomial, we have that for every w, the string Q(w) is uniformly distributed. That is,Q(w) reveals no information about w. Therefore, we have that Pr[wC = w] � � (with equality incase wC 2 D). This implies that when Ĉ 0 is given a commitment to Q (rather than to 02n), wehave that Pr[wC = w] < �+ �. ThereforePr[P̂ = acc ^ wC = w] � Pr[wC = w] � �+ �Bounding the probability that P̂ = acc and wC 6= w: We �rst analyze the following con-ditional probability: Pr[P̂ = acc j wC 6= w]. Recall that Ĉ 0's view (after the �rst polynomialevaluation) consists of his random tape, auxiliary input Q(w) and the following messages:1. A commitment to a polynomial Q sent by P̂ .As before, the commitment to Q can be replaced with a commitment to 02n with at most anegligible di�erence. We therefore ignore this part of Ĉ 0's view from now on.2. An input/output pair (wC ; Q(wC)) (or (wC ;?) in the case of incorrect inputs) from the �rstpolynomial evaluation, where wC 6= w. 55



The continuation of the protocol involves Ĉ 0 sending a polynomial QC for the second polynomialevaluation and then a string y, where P̂ accepts if and only if y = f2n(QC(w)). Restated, the prob-ability that P̂ accepts equals the probability that Ĉ 0, given his view (Q(w); wC ; Q(wC)), generatesa pair (QC ; y) such that y = f2n(QC(w)).Now, the polynomial Q is random and linear, and we are considering the case that wC 6= w.Therefore, by pairwise independence we have that Q(w) is almost uniformly distributed, even giventhe value of Q at wC . (Since Q cannot be a constant polynomial, Q(w) is only statistically closeto uniform; this is however enough.) This means that given Ĉ 0's view, the password w is almostuniformly distributed in D � fwCg. Since both f2n and QC are 1{1 functions, we have that theprobability that Ĉ 0 generates a pair (QC ; f2n(QC(w))) is at most the probability that he guessesw, which equals 1jDj�1 = �1�� . Replacing the commitment to 02n with a commitment to Q, we havethat for some negligible function �,Pr[P̂ = acc j wC 6= w] � �1� � + �We therefore conclude that in an ideal executionPr[P̂ = acc] = Pr[P̂ = acc j wC = w] � Pr[wC = w] + Pr[P̂ = acc j wC 6= w] � Pr[wC 6= w]< 1 � Pr[wC = w] + �1� � � (1� Pr[wC = w]) + �� �1� � + Pr[wC = w] � �1� �1� ��+ �= �1� � + Pr[wC = w] � 1� 2�1� � + � � 2�+ �where the last inequality is because Pr[wC = w] < �+�. This implies that in a real execution, theprobability that P accepts is at most negligibly greater than 2�.The lemma follows by combining Claims 9.2 and 9.3.9.2 Proof of Lemma 4.8Lemma 9.4 (Lemma 4.8 { restated; Case 2 - Synchronized): Let C be a ppt channel and de�neCase 2 to be a scheduling of the protocol by which C completes the polynomial evaluation with Aafter completing the non-malleable commitment with B. Then for every polynomial p(�) and forall su�ciently large n's, Pr[B = acc ^ Case 2 ^ �A 6= �B] < �+ 1p(n)Proof: The proof of this lemma relies on the non-malleability of the commitment sent in thecommitment stage of the protocol. As was described in the proof sketch, in the case that �A 6= �B ,the validation stage ensures that B only accepts if the non-malleable commitment he received wasto (Q0; w), where Q0 6= Q and w is A and B's shared password. (We note that in the case that(Q0; w0) = (Q;w), party B rejects with overwhelming probability, unless �A = �B . This is becausethe validation stage enforces that �B = Q0(w0) and by the hypothesis Q0(w0) = Q(w) = �A.)Furthermore, the probability that C succeeds in generating such a commitment (in which Q0 6= Qand yet w is the second element) is at most negligibly greater than �. We now formally prove boththese statements. 56



As described, unless �A = �B, the channel C can only make B accept if he generates a non-malleablecommitment to (Q0; w) where Q0 6= Q. To instantiate the above intuition, we de�ne a relation Ras follows (recall that the non-malleable commitment value sent by A is (Q;w) and denote the onereceived by B by (Q0; w0)). De�ne R � f0; 1g3n � f0; 1g3n such that ((Q;w); (Q0; w0)) 2 R if andonly if (Q0; w0) 6= (Q;w) and w0 = w. That is, C \succeeds" with respect to R (and thus B mayaccept) if C does not copy A's commitment and yet the second element of the commitment is thecorrect password.We consider the probability that B accepts in Case 2 and �A 6= �B in two complementarysubcases. In the �rst subcase, channel C succeeds with respect to the relation R and in the secondsubcase, C fails. We prove claims showing the following:1. (Success Case): Pr[B = acc ^ Case 2 ^ �A 6= �B ^ ((Q;w); (Q0; w0)) 2 R] < �+ 1poly(n)2. (Fail Case): Pr[B = acc ^ Case 2 ^ �A 6= �B ^ ((Q;w); (Q0; w0)) 62 R] < 1poly(n)The lemma follows by combining B's accepting probability in the above two cases. We begin byupper bounding the success case. Speci�cally, we show that the probability that C succeeds ingenerating a correct (related) commitment is at most negligibly greater than �.Claim 9.5 (Success w.r.t R): Let C be a ppt channel and denote by (Q0; w0) the value committedto by C in the non-malleable commitment received by B. Then for every polynomial p(�) and allsu�ciently large n's Pr[Case 2 ^ ((Q;w); (Q0; w0)) 2 R] < �+ 1p(n)Proof: The de�nition of non-malleability states that a commitment is non-malleable when run con-currently with another commitment only. Therefore, in a simpler scenario in which the (A;C) and(C;B) non-malleable commitments are run in isolation, we can directly apply the non-malleabilityproperty to the relation R that we have de�ned above. However, in our scenario, other parts ofthe (A;C) protocol can also be run concurrently to the (C;B) non-malleable commitment. Speci�-cally, by the scheduling of Case 2, the (A;C) pre-key exchange may run concurrently to the (B;C)commitment. The key point in this proof is in showing that the (A;C) pre-key exchange can be sim-ulated. Given such a simulation, we have a scenario in which the (A;C) and (C;B) non-malleablecommitments are run in isolation, and thus non-malleability holds.Recall that A's input to the pre-key exchange stage is comprised of the polynomial Q only.Therefore, if C has Q, then he can perfectly emulate this stage himself (this is true irrespective ofthe security of the modules making up the pre-key exchange stage of the protocol). Fortunately,Claim 9.5 holds even if C is explicitly given Q. Thus, we prove that for every ppt channel C givenauxiliary input Q, it holds thatPr[Case 2 ^ ((Q;w); (Q0; w0)) 2 R] < �+ 1poly(n)As we have described, C has Q and thus can perfectly emulate the (A;C) pre-key exchange. By thescheduling of Case 2, we have that the (C;B) commit stage concludes before the completion of the(A;C) pre-key exchange. Since the (A;C) pre-key exchange is simulatable (by C), the probabilitythat C succeeds with respect to R is the same as when the (A;C) and (C;B) non-malleable57



commitments are run in isolation.29 We therefore proceed by upper-bounding the probability thata ppt adversary C (given a commitment to (Q;w) and auxiliary input Q) successfully generates acommitment to (Q0; w0) where ((Q;w); (Q0; w0)) 2 R.Intuitively, A's commitment to (Q;w) does not help C in generating a related commitment.Therefore, the probability of generating a commitment to (Q0; w) is the same as the probability ofguessing w. Formally, by the de�nition of non-malleability, for every C there exists a simulator Ĉwho generates a commitment to (Q̂0; ŵ0) without seeing the commitment to (Q;w) such that���Pr[((Q;w); (Q0; w0)) 2 R]� Pr[((Q;w); (Q̂0; ŵ0)) 2 R]��� < 1poly(n)Since Ĉ is given no information about w, the probability that Ĉ generates a commitment to (Q̂0; w)is at most � (by the fact that w is uniformly distributed in D). Therefore, the probability that Cgenerates a commitment to (Q0; w) where Q0 6= Q is less than �+ 1poly(n) as required.We now show that whenC fails with respect to R, thenB accepts with at most negligible probability.Claim 9.6 (Failure w.r.t R): For every ppt channel C, every polynomial p(�) and all su�cientlylarge n's Pr[B = acc ^ �A 6= �B ^ ((Q;w); (Q0; w0)) 62 R] < 1p(n)Proof: In proving this claim, we rely solely on the fact that C \fails" with respect to the relationR, in order to show that B rejects. As described in the proof sketch, intuitively B rejects in thiscase because the validation stage enforces consistency between the non-malleable commitment, thepolynomial input by C into the polynomial evaluation and B's output from the polynomial eval-uation. That is, with overwhelming probability, B rejects unless C inputs Q0 into the polynomialevaluation and B's output from the evaluation equals Q0(w0). However, B's input into the poly-nomial evaluation is w, and thus (by the correctness condition of secure protocols) B's output isQ0(w). Thus, with overwhelming probability B rejects unless Q0(w0) = Q0(w). As we will show, thisimplies that �A = �B, in contradiction to the claim hypothesis. In the following fact, we formallyshow that with overwhelming probability, B's output from the polynomial evaluation equals Q0(w).Fact 9.7 For every ppt channel C,Pr[B = acc ^ �B 6= Q0(w)] < 1poly(n)Proof: This fact is derived from the correctness condition of the secure polynomial evaluationand the soundness of the zero-knowledge proof. Loosely speaking, the correctness condition of asecure two-party protocol states that an adversary cannot cause the output of an honest party tosigni�cantly deviate from his output in an ideal execution (where the output is exactly accordingto the functionality de�nition). We stress that this has nothing to do with privacy and holds evenif the adversary knows the honest party's input.29Formally, an adversary attacking a non-malleable commitment protocol (and given Q as auxiliary input) can useC in order to generate a related commitment with the same probability as C succeeds in our session-key protocolwhen the scheduling is according to Case 2. 58



Now, let QC be the ordinary commitment sent by C to B before the polynomial evaluation.Then, by the de�nition of the augmented polynomial evaluation, B's output �B is either QC(w)(in the case of correct inputs) or ? (in the case of incorrect inputs). Therefore, in a stand-alonetwo-party setting, we have that with overwhelming probability �B 2 fQC(w);?g.It remains to show that this also holds in our concurrent setting. As we have mentioned, thecorrectness requirement holds even if the adversary knows the honest party's input. That is, itholds even if C knows w, in which case C can perfectly emulate the entire (A;C) execution, andwe remain with a non-concurrent execution with B. The correctness condition thus holds andwe conclude that with overwhelming probability �B 2 fQC(w);?g. However, since B checks ify = f2n(�B) and this never holds when �B = ?, B always rejects if �B = ?. Thus,Pr[B = acc ^ �B 6= QC(w)] < 1poly(n)The proof is completed by noticing that the zero-knowledge proof states (among other things) thatQC = Q0. Thus by the soundness of the zero-knowledge proof (which also holds in our setting), theprobability that B accepts and QC 6= Q0 is negligible. We conclude thatPr[B = acc ^ �B 6= Q0(w)] < 1poly(n)On the other hand, we now show that with overwhelming probability, �B = Q0(w0).Fact 9.8 For every ppt channel C,Pr[B = acc ^ �B 6= Q0(w0)] < 1poly(n)Proof: In the �rst step of the validation stage, B receives a string y. The statement provedby C (in zero-knowledge) includes the condition y = f2n(Q0(w0)). Furthermore, B rejects unlessy = f2n(�B). Since f2n is a 1{1 function, we conclude that with overwhelming probability, B rejectsunless �B = Q0(w0).We now use the above two facts to show that when ((Q;w); (Q0; w0)) 62 R, party B rejects withoverwhelming probability. There are two possible cases for which ((Q;w); (Q0; w0)) 62 R: either(Q0; w0) = (Q;w) or w0 6= w.� Case (Q0; w0) = (Q;w): By Fact 9.7 (or equivalently by Fact 9.8), we have that with overwhelm-ing probability, B rejects unless �A = Q(w) = Q0(w0) = �B , in contradiction to the hypothesisthat �A 6= �B .� Case w0 6= w: From Facts 9.7 and 9.8 we have that if B accepts then with overwhelmingprobability Q0(w0) = Q0(w). However, Q0 is a non-constant linear polynomial and is thus 1{1.This implies that w0 = w, in contradiction to the case hypothesis.This completes the proof of Claim 9.6.Lemma 4.8 is obtained by combining Claims 9.5 and 9.6.59



10 Full Proof of Password SecrecyIn this section we prove the password secrecy requirement which states that at the conclusion ofthe protocol execution, the password w is (1 � O(�))-indistinguishable from a random ~w 2R D,with respect to the channel's view.Theorem 10.1 (Theorem 4.10 { restated): For every ppt channel C, every polynomial p(�) andall su�ciently large n's���Prw[ExptA(w);B(w)w (C) = 1]� Prw; ~w[ExptA(w);B(w)~w (C) = 1]��� < 26�+ 1p(n)Proof: As described in the proof sketch, the theorem is proved by �rst \removing" the entire(C;B) execution. Loosely speaking, we show that the (C;B) execution can be simulated by Chimself (while interacting only with A), such that his view in the simulated setting is (1 � O(�))-indistinguishable from his view in a full execution with both A and B. The proof then continuesby showing that for every channel C interacting with A alone, the password w is (1 � O(�))-indistinguishable from ~w 2R D (with respect to C's view). Putting these together, we have thatwhen C interacts with both A and B, he can distinguish w from ~w 2R D with probability at mostO(�).The prove is divided into two lemmas: in the �rst we remove the (C;B) execution and in thesecond we upper bound the \amount of information" C can learn about w in a non-concurrentexecution with A only. We denote an analogous experiment in which C 0 interacts only with A byExptA(w)z (C 0) (this experiment is formally de�ned in Section 6.1).Lemma 10.2 (Removing the (C;B) Execution): For every ppt channel C interacting with A andB, there exists a ppt channel C 0 interacting only with A such that for every randomized processz = Z(w), every polynomial p(�) and all su�ciently large n's���Prw[ExptA(w)z (C 0) = 1]� Prw[ExptA(w);B(w)z (C) = 1]��� < 7�+ 1p(n)Proof: The proof of the lemma is in two steps. In the �rst step we remove the (C;B) validationstage. Following this, we remove the remaining (�rst two stages) of the (C;B) execution. Let B2be a party who participates in only the �rst two stages of the protocol (i.e., he halts before thevalidation stage). Then, the fact that we can remove the (C;B) validation stage is stated as follows.Claim 10.3 (Removing the (C;B) Validation): Let C be a ppt channel and let B2 be a party whodoes not participate in the validation stage. Then, there exists a ppt channel ~C interacting with Aand B2 such that for every randomized process z = Z(w)���Prw[ExptA(w);B(w)z (C) = 1]� Prw[ExptA(w);B2(w)z ( ~C) = 1]��� < 7�+ 1poly(n)Proof: This proof involves showing how B's role in the (C;B) validation stage can be simulatedby ~C (for C). Basically, this simulation is made possible due to the MAC sent in the last step ofthe protocol. Recall that the (C;B) validation stage involves four steps: (1) B receives a y-string60



(which should equal f2n(�B)); (2) B veri�es a zero-knowledge proof; (3) B receives a string thatshould equal a MAC of his entire session-transcript; and (4) B outputs an accept/reject bit.First note that the only messages sent by B during the validation stage are his messages as averifer for the zero-knowledge proof and his accept/reject bit. Therefore, only these messages needto be simulated. However, as B is an honest veri�er, his messages in the zero-knowledge proof canbe perfectly simulated by ~C, who emulates the veri�er in C's proof to B. It thus remains for ~Cto simulate B's accept/reject bit. We show that the MAC sent in the validation stage is such thatif C was not reliable, then B rejects with probability 1 � O(�). This enables ~C to \predict" B'soutput-bit based on whether or not C was reliable.Formally, ~C runs the protocol (with A and B2) by passing all messages via C and by playing theveri�er in the zero-knowledge proof of the (C;B) validation stage. Furthermore, ~C checks whetheror not C was reliable during the execution. Recall that C is reliable if the (A;C) and (C;B)executions are run in a synchronized manner, and C does not modify any of the messages sent byA or B. This is a syntactic feature, easily veri�able by ~C (as he views all the communication). IfC was reliable then ~C outputs accept for B, otherwise he outputs reject for B. This completes thesimulation of C's interaction with A and B. Let � ~C denote the simulated accept/reject bit outputby ~C.Now, when ~C predicts B's output bit correctly, we have that C's view in this simulation isidentical to a real execution with A and B. This means that the di�erence in the experiments inthe claim equals the probability that ~C's prediction is wrong (i.e., the probability that B = accand � ~C = rej or visa versa). Noticing that � ~C = acc if and only if C is reliable, we have that:���Prw[ExptA(w);B(w)z (C) = 1]� Prw[ExptA(w);B2(w)z ( ~C) = 1]���= Pr[B = acc ^ C not reliable] + Pr[B = rej ^ C reliable]First notice that when C is reliable B always accepts. That is, Pr[B = rej ^ C reliable] = 0. Wenow show that Pr[B = acc ^ C not reliable] is at most negligibly more than 7� and this completesthe proof of Claim 10.3.Claim 10.4 For every ppt channel C,Pr[B = acc ^ C not reliable] < 7�+ 1poly(n)Proof: The proof of this claim is based on the security of the MAC sent in the validation stage. In-tuitively, sending a MAC on the entire session transcript ensures that if any messages were modi�ed(as in the case of an unreliable C), then this will be noticed by B. However, in our protocol, A andB may have di�erent MAC-keys (in which case nothing can be said about detecting C's maliciousbehavior). Fortunately, the key-match requirement ensures that this happens (undetectably by B)with probability at most O(�).The security of the MAC, shown in Corollary 4.9 and proven at the end of Section 8, statesthe following. Let tA be A's message transcript. Then for every t 6= tA, the string MACk1(�A)(t) is(1� 4�)-pseudorandom with respect to C's view. By the de�nition of reliability, if C is not reliablethen B's message transcript (denoted tB) is not equal to tA. That is, if C is not reliable we havethat MACk1(�A)(tB) is (1� 4�)-pseudorandom with respect to C's view.Now, party B's protocol de�nition is such that he rejects unless the last message he receivesequals MACk1(�B)(tB), where k1(�B) is the MAC-key. Notice that the key used by B for the MAC61



is k1(�B), whereas Corollary 4.9 refers to a MAC keyed by k1(�A). However, if �A = �B thenk1(�A) = k1(�B). Therefore, if �A = �B, then the Corollary holds and the probability that Cgenerates the correct MAC-value is at most negligibly greater than 4�. That is,Pr[B = acc ^ C not reliable ^ �A = �B] < 4�+ 1poly(n)On the other hand, if �A 6= �B then irrespective of the MAC, the probability that B accepts is atmost negligibly more than 3�. This is due to the key-match requirement proven in Theorem 4.6.We conclude thatPr[B = acc ^ C not reliable]= Pr[B = acc ^ C not reliable ^ �A 6= �B ] + Pr[B = acc ^ C not reliable ^ �A = �B ]< 3�+ 4�+ 1poly(n)As stated above, this completes the proof of Claim 10.3.It remains now to remove the rest of the execution between C and B2. That is,Claim 10.5 (Removing the Remaining (C;B2) Execution): For every ppt channel ~C interactingwith A and B2, there exists a ppt channel C 0 interacting only with A such that for every randomizedprocess z = Z(w)���Prw[ExptA(w);B2(w)z ( ~C) = 1]� Prw[ExptA(w)z (C 0) = 1]��� < 1poly(n)Proof: Intuitively, B2's role can be simulated without any knowledge of w. Loosely speaking,this is because B2 only uses w in the ( ~C;B2) polynomial evaluation, and in this evaluation ~Creceives no output. Formally, this is shown by proving that if B2 were to input an independentlychosen ~w 2R D (into the polynomial evaluation), instead of w, then ~C would not be able to tellthe di�erence. That is, for every randomized process z = Z(w)���Prw[ExptA(w);B2(w)z ( ~C) = 1]� Prw[ExptA(w);B2( ~w)z ( ~C) = 1]��� < 1poly(n) (27)(Observe that in the second experiment, B2's input is ~w.) We prove Equation (27) even when ~Cis given w as auxiliary input. Now, since w constitutes all of A's input, the channel ~C(w) canperfectly simulate the entire (A;C) execution. It thus remains to show that for z = Z(w),���Prw[ExptB2(w)z ( ~C(w)) = 1]� Prw[ExptB2( ~w)z ( ~C(w)) = 1]��� < 1poly(n)However, this is derived directly from the security of the polynomial evaluation. This is because ~Cobtains no output from the polynomial evaluation, and this is the only part of the protocol whereB2 uses his input (of w or ~w). Thus, ~C can distinguish the cases that B2 has input w or ~w with atmost negligible probability, and Equation (27) follows.62



The proof of the current claim (i.e., Claim 10.5) is completed by noting that when B2 inputs~w 2R D (chosen independently of w), then the entire ( ~C;B2) execution can be perfectly simulatedby a channel C 0. That is, there exists a channel C 0 such that for every randomized process z = Z(w)Prw[ExptA(w)z (C 0) = 1] = Prw[ExptA(w);B2( ~w)z ( ~C) = 1] (28)The claim follows from Equations (27) and (28).Combining Claims 10.3 and 10.5, we complete the proof of Lemma 10.2.We now remain with a (non-concurrent) execution between A and C 0. In this setting, we show thatC 0 can distinguish w from ~w 2R D with probability at most 12�. That is:Lemma 10.6 For every ppt channel C 0 interacting only with A, every polynomial p(�) and allsu�ciently large n's���Prw[ExptA(w)w (C 0) = 1]� Prw; ~w[ExptA(w)~w (C 0) = 1]��� < 12�+ 1p(n)Proof: As in the previous lemma, we �rst show that the (A;C)-validation stage can be \removed".Claim 10.7 (Removing the (A;C) Validation): Let A2 be a party that does not participate in thevalidation stage. Then for every ppt channel C 0 interacting with A, there exists a ppt channel C 00interacting with A2 such that for every randomized process z = Z(w)���Prw[ExptA(w)z (C 0) = 1]� Prw[ExptA2(w)z (C 00) = 1]��� < 6�+ 1poly(n)Proof: The (A;C) validation stage consists of A sending y = f2n(Q(w)), proving a statement inzero-knowledge and sending a MAC of her entire session-transcript. In this proof we show how allparts of this stage can be simulated by C 00 (for C 0).� The y-value sent by A: By Theorem 4.2, at the completion of Stage 2 by A, the stringQ(w) is (1�2�)-pseudorandom. Since f2n is 1{1 (and polynomial-time computable), the string f2n(Q(w)) isalso (1�2�)-pseudorandom. Thus, C 00 can simulate this step by choosing a uniformly distributedstring instead of f2n(Q(w)), and C 0 can distinguish the simulation from a real interaction withprobability at most negligibly greater than 2�.� The zero-knowledge proof: Here we remove a zero-knowledge proof in a standard stand-alonesetting.30 Therefore, by the de�nition of zero-knowledge, there exists a simulator that generatestranscripts indistinguishable from real proofs. Thus, C 00 simply runs this simulator (with C 0 asthe veri�er) and produces a \fake transcript" that is computationally indistinguishable from areal proof (with respect to C 0's view).� The MAC: As with the y-value, C 00 simulates the MAC by sending a random string instead. Weclaim that the MAC value sent by A is (1� 4�)-pseudorandom. Therefore C 0 can distinguish arandom string from a correct MAC value with probability at most negligibly greater than 4�.The proof of the fact that A's MAC is (1� 4�)-pseudorandom is derived directly from the proofof Corollary 8.4. This is based on the fact that k1(Q(w)) is a (1� 4�)-pseudorandom string andthus MACk1(Q(w))(�) is a (1� 4�)-pseudorandom function.30We stress that there is no concurrent execution here, and so replacing a zero-knowledge interactive proof by asimulated transcript is straightforward. 63



Putting the above together we have that C 0 can distinguish C 00's simulation from real messages sentby A with probability at most negligibly greater than 6�. This completes the proof of Claim 10.7.What remains now is a scenario where a channel C 00 interacts with A2. The protocol thus consistsonly of A2 committing to (Q;w) followed by a pre-key exchange stage in which A2 inputs Q (recallthat w is not used by A2 in this stage). Then, by the hiding property of the commitment, it isimmediate that C 00 can distinguish w from ~w 2R D with at most negligible probability. That is,���Prw[ExptA2(w)w (C 00) = 1]� Prw; ~w[ExptA2(w)~w (C 00) = 1]��� < 1poly(n) (29)Combining Equation (29) with Claim 10.7 (taking z = w once and z = ~w 2R D a second time), weconclude that���Prw[ExptA(w)w (C 0) = 1]� Prw; ~w[ExptA(w)~w (C 0) = 1]��� < 2 � 6�+ 1poly(n) = 12�+ 1poly(n)Combining Lemma 10.6 with Lemma 10.2 (applied twice, once for z = w and once for z = ~w) wehave ���Prw[ExptA(w);B(w)w (C) = 1]� Prw; ~w[ExptA(w);B(w)~w (C) = 1]���< ���Prw[ExptA(w)w (C 0) = 1]� Prw[ExptA(w)~w (C 0) = 1]���+ 2 � 7�+ 1poly(n)< 12�+ 14�+ 1poly(n) = 26�+ 1poly(n)11 Proof of Multi-Session SecurityThe claims in this section are derived from our de�nition for session-key generation protocols onlyand are correct for any protocol ful�lling this de�nition.We focus on the case where the adversary sequentially invokes m sessions of our protocol withthe same pair of parties, A and B. In each of these invocations, A and B use the same passwordw 2 D. Recall that neither A nor B will agree to participate in a new session before it has locallyterminated the previous sessions. (We ignore other pairs of parties that share independently selectedpasswords; these are easily simulated by the adversary.)We refrain from presenting formal de�nitions of security form sessions (these are easy extensionsof the single session case), and con�ne ourselves to showing how to reduce the security of m sessionsto the security of a single session. Throughout the discussion, the dictionary D is �xed and implicitin all notations.11.1 Password secrecy after m sessionsWe start by considering the case of m = 2. In order to allow a generalization to arbitrary m, weconsider the execution of a protocol that (as stand-alone) has \password security" 1� �1, followedby an execution of a protocol that (as stand-alone) has \password security" 1��2. For starters, one64



may think of �1 = �2 = O(�) (i.e., each protocol is a single-session protocol). During the induction,the protocols become the sequential composition of a number of single-session protocols togetherand �1; �2 are adjusted appropriately. By password insecurity (i.e., the �i's above) we mean anupper bound on the distinguishability-gap, from the channel's point of view, between the passwordused in the execution and a uniformly chosen password in D.Let XC(w1; w2; w3) denote the probability that the channel C outputs 1 in the following ex-periment: First, the channel invokes the �rst protocol between A and B, when they both use thepassword w1 2 D and the adversary modi�es their interaction (and e�ectively interacts concur-rently with each of them). Next, the channel invokes the second protocol between A and B, whenthey both use the password w2 2 D (and again it e�ectively interacts concurrently with each ofthem). Finally, the channel is presented with a challenge w3 2 D.Lemma 11.1 Let XC(w1; w2; w3), �1 and �2 be as above. Then, for any probabilistic polynomial-time channel C, it holds that jE[XC(W;W;W )] � E[XC(W;W;W 0)]j � 2�1 + �2, where W and W 0are independent and uniformly distributed in D.Proof: We consider several hybrid executions, and relate some pairs so to derive the above claim.Below, W1, W2 andW3 represent random variables that are independent and uniformly distributedin D.Claim 1: jE[XC(W1;W2;W3)]� E[XC(W1;W1;W3)]j � �1.Proof: In order to prove this claim, we use the password security of the �rst protocol. Intuitively,a channel succeeding in the above experiment can be used to distinguish the password used in the�rst protocol. First, recall that the requirement of password secrecy is that of indistinguishabilityafter the protocol execution. That is, the channel is given a challenge c which either equals w1 (thepassword used in the protocol) or w2 2R D.Now, let C 0 be a channel for the �rst protocol, that behaves as follows. First C 0 emulates theinteraction of C with A(w1) and B(w1) by actually interacting with A(w1) and B(w1) (i.e., C 0simply forwards all messages between A,C and B for this interaction). Next, C 0 obtains a challengec (which is either w1 or w2 2R D) and uses it to emulate the execution CA(c);B(c). (We stress thatC 0 does not interact with parties A and B, which have already terminated, but rather runs theirprograms internally using c as their password.) Finally, C 0 passes C a uniformly selected challengew3 2R D, and outputs whatever C does.Clearly, in case c = w1 2R D, C's view is exactly that of the event XC(W1;W1;W3) (W3 is inde-pendent of the �rst two passwords and therefore C 0's emulation is perfect). Therefore, the expectedvalue of the output of C 0 equals E[XC(W1;W1;W3)]. Similarly, in case c 2R D and is independent ofw1, the expected value of the output of C 0 equals E[XC(W1;W2;W3)]. Therefore, C 0 distinguishesw1 from w2 with exactly the probability gap jE[XC(W1;W1;W3)]�E[XC (W1;W2;W3)]j. The claimfollows. 2Claim 2: jE[XC(W1;W1;W1)]� E[XC(W1;W2;W2)]j � �1.Proof: The proof is similar to the proof of Claim 1. Channel C 0 emulates the two interactions inexactly the same way. Then, C 0 passes his challenge c (that either equals w1 or w2) to C for thechallenge, instead of selecting a uniform one. In case c = w1 2R D, the expected value of theoutput of C 0 equals E[XC(W1;W1;W1)]. On the other hand, in case c and w1 are independentlydistributed in D, the expected value of the output of C 0 equals E[XC(W1;W2;W2)]. As before, thisimplies the claim. 2Claim 3: jE[XC(W1;W2;W2)]� E[XC(W1;W2;W3)]j � �2.65



Proof: Here we use the password security of the second protocol. Intuitively, the �rst protocol hereis run with a password independent of the second protocol and the challenge. It can therefore beemulated and what remains is the standard password secrecy setting of the second protocol.Consider a channel C 0 for the second protocol, that behaves as follows. First C 0 uniformly selectsw1 2R D and uses it to emulate the execution CA(w1);B(w1). (We stress that C 0 does not interactwith parties A and B, but rather runs their programs internally using w1 as their password.) Next,C 0 emulates the interaction of C with A(w2) and B(w2) by actually interacting with A(w2) andB(w2). Finally, C 0 obtains a challenge c and passes it to C, and outputs whatever C does.Clearly, in case c = w2 2R D, the expected value of the output of C 0 equals E[XC(W1;W2;W2)].On the other hand, in case c and w2 are independently distributed in D, the expected value of theoutput of C 0 equals E[XC(W1;W2;W3)]. 2Combining the three claims, we havejE[XC(W;W;W )] � E[XC(W;W;W 0)]j = jE[XC(W1;W1;W1)]� E[XC(W1;W1;W3)]j� jE[XC(W1;W1;W1)]� E[XC(W1;W2;W2)]j+ jE[XC(W1;W2;W2)]� E[XC(W1;W2;W3)]j+ jE[XC(W1;W2;W3)]� E[XC(W1;W1;W3)]j� �1 + �2 + �1where in the last inequality Claims 2, 3 and 1 respectively are applied.Using the proof of Lemma 11.1 (i.e., paying close attention to one aspect of it), and using thepassword secrecy requirement of the protocol, we obtain the following.Theorem 11.2 From the point of view of any probabilistic polynomial-time channel that handles msessions of our protocol, the password is (1�O(m�))-indistinguishable from the uniform distributionover D.Proof: The theorem is proved by induction on the number of sessions, m. We consider twoprotocols: the �rst protocol consists of the �rst (among the m executions) execution of our basicprotocol, and the second consists of the remaining m� 1 executions of our basic protocol.We wish to prove the theorem for a number of session that may grow as a function of thesecurity parameter, and not merely for a constant number of executions. Still, let us �rst considerhow the proof would go for a constant m. If we denote by I(i) the password insecurity of i sessions,then by Lemma 11.1 we have I(i) � 2 � I(1) + I(i� 1), and I(m) � 2m � I(1) = O(m�) follows (asdesired).However, this notation hides the actual running-time of the adversarial channels. Let us thendenote by IT (i) the password insecurity of i sessions with respect to adversaries running in timeT . Then, Lemma 11.1 says that if for every polynomial function T it holds that IT (1) � �1 andIT (i� 1) � �2 then for every polynomial T 0 it holds that IT 0(i) � 2�1 + �2. Recall that, in general,it is not possible to applying induction on such a claim for a non-constant of times. This is becausethe running time of the adversary may become non-polynomial.However, looking at the proof of Lemma 11.1, we observe that it actually establishes thatfor every function T 0 if IT 0(i) > 2�1 + �2 then either IT1(1) > �1 or ITi�1(i � 1) > �2, whereT1(n) = T 0(n) + (i � 1) � p(n) and Ti�1(n) = T 0(n) + p(n), and where p is a �xed polynomialdenoting the time it takes to emulate the actions of A and B (in a single session of our protocol).The running-time T1(n) is obtained by noticing that the adversary for Claims 1 and 2 in the proof66



of the lemma works by invoking the \original" adversary (taking time T 0(n)) and emulating A andB for i � 1 invocations (taking time (i � 1)p(n)). On the other hand, Ti�1(n) is obtained fromClaim 3 where only the �rst protocol invocation need be emulated at a cost of p(n) more thanT 0(n).31Now, for every T , we have IT (i) � 2 �IT+i�p(1)+IT+p(i�1), and IT (m) � 2m �IT+m�p(1) follows.Thus, the contradicting adversary remains polynomial time even for any polynomial number ofinvocations. Using the fact that IT 0(1) = O(�) for any polynomial T 0 (as well as the fact that botht and m are polynomials), the theorem follows.11.2 Session-key secrecy after m sessionsCombining Theorem 11.2 and the session-key secrecy for a single session, we prove that the mthsession-key is 1�O(m�) pseudorandom from the point of view of a channel that conductsm sessions.Again, we consider the sequential execution of two protocols, the �rst having (as stand alone)\password security" 1��1, and the second having (as stand alone) \session-key security" 1��2. Westress that the second protocol must be a single session of our protocol (since we refer to the way itgenerates the session-key). We rede�ne XC so that it refers to an experiment in which a candidatesession-key is presented as a challenge (and so that it refers explicitly to the �rst polynomial selectedby A in the second protocol).32 That is, we let XC(w1; (q; w2); c) denote the probability that theoutput of channel C equals 1 in the following experiment: As before, �rst C interacts concurrentlywith A1 and B1, where each party uses password w1, next C interacts with A2 and B2 where eachparty uses password w2 but A2 uses the polynomial q instead of Q (so to obtain the session-keyk2(q(w2)); by our protocol de�nition k2(q(w2)) is the output session-key), and �nally C is presenteda (session-key) challenge c 2 f0; 1gn.Lemma 11.3 Let XC(w1; (q; w2); c), �1 and �2 be as above. Then, for any probabilistic polynomial-time channel C, it holds that jE[XC(W; (W;Q); k2(Q(W )))] � E[XC(W; (W;Q); Un)]j � 2�1 + �2,where Q is a uniformly distributed linear polynomial.Proof: We �rst prove a claim that will allow us to disregard the �rst protocol (at a cost of 2 � �1).We do this by showing that if an independent password is used for the �rst protocol instead, thenthis can make at most a di�erence of �1.Claim 1: Let R : f0; 1g� ! f0; 1g� be a probabilistic polynomial-time algorithm satisfying jR(x)j =jxj=3 for all x's. Then jE[XC(W1; (W1; Q); R(W1; Q))] � E[XC(W1; (W2; Q); R(W2; Q))]j � �1.Proof: The claim follows from the password security of the �rst protocol, similarly to the proofof Claim 2 in Lemma 11.1: We consider a channel C 0 that �rst interacts with A1(w) and B1(w).Next, upon receiving a password challenge c, the adversary C 0 uniformly selects a linear polynomialq and emulates the actions of A2(c; q) and B2(c). Finally, C 0 presents C with the challenge R(c; q),and outputs whatever C does.In case c = w 2R D, the expected value of the output of C 0 equals E[XC(W1; (W1; Q); R(W1; Q))].On the other hand, in case c and w are independently distributed in D, the expected value of theoutput of C 0 equals E[XC(W1; (W2; Q); R(W2; Q))]. 231The question of which case (i.e., the �rst session or the remaining i � 1 sessions) to use is ignored here andbelow. A trivial solution is to specify the choice via a (non-uniform) auxiliary input. If fact, unraveling the induction(below), one may �nd an adequate choice (i.e., auxiliary input) by a preprocessing in which each of the m (not 2m)possibilities is evaluated. (The induction tree has m leaves, and each determines the path to it.)32As we explained above, these claims are based solely on our de�nition and are not related to any speci�c protocol.However, for ease of presentation here, we consider the key generated from our protocol. This is not a necessity, andthe result holds for any protocol ful�lling the requirements of De�nition 2.4.67



Applying the above claim to R that uniformly selects a string of length jwj = jqj=2, we havejE[XC(W1; (W1; Q); Un)]� E[XC(W1; (W2; Q); Un)]j � �1 (30)Applying the claim to R(w; q) = k2(q(w)), we havejE[XC(W1; (W1; Q); k2(Q(W1)))] � E[XC(W1; (W2; Q); k2(Q(W2)))]j � �1 (31)We next prove that in the case that the �rst protocol is run with an independent password, Cdistinguishes the cases with probability at most �2.Claim 2: jE[XC(W1; (W2; Q); Un)]� E[XC(W1; (W2; Q); k2(Q(W2)))]j � �2.Proof: The claim follows by the session-key security of the second protocol. Since the passwordused in the �rst protocol is independent of that used in the second protocol, the �rst protocol canbe perfectly emulated for C (as in the proof of Claim 3 in Lemma 11.1). 2Combining Equations (30) and (31) with Claim 2, the lemma follows.Considering the �rst m� 1 sessions as one protocol and the last session as a second, and applyingLemma 11.3 (using Theorem 11.2 and the session-key secrecy requirement of the protocol), weimmediately obtain:Theorem 11.4 From the point of view of any probabilistic polynomial-time channel that handlesm sessions of our protocol, the last session-key is (1 � O(m�))-indistinguishable from the uniformdistribution over f0; 1gn.11.3 Undetected session-key mismatch after m sessionsBy undetected session-key mismatch we refer to the event in which the legitimate communicatorsend-up with di�erent session-keys without detecting this fact (this is the key-match requirement inthe de�nition). Combining Theorem 11.2 and the bound on undetected session-key mismatch in a(stand-alone) single session, we prove that the probability that an undetected session-key mismatchoccurs in the last session, after m� 1 prior sessions, is at most O(m�).Again, we consider the sequential execution of two protocols, the �rst having (as stand alone)\password security" 1��1, and the second having (as stand alone) \undetected mismatch security"1 � �2. We rede�ne XC so that XC(w1; w2) denotes the probability of the event `undetectedmismatch' for the second session occuring in the following experiment: As before, �rst C interactsconcurrently with A1 and B1, where each party uses password w1, next it interacts with A2 andB2 where each party uses password w2.Lemma 11.5 Let XC(w1; w2), �1 and �2 be as above. Then, for any probabilistic polynomial-timechannel C, it holds that E[XC(W;W )] � �1 + �2.Proof: We �rst claim that jE[XC(W1;W1)] � E[XC(W1;W2)]j � �1. The claim follows from thepassword security of the �rst protocol, similarly to the proof of Claim 1 in Lemma 11.3: We considera channel C 0 that �rst interacts with A1(w) and B1(w). Next, upon receiving a password challengec, the adversary C 0 emulates the actions of A2(c) and B2(c). Finally, C 0 outputs 1 if and only ifthe `undetected mismatch' event has occured in this emulation. (Surely, C 0 can determine this bitsince it emulates all parties in the second protocol.) Therefore, if C's success in causing a mismatchin the second protocol can be used by C 0 to distinguish the password in the �rst protocol.68



We next show that E[XC(W1;W2)] � �2. This follows by the `undetected mismatch' security ofthe second protocol, by emulating the �rst protocol (as in the proof of Claim 3 in Lemma 11.1).Combining the two claims, the lemma follows.As in the previous subsection, we immediately obtainTheorem 11.6 For any probabilistic polynomial-time channel that handles m sessions of our pro-tocol, the probability that in the last session the parties output di�erent session-keys without detect-ing this fact is at most O(m�).AcknowledgementsWe would like to thank Moni Naor for suggesting this problem to us and for his valuable input in theinitial stages of our research. We are also grateful to Alon Rosen for much discussion and feedbackthroughout the development of this work. We also thank Jonathan Katz for helpful discussion.Finally, we would like to thank Ran Canetti, Shai Halevi and Tal Rabin for discussion that led toa signi�cant simpli�cation of the protocol.
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A.1 Secure Two-Party ComputationIn this section we present de�nitions for secure two-party computation. The following descriptionand de�nition is taken from [23].A two-party protocol problem is casted by specifying a random process which maps pairs ofinputs (one input per each party) to pairs of outputs (one per each party). We refer to such aprocess as the desired functionality, denoted f : f0; 1g� � f0; 1g� 7! f0; 1g� � f0; 1g�. That is, forevery pair of inputs (x; y), the desired output-pair is a random variable, f(x; y), ranging over pairsof strings. The �rst party, holding input x, wishes to obtain the �rst element in f(x; y); whereasthe second party, holding input y, wishes to obtain the second element in f(x; y).Whenever we consider a protocol for securely computing f , it is implicitly assumed that theprotocol is correct provided that both parties follow the prescribed program. That is, the jointoutput distribution of the protocol, played by honest parties, on input pair (x; y), equals thedistribution of f(x; y).We consider arbitrary feasible deviation of parties from a speci�ed two-party protocol. A fewpreliminary comments are in place. Firstly, there is no way to force parties to participate in theprotocol. That is, possible malicious behavior may consist of not starting the execution at all, or,more generally, suspending (or aborting) the execution at any desired point in time. In particular, aparty can abort at the �rst moment when it obtains the desired result of the computed functionality.We stress that our model of communication does not allow us to condition the receipt of a messageby one party on the concurrent sending of a proper message by this party. Thus, no two-partyprotocol can prevent one of the parties from aborting when obtaining the desired result and beforeits counterpart also obtains the desired result. In other words, it can be shown that perfectfairness { in the sense of both parties obtaining the outcome of the computation concurrently { isnot achievable in two-party computation. We thus give up on such fairness altogether.Another point to notice is that there is no way to talk of the correct input to the protocol. Thatis, a party can alway modify its local input, and there is no way for a protocol to prevent this.To summarize, there are three things we cannot hope to avoid.1. Parties refusing to participate in the protocol (when the protocol is �rst invoked).2. Parties substituting their local input (and entering the protocol with an input other than theone provided to them).3. Parties aborting the protocol prematurely (e.g., before sending their last message).The ideal model. We now translate the above discussion into a de�nition of an ideal model. Thatis, we will allow in the ideal model whatever cannot be possibly prevented in any real execution. Analternative way of looking at things is that we assume that the two parties have at their disposal atrusted third party, but even such a party cannot prevent speci�c malicious behavior. Speci�cally,we allow a malicious party in the ideal model to refuse to participate in the protocol or to substituteits local input. (Clearly, neither can be prevent by a trusted third party.) In addition, we postulatethat the �rst party has the option of \stopping" the trusted party just after obtaining its part ofthe output, and before the trusted party sends the other output-part to the second party. Such anoption is not given to the second party.33 Thus, an execution in the ideal model proceeds as follows33This asymmetry is due to the non-concurrent nature of communication in the model. Since we postulate that thetrusted party sends the answer �rst to the �rst party, the �rst party (but not the second) has the option to stop thethird party after obtaining its part of the output. The second party, can only stop the third party before obtainingits output, but this is the same as refusing to participate.73



(where all actions of the both honest and malicious party must be feasible to implement).Inputs: Each party obtains an input, denoted z.Send inputs to trusted party: An honest party always sends z to the trusted party. A maliciousparty may, depending on z, either abort or sends some z0 2 f0; 1gjzj to the trusted party.Trusted party answers �rst party: In case it has obtained an input pair, (x; y), the trustedparty (for computing f), �rst replies to the �rst party with f1(x; y). Otherwise (i.e., in caseit receives only one input), the trusted party replies to both parties with a special symbol, ?.Trusted party answers second party: In case the �rst party is malicious it may, depending onits input and the trusted party answer, decide to stop the trusted party. In this case thetrusted party sends ? to the second party. Otherwise (i.e., if not stopped), the trusted partysends f2(x; y) to the second party.Outputs: An honest party always outputs the message it has obtained from the trusted party. Amalicious party may output an arbitrary (polynomial-time computable) function of its initialinput and the message it has obtained from the trusted party.The ideal model computation is captured in the following de�nition.34De�nition A.1 (malicious adversaries, the ideal model): Let f : f0; 1g� � f0; 1g� 7! f0; 1g� �f0; 1g� be a functionality, where f1(x; y) (resp., f2(x; y)) denotes the �rst (resp., second) element off(x; y). Let C = (C1; C2) be a pair of polynomial-size circuit families representing adversaries inthe ideal model. Such a pair is admissible (in the ideal malicious model) if for at least one i 2 f1; 2gwe have Ci(I) = I and Ci(I;O) = O. The joint execution under C in the ideal model (on input pair(x; y)), denoted idealf;C(x; y), is de�ned as follows� In case C2(I) = I and C2(I;O) = O (i.e., Party 2 is honest),(C1(x;?) ; ?) if C1(x) = ? (32)(C1(x; f1(C1(x); y);?) ; ?) if C1(x) 6= ? and C1(x; f1(C1(x); y)) = ? (33)(C1(x; f1(C1(x); y)) ; f2(C1(x); y)) otherwise (34)� In case C1(I) = I and C1(I;O) = O (i.e., Party 1 is honest),(? ; C2(y;?)) if C2(y) = ? (35)(f1(x; y) ; C2(y; f2(x;C2(y))) otherwise (36)Equation (32) represents the case where Party 1 aborts before invoking the trusted party (andoutputs a string which only depends on its input; i.e., x). Equation (33) represents the case whereParty 1 invokes the trusted party with a possibly substituted input, denoted C1(x), and abortswhile stopping the trusted party right after obtaining the output, f1(C1(x); y). In this case theoutput of Party 1 depends on both its input and the output it has obtained from the trusted party.In both these cases, Party 2 obtains no output (from the trusted party). Equation (34) represents34In the de�nition, the circuits C1 and C2 represent all possible actions in the model. In particular, C1(x) = ?represents a decision of Party 1 not to enter the protocol at all. In this case C1(x;?) represents its local-output.The case C1(x) 6= ?, represents a decision to hand an input, denoted C1(x), to the trusted party. Likewise, C1(x; z)and C1(x; z;?), where z is the answer supplied by the trusted party, represents the actions taken by Party 1 afterreceiving the trusted party answer. 74



the case where Party 1 invokes the trusted party with a possibly substituted input, and allows thetrusted party to answer to both parties (i.e., 1 and 2). In this case, the trusted party computesf(C1(x); y), and Party 1 outputs a string which depends on both x and f1(C(x); y). Likewise,Equation (35) and Equation (36) represent malicious behavior of Party 2; however, in accordanceto the above discussion, the trusted party �rst supplies output to Party 1 and so Party 2 does nothave an option analogous to Equation (33).Execution in the real model. We next consider the real model in which a real (two-party)protocol is executed (and there exist no trusted third parties). In this case, a malicious partymay follow an arbitrary feasible strategy; that is, any strategy implementable by polynomial-sizecircuits. In particular, the malicious party may abort the execution at any point in time, and whenthis happens prematurely, the other party is left with no output. In analogy to the ideal case, weuse circuits to de�ne strategies in a protocol.De�nition A.2 (malicious adversaries, the real model): Let f be as in De�nition A.1, and � bea two-party protocol for computing f . Let C = (C1; C2) be a pair of polynomial-size circuit familiesrepresenting adversaries in the real model. Such a pair is admissible (w.r.t �) (for the real maliciousmodel) if at least one Ci coincides with the strategy speci�ed by �. The joint execution of � under Cin the real model (on input pair (x; y)), denoted real�;C(x; y), is de�ned as the output pair resultingof the interaction between C1(x) and C2(y).We assume that the circuit representing the real-model adversary (i.e., the Ci which does not follow�) is deterministic. This is justi�ed by standard techniques.Security as emulation of real execution in the ideal model. Having de�ned the ideal andreal models, we obtain the corresponding de�nition of security. Loosely speaking, the de�nitionasserts that a secure two-party protocol (in the real model) emulates the ideal model (in which atrusted party exists). This is formulated by saying that admissible adversaries in the ideal-model areable to simulate (in the ideal-model) the execution of a secure real-model protocol (with admissibleadversaries).De�nition A.3 (security in the malicious model): Let f and � be as in De�nition A.2, Protocol �is said to securely compute f (in the malicious model) if there exists a polynomial-time computabletransformation of pairs of admissible polynomial-size circuit families A = (A1; A2) for the realmodel (of De�nition A.2) into pairs of admissible polynomial-size circuit families B = (B1; B2) forthe ideal model (of De�nition A.1) so thatfidealf;B(x; y)gx;y s.t. jxj=jyj c� freal�;A(x; y)gx;y s.t. jxj=jyjImplicit in De�nition A.3 is a requirement that in a non-aborting (real) execution of a secureprotocol, each party \knows" the value of the corresponding input on which the output is obtained.This is implied by the equivalence to the ideal model, in which the party explicitly hands the(possibly modi�ed) input to the trusted party. For example, say Party 1 uses the malicious strategyA1 and that real�;A(x; y) is non-aborting. Then the output values correspond to the input pair(B1(x); y), where B1 is the ideal-model adversary derived from the real-model adversarial strategyA1. 75



Secrecy and Correctness: By the above de�nition, the output of both parties together mustbe indistinguishable in the real and ideal models. The fact that the adversarial party's output isindistinguishable in both models formalizes the secrecy requirement of secure computation. Thatis, an adversary cannot learn more than what can be learned from his private input and output.On the other hand, the indistinguishability requirement on the honest party's output relates tothe issue of correctness. Loosely speaking, the correctness requirement states that if a party iscomputing f(x; y), then the adversary cannot cause him to receive f 0(x; y) for some f 0 6= f . This isof course true in the ideal model as a trusted party computes f . Therefore the indistinguishabilityof the outputs means that it also holds in the real model (this is not to be confused with theadversary changing his own private input which is always possible). It is furthermore crucial thatthe secrecy and correctness requirements be intertwined, see [14] regarding this issue.General plausibility results: Assuming the existence of trapdoor permutations, one may pro-vide secure protocols for any two-party computation (allowing abort) [46], as well as for anymulti-party computations with honest majority [27]. Thus, a host of cryptographic problems aresolvable assuming the existence of trapdoor permutations. Speci�cally, any desired (input{output)functionality can be enforced, provided we are either willing to tolerate \early abort" (as de�nedabove) or can rely on a majority of the parties to follow the protocol.A.2 String CommitmentCommitment schemes are a basic ingredient in many cryptographic protocols. They are used toenable a party to commit itself to a value while keeping it secret. In a latter stage the commitmentis \opened" and it is guaranteed that the \opening" can yield only a single value determined in thecommitting phase.Loosely speaking, a commitment scheme is an e�cient two-phase two-party protocol through whichone party, called the sender, can commit itself to a value so that the following two conictingrequirements are satis�ed.1. Secrecy (or hiding): At the end of the �rst phase, the other party, called the receiver, does notgain any knowledge of the sender's value (this can be formalized analogously to the de�nitionof indistinguishability of encryptions). This requirement has to be satis�ed even if the receivertries to cheat.2. Unambiguity (or binding): Given the transcript of the interaction in the �rst phase, thereexists at most one value that the receiver may later (i.e., in the second phase) accept as alegal \opening" of the commitment. This requirement has to be satis�ed even if the sendertries to cheat.The �rst phase is called the commit phase, and the second phase is called the reveal phase. Withoutloss of generality, the reveal phase may consist of merely letting the sender send, to the receiver,the original value and the sequence of random coin tosses that it has used during the commit phase.The receiver will accept the value if and only if the supplied information matches its transcript ofthe interaction in the commit phase.Our informal de�nition above describes a perfectly binding commitment scheme. That is, thereexists only a single value that the receiver will accept as a decommitment. Therefore, even if thesender is computationally unlimited, he cannot cheat.76



We now present a construction of a non-interactive, perfectly binding bit commitment usingone-way permutations. Speci�cally, we use a one-way permutation, denoted f , and a hard-corepredicate for it, denoted b. In fact, we may use any 1{1 one-way function.1. Commit Phase: To commit to a bit � 2 f0; 1g, the sender uniformly selects r 2 f0; 1gn andsends the pair (f(r); b(r)� �).2. Reveal Phase: The sender reveals the bit � and the string r used in the commit phase. Thereceiver accepts � if f(r) = � and b(r) � � = � where (�; �) is the receiver's view of thecommit phase.It is easy to see that this construction is a secure commitment scheme.In order to commit to a string of n bits, � = �1 � � � �n, the sender simply commits to each �iseparately as above. We denote the commitment by Commit(�) = C(�; r) where the randomnessused by the sender is r = r1; : : : ; rn (8i ri 2R f0; 1gn).A.3 Non-Malleable String CommitmentLoosely speaking, a non-malleable string commitment scheme is a commitment scheme with theadditional requirement that given a commitment, it is infeasible to generate a commitment to arelated value. We note that the commitment scheme presented in Section A.2 is easily malleable.The concept of non-malleability was introduced by Dolev et. al. in [19], where they also provide aperfectly binding, (interactive) non-malleable commitment scheme based on any one-way function.We now bring an informal de�nition of a non-malleable commitment scheme. Let A be an adversarywho plays the receiver in a commitment protocol with a sender S. Furthermore, A concurrentlyplays the sender in a commitment protocol with a receiver T (one can look at S and T as executinga commitment protocol, with A playing a man-in-the-middle attack). The sender S commits to astring � 2R D for some distribution D, and A wishes to cause T to receive a commitment to �where � 6= �. (A is allowed to copy S's commitment and this is not considered a breach of security.)For a given polynomial-time computable relation R, we denote by �(A; R), the probability that Agenerates � such that (�; �) 2 R.On the other hand, we consider an adversarial simulator A0 who does not participate as thereceiver in a commitment protocol with S. Rather, A0 sends T a commitment to � and we denoteby �0(A0; R) the probability that (�; �) 2 R for � 2R D. That is, A0 must generate a \related"commitment without any help.We say that a string commitment scheme is non-malleable if for every distribution D, everypolynomial-time relation R and every adversary A, there exists an adversarial simulator A0 suchthat j�(A; R)��0(A0; R)j is negligible. Therefore, the fact that A \saw" a commitment to � didnot noticeably help her generate a commitment to �; she could do it by herself anyway. Thisformalization is conceptually similar to that of semantic security for encryptions.A.4 The Zero-Knowledge Proof of Richardson and KilianWe �rst review the notion of zero-knowledge. Loosely speaking, zero-knowledge proofs are proofswhich yield nothing beyond the validity of the assertion. That is, a veri�er obtaining such a proofonly gains conviction in the validity of the assertion. Using the simulation paradigm this require-ment is stated by postulating that anything that is feasibly computable from a zero-knowledgeproof is also feasibly computable from the valid assertion alone.77



The above informal paragraph refers to proofs as to interactive and randomized processes. Thatis, here a proof is a (multi-round) protocol for two parties, call verifer and prover, in which theprover wishes to convince the veri�er of the validity of a given assertion. Such an interactiveproof should allow the prover to convince the veri�er of the validity of any true assertion, whereasNO prover strategy may fool the veri�er to accept false assertions. Both the above completenessand soundness conditions should hold with high probability (i.e., a negligible error probability isallowed). The prescribed veri�er strategy is required to be e�cient. Zero-knowledge is a property ofsome prover strategies. More generally, we consider interactive machines which yield no knowledgewhile interacting with an arbitrary feasible (i.e., probabilistic polynomial-time) adversary on acommon input taken from a predetermined set (in our case the set of valid assertions).De�nition A.4 (zero-knowledge [29]): A strategy P is zero-knowledge on inputs from S if, forevery feasible strategy V �, there exists a feasible computation M� so that the following two probabilityensembles are computationally indistinguishable:1. f(P; V �)(x)gx2S def= the output of V � when interacting with P on common input x 2 S; and2. fM�(x)gx2S def= the output of M� on input x 2 S.Note that whereas P and V � above are interactive strategies, M� is a non-interactive computation.The above de�nition does not account for auxiliary information which an adversary may haveprior to entering the interaction. Accounting for such auxiliary information is essential for usingzero-knowledge proofs as subprotocols inside larger protocols.A general plausibility result [26]: Assuming the existence of commitment schemes, there existzero-knowledge proofs for membership in any NP-language. Furthermore, the prescribed proverstrategy is e�cient provided it is given an NP-witness to the assertion that is proven.The protocol of Richardson and Kilian [40]We actually simplify their presentation in a way that su�ces for our own purposes. In essence, theprotocol consists of two parts. In the �rst part, which is independent of the actual common input,m instances of coin tossing into the well [8] are sequentially executed where m is a parameter (tobe discussed below). Speci�cally, the �rst part consists of m iterations, where the ith iterationproceeds as follows: The veri�er uniformly selects vi 2 f0; 1gn, and commits to it using a perfectlyhiding commitment scheme. Next, the prover selects pi 2R f0; 1gn, and sends a perfectly bindingcommitment to it. Finally, the veri�er decommits to vi. (The result of the ith coin-toss is de�nedas vi � pi and is known only to the prover.)In the second part, the prover provides a witness indistinguishable (WI) proof [20] that eitherthe common input is in the language or one of the outcomes of the m coin-tosses is the all-zerostring (i.e., vi = pi for some i). Intuitively, since the latter case is unlikely to happen in an actualexecution of the protocol, the protocol constitutes a proof system for the language. However, thelatter case is the key to the simulation of the protocol in the concurrent zero-knowledge model.We utilize this in our setting as well, when setting m to be equal to the total number of rounds inour own protocol (not including this subprotocol) plus any non-constant function of the securityparameter n. The underlying idea is that whenever the simulator may cause vi = pi to happen forsome i, it can simulate the rest of the protocol (and speci�cally Part 2) by merely running the WIproof system with vi (and the prover's coins) as a witness. (By the WI property, such a run will78



be indistinguishable from a run in which an NP-witness for the membership of the common input(in the language) is used.)A.5 Seed-Committed Pseudorandom GeneratorsA seed-committed pseudorandom generator is an e�ciently computable deterministic function Gmapping a seed to a (commitment,sequence) pair that ful�lls the following conditions:� The sequence is pseudorandom, even given the commitment.� The partial mapping of the seed to the commitment is 1{1.We use the following implementation ([11, 10]) of a seed-committed generator. Let f be a 1{1one-way function and b a hard-core of f . Then de�neG(s) = hf2n(s); b(s)b(f(s)) : : : b(f2n�1(s))iThis generator clearly ful�lls the requirements: f2n(s) is the commitment and b(s) � � � b(f2n�1(s))is the sequence.We note that the following naive implementation does not work. Let G be any pseudorandomgenerator and consider the seed as a pair (s; r). Then de�ne the mapping (s; r) 7! (C(s; r); G(s))where C(s; r) is a commitment to s using randomness r. It is true that the sequence is pseudorandomgiven the commitment. Furthermore, for every s 6= s0 and for every r; r0 we have that C(s; r) 6=C(s0; r0). However, there may be an s and r 6= r0 for which C(s; r) = C(s; r0) and therefore themapping of the seed to the commitment is not necessarily 1{1.A.6 Message Authentication Codes (MACs)A Message Authentication Code, or MAC, enables parties A and B who share a joint secret keyto achieve data integrity. That is, if B receives a message which is purportedly from A, then byverifying the MAC, B can be sure that A indeed sent the message and that it was not modi�edby any adversary on the way. A Message Authentication Scheme is comprised of the followingalgorithms:1. A Key Generation algorithm that returns a secret key k.2. A Tagging algorithm that given a key k and a message m, returns a tag t =MACk(m).3. A Veri�cation algorithm that given a key k, a message m and a candidate tag t, returns a bitb = Verifyk(m; t).We now briey, and informally, describe the security requirements of a MAC. Let AMACk(�) be appt adversary with oracle access to the tagging algorithm and let m1; : : : ;mq be the list of A'soracle queries during her execution. Upon termination, A outputs a pair (m; t). We say that Asucceeds if for every i, m 6= mi and furthermore Verifyk(m; t) = 1 (i.e., A generates a valid tag fora previously unseen message). Then, a MAC is secure if for every ppt machine A, the probabilitythat A succeeds is negligible.This ensures integrity, because if an adversary modi�es a message sent from A to B to onenot previously seen, then B's veri�cation will surely fail (there is an issue of replay attacks whichwe ignore here). The property that A cannot �nd an appropriate tag t for a \new" m, is calledunpredictability.It is easy to see that any pseudorandom function is a secure implementation of a MAC. This isbecause any random function is unpredictable and any non-negligible success in generating t suchthat f(m) = t (for an \unseen" m), must mean that f is not random.79



B A Password Attack on the Protocol without the MACIn this appendix, we describe an attack on our protocol without the MAC, such that C can learn abit of w in every invocation. The main idea is to utilize the (possible) \malleability" of secure two-party protocols. That is, assuming that C is reliable, B's output from the augmented polynomialevaluation is always Q(w1 � � �wn), where w = w1 � � �wn. If the polynomial evaluation is malleable,then it may be possible for C to launch a man-in-the-middle attack in which he causes B to receiveQ(0w2 � � �wn) instead of Q(w1 � � �wn). However, notice that if w1 = 0, then Q(0w2 � � �wn) =Q(w1 � � �wn) and the parties should notice no di�erence between this malicious execution and onewhere C does nothing. That is, the session-key protocol should succeed and the parties shouldboth output accept. On the other hand, if w1 = 1, then A and B have di�erent pre-keys (in fact,by the pairwise independence of Q, the pre-keys Q(w1 � � �wn) and Q(0w2 � � �wn) are independentlydistributed). Therefore, the session-key protocol should fail and at least one of the parties shouldoutput reject. Since C receives the parties' accept/reject output bits, he can infer whether w1 = 0or w1 = 1. We now show that this attack is indeed possible, and that a well-known secure two-partycomputation protocol is malleable in the above sense.The attack is based on an implementation of the polynomial evaluation using Yao's protocolfor secure two-party computation [46]. Loosely speaking, in Yao's protocol party A (with inputQ) generates an \encrypted" circuit computing Q(�) and sends it to party B. The circuit is suchthat it reveals nothing in its encrypted form and therefore the value of Q is not learned by B.Furthermore, given a certain series of \keys", the circuit may be decrypted revealing a single valueQ(w). Speci�cally, in order for B to learn Q(w), party A de�nes 2n keys k0i and k1i (1 � i � n) suchthat given keys kw11 ; : : : ; kwnn , the value Q(w1 � � �wn) (and only this value) may be computed fromthe circuit. Then for every i, party B obtains kwii by oblivious transfer. That is, if wi = 0 thenB will obtain k0i , otherwise k1i . Given these keys and the encrypted circuit, B is able to computeQ(w) (and only Q(w)) as required. On the other hand, A learns nothing from the protocol, as Bobtains the keys by oblivious transfer. The crucial point regarding the malleability of the protocolis that B executes an independent oblivious transfer for each bit of his input.We now show that Yao's protocol is malleable as previously described. Speci�cally, we showthat channel C can cause B to receive Q(0w2 � � �wn) instead of Q(w). C's strategy is to pass(almost) all messages of the protocol untouched between A and B. The only exception is that Ccauses B to receive k01 (instead of kw11 ) in the �rst oblivious transfer described above. C can easilydo this by playing the receiver in the �rst oblivious transfer with A and obtaining k01. Next, Cplays the sender in the �rst oblivious transfer with B where he de�nes both the 0 and 1 stringsto be k01 . In this way, whatever B inputs into the oblivious transfer, he receives k01. This can begeneralized so that for any i, party B receives Q(w1 � � �wi�10wi+1 � � �wn) instead of Q(w) (i.e., thei'th bit is always 0).Now, let A and B be parties running a modi�ed version of our session-key protocol via C, whereno MAC is sent by A in the validation stage. Furthermore, let the protocol implementation besuch that the polynomial evaluation is executed using Yao's protocol. Then, the above strategycan be used by C to learn any single bit of w in each invocation of the protocol. C does this byreliably passing all messages between A and B during the protocol execution, except that C causesB to receive Q(w1 � � �wi�10wi+1 � � �wn) in the polynomial evaluation. Then, at the conclusion ofthe protocol, C receives B's accept/reject bit. As we have described, if B accepts then wi mustequal 0, because otherwise A and B have di�erent pre-keys. On the other hand, if B rejects, thenwi must equal 1 (because C did not interfere in any other part of the protocol) . The above istherefore a strategy for which C can learn one bit of the password in every invocation. Notice also80



that the attack always succeeds and that C can specify the bit that he wishes to learn. This clearlycontradicts the password secrecy requirement of the protocol.
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