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1 IntroductionConsider a user that makes a query in a database. A lot of research was devoted to methods thatprotect the database against a \curious" user. For example, methods that do not allow a user toask queries to a statistical database in a way that enables him to reconstruct the value of particularentities (e.g., [2, 9, 10, 11, 18] and [19, Section 10.5]).It may seem surprising at �rst glance that there are no methods to protect the privacy of theuser. For example, an investor that queries the stock-market database, for the value of a certainstock, may wish to keep private the identity of the stock he is interested in. However, it is notdi�cult to prove (see Appendix A.1) that if the user wants to keep its privacy then essentiallythe only thing he can do is to ask for a copy of the whole database. Clearly, this is too muchcommunication overhead, which makes it practically unacceptable.The rapid development of distributed databases (see [8]) and all kind of data-services (\informa-tion highways") results in many scenarios in which the same database is replicated in several sites.This raises hope to get around the di�culty of achieving privacy in the single database scenario.It may be possible to make queries to several databases such that from the answers the desiredinformation can be obtained, while from each query no information is given as to the informationthe user is interested in, hence its privacy is maintained.Before going any further let us make the problem more concrete. We view the database as abinary string x of length n. Identical copies of this string are stored in k � 2 sites. The user hassome index i, and he is interested in obtaining the value of the bit xi.We present various schemes that solve the retrieval problem with signi�cantly smaller commu-nication complexity than the obvious n-bit solution (i.e., asking for a copy of x). In particular weobtain the following:� A two-database scheme with communication complexity of O(n1=3).� A scheme for a constant number, k, of databases with communication complexity O(n1=k).� A scheme for 13 log2 n+1 databases with total communication complexity 13(1+ o(1)) � log22 n �log2 log2(2n).We remark that some of our schemes can be modi�ed (with a small penalty in the communicationcomplexity) so as to guarantee a higher degree of privacy: for t � k � 1, knowing t of the queriesstill gives no information as to what is the value of i that the user is interested in. We alsoremark that some of our schemes are based on exclusive-or (linear summations, or sum) queries;this type of queries is very common and is actually implemented in several \real-world" databases(see [9, 11, 19]).1.1 Related WorkFor the case of k = 2 (i.e., two databases), a �rst indication that something better than the userasking for a copy of x can be done is given by a recent result of Pudl�ak and R�odl [16]. With acomplexity-theory motivation in mind they studied the following question. There are three players:D1 that holds a string x and an index j, D2 that holds the same string x and an index `, and Uthat knows both j and `. The goal is for D1 and D2 to send a single message each to U so that hewill be able to compute the bit xj+`modn. They show that this can be done using o(n) bits (more1



precisely, O(n log2 log2 n= log2 n)). Using their protocol, a scheme which guarantees privacy to theuser of a database can be constructed as follows: The user chooses uniformly at random a pairof indices j; ` such that j + ` = i mod n. He sends j to the �rst database, ` to the second andthe three of them execute the protocol. This solves the problem with o(n) bits while maintainingprivacy.Independently of our work, Babai, Kimmel, and Lokam [5] studied the following problem relatedto the one studied in [16] (where, again, the motivation comes from complexity theory). There arek + 1 players D1; : : : ; Dk and U . The player U holds k indices i1; : : : ; ik (each is an ` bit string).Each player Dj holds an n = 2` bit string x (common to all of them) and all the indices butij. The goal is for each Dj to send a single message to U so that U will know the value of thebit xi1�i2�����ik , where � here denotes bitwise exclusive-or. A protocol for this problem can betransformed into a private information retrieval scheme with an additional cost of k(k � 1) log2 nbits as follows: the user chooses uniformly at random k indices (log2 n bit strings) i1; : : : ; ik suchthat i1 � � � � � ik = i. He then sends to the j-th database all the indices but ij, and the databasesexecute the protocol. Babai et al. [5] obtain the following results: for 2 � k < log2 n playersthe total communication is O(knH2(1=(k+1))) (where H2(�) is the Binary Entropy Function), andfor k � log2 n the total communication is 2 log2 n. For example, for k = 2 their protocol (andhence the private information retrieval scheme) uses O(nH2(1=3)) � O(n0:92). For k = c log2 n thecommunication is polylogarithmic (note however, that the transformation into a private informationretrieval scheme will cost additional c2 log32 n bits in this case). To conclude, using the results of[5] one can get much better private information retrieval schemes than those that can be obtainedusing [16], but still not as good as the schemes constructed in our paper.In [17, 1, 6, 7] the instance hiding problem is introduced and studied. In this problem, acomputationally bounded player U that holds an instance i wishes to compute a known function fon input i. The function f may be hard to compute, so U can query k computationally unboundedoracles to achieve this task (each oracle can compute f(j) for any j). Still, the player wants tokeep its instance i hidden from the oracles. In a sense, this problem can be viewed as if theoracles have a string f(1)f(2) : : :f(n) and U wants to obtain the ith bit of this string, which isthe value f(i), while keeping i private. In this sense the instance hiding model is related to themodel of private information retrieval. Some of the techniques used in [6, 7] are relevant to ourproblem, especially the use of low degree polynomials, introduced by Beaver and Feigenbaum [6],and further developed by Beaver, Feigenbaum, Kilian and Rogaway [7]. In particular, the schemeof [6] for 1 + log2 n databases is essentially the one we use as our starting point in Subsection 4.1.From the construction in [7] it is possible to derive a private information retrieval scheme for k(constant) databases with O(n1=(k�1)) communication (see Remark 5.2 in [7]). In fact the schemeshown here in Subsection 4.2 can be considered an improved variant of their construction.It should be emphasized that despite these similarities, there are substantial di�erences betweenthe models and between the quality of the results. In our model the value n is considered a feasiblequantity, while in the instance hiding model n is exponential in the length of the instance, so itis an infeasible quantity. Consequently, the instance-hiding model is aimed towards poly(jij)-timecomputations for U , allowing only solutions in which the communication between the user and thedatabases is poly-logarithmic in n. In contrast, the main thrust of our work is the case with smallnumber of databases (speci�cally, smaller than log2 n). We do allow the user to perform n" timecomputation (where " > 0 is a constant), and in particular send and receive messages longer thanpolylog(n). 2



1.2 OrganizationIn Section 2 we introduce notations and basic de�nitions. In Section 3 we develop several schemeswhere every reply is an exclusive-or of a subset of the database's bits. In Section 4 we introducemethods based on low degree polynomial interpolation. Section 5 contains numeric results on thecommunication complexity for relevant numbers and sizes of databases. Section 6 extends theproblem to the case where we are interested in retrieving a block of bits (and not only a singlebit). Section 7 describes a generalization, which guarantees privacy against coalitions of more thana single database. Conclusions and open problems can be found in Section 8. Finally, Appendix Aprovides some simple lower bounds for private retrieval schemes with a single database and forschemes with more databases but very restricted types of queries.2 Preliminaries and De�nitionsWe use the following notations throughout the paper:U { the user.DB1; : : : ;DBk { the databases.x { a string in f0; 1gn which is the (identical) content of the databases.i { the index in x in which the user U is interested.[m] 4= f1; 2; :::;mg.Next, we de�ne the notion of privacy. We want that for every database DB`, for every possiblecontent of the database, x, and any two indices i and j the database will not be able to distinguishbetween the case that the user holds index i and the case that the user holds index j. That is, thecommunication between the user and DB` should be equally distributed, regardless of the index i.Notation for Section 3: For a set S and an element a letS � a 4= ( S [ fag if a =2 SS n fag if a 2 SNotation for Section 4: We use �nite �elds, denoted GF (q), where q is a prime power. Fornotational simplicity, we denote the q elements of GF (q) by 0; 1; :::; q � 1. Whenever adding ormultiplying �eld elements it is understood that these operations are the �eld's operations.3 The Linear-Summation SchemeIn this section we describe various schemes that are of the \linear summation" type. In theseschemes, the user sends queries in the form of subsets S � f1; : : : ; ng, and the database replies with�j2Sxj .3.1 A Basic Two-Databases SchemeWe start by describing a very simple scheme that allows the user U to privately obtain the bit xi byreceiving a single bit from each of two databases. The user uniformly selects a random set S � [n](i.e., each index j 2 [n] is selected with probability 1=2). The user sends S to DB1 and S � i to3



DB2. Each of these databases, when receiving the message I � [n], replies with a single bit whichis the exclusive-or of the bits with indices in I (i.e., DB1 replies with �j2Sxj whereas DB2 replieswith �j2S�ixj). The user exclusive-ors the answers it has received, thus retrieving the desired bitxi. Clearly, none of the databases has obtained any information regarding which index was desiredby the user (as each of the databases obtains a uniformly distributed subset of [n]).Although the above scheme is less obvious than a solution in which one database sends all nbits to the user, it is not superior as far as the total amount of communication goes. Indeed eachdatabase sent only a single bit, but the messages sent by the user (specifying arbitrary subsets of[n]) are n bits long. Yet, this simple scheme serves as a basis for more e�cient ones.3.2 A Multi-Database SchemeIn this subsection, we present a scheme for any number k � 2 of databases available. Later, inSection 4, we present a better scheme for the case of large k (i.e., k > 4). However, the schemepresented here, together with the covering codes method that we present in the next subsectionleads to the best upper bounds we have for small values of k (the number of databases) and inparticular for the interesting case k = 2.The scheme presented in this subsection allows the user to obtain the desired bit by askingqueries to k = 2d databases, for any d � 1, and requires total communication of 2d � (d � n1=d + 1).The key idea is to associate [n] with the d-dimensional cube [`]d and generalize the simple scheme ofSubsection 3.1, which may be viewed as the 1-dimensional case (i.e., d = 1). In the generalization,each of the 2d databases is queried for the exclusive-or of the bits in a uniformly distributed subcube.As in the basic scheme, the di�erent subcubes are related, and this allows to retrieve the desired bit.The saving in communication comes from the fact that subcubes can be described more succinctlythan general subsets.We assume, without loss of generality that n = `d. We embed x in a d-dimensional cube,associating each position j 2 [n] with a d-tuple (j1; :::; jd) 2 [`]d, in the natural manner. Inparticular, the index i of the desired bit is associated with a d-tuple (i1; : : : ; id) 2 [`]d. It willalso be convenient to associate the k = 2d databases with strings in f0; 1gd. The scheme works asfollows.1. U chooses uniformly and independently d random subsets S01 ; S02; : : : ; S0d � [`]. Based on thesesubsets it de�nes another d subsets of [`] by S11 = S01 � i1; S12 = S02 � i2; : : : ; S1d = S0d � id.These 2d subsets are paired in the natural way; namely, (S01 ; S11); : : : ; (S0d; S1d). To each of thek = 2d databases U sends one subset per pair, corresponding to the name of the database.Namely, for every � = �1 � � ��d 2 f0; 1gd, the user sends the subsets S�11 ; S�22 ; : : : ; S�dd to DB�.2. Upon receiving the d subsets S�11 ; S�22 ; : : : ; S�dd , the database (i.e., DB�1����d) replies with theexclusive-or of the subcube de�ned by these subsets. Namely, DB�1 ����d replies with the bitMj12S�11 ;:::;jd2S�dd xj1;:::;jd :3. The user exclusive-ors the k = 2d bits it has received.The correctness of the above scheme can be easily veri�ed. For example, this can be done by induc-tion on d. Alternatively, one may consider the contribution of each bit xj1;:::;jd to the sum computed4



by the user (in Step 3). This contribution depends on the number of subcubes (corresponding tothe queries directed to the 2d databases) which contain the position (j1; :::; jd). It is not hard tosee that (i1; :::; id) is the only position which is contained in an odd number of subcubes; actuallyit appears in a single subcube. Each of the other (j1; :::; jd)'s (i.e., those 6= (i1; :::; id)) appears inan even number of subcubes: say jt 6= it, then, for every �1; :::; �d,(j1; :::; jd) 2 S�11 � � � � � S�t�1t�1 � S0t � S�t+1t+1 � � � � � S�ddif and only if(j1; :::; jd) 2 S�11 � � � � � S�t�1t�1 � S1t � S�t+1t+1 � � � � � S�ddThe privacy of the above scheme follows by observing that each database receives a sequenceof d uniformly and independently chosen subsets of [`]. Thus, the queries to each database aredistributed in the same way, for each possible value of i = (i1; : : : ; id).The communication involved in the above scheme consists of sending a sequence of d subsetsin [`] to each database, and receiving a single bit back. Hence the total communication complexityis k � (d � ` + 1) = 2d � (d � dpn + 1). We note that the communication in the present scheme isnot balanced. The user sends d � n1=d bits to each database, and receives a single bit from each inresponse. Interestingly, the improvement in Section 3.3 results by balancing the communication (ina way speci�c to the above scheme). A generic balancing technique is presented in Section 4.3.3.3 The Covering Codes SchemeIn this subsection we describe a method based on covering codes (from coding theory). Thismethod (essentially) maintains the total communication complexity of the schemes described inthe previous subsection but reduces the number of participating databases. It is especially usefulwhen the number of databases (i.e., k) is small (i.e., k = 2 and k = 4).We start with an example. For d = 3, the scheme of the previous subsection consists of auser and 2d = 8 databases whose names are associated with the binary strings of length d = 3.The user sends a subcube de�ned by the sets (S�11 ; S�22 ; S�33 ) to DB�1�2�3 which replies with theexclusive-or of the bits residing in this subcube. Thus 3 3pn bits are sent from the user to eachdatabase, which replies with a single bit. The key idea in the improvement is that DB000, whichgets the query (S01; S02 ; S03), can produce a relatively short string which contains the answer to thequery (S01; S02 ; S13), sent to DB001. Speci�cally, it knows S01 and S02 and it also knows that S13 mustbe one of form S03 � j, for some j 2 f1; 2; :::; 3png. Thus DB000 can emulate DB001 by sending the3pn bits corresponding to the 3pn possible queries which could have been sent to DB001. In thesame fashion, DB000 can emulate both DB010 and DB100. Thus, by letting DB000 emulate DB100,DB010 and DB001, and letting DB111 emulate DB011, DB101 and DB110, we get a scheme for twodatabases with total communication complexity O( 3pn). We note that it is too expensive to letDB000 emulate DB011 as this will require considering all ( 3pn)2 possibilities for (S12 ; S13).In general, the above \emulation" method depends on the ability to cover the strings in f0; 1gdby few d-bit long string, where each string may cover itself and all strings at Hamming distance1 from it. In other words, we consider the problem of covering f0; 1gd by balls of radius 1 (in theHamming geometry). This is a well known problem in coding theory. A covering code, Cd, withradius 1 for f0; 1gd is a collection Cd = fc1; c2; : : : ; ckg � f0; 1gd, such that the balls of radius 1around the codewords cover the space; namely,f0; 1gd � [cj2CdB(cj; 1)5



dimension # codewords volume total(databases) (lower) communication(i.e., d) 2d (i.e., k) bound3 8 2 2 12n1=34 16 4 4 28n1=45 32 7 6 60n1=56 64 12 10 124n1=67 128 16 16 224n1=78 256 32 29 480n1=8Figure 1: Covering Codes and Protocolswhere B(c; 1) is the set of all d-bit long strings which di�er from c in at most one position.Given a (radius 1) covering code, Cd = fc1; c2; : : : ; ckg (for f0; 1gd), we use the emulationmethod to derive a k-database protocol of communication complexity O(d � k � n1=d). The user,being interested in position i = (i1; :::; id), picks uniformly S01 ; S02 ; : : : ; S0d � [n1=d], and sets S11 =S01 � i1; S12 = S02 � i2; : : : ; S1d = S0d � id. The user sends to DBc (c 2 Cd) the subcube correspondingto codeword c (i.e., (S�11 ; :::; S�dd ) where c = �1 � � ��d). Each DBc replies by emulating itself (i.e.,one bit) and the databases corresponding to the words covered by the codeword c (i.e., n1=d bitsper each such database). All these answers allow the user to compute the answer it would havereceived in the protocol for 2d databases, and consequently retrieve the desired bit. The privacy ofthe original 2d-databases scheme is clearly preserved. As for the communication complexity of thenew protocol, we note that d �n1=d bits are sent from U to each database and that the total numberof bits sent back is k + (2d � k) � n1=d (note that only the emulation of databases corresponding tonon-codewords requires n1=d bits and that it su�ces to emulate/cover each such database once1).Thus, the total communication equals (dk + 2d � k) � n1=d + k, and we getTheorem 1: Let d and k be integers so that there is a k-word covering code (of radius 1) for f0; 1gd.Then there exists a private information retrieval schemes for k databases, each holding n bits of data,so that the communication complexity of the scheme is k + (2d + (d� 1)�k) � n1=d.Clearly, k in the above theorem need not be greater than 2d. On the other hand, since every radius 1ball contains exactly d+1 points in f0; 1gd, the number of codewords k satis�es k � 2dd+1 (this is thevolume bound cf., [13]). This lower bound is not always attainable. The construction given above,for d = 3, uses the fact that f(0; 0; 0); (1; 1; 1)g is a covering code with radius 1 of f0; 1g3. For d = 4there exist covering codes with four codewords (e.g., f(0; 0; 0; 0); (1; 1; 1; 1); (1; 0; 0; 0); (0; 1; 1; 1)g)but not with fewer codewords (due to the volume bound). In Figure 1 we list the best knowncovering codes for d up to 8, the corresponding volume bounds, and the communication complexityof the resulting protocol (i.e., (2d + (d� 1)k) �n1=d, ignoring the additive term of k). We note thatall these covering codes are optimal (minimum size) [14]. For d = 3 and d = 7, these are HammingCodes which are perfect codes (all balls are disjoint).As one can see from this table, the improvement derived by the emulation method (over thesimpler method of Section 3.2 which requires 2d databases) is quite meaningful for small values ofd. Covering codes with larger radii (say 2 or 3) are also applicable in principle. For example, a k1Formally, we consider a �xed exact cover of f0; 1gd by sets S(cj)'s so that S(cj) � B(cj; 1), for every j = 1; :::; k.6



word radius 2 covering code of f0; 1gd would yield communication complexity k �d �n1=d+k ��d2� �n2=d.Reviewing the parameters of the best codes [14], they turn out to be inferior for our purposes thanthe radius 1 codes.The results using the covering codes methods are most appealing for the cases of 2 and 4databases. These cases are summarized in the next corollary to Theorem 1.Corollary 2: There are private information retrieval schemes for n bits data, with the followingparameters:� For two databases (i.e., k = 2), the communication complexity is 12 3pn+ 2.� For four databases (i.e., k = 4), the communication complexity is 28 4pn+ 4.As noted above, for d dimensional space the communication complexity is (2d + (d � 1)k) � n1=d.As 2d=(d + 1) � k � 2d, this implies that d � log k + log(d + 1) � log k + log log k. Expressingthe communication complexity of the covering code method as a function of k, the number ofdatabases, we get O(k log kn1=(logk+log logk)). For k ! 1, the results obtained in Section 4 havebetter asymptotic behavior.4 The Polynomial Interpolation SchemeIn this section we describe an information retrieval scheme which requires O(n1=k) communicationbits for k databases, where k = O(1) is a constant, and O(log22 n log2 log2 n) bits where k = 13 �log2 n.The scheme is based on the method of low-degree polynomial interpolation, originating from [6] andextensively used thereafter (see for example [15, 3, 4, 12]). We start by presenting a simple versionfor k = log2 n + 1 databases. This version is essentially the one used for log2 n + 1 oracles in [6].An improved and more general scheme is developed in Subsection 4.2. This scheme is a variant ofthe one presented in [7].4.1 A Simple Scheme For log2 n + 1 DatabasesSupposing that n = 2s, we associate the set [n] � f0; 1gs with the set of functions from [s] to f0; 1g.Thus j 2 [n] is associated with the function j : [s] 7!f0; 1g so that, for every ` = 1; 2; :::; s, the valuej(`) is the `-th least signi�cant bit in the binary expansion of j. Let �i;j be the Kronecker function:�i;j 4= ( 1 if i = j0 otherwiseWe are currently interested in a scheme allowing U to retrieve the ith bit of x = x1 � � �xn 2 f0; 1gnusing s+ 1 databases. In what follows we shall de�ne a sequence of functions constructed with thevalue of i in mind.Let GF (q) be a �nite �eld with at least s+2 elements. Consider a function, de�ned over GF (q),of the following form: F i;x(z) = Xj2[n] f ij(z) � xjwhere 7



P1 the f ij 's are polynomials (in z) of degree at most s; andP2 f ij(0) = �j;i, for each j 2 [n].By (P2), F i;x(0) = Pj2[n] f ij(0) � xj = Pj2[n] �j;i � xj = xi. On the other hand, by (P1), F i;x is apolynomial of degree at most s (in z). Thus, if U is given the value of F i;x(�) at s+1 points, it caneasily retrieve F i;x(0) by interpolation. So if U can obtain from each DBp (p = 1; 2; :::; s+ 1) thevalue of F at point p 6= 0, without yielding information about i, then we are done. We describe ascheme which achieves this goal at low cost.The user selects uniformly and independently s elements in the �eld GF (q), denoted by r1; :::; rs,and de�nes s functions g`(z) 4= r` � z + i(`) for ` = 1; 2; :::; s:For every j 2 [n] and ` 2 [s] we de�ne the degree 1 polynomialf ij;`(z) 4= j(`) � g`(z) + (1� j(`)) � (1� g`(z)):The polynomial f ij(z) is now de�ned as the product of the f ij;`(z)'s, namelyf ij(z) = f ij;1(z) � f ij;2(z) � : : : � f ij;s(z) :The user sends the values g1(p); :::; gs(p) to DBp (for p = 1; 2; :::; s+1). DBp uses these s valuesto compute F i;x(p), even though it does not know i, as follows. First, for every j and ` (1 � j � n,1 � ` � s), DBp computes the value f ij;`(p) by settingf ij;`(p) = ( g`(p) if j(`) = 1(1� g`(p)) otherwiseNow, for every j 2 [n], DBp computesf ij(p) = f ij;1(p) � f ij;2(p) � : : : � f ij;s(p)and F i;x(p) = nXj=1 f ij(p) � xj :This computation takes O(s � n) operations in GF (q). The value F i;x(p) is sent to the user. Thisway, U obtains the value of the polynomial F i;x(z) at the s+ 1 points 1; 2; : : : ; log2 n+ 1. The userinterpolates and obtains F i;x(0) = xi.We �rst assert that the scheme provides privacy. This is because the values g1(p); :::; gs(p) sentby U to DBp (p 6= 0) are uniformly and independently distributed in the �eld, regardless of i. Tosee that the scheme yields the correct answer it su�ces to verify properties (P1) and (P2) above.By de�nition, each of the polynomials f ij is a product of s linear polynomials, and thus property(P1) follows. Property (P2) holds since f ij;`(z) = j(`) �g`(z)+(1� j(`)) �(1�g`(z)) and g`(0) = i(`),for each ` 2 [s], and thusf ij(0) = sỲ=1 f ij;`(0)= sỲ=1 (j(`) � i(`) + (1� j(`)) � (1� i(`)))= �i;j : 8



Finally, we consider the communication complexity of the above scheme. The communicationbetween the user and each database consists of s �eld elements sent from the user to the databaseand one �eld element sent in response. Thus, the total communication amounts to (s+1) � (s+1) �log2 q, where q is the size of the �nite �eld GF (q). This q must be at least s+ 2 (to accommodates + 1 non-zero points), and can always be found in the range [s + 2; 2s]. We have s = log2 n, sowith s+1 = log2 n+ 1 databases, the communication complexity is (1+ o(1)) � log22 n log2 log2(2n).4.2 The General CaseTo handle the general case of k databases, where k � log2 n, we use the same basic idea, butemploy a di�erent representation of integers in the range 1 through n. Instead of the \dense"binary representation, we consider s-bit long binary sequences with exactly k � 1 occurrences of1 in them2. We take the minimum s satisfying � sk�1� � n. Every 1 � j � n is represented by asequence with s + 1 � k zeroes and k � 1 ones. We order these sequences in lexicographic order,and represent j by the j-th sequence in this list. We now associate every j 2 [n] with a functionj : [s] 7!f0; 1g so that, for every ` = 1; 2; :::; s, the value j(`) is the `-th entry in the j-th sequence.Let GF (q) be a �nite �eld with at least k+1 elements. Let i be the bit position which U wantsto retrieve. Again, consider a polynomialF i;x(z) = Xj2[n] f ij(z) � xjwhereP1 the f ij 's are polynomials of degree at most k � 1.P2 f ij(0) = �j;i, for each j 2 [n].By arguments identical to those used in Subsection 4.1, the value of F i;x(�) at k points enables Uto interpolate and retrieve xi = F i;x(0). We now describe the protocol.The user selects uniformly and independently s elements in the �eld GF (q), denoted by r1; :::; rs,and de�nes s functions g`(z) 4= r` � z + i(`) for ` = 1; 2; :::; s:The user sends the values g1(p); :::; gs(p) to DBp (for p = 1; 2; :::; s+1). For every j 2 [n] and ` 2 [s]we de�ne the degree 1 polynomialf ij;`(z) 4= j(`) � g`(z) + (1� j(`)) � (1� g`(z)):The next step, however, is di�erent. The analog de�nition would be to take f ij(z) as the productf ij;1(z) through f ij;s(z), which is a polynomial of degree s. This would require s + 1 evaluationpoints, more than the number of databases we have. We want the polynomial f ij(z) to be of degreek � 1, with �j;i as its free term. To achieve this, we de�nef ij(z) = Y`:j(`)=1 f ij;`(z) :2The scheme from [7] is also similar in spirit and can be thought of as using a representation of integers with s-bitlong sequences which are divided into k � 1 blocks of length s=(k � 1) and any block having a single 1.9



There are exactly k � 1 indices with j(`) = 1. Therefore f ij(z) is of degree at most k � 1 (recallthat each f ij;`(z) is of degree 1), and so property (P1) holds. Property (P2) holds sincef ij(0) = Y`:j(`)=1 f ij;`(0)= Y`:j(`)=1 (j(`) � i(`) + (1� j(`)) � (1� i(`)))If j = i then the last expression equalsY`:j(`)=1 �i2(`) + (1� i(`))2� :Each multiplicand equals 1, and therefore the product, f ii (0), equals 1. If j 6= i, then for at leastone ` we have j(`) = 1 and i(`) = 0 (since both j(�) and i(�) have each exactly k�1 entries of value1). For this `, the multiplicand (j(`) � i(`) + (1� j(`)) � (1� i(`)))is 0, and therefore the product, f ij(0), equals 0.With this modi�cation, the protocol proceeds similarly to the previous one. The user sendsto DBp the values g1(p); g2(p); : : : ; gs(p). The arguments for correctness and privacy are the sametoo. The communication complexity, however, is slightly di�erent. As before, the user sends eachdatabase s �eld elements and receives one �eld element in response. However, here, the overallcommunication complexity is k � (s+ 1) � log2 q � k � (s+ 1) � (1 + log2 k) (and k is not necessarilyequal to s+ 1). Recall that s has to satisfy � sk�1� � n. We getTheorem 3: Let s, k and n be integers so that � sk�1� � n, and let q � k + 1 be a prime power. Thenthere exists a private information retrieval schemes for k databases, each holding n bits of data, so thatthe communication consists of one round in which the user sends s � log2 q bits to each database andreceives log2 q bits in return (from each database).To exactly analyze the complexity, we separately consider di�erent values of the parameters k ands. One point along this curve is s = log2 n + log2 log2 n and k = s2 + 1. Using the approximation� ss=2� � 2sps , we get � sk�1� > n. Thus,Corollary 4: There are private information retrieval schemes for 12 �(log2 n+log2 log2 n)+1 databases,each holding n bits of data, so that the communication complexity is 12 �(1+o(1)) � log22 n � log2 log2(2n).This is less3 than the communication complexity of the scheme of Subsection 4.1, while the numberof databases is slightly over a half of the log2 n+1 databases used there. The other extreme on thecurve is k constant. Here s is O(n1=(k�1)) (actually, s = k�1p(k � 1)! � (n+ k � 1) < (k�1)� k�1pn+ ksu�ces), and the resulting communication complexity is also O(n1=(k�1)) (which is strongly skewedtowards the user-to-database direction). This complexity can be brought down to O(n1=k), using ageneric balancing technique that is presented next.3speci�cally about one half 10



4.3 A Generic Balancing TechniqueConsider an arbitrary scheme for privately retrieving information from several databases in whichthe communication is carried out in one round (i.e., the user simultaneously queries each databaseand receives answers from which it computes the desired bit). Given such a scheme for databasescontaining n bits, one can derive a scheme for databases containing m � n bits by repeating thescheme in parallel as follows. The user views the m �n bits as a m-by-n matrix of bits. To retrievethe (j; i)-th bit in the matrix, U executes the n-bit scheme with i being the desired bit (ignoring,for the time being, the value of j). Now, each database views itself as participating in m di�erentexecutions of the n-bit scheme, each one with a di�erent row (an n-bit string). Namely, in the j-thexecution (j = 1; :::; m), the database computes its response with respect to the j-th row. Thus,the user privately retrieves the entire i-th column of the matrix, from which it �nds the desired(j; i)-th bit. Let us compare the communication complexity of the original n bits scheme with theresulting m �n bits scheme. The communication from the user to each database remains unchanged,while the communication in the database-to-user direction increases by a factor of m.We now apply the balancing technique to the protocol in Theorem 3. To this end, we view thestring x as an m-by-(n=m) matrix of bits. Thus, we use the protocol of Theorem 3 for strings oflength nm and so s should now satisfy � sk�1� � nm .Theorem 5: Let k, n;m and s be integers so that � sk�1� � nm and q � k + 1 be a prime power. Thenthere exists a private information retrieval schemes for k databases, each holding n bits of data, so thatthe communication complexity is k � (m+ s) � log2 q.In particular, setting s = k�1p(k� 1)! � ((n=m) + k) satis�es the condition � sk�1� � nm . Settingm = kpn (which is not optimal), we getCorollary 6: Let k and n be integers and q � k + 1 be a prime power. Then there exists a privateinformation retrieval schemes for k databases, each holding n bits of data, so that the communicationcomplexity is k � �s+ kpn + k� � log2 qwhere s 4= k�1p(k � 1)! � k�1pn(k�1)=k + k. We may also uses � k�1q(k� 1)! � � kpn + k�1pk�= k�1q(k� 1)! � kpn + k�1pk!Speci�cally, for k = 2 this yields s = pn+ 2; for k = 3, s = p2 � 3pn+ 3; for k = 4, s = 3p6 � 4pn+ 3;and for k � 5 we may use s = (k � 1) � kpn.This result is asymptotically (for n!1) better than the covering codes schemes of Subsection 3.3,except for the cases k = 2 and k = 4. For k = 2, we get here O(n1=2) communication, while wehad O(n1=3) communication there. For k = 4, both methods give O(n1=4) complexities (and alsothe constant in the O-notation are comparable4).4Actually, the constant here, 4 � (1+ 3p6) � log2 5 � 26:165, is slightly better than the constant, 28, for the coveringcodes. 11



4.4 Further improving the general caseIn this subsection we further improve the polynomial interpolation method of subsection 4.2. Whilethis optimization does not improve the asymptotic behavior of the communication for any �xednumber of databases, it does achieves signi�cant saving when the number of databases is logarith-mic.As usual, let k denote the number of databases. Again the starting point for the improvedscheme is a di�erent representation of integers in the interval from 1 to n. Instead of consideringf0; 1g-sequences with k � 1 occurrences of 1 in them (as in Subsection 4.2), we consider this timesequences of non{negative integers that sum up to exactly k � 1. We associate with every j 2 [n],the function j : [s] 7! f0; : : : ; k�1g, so that for every ` = 1; : : : ; s, the value j(`) is the `-th entry inthe j-th sequence, and Ps̀=1 j(`) = k � 1. The number of sequences of length s whose sum equalsr is �s+r�1r �, and hence we will pick the minimum s so that �s+k�2k�1 � � n. Let GF (q) be a �nite �eldwith at least k + 1 elements.Suppose the user U wishes to retrieve the i-th bit xi of the database. Let î be the s-dimensionalvector over GF (q) given by î = (i(1); : : : ; i(s)). The user starts by uniformly picking a vectorŵ = (w(1); : : : ; w(s)) 2 GF (q)s. For p = 1; :::; k, the user sends î + pŵ to DBp. (Here for twovectors v̂1 and v̂2, the notation v̂1 + v̂2 is simply the vector sum, and for a scalar a and vector v̂,the notation av̂ denotes the vector obtained by multiplying each coordinate of v̂ by a.)Consider a �xed multivariate polynomial G(ŷ) and a polynomial F (z) = G(̂i + zŵ) with thefollowing properties:P1 G is a polynomial on s variables of total degree at most k � 1 and F is a univariate degreek � 1 polynomial.P2 For any j 2 [n], G(ĵ) = xj, where ĵ denotes the vector (j(1); : : : ; j(s)). In particular, F (0) =G(̂i) = xi.The database DBp responds with the value F (p) = G(̂i + pŵ). The user views the values F (1),F (2), : : :, F (k) and interpolates for F (0).It remains to show that a polynomial G as described above exists. Let fk;j(ŷ) be the polynomialfk;j(ŷ) = sỲ=1 j(`)�1Yp=0 y(`)� pj(`)� p :Then fk;j(ŷ) has degree Ps̀=1 j(`) = k � 1 and it satis�es the condition fk;j(ĵ 0) = �j;j0 . (This isobviously true if j = j 0 as all terms in the above product equal 1; on the other hand, if j 6= j 0 thensince the sum of elements in both vectors ĵ and ĵ 0 is the same (i.e., k � 1) there exists an index `for which j0(`) < j(`). The term corresponding to this value ` and to p = j0(`) equals 0 and hencethe whole product is 0 as needed.) Now de�neG(ŷ) = nXj=1 fk;j(ŷ)xj ;where the fk;j's are polynomials of degree at most k � 1 as above. It is clear that G has degree atmost k� 1. Furthermore, for any i 2 [n], G(̂i) =Pnj=1 fk;j (̂i)xj =Pnj=1 �j;ixj = xi. Thus we obtainthe following theorem. 12



number of method asymptotic communication total communication bitsdatabases complexity n = 220 n = 230 n = 240k = 2 covering codes 12 � 3pn 1,224 12,300 123,864k = 2 polynomial interpolation 6:34 � 2pn 6,493 207,745 6,647,815k = 4 covering codes 28 � 4pn 924 5,096 28,700k = 4 polynomial interpolation 26:17 � 4pn 827 4,635 26,136k = 4 improved interpolation as above 809 4,616 26,118k = 7 covering codes 60 � 5pn 1,020 3,900 15,420k = 7 polynomial interpolation 83:87 � 7pn 651 1,638 4,326k = 7 improved interpolation as above 546 1,533 4,221k = 16 covering codes 224 � 7pn 1,792 4,480 11,872k = 16 polynomial interpolation 485:5 � 16pn 1,635 2,224 3,205k = 16 improved interpolation as above 720 1,308 2,289Figure 2: Comparison of some concrete schemesTheorem 7: Let s, k and n be integers so that �s+k�2k�1 � � n, and let q � k + 1 be a prime power.Then there exists a private information retrieval schemes for k databases, each holding n bits of data,so that the communication consists of one round in which the user sends s � log2 q bits to each databaseand receives log2 q bits in return (from each database).The improvement provided by the above is quite signi�cant for values of k that are �(log2 n). Forexample, if we take k = 13 � log2 n and s = 2 + log2 n, we have �s+k�2k�1 � � 2H2(1=4)�43 log2 n > n1:081,where H2(�) is the binary entropy function. This implies,Corollary 8: There are private information retrieval schemes for 1+ 13 log2 n databases, each holdingn bits of data, so that the communication complexity is 13 � (1 + o(1)) � log22 n � log2 log2(2n).Employing the balancing technique of Subsection 4.3, we getTheorem 9: Let k, n, m and s be integers so that �s+k�2k�1 � �m � n, and let q � k + 1 be a primepower. Then there exists a private information retrieval schemes for k databases, each holding n bitsof data, so that the communication consists of one round in which the user sends s � log2 q bits to eachdatabase and receives m log2 q bits in return (from each database).For �xed k and growing n ! 1, this result leaves the asymptotic communication complexityas it was, O(n1=k). Similarly, for relatively small k (w.r.t. n) this result has little e�ect on theactual numbers. However, for relatively larger k (for example k = 16 and n = 240) the saving ismeaningful. The next section provides a sample of numeric results.5 Numeric ResultsFigure 2 summarizes the communication costs required for private retrieval of a single data bit.We include a sample of databases numbers (k = 2; 4; 7; 16)5 and sizes (n = 220; 230; 240). For the5Except for k = 12, these are the only values for which covering-code schemes exist. For other values of k one canonly utilize k0 databases, where k0 < k is the largest integer for which a covering code exists. For example, to get ascheme for k = 6 databases, we use k0 = 4. 13



polynomial interpolation method, we included both the \basic" results and the improved ones.(Except the case k = 2, where s and m satisfy (s + 1)m � n in the improved method, instead ofsm � n, which results in a meaningless improvement). It is readily seen from this table that fork = 2 the covering codes method is superior to the polynomial interpolation method. For k = 4,k = 7 and k = 16, the polynomial interpolation method is superior, especially for large valuesof n. For the interpolations schemes the asymptotic expression is obtained by setting m = kpn(as in Corollary 6) whereas the actual �gures in the last three columns are obtained via a better(optimized) choice of m (which is slightly larger than kpn). For both versions of the polynomialinterpolation scheme, for k = 2; 4; 7; 16 we use �nite �elds with q = 3; 5; 8; 17 elements, respectively.Except q = 8, these are not powers of 2. To encode them e�ciently by binary strings we packmultiple letters together. Thus we can represent GF (q) elements by using log2 q bits, which wasused in the table (representation by dlog2 qe bits cause a non-negligible degradation).Finally, we remark that when privately retrieving a larger block of data (for example, 210 con-secutive bits), the resulting communication is smaller than simply the communication for singlebit multiplied by the block size. This is achieved by using the balancing technique, tuned to theblock size. The improvement is applicable for both the linear summation codes and the polynomialinterpolation method. The incurred overhead, compared to non-private retrieval, is substantiallysmaller for this more realistic case than for the single bit case. For example, the improved interpo-lation method for k = 4 databases communicates 11; 238 bits for retrieving a block of 210 bits froma database of size n = 230 (bits), and 26; 768 bits for retrieving the same block from a databasewith n = 240. So the communication overhead is about 11 and 26 bits per one information bit,respectively. For a general discussion, see Section 6.6 Private Information Retrieval of BlocksIn this section we consider a more realistic model of private information retrieving in which thedata is partitioned into blocks (or records) rather than single bits. For simplicity, we assume thateach block/record contains the same number of bits, `. We denote by PIRk(n; `) the problem ofretrieving privately an (`-bit long) information block from k databases, each holding the same nblocks (notice that the overall contents is n � ` bits). Previous sections have dealt with PIRk(n; 1).Clearly PIRk(n; `) can be solved by ` invocations of PIRk(n � `; 1),6 but there are much moree�cient reductions of PIRk(�; `) to PIRk(�; 1).We start by noting that the Generic Balancing Technique of Section 4.3 actually provides sucha reduction. Speci�cally,Proposition 10: Suppose that PIRk(n; 1) can be solved by a one-round protocol in which the usersends �k(n) bits to each database and receives �k(n) bits in return (from each database). Then, forevery ` > 1, PIRk(n; `) can be solved by a one-round protocol in which the user still sends �k(n) bitsto each database and receives ` � �k(n) bits in return (from each database).In Section 4.3 we emphasized the asymmetric e�ect the generic balancing transformation has on thecommunication complexity { increasing the communication from the databases to the user whilemaintaining the communication complexity in the other direction. We now present an \asymmetric"transformation in the opposite direction.6In fact, PIRk(n; `) can be easily solved by ` invocations of PIRk(n; 1) just by considering in the j-th invocationonly the j-th bit of each of the n blocks. 14



Proposition 11: Suppose that PIRk(n; 1) can be solved by a one-round protocol in which the usersends �k(n) bits to each database and receives �k(n) bits in return (from each database). Furthermore,suppose that the user retrieves the desired information bit by computing g(Pkp=1 fp(p)), where pis the message obtained from DBp, the fp's are arbitrary �xed functions mapping binary strings intoelements of some �nite �eld (of cardinality at most 2�k(n)), summation is done over this �eld and g isan homomorphism of the �eld onto GF (2). (We stress that both g and the fp's may not depend onthe desired bit nor on the randomness used by U .) Then, for every m > 1, PIRk(m � (n� 1); 1) canbe solved by a one-round protocol in which the user sends m ��k(n) bits to each database and receives�k(n) bits in return (from each database).We note that all \pure" schemes (i.e., before \optimizing via balancing") presented in previoussections meet the hypothesis of the proposition. Furthermore, the proposition can be generalizedto PIRk(�; `) schemes (in which each bit in the block is computed as conditioned above).Proof: For simplicity, we �rst assume that the fp's mentioned in the hypothesis are identitytransformations. Our solution to PIRk(m � (n� 1); 1) follows. We partition the N 4= m � (n � 1)bits, in each database, into m strings each holding n � 1 bits and augment each of these stringsby a dummy position set to zero. Bit positions in [N ] are represented as pairs in [m]� [n � 1] inthe natural manner. The user, wishing to retrieve i = [i1; i2] 2 [m]� [n � 1], employs PIRk(n; 1)in parallel m times. In the jth instance U behaves as when asking for position i2 if j = i1, and asasking for position n otherwise. Each database adds together the answers it would have sent in eachof the m invocations of PIRk(n; 1) and sends this sum as its only message. The user just adds allanswers it has obtained and applies g as it would have done in a single invocation of PIRk(n; 1).We emphasize that each database sends only one �k(n)-bit long string rather than m such strings.The new scheme clearly satis�es the privacy requirement. Correctness follows from associativity ofaddition, the hypothesis that g is a homomorphism, and the fact that the dummy position (i.e.,position n) is set to 0. That is, let jp be the designated answer of DBp in the jth invocation. Weknow that g(Pp jp) equals xi (xi 2 f0; 1g) if j = i1, and 0 otherwise. Thus,g0@ kXp=1 mXj=1 jp1A = g0@ mXj=1 kXp=1 jp1A = mXj=1 g kXp=1 jp! = xiIt is left to extend the protocol to the general case. We observe that the hypothesis regardingthe �eld size allows us to modify the original PIRk(n; 1) protocol so that all the fi's are identitytransformation. This is done by making DBp send the message  0p 4= fp(p) rather than sendingp in the original protocol. Thus, U my sum-up the  0p's (rather than apply the fp's �rst) and theresulting PIRk(n; 1) satis�es the hypothesis above. The assumption that the �eld has at most2�k(n) elements allows to encodes its elements using �k(n)-bit long string and thus maintain thecommunication complexity of the original protocol.Combining the above two propositions, we obtain.Corollary 12: Let PIRk(n; 1) be as in Proposition 11 and `;m > 1. Then, PIRk(m � (n� 1); `)can be solved by a one-round protocol in which the user sends m � �k(n) bits to each database andreceives ` � �k(n) bits in return (from each database). In particular, PIRk(n; `) can be solved within `times the complexity of PIRk( ǹ + 1; 1). 15



In some settings the number of records is not substantially bigger than the length of individualrecords. In these settings the overhead introduced by private information retrieval is quite small,compared to non-private information retrieval. We exemplify two such cases { one with n � `,the other with n � `2=4. We exhibit simple linear schemes for these two cases, with constantmultiplicative overhead, using k = 2 and k = 4 databases, respectively. The �rst example, withn � `, employs the basic two-databases scheme (of Section 3.1), and the total communicationoverhead is just a factor of 4.Corollary 13: Let n � `, then PIR2(n; `) can be solved by a one-round protocol of total commu-nication complexity 4 � `.The above is to be compared to ` + log n bits required in \non-private" retrieval of an `-bit longblock (from a database holding n such blocks).Proof: We use the PIR2(n; 1) scheme (of Section 3.1) in which U sends �2(n) = n bits to eachdatabase (indicating a subset of the bits in the database), and receives �2(n) = 1 bit from each (theXOR of these bits). Using Proposition 10, we get a PIR2(n; `) scheme with total communication2(�2(n) + `�2(n)) = 2n + 2` � 4`Corollary 14: Let n � `2=4, then PIR4(n; `) can be solved by a one-round protocol of totalcommunication complexity 8 � `.Proof: We use the PIR4(n; 1) scheme (of Section 3.2, d = 2) in which U sends �4(n) = 2pnbits to each database (indicating a \two dimensional subcube" of the bits in the database), andreceives �4(n) = 1 bit from each (the XOR of these bits). Using Proposition 10, we get a PIR4(; `)scheme with total communication 4(�4(n) + `�4(n)) = 8pn+ 4` � 8`.Of course larger values of d may be used to yield constant overhead schemes with n = O(`d) andk = 2d databases. However, we believe the two schemes presented above are the ones of interestfor realistic size databases. For example, the two database scheme is applicable to records of sizes215 and 220 for databases containing 230 and 240 bits, respectively. The four database scheme isapplicable to records of sizes 210 and 214 for databases containing 230 and 240 bits, respectively.Note that unlike the PIR2(n; 1) scheme (of Section 3.1), the obvious PIR2(n; 1) (or actuallyPIR1(n; 1)) in which each database sends its contents to the user who then retrieves the desiredbit, does not satisfy the hypothesis of Proposition 10.7 Privacy With Respect to CoalitionsOur results so far concerned the privacy of the user with respect to any single database. It is nothard to verify that in all the schemes described so far, any two databases get some informationabout the desired index i from their joint queries (and in some of the schemes can even recoverit). In this section we consider the scenario where the goal is to guarantee the privacy of the userwith respect to any coalition of no more than t databases. The de�nition of privacy follows the onegiven in Section 2 but considers the joint probability distribution of communication seen by anyt0 � t databases. We present a modi�cation of the protocol in Subsection 4.2 to this scenario.Given the parameter t (maximum number of databases in a coalition) and n (input length), letk and s satisfy � sk�1� � n. The number of databases we use here is t(k� 1)+ 1 (for t = 1 this givesk as in 4.2). We consider the same representation of numbers j 2 [n] as sequences of length s with16



k� 1 ones and s� k+ 1 zeroes. Let GF (q) be a �nite �eld with at least t(k� 1)+ 1 elements. Letxi be the bit U wants to retrieve. Again, consider a polynomialF i;x(z) = Xj2[n] f ij(z) � xjwhere nowP1 the f ij 's are polynomials of degree at most t(k � 1).P2 f ij(0) = �j;i, for each j 2 [n].By arguments which are familiar by now, the value of F i;x(�) at t(k � 1) + 1 points enables U tointerpolate and retrieve xi = F i;x(0).The �rst part of the protocol is di�erent. The user selects s random independent polynomialsof degree t in GF (q), where the free term of the `-th polynomial, g`(z), is i(`) (` = 1; 2; : : : ; s). Theuser sends the values g1(p); :::; gs(p) to DBp (for p = 1; 2; :::; s+1). For every j 2 [n] and ` 2 [s] wede�ne the degree-t polynomialfj;`(z) 4= j(`) � g`(z) + (1� j(`)) � (1� g`(z)):The de�nition of the polynomials fj(z), as well as rest of the protocol, is identical to 4.2, and wewill not repeat it.It is clear that the new property (P1) holds, and (P2) is unchanged. This proves the correctnessof the protocol. To show that it is t-private, we observe that, for any ` and any t non-zero pointsin GF (q), the values of the polynomial g`(�) at these t points are uniformly distributed in GF (q).Furthermore, the values of the s polynomials g`(z) (` = 1; 2; : : : ; s) at these t points are independent,and so any t databases receive t � s values that are uniformly distributed in GF (q).The communication complexity is as in Subsection 4.2: the user sends each database s �eldelements and receives one �eld element in response. The number of databases is t(k � 1) + 1, sothe overall communication complexity is (t(k � 1) + 1) � (s + 1) � log2 q. The balancing techniquesof Subsection 4.3 can be applied here as well in a straightforward way. To summarize,Theorem 15:� Let t and d be integer functions and c > 1 be a constant so that d(n) = c � t(n). Then thereare t(�)-private information retrieval schemes for d(�) databases, in which the communicationcomplexity is O(t(n) � cpn).� Let t be an integer function of n and d(n) = t(n) � log2 n. Then there are t(�)-private informationretrieval schemes for d(�) databases with communication complexity polylog(n) � t(n).We comment that the latter result is about the best we can hope given our state of knowledge withrespect to 1-private schemes (e.g., Corollary 6). This is because ofProposition 16: Let 1 < t < d. The communication complexity of a t-private information retrievalscheme for d databases is at least as the communication complexity of a 1-private information retrievalscheme for dd=te databases.Proof: Given a t-private scheme for d databases we construct a 1-private scheme for dd=tedatabases by letting each database in the new scheme emulate t databases in the original scheme.Since the communication seen by any single database in the new scheme is identical to the com-munication seen by some set of t databases in the original scheme, the 1-privacy follows.17



8 Conclusions and Open ProblemsWe have presented several techniques for constructing private (i.e., 1-private) information retrievalschemes. Our feeling is that the scheme for 2 databases is essentially the best one can hope for (withrespect to communication complexity). More generally, we conjecture that private informationretrieval schemes for a constant number, k, of databases, each holding n bits of data, require
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(otherwise, if for all x's the possible communications on (x; i) are disjoint then we have at least2n such communications). Let j be an index such that xj 6= yj . We claim that C is possible alsofor (x; j) and (y; j). If j = i this is obvious; otherwise, it follows from the privacy requirement(that is, if C is impossible for (x; j) then this implies that DB can distinguish between (x; j) and(x; i); similarly, if C is impossible for (y; j) then this implies that DB can distinguish between (y; j)and (y; i)). This gives a contradiction as U when interested in index j and seeing the (possible)communication C output some value b; however, as xj 6= yj he is wrong at least for one of thesestrings (x or y).A.2 Linear Summation Queries with 1-bit AnswersIn this section we consider the case of k = 2 databases. We restrict our attention to schemes inwhich each of the two databases is asked a query and answers with a single bit. Moreover, weinsist that the scheme is of the \linear summation" type. That is, each query is just a name of avector (set) q and the answer is �i:qi=1xi. The user takes the two bits b1; b2 received from DB1;DB2(respectively) and computes b1 � b2. Recall that in Section 3.1 we proved the existence of sucha scheme in which each of the queries sent by the user is n-bit long. We now show that this isessentially optimal.Consider some query q to DB1. The �rst observation is that if q is possible (i.e., has positiveprobability to be asked) when the user is interested in index i then q is also possible when the useris interested in any other di�erent j. Otherwise, the privacy of the scheme is immediately violated.This implies that, for every i, the query q0 = q + ei (where ei denotes the i-th unit vector) is apossible linear query for DB2. The reason is that q is a possible query to DB1 when the user isinterested in index i. The only linear query that will allow reconstructing xi is q + ei. In otherwords, if q is a possible query to DB1 then every vector in hamming distance 1 from q is a possiblequery to DB2. A symmetric argument holds for DB2. Therefore, if q is possible for DB1 thenevery vector in an odd hamming distance from q is possible for DB2 and every vector in an evenhamming distance from q is possible for DB1. This implies that the set of possible queries for eachdatabase has cardinality at least 2n�1, requiring a query description length of at least n � 1 bits.In fact, the upper bound of Section 3.1 can be improved so that n � 1 bits (instead of n) are sentto each database. This is done by choosing a random subset S of even cardinality with uniformdistribution among these subsets. Send S to DB1, and S� i to DB2. The subset S� i is uniformlydistributed among odd cardinality subsets. To specify even (or odd) sets, n � 1 bits su�ce.
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