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1 IntrodutionIn the last deade, the area of property testing has attrated muh attention (see, the surveys [12, 26℄as well as the more reent ones [27, 28℄). Loosely speaking, property testing typially refers tosub-linear time probabilisti algorithms for deiding whether a given objet has a predeterminedproperty or is far from any objet having this property. Suh algorithms, alled testers, obtain loalviews of the objet by performing queries; that is, the objet is seen as a funtion and the testersget orale aess to this funtion (and thus may be expeted to work in time that is sub-linear inthe length of the objet).The foregoing desription refers to the notion of \far away" objets, whih in turn presumesa notion of distane between objets as well as a parameter determining when two objets areonsidered to be far from one another. The latter parameter is alled the proximity parameter, andis often denoted �; that is, one typially requires the tester to rejet with high probability anyobjet that is �-far from the property.Needless to say, in order to satisfy the aforementioned requirement, any tester (of a reasonableproperty) must obtain the proximity parameter as auxiliary input (and determine its ations a-ordingly). The question, addressed in this work, is what does the tester do with this parameter(or how does the parameter a�et the ations of the tester). A very minimal e�et is exhibited bytesters that, based on the value of the proximity parameter, determine the number of times that abasi test is invoked, where the basi test is oblivious of the proximity parameter. For example, theelebrated linearity tester of [10℄ repeats a basi test that onsists of seleting two random points,x and y, and probing the value of the funtion at the points x; y, and x + y. This basi test isrepeated for a number of times that is inversely proportional to the proximity parameter.Our fous is on suh basi tests (i.e., basi tests that are oblivious of the proximity parameter).We all suh tests proximity oblivious, and note that they are impliit in prior works; most notablyin the ontext of testing algebrai properties (see, e.g., [29℄ and [22℄) and testing monotoniity(e.g., [15℄). In this work we initiate a general study of proximity oblivious testers, and onsider avariety of questions regarding them, while fousing on testing graph properties (in two standardmodels). Spei�ally, we ask:� Whih properties have proximity oblivious tests (of small query omplexity)?� How does the detetion probability of suh tests grow as a funtion of the distane of the objetfrom the property, and how does this relate to the query omplexity of the best (standard)tester for the orresponding property.For a preise formulation of proximity-oblivious testers and a summary of our results, see Setions 2and 3, respetively.Motivation: Property testing an be thought of as relating loal views to global properties, wherethe loal view is provided by the queries and the global property is the distane to a predeter-mined set. Proximity-oblivious testing takes this relation to an extreme by making the loal viewindependent of the distane. In other words, it refers to the smallest loal view that may provideinformation about the global property (i.e., the distane to a predetermined set). A major moti-vation for our study is that understanding a natural sublass of testers (i.e., proximity-obliviousones) may shed light on property testing at large.
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2 De�nitional TreatmentIn ontinuation to the introdution, we onsider proximity-oblivious testers, and note that standardtesters (whih err with probability at most 1=3)1 may be obtained by repeating these proximity-oblivious testers for an appropriate number of times.De�nition 2.1 (vanilla version): Let � be a set of funtions over a �nite set 
. A proximity-oblivious tester for � is a probabilisti orale mahine T that satis�es the following two onditions:1. The tester aepts eah funtion in � with probability 1; that is, for every f 2 � it holds thatPr[T f=1℄ = 1.2. For some monotone funtion � : (0; 1℄ ! (0; 1℄, eah funtion f 62 � is rejeted by T withprobability at least �(Æ�(f)), whereÆ�(f) def= ming2�fÆ(f; g)g and Æ(f; g) def= Prx2
[f(x) 6= g(x)℄. (1)The funtion � is alled the detetion probability of the tester T .Indeed, we require that �(�) > 0 for every � > 0, whereas extending Item 2 to f 2 � (whileavoiding ontradition with Item 1) mandates extending � so that �(0) = 0. The requirement that� is monotone (i.e., monotonially inreasing) does not rule out ases where the tight lower-boundis non-monotone (e.g., [7℄), beause � is not required to be tight.2 Also, we may assume, withoutloss of generality, that �(�) � �.We note that (as outlined in the introdution), using a proximity-oblivious tester T (as inDe�nition 2.1), we an obtain a standard (one-sided error) tester (of error probability at most 1/3).Spei�ally, given the proximity parameter �, the standard tester invokes T for �(1=�(�)) times,and aepts if and only if all these invoations aept.Note that it is natural to require one-sided error in (Item 1 of) De�nition 2.1, beause otherwisefuntions in � may be aepted with probability that is lower than the aeptane probability ofsome funtions that are not in � (but are lose to �). This presupposes that Item 2 of De�nition 2.1remains intat. For a disussion of an alternative formulation, whih allows two-sided error, seeSetion 6.3.De�nition 2.1 does not speify the query omplexity of the (proximity-oblivious) tester, andindeed an orale mahine that queries the entire domain of the funtion quali�es as a (proximity-oblivious) tester (with detetion probability �(�) = 1 for every � > 0). Needless to say, we areinterested in (proximity-oblivious) testers that have signi�antly lower query omplexity. To faili-tate an asymptoti treatment, we refer to in�nite families of �nite funtions, and provide the testerwith the size of the funtion's domain.1Analogously to De�nition 2.1, a standard tester for a property � is a probabilisti orale mahine T that satis�esthe following onditions:1. The tester aepts eah f 2 � with probability at least 2=3; that is, for every f 2 � and every � > 0, it holdsthat Pr[T f (�)=1℄ � 2=3.2. Given any � > 0 and orale aess to any f that is �-far from � (i.e., Æ�(f) > �), the tester rejets withprobability at least 2=3 (i.e., Pr[T f (�)=0℄ � 2=3).We say that the tester has one-sided error if it aepts eah f 2 � with probability 1 (i.e., for every f 2 � and every� > 0, it holds that Pr[T f (�)=1℄ = 1).2In fat, it suÆes to require that for every x > 0 it holds that �0(x) def= infy�xf�(y)g > 0. Indeed, in suh a ase,�0 is a monotonially non-dereasing lower-bound (of �). Furthermore, we may obtain a monotonially inreasinglower-bound (of �) by de�ning �00(x) def= (1 + x) � �0(x)=2. 2



De�nition 2.2 (main version): Let � = Sn2N �n, where �n ontains funtions de�ned over thedomain [n℄ def= f1; :::; ng, and let � : (0; 1℄ ! (0; 1℄ be monotone. A proximity-oblivious tester withdetetion probability � for � is a probabilisti orale mahine T that satis�es the following twoonditions:1. For every n 2 N and f 2 �n, it holds that Pr[T f (n)=1℄ = 1.2. For every n 2 N and f : [n℄ ! f0; 1g� not in �n, it holds that Pr[T f (n) = 0℄ � �(Æ�n(f)),where Æ�n(f) = ming2�nfÆ(f; g)g (as in Eq. (1)).De�nition 2.2 an be further extended so to over also (proximity-oblivious) testers that obtainother parameters of the funtion being tested (e.g., a degree bound in the ase of testing low-degreepolynomials). Note that De�nition 2.2 mandates that the detetion probability is only a funtionof the relative distane to the property; indeed, one may relax this requirement but one should stayaway from the trivial lower-bound (whih orresponds to only requiring that for every f 62 � thereexists a omputation of T f that rejets).3 Summary of our ResultsReall that the (three-query) linearity test of [10℄ is atually a proximity-oblivious tester, and thatits detetion probability is linear (i.e., �(�) = 
(�)). The same holds also for several known low-degree tests (see, e.g., [29℄), testers of monotoniity (e.g., [15℄), and some of the results regardingloally testable odes (see [19℄ and the end of Setion 6). In this work, we study the existene andquality (i.e., �) of eÆient proximity-oblivious testers in other domains, most importantly in thedomain of testing graph properties.3.1 In the dense graphs modelWe start (in Setion 4) with the setting of testing properties of graphs in the adjaeny matrix model(introdued in [16℄). We onsider several natural properties and show onstant-query proximity-oblivious testers of optimal (up to a onstant fator) detetion probability. For example, we showthat:1. The set of graphs eah onsisting of a olletion of isolated liques has a three-query proximity-oblivious tester of quadrati detetion probability (i.e., �(�) = 
(�2)), whereas no onstant-query proximity-oblivious tester of this property an do better (i.e., have detetion probability�(�) = !(�2)). We note that this property has a standard (adaptive) tester of eO(1=�)-queryomplexity [18, Se. 3℄.2. For every integer  � 2, the set of graphs onsisting of up to  isolated liques has a 2-queryproximity-oblivious tester, and the optimal detetion probability is �(�) = �(�=2). We notethat these properties have a standard (non-adaptive) tester of eO(1=�)-query omplexity [18,Se. 6℄.In ontrast to the aforementioned positive results, we show that the set of bipartite graphs hasno onstant-query proximity-oblivious tester, although it does have a standard tester of poly(1=�)-query omplexity [16, 5℄.Summarizing the lessons from the foregoing examples, we note that they provide negativeexamples to both researh projets advoated in the introdution. That is:3



� There exist easily testable properties that do not have onstant-query proximity oblivioustests. Indeed, this is demonstrated by the result for bipartiteness.� For properties that do have onstant-query proximity oblivious tests, the standard testerderived from the best possible proximity oblivious test is signi�antly inferior to some other(standard) tester. Indeed, this is demonstrated by the result for the property of being aolletion of  isolated graphs, sine the derived standard tester has query omplexity 
(��=2)(whereas this property has a standard eO(��1)-query tester).Addressing the �rst foregoing researh projet, we haraterize the lass of graph properties havingonstant-query proximity-oblivious testers.Theorem 3.1 (loosely stated, f. Theorem 4.7): A graph property has onstant-query proximity-oblivious testers (in the dense graph model) if and only if it expressible as an indued subgraphfreeness property.3Indeed, this lass is rather restrited when ompared to the lass of graph properties having astandard tester of omplexity that only depends on � (as haraterized in [4℄).We also provide a method for determining the optimal (up to a onstant fator) detetionprobability funtion of any property that has a onstant-query proximity-oblivious tester (f. The-orem 4.8). This method refers to the orresponding family of forbidden (indued) subgraphs, andthe aforementioned tight quantitative results are obtained using it.3.2 In the bounded-degree graphs modelNext (in Setion 5), we turn to testing graph properties in the bounded-degree model (introduedin [17℄). In this model, we also haraterize the lass of graph properties having onstant-queryproximity-oblivious testers. Interestingly, this lass is a strit superset of the lass of propertieshaving suh testers in the adjaeny matrix model. We note that, also in the urrent model,the lass of properties having onstant-query proximity-oblivious testers is rather restrited whenompared to the lass of graph properties having a standard tester of omplexity that only dependson � (as explored in [17, 9℄).The haraterization of the lass of graph properties having onstant-query proximity-oblivioustesters in the bounded-degree model gives rise to a generalized notion of subgraph freeness, whihmay be of independent interest (see De�nition 5.1). This notion generalizes both the notions ofnon-indued and indued subgraph freeness, and is more expressive than the latter. For example,the generalized notion allows to apture non-hereditary properties suh as (degree) regularity. Ourharaterization refers to an auxiliary ondition, whih we term non-propagating (see De�nition 5.3).Theorem 3.2 (loosely stated, f. Theorem 5.5): A graph property has onstant-query proximity-oblivious testers (in the bounded-degree graph model) if and only if it expressible as an generalsubgraph freeness property that satis�es the non-propagation ondition. This lass stritly ontainsall indued subgraph freeness properties.Indeed, we do not know whether every general subgraph freeness property satis�es the non-propagation ondition (see Open Problem 5.8).3Loosely speaking, an indued subgraph freeness property is a set of graphs that does not ontain ertain graphs asindued subgraphs. That is, suh a property is determined by a �nite set of �nite graphs, denoted F , and it onsistsof all graphs G suh that no indued subgraph of G is in F .4



Fousing on indued subgraph freeness properties (whih do have onstant-query proximity-oblivious testers in both models), we note that the detetion probability in the bounded-degree modelis a polynomial that depends on the number of onneted omponents in the individual graphs ofthe forbidden family (i.e., �(�) = 
(�), where  is the maximum number of onneted omponentsin any forbidden graph). This is very di�erent from the behavior in the dense graphs model, whereeven for  = 1 (i.e., onneted forbidden subgraphs) the detetion probability varies from linear toquadrati and to super-polynomial (i.e., �(�) = � versus �(�) = �(�2) versus �(�) < �
(log(1=�))).The tehnial angle. We omment that the tehniques establishing the haraterizations inthe two di�erent graph testing models are quite di�erent (as one should expet given the di�erentnature of the two models). In partiular, as hinted above, the analysis of the bounded-degree modelseems more novel.3.3 Generi observations and disussionsFinally (in Setion 6), we present a few generi observations. Spei�ally, we relate the existene ofonstant-query proximity-oblivious testers to the existene of onstant-size refutations of member-ship (or proofs of non-membership) and ertain testers that rejet based on suh refutations. Wealso shortly disuss the possibility of allowing proximity-oblivious testers two have two-sided errorprobability.We note that, in the ontext of loally testable odes (LTCs), proximity-oblivious (odeword)testers are related to strong odeword tests (as in [19, Def. 2.2℄), whereas standard (odeword)testers are related to the standard de�nition of odeword tests (termed weak in [19, Def. 2.1℄).4 Testing Graph Properties in the Adjaeny Matrix ModelIn the adjaeny matrix model, an N -vertex graph G = ([N ℄; E) is represented by the Booleanfuntion g : [N ℄� [N ℄! f0; 1g suh that g(u; v) = 1 if and only if u and v are adjaent in G (i.e.,fu; vg 2 E). Distane between graphs is measured in terms of their aforementioned representation(i.e., as the fration of (the number of) di�erent matrix entries (over N2)), but oasionally weshall use the more intuitive notion of the fration of (the number of) edges over �N2 �.Notation. For a �xed graph G = ([N ℄; E), we denote the set of neighbors of vertex v 2 [N ℄ by�(v); that is, �(v) def= fu : fu; vg 2 Eg.4.1 A few illustrative resultsWe start with the simple ase of testing whether a graph is a lique.Proposition 4.1 Clique has a single-query proximity-oblivious tester with detetion probability�(�) = �, where Clique is the set of all graphs onsisting of a single lique.Proof: The laim follows by onsidering the straightforward tester that uniformly selets tworandom verties, and aepts if and only if there is an edge between them.Proposition 4.2 BiClique has a three-query proximity-oblivious tester with detetion probability�(�) = �, where BiClique is the set of all graphs onsisting of a single bi-lique (i.e., a ompletebipartite graph). 5



The following proof may serve as a very simple demonstration of the \enfore and test" tehnique(see [28, Se. 4℄), whih underlies the design and analysis of many testers in the dense graph model(e.g., the ones of [16℄).Proof: Consider a tester that sets s 2 [N ℄ as an arbitrary vertex, selets v; u 2 [N ℄ uniformly, andaepts if and only if the subgraph indued by fs; u; vg has an even number of edges.4Clearly, if G is a bi-lique then this test always aepts, beause either all verties reside on thesame side (and so (s; u), (s; v), and (u; v) are all non-edges) or a single vertex is in solitude (and isthus adjaent to the other two verties, whih in turn are non-adjaent).To analyze what happens when G = ([N ℄; E) is �-far from being a bi-lique, observe that sindues a partition of the graph to its neighbors and non-neighbors (i.e., the 2-partition (�(s); [N ℄n�(s))). Note that if G were a bi-lique then every vertex w 2 �(s) (resp., w 2 [N ℄n�(s)) would havesatis�ed �(w) = [N ℄ n �(s) (resp., �(w) = �(s)). However, sine G is �-far from being a bi-lique,the sum of the number of edges in (�(s) � �(s)) [ (([N ℄ n �(s)) � ([N ℄ n �(s))) and the numberof non-edges in �(s)� ([N ℄ n �(s)) must exeed � �N2, and we all the orresponding vertex pairsbad. Thus, the probability that a pair (u; v) is bad is greater than �, whereas eah bad pair ausesour tester to rejet (beause in the subase that (u; v) 2 E \ (�(s) � �(s)) the indued subgraphhas three edges and in the other two subases (i.e., (u; v) 2 E \ (([N ℄ n �(s)) � ([N ℄ n �(s))) and(u; v) 2 (�(s)� ([N ℄ n �(s))) n E) the indued subgraph has a single edge).Proximity-oblivious testers with �(�) = o(�). So far, we onsidered proximity-oblivious testerswith a linear detetion probability (i.e., �(�) = 
(�)). We now turn to ases where � is polynomialbut not linear. Suh a natural ase is provided by the graph property that orresponds to graphsthat onsist of a �xed number of isolated liques. Spei�ally, for any �xed integer  � 1, onsiderthe set of graphs, denoted CC�, that onsist of at most  isolated liques. Note that Proposition 4.1refers to CC�1, whereas Proposition 4.2 refers to graphs that are losely related to CC�2 (i.e., agraph is in CC�2 if and only if its omplement graph is a bi-lique). The following result refers tothe ase of  � 3.Proposition 4.3 For every onstant  � 3, the property CC� has a �+12 �-query proximity-oblivious tester with detetion probability �(�) > �+1+o(1). On the other hand, CC� has noonstant-query proximity-oblivious tester with detetion probability �(�) = !(�=2).We note that Setion 6.2 of the ompanion paper [18℄ provides a standard (non-adaptive) testerfor CC� having query omplexity eO(1=�) and onstant error probability. This standard tester issuperior to the one obtained by repeating any proximity-oblivious tester for an adequate numberof times (sine for any  � 3 the number of repetitions must be 
(��=2)). We mention that thelower-bound on �(�) provided by Proposition 4.3 an be improved (see Proposition 4.11).Proof: The lower-bound on � follows from the analysis of the CC�-tester that is provided in[18, Se. 6.2℄. Spei�ally, we refer to the fat that the analysis in [18℄ establishes that (with highprobability) a sample of eO(1=�) verties (from any graph that is �-far from CC�) indues a subgraphnot in CC�. (The said analysis atually establishes something muh stronger, but the foregoingsuÆes here.)5 Note that any graph G0 that is not in CC� ontains an indued subgraph of atmost + 1 verties that is not in CC�, beause G0 either has at least + 1 onneted omponents(whih yields an independent set of size  + 1) or has a onneted omponent that is not a lique4We mention that in Setion 6.1 of the ompanion paper [18℄ we onsidered a standard tester that selets O(1=�)random pairs of verties (in addition to an arbitrary s as above).5Details are omitted in light of the fat that Proposition 4.11 establishes a stronger lower-bound.6



(whih yields three verties that miss some edge among them). It follows that the said eO(1=�)-vertex sample ontains suh  + 1 verties. Thus, the proximity-oblivious tester that selets + 1uniformly distributed verties and aepts if and only if the indued graph is in CC� has detetionprobability at least 
(1)=� eO(1=�))+1 � > �+1+o(1).For the impossibility laim (or rather the upper-bound on �), onsider a random graph onsistingof  small liques, eah of size p2� � N , and a large lique of size (1 � p2�) � N . This graph is�-far from CC�, but the probability that any k verties indue a subgraph that is not in CC� isupper-bounded by �k� � p2�, beause only subsets that ontain representatives from eah of thesmall liques yield a subgraph not in CC�. Realling that we refer to onstant-query proximity-oblivious testers (whih must aept if the indued subgraph is in CC�), the upper-bound follows(sine �k� � p2� = O(�=2) for onstant k).Proximity-oblivious testers with detetion probability that is even smaller are provided by [1℄.Proposition 4.4 (impliit in [1℄): Triangle-Freeness has a three-query proximity-oblivioustester with detetion probability �(�) that is the reiproal of a tower of poly(1=�)-many exponents.On the other hand, Triangle-Freeness has no onstant-query proximity-oblivious tester with de-tetion probability �(�) = poly(�).We note that [1℄ atually established that every onstant-query proximity-oblivious tester forTriangle-Freeness must have detetion probability �(�) < �
(log(1=�)).Easily testable properties having no proximity-oblivious testers. While bipartiteness anbe tested with query-omplexity that is polynomial in the reiproal of the proximity parameter [16℄,this property has no onstant-query proximity-oblivious tester. That is:Proposition 4.5 Bipartiteness has no onstant-query proximity-oblivious tester.Proof: For every � > 0, onsider a graphG that onsists of t def= p1=2� sets, denoted V0; V1; :::; Vt�1,eah of size p2� �N suh that there is an edge between a pair of verties if and only if these vertiesreside in \adjaent" sets; that is, fu; vg is an edge if and only if for some i 2 f0; :::; t � 1g itholds that u 2 Vi and v 2 V(i+1) mod t. Clearly, for an odd t, the graph G is �-far from beingbipartite, but a proximity-oblivious tester of query omplexity less than t annot rejet G (beauseany non-bipartite subgraph of G must ontain at least t verties).4.2 Connetion to indued subgraph freenessThe reader may have notied that the proximity-oblivious testers presented so far worked by searh-ing for a small \forbidden subgraph" in the input graph (see, e.g., the proof of Propositions 4.1, 4.2and 4.3). In ontrast, the non-existene of onstant-query proximity-oblivious testers was demon-strated by proving the non-existene of onstant-size \forbidden subgraphs" in all no-instanes (see,indeed, the proof of Proposition 4.5). We show that this is no oinidene, sine there is a loserelationship between the two notions.De�nition 4.6 (indued subgraph freeness): Let F be a set of graphs. A graph G is alled F -freeif it ontains no indued subgraph that is isomorphi to some graph in F .Note that De�nition 4.6 refers to indued subgraphs, whereas in many works the term F -freenessmeans having no subgraph (not neessarily an indued one) that is in F .7



Theorem 4.7 (haraterization for the dense graphs model): Let � = SN2N �N be a graph prop-erty suh that eah �N onsists of all N -vertex graphs that satisfy �. Then, � has a onstant-query proximity-oblivious tester if and only if there exists a onstant  and an in�nite sequeneF = (FN )N2N of sets of graphs suh that1. eah FN ontains graphs of size at most ; and2. �N equals the set of N -vertex FN -free graphs.Furthermore, if membership in � is deidable, then a omputable proximity-oblivious tester yieldsa omputable sequene of sets, and vie versa.Note that the spei� detetion probability funtion � is irrelevant for the \only if" diretion, whihonly relies on the fat that �(�) > 0 for every � > 0.6 On the other hand, the opposite diretionatually provides a lower-bound on the detetion probability, albeit a very weak one (i.e., �(�) isthe reiproal of a tower of poly(1=�)-many towers of exponents). Combining both diretions, weonlude that any graph property that has a onstant-query proximity-oblivious tester has suha tester with detetion probability funtion that is lower-bounded by a spei� funtion7 of theproximity parameter (albeit the reiproal of a tower of towers of exponents).Proof: Suppose that � has a onstant-query proximity tester. By [20, Thm. 4.5℄ (see also [21℄),every one-sided error tester of query omplexity q for �N an be onverted into a one-sided erroranonial tester of query omplexity 2q2, where for some GN (whih depends only on �N and q),the anonial tester uniformly selets a random set of 2q verties and aepts the input graph i�the indued subgraph is in GN . We stress that the proof provided in [20, Se. 4℄ maintains the errorprobability of the tester, and thus applies also to generalized (one-sided error) testers of arbitraryerror probability. Thus, if � has a q-query proximity-oblivious tester then for every N there existsa set of 2q-vertex graphs GN suh that a graph is in �N i� eah of its 2q-vertex indued subgraphsis in GN . De�ning FN as the set of all 2q-vertex graphs that are not in GN , we onlude that �Nequals the set of N -vertex graphs that are FN -free.Suppose, on the other hand, that for some onstant  and a sequene of sets (FN )N2N of graphsit holds that eah FN ontains graphs of size at most  and �N equals the set of N -vertex FN -freegraphs. Our goal is to derive a onstant-query proximity tester for �. The ase of idential sets(i.e., FN = FN+1 for every N) follows almost immediately from [3℄. Spei�ally, [3, Thm. 6.1℄implies that for every set of -vertex graphs F and for every � > 0, there exist numbers s(�) andÆ(�) for whih the following holds: For every graph G that is �-far from being F -free and ontainsat least s(�) verties, with probability at least Æ(�) over the hoie of a sample of size s(�) thesample ontains an indued opy of some graph in F . It follows that, with probability at least�s(�) ��1 � Æ(�), a random set of  verties (of suh a graph G) indues a subgraph that is in F .The argument extends the general ase (of an arbitrary sequene of sets (FN )N2N), by partitioningall integers aording to the orresponding sets. This yields testers for eah of the �nitely manypossible sets, and so the �nal tester will inorporate all these testers, and ativate the one that suitsthe size of the input graph. Lastly, we note that the funtions s and Æ provided by [3, Thm. 6.1℄satisfy s(�)=Æ(�) = TT(1=�), where TT(n) is a tower of poly(n)-many towers of exponents (withthe polynomial depending only on ).6Indeed, this holds even if the detetion probability funtion is allowed to depend on N (as long as �(N; �) > 0for every � > 0 and N 2 N).7This lower-bounding funtion is determined based only on the aforementioned onstant (number of queries).8



A speial ase and a quantitative version. A natural speial ase of properties having onstant-query proximity-oblivious testers is properties that orrespond to sets of F -free graphs, for arbitrary�nite sets F . Indeed, this orresponds to the speial ase of Theorem 4.7 in whih all the sets inthe sequene F are idential (i.e., FN = FN+1 for every N). In this ase, the detetion probabilityof any onstant-query proximity-oblivious tester is determined by the quantity �F de�ned next.� For a -vertex graph F , we denote by �F (G) the fration of -vertex subsets that indue thesubgraph F in the graph G.� For a �nite set of graphs F , we denote by �F (�) the in�mum of the value of maxF2Ff�F (G)gtaken over all graphs G that are �-far from being F -free.8Reall that by Theorem 4.7 (or rather by [3, Thm. 6.1℄), for every F , the funtion �F is well-de�ned.Furthermore, �F is lower-bounded by the reiproal of a tower of towers of exponents. The followingresult asserts that the detetion probability of the best possible onstant-query proximity-obliviousfor F -freeness is determined by �F .Theorem 4.8 Let  be an integer and F be a �nite set ontaining graphs that eah has at most verties. Then, F-freeness has a �2�-query proximity-oblivious tester of detetion probability�F , whereas any onstant-query proximity-oblivious tester for F-freeness has detetion probabilityO(�F ).Proof: First note that the straightforward proximity-oblivious tester for F -freeness (whih seletsa random set of  verties and aepts if and only if it is F -free) has detetion probability �F .In order to justify the upper-bound (on the detetion probability of any onstant-queryproximity-oblivious testers) we reall that, by [20, Thm. 4.5℄, it suÆes to onsider onstant-queryproximity-oblivious testers that selet a random set of 0 = O(1) verties and aept the input N -vertex graph i� the indued subgraph is in some adequate set GN . We stress that this GN need notomplement the set F , and in partiular 0 may be di�erent from . Still, without loss of generality,we may assume that 0 � .Let us �rst assume that GN does not depend on N (i.e., GN = GN+1 for every N � 0). In thisase, GN = G0 must equal the set of 0-vertex graphs that are F -free. The reason being that a0-vertex graph G has a unique indued subgraph with 0 verties, being the graph itself. Now, onthe one hand (by the aeptane riterion of the tester), the input (0-vertex) graph G is aeptedby the tester if and only if G 2 G0 , whereas on the other hand the tester is required to aept G ifand only if it is F -free.In the general ase, the sequene (GN )N2N may ontain a �nite number of possible sets (of0-vertex graphs). For eah N � 0, onsider the smallest integer n suh that GN = Gn, and denotedit by n(GN ); that is, n(G) = minfn � 0 : Gn = Gg. Note that n� = maxfn(GN ) : N � 0g isa onstant, beause there are �nitely many di�erent sets GN . (Indeed, in the speial ase (whereGN = GN+1), it holds that n� = 0, sine n(GN ) = 0 for every N � 0.) Now, onsider a tester that,on input an N -vertex graph, aepts if and only if the subgraph indued by n(GN ) random vertiesis in G0N , where G0N onsists of the set of all n(GN )-vertex graphs G0 suh that every 0 vertiesin G0 indue a subgraph that is in GN . The detetion probability of this tester (on any graph)is lower-bounded by the detetion probability of the original tester, whereas the new tester neverrejets graphs that were never rejeted by the original tester. Thus, we an apply the analysis8Indeed, in the ase that F onsists of -vertex graphs, an alternative de�nition an be based on de�ning �F (G)as the fration of -vertex subsets that indue in G a subgraph that belong to F . Needless to say, these two de�nitionare related by a fator of at most jFj. 9



of the speial ase (of equal GN 's) here, and onlude that G0N = G0n(GN ) must equal the set ofn(GN )-vertex graphs that are F -free.It follows that the aforementioned tester rejets an input N -vertex graph G if and only if it hasseleted a random set of n(GN ) = O(1) verties suh that the indued subgraph is not F -free. Theprobability of the latter event is upper-bounded byPF2F �n(GN )jV (F )j� ��F (G), where V (F ) denotes thevertex set of the graph F . Realling that F is �nite and n(GN ) � n� = O(1), it follows that thistester has detetion probability O(�F ).In light of Theorem 4.8, the study of the detetion probability of onstant-query proximity-testersfor natural properties that have suh testers (i.e., F -freeness), redues to the study of the orre-sponding quantities �F for various F . A few examples follow.1. The property Clique (see Proposition 4.1) orresponds to the set of fI2g-free graphs, whereI2 denotes an independent set of two verties. Needless to say, �fI2g(�) = �.Similarly �fP2g(�) = �, where P2 denotes a single edge (whih may be viewed as a path of twoverties).2. Denoting by CC (standing for Clique Colletion) the set of graphs onsisting of a olletion of(any number of) isolated liques, we note that CC equals the set of fP3g-free graphs, whereP3 denotes a three-vertex graph with exatly two edges (i.e., a path of three verties). Weshow (in Proposition 4.10) that �fP3g(�) = �(�2).3. Reall that CC� is the set of graphs onsisting of a olletion of at most  isolated liques(see Proposition 4.3). Note that CC� equals the set of fP3; I+1g-free graphs, where I+1denotes an independent set of + 1 verties. Combining Theorem 4.8 and Proposition 4.3,9it follows that �fP3;I+1g(�) = O(�=2) for every  � 3. We show (in Proposition 4.11) that�fP3;I+1g(�) = 
(�=2).Note that Proposition 4.2 implies that �fP3;I3g(�) = 
(�), beause BiClique onsists of graphswhose omplement graph is in CC�2. Clearly, �fP3;I3g(�) = O(�).4. Reall that Proposition 4.4 refers to Triangle-Freeness, whih orresponds to fC3g-freenesswhere C3 is the three-vertex yle. Reall that [1℄ established that �fC3g is a super-polynomialfuntion, whereas �fC3g was known to be lower-bounded by the reiproal of a tower ofexponents.We mention that the work of [6℄ provides a haraterization of the lass of graphs F for whih �Fis lower-bounded by a polynomial (i.e., �F (�) � poly(�)). In partiular, their results imply that�F is lower-bounded by a polynomial only for at most seven graphs (i.e., the graphs P2; P3; P4; C4and their omplements). The foregoing disussion begs to try to extend their study to �nite setsof graphs; that is, for every �nite set of graphs F , determine the behavior of �F . In partiular:Open Problem 4.9 Determine the lass of sets of graphs F for whih �F is lower-bounded by apolynomial.9Atually, the proof of Proposition 4.3 diretly implies upper (and lower) bounds on �fP3;I+1g.
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4.3 The detetion probability of Clique Colletion (i.e., �fP3g(�) = �(�2))Reall that (by Theorem 4.7) CC has a onstant-query proximity-oblivious tester, sine CC or-responds to fP3g-freeness. Furthermore, by Theorem 4.8, the detetion probability of the bestpossible onstant-query proximity-oblivious for CC equals �(�fP3g).Proposition 4.10 (the best detetion probability for CC): �fP3g(�) = �(�2).Proposition 4.10 follows from Setion 4 in the ompanion paper [18℄; spei�ally, the upper bound(on �fP3g) uses the graphs of [18, Se. 4.1℄ (whih are �-far from CC), whereas the lower boundfollows from the basi parts of Claims 4.3.1 and 4.3.2 in [18, Se. 4.2℄. For sake of self-ontainment,we provide a full proof below (where the aforementioned basi parts appear as Claims 4.10.1and 4.10.2, respetively). We note that the following proof is signi�antly simpler than the analysisin [18, Se. 4℄.We mention that the onstant-query proximity-oblivious tester resulting from Proposition 4.10yields a standard (non-adaptive) tester of query omplexity O(��2), whih improves over the eO(��2)bound of [6, Thm. 2℄ (whih, in turn, is based on inspeting the subgraph indued by a randomset of O(��1 log(1=�)) verties). However, in [18, Se. 4.2℄ we present an alternative (non-adaptive)tester of query omplexity eO(��4=3), and in [18, Se. 3℄ we present an adaptive tester of queryomplexity eO(��1).Proof: The proof adapts ideas from the study of non-adaptive testers for CC, onduted in theompanion paper [18℄. For the upper-bound onsider an N -vertex graph G onsisting of (6�)�1onneted omponents, eah being a bi-lique with 3�N verties on eah side. The graph G is�-far from CC, but �fP3g(G) � (6�)2, beause a opy of P3 must ontain three verties in the sameonneted omponent.For the lower-bound we onsider an arbitrary graph G = ([N ℄; E) that is �-far from CC. LetG0 = ([N ℄; E0) be a graph in CC that is losest to G, and let (V1; :::; Vt) be its partition into liques.For the sake of simpliity, we shall refer to the Vi's as liques, even though they are not (neessarily)liques in G, and we shall refer to the partition (V1; :::; Vt) as the best possible partition for G. Twomain observations regarding this partition follow.Observation 1: For every i 2 [t℄ and every S � Vi, it holds that jE\(S�(Vi nS))j � jS�(Vi nS)j=2,sine otherwise replaing the lique Vi by two liques, S and Vi n S, yields a better partitionfor G.Observation 2: For every i 6= j 2 [t℄, it holds that jE \ (Vi � Vj)j � jVi � Vj j=2, sine otherwisereplaing the two liques Vi and Vj by a single lique Vi [ Vj yields a better partition for G.Now, sine G is �-far from CC, either G misses at least �2 � �N2 � edges within these Vi's or G has atleast �2 � �N2 � superuous edges between distint Vi's. We show that in either ase, with probabilityat least 
(�2), three uniformly seleted verties indue the subgraph P3. We all suh a triplet awitness.The pivot of the analysis is relating the fration of bad vertex pairs (i.e., either missing \internal"edges or superuous \external" edges) to the fration of witnesses. Spei�ally, we shall showthat the existene of �2 � �N2 � missing internal edges (resp., �2 � �N2 � superuous \external" edges)implies the existene of 
(�2N3) witnesses. The following notation will be useful: for every i 2 [t℄and v 2 [N ℄ (not neessarily in Vi), we denote by �i(v) the set of neighbors of v in Vi, and�i(v) def= Vi n (�i(v) [ fvg). 11



We �rst onsider the ase in whih at least �2 � �N2 � internal edges are missing (i.e.,Pi2[t℄Pv2Vi j�i(v)j > � � �N2 �). Note that every triple (v; u; w) suh that u 2 �i(v), w 2 �i(v)and fu;wg 2 E is a witness. Using Observation 1, we have for eah v 2 Vi:1. j�i(v)j � j�i(v)j; and2. the density of edges between �i(v) and �i(v) is at least 1=2.Thus, for v 2 Vi, the number of witnesses that ontain v is at least j�i(v)j � j�i(v)j=2 � j�i(v)j2=2.It follows that the total number of witnesses is lower-bounded by12 �Xi2[t℄Xv2Vi j�i(v)j2 � 12 �N � Pi2[t℄Pv2Vi j�i(v)jN !2 (2)whih is lower-bounded by 
(�2N3) as desired. For sake of referene, we highlight the followinglaim, whih was established above.Claim 4.10.1 For every v 2 Vi, the number of witnesses ontaining v is 
(j�i(v)j2).We now turn to the ase in whih there are at least �2 � �N2 � superuous \external" edges; thatis, in this asePv2[N ℄ j�0(v)j > � ��N2 �, where for every v 2 Vi we de�ne �0(v) def= Sj 6=i �j(v). In thisase, we shall show that the number of witnesses that ontain eah spei� v 2 [N ℄ is 
(j�0(v)j2),and the laim (regarding the total number of witnesses) will follow as in the previous ase. Thus,it is left to establish the following.Claim 4.10.2 The number of witnesses ontaining v is 
(j�0(v)j2).Proof: In addition to the notations �i(v) = �(v) \ Vi, �i(v) = Vi n (�(v) [ fvg), and �0(v) =Sj:v 62Vj �j(v), we shall use the notation E(V 0; V 00) def= f(v0; v00) 2 (V 0 � V 00) : fv0; v00g 2 Eg. Theproof will proeed via a ase analysis, whih refers to an arbitrary i 2 [t℄ and v 2 Vi.Case 1: Muh of �0(v) is ontained in a single Vj; that is, there exists an index j suh that j�j(v)j >j�0(v)j=10. Fixing suh an index j, we distinguish two subases regarding the fration of Vj that isnot overed by �0(v) (i.e., the relative density of �j(v) in Vj).Case 1.1: j�j(v)j � jVj j=10. In this ase the laim follows by onsidering most of the possiblehoies of u 2 �j(v) and w 2 �j(v). Spei�ally, by Observation 1, jE(�j(v);�j(v))j islower-bounded by j�j(v)j � j�j(v)j=2, and so at least half of the triples in Tv def= f(v; u; w) :(u;w) 2 �j(v) � �j(v)g are witnesses (i.e., (u;w) 2 E and (v; u) 2 E, but (v; w) 62 E),whereas jTvj = j�j(v)j � j�j(v)j = 
(j�0(v)j2) (beause j�j(v)j � jVj j=10 � j�j(v)j=10 andj�j(v)j > j�0(v)j=10).Case 1.2: j�j(v)j � jVj j=10 (i.e., j�j(v)j � 0:9jVj j). We �rst note that jVij > j�0(v)j=20, beauseotherwise we would obtain a better partition by moving the vertex v from Vi to Vj (sinej�i(v)j � jVij whereas j�j(v)j� j�j(v)j � 0:8jVj j and jVjj � j�j(v)j � j�0(v)j=10). We onsidertwo subases regarding the ardinality of the set �i(v):
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1. If j�i(v)j � 0:9 � jVij, then the laim follows by onsidering a onstant fration of thepossible hoies of u 2 �j(v) and w 2 �i(v). Spei�ally, using Observation 2, it holdsthat jE(�j(v);�i(v)j � jE(Vj ; Vi)j (3)� 12 � jVj j � jVij (4)� 12 � j�j(v)j0:9 � j�i(v)j0:9 (5)< 0:7 � j�j(v)j � j�i(v)j; (6)where the seond inequality uses j�j(v)j � 0:9jVj j and j�i(v)j � 0:9jVij. We obtain atleast (1 � 0:7) � j�j(v)j � j�i(v)j pairs (u;w) 2 (�j(v) � �i(v)) n E (and the orrespond-ing triples (v; u; w) are witnesses). Using j�j(v)j � j�0(v)j=10 and j�i(v)j � 0:9jVij =
(�0(v)j), we lower-bound the said number by 
(j�0(v)j2).2. If j�i(v)j � 0:9 � jVij, then we have many missing internal edges inside Vi with v as anendpoint (i.e., j�i(v)j = 
(�0(v)j)), and we invoke the orresponding analysis (as in thease ofPi2[t℄Pv2Vi j�i(v)j � � � �N2 �). Spei�ally, we obtain 12 � j�i(v)j � j�i(v)j witnesses(orresponding to edges fu;wg suh that u 2 �i(v) and w 2 �i(v)), and using the subasehypothesis (and Observation 1) this number is lower-bounded by 12 �0:5jVij �0:1jVij, whihis lower-bounded by 
(j�0(v)j2) (sine jVij > j�0(v)j=20 holds in Case 1.2).This ompletes the treatment of Case 1.2.Case 2: No single Vj ontains muh of �0(v); that is, for every j 2 [t℄ it holds that j�j(v)j � j�0(v)j=10.As in Case 1, we onsider two subases regarding the relative part of Vj overed by �0(v), but inthe urrent ase we onsider a partition of the set J def= fj : j�j(v)j � 1g and distinguish asesregarding the intersetion of �0(v) with the sets Vj in eah part. Spei�ally, we let J 0 def= fj :j�j(v)j > 0:9jVj jg, and onsider the following two subases.Case 2.1: Pj2J 0 j�j(v)j � 0:5 � j�0(v)j. In this ase J 0 has ardinality at least �ve (sine j�j(v)j �0:1 � j�0(v)j for every j). Let Cv = Sj2J 0 �j(v), and note that the verties in Cv belongto several liques Vj. We shall show that the ase hypothesis implies that there are manymissing edges between pairs of verties in Cv. Intuitively this holds beause Cv essentiallyovers Sj2J 0 Vj , whereas (by Observation 2) for any j1 6= j2 there are many non-edges inVj1 � Vj2 . This ensures that we have many witnesses of the form (v; u; w), where u;w 2 Cvand fu;wg 62 E. Details follow.For every j1 6= j2 2 J 0, by Observation 2 (and sine j�j(v)j > 0:9jVj j for every j 2 J 0), itholds that jE(�j1(v);�j2(v))j � 12 � jVj1 j � jVj2 j < 0:7 � j�j1(v)j � j�j2(v)j : (7)Therefore the number of non-edges between pairs in Cv is lower-bounded byXj1 6=j22J 0(1� 0:7) � j�j1(v)j � j�j2(v)j (8)= 0:3 �0� Xj1;j22J 0 j�j1(v)j � j�j2(v)j �Xj2J 0 j�j(v)j21A (9)� 0:3 � �(0:5 � j�0(v)j)2 � 0:1 � j�0(v)j2� (10)13



where the last inequality is due to the ase hypotheses (i.e., Pj2J 0 j�j(v)j � 0:5 � j�0(v)j andj�j(v)j � 0:1 � j�0(v)j). Thus, j(Cv � Cv) n Ej > 0:04 � j�0(v)j2, and the laim follows.Case 2.2: Pj2JnJ 0 j�j(v)j � 0:5 � j�0(v)j. Let J 00 def= J n J 0 = fj : 1 � j�j(v)j � 0:9jVj jg, and notethat for j 2 J 00 (as onsidered in this ase) it may be that j�j(v)j � jVj j and onsequentlyfor j1 6= j2 2 J 00 it may hold that E(�j1(v);�j2(v)) � j�j1(v)j � j�j2(v)j. More generally,rede�ning Cv def= Sj2J 00 �j(v), it may be that jE(Cv ; Cv)j � �jCv j2 �, and so the approah ofCase 2.1 may not work in general (although it will work in the �rst subase). Thus, lettingJ 000 def= fj 2 J 00 : jVj j � j�0(v)j=10g, we onsider two subases:1. If Pj2J 000 j�j(v)j � 0:4 � j�0(v)j then we rede�ne Cv def= Sj2J 000 �j(v) and show thatjE(Cv ; Cv)j � 0:99 � �jCvj2 �. This is the ase beause otherwise we obtain a ontraditionto the optimality of the partition (by replaing the sub-partition (Vj)j2J 000 with (Cv; (Vj nCv)j2J 000)).Thus, we have reahed a situation as in Case 2.1, and we proeed as in thatase.2. IfPj2J 00nJ 000 j�j(v)j � 0:1 � j�0(v)j then we proeed similarly to Case 1.1. Spei�ally, foreah j 2 J 00 n J 000, we note that the density of edges in �j(v)� �j(v) is at least one half,whereas j�j(v)j � 0:1jVj j � 0:1 � 0:1 � j�0(v)j (by j 2 J 00 and j 62 J 000, respetively). Thus,the number of witnesses (v; u; w) suh that (u;w) 2 �j(v) � �j(v) (and fu;wg 2 E) isat least Xj2J 00nJ 000 j�j(v) � �j(v)j2 � Xj2J 00nJ 000 j�j(v)j � j�0(v)j200 (11)whih is 
(j�0(v)j2) by the subase hypothesis.These ompletes the treatment of Case 2.2.Thus, a lower bound of 
(j�0(v)j2) was proved in all ases, and the laim follows.This ompletes the proof of the entire proposition.4.4 An improved result for CC� (i.e., �fP3;I+1g(�) = 
(�=2))Reall that, for every onstant  � 3, Proposition 4.3 established that the property CC� hasa onstant-query proximity-oblivious tester with �(�) > �+1+o(1) (whereas any onstant-queryproximity-oblivious tester for CC� must satisfy �(�) = O(�=2)). In this setion we improve thelower-bound on �, and in fat obtain a tight result. By Theorem 4.8, it suÆes to prove that�fP3;I+1g(�) = 
(�)=2, sine CC� orresponds to fP3; I+1g-freeness.Proposition 4.11 (the best detetion probability for CC�): For every integer  � 3, it holds that�fP3;I+1g(�) = 
(�)=2.The proof builds on the �rst part of the analysis of the CC�-tester that is provided in [18, Se. 6.2℄.Atually, we shall modify also this part, and thus we provide a self-ontained desription of theentire argument.Proof: Suppose that G = ([N ℄; E) is an N -vertex graph that is �-far from CC�. As a mentalexperiment, we onsider a uniformly distributed set of �(��1=2) verties of G, denoted S. We shall14



show that, for a typial S (i.e., for most hoies of S) and for a uniformly seleted vertex v, withprobability 
(�), the subgraph indued by S[fvg is not in CC�. In suh a ase, the said subgraphontains +1 verties that indue a subgraph not in CC�. That is, for a typial S, with probabilityat least minfjSj�(+1);
(�) � jSj�g = 
(�)(+2)=2 either a sample of +1 verties in S or a sample of verties in S and a single vertex v in [N ℄ yields an indued subgraph that is not in CC� (i.e., is notfP3; I+1g-free). Thus, �fP3;I+1g(G) = 
(�)(+2)=2, and it follows that �fP3;I+1g(�) = 
(�)(+2)=2.The proposition will follow by a somewhat more re�ned analysis.We think of S as being seleted in  + 1 phases, where in phase t, a new uniform sample St,of �(��1=2) verties, is seleted (reall that  is a onstant). Intuitively, the objetive of the �rst phases is to yield a partition of all the graph verties into at most  + 1 subsets in a way thatfailitates �nding evidene of the fat that the original graph is not in CC�. For example, onemain part of the argument is showing that, with high (onstant) probability, it is either the asethat the set of verties with no neighbors in S is of size O(�1=2 �N) or S ontains an independentset of size + 1 (and we are done). Let us elaborate on the way this assertion is proved.Intuitively, with high (onstant) probability, if the number of verties that do not have anyneighbor among the verties seleted so far is relatively big, then we obtain suh a vertex in thenext phase. Indeed, if the set of verties with no neighbors in S is of size 
(�1=2 � N), then aftereah of the �rst  phases it is the ase that the number of verties that do not have any neighboramong the verties seleted so far is relatively big. Thus, we should have been quite unluky notto obtain suh a vertex in eah of the following phases. Assuming that we are not unluky, Sdoes ontain an independent set of size  + 1, and it follows that �fP3;I+1g(G) = 
(jSj�(+1)) =
(�)�(+1)=2. However, a loser look at the situation reveals that we an selet suh an independentset (in S) by seleting an arbitrary vertex in S1, and then seleting an adequate vertex in eahSt for eah t = 2; :::;  + 1 (i.e., a vertex of St that has no neighbors in St�1k=1 Sk). It follows that�fP3;I+1g(G) = 
(Q+1t=2 jStj�1) = 
(�)=2. Note that the argument applies also if it only holds thatthe set of verties with no neighbors in S� def= Sk=1 Sk is of size 
(�1=2 �N). Let us generalize thisargument further.Claim 4.11.1 For s > 2, suppose that a graph G0 = ([s℄; E0) is not in CC�. Then, with probabilitygreater than s�=2, a uniformly seleted set of  + 1 verties indues in G0 a subgraph that is notin CC�.Proof: If G0 ontains an indued opy of P3, then three uniformly seleted verties hit it withprobability at least s�3 � s�, sine  � 3. Otherwise (i.e., if G0 62 CC� ontains no indued opyof P3), it must be the ase that G0 is a olletion of at least  + 1 isolated liques. We arbitrarilyluster these liques into  + 1 sets, and onsider the probability that a sample of  + 1 vertieshits a vertex in eah of these  + 1 sets. This probability is lower-bounded by Q+1i=1 xi subjet toP+1i=1 xi = 1 and xi � 1=s for every i. The minimum is obtained at x1 = � � � = x = 1=s, and thelaim follows.We now turn to de�ning the ( + 1)-partition (of the graph verties) that arises from the sampleS. For eah 1 � t �  + 1, let S�t = Stk=1 Sk. If for any 1 � t � , the subgraph indued byS�t is not a olletion of at most  liques, then we are done (by Claim 4.11.1). Otherwise, letCt1; :::; Ctt denote the t �  liques in the subgraph indued by S�t. For eah 1 � t � , we de�nethe following partition of the set of all graph verties (i.e., [N ℄):V tj def= fv : �(v) \ S�t = Ctjg for 1 � j � t ; (12)Rt0 def= fv : �(v) \ S�t = ;g (13)15



Rt1 def= V n �Rt0 [ � [1�j�t Vj�� : (14)That is, for 1 � j � t, the subset V tj onsists of the verties that neighbor all verties in Ctj andno other vertex in S�t, the subset Rt0 onsists of all verties that have no neighbor in S�t, andRt1 onsists of all verties that either neighbor only some of the verties in one of the liques Ctj ,but not all, or that have neighbors in more than one of the liques. Observe that V t+1j � V tj andRt+10 � Rt0 while Rt+11 � Rt1.Given the above notation, we make two observations. The �rst observation is that, for any1 � t � , if St+1 ontains some vertex in Rt1, then the subgraph indued by S�(t+1) is not aolletion of (at most ) liques, and so we are done (again, by Claim 4.11.1). It follows that ifjRt1j > 14�1=2N , for some t � , then we are done (beause with high probability St+1 will ontainsome vertex in Rt1). The seond observation is that if St+1 ontains some vertex in Rt0, thent+1 � t + 1. Note that as long as jRt0j > 14�1=2N , the probability that St+1 does not ontain anyvertex in Rt0 is at a small onstant. Therefore, either jR0j � 14�1=2N , or we are done (beause withhigh probability St+1 will ontain a vertex from eah Rt0 (for t = 1; :::; ), whih together with S1indue a subgraph that is not in CC�).In light of the foregoing paragraph, from this point on, we assume that the subgraph induedby S�(+1) is a olletion of at most  liques, that jR1j � 14�1=2N and that jR0j � 14�1=2N . Tosimplify the notation, we use the shorthand R0 for R0, and R1 for R1, the shorthand 0 for , andthe shorthand Vj for V j (resp., Cj for Cj ). We also denote R0 [R1 by R.Reall that G = ([N ℄; E) is �-far from CC�. This means that for every partition of the graphverties into at most  subsets, the total number of vertex pairs that \violate the partition" (i.e.,either both verties belong to the same subset but do not have an edge between them or they belongto di�erent subsets but do have an edge between them) is greater than �N2. In partiular, thisholds for the partition that we shall de�ne next. We onsider a partition, denoted (eVj)j2f0;1;:::;0g,where for every j 2 [0℄ it holds that Vj � eVj , while the verties in R are partitioned as follows.Eah vertex v 2 R1 is plaed in an arbitrary eVj suh that v has some neighbor in Cj . If 0 <  thenR0 is de�ned as eV0, and otherwise R0 is plaed in eV1 (i.e., in an arbitrary eVj).Note that the total number of vertex pairs in R � R is at most 14�N2, sine jRj � 12�1=2N .Realling that G is �-far from CC�, it follows that (at least) one of the following three events musthold:1. There are at least 14�N2 missing edges between pairs of verties that belong to the same subseteVj suh that these pairs have no element in R0 and at most one element in R1. That is, theurrent ase refers to pairs (u; v) 2 S0j=1(eVj � eVj) suh that fu; vg 62 E and fu; vg \ R0 = ;and jfu; vg \R1j � 1.2. There are at least 14�N2 superuous edges between pairs of verties that belong to di�erentsubsets eVj and eVk and have at most one element in R. That is, the urrent ase refers topairs (u; v) 2 Sj 6=k2f0;1;:::;0g(eVj � eVk) suh that jfu; vg \Rj � 1.3. There are at least 14�N2 missing edges between pairs of verties that belong to the same subseteVj but have exatly one endpoint in R0 and no endpoint in R1; that is, pairs in (R0\ eV1)�V1.(Reall that R0 was plaed either in eV0 or in eV1, whereas V0 = ;; hene, S0k=0((R0\ eVk)�Vk)equals (R0 \ eV1)� V1.) 16



We shall show that in eah of these three ases, with probability at least 
(�=2), a uniformlyseleted set of + 1 verties indues a subgraph that is not in CC�.Case 1. Reall that this ase refers to missing edges within some eVj, where j 2 [0℄, suh that atleast one endpoint of suh an edge is not in R (and none is in R0). In this ase, with probability atleast �=4, a uniformly distributed pair (u; v) 2 [N ℄� [N ℄ hits suh a missing edge (i.e., in partiular,(u; v) 62 E and u; v 2 eVj for some j 2 [k℄). Assume, without loss of generality, that u 2 Vj (i.e.,u 62 R), and let w be an arbitrary neighbor of v 2 eVj in Cj (whih is guaranteed to exist sinev 2 eVj n R0, whereas v 2 R1 is plaed in eVj only if it has neighbors in Cj). Reall that w is alsoa neighbor of u (sine u 2 Vj neighbors all verties in Cj). Hene, seleting uniformly a vertex inS, we hit this w with probability 1=jSj. It follows that if we selet uniformly and independentlythree verties in [N ℄, then, with probability �4 � 
(1)jSj = 
(�3=2), we obtain a triple (u; v; w) suh that(u; v) 62 E whereas (u;w); (v; w) 2 E.Case 2. Reall that this ase refers to superuous edges between some eVj and eVk, where j 6=k 2 f0; 1; :::; 0g, suh that at least one endpoint of suh an edge is not in R. In this ase, withprobability at least �=4, a uniformly distributed pair (u; v) 2 [N ℄� [N ℄ hits suh a superuous edge(i.e., in partiular, (u; v) 2 E and (u; v) 2 Sj 6=k(eVj � eVk)). Assume, without loss of generality, thatu 2 Vj and v 2 eVk, where v may be in R (and even in R0). If v 2 eVk n R0 then we let w be anarbitrary neighbor of v in Ck, and note that w is not a neighbor of u (sine u 2 Vj neighbors novertex in Ck). Otherwise (i.e., v 2 R0), let w 2 Cj be an arbitrary non-neighbor of v, and notethat w is a neighbor of u (sine u 2 Vj). Thus, either way, w is a neighbor of exatly one of the twoverties u and v, and seleting uniformly a vertex in S, we hit w with probability 1=jSj. It followsthat if we selet uniformly and independently three verties in [N ℄, then, with probability 
(�3=2),we obtain a triple (u; v; w) suh that (u; v) 2 E whereas (u;w) 62 E if and only if (v; w) 2 E.Case 3. Reall that this ase refers to missing edges between verties of R0 and verties of V1 (i.e.,the part Vj to whih R0 was added). It follows that 0 =  and that jR0j > �N=4. Thus, we anobtain an independent set of size + 1 by seleting one vertex from R0 and a vertex from eah ofthe sets C1; :::; C. The probability that a uniformly seleted sample of + 1 verties yields suh aset is at least Pr[S is good℄ � �4 � Yk=1 jCkjjSj > �5 � minx1; :::; x � jSj�1Pk=1 xk = 1 ( Yk=1xk) (15)> �6 � jSj�(�1) (16)whih yields the lower-bound of 
(�)(+1)=2. To obtain a better bound, we modify the argument alittle.Suppose that for every j suh that jVj j � �1=2N it holds that jCj jjSj � 12 � jVj jN . (This assumptionwill be justi�ed at the end of the proof.) Then, we modify the onstrution (of the partition (eVj))suh that in the ase of  = 0 the set R0 is plaed in the smallest set Vj (rather than in anarbitrary set Vj). Turning bak to Case 3, we reall that in this ase there are �N2=4 missingedges between R0 and Vj , and it follows that jR0j � jVjj � �N2=4. Realling that jR0j � �1=2N=4,we have jVj j � �1=2N and it follows that jR0jN � jCj jjSj � �8 (beause jCj jjSj � jVj j2N ). Note that we anobtain an independent set of size  + 1 by seleting a pair from R0 � Cj and a vertex from eahof the other � 1 sets Ck's, and reall that the largest Ck must have size at least jSj=3 (beausejCkj=jSj � jVkj=2N � (1 � �1=2)=2). The probability that a uniformly seleted sample of  + 117



verties yields suh a set is at leastPr[S is good℄ � �8 � Yk2[℄nfjg jCkjjSj > �9 � minx1; :::; x�2 � jSj�1x�1 � 1=3 (�1Yk=1xk) (17)> �27 � jSj�(�2) (18)whih yields the lower-bound of 
(�)=2.It remains to deal with the assumption that jCj j=jSj � jVj j=2N for every j suh that jVj j ��1=2N . To this end we add one more phase in the hoie of S (where we think of this phase astaking plae before phase  + 1 that was used in the foregoing disussion to bound jRj). Let S0denote the verties seleted in the �rst  phases and let S00 be the verties seleted in the additionalphase, where jS00j = 4jS0j. Let C 01; : : : ; C 00 be the liques in the subgraph indued by S0, and foreah 1 � j � 0 let V 0j be the verties that neighbor all verties in C 0j and no other verties in S0.In the sample S00, let C 00j = S00 \ V 0j . By a multipliative Cherno� bound, with high probabilityover the hoie of S00, it holds that jC 00j j=jS00j � (3=4)jV 0j j=N for every j suh that jV 0j j � �1=2N .Assuming that this is in fat the ase, we de�ne Cj = C 0j[C 00j and Vj = fv : �(v)\(S0[S00) = Cjg.If there is any new lique in S00, then it orresponds to a small set of verties (sine the setof verties that do not belong to any V 0j is small).10 Using the fat that S is the union of S0,S00 and the sample seleted in phase  + 1, we have jSj < (3=2)jS00j (sine jS00j = 4jS0j andjS0j =  � (jSj � jS0j � jS00j)) and jCj j=jSj � (3=4)jC 00j j=jS00j � (3=4) � (3=4)jV 0j j=N . Using Vj � V 0j ,we get that jCj j=jSj > jVj j=2N for every jVj j � �1=2N .5 Testing Graph Properties in the Bounded-Degree ModelThe bounded-degree model refers to a �xed degree bound, denoted d � 2. An N -vertex graphG = ([N ℄; E) (of maximum degree d) is represented in this model by a funtion g : [N ℄ � [d℄ !f0; 1; :::; Ng suh that g(v; i) = u 2 [N ℄ if u is the ith neighbor of v and g(v; i) = 0 if v has less than ineighbors.11 Distane between graphs is measured in terms of their aforementioned representation(i.e., as the fration of (the number of) di�erent array entries (over dN)), but oasionally we shalluse the more intuitive notion of the fration of (the number of) edges over dN=2.It turns out that, in the urrent model, onstant-query proximity-oblivious testers exist for allgraph properties that have suh testers in the adjaeny matrix model. However, in the urrentmodel, the sope of onstant-query proximity-oblivious testers extends somewhat beyond the for-mer. Spei�ally, while in the adjaeny matrix model suh testers exist for any \indued subgraphfreeness" property, the urrent model also allows testing properties that orrespond to a general-ized notion of subgraph freeness, whih inludes properties that are not hereditary (e.g., the set ofgraphs in whih eah vertex has at least three neighbors).5.1 Generalized subgraph freenessThe generalized notion of subgraph freeness de�ned next is pivotal to proximity-oblivious testing inthe bounded-degree model. Intuitively, the de�nition refers to forbidden patterns that are aptured10Indeed, the sizes of the sets V 0j behave as the sizes of the sets Vj , whih were analyzed in the beginning of thisproof.11We assume here that the neighbors of v appear in arbitrary order in the sequene g(v; 1); :::; g(v;deg(v)), wheredeg(v) def= jfi : g(v; i) 6= 0gj. 18



by graphs that are augmented by a three-way marking of their verties (where the markings are\full", \semi-full', and \partial"). What is forbidden, is embeddings of these graphs in largergraphs (i.e., in the graphs to whih the property refers) that satisfy ertain onditions (dependingon the marking). Firstly, edges (regardless of the marking of their endpoints) in the marked graphshould be mapped (in suh an embedding) to edges of the large graph. Seondly, pairs non-adjaentverties that are not both marked \partial" must be mapped to non-adjaent verties (in the largegraph). Finally, any vertex marked \full" must be mapped to a vertex that has no neighborsoutside of the range of the mapping. Thus, while the \partial" and \semi-full" markings imposesonditions regarding the range of the mapping, the \full" marking imposes onditions that extendbeyond that range. See illustration in Figure 1.
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Figure 1: The 4-vertex marked graph is embedded in the 6-vertex graph suh that the full vertex ais mapped to 1, the semi-full vertex  is mapped to 3, and the partial verties b and d are mappedto 2 and 4, respetively.De�nition 5.1 (generalized subgraph freeness): A marked graph is a graph with eah vertex markedas either full or semi-full or partial. Suh a marked graph F = ([n℄; EF ) an be embedded in a graphG = ([N ℄; EG) if there exists a 1-1 mapping f : [n℄! [N ℄ suh that for every v 2 [n℄ the followingthree onditions hold:1. If v is marked full, then f yields a bijetion between the set of neighbors of v in F and the setof neighbors of f(v) in G. That is, in this ase �G(f(v)) = f(�F (v)), where for H 2 fF;Ggwe denote �H(x) def= fw : fx;wg 2 EHg, and for S � [N ℄ we denote f(S) def= ff(u) : u 2 Sg.2. If v is marked semi-full, then f yields a bijetion between the set of neighbors of v in F andthe set of neighbors of f(v) in the subgraph of G indued by f([n℄). That is, in this ase�G(f(v)) \ f([n℄) = f(�F (v)).3. If v is marked partial, then f yields an injetion of the set of neighbors of v in F to the setof neighbors of f(v) in G. That is, in this ase �G(f(v)) � f(�F (v)).Suh f is alled an embedding of F in G. The graph G is alled F -free if F annot be embedded inG (i.e., there is no embedding of F in G). For a set of marked graphs F , a graph G is alled F -freeif for every F 2 F the graph G is F -free. 19



Indeed, the standard notion of non-indued subgraph freeness is a speial ase of generalized sub-graph freeness, obtained by onsidering the orresponding marked graph in whih all verties aremarked partial. Similarly, the notion of indued subgraph freeness (as in De�nition 4.6) is a speialase of generalized subgraph freeness (as in De�nition 5.1), obtained by onsidering the orrespond-ing marked graph in whih all verties are marked semi-full. Introduing verties that are markedfull adds a new type of onstraint; spei�ally, this onstraint mandates the non-existene of neigh-bors that are outside the marked subgraph. For example, using verties that are marked full it ispossible to disallow ertain degrees in the graph. Thus, the generalized notion of subgraph freenessinludes properties that are not hereditary (e.g., regular graphs), whereas indued and non-induedsubgraph freeness are hereditary.We mention that the notion of generalized subgraph freeness remains as expressive when disal-lowing either semi-full or partial markings (see appendix). When allowing the onsideration of adi�erent set of marked graphs (of a onstant size) for eah size of graphs in the property, we obtainthe following notion.De�nition 5.2 (loal properties): Let � = SN2N �N be a graph property suh that eah �Nonsists of all N -vertex graphs that satisfy �. The property � is alled loal if there exists aninteger s and an in�nite sequene F = (FN )N2N suh that for every N the following onditionshold:1. FN is a set of marked graphs, eah of size at most s;2. �N equals the set of N -vertex graphs that are FN -free.In suh a ase we say that � is F-loal.We note that indued subgraph freeness (in the sense of Theorem 4.7) implies loality (in the senseof De�nition 5.2); that is, for every sequene F as in Theorem 4.7, the orresponding property �is loal.5.2 The non-propagating onditionAlthough it may seem that all loal properties have a onstant-query proximity-oblivious tester(in the urrent model), the laim only holds for loal properties that satisfy the following non-propagating ondition.De�nition 5.3 (the non-propagating ondition): Let F = (FN )N2N be a sequene of sets ofmarked graphs as in De�nition 5.2.� For a graph G = ([N ℄; E), we say that a subset B � [N ℄ overs FN in G if for every markedgraph F 2 FN and every embedding of F in G, at least one vertex of F is mapped to a vertexin B.(Reall that, for F = ([n℄; E0), an embedding of F in G is a 1-1 mapping f : [n℄ ! [N ℄ thatsatis�es the three onditions in De�nition 5.1. The foregoing if-statement asserts that for anysuh embedding f there exists v 2 [n℄ suh that f(v) 2 B.)� We say that F is non-propagating if there exists a (monotonially non-dereasing) funtion� : (0; 1℄! (0; 1℄ suh that the following two onditions hold.1. For every � > 0 there exists � > 0 suh that �(�) < �.20



2. For every graph G = ([N ℄; E) and every B � [N ℄ suh that B overs FN in G, either Gis �(jBj=N)-lose to being FN -free or there are no N -vertex graphs that are FN -free.12A loal property � is non-propagating if there exists a non-propagating sequene F (as above) suhthat � is F -loal.Intuitively, non-propagation means that the elimination of all possible embeddings of F in G, whihneessarily use verties in B, does not require modifying G \muh beyond" B. For example, theset of graphs that have no isolated verties onstitutes a loal property that is non-propagating(see the proof of Part 3 of Proposition 5.4). Indeed, it is natural to onsider funtions � of theform �(�) = O(�), but De�nition 5.3 allows arbitrary funtions � (whih may depend arbitrarilyon F). In ontrast to what one might naturally onjeture, as shown in Proposition 5.4, not allsequenes of (sets of) marked graphs are non-propagating. On the other hand, the loal propertiesthat orrespond to indued subgraph freeness (as in Theorem 4.7) are non-propagating. Indeed, thequestion of whether or not every loal property is non-propagating remains open (see Setion 5.4).We stress that a property may be loal with respet to several di�erent sequenes of (sets of)marked graphs, where some of these sequenes may be non-propagating and the other not. Wealso note that the issue of non-propagation arises in the (strong) lower bound for testing propertiesthat an be de�ned by 3CNF formula [8℄ as well as in the orientation model for testing (e.g., [14℄).Proposition 5.4 (on satisfying the non-propagating ondition):1. (negative): For every d � 3, there exists a sequene of sets of marked graphs F = (FN )N2Nas in De�nition 5.2 that does not satisfy the non-propagating ondition.2. (positive { indued subgraph freeness): For every sequene of sets of graphs F = (FN )N2N as inTheorem 4.7, the property of being F-free13 is loal and non-propagating; that is, there existsa sequene of sets of marked graphs F 0 = (F 0N )N2N as in De�nition 5.2 suh that (1) induedsubgraph freeness w.r.t F is equivalent to generalized subgraph freeness w.r.t F 0, and (2) F 0is non-propagating.3. (positive { non-hereditary properties): There exist non-hereditary properties that are loal andnon-propagating. For example, the set of regular graphs onstitutes suh a property.Proof: We start by proving Part 1 (i.e., the negative laim). Consider a set F onsisting ofbd=2+ 1 marked graphs that e�etively impose the following two onstraints (on F -free graphs):(1) either there are no isolated verties or all verties are isolated, and (2) eah non-isolated vertexhas an odd degree. Spei�ally, the set F onsists of the following two types of marked graphs:(see Figure 2):1. A marked graph onsisting of three verties with a single edge onneting two verties thatare both marked partial, and an isolated vertex that is marked full. (This forbidden graphmandates that if the target graph ontains any isolated vertex then it annot ontain anyedges.)12Indeed, it is more natural to disallow the latter possibility in the de�nition, but this would have made ourexposition somewhat more umbersome.13That is, we refer to the set � = SN2N�N suh that eah �N onsists of all N -vertex graphs that are FN -free,where here we refer to indued subgraph freeness. 21



F1 F3F2 F4Figure 2: The forbidden marked graphs for the ase d = 7 in Part 1 of the proof of Proposition 5.4.The graph F1 is of the �rst type, and the graphs F2; F3; F4 are of the seond type.2. For every even i 2 f2; :::; dg, we have a graph with a single vertex marked full having ineighbors marked partial and having no other edges. (This set of forbidden graphs mandatesthat eah non-isolated vertex has an odd degree.)Note that if N is odd, then the only N -vertex graph that is F -free is a set of N isolated verties.14However (for odd N), onsider any graph G that onsists of a single isolated vertex and N � 1verties that have odd degrees (e.g., G may onsists of a single isolated vertex and a 3-regular(N � 1)-vertex graph). Then, G ontains only one vertex (i.e., the isolated vertex) that mustappear in the image of any embedding of some F 2 F in G. Thus, we obtain an in�nite sequeneof graphs that are 
(1)-far from being F -free, whereas only one vertex (in eah of these graphs)must be ontained in any embedding of some F 2 F in this graph. Indeed, this proves that F (orrather F = (FN )N2N suh that FN = F for every N 2 N) does not satisfy the non-propagatingondition (beause we need �(1=N) = 
(1), whereas limN!1 �(1=N) must equal zero).Turning to Part 2 (i.e., the positive laim regarding indued subgraph freeness), we onsideran arbitrary set of (unmarked) graphs F and the set of N -vertex graphs that are F -free (asper De�nition 4.6). As noted before, this property (or set) is loal, beause indued subgraphfreeness an be emulated by generalized subgraph freeness. Spei�ally, for eah F 2 F , weintrodue a orresponding marked graph F 0 2 F 0 suh that the graph F 0 is obtained from F bymarking all verties as semi-full. It follows that, for every F = (FN )N2N as in the proposition'shypothesis, the orresponding indued subgraph freeness property (i.e., F -freeness) is F 0-loal,where F 0 = (F 0N )N2N is suh that F 0N is obtained from FN by the foregoing proedure.The main point of Part 2 is proving that the sequene F 0 = (F 0N )N2N is non-propagating. LetG = ([N ℄; E) and B � [N ℄ be as in De�nition 5.3 (i.e., B overs F 0N in G). It follows that thesubgraph of G indued by [N ℄ n B, denoted Gj[N ℄nB , is FN -free (beause if Gj[N ℄nB ontains anindued subgraph that is isomorphi to F 2 FN , then this isomorphism yields an embedding ofthe orresponding F 0 2 F 0N in G suh that no vertex of F 0 is mapped to a vertex in B). We mayassume, without loss of generality, that jBj < N � 2ds, where s is the maximum size of a graphin FN (sine otherwise non-propagation holds trivially, assuming N > 4ds). Using the fat thatGj[N ℄nB is FN -free, we laim that the subgraph, denoted G0, that results from G by turning B into an14Note that, for odd N , this set of graphs (i.e., the set of graphs onsisting of isolated verties) is F 0-free withrespet to a non-propagating F 0 that ontains a single graph that forbids any edges (i.e., the graph onsists of asingle edge with both endpoints marked partial). Thus, the urrent diÆulty an be bypassed by using the generalformalism, whih refers to a sequene of sets of forbidden graphs (i.e., we may onsider the sequene (FN )N2N, whereFN = F if N is even and FN = F 0 otherwise). 22



independent set is FN -free. This laim follows by onsidering an arbitrary s-vertex subset, S, andnoting that if S indues a subgraph of G0 that is in FN then S0 def= S nB ombined with r = s�jS0jadequate verties indue the same subgraph in Gj[N ℄nB : Pik r verties in [N ℄ n (B [ S0) suh thatin G these verties onstitute an independent set that neighbors no vertex in S0.15 Thus, G is2(jBj=N)-lose to being FN -free (whih is the same as being F 0N -free). It follows that F 0 satis�esthe non-propagating ondition (with �(�) = 2�).Finally, we turn to Part 3 (i.e., the positive laim regarding non-hereditary properties). Con-sider, for example, the set of graphs that ontain no isolated verties, whih oinides with the setof graphs that are I-free where I is the marked graph that onsists of a single (isolated) vertexthat is marked full. Clearly, this set is not hereditary. To see that fIg is non-propagating, onsiderany graph G = ([N ℄; E) and B � [N ℄ as in De�nition 5.3 (i.e., every embedding of I in G mapsthe single vertex of I to a vertex in B). It follows that [N ℄ n B ontains no isolated verties, andso G is (jBj=dN)-lose to being I-free. Thus, fIg satis�es the non-propagating ondition (with�(�) = �=d).Lastly, we show that the set of regular graphs, whih is also non-hereditary, is loal and non-propagating. To see that this set onstitutes a loal property, onsider a set of marked graphs FNthat forbids two verties of di�erent degrees; a typial member of this set onsists of two vertiesmarked full that are onneted to a di�erent number of verties marked partial (in addition to,possibly, an edge between the two `full' verties). In addition, if N is odd then we also forbid odddegrees. To see that this sequene of sets F = (FN )N2N of marked graphs is non-propagating,onsider any graph G = ([N ℄; E) and B � [N ℄ as in De�nition 5.3 (i.e., every embedding of someF 2 FN in G maps some vertex of F to a vertex in B). Letting C def= B [Sv2B �(v) be the set ofall verties that are either in B or neighbor it, we note that all verties in [N ℄ n C have the samedegree. Intuitively, G an be made regular by only modifying edges that are inident at C. Thisis easy to see if we allow multiple edges, and essentially holds also otherwise.16 It follows that Fsatis�es the non-propagating ondition (with �(�) = O(d�)).5.3 The haraterizationWe now turn to the main result of the urrent setion.Theorem 5.5 (haraterization for the bounded-degree graphs model): A graph property � has aonstant-query proximity-oblivious tester if and only if � is loal and non-propagating.Unlike in the ase of Theorem 4.7 (see Footnote 6), here we rely on the fat that the detetionprobability funtion depends only on the proximity parameter. We stress that the lass of propertieshaving onstant-query proximity-oblivious tester is a strit superset of the lass of properties thatrefer to indued subgraph freeness.Proof: We start by showing that any non-propagating loal graph property � has a onstant-query proximity-oblivious tester. Suppose that � is F -loal, where F = (FN )N2N , and let  andr be upper bounds on the number of onneted omponents and the radius of eah onneted15Suh r verties exist, beause [N ℄ n (B [S0) ontains at least (N �jBj)� (d+1)jS0j verties that do not neighborS0, and suh a set ontains an independent set of size N�jBj�(d+1)jS0jd > r.16Replaing eah pair of edges in C � ([N ℄ nC) by a single edge between the endpoints in [N ℄ nC, we maintain thedegree of verties in [N ℄ n C while leaving at most one edge in C � ([N ℄ n C). Replaing the subgraph indued by Cby an adequate subgraph, we obtain the desired regular graph. Finally, multiple edges an be eliminated as follows.Suppose that we wish to eliminate an edge that onnets u and v. Then, we selet an edge (u0; v0) suh that (u; u0)and (v; v0) and not edges, and omit the edges (u; v) and (u0; v0) while adding the edges (u; u0) and (v; v0).23



omponent (in eah graph in FN ), respetively. We onsider the following tester T (for �):17 oninput an N -vertex graph G, the tester selets at random  start verties v1; :::; v 2 [N ℄, performsa BFS of depth r+ 1 starting at eah vi, and aepts if and only if the subgraph explored in these exeutions of BFS is FN -free. More preisely, T aepts unless there is an embedding of someF 2 FN in the said subgraph suh that eah vertex of F is mapped to a vertex of G that is atdistane at most r from some vi. (The extra level of the BFS is used in order to identify all edgesinident at verties that reside in level r).18Clearly, T always aepts any N -vertex graph that is FN -free. In the analysis of T 's detetionprobability (of graphs that are not FN -free), we shall onsider a more relaxed rejetion riterionthat heks, for every F 2 FN , whether the ith onneted omponent of F an be embedded in thesubgraph explored in the ith BFS suh that some vertex of this omponent is mapped to vi (i.e.,the ith start vertex). Thus, we refer to an embedding that maps the ith onneted omponent of Fto the r-neighborhood of vi, where the r-neighborhood of a vertex v in G is de�ned as follows. It isthe graph that is isomorphi to the subgraph of G that ontains all the verties that are at distaneat most r + 1 from v and all edges that are inident at verties that is at distane at most r fromv. The verties in this graph are unlabeled, and the vertex orresponding to v is the designatedenter of the graph. It will be instrutive to onsider a funtion (depending on G) that assignseah vertex v 2 [N ℄ its r-neighborhood.Towards analyzing the detetion probability of T , let us onsider the following simpli�ed prop-erty testing problem referring to funtions from [N ℄ to [m℄. The property, denoted P, is de�nedby a �xed set of (forbidden) sequenes F � [m℄ suh that a funtion f : [N ℄ ! [m℄ is in P if, forevery v1; :::; v 2 [N ℄, it holds that (f(v1); :::; f(v)) 62 F. We analyze the straightforward testerthat selets uniformly v1; :::; v 2 [N ℄ and aepts if and only if (f(v1); :::; f(v)) 62 F. Suppose thatf is �-far from P (and that �N > m), and let V def= fv : Prr2[N ℄[f(r) = f(v)℄ � �=mg denotethe set of (\typial") points that are assigned values that appear relatively frequently. Then, frestrited to V is not in P, beause otherwise we an modify f on [N ℄ n V (using arbitrary valuesin ff(v) : v 2 V g) and obtain a funtion in P that is �-lose to f . It follows that there existv1; :::; v 2 V suh that (f(v1); :::; f(v)) 2 F, and it follows thatPru1;:::;u2[N ℄[(f(u1); :::; f(u)) 2 F℄ � Pru1;:::;u2[N ℄[(8i 2 [℄) f(ui) = f(vi)℄ (19)� �minv2V �Prr2[N ℄[f(r) = f(v)℄	� (20)whih is lower-bounded by (�=m).The foregoing paragraph suggests to de�ne a funtion f suh that f(v) desribes the r-neighborhood of vertex v in G. However, the urrent situation is more omplex beause the r-neighborhoods of the various verties in G are related, and thus modifying f at one vertex mayrequire modifying it in many other verties. This is where the non-propagating ondition omesinto play. Indeed, in the following analysis we shall refer to the funtion � provided by the non-propagating ondition. We shall also assume that �N 6= ; (and rely on the onvention that if�N = ; then T rejets without making any queries).Fixing any � > 0, let � > 0 be a relatively large number suh that �(�) < � (e.g., � =sup�(x)<�fxg=2). The number of verties at distane at most r + 1 from any vertex in a graph17The foregoing desription refers to the ase that �N 6= ;; otherwise, T just rejet without making any queries.18Needless to say, we need to identify edges that onnet pairs of verties that reside at level r. Furthermore, wealso need to identify edges that onnet verties at level r with verties at level r+1, or rather to verify that no suhedges exist for ertain verties. This is important in ase the embedding maps a vertex marked full to level r.24



of maximum degree d is at most Pr+1i=0 di < 2dr+1. By the de�nition of the r-neighborhood of avertex, the number of values that the r-neighborhood an take is upper bounded by 2(2dr+12 ) � 2dr+1(where the �rst term in the produt orresponds to the number of (unlabeled) graphs over 2dr+1verties, and the seond term orrespond to the hoie of the enter vertex). This expression isupper bounded by 2d3r . Hene, for m def= 2d3r , in any graph and for every Æ � 0, at most a Æ frationof the verties have an r-neighborhood that ours in less than a Æ=m fration of the verties. Now,onsider any N and any N -vertex graph G = ([N ℄; E) that is �-far from �, and let B denotethe set of verties that have an r-neighborhoods that ours in less than �N=m verties. By theaforementioned observation, jBj � �N . We laim that there exist  verties v1; :::; v 2 ([N ℄ n B)and a marked graph F 2 FN that an be embedded in G suh that the following holds. Forevery i � F some vertex of the ith onneted omponent of F is mapped to vi, where F � denotes the number of onneted omponents in F . This laim holds beause otherwise, for everyF 2 FN , every embedding of F in G must map some vertex of F to a vertex in B. By the non-propagating ondition this implies that the graph G is �(jBj=N)-lose to �N , whereas �(jBj=N) < �(in ontradition to G being �-far from �N ). Using the laim it follows that some F 2 FN anbe embedded in G so that for eah i the ith onneted omponent of F is mapped inside the r-neighborhood of some vi 2 ([N ℄ nB), and thus T rejets if it selets this sequene (i.e., v1; :::; v) ofstart verties. Realling that [N ℄ nB ontains only verties with an r-neighborhood that ours inmany (i.e., �N=m) verties, we proeed as in the foregoing warm-up (regarding generi funtionsfrom [N ℄ to [m℄). Spei�ally, the probability that  uniformly seleted verties of G have thisspei� forbidden sequene of r-neighborhoods (as the aforementioned v1; :::; v) is at least (�=m).Realling that T rejets when seeing this sequene of r-neighborhoods, we are done (i.e., we showedthat any graph that is �-far from � is rejeted with probability at least (sup�(x)<�fxg=2m)).We now turn to showing that any property that has a onstant-query proximity-oblivious testeris indeed loal and non-propagating. We start by providing anonial testers for the urrent model,where the anonization proess resembles (but is di�erent from) the proess applied in the adjaenymatrix model (see Theorem 4.7, whih uses [20, Thm. 4.5℄). Needless to say, unlike in the lattermodel, we have no hope to obtain non-adaptive testers (f. [25℄). Still, we may obtain a relaxednotion of non-adaptivity (i.e., a notion of \indiret non-adaptivity"), like the one impliit in thefollowing de�nition.De�nition 5.5.1 (anonial testers in the bounded-degree model): A probabilisti orale mahineM is alled anonial if, on input N and orale aess to g : [N ℄� [d℄! f0; 1; :::; Ng, the mahineM behaves as follows.1. For some predetermined funtion s : N ! N, the mahines selets uniformly a set S of s(N)elements in [N ℄.2. For some predetermined funtion ` : N ! N, the mahine onduts a `(N)-step BFS from eahvertex in S. That is, for every v 2 S, and every t = 1; :::; `(N) and i1; :::; it 2 [d℄, the mahineobtains the value g(v; i1; :::; it), where g(v; i1; :::; it) def= g(w; it) if w = g(v; i1; :::; it�1) 6= 0 andg(v; i1; :::; it) def= 0 otherwise. Indeed, if w = g(v; i1; :::; it�1) 6= 0, then the value g(v; i1; :::; it)is obtained by making the query (w; it).3. The mahine M deides aording to N and the subgraph of G explored by it. Spei�ally,M 's deision depends on a �xed set of marked graphs, denoted FN , suh that M aepts ifand only if no F 2 FN appears in the explored subgraph of G. That is, G is aepted if there25



is no embedding of any F 2 FN (in G) that maps eah vertex of F to a vertex that is atdistane at most `(N) from one of the s(N) start verties.Indeed, the tester T presented in the �rst part of the proof is anonial (with onstant s and`). Our point, however, is that any tester an be onverted into a anonial one. Unlike in theadjaeny matrix model (f. [20℄), the urrent transformation inurs an exponential blow-up inthe query omplexity. Sine we aim to apply this anonization transformation to (onstant-query)proximity-oblivious testers, we state the transformation for generalized testers allowing arbitraryrejetion probabilities of arbitrary no-instanes.Claim 5.5.2 Let T be a generalized one-sided error tester of query omplexity q for a property �of graphs of maximum degree d. Then, � has a anonial tester of query omplexity Q def= eO(dq)that always aepts any graph in � and rejets any graph G not in � with probability that is lower-bounded by the probability that T rejets G.Proof: The ore of the desired transformation is obtained by an adequate adaptation of the trans-formation provided in [20, Se. 4℄. Analogously to [20, Se. 4.1℄, we �rst onvert T into a testerT 0 that makes all queries as postulated in Steps 1 and 2 of De�nition 5.5.1, while setting s and` to equal q. After ating as postulated in these two anonial steps, the tester T 0 emulates theexeution of T while answering its queries as follows. When T makes a query (v; i) suh that vdid not appear in any prior query or answer, the tester T 0 alloates to v the next unused vertexu in the initial sample S, and otherwise T 0 just uses the alloation determined before; that is, if vdid not appear before then T 0 de�nes �(v) = u and otherwise T 0 just uses the value �(v) de�nedbefore. The answer provided by T 0 to the query (v; i) of T is ��1(g(�(v); i)) if the latter is de�ned,and otherwise the answer is de�ned as a new random value r (di�erent from all queries made byT and all answers given to T ) and �(r) is de�ned to equal g(�(v); i). If �(r) is in S then (in thefuture) it will be onsidered used.Note that all the values g(�; �) used by T 0 in the foregoing proess are values that appear in oneof the BFS exeutions (i.e., we use g(u; i) for either u 2 S or for some u that appeared as an answerto some prior query (w; j), i.e., u = g(w; j)). On the other hand, the exeution of T 0 on input Gorresponds to an exeution of T on a random isomorphi opy of G (where the isomorphism isprovided by the permutation �, whih is seleted on-the-y by T 0).Next, analogously to [20, Se. 4.2℄, we note that, without loss of generality, the deision of T 0is sample-oblivious and label-oblivious; that is, the deision depends only on the edges (and non-edges) among the explored verties (i.e., the underlying subgraph explored by the BFS exeutions),and not on the atual labels of these verties in G. This is proved by making T 0 aept withprobability that equals the average of all relevant probabilities (i.e., the aeptane probabilitiesthat are assoiated with eah of the possible relabellings of the subgraph), and observing that theprobability that the resulting T 0 aepts G equals the probability that the original T 0 aepted arandom isomorphi opy of G. Note that the deision of the resulting T 0 may still depends onan identi�ation of the s(N) initial verties (from whih the orresponding BFS exeutions werestarted), but it does not depend on the labels of these (or any other) verties.19Finally, we use the fat that T 0 has one-sided error in order to make the �nal deision deter-ministi as well as invariant under the identi�ation of the s(N) initial verties. Firstly, as in [20,19Indeed, the identity of the start vertex (of an exploration) need not be uniquely determined by the subgraphexplored in an `-step BFS, even when ` is known. Consider, for example, a 4-step BFS yielding the subgraphthat onsists of the edges f0; 1g; f1; 2g; f1; 3g; f2; 3g; f1; 4g; f4; 5g; f5; 6g. Note that the orresponding 4-step BFSexploration ould have been initiated at vertex 0 as well as either at vertex 2 (or 3) or at vertex 6.26



Se. 4.2℄, we note that if T 0 rejets with non-zero probability when seeing a partiular subgraph ofG then it must be the ase that G is not in �, and hene we may modify T 0 suh that it rejetswith probability 1 in this ase. Similarly, we may extend the rejetion riterion by omitting theidenti�ation of the s(N) initial verties (but maintaining the distintion between verties whoseneighborhood was fully explored and those disovered in the last step of one of the BFS exeutions).That is, if T 0 rejets with one identi�ation of the initial verties then the resulting tester will re-jet when seeing the same subgraph with any other possible identi�ation of the initial verties.Thus, the �nal deision of the resulting tester only depends on the marked graph that it sees in itsexploration, where verties are marked partial if and only if they were disovered at the last stepof one of the BFS exeutions (and are marked full otherwise). Indeed, this tester is anonial, andthe laim follows.Applying Claim 5.5.2 to any onstant-query proximity-oblivious tester for �, we obtain a anonialtester of onstant query omplexity. Letting F = (FN )N2N be the sequene of sets of markedgraphs used by (Step 3 of) this tester, we laim that, for every N and every N -vertex graph G, itholds that G 2 � if and only if G is FN -free. The laim follows by noting that G 2 � if and only ifthe anonial tester aepts it with probability 1, whih happens if and only if G is FN -free (by thedesription of the anonial tester and the de�nition of generalized subgraph freeness). It followsthat � is loal (and, in fat, it is F -loal).It is left to prove that F is non-propagating. We shall refer to the anonial tester derivedabove, and spei�ally to its detetion probability funtion � (whih equals the detetion probabilityfuntion of the onstant-query proximity-oblivious tester of the hypothesis). Let us denote the queryomplexity of the anonial tester by q. We de�ne � : (0; 1℄! (0; 1℄ so that �(�) equals a \relativelysmall" � 2 (0; 1℄ that satis�es �(�) > q� (e.g., �(�) = 2 inf�(x)>q�fxg if �(1=2) > q� and �(�) = 1otherwise). Note that, indeed, for every � > 0 there exists � > 0 suh that �(�) < �. We shall showthat F satis�es the non-propagating ondition with respet to this funtion � . For any N , onsiderany graph G = ([N ℄; E) and any B � [N ℄ suh that every embedding of any F 2 FN in G mapssome vertex of F to B. Assume, towards the ontradition, that G is �(jBj=N)-far from �N (while�N 6= ;), where �N denotes the set of N -vertex graphs that are FN -free. Then, the anonialtester must rejet G with probability at least �(�(jBj=N)). On the other hand, the anonial testermay rejet G only if one of the verties that it visits resides in B. Sine eah vertex is visited withprobability at most q=N , it holds that �(�(jBj=N)) � q � jBj=N , whih ontradits the de�nition of� (i.e., �(�(�)) > q�).20A quantitative version. We note that the proof of Theorem 5.5 provides a rather tight relationbetween the optimal detetion probability of onstant-query proximity-oblivious testers and thefuntion � used in the de�nition of the non-propagating ondition (f., De�nition 5.3). Spei�-ally, these two funtions are roughly inverses of one another; for example, polynomial detetionprobability (i.e., �(�) = �O(1)) orrespond to onstant-root funtions (i.e., �(�) = �
(1)), whereasexponential detetion probability (i.e., �(�) = 2�O(1=�)) orrespond to logarithmi funtions (i.e.,�(�) = O(1= log(1=�))). A loser look at the proof of Theorem 5.5 also yields the following orollary.Corollary 5.6 For every sequene of graphs F = (FN )N2N as in Theorem 4.7, the property of beingF-free has a onstant-query proximity-oblivious tester of polynomial detetion probability funtion(i.e., �(�) � poly(�)). Furthermore, the degree of this polynomial equals the maximum number ofonneted omponents in a graph in F .20Indeed, we assumed that � (�) < 1, and the laim hold vauously otherwise.27



We note that the said dependeny is optimal. Consider, for example, the graph F that onsistsof  < d onneted omponents suh that the ith omponent onsists of a single vertex markedfull that is onneted to i verties marked partial. Then, the set of fFg-free graphs onsists ofgraphs whose degree distribution does not ontain the entire set [℄ (i.e., for any fFg-free graph Gthere exists i 2 [℄ suh that no vertex in G has degree i). On the other hand, a onstant-queryproximity tester for this set has detetion probability �(�) = O(�), beause an N -vertex graph thatis �-far from this set may have �N verties of eah problemati degree (whereas we should see allproblemati degrees when rejeting).Proof: As shown in the proof of Proposition 5.4, this property is loal and non-propagating with�(�) = O(�). Let  denote an upper bound on the number of onneted omponents in any graphin F , and let r denote a orresponding bound on the radius of suh omponents. Then, the �rstpart of the proof of Theorem 5.5 implies that this property has a 2dr+1-query proximity-oblivioustester with detetion probability �(�) > (�= exp(d3(r+1))), where � = 
(�) satis�es �(�) < �. Thelaim follows.Easily testable properties having no proximity-oblivious testers. While onnetivity anbe tested with query-omplexity that is inversely proportional to the proximity parameter [17℄, thisproperty has no onstant-query proximity-oblivious tester. That is:Proposition 5.7 Connetivity has no onstant-query proximity-oblivious tester. Furthermore,onnetivity is not a loal property.Proof: Let F be a set of marked graphs as in De�nition 5.1, and suppose that the largest graphin F has n verties. We shall show that, for every N � 2n + 4, the set of onneted N -vertexgraphs does not oinide with the set of N -vertex graphs that are F -free. Consider, towards theontradition, a graph G that onsists of two isolated yles, eah of size at least n + 2. If G isF -free then we are done (sine G is not onneted). On the other hand, if G is not F -free, then weonsider an embedding of some F 2 F in G, and note that eah yle ontains at least one pair ofadjaent verties that are not in the image of this embedding (i.e., let (ui; vi) denote suh a pair onthe ith yle). Then, by swithing edges between the two yles, we obtain an N -vertex yle thatis still not F -free (i.e., replae the edges (u1; v1) and (u2; v2) by the edges (u1; u2) and (v1; v2)),and so we are done.5.4 ConlusionWe end this setion by expliitly stating the main problem left open.Open Problem 5.8 (are all loal properties non-propagating?) Let F = (FN )N2N be an arbitrarysequene of sets of marked graphs as in De�nition 5.2. Is it the ase that there exists another suhsequene F 0 = (F 0N )N2N that is non-propagating and de�nes the same property (i.e., for every Nand any N -vertex graph G it holds that G is FN -free if and only if G is F 0N -free)?Note that F 0N must depend on N even if FN does not depend on N (i.e., FN = F for a �xed F andall N).21 Reall that a property may be loal with respet to several di�erent sequenes of (sets21Consider the set F used in the proof of Part 1 of Proposition 5.4, and let F 0 be an arbitrary set of marked graphssuh that every graph is F 0-free if and only if it is F-free. Then, a graph G0 with an even number of verties that areeah of odd degree is F 0-free. On the other hand, augmenting G0 with a single isolated vertex, we obtain a graph Gthat is 
(1)-far from being F 0-free and yet only one vertex (i.e., the isolated vertex) must be ontained in the imageof any embedding of any F 0 2 F 0 in the graph G. 28



of) marked graphs, where some of these sequenes may be non-propagating and the other not (f.the proof of Part 1 of Proposition 5.4).A related hallenge is to determine relatively tight bounds on the funtion � orresponding tovarious non-propagating loal properties. In partiular, an � always be linear?6 Conluding CommentsIn this setion we present some generi observations and disuss a ouple of issues.6.1 Generi observationsAn obvious ondition for the existene of a onstant-query proximity-oblivious tester for a partiularproperty is the existene of onstant-size \refutations" for the property.De�nition 6.1 (refutations): For � = Sn2N �n as in De�nition 2.2, the sequene((x1; y1); :::; (xq ; yq)) is alled a refutations for membership in �n if for every f 2 �n there ex-ists j 2 [q℄ suh that f(xj) 6= yj. For s : N ! N, we say that � has size-s refutations if for everyn 2 N and every f : [n℄ ! f0; 1g� that is not in � there exists a sequene x1; :::; xs(n) suh that((x1; f(x1)); :::; (xs(n); f(xs(n))) is a refutations for membership in �n.Theorem 6.2 For s : N ! N, if a property � (as in De�nition 2.2) has an s-query proximity-oblivious tester, then it has size-s refutations.Like in the ase of Theorem 4.7 (see Footnote 6), we only rely on the fat that every funtionnot in � must be rejeted with positive probability (and we don't require this probability to besolely a funtion of the distane of this funtion from �). We note that the proof of Proposition 4.5impliitly used the statement in Theorem 6.2 (for onstant s and for the speial ase of bipartitness),and Proposition 5.7 ould have been proved using the theorem.Proof: Using �(�) > 0 for every � > 0, it follows that the proximity-oblivious tester must rejetany f 62 � with positive probability. Fixing an arbitrary f : [n℄ ! f0; 1g� that is not in �n,let x1; :::; xq 2 [n℄ be a sequene of queries made by the tester when rejeting f . Note that theone-sided error of the tester implies that ((x1; f(x1)); :::; (xq ; f(xq)) is a refutation for membershipin �n. The theorem follows.Disussion. We stress that (unlike Theorem 4.7) Theorem 6.2 only establishes a neessary ondi-tion, and reall that this ondition is not suÆient (see a dramati demonstration in [8℄).22 Indeed,the existene of a onstant-query proximity-oblivious tester (for property �) depends not only onthe existene of refutations (for membership in �) but also on the ability to �nd suh witnesseswith probability related to the distane of the funtion from the property (while making a onstantnumber of queries to the funtion). In the ontext of testing bounded-degree graphs (f. Setion 5)these qualities were linked to the non-propagating ondition. This link was based on the existene ofa anonial testers in the latter ontext, whereas suh testers may not exist in general. Still, in thegeneral setting, onstant-query proximity-oblivious testers are implied by standard non-adaptivetesters that rely on �nding onstant-size refutations.22Reall that [8℄ presents a property that has onstant-size refutations but no (standard) testers of sub-linear queryomplexity (even when �xing a suÆiently small onstant value of the proximity parameter). It follows that thisproperty has no proximity-oblivious testers of sub-linear (let alone onstant) query omplexity.29



Theorem 6.3 A property � as in De�nition 2.2 has a onstant-query proximity-oblivious tester if� has a standard tester T (of error probability 1=3) that satis�es the following three onditions:1. T is non-adaptive;2. T has query omplexity, denoted q : (0; 1℄! N, that only depends on the proximity parameter;and3. For some �xed s 2 N, the tester T rejets if and only if it �nds size-s refutations.Furthermore, assuming that q is monotonially non-inreasing, the resulting proximity-oblivioustester makes s queries and has detetion probability at least �(�) = 
(q(�=2)�s � �).Indeed, an observation similar to Theorem 6.3 underlies the proof of the positive part of Propo-sition 4.3. (In the latter proof we use the fat that the standard tester is further restrited andderived a stronger bound on �.) We note that in the ase of properties of funtions with a onstantsize range (e.g., Boolean funtions), any adaptive tester an be transformed into a non-adaptivetester with an exponential blow-up in the query omplexity. Hene, a variant of Theorem 6.3 holdsfor adaptive testers as well.Proof: On input n and orale aess to f : [n℄ ! f0; 1g�, the proximity-oblivious tester, T 0,proeeds as follows. First, T 0 selets i 2 f1; :::; dlog2 neg at random suh that the value i is seletedwith probability 2�i, and invokes (the query-generating algorithm of) T with the proximity pa-rameter 2�i. Thus, T 0 obtains a random set of queries that T issues (non-adaptively, on proximityparameter 2�i). Denoting this set by Q = fx1; :::; xq(2�i)g � [n℄, the proximity-oblivious testerselets a random s-subset of Q, and queries f on these indies. Finally, T 0 rejets if and only if theorresponding sequene of s queries and answers onstitutes a refutation for membership in �.Clearly, T 0 never rejets any f 2 �. Towards analyzing the detetion probability of T 0, let Ædenote the distane of f : [n℄! f0; 1g� from �n. Then, T 0 seleted i = dlog2(1=Æ)e with probability
(Æ), and onditioned on this event, with probability at least 2=3, the set of queries Q ombinedwith the orresponding answers (of f) ontains a size-s refutation. In this ase, a uniformly seletedset of s elements in Q yields a refutation with probability at least jQj�s = q(2�i)�s � q(Æ=2)�s.Disussion. Needless to say, Theorem 6.3 is appliable to many property testers, sine searhing(non-adaptively) for a refutation is a natural way in whih one-sided error testers proeed. Examplesinlude testers for properties suh as d-dimensional Eulidean metris [23℄, singletons [24℄, andjuntas [13℄, and various lustering problems (f. [2℄). We note that Theorem 6.3 is appliable alsoin ase the query omplexity of the original tester as well as the size of the refutation may depend onthe funtion's domain (i.e., [n℄), but in this ase we obtain a relaxed notion of proximity-oblivioustesting in whih the detetion probability may depend on the funtion's domain. That is, if theoriginal tester makes q(n; �) to any funtion over [n℄ and searhes for size-s(n) refutations, then weobtain a relaxed proximity-oblivious tester that makes s(n) queries and has detetion probabilityat least �(n; �) = 
(q(n; �=2)�s(n) � �).6.2 The ase of loally testable odesThe notion of proximity-oblivious testing was disussed in the ontext of loally testable odes(LTCs), whih are error-orreting odes augmented by eÆient odeword testers (i.e., testers forthe property of being a odeword). Spei�ally, proximity-oblivious (odeword) testers (with linear30



detetion probability funtion) orrespond to the de�nition of strong odeword tests as in [19,Def. 2.2℄, whereas a restrited form of standard (odeword) testers orrespond to the standardde�nition of odeword tests (alled weak in [19, Def. 2.1℄). We mention that while the mainresults of [19℄ refer to strong odeword tests, most subsequent work (inluding [11, Se. 8℄) referto (weak) odeword tests. It is indeed an open problem whether the parameters of [11, Cor. 8.8℄(i.e., onstant query omplexity and one-over-polylogarithmi rate) an be obtained with respetto strong odeword testing. That is:Open Problem 6.4 Do some error-orreting odes of onstant relative distane and one-over-polylogarithmi rate have onstant-query proximity-oblivious odeword testers?On the other hand, proximity-oblivious testers may provide a setting in whih one may establishinherent limitations on odeword testing. Spei�ally, we onjeture that error-orreting odesof onstant relative distane that have onstant-query proximity-oblivious odeword testers musthave rate that is inferior to arbitrary error-orreting odes of the same relative distane.6.3 Two-sided error probability POTThroughout this paper we onsidered proximity-oblivious testers (POTs) that always aept fun-tions having the property. As ommented in Setion 2, it is easier to de�ne the notion of proximity-oblivious testers in this setting (i.e., the setting of one-sided error probability). Still, one an alsode�ne a meaningful notion of two-sided error probability proximity-oblivious testers (POTs) bygeneralizing De�nition 2.2 as follows:De�nition 6.5 (De�nition 2.2, generalized): Let � = Sn2N �n and � : (0; 1℄ ! (0; 1℄ be as inDe�nition 2.2. A two-sided error POT with detetion probability � for � is a probabilisti oralemahine T that satis�es the following two onditions, with respet to a onstant  2 (0; 1℄:1. For every n 2 N and f 2 �n, it holds that Pr[T f (n)=1℄ � .2. For every n 2 N and f : [n℄! f0; 1g� not in �n, it holds that Pr[T f (n)=1℄ � � �(Æ�n(f)),where Æ�n(f) = ming2�nfÆ(f; g)g (as in Eq. (1)).The onstant  is alled the threshold probability.Indeed, De�nition 2.2 is obtained as a speial ase by letting  = 1. Furthermore, for every  2 (0; 1℄,every property � having a one-sided error POT also has a two-sided error POT that aepts everyfuntion in � with threshold probability  (e.g., onsider a generalized POT that ativates thestandard POT with probability  and rejets otherwise).We note that two-sided error POTs exist also for properties that have no standard POT. Astraightforward example is the property of Boolean funtions that have at least a � fration of1-values, for a onstant � 2 (0; 1). A more telling example refers to the set of Boolean funtionhaving a fration of 1-values that is at least �1 but at most �2, for 0 < �1 < �2 < 1. Assuming,without loss of generality, that �1 + �2 � 1, this property has a two-sided error POT that seletsuniformly two samples in the funtion's domain, obtains the funtion values on them, and aeptwith probability pi if the sum of the answers equals i, where p0 = 0, p1 = 1 and p2 = 2(�1 + �2 �1)=(�1 + �2).Additional results will be reported in a forthoming work.31
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A Alternative De�nitions of Generalized Subgraph FreenessIn this appendix we show that the notion of generalized subgraph freeness (as in De�nition 5.1)remains as expressive when disallowing either semi-full or partial markings.The emulation of partial markings by semi-full markings is analogous to the emulation of non-indued subgraph freeness by indued subgraph freeness. That is, every graph F = ([n℄; EF ),ontaining a vertex v that is marked partial an be replaed by a olletion of graphs F 0 = ([n℄; E0F )suh that E0F ontains EF as well as some additional edges inident at v, and v is marked semi-full.On the other hand, the e�et of a marked graph ontaining semi-full verties an be emulatedby a set of marked graphs in whih the orresponding verties are marked full but are onnetedto some auxiliary verties marked partial. Spei�ally, eah marked graph F 2 F is replaed bya orresponding set of marked graphs suh that eah F 0 in this set is as follows. (Note that bythe �rst emulation, we may assume without loss of generality that F ontains no verties markedpartial.) The vertex-set of F 0 onsists of the verties of F , whih are all marked full, and a set ofauxiliary verties, whih are all marked partial. All edges of F are edges in F 0, and in additionF 0 ontains some edges with at least one endpoint that is marked partial (representing a vertexoutside F ). Without loss of generality, we only add edges with exatly one endpoint marked partial(and the other endpoint marked full). Thus, F 0 onsists of a opy of F augmented by an arbitrarybipartite graph with verties of F (marked full) on one side and auxiliary verties (marked partial)on the other side. Without loss of generality, we only inlude a vertex that is marked partial if it isadjaent to some vertex marked full. All marked graphs F 0 that an be obtained in the foregoingmanner are inluded in the derived set of marked graphs F 0. Thus, bearing in mind that all graphshave maximum degree at most d, we replae eah marked graph in F by a �nite set of markedgraphs.
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