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Abstract

Several alternative formulations of the concept of an efficient proof system are nowadays
coexisting in our field. These systems include the classical formulation of NP, interactive proof
systems (giving rise to the class ZP), computationally-sound proof systems, and probabilistically
checkable proofs (PCP), which are closely related to multi-prover interactive proofs (MZIP).
Although these notions are sometimes introduced using the same generic phrases, they are

actually very different in motivation, applications and expressive power. The main objective of
this essay is to try to clarify these differences.

*This is a revised version of a survey which has appeared in Complexity Theory Retrospective II, L.A. Hemaspaan-
dra and A. Selman (eds.), 1996.



1 Introduction

In recent years, alternative formulations of the concept of an efficient proof system have received
much attention. Not only have talks and papers concerning these systems flooded the field of
theoretical computer science, but also some of these developments have reached the non-theory
community and a few were even reported in non-scientific forums such as the New York Times.
Thus, I am quite sure that the reader has heard of phrases such as “interactive proofs” and results
such as ZP = PSPACE.

By no means am I suggesting that the interest in the various formulations of efficient proof
systems has gone out of proportion. Certainly, the notion of an efficient proof system is central to the
field of computer science and I find it hard to conceive of circumstances in which one might say that
it was receiving too much attention. Furthermore, the research area established by these notions
has been one of the most successful and rewarding enterprises in which the theoretical computer
science community has been involved. For example, zero-knowledge proofs have revolutionized the
design of cryptographic protocols, and the characterization of AP in terms of probabilistically
checkable proofs has contributed to (and, in fact, revived) the attempts to classify the complexity
of approximation problems.

Except for NP, all proof systems reviewed below are probabilistic and furthermore have a non-
zero error probability. However, the error probability is explicitly bounded and can be reduced by
successive applications of the proof system. In all cases, non-zero error probability is essential to
the interesting properties and consequences that these probabilistic proof systems have.

Referencing convention

I have decided to proceed in a somewhat unconventional way and have decoupled the technical
exposition from the story behind its evolution. These parts appear in separate sections, which can
be read independently of each other. When reading the technical part, the reader should bear
in mind that the references in this part are minimal (and definitely sub-standard), with the sole
objective of referring the reader to the best source for more details. (I wish to stress that the “best
source for more details” is not necessarily the source that deserves the most credit!) The situation
is reversed in the “story part,” which contains only credits, or more accurately my evaluation of
the contribution of the various works to the development of the field.

Addendum

The current version is augmented by an open problems section.



2 A Technical Exposition

The notion of a proof is one of the more fundamental notions of our culture. In particular, it
is central to science and specifically to mathematics and computer science. Yet, although people
always talk of proofs, the fundamental issue is the verification procedure. Proof systems are defined
by their verification procedure, and it is the verification procedure that gives them their value.

The notion of a verification procedure assumes the notion of computation and furthermore
efficient computation. This implicit assumption is made explicit in the definition of A'P. It is the
association of efficient computation with (deterministic) polynomial-time algorithms that yields the
association of efficient proof systems with the class AP. Namely, to prove the validity of some
statement ¢, one supplies a (relatively short) proof 7, and the verification procedure consists of
running a polynomial-time algorithm on input (¢, 7).

Technical Remarks: All complexity measures mentioned in the subsequent exposition are assumed
to be constructible in polynomial time. We denote by poly the set of all polynomials and by log

the set of all logarithmic functions (i.e., integer functions bounded by O(logn)). We adopt the

standard notations £XP L' DTIME(2P°Y) and NEXP ef NTIME(2P°Y).

2.1 Interactive Proof Systems

In light of the growing acceptability of randomized and interactive computations, it is only natural
to associate the notion of efficient computation with probabilistic and interactive polynomial-time
computations. This leads naturally to the notion of an interactive proof system in which the verifi-
cation procedure is interactive and randomized, rather than being non-interactive and deterministic
(as in AP). A sketch® of the formal definition is given in Item (1) below. (We stress that no com-
putational restrictions are placed on the prover.) Items (2) and (3) introduce additional complexity
measures that can be ignored in a first reading.

Definition 1 (Interactive Proofs — IP)

1. An interactive proof system (ips) for a language L is a pair (P, V) of interactive machines, so
that V is a probabilistic polynomial-time machine, satisfying

o Completeness: For every x € L the verifier V always accepts after interacting with the
prover P on common input x.

e Soundness: For every x € L and every potential prover P*, the verifier V rejects with

probability at least %, after interacting with P* on common input x.

2. Let m and r be integer functions. The complexity class TP (m(-),r(-)) consists of languages
having an interactive proof system in which, on common input x, the verifier uses at most
r(|z|) coin tosses and the total number of messages exchanged between the parties is bounded
by m(|xl).

3. Let M and R be sets of integer functions. Then,
IP(Mv R) d:ef UmEM,rERIP(m(')v T‘())

Finally, TP (m(-)) ef IP(m(:),poly) and IP et IP(poly).

"We avoid the definition of “interacting machines.” This definition can be found in [48, 43].




In Item (1), we have followed the common convention of specifying both the verifier and the prover.
An alternative presentation only specifies the verifier while rephrasing the completeness condition
as follows:

There exists a machine P (a prover) so that, for every # € L, the verifier V' always
accepts after interacting with PP on common input z.

The soundness condition allows for errors; that is, executions in which the verifier accepts @ ¢ L.
Yet, the error is explicitly bounded by % In general, one may consider the error probability (in
the soundness condition) as another parameter. It is not hard to see that the error probability in
interactive proofs can be reduced by independent sequential and/or parallel repetitions. Actually,
this holds even for somewhat dependent parallel repetitions; see [14], which is instructive also for
the simpler case of independent parallel repetitions. On the other hand, requiring zero soundness
error, in interactive proof systems, restricts their existence to languages in NP [38].

We stress that although we have relaxed the requirements from the verification procedure, by
allowing it to interact, toss coins and err with bounded probability, we did not restrict the validity
of the assertions by assumptions concerning the potential prover. (This should be contrasted with
later notions of proof systems, such as computationally-sound ones and multi-prover ones, in which
the validity of the soundness condition depends on assumptions concerning the external proving
entity.)

2.1.1 Known results

Clearly, ZP (0, poly) equals coRP, whereas ZP(1,0) equals NP. Furthermore, ZP(1,poly) con-
tains BPP (see [57] or [38]). Hence, TP D ZP(1,poly) contains BPP UNP, whereas we currently
do not know whether NP contains BPP. It is also easy to see that ZP(0,log) collapses to
IP(0,0) = P, whereas TP (poly,log) collapses to ZP(1,0) = AP. The main result concerning
interactive proof systems is that they exist for any language recognizable in polynomial space.
Namely,

Theorem 1 [60, 71] ZP = PSPACE.*

Theorem 1, was established using algebraic methods. In particular, the following approach —
unprecedented in complexity theory — was employed: In order to demonstrate that a particular
language is in a particular class, an arithmetic generalization of the Boolean problem is presented,
and (elementary) algebraic methods are applied to show that the arithmetic problem is solvable
within the class. Interestingly, this technique “does not relativize.” and, furthermore, yields results
(e.g., IP = PSPACE) that are false relative to most oracles, providing a dramatic refutation of
the “Random Oracle Hypothesis”; see [29].

Concerning the finer structure of the IP-hierarchy, the following is known:

e For every integer function, f, so that f(n) > 2 for all n, the class ZP(O(f(-))) collapses to
the class ZP(f(+)), and in particular ZP(O(1)) collapses to ZP(2) [10].

e The class ZP(2) contains languages not known to be in NP e.g., Graph Non-Isomorphism [43].

2See [60] for the general technique and [71] for its application yielding the quoted result.



e The class ZP(2) is contained in NP /poly (i.e., nonuniform-NP), analogously to BPP C
P /poly.

o If coN'P C IP(2) then the polynomial-time hierarchy collapses [26].

It is conjectured that coN'P is not contained in ZP(2), and consequently that interactive proofs
with an unbounded number of message exchanges are more powerful than interactive proofs in
which only a bounded (i.e., constant) number of messages are exchanged.

The IP-hierarchy (i.e., ZP(-)) equals an analogous hierarchy in which the verifier is restricted to
send the outcome of any coin it tosses [49]. The latter restricted proof systems are called Arthur-
Merlin games or public-coin interactive proofs. In addition, aside from the zero-level and 1-level,
the IP-hierarchy equals an analogous two-sided error hierarchy [38]. In the latter proof systems
the completeness condition is relaxed so that the verifier is required to accept each x € L with
probability at least %

2.1.2 Zero-Knowledge and Knowledge Complexity

Zero-knowledge is a central notion in cryptography. Here, we only discuss its conceptual signif-
icance to the theory of proof systems. Zero-knowledge proofs are interesting as they exhibit a
somewhat extreme contrast between being convinced of the validity of a statement and learning
something in addition while receiving such a convincing proof. Namely, zero-knowledge proofs have
the remarkable property of being convincing while yielding nothing to the verifier beyond the fact
that the statement is valid.

In the formulation of the statement “(P, V) is a zero-knowledge proof system for the language
L” one considers two probability distributions, for each input z in L:

1. The output distribution of the verifier® after interacting with the specified prover P on com-
mon input z.

2. The output distribution of some probabilistic polynomial-time machine (not interacting with
anyone), on input z.

The basic paradigm of zero-knowledge asserts that for every distribution of type (1) there exist
a “similar” distribution of type (2). The specific variants differ by the interpretation given to
“similarity.” The most strict interpretation, leading to perfect zero-knowledge, is that similarity
means equality. A somewhat relaxed interpretation, leading to almost-perfect zero-knowledge, is
that similarity means statistical closeness (i.e., negligible difference between the distributions).
The most liberal interpretation, leading to the standard usage of the term zero-knowledge (and
sometimes referred to as computational zero-knowledge), is that similarity means computational
indistinguishability (i.e., failure of any efficient procedure to tell the two distributions apart).

The most important result concerning zero-knowledge is that, assuming the existence of one-way
functions, each language in AP (and actually even in ZP) has a zero-knowledge interactive proof
system; see [43, 64, 50] (and [19], respectively). This result should be contrasted with the results
regarding the complexity of almost-perfect zero-knowledge proof systems, namely, that such proof
systems exist only for languages in ZP(2) N coZP(2) [2, 35].* Also, a recent result indicates that
one-way functions are essential for the existence of zero-knowledge proofs for hard languages (i.e.,
languages that cannot be decided in average polynomial time) [67]. Non-zero error probability is

®The verifier is not necessarily the one specified (i.e., V) — yet, for sake of simplicity this issue is ignored here.
*See also an appendix in [45] indicating an error in [35].



essential also to zero-knowledge proofs (which otherwise exist only for coRP [44]). Hence, besides
the apparent strengthening of expressive power, interactive proof systems do offer some properties
(specifically, zero-knowledge) that cannot be offered by an NP-proof system.

An extensive treatment of zero-knowledge can be found in [41]. Zero-knowledge is the lowest
level of several knowledge-complexity hierarchies that quantify the “amount of knowledge revealed”
by a proof system. Definitions and results concerning these hierarchies can be found in [46], [45]

and [1].

2.1.3 How powerful should the (“completeness”) prover be?

Assume that a language L is in ZP. This means that there is a verifier V that can be convinced
to accept any input in L but cannot be convinced to accept an input not in L. One can ask how
powerful should a prover be so that it can convince the verifier V to accept an input in L. More
interestingly, considering all possible verifiers that give rise to an interactive proof system for L,
what is the minimum power required from a prover that satisfies the completeness requirement
with respect to one of these verifiers? We stress that, unlike in the case of computationally-sound
proof systems (discussed below), we do not restrict the power of the prover in the soundness con-
dition but rather consider the minimum complexity of provers meeting the completeness condition.
Specifically, we are interested in relatively efficient provers (meeting the completeness condition).
The term “relatively eflicient prover” has been given three different interpretations.

Ist interpretation: A prover is considered relatively efficient if, when given an auxiliary input (in
addition to the common input in L), it works in (probabilistic) polynomial time. Specifically, in the
case L € NP, the auxiliary input may be an NP-witness that the common input is in the language.
Even in this case, the interactive proof need not consist of the prover sending the auxiliary input
to the verifier; for example, an alternative procedure may allow the prover to be zero-knowledge
(see [43]). This interpretation is adequate and in fact crucial for applications in which such an
auxiliary input is available to the otherwise polynomial-time parties. Typically, the auxiliary input
is available in cryptographic applications in which both the input and an NP-witness for it are
generated by some party who later wishes to prove (in zero-knowledge) that the input is in the
language.® See [43].

2nd Iinterpretation: A prover is considered relatively efficient if it can be implemented by a proba-
bilistic polynomial-time oracle machine with oracle access to the language L itself. This interpre-
tation generalizes the notion of self-reducibility of NP languages. (By self-reducibility of an NP
language we mean that the search problem of finding an NP-witness is Cook-reducible to deciding
membership in the language. Thus, every NP-complete language has a relatively efficient proof
system.) See [16].

3rd interpretation: A prover is considered relatively efficient if it can be implemented by a proba-
bilistic machine that runs in time that is polynomial in the deterministic complexity of the language.
This interpretation relates the difficulty of convincing a “lazy” verifier to the complexity of finding
the truth alone. Hence, in contrast to the first interpretation, which is adequate in settings where
NP-assertions are generated along with their NP-proofs, the current interpretation is adequate in
settings in which the prover is given only an assertion and has to convince itself of the validity of
the assertion (before trying to convince a lazy verifier of its validity). See [63].

5For example, suppose a party generates a composite number by multiplying together two primes, and that it
later wishes to prove in (in zero-knowledge) that the number it has chosen indeed has this form. Then this is an
NP-statement and the primes are the NP-witness for it.



2.2 MIP and PCP

In contrast to the setting of interactive proofs, where no restrictions have been placed on the prover,
the two settings discussed in this section do impose restrictions on the prover. Interestingly, the
(“expressive”) power of the proof system is increased by these restrictions, unless PSPACE =
NEXP (in which case the systems are equally powerful). We wish to stress that there is nothing
wrong in the fact that a proof system becomes more powerful once the prover is restricted. Indeed,
this restricts the prover’s abilities in case the input is in the language; but it also restricts the
prover’s ability in case the input is not in the language. Thus, in general, when restricting the
power of the prover, the expressive power of the proof system can change in an arbitrary way (and
in particular — stay the same). Yet, the effect of these restrictions in typically more drastic on the
soundness condition than on the completeness condition (since the former employs an existential
quantifier whereas the latter employs a universal quantifier).

But what is the justification for restricting the prover? One answer is that in particular ap-
plications this restriction can be imposed (on the potential provers). A second answer is that this
restriction yields an alternative characterization for a fundamental complexity class (i.e., N'P) and
that this alternative characterization enables one to get important results.

2.2.1 Multi-Prover Interactive Proof Systems (MIP)

In the multi-prover interactive proof setting, the prover is split into two (or more) entities and the
restriction (or assumption) is that these entities cannot interact with each other. Actually, the
formulation allows them to coordinate their strategies prior to interacting with the verifier® but it
is crucial that they do not exchange messages among themselves while interacting with the verifier.
It is customary to call each of these proving-entities a “prover” and hence the term “multi-prover

7 It turns out that two-prover systems are as powerful as multi-prover ones (even

proof systems.
such in which the number of provers is a parameter that is polynomially related to the input length).

For sake of concreteness, a definition of two-prover proof systems is given below.

Definition 2 (Two-Prover Interactive Proofs) A two-prover interactive proof system for a lan-
guage L is a triplet (P1, P2, V') of interactive machines, so that 'V is a probabilistic polynomial-time
machine, satisfying

e Completeness: For every x € L the verifier V. always accepts after interacting separately and
concurrently with the provers Pi and P, on common input x.

e Soundness: For every x ¢ L and every potential pair of provers, Py and P}, the verifier

V' rejects with probability at least %,

provers Py and Py, on common input x.

after interacting separately and concurrently with the

The set of languages having two-prover proof systems is denoted by MIP.

The two-prover model is reminiscent of the common police procedure of isolating collaborating
suspects and interrogating each of them separately. A typical application in which the two-prover
model may be assumed is an ATM that verifies the validity of a pair of smart-cards inserted
in two isolated slots of the ATM. The advantage in using such a split system is that it enables
the presentation of (perfect) zero-knowledge proof systems for any language in NP, using no
intractability assumptions [20].

6This is implicit in the universal quantifier used in the soundness condition.



2.2.2 Probabilistically Checkable Proofs (PCP)

When viewed in terms of an interactive proof system, the probabilistically checkable proof (PCP)
setting consists of a prover that is memoryless. Namely, one can think of the prover as being an
oracle and of the messages sent to it as being queries. A more appealing interpretation is to view
the PCP setting as an alternative way of generalizing AN/P. Instead of receiving the entire proof and
conducting a deterministic polynomial-time computation (as in the case of N'P), the verifier may
toss coins and query the proof only at locations of its choice. Potentially, this allows the verifier to
utilize very long proofs (i.e., of super-polynomial length) or alternatively inspect very few bits of a
(polynomially long) proof. The basic definition of the PCP setting is given in Item (1) below. Yet,
the complexity measures introduced in ltems (2) and (3) are of key importance for the subsequent
discussions, and should not be ignored.

Definition 3 (Probabilistic Checkable Proofs — PCP)

1. A probabilistic checkable proof system (pcp) for a language L is a probabilistic polynomial-time
oracle machine (called verifier ), denoted V', satisfying

o Completeness: For every @ € L there exists an oracle set 7, so that V, on input x and
access to oracle w,,, always accepts x.

e Soundness: For every @ ¢ L and every oracle set m, machine V', on input x and access
to oracle &, rejects x with probability at least %

2. Let r and q be integer functions. The complexity class PCP(r(-),q(-)) consists of languages
having a probabilistic checkable proof system in which the verifier, on any input of length n,
uses at most r(n) random coins and makes at most q(n) queries.

3. Let R and Q) be sels of integer functions. Then,

PCP(R, Q) Y UrereqPCP(r(), q(-))-

Note that the oracle 7, in a pcp system constitutes a proof in the standard mathematical sense.
(Jumping ahead, the oracles in pcp systems characterizing NP have the property of being NP
proofs themselves.) Yet, this oracle has the extra property of enabling a lazy verifier to toss coins,
take its chances and verify the proof without reading all of it (but rather by reading a tiny portion
of it).

Typical applications for probabilistically checkable proofs arise from settings in which the prover is
“committed” to a single “proof” and cannot modify it depending on previous queries of the verifier.
See, for example, [8, 55].

2.2.3 The expressive power of PCP

Clearly, PCP(poly, 0) equals coRP, whereas PCP(0, poly) equals A'P. It is easy to prove an upper
bound on the nondeterministic time complexity of languages in the PCP hierarchy. Namely,

Proposition 1 For every integer function r(-), the class PCP(r(-), poly) is contained in NTIME(20("()Hog())y,
Hence, PCP(log,poly) C N'P.

Proof Sketch: Observe that guessing the best oracle amounts to guessing only 27(%) - poly(n)
many oracle values. O

These upper bounds turn out to be tight, but proving this is much more difficult (to say the least).



Theorem 2 [8, 32, 6, 5] NP is contained in PCP(log,O(1)).”

Corollary 1 (The PCP characterization of NP) NP = PCP(log,O(1)).

I consider the proof of Theorem 2 to be one of the most complicated proofs in computer science
and believe that it is very important to find a simpler proof that may be taught in an advanced
complexity theory class. By adapting the proof of Theorem 2, one gets also:

Theorem 3 (Theorem 2 — Generalized): Let t(-) be an integer function so that n<t(n)<2Po¥(®),
for all n’s. Then, the class NTIME(t(+)) is contained in the class PCP(O(logt(-)),O(1)).

Corollary 2 NEXP = PCP(poly,O(1)).

Interestingly, the two complexity measures in the PCP-characterization of NP can be traded off,
so that at the extremes we get NP = PCP(log,O(1)) and NP = PCP(0,poly), respectively.

Proposition 2 There exist constants o, 3 > 0 such that for every integer function l(-), so that
0<i(n) <alogyn,
NP =PCP(r(),a(),

where r(n) = alogyn —I(n) and q(n) = 2107,

Proof Sketch: Starting with Theorem 2, one can scan all possibilities for the [(n)-long prefix of
the random tape of the verifier. O

Sequential repetitions can be used to reduce the error probability of pcp/mip systems. Furthermore,
error reduction can be obtained at very moderate cost in the randomness complexity (cf. [15]).
Parallel repetition is a much more complex matter (than in the context of interactive proof systems);
see [69] (and do not get misled by an error in an early version of [36]). On the other hand, non-
zero error probability is essential to the above results as otherwise one can eliminate randomness
altogether and use PCP(0, ¢(-)) € DTIME(2? - poly).

Finally, we mention that one can convert a multi-prover interactive proof system into a probabilis-
tically checkable proof, and vice versa. The translation in the first direction is easy (i.e., just prefix
each verifier-message by the identity of the prover), but the translation in the other direction is
more complex; see [36, 73].

2.2.4 PCP and Approximation

Interestingly, Theorem 2 can be rephrased without mentioning the class PCP at all.® Instead, a
new type of polynomial-time reduction, which we call amplifying, emerges.

"The result NP C PCP(poly log, poly log) can be found in [8], although this paper uses a different model and
terminology. Furthermore, NP C PCP(log, poly log) is easily obtained from [8], by using standard de-randomization
techniques. For a proof of NP C PCP(f(-), f(+)) with f(rn) = O(logn -loglog n), see [32]. The proof of the quoted
result is more complex and can be found in [6, 5] (see also 3, 72]).

8Below we prove that Theorem 2 implies the rephrased form. The converse is proven by starting with an amplifying
reduction of 3SAT to itself and constructing a pcp system for 3SAT as follows. The oracle in this system is viewed
as a function from variables (of the reduced formula) to Boolean values. The verifier uniformly selects a clause (in
the reduced formula) and inspects the value of the variables that appear in it.



Theorem 4 (Theorem 2 — Rephrased): There exist a constant p < 1, and a polynomial-time
reduction of 35AT to itself, so that the reduction maps non-satisfiable 3CNF formulae to 3CNF
Jormulae for which every truth assignment satisfies at most a p fraction of the clauses.

Proof Sketch: Start by considering the pcp system for 3SAT (guaranteed by Theorem 2). Use
the fact that the pcp system used in the proof of Theorem 2 is non-adaptive? (i.e., the queries are
determined as a function of the input and the random-tape — and do not depend on answers to
previous queries). Next, associate the bits of the oracle with Boolean variables and introduce a
Boolean formula for each possible value of the random tape, describing whether the verifier would
have accepted given this value of the random tape. Finally, using auxiliary variables, convert
each formula into 3CNF and obtain (as the output of the reduction) the conjunction of all these
polynomially many formulae. O

As an immediate corollary one gets results concerning the intractability of approximation. For
example,

Corollary 3 (Hardness of Approximating Max3SAT)  There exists a constant p < 1 so that the
following approzimation problem (known as Max3SAT) is NP-hard:

Given a satisfiable 3CNF formula, find a truth assignment that satisfies at least a p
fraction of its clauses.

Thus, given a satisfiable SCNF formula, it is as hard to find a truth assignment that satisfies a p
fraction of its clauses as it is to find a truth assignment that satisfies all clauses.

Consequently, for any approximation problem in the class MAX-SNP-complete (cf. [68] and [54]),
there exists a constant so that approximating the problem up to this constant is NP-hard. It follows
that, unless P = NP, there exist no polynomial-time approximation schemes (i.e., a sequence of
polynomial-time approximation algorithms, one for each constant approximation ratio) for any
problem in the class MAX-SNP-complete. Results for approximation problems not in the class
MAX-SNP can be derived as well — see [4]. An alternative perspective, aimed at obtaining tight
non-approximability results, is presented in [15].

I believe that amplifying reductions are interesting for their own sake and may find other applica-
tions in complexity theory.

2.3 Computationally Sound Proof Systems

In the two settings just discussed (i.e., MIP and PCP) the restrictions imposed on the prover were of
a “physical” nature. In the current section we discuss models derived from the model of interactive
proofs by imposing computational restrictions (specifically, time bounds) on the prover. Although
these restrictions apply to potential provers in both the completeness condition and the soundness
condition, the effect of the restriction is more dramatic on the soundness condition.!® Hence,
proof systems with computational restrictions on the potential provers are commonly referred to
as “computationally sound.” The computational restriction in the soundness condition seems to

? Actually, this is not essential as one can convert an adaptive system into a non-adaptive one, while incurring an
exponential blowup in the query complexity (which in our case is a constant).

1n fact, the prover in the completeness condition typically has bounded complexity although the definition of an
interactive proof system does not impose such a restriction. In particular, every language in ZP has a proof system
in which the prover works in polynomial space. For further discussion see subsection 2.1.3.



upset the puristic intuition about proofs (even more than the restrictions discussed in the previous
section). Yet, from the point of view of computer science, the computational restriction is quite
natural and furthermore it is justified in many applications.

There are two types of computationally sound proof systems. In the first type, called arguments,'!
the computational restriction is that the potential provers, given access to an auxiliary input, run
in polynomial time (or more generally, in time that is polynomially related to the nondeterministic
complexity of the language). In the second type, called CS-proofs,'? the computational restric-
tion is that the potential provers run in time that is polynomially related to the deterministic
complexity of the language. These computational restrictions are analogous to two of the interpre-
tations discussed in subsection 2.1.3. Specifically, in argument system the “lst interpretation” is
imposed on the provers of both soundness and completeness condition, whereas in CS-proofs the
“3rd interpretation” is imposed.

2.3.1 Argument Systems

The definition of an argument system is derived from the definition of an interactive proof system
by modifying the completeness and soundness conditions as follows.

e Completeness: The prover P runs in time polynomial in the length of the common input. For
every « € L, there exists an auxiliary input (for the prover), w,, so that the verifier V' always
accepts after interacting with P(w,) on common input z.

e Soundness: For every probabilistic polynomial-time!® machine P*, for all sufficiently long

x ¢ L, and for all w € {0,1}*, the verifier V rejects with probability at least %, after
interacting with P*(w) on common input z.

Both conditions can be rephrased by using (non-uniform) families of circuits of polynomial size.
As discussed above, argument systems are adequate for modeling the behavior of parties in a real-
life setting. Under strong intractability assumptions, argument systems exhibit advantages over
interactive proof systems.' Let us start by stating these assumptions.

Definition 4 (Collision-Free Hashing)  Consider a family of hash functions, indexed by strings,

3 {fo:{0,1}2°l— 40, 1}11},, so that there exists a polynomial-time algorithm for evaluating F

(i.e., on input o and x returns f,(x)). The family I’ is called collision-free w.r.t. complexity ¢(-) if
for every non-uniform family of circuits {C,} with size bounded by c(-), and all sufficiently large
n’s, the probability that C,,, given a uniformly chosen o € {0,1}", outputs a pair (z,y) so that
fa(z) = faly), is bounded above by 1/c(n). The family F is called collision-free if it is collision-
Sfree w.r.t. all polynomials, and is called strongly collision-free if, for some ¢ > 0, il is collision-free

w.r.t. the function f(n) el e,

"Tn some early works, and in particular in [27], argument systems are negligently referred to as “interactive proofs.”
This i1s quite confusing since arguments differ from interactive proofs not only by definition but also in expressive
power (unless PSPACE C IP(1)) and in zero-knowledge properties [27, 35] (unless the polynomial-time hierarchy
collapses [26]).

12 Actually, there are three variants of this model — see [62, 63]. In the current subsection we concentrate on the
“Interactive” variant of [62]. A brief discussion of the “non-interactive” variants of [63] is postponed to subsection 2.4.

'3 Again, this means a running time polynomial in the length of the common input.

" Below, we consider the expressing power of both models. An additional advantage of argument systems is that,
under strong intractability assumptions, there exist perfect zero-knowledge arguments (rather than computational
zero-knowledge interactive proofs) for any language in NP [27].
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Collision-free functions exist assuming the intractability of factoring integers (i.e., in polynomial
time). Strong collision-free functions exist if integers cannot be factored in time 2", for some € > 0.

Theorem 5 [55]: Let L € NP and assume the existence of collision-free functions (resp., strong
collision-free functions). Then, for every e>0, there exists an argument system for L in which the
randomness and communication complexities of the verifier, on inputs of length n, are both bounded
by n® (resp., poly(log(n))). Furthermore, the computational complexity of the verifier is quadratic
in the length of the input.

We stress that Theorem 5 is meaningful also in case L € P;in particular, it offers quadratic verifi-
cation time, independently of the (possibly higher) deterministic complexity of the language. Inter-
estingly, the results of Theorem 5 are unlikely for interactive proof systems, due to the following!®:

Proposition 3 Suppose that I has an interactive proof system in which both the randomness

and communication complexities of the verifier are bounded by an integer function c(-). Then
L € DTIME(20(c()+leg(-)y

Proof Sketch: Consider the tree of all possible executions. O

2.3.2 CS-Proof Systems

The definition of a CS-proof system is derived from the definition of an interactive proof system
analogously to the way the definition of an argument system is derived. The only difference is that
here the potential provers are uniform probabilistic machines, with no auxiliary inputs, running in
time polynomial in the deterministic complexity of the language. A result analogous to Theorem 5
is obtainable also in the current setting. Specifically,

Theorem 6 [62]: Let L € EXP. Then, assuming the existence of strong collision-free functions,
there exists a CS-proof system for L. Furthermore, the computational complexity of the verifier is
quadratic in the length of the input and polylogarithmic in the deterministic complexity of L.

2.4 Other Types of Proof Systems

Of the other types of proof systems, I’'m going to discuss only two, which are slightly problematic,
and also this will be done quite abruptly.

2.4.1 Non-Interactive Proof Systems

The phrase “non-interactive” is often misleading. Indeed, in all models that are called “non-

interactive,” the interaction between the prover and the verifier is minimal; it consists of the
prover sending a single message to the verifier (as in the case of an NP-proof). Yet, in most
“non-interactive” models, both the prover and the verifier interact with a (trusted) random string
(cf., [22, 21]) or even query a random oracle (cf., the so-called “Guaranteed CS-proofs” of [63]).
However, in addition to NP-proofs, there is another model that is truly non-interactive, namely,
the so-called Cryptographic CS-proof [63]. Cryptographic CS-proofs are short “certificates” that
can be efficiently verified (like NP-proofs), are “relatively easy” to find for inputs in the language,
but are very hard to find (rather than do not exist) for inputs not in the language. Namely, for

15See [42] for further investigations.
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1P arguments CS-proof PCP MIP
restrictions | none poly-time polynomial | memoryless | split
on prover 4+ aux. input | in Dtime (i.e., oracle) | entity
motivation | generalize restrict IP augment see
(as I see it) | NP (see Remark 1) NP Remark 2
expressive | PSPACE | ZP(1) C PH | EXP!® scalable: NTIME(2/(%)),
power for rnd+query = O(l(n))

Figure 1: Comparison of various proof systems

valid assertions, Cryptographic CS-proofs can be found in time polynomial in the (deterministic)
complexity of (deciding) the language; whereas, for invalid assertions, false certificates cannot be
found within such time bounds. Unfortunately, the existence of (non-trivial) Cryptographic CS-
proofs is not known to be reducible to standard complexity assumptions; yet, plausibility arguments
towards the existence of the former can be found in [63].

2.4.2 Proofs of Knowledge

The concept of a proof of knowledge is very appealing, yet its precise formulation is much more
complex than one may expect; see [13]. A key notion in the definition is that of a knowledge
extractor. Loosely speaking, a knowledge-verifier for a relation R guarantees the existence of a
knowledge extractor that on input z and access to any interactive machine P* outputs a y so
that (2, y) € R, within complexity that is inversely proportional to the probability that the verifier
accepts & when interacting with P*.

2.5 Comparison

In Figure 1, I've tried to summarize the differences between the various notions of efficient proof
systems. The class AP has been omitted for obvious reasons. 1 view ZP as the natural general-
ization of NP, obtained by relaxing the notion of efficient computation so that probabilism and
interaction are allowed. Except for the negligible probability of error, which can be controlled by
the verifier, the original flavor of a proof is maintained. Also, | view PCP(log, O(1)) as an augmen-
tation of NP with the extra property of allowing a hasty verifier to take its chances and verify the
proof in a super-fast manner. In contrast, the two notions of computationally sound proof systems
(i.e., arguments and CS-proofs) deviate significantly from the conservative approach of absolute
proofs. Yet, computational soundness seems adequate in most practical settings. The only word
of warning is that typical results in these latter settings depend on intractability assumptions, and
when evaluating these results one should not ignore the relative severeness of these assumptions.

Remark 1: Arguments and CS-proof systems are derived by imposing computational restrictions on
the potential provers in both the completeness and soundness conditions. In both cases the moti-
vation for these restrictions is to obtain properties that interactive proofs do not (seem to) have. In
the case of argument systems the advantageous properties are very low communication complexity
and perfect zero-knowledge (for N'P). Interestingly, the expressive power of the system does not
increase in this case (but rather decreases). In the case of CS-proof systems the advantageous
property is the linking of the complexity of proving to the complexity of deciding. Interestingly,
the expressive power of the system seems to increase as well (unless PSPACE = EAP).

% Depending on (strong) intractability assumptions.
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Remark 2: The MIP model indeed generalizes the IP model. However, in my opinion, this general-
ization is less natural than the generalization of NP to IP. As far as I am concerned, the MIP model
is justified by cryptographic applications (see subsection on MIP). (The transformations between
MIP systems and PCP systems does not mean that the motivation of one model can be moved to
the other.)
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3 The Story

In this section I will try to provide a historical account of the ideas that led to the exciting
developments concerning the various types of efficient proof systems. My account is certainly a
subjective one and it concentrates on my evaluation of the conceptual contributions, their declared
intentions, and their effect on subsequent developments.

The story of these research developments, as any real story, has a complex structure that needs
to be simplified so that the reader does not get lost in its web. Thus I have broken the story into
several independent linearly structured stories, which do cross each other. I will begin with the
story of the evolution of proof systems, and then pass to the story of their applications to deriving
hardness results for approximation problems, program checking and zero-knowledge proofs.

3.1 The Evolution of Proof Systems

The story of NP is well-known (except maybe for the fact that NP-completeness was discovered by
Levin [58] independently of Cook [30] and Karp [52]; see Trakhtenbrot’s survey of Russian research
on NP [74]). Our story thus starts with the definition of interactive proof systems.

3.1.1 Interactive Proof Systems

Motivated by the desire to formulate the most general type of “proofs” that may be used within
cryptographic protocols, Goldwasser, Micali and Rackofl introduced the notion of an interactive
proof system [48]. Although the main thrust of their paper is the introduction of a special type of
interactive proofs (i.e., ones that are zero-knowledge), the computational complexity potential of
the class of languages possessing interactive proof systems, denoted ZP, has been pointed out.

The first evidence of the surprising power of interactive proofs was given by Goldreich, Micali
and Wigderson, who presented an interactive proof system for Graph Non-Isomorphism [43], a
language not known to be in NP. Interactive proof systems gained much attention also due to
the interest in the construction of zero-knowledge proofs for languages in NP, presented in [43]
(assuming the existence of one-way functions).

Babai [7], independently!” of [48], suggested a different formulation of interactive proofs, termed
Arthur-Merlin Games (and giving rise to the class AM). Syntactically, Arthur-Merlin Games are
a restricted form of interactive proof systems, yet Goldwasser and Sipser have subsequently shown
that these restricted systems are as powerful as the general ones; namely, AM = ZP [49]. Babai’s
motivation was to place a group-theoretic problem, previously placed in AP under some group-
theoretic assumptions, “as close to A'P as possible” without using any assumptions.'® Interestingly,
Babai underestimated the power of the new class, conjecturing that the class AM (even with an
unbounded number of rounds) is “very close” to N'P.

3.1.2 Multi-Prover Interactive Proof Systems

A generalization of interactive proofs to multi-prover interactive proofs has been suggested by
Ben-Or, Goldwasser, Kilian and Wigderson [20]. Again, the main motivation came from zero-
knowledge aspects; specifically, introducing multi-prover zero-knowledge proofs for A/P without

"Here “independence” does not mean concurrently. Indeed, both the works of Babai and of Goldwasser, Micali and
Rackoff first appeared in the same conference (i.e., 17th STOC, 1985), yet early versions of the paper of Goldwasser,
Micali and Rackofl existed as early as 1982 and were rejected three times from major conferences (i.e., FOCS83,
STOC84, and FOCS84).

8Indeed, Babai placed the Matrix Representation Problem in AM using only two rounds.
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relying on intractability assumptions. Yet, the complexity theoretic prospects of the new class,
denoted MZP, have not been ignored. A more appealing, to my taste, formulation of the class
MIP has been presented by Fortnow, Rompel and Sipser [36]. The latter formulation exactly
coincides with the formulation now known as probabilistically checkable proofs (i.e., PCP).

3.1.3 Algebraic Methods Demonstrate the Power of Interactive Proofs

The amazing power of interactive proof systems has been demonstrated by using algebraic methods.
The basic technique has been introduced by Lund, Fortnow, Karloff and Nisan, who applied it to
show that the polynomial-time hierarchy (and actually Pﬁp) is in ZP [60]. Subsequently, Shamir
used the technique to show that ZP = PSPACE [71], and Babai, Fortnow and Lund used it to
show that MZP = NEXP [9].

The technique of Lund, Fortnow, Karloff and Nisan has been inspired by ideas coming from
works on “program checking” (cf., [23]). In particular, their interactive proof system for the perma-
nent combines Lipton’s “self-testing” procedure for the permanent (which represents the permanent
as a multi-linear polynomial) [59], and the “downwards self-reducibility” procedure of Blum, Luby
and Rubinfeld [25]. Another idea that is implicit in [60] and made explicit in the subsequent works
of [T1, 9] is the representation, introduced by Beaver and Feigenbaum [11], of Boolean formulae as
multi-linear polynomials.

It may be of interest to note that the technique of Lund et. al. has been first applied in the
context of multi-prover interactive proofs, yielding P C MZIP, and that the result quoted above
(concerning ZP) followed later. Hence, MZP has played a role in the historical development leading
to the characterization of ZP.

3.1.4 Scaling Down the BFL Proof System Yields a New Class

The abovementioned multi-prover proof system of Babai, Fortnow and Lund [9] (hereafter referred
to as the BFL proof system) has been the starting point for fundamental developments regarding
NP. The first development was the discovery that the BFL proof system can be “scaled-down”!?
from NEXP to NP. This important discovery was made independently by two sets of authors:
Babai, Fortnow, Levin and Szegedy [8] and Feige, Goldwasser, Lovasz and Safra [31].2° However,
the manner in which the BFL proof is scaled-down is different in the two papers, and so are the
consequences of the scaling-down.

Babai, Fortnow, Levin and Szegedy start by considering only inputs encoded using a spe-
cial error-correcting code. The encoding of strings, relative to this error-correcting code, can be
computed in polynomial time. They presented a polynomial-time algorithm that transforms NP-
witnesses (to inputs in a language L € N'P) into transparent proofs that can be verified as vouching
for the correctness of the encoded assertion in (probabilistic) polylogarithmic time (by a Ran-
dom Access Machine). (The fact that the verification procedure never reads the entire “proof”
should not come as a surprise, as the procedures of [60, 71, 9] also have this property.) Thus,
once “statements” and “proofs” are in the right (error-correcting) form, verification is “super-fast.”
Babai et. al. [8] stress the practical aspects of transparent proofs — specifically, for rapidly checking
transcripts of long computations.

The term “scaled-down” is used here as a (standard) technical term. Doing so, I do not mean to underestimate
the technical difficulty of obtaining these results.

20 At a later stage, Szegedy improved the randomness and query complexities of the system in [31] and joined the
latter paper, which has appeared as [32].

15



In the proof system of Babai et. al. [8], the total running time of the verifier is reduced (i.e.,
“scaled-down”) to polylogarithmic. In contrast, in the proof system of Feige, Goldwasser, Lovasz
and Safra [31], the verifier stays polynomial-time and only two more refined complexity measures,
specifically the randomness and query complexities, are reduced to polylogarithmic. This eliminates
the need to assume that the input is in a special error-correcting form, and yields a more appealing
(i.e., less cumbersome) complexity class. This complexity class is a refinement of the class intro-
duced in [36]. The refinement is obtained by specifying the randomness and query complexities.
Namely, PCP(r(-),q(-)) denotes the class of languages having probabilistically checkable proofs in
which, on input z, the verifier tosses at most r(|z|) coins and makes at most ¢(|z|) (Boolean) queries
to the proof. Hence, whereas the result of Babai, Fortnow and Lund [9] can be restated as

NEXP = PCP(poly, poly), (1)
the result of Feige, Goldwasser, Lovasz, Safra and Szegedy [32] is restated as
NP CPCP(f(+), f(), where f(n) = O(logn -loglogn). (2)

It should be stressed that the result of Babai, Fortnow, Levin and Szegedy [8] also implies a
containment of the above form (with f(n) = polylogn). Interest in the new complexity class
became immense since Feige et. al. [31, 32] demonstrated its relevance to proving the intractability
of approximating some combinatorial problems (specifically, Max-Clique). I will elaborate on this
aspect of their work in subsection 3.2. Here, I only wish to point out that, when using the method
of Feige et. al., the randomness and query complexities of the verifier (in a pcp system for an
NP-complete language) relate to the strength of the negative results obtained for approximation
problems. This fact provided a very strong motivation for trying to reduce these complexities and
obtain a tight characterization of NP in terms of PCP(-, ).

3.1.5 Tightening the Relation between NP and PCP

Once the work of Feige et. al. [32] had been presented, the challenge was clear: showing that
NP equals PCP(log,log). This challenge was met by Arora and Safra [6]. The proof system
constructed by Arora and Safra is very complex, involving recursive use of proof systems and con-
catenation tests that are much more efficient than the length of strings being tested. (Interestingly,
the idea of encoding inputs in an error-correcting form, as suggested in [8], is essential to make this
recursion work.) Actually, Arora and Safra showed that

NP =PCP(log, f(-)) . where f(n) = o(logn). (3)

Hence, a new challenge arose, namely, further reducing the query complexity — in particular to a
constant — while maintaining the logarithmic randomness complexity. Again, additional motivation
for this challenge came from the relevance of such a result to the study of approximation problems
(see subsection 3.2). The new challenge was met by Arora, Lund, Motwani, Sudan and Szegedy [5]
and is captured by the equation

NP =PCP(log, O(1)). (4)

In addition to building on the ideas of Arora and Safra [6], the above result of [5] utilizes ideas
and techniques from the works on self-testing/self-correcting [25], degree-tests for multi-variant
polynomials [40, 70], and parallelization of multi-prover proof systems [56].
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3.1.6 Computationally Sound Proof Systems

Argument systems were defined in 1986 by Brassard, Chaum and Crépeau [27], but their complexity-
theoretic significance became apparent only in 1992. This happened when Kilian, using early results
on PCP (due to [32]), showed that, under some intractability assumptions, every language in NP
has a computationally-sound proof in which the randomness and communication complexities are
polylogarithmic [55].

Consequently, Micali suggested three new types of computationally-sound proof systems that he
calls CS-proofs [62, 63]. Micali showed that Kilian’s construction can be applied also for languages
beyond NP, and more importantly that using interaction with a trusted random oracle allows one
to get rid of the interaction between the parties as well as of the intractability assumptions [63].
The latter idea can be traced back to a paper of Fiat and Shamir [34]

3.1.7 Other Types of Proof Systems

The setting of non-interactive proofs was first introduced by Blum, Feldman and Micali [22]. The
concept of proofs of knowledge was introduced in the paper of Goldwasser, Micali and Rackoff [48],
but it is only recently that it has been given a satisfactory formal treatment [13].

3.2 PCP and Approximation

As stated above, probabilistic checkable proofs became the focus of so much attention due to their
relation to the difficulty of approximation.

The relation between PCP and approximation was first pointed out by Feige, Goldwasser, Lovasz
and Safra [31] (see [32]). Specifically, they showed how to construct a graph representing the possible
computations of a pcp verifier on a specific input so that the size of the maximum clique in this
graph equals the accepting probability (scaled down by an easy to determine factor). The time
needed to construct the graph is (linearly) exponential in the randomness and query complexity
of the pcp system. It follows, for example, that any polynomial-time algorithm approximating
Max-Clique, up to a constant factor, yields an algorithm for deciding a language in PCP(r(-), ¢(-))
such that the algorithm runs in time or(n)+aln) . poly(n). This has provided a strong motivation
towards showing that AP C PCP(log, log).

Although Feige et. al. only related PCP to the approximation of Max-Clique, it was understood
that the relation between PCP and approximation is not specific to the Max-Clique Problem. The
question was how well do the results for Max-Clique translate to other approximation problems, or
alternatively whether better results can be obtained by “directly” relating PCP to the approxima-
tion of different problems.

It turned out that stronger non-approximability results are possible when treating the two
complexity measures of PCP (i.e., randomness and query complexities) separately. In particular,
languages in the class PCP(r(-),O(1)) are naturally represented by 3CNF formulae of size O(2(")),
so that if the input is in the language then the formula is satisfiable and otherwise no truth
assignment can satisfy more than a constant (< 1) fraction of its clauses (see this chapter’s Technical
Part). Furthermore, the time required to compute this formula is (linearly) exponential in r(-).
Hence, any polynomial-time approximation scheme for Max3SAT yields a polynomial-time decision
procedure for any language in PCP(log, O(1)). This implication has provided a strong motivation
towards showing that AP C PCP(log,O(1)). Additional motivation comes from the fact that the
latter inclusion also implies that Max-Clique is NP-hard to approximate even to within a factor of
N°¢, for some € > 0, where IV denotes the number of vertices in the graph. These facts were observed
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by Arora, Lund, Motwani, Sudan and Szegedy [5]. They also observed that, since Max3SAT is in
the class MAX-SNP [68], it followed that each complete problem in that class (e.g., Max2SAT,
MaxCUT, MinVC) is hard to approximate to within some constant factor.?!

The results of [32, 6, 5] have renewed interest in the complexity of approximation problems, after
many years of frustration. Subsequent work established the hardness of approximation problems
via the following two approaches.

Ist approach: generic reductions from PCP/MIP. That is, reducing the evaluation of the acceptance
probability of a PCP/MIP system directly to the approximation problem being considered (cf.,
Bellare [12], Lund and Yannakakis [61]). Furthermore, sometimes such a reduction is coupled with
anew PCP/MIP system that is more efficient in some parameters yielding stronger negative results
than those obtained by reducing previously known PCP/MIP systems (cf., Bellare, Goldwasser,
Lund and Russell [17], Bellare and Sudan [18] and Bellare, Goldreich and Sudan [15]). Lastly, it
is important to select the “right” complexity parameters to be optimized (cf., [17, 33, 18]). For an
elaborate discussion of the latter point see [15].

2nd approach: reductions among approximation problems. The newly acquired collection of hard
approximation problems motivates and facilitates attempts to prove the hardness of new problems

by using approximation-preserving reductions. Typical examples are given in the works of Lund
and Yannakakis [61], Khanna, Linial and Safra [53], and Fiirer [37].

3.3 Interactive Proofs and Program Checking

When introducing the concept of program checking, Blum (cf. [23]) was indeed aware of its relation
to interactive proof systems. In particular, his program checker for Graph Isomorphism mimics the
interactive proof of [43]. Subsequently, the development paths of the two concepts (i.e., program
checking and efficient proof systems) have continued to intersect. The contribution of program
checking techniques to the results concerning ZP and PCP has been discussed above. Here I wish
to further discuss the opposite direction in which various proof systems have yielded applications
to program checking.

In [8], Babai, Fortnow, Levin and Szegedy stress the application of their result to program
checking. At the expense of having a powerful computer do some extra work, its computation can
be checked by a much weaker computer. Specifically, the powerful computer outputs a certificate
for the correctness of the computation so that the certificate has length comparable to the “length”
of the computation and yet its correctness can be verified in time that is much shorter than the
time of the original computation. This holds in a Random Access Machine computation model.

Recently, Micali showed that using “Cryptographic CS-proofs” (see this chapter’s Technical
Part) one can transform programs to ones that in addition to the result of the computation supply
a very short certificate of the validity of the computation [63]. This certificate can then be checked
in time that is negligible (also in a Turing Machine model) compared to the original computation
time.

Both the results of [8] and [63] refer to program checking in a sense different from Blum’s
(cf. [23]), namely, the computation of a program 7 on a specific input is checked against the
program 7 itself (rather than against a functional description of what 7 is supposed to do). The
prover, which is an extension of 7, needs to run more time than 7 (but not drastically more), yet
the advantage is that a verifier can check this long computation very fast.

210n the other hand, each problem in this class is easy to approximate to within a (different) constant.
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3.4 Zero-Knowledge Proofs

As mentioned a few times above, the search for zero-knowledge proofs has been the driving force
behind many of the definitions of proof systems. In particular, zero-knowledge has motivated the
first leap beyond AP taken when interactive proofs were conceived by Goldwasser, Micali and
Rackoff [48]. The reason being that a more liberal notion of a proof seemed (and in fact is [44])
necessary in order to enable simulation of the transcript without ability to perform the interaction
(“in real time”).

The notion of computational indistinguishability, introduced by Goldwasser and Micali (in the
context of defining security of encryption schemes [47]) and Yao (in full generality [75]), is central to
the definition of zero-knowledge. However, most of the complexity-theoretic impact of the former
notion was on the theory of pseudorandomness (cf., for example, [24, 75] and [66, 65]) which has
evolved almost concurrently to the evolution of interactive proof systems.

The wide applicability of zero-knowledge proofs has been demonstrated by Goldreich, Micali
and Wigderson [43]. Most importantly, they showed how to construct zero-knowledge proof systems
for any language in A"P.?? Their construction uses a cryptographic primitive called a commitment
scheme that may be implemented using any one-way function [50, 64]. Actually, under the same
assumption, zero-knowledge proofs exists for any language in ZP [51, 19], but the latter elegant
result has almost no applications.

Subsequently, zero-knowledge proofs have become the focus of much attention in cryptographic
circles and, as one may expect, many interesting results followed. But this is a story for a separate
essay.

#28ome sources credit Brassard and Crépeau [28] for independently discovering the same result. To say the very
least, this is technically inaccurate since Brassard and Crépeau use a much stronger intractability assumption —
specifically, the intractability of the Quadratic Residue Problem.
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4 Addendum: Some Open Problems

Open Problem 1: Polynomials play a fundamental role in the construction of interactive proof
systems for coNP, and this trend continues in the construction of PCP systems for A’P. Fur-
thermore, it does not seem possible to abstract that role. 1 consider it important to obtain an
alternative proof of coN'P C ZP; a proof in which all the underlying ideas can be presented at an
abstract level.

Open Problem 2: Suppose that I € ZP(r). What can be said about L ? Currently, we only
know that L € ZP(poly). This does not utilize the extra information regarding the ZP(-) level
in which L resides. On the other hand, we don’t expect L to be in ZP(g(r)), for any function g,
since this will put coN'P C coZP(1) in ZP(2). Thus, another parameter may be relevant here; for
example, the lengths of the messages exchanged in the interaction. Indeed, if I has an interactive
proof in which the total message length is m then L has an interactive proof in which the total
message length is O(m?). 1 consider it important to obtain a better result. In general, it would be
interesting to get a better understanding of the ZP(-) Hierarchy.

Open Problem 3: Regarding subsection 2.1.3, it will be interesting to understand the limitations
of “relatively efficient provers” according to the 2nd and 3rd interpretations. A better understanding
of the self-reducibility on NP-languages is also long due. A specific challenge (cf., [16]): provide
an NP-proof system for Quadratic Non-Residucity (QNR), using a probabilistic polynomial-time
prover with access to QNR language.

Open Problem 4: Try to provide firm grounds for the heuristics of making proof systems non-
interactive by use of “random public functions” (cf., [34, 63]): | advise not to try to define the
latter notion (in a general form), but rather devise some ad-hoc method, using some specific but
widely believed complexity assumptions (e.g., hardness of deciding Quadratic Residucity modulo a
composite number), for this specific application.

Open Problem 5: It would be interesting to figure out and utilize the minimal possible assump-
tion required for constructing “zero-knowledge protocols for NP” in various models like constant-
round interactive proofs, the “non-interactive” model, and perfect zero-knowledge arguments.

Open Problem 6: As a first step towards the simplification of the proof of the PCP Character-
ization, one may want to provide an alternative (randomness-efficient) “parallelization” procedure
which does not rely on polynomials or any other algebraic creatures. A first step towards this par-
tial goal was taken by Safra and myself (cf., TR96-047 of ECCC): We have constructed an efficient
low-degree test which utilizes a simple/inefficient low-degree test which is parallelized using a new
“combinatorial consistency lemma”.
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The FElectronic Colloguium on Computational Complexity, ECCC, is a new forum for the rapid and
widespread interchange of ideas in computational complexity. Online access to ECCC is possible
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(directory /pub/eccc/), and email to ftpmail@ftp.eccc.uni-trier.de (use subject “help eccc”
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