
A Taxonomy of Proof Systems�Oded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.September 1996AbstractSeveral alternative formulations of the concept of an e�cient proof system are nowadayscoexisting in our �eld. These systems include the classical formulation of NP , interactive proofsystems (giving rise to the class IP), computationally-sound proof systems, and probabilisticallycheckable proofs (PCP), which are closely related to multi-prover interactive proofs (MIP).Although these notions are sometimes introduced using the same generic phrases, they areactually very di�erent in motivation, applications and expressive power. The main objective ofthis essay is to try to clarify these di�erences.

�This is a revised version of a survey which has appeared in Complexity Theory Retrospective II, L.A. Hemaspaan-dra and A. Selman (eds.), 1996. 0



1 IntroductionIn recent years, alternative formulations of the concept of an e�cient proof system have receivedmuch attention. Not only have talks and papers concerning these systems ooded the �eld oftheoretical computer science, but also some of these developments have reached the non-theorycommunity and a few were even reported in non-scienti�c forums such as the New York Times.Thus, I am quite sure that the reader has heard of phrases such as \interactive proofs" and resultssuch as IP = PSPACE.By no means am I suggesting that the interest in the various formulations of e�cient proofsystems has gone out of proportion. Certainly, the notion of an e�cient proof system is central to the�eld of computer science and I �nd it hard to conceive of circumstances in which one might say thatit was receiving too much attention. Furthermore, the research area established by these notionshas been one of the most successful and rewarding enterprises in which the theoretical computerscience community has been involved. For example, zero-knowledge proofs have revolutionized thedesign of cryptographic protocols, and the characterization of NP in terms of probabilisticallycheckable proofs has contributed to (and, in fact, revived) the attempts to classify the complexityof approximation problems.Except for NP, all proof systems reviewed below are probabilistic and furthermore have a non-zero error probability. However, the error probability is explicitly bounded and can be reduced bysuccessive applications of the proof system. In all cases, non-zero error probability is essential tothe interesting properties and consequences that these probabilistic proof systems have.Referencing conventionI have decided to proceed in a somewhat unconventional way and have decoupled the technicalexposition from the story behind its evolution. These parts appear in separate sections, which canbe read independently of each other. When reading the technical part, the reader should bearin mind that the references in this part are minimal (and de�nitely sub-standard), with the soleobjective of referring the reader to the best source for more details. (I wish to stress that the \bestsource for more details" is not necessarily the source that deserves the most credit!) The situationis reversed in the \story part," which contains only credits, or more accurately my evaluation ofthe contribution of the various works to the development of the �eld.AddendumThe current version is augmented by an open problems section.
1



2 A Technical ExpositionThe notion of a proof is one of the more fundamental notions of our culture. In particular, itis central to science and speci�cally to mathematics and computer science. Yet, although peoplealways talk of proofs, the fundamental issue is the veri�cation procedure. Proof systems are de�nedby their veri�cation procedure, and it is the veri�cation procedure that gives them their value.The notion of a veri�cation procedure assumes the notion of computation and furthermoree�cient computation. This implicit assumption is made explicit in the de�nition of NP . It is theassociation of e�cient computation with (deterministic) polynomial-time algorithms that yields theassociation of e�cient proof systems with the class NP . Namely, to prove the validity of somestatement �, one supplies a (relatively short) proof �, and the veri�cation procedure consists ofrunning a polynomial-time algorithm on input (�; �).Technical Remarks: All complexity measures mentioned in the subsequent exposition are assumedto be constructible in polynomial time. We denote by poly the set of all polynomials and by logthe set of all logarithmic functions (i.e., integer functions bounded by O(logn)). We adopt thestandard notations EXP def= DTIME(2poly) and NEXP def= NTIME(2poly).2.1 Interactive Proof SystemsIn light of the growing acceptability of randomized and interactive computations, it is only naturalto associate the notion of e�cient computation with probabilistic and interactive polynomial-timecomputations. This leads naturally to the notion of an interactive proof system in which the veri�-cation procedure is interactive and randomized, rather than being non-interactive and deterministic(as in NP). A sketch1 of the formal de�nition is given in Item (1) below. (We stress that no com-putational restrictions are placed on the prover.) Items (2) and (3) introduce additional complexitymeasures that can be ignored in a �rst reading.De�nition 1 (Interactive Proofs { IP)1. An interactive proof system (ips) for a language L is a pair (P; V ) of interactive machines, sothat V is a probabilistic polynomial-time machine, satisfying� Completeness: For every x 2 L the veri�er V always accepts after interacting with theprover P on common input x.� Soundness: For every x 62 L and every potential prover P �, the veri�er V rejects withprobability at least 12, after interacting with P � on common input x.2. Let m and r be integer functions. The complexity class IP(m(�); r(�)) consists of languageshaving an interactive proof system in which, on common input x, the veri�er uses at mostr(jxj) coin tosses and the total number of messages exchanged between the parties is boundedby m(jxj).3. Let M and R be sets of integer functions. Then,IP(M;R) def= [m2M;r2RIP(m(�); r(�)):Finally, IP(m(�)) def= IP(m(�); poly) and IP def= IP(poly).1We avoid the de�nition of \interacting machines." This de�nition can be found in [48, 43].2



In Item (1), we have followed the common convention of specifying both the veri�er and the prover.An alternative presentation only speci�es the veri�er while rephrasing the completeness conditionas follows:There exists a machine P (a prover) so that, for every x 2 L, the veri�er V alwaysaccepts after interacting with P on common input x.The soundness condition allows for errors; that is, executions in which the veri�er accepts x 62 L.Yet, the error is explicitly bounded by 12 . In general, one may consider the error probability (inthe soundness condition) as another parameter. It is not hard to see that the error probability ininteractive proofs can be reduced by independent sequential and/or parallel repetitions. Actually,this holds even for somewhat dependent parallel repetitions; see [14], which is instructive also forthe simpler case of independent parallel repetitions. On the other hand, requiring zero soundnesserror, in interactive proof systems, restricts their existence to languages in NP [38].We stress that although we have relaxed the requirements from the veri�cation procedure, byallowing it to interact, toss coins and err with bounded probability, we did not restrict the validityof the assertions by assumptions concerning the potential prover. (This should be contrasted withlater notions of proof systems, such as computationally-sound ones and multi-prover ones, in whichthe validity of the soundness condition depends on assumptions concerning the external provingentity.)2.1.1 Known resultsClearly, IP(0; poly) equals coRP, whereas IP(1; 0) equals NP. Furthermore, IP(1; poly) con-tains BPP (see [57] or [38]). Hence, IP � IP(1; poly) contains BPP [NP, whereas we currentlydo not know whether NP contains BPP. It is also easy to see that IP(0; log) collapses toIP(0; 0) = P , whereas IP(poly; log) collapses to IP(1; 0) = NP. The main result concerninginteractive proof systems is that they exist for any language recognizable in polynomial space.Namely,Theorem 1 [60, 71] IP = PSPACE.2Theorem 1, was established using algebraic methods. In particular, the following approach {unprecedented in complexity theory { was employed: In order to demonstrate that a particularlanguage is in a particular class, an arithmetic generalization of the Boolean problem is presented,and (elementary) algebraic methods are applied to show that the arithmetic problem is solvablewithin the class. Interestingly, this technique \does not relativize." and, furthermore, yields results(e.g., IP = PSPACE) that are false relative to most oracles, providing a dramatic refutation ofthe \Random Oracle Hypothesis"; see [29].Concerning the �ner structure of the IP-hierarchy, the following is known:� For every integer function, f , so that f(n) � 2 for all n, the class IP(O(f(�))) collapses tothe class IP(f(�)), and in particular IP(O(1)) collapses to IP(2) [10].� The class IP(2) contains languages not known to be inNP, e.g., Graph Non-Isomorphism [43].2See [60] for the general technique and [71] for its application yielding the quoted result.3



� The class IP(2) is contained in NP=poly (i.e., nonuniform-NP), analogously to BPP �P=poly.� If coNP � IP(2) then the polynomial-time hierarchy collapses [26].It is conjectured that coNP is not contained in IP(2), and consequently that interactive proofswith an unbounded number of message exchanges are more powerful than interactive proofs inwhich only a bounded (i.e., constant) number of messages are exchanged.The IP-hierarchy (i.e., IP(�)) equals an analogous hierarchy in which the veri�er is restricted tosend the outcome of any coin it tosses [49]. The latter restricted proof systems are called Arthur-Merlin games or public-coin interactive proofs. In addition, aside from the zero-level and 1-level,the IP-hierarchy equals an analogous two-sided error hierarchy [38]. In the latter proof systemsthe completeness condition is relaxed so that the veri�er is required to accept each x 2 L withprobability at least 23 .2.1.2 Zero-Knowledge and Knowledge ComplexityZero-knowledge is a central notion in cryptography. Here, we only discuss its conceptual signif-icance to the theory of proof systems. Zero-knowledge proofs are interesting as they exhibit asomewhat extreme contrast between being convinced of the validity of a statement and learningsomething in addition while receiving such a convincing proof. Namely, zero-knowledge proofs havethe remarkable property of being convincing while yielding nothing to the veri�er beyond the factthat the statement is valid.In the formulation of the statement \(P; V ) is a zero-knowledge proof system for the languageL" one considers two probability distributions, for each input x in L :1. The output distribution of the veri�er3 after interacting with the speci�ed prover P on com-mon input x.2. The output distribution of some probabilistic polynomial-time machine (not interacting withanyone), on input x.The basic paradigm of zero-knowledge asserts that for every distribution of type (1) there exista \similar" distribution of type (2). The speci�c variants di�er by the interpretation given to\similarity." The most strict interpretation, leading to perfect zero-knowledge, is that similaritymeans equality. A somewhat relaxed interpretation, leading to almost-perfect zero-knowledge, isthat similarity means statistical closeness (i.e., negligible di�erence between the distributions).The most liberal interpretation, leading to the standard usage of the term zero-knowledge (andsometimes referred to as computational zero-knowledge), is that similarity means computationalindistinguishability (i.e., failure of any e�cient procedure to tell the two distributions apart).The most important result concerning zero-knowledge is that, assuming the existence of one-wayfunctions, each language in NP (and actually even in IP) has a zero-knowledge interactive proofsystem; see [43, 64, 50] (and [19], respectively). This result should be contrasted with the resultsregarding the complexity of almost-perfect zero-knowledge proof systems, namely, that such proofsystems exist only for languages in IP(2) \ coIP(2) [2, 35].4 Also, a recent result indicates thatone-way functions are essential for the existence of zero-knowledge proofs for hard languages (i.e.,languages that cannot be decided in average polynomial time) [67]. Non-zero error probability is3The veri�er is not necessarily the one speci�ed (i.e., V ) { yet, for sake of simplicity this issue is ignored here.4See also an appendix in [45] indicating an error in [35].4



essential also to zero-knowledge proofs (which otherwise exist only for coRP [44]). Hence, besidesthe apparent strengthening of expressive power, interactive proof systems do o�er some properties(speci�cally, zero-knowledge) that cannot be o�ered by an NP-proof system.An extensive treatment of zero-knowledge can be found in [41]. Zero-knowledge is the lowestlevel of several knowledge-complexity hierarchies that quantify the \amount of knowledge revealed"by a proof system. De�nitions and results concerning these hierarchies can be found in [46], [45]and [1].2.1.3 How powerful should the (\completeness") prover be?Assume that a language L is in IP. This means that there is a veri�er V that can be convincedto accept any input in L but cannot be convinced to accept an input not in L. One can ask howpowerful should a prover be so that it can convince the veri�er V to accept an input in L. Moreinterestingly, considering all possible veri�ers that give rise to an interactive proof system for L,what is the minimum power required from a prover that satis�es the completeness requirementwith respect to one of these veri�ers? We stress that, unlike in the case of computationally-soundproof systems (discussed below), we do not restrict the power of the prover in the soundness con-dition but rather consider the minimum complexity of provers meeting the completeness condition.Speci�cally, we are interested in relatively e�cient provers (meeting the completeness condition).The term \relatively e�cient prover" has been given three di�erent interpretations.1st interpretation: A prover is considered relatively e�cient if, when given an auxiliary input (inaddition to the common input in L), it works in (probabilistic) polynomial time. Speci�cally, in thecase L 2 NP , the auxiliary input may be an NP-witness that the common input is in the language.Even in this case, the interactive proof need not consist of the prover sending the auxiliary inputto the veri�er; for example, an alternative procedure may allow the prover to be zero-knowledge(see [43]). This interpretation is adequate and in fact crucial for applications in which such anauxiliary input is available to the otherwise polynomial-time parties. Typically, the auxiliary inputis available in cryptographic applications in which both the input and an NP-witness for it aregenerated by some party who later wishes to prove (in zero-knowledge) that the input is in thelanguage.5 See [43].2nd interpretation: A prover is considered relatively e�cient if it can be implemented by a proba-bilistic polynomial-time oracle machine with oracle access to the language L itself. This interpre-tation generalizes the notion of self-reducibility of NP languages. (By self-reducibility of an NPlanguage we mean that the search problem of �nding an NP-witness is Cook-reducible to decidingmembership in the language. Thus, every NP-complete language has a relatively e�cient proofsystem.) See [16].3rd interpretation: A prover is considered relatively e�cient if it can be implemented by a proba-bilistic machine that runs in time that is polynomial in the deterministic complexity of the language.This interpretation relates the di�culty of convincing a \lazy" veri�er to the complexity of �ndingthe truth alone. Hence, in contrast to the �rst interpretation, which is adequate in settings whereNP-assertions are generated along with their NP-proofs, the current interpretation is adequate insettings in which the prover is given only an assertion and has to convince itself of the validity ofthe assertion (before trying to convince a lazy veri�er of its validity). See [63].5For example, suppose a party generates a composite number by multiplying together two primes, and that itlater wishes to prove in (in zero-knowledge) that the number it has chosen indeed has this form. Then this is anNP-statement and the primes are the NP-witness for it. 5



2.2 MIP and PCPIn contrast to the setting of interactive proofs, where no restrictions have been placed on the prover,the two settings discussed in this section do impose restrictions on the prover. Interestingly, the(\expressive") power of the proof system is increased by these restrictions, unless PSPACE =NEXP (in which case the systems are equally powerful). We wish to stress that there is nothingwrong in the fact that a proof system becomes more powerful once the prover is restricted. Indeed,this restricts the prover's abilities in case the input is in the language; but it also restricts theprover's ability in case the input is not in the language. Thus, in general, when restricting thepower of the prover, the expressive power of the proof system can change in an arbitrary way (andin particular { stay the same). Yet, the e�ect of these restrictions in typically more drastic on thesoundness condition than on the completeness condition (since the former employs an existentialquanti�er whereas the latter employs a universal quanti�er).But what is the justi�cation for restricting the prover? One answer is that in particular ap-plications this restriction can be imposed (on the potential provers). A second answer is that thisrestriction yields an alternative characterization for a fundamental complexity class (i.e., NP) andthat this alternative characterization enables one to get important results.2.2.1 Multi-Prover Interactive Proof Systems (MIP)In the multi-prover interactive proof setting, the prover is split into two (or more) entities and therestriction (or assumption) is that these entities cannot interact with each other. Actually, theformulation allows them to coordinate their strategies prior to interacting with the veri�er6 but itis crucial that they do not exchange messages among themselves while interacting with the veri�er.It is customary to call each of these proving-entities a \prover" and hence the term \multi-proverproof systems." It turns out that two-prover systems are as powerful as multi-prover ones (evensuch in which the number of provers is a parameter that is polynomially related to the input length).For sake of concreteness, a de�nition of two-prover proof systems is given below.De�nition 2 (Two-Prover Interactive Proofs) A two-prover interactive proof system for a lan-guage L is a triplet (P1; P2; V ) of interactive machines, so that V is a probabilistic polynomial-timemachine, satisfying� Completeness: For every x 2 L the veri�er V always accepts after interacting separately andconcurrently with the provers P1 and P2, on common input x.� Soundness: For every x 62 L and every potential pair of provers, P �1 and P �2 , the veri�erV rejects with probability at least 12, after interacting separately and concurrently with theprovers P �1 and P �2 , on common input x.The set of languages having two-prover proof systems is denoted by MIP.The two-prover model is reminiscent of the common police procedure of isolating collaboratingsuspects and interrogating each of them separately. A typical application in which the two-provermodel may be assumed is an ATM that veri�es the validity of a pair of smart-cards insertedin two isolated slots of the ATM. The advantage in using such a split system is that it enablesthe presentation of (perfect) zero-knowledge proof systems for any language in NP , using nointractability assumptions [20].6This is implicit in the universal quanti�er used in the soundness condition.6



2.2.2 Probabilistically Checkable Proofs (PCP)When viewed in terms of an interactive proof system, the probabilistically checkable proof (PCP)setting consists of a prover that is memoryless. Namely, one can think of the prover as being anoracle and of the messages sent to it as being queries. A more appealing interpretation is to viewthe PCP setting as an alternative way of generalizing NP. Instead of receiving the entire proof andconducting a deterministic polynomial-time computation (as in the case of NP), the veri�er maytoss coins and query the proof only at locations of its choice. Potentially, this allows the veri�er toutilize very long proofs (i.e., of super-polynomial length) or alternatively inspect very few bits of a(polynomially long) proof. The basic de�nition of the PCP setting is given in Item (1) below. Yet,the complexity measures introduced in Items (2) and (3) are of key importance for the subsequentdiscussions, and should not be ignored.De�nition 3 (Probabilistic Checkable Proofs { PCP)1. A probabilistic checkable proof system (pcp) for a language L is a probabilistic polynomial-timeoracle machine (called veri�er), denoted V , satisfying� Completeness: For every x 2 L there exists an oracle set �x so that V , on input x andaccess to oracle �x, always accepts x.� Soundness: For every x 62 L and every oracle set �, machine V , on input x and accessto oracle �, rejects x with probability at least 12 .2. Let r and q be integer functions. The complexity class PCP(r(�); q(�)) consists of languageshaving a probabilistic checkable proof system in which the veri�er, on any input of length n,uses at most r(n) random coins and makes at most q(n) queries.3. Let R and Q be sets of integer functions. Then,PCP(R;Q) def= [r2R;q2QPCP(r(�); q(�)):Note that the oracle �x in a pcp system constitutes a proof in the standard mathematical sense.(Jumping ahead, the oracles in pcp systems characterizing NP have the property of being NPproofs themselves.) Yet, this oracle has the extra property of enabling a lazy veri�er to toss coins,take its chances and verify the proof without reading all of it (but rather by reading a tiny portionof it).Typical applications for probabilistically checkable proofs arise from settings in which the prover is\committed" to a single \proof" and cannot modify it depending on previous queries of the veri�er.See, for example, [8, 55].2.2.3 The expressive power of PCPClearly, PCP(poly; 0) equals coRP, whereas PCP(0; poly) equals NP. It is easy to prove an upperbound on the nondeterministic time complexity of languages in the PCP hierarchy. Namely,Proposition 1 For every integer function r(�), the class PCP(r(�); poly) is contained in NTIME(2O(r(�)+log(�))).Hence, PCP(log; poly) � NP.Proof Sketch: Observe that guessing the best oracle amounts to guessing only 2r(n) � poly(n)many oracle values. 2These upper bounds turn out to be tight, but proving this is much more di�cult (to say the least).7



Theorem 2 [8, 32, 6, 5] NP is contained in PCP(log; O(1)).7Corollary 1 (The PCP characterization of NP) NP = PCP(log; O(1)).I consider the proof of Theorem 2 to be one of the most complicated proofs in computer scienceand believe that it is very important to �nd a simpler proof that may be taught in an advancedcomplexity theory class. By adapting the proof of Theorem 2, one gets also:Theorem 3 (Theorem 2 { Generalized): Let t(�) be an integer function so that n<t(n)<2poly(n),for all n's. Then, the class NTIME(t(�)) is contained in the class PCP(O(log t(�)); O(1)).Corollary 2 NEXP = PCP(poly; O(1)).Interestingly, the two complexity measures in the PCP-characterization of NP can be traded o�,so that at the extremes we get NP = PCP(log; O(1)) and NP = PCP(0; poly), respectively.Proposition 2 There exist constants �; � > 0 such that for every integer function l(�), so that0� l(n)�� log2 n, NP = PCP(r(�); q(�));where r(n) = � log2 n � l(n) and q(n) = �2l(n).Proof Sketch: Starting with Theorem 2, one can scan all possibilities for the l(n)-long pre�x ofthe random tape of the veri�er. 2Sequential repetitions can be used to reduce the error probability of pcp/mip systems. Furthermore,error reduction can be obtained at very moderate cost in the randomness complexity (cf. [15]).Parallel repetition is a much more complex matter (than in the context of interactive proof systems);see [69] (and do not get misled by an error in an early version of [36]). On the other hand, non-zero error probability is essential to the above results as otherwise one can eliminate randomnessaltogether and use PCP(0; q(�))� DTIME(2q � poly).Finally, we mention that one can convert a multi-prover interactive proof system into a probabilis-tically checkable proof, and vice versa. The translation in the �rst direction is easy (i.e., just pre�xeach veri�er-message by the identity of the prover), but the translation in the other direction ismore complex; see [36, 73].2.2.4 PCP and ApproximationInterestingly, Theorem 2 can be rephrased without mentioning the class PCP at all.8 Instead, anew type of polynomial-time reduction, which we call amplifying, emerges.7The result NP � PCP(poly log;poly log) can be found in [8], although this paper uses a di�erent model andterminology. Furthermore, NP � PCP(log;poly log) is easily obtained from [8], by using standard de-randomizationtechniques. For a proof of NP � PCP(f(�); f(�)) with f(n) = O(log n � log log n), see [32]. The proof of the quotedresult is more complex and can be found in [6, 5] (see also [3, 72]).8Below we prove that Theorem 2 implies the rephrased form. The converse is proven by starting with an amplifyingreduction of 3SAT to itself and constructing a pcp system for 3SAT as follows. The oracle in this system is viewedas a function from variables (of the reduced formula) to Boolean values. The veri�er uniformly selects a clause (inthe reduced formula) and inspects the value of the variables that appear in it.8



Theorem 4 (Theorem 2 { Rephrased): There exist a constant � < 1, and a polynomial-timereduction of 3SAT to itself, so that the reduction maps non-satis�able 3CNF formulae to 3CNFformulae for which every truth assignment satis�es at most a � fraction of the clauses.Proof Sketch: Start by considering the pcp system for 3SAT (guaranteed by Theorem 2). Usethe fact that the pcp system used in the proof of Theorem 2 is non-adaptive9 (i.e., the queries aredetermined as a function of the input and the random-tape { and do not depend on answers toprevious queries). Next, associate the bits of the oracle with Boolean variables and introduce aBoolean formula for each possible value of the random tape, describing whether the veri�er wouldhave accepted given this value of the random tape. Finally, using auxiliary variables, converteach formula into 3CNF and obtain (as the output of the reduction) the conjunction of all thesepolynomially many formulae. 2As an immediate corollary one gets results concerning the intractability of approximation. Forexample,Corollary 3 (Hardness of Approximating Max3SAT) There exists a constant � < 1 so that thefollowing approximation problem (known as Max3SAT) is NP-hard:Given a satis�able 3CNF formula, �nd a truth assignment that satis�es at least a �fraction of its clauses.Thus, given a satis�able 3CNF formula, it is as hard to �nd a truth assignment that satis�es a �fraction of its clauses as it is to �nd a truth assignment that satis�es all clauses.Consequently, for any approximation problem in the class MAX-SNP-complete (cf. [68] and [54]),there exists a constant so that approximating the problem up to this constant is NP-hard. It followsthat, unless P = NP, there exist no polynomial-time approximation schemes (i.e., a sequence ofpolynomial-time approximation algorithms, one for each constant approximation ratio) for anyproblem in the class MAX-SNP-complete. Results for approximation problems not in the classMAX-SNP can be derived as well { see [4]. An alternative perspective, aimed at obtaining tightnon-approximability results, is presented in [15].I believe that amplifying reductions are interesting for their own sake and may �nd other applica-tions in complexity theory.2.3 Computationally Sound Proof SystemsIn the two settings just discussed (i.e., MIP and PCP) the restrictions imposed on the prover were ofa \physical" nature. In the current section we discuss models derived from the model of interactiveproofs by imposing computational restrictions (speci�cally, time bounds) on the prover. Althoughthese restrictions apply to potential provers in both the completeness condition and the soundnesscondition, the e�ect of the restriction is more dramatic on the soundness condition.10 Hence,proof systems with computational restrictions on the potential provers are commonly referred toas \computationally sound." The computational restriction in the soundness condition seems to9Actually, this is not essential as one can convert an adaptive system into a non-adaptive one, while incurring anexponential blowup in the query complexity (which in our case is a constant).10In fact, the prover in the completeness condition typically has bounded complexity although the de�nition of aninteractive proof system does not impose such a restriction. In particular, every language in IP has a proof systemin which the prover works in polynomial space. For further discussion see subsection 2.1.3.9



upset the puristic intuition about proofs (even more than the restrictions discussed in the previoussection). Yet, from the point of view of computer science, the computational restriction is quitenatural and furthermore it is justi�ed in many applications.There are two types of computationally sound proof systems. In the �rst type, called arguments,11the computational restriction is that the potential provers, given access to an auxiliary input, runin polynomial time (or more generally, in time that is polynomially related to the nondeterministiccomplexity of the language). In the second type, called CS-proofs,12 the computational restric-tion is that the potential provers run in time that is polynomially related to the deterministiccomplexity of the language. These computational restrictions are analogous to two of the interpre-tations discussed in subsection 2.1.3. Speci�cally, in argument system the \1st interpretation" isimposed on the provers of both soundness and completeness condition, whereas in CS-proofs the\3rd interpretation" is imposed.2.3.1 Argument SystemsThe de�nition of an argument system is derived from the de�nition of an interactive proof systemby modifying the completeness and soundness conditions as follows.� Completeness: The prover P runs in time polynomial in the length of the common input. Forevery x 2 L, there exists an auxiliary input (for the prover), wx, so that the veri�er V alwaysaccepts after interacting with P (wx) on common input x.� Soundness: For every probabilistic polynomial-time13 machine P �, for all su�ciently longx 62 L, and for all w 2 f0; 1g�, the veri�er V rejects with probability at least 12 , afterinteracting with P �(w) on common input x.Both conditions can be rephrased by using (non-uniform) families of circuits of polynomial size.As discussed above, argument systems are adequate for modeling the behavior of parties in a real-life setting. Under strong intractability assumptions, argument systems exhibit advantages overinteractive proof systems.14 Let us start by stating these assumptions.De�nition 4 (Collision-Free Hashing) Consider a family of hash functions, indexed by strings,F def= ff� :f0; 1g2j�j 7!f0; 1gj�jg�, so that there exists a polynomial-time algorithm for evaluating F(i.e., on input � and x returns f�(x)). The family F is called collision-free w.r.t. complexity c(�) iffor every non-uniform family of circuits fCng with size bounded by c(�), and all su�ciently largen's, the probability that Cn, given a uniformly chosen � 2 f0; 1gn, outputs a pair (x; y) so thatf�(x) = f�(y), is bounded above by 1=c(n). The family F is called collision-free if it is collision-free w.r.t. all polynomials, and is called strongly collision-free if, for some � > 0, it is collision-freew.r.t. the function f(n) def= 2n�.11In some early works, and in particular in [27], argument systems are negligently referred to as \interactive proofs."This is quite confusing since arguments di�er from interactive proofs not only by de�nition but also in expressivepower (unless PSPACE � IP(1)) and in zero-knowledge properties [27, 35] (unless the polynomial-time hierarchycollapses [26]).12Actually, there are three variants of this model { see [62, 63]. In the current subsection we concentrate on the\interactive" variant of [62]. A brief discussion of the \non-interactive" variants of [63] is postponed to subsection 2.4.13Again, this means a running time polynomial in the length of the common input.14Below, we consider the expressing power of both models. An additional advantage of argument systems is that,under strong intractability assumptions, there exist perfect zero-knowledge arguments (rather than computationalzero-knowledge interactive proofs) for any language in NP [27].10



Collision-free functions exist assuming the intractability of factoring integers (i.e., in polynomialtime). Strong collision-free functions exist if integers cannot be factored in time 2n� , for some � > 0.Theorem 5 [55]: Let L 2 NP and assume the existence of collision-free functions (resp., strongcollision-free functions). Then, for every �>0, there exists an argument system for L in which therandomness and communication complexities of the veri�er, on inputs of length n, are both boundedby n� (resp., poly(log(n))). Furthermore, the computational complexity of the veri�er is quadraticin the length of the input.We stress that Theorem 5 is meaningful also in case L 2 P ; in particular, it o�ers quadratic veri�-cation time, independently of the (possibly higher) deterministic complexity of the language. Inter-estingly, the results of Theorem 5 are unlikely for interactive proof systems, due to the following15:Proposition 3 Suppose that L has an interactive proof system in which both the randomnessand communication complexities of the veri�er are bounded by an integer function c(�). ThenL 2 DTIME(2O(c(�)+log(�))).Proof Sketch: Consider the tree of all possible executions. 22.3.2 CS-Proof SystemsThe de�nition of a CS-proof system is derived from the de�nition of an interactive proof systemanalogously to the way the de�nition of an argument system is derived. The only di�erence is thathere the potential provers are uniform probabilistic machines, with no auxiliary inputs, running intime polynomial in the deterministic complexity of the language. A result analogous to Theorem 5is obtainable also in the current setting. Speci�cally,Theorem 6 [62]: Let L 2 EXP. Then, assuming the existence of strong collision-free functions,there exists a CS-proof system for L. Furthermore, the computational complexity of the veri�er isquadratic in the length of the input and polylogarithmic in the deterministic complexity of L.2.4 Other Types of Proof SystemsOf the other types of proof systems, I'm going to discuss only two, which are slightly problematic,and also this will be done quite abruptly.2.4.1 Non-Interactive Proof SystemsThe phrase \non-interactive" is often misleading. Indeed, in all models that are called \non-interactive," the interaction between the prover and the veri�er is minimal; it consists of theprover sending a single message to the veri�er (as in the case of an NP-proof). Yet, in most\non-interactive" models, both the prover and the veri�er interact with a (trusted) random string(cf., [22, 21]) or even query a random oracle (cf., the so-called \Guaranteed CS-proofs" of [63]).However, in addition to NP-proofs, there is another model that is truly non-interactive, namely,the so-called Cryptographic CS-proof [63]. Cryptographic CS-proofs are short \certi�cates" thatcan be e�ciently veri�ed (like NP-proofs), are \relatively easy" to �nd for inputs in the language,but are very hard to �nd (rather than do not exist) for inputs not in the language. Namely, for15See [42] for further investigations. 11



IP arguments CS-proof PCP MIPrestrictions none poly-time polynomial memoryless spliton prover + aux. input in Dtime (i.e., oracle) entitymotivation generalize restrict IP augment see(as I see it) NP (see Remark 1) NP Remark 2expressive PSPACE IP(1) � PH EXP16 scalable: NTIME(2l(n)),power for rnd+query = O(l(n))Figure 1: Comparison of various proof systemsvalid assertions, Cryptographic CS-proofs can be found in time polynomial in the (deterministic)complexity of (deciding) the language; whereas, for invalid assertions, false certi�cates cannot befound within such time bounds. Unfortunately, the existence of (non-trivial) Cryptographic CS-proofs is not known to be reducible to standard complexity assumptions; yet, plausibility argumentstowards the existence of the former can be found in [63].2.4.2 Proofs of KnowledgeThe concept of a proof of knowledge is very appealing, yet its precise formulation is much morecomplex than one may expect; see [13]. A key notion in the de�nition is that of a knowledgeextractor. Loosely speaking, a knowledge-veri�er for a relation R guarantees the existence of aknowledge extractor that on input x and access to any interactive machine P � outputs a y sothat (x; y)2R, within complexity that is inversely proportional to the probability that the veri�eraccepts x when interacting with P �.2.5 ComparisonIn Figure 1, I've tried to summarize the di�erences between the various notions of e�cient proofsystems. The class NP has been omitted for obvious reasons. I view IP as the natural general-ization of NP, obtained by relaxing the notion of e�cient computation so that probabilism andinteraction are allowed. Except for the negligible probability of error, which can be controlled bythe veri�er, the original avor of a proof is maintained. Also, I view PCP(log; O(1)) as an augmen-tation of NP with the extra property of allowing a hasty veri�er to take its chances and verify theproof in a super-fast manner. In contrast, the two notions of computationally sound proof systems(i.e., arguments and CS-proofs) deviate signi�cantly from the conservative approach of absoluteproofs. Yet, computational soundness seems adequate in most practical settings. The only wordof warning is that typical results in these latter settings depend on intractability assumptions, andwhen evaluating these results one should not ignore the relative severeness of these assumptions.Remark 1: Arguments and CS-proof systems are derived by imposing computational restrictions onthe potential provers in both the completeness and soundness conditions. In both cases the moti-vation for these restrictions is to obtain properties that interactive proofs do not (seem to) have. Inthe case of argument systems the advantageous properties are very low communication complexityand perfect zero-knowledge (for NP). Interestingly, the expressive power of the system does notincrease in this case (but rather decreases). In the case of CS-proof systems the advantageousproperty is the linking of the complexity of proving to the complexity of deciding. Interestingly,the expressive power of the system seems to increase as well (unless PSPACE = EXP).16Depending on (strong) intractability assumptions. 12



Remark 2: The MIP model indeed generalizes the IP model. However, in my opinion, this general-ization is less natural than the generalization of NP to IP. As far as I am concerned, the MIP modelis justi�ed by cryptographic applications (see subsection on MIP). (The transformations betweenMIP systems and PCP systems does not mean that the motivation of one model can be moved tothe other.)

13



3 The StoryIn this section I will try to provide a historical account of the ideas that led to the excitingdevelopments concerning the various types of e�cient proof systems. My account is certainly asubjective one and it concentrates on my evaluation of the conceptual contributions, their declaredintentions, and their e�ect on subsequent developments.The story of these research developments, as any real story, has a complex structure that needsto be simpli�ed so that the reader does not get lost in its web. Thus I have broken the story intoseveral independent linearly structured stories, which do cross each other. I will begin with thestory of the evolution of proof systems, and then pass to the story of their applications to derivinghardness results for approximation problems, program checking and zero-knowledge proofs.3.1 The Evolution of Proof SystemsThe story of NP is well-known (except maybe for the fact that NP-completeness was discovered byLevin [58] independently of Cook [30] and Karp [52]; see Trakhtenbrot's survey of Russian researchon NP [74]). Our story thus starts with the de�nition of interactive proof systems.3.1.1 Interactive Proof SystemsMotivated by the desire to formulate the most general type of \proofs" that may be used withincryptographic protocols, Goldwasser, Micali and Racko� introduced the notion of an interactiveproof system [48]. Although the main thrust of their paper is the introduction of a special type ofinteractive proofs (i.e., ones that are zero-knowledge), the computational complexity potential ofthe class of languages possessing interactive proof systems, denoted IP , has been pointed out.The �rst evidence of the surprising power of interactive proofs was given by Goldreich, Micaliand Wigderson, who presented an interactive proof system for Graph Non-Isomorphism [43], alanguage not known to be in NP. Interactive proof systems gained much attention also due tothe interest in the construction of zero-knowledge proofs for languages in NP, presented in [43](assuming the existence of one-way functions).Babai [7], independently17 of [48], suggested a di�erent formulation of interactive proofs, termedArthur-Merlin Games (and giving rise to the class AM). Syntactically, Arthur-Merlin Games area restricted form of interactive proof systems, yet Goldwasser and Sipser have subsequently shownthat these restricted systems are as powerful as the general ones; namely, AM = IP [49]. Babai'smotivation was to place a group-theoretic problem, previously placed in NP under some group-theoretic assumptions, \as close toNP as possible" without using any assumptions.18 Interestingly,Babai underestimated the power of the new class, conjecturing that the class AM (even with anunbounded number of rounds) is \very close" to NP.3.1.2 Multi-Prover Interactive Proof SystemsA generalization of interactive proofs to multi-prover interactive proofs has been suggested byBen-Or, Goldwasser, Kilian and Wigderson [20]. Again, the main motivation came from zero-knowledge aspects; speci�cally, introducing multi-prover zero-knowledge proofs for NP without17Here \independence" does not mean concurrently. Indeed, both the works of Babai and of Goldwasser, Micali andRacko� �rst appeared in the same conference (i.e., 17th STOC, 1985), yet early versions of the paper of Goldwasser,Micali and Racko� existed as early as 1982 and were rejected three times from major conferences (i.e., FOCS83,STOC84, and FOCS84).18Indeed, Babai placed the Matrix Representation Problem in AM using only two rounds.14



relying on intractability assumptions. Yet, the complexity theoretic prospects of the new class,denoted MIP, have not been ignored. A more appealing, to my taste, formulation of the classMIP has been presented by Fortnow, Rompel and Sipser [36]. The latter formulation exactlycoincides with the formulation now known as probabilistically checkable proofs (i.e., PCP).3.1.3 Algebraic Methods Demonstrate the Power of Interactive ProofsThe amazing power of interactive proof systems has been demonstrated by using algebraic methods.The basic technique has been introduced by Lund, Fortnow, Karlo� and Nisan, who applied it toshow that the polynomial-time hierarchy (and actually P]P) is in IP [60]. Subsequently, Shamirused the technique to show that IP = PSPACE [71], and Babai, Fortnow and Lund used it toshow that MIP = NEXP [9].The technique of Lund, Fortnow, Karlo� and Nisan has been inspired by ideas coming fromworks on \program checking" (cf., [23]). In particular, their interactive proof system for the perma-nent combines Lipton's \self-testing" procedure for the permanent (which represents the permanentas a multi-linear polynomial) [59], and the \downwards self-reducibility" procedure of Blum, Lubyand Rubinfeld [25]. Another idea that is implicit in [60] and made explicit in the subsequent worksof [71, 9] is the representation, introduced by Beaver and Feigenbaum [11], of Boolean formulae asmulti-linear polynomials.It may be of interest to note that the technique of Lund et. al. has been �rst applied in thecontext of multi-prover interactive proofs, yielding P]P �MIP, and that the result quoted above(concerning IP) followed later. Hence,MIP has played a role in the historical development leadingto the characterization of IP.3.1.4 Scaling Down the BFL Proof System Yields a New ClassThe abovementioned multi-prover proof system of Babai, Fortnow and Lund [9] (hereafter referredto as the BFL proof system) has been the starting point for fundamental developments regardingNP. The �rst development was the discovery that the BFL proof system can be \scaled-down"19from NEXP to NP. This important discovery was made independently by two sets of authors:Babai, Fortnow, Levin and Szegedy [8] and Feige, Goldwasser, Lovasz and Safra [31].20 However,the manner in which the BFL proof is scaled-down is di�erent in the two papers, and so are theconsequences of the scaling-down.Babai, Fortnow, Levin and Szegedy start by considering only inputs encoded using a spe-cial error-correcting code. The encoding of strings, relative to this error-correcting code, can becomputed in polynomial time. They presented a polynomial-time algorithm that transforms NP-witnesses (to inputs in a language L 2 NP) into transparent proofs that can be veri�ed as vouchingfor the correctness of the encoded assertion in (probabilistic) polylogarithmic time (by a Ran-dom Access Machine). (The fact that the veri�cation procedure never reads the entire \proof"should not come as a surprise, as the procedures of [60, 71, 9] also have this property.) Thus,once \statements" and \proofs" are in the right (error-correcting) form, veri�cation is \super-fast."Babai et. al. [8] stress the practical aspects of transparent proofs { speci�cally, for rapidly checkingtranscripts of long computations.19The term \scaled-down" is used here as a (standard) technical term. Doing so, I do not mean to underestimatethe technical di�culty of obtaining these results.20At a later stage, Szegedy improved the randomness and query complexities of the system in [31] and joined thelatter paper, which has appeared as [32]. 15



In the proof system of Babai et. al. [8], the total running time of the veri�er is reduced (i.e.,\scaled-down") to polylogarithmic. In contrast, in the proof system of Feige, Goldwasser, Lovaszand Safra [31], the veri�er stays polynomial-time and only two more re�ned complexity measures,speci�cally the randomness and query complexities, are reduced to polylogarithmic. This eliminatesthe need to assume that the input is in a special error-correcting form, and yields a more appealing(i.e., less cumbersome) complexity class. This complexity class is a re�nement of the class intro-duced in [36]. The re�nement is obtained by specifying the randomness and query complexities.Namely, PCP(r(�); q(�)) denotes the class of languages having probabilistically checkable proofs inwhich, on input x, the veri�er tosses at most r(jxj) coins and makes at most q(jxj) (Boolean) queriesto the proof. Hence, whereas the result of Babai, Fortnow and Lund [9] can be restated asNEXP = PCP(poly; poly); (1)the result of Feige, Goldwasser, Lovasz, Safra and Szegedy [32] is restated asNP � PCP(f(�); f(�)) ; where f(n) = O(logn � log logn). (2)It should be stressed that the result of Babai, Fortnow, Levin and Szegedy [8] also implies acontainment of the above form (with f(n) = poly logn). Interest in the new complexity classbecame immense since Feige et. al. [31, 32] demonstrated its relevance to proving the intractabilityof approximating some combinatorial problems (speci�cally, Max-Clique). I will elaborate on thisaspect of their work in subsection 3.2. Here, I only wish to point out that, when using the methodof Feige et. al., the randomness and query complexities of the veri�er (in a pcp system for anNP-complete language) relate to the strength of the negative results obtained for approximationproblems. This fact provided a very strong motivation for trying to reduce these complexities andobtain a tight characterization of NP in terms of PCP(�; �).3.1.5 Tightening the Relation between NP and PCPOnce the work of Feige et. al. [32] had been presented, the challenge was clear: showing thatNP equals PCP(log; log). This challenge was met by Arora and Safra [6]. The proof systemconstructed by Arora and Safra is very complex, involving recursive use of proof systems and con-catenation tests that are much more e�cient than the length of strings being tested. (Interestingly,the idea of encoding inputs in an error-correcting form, as suggested in [8], is essential to make thisrecursion work.) Actually, Arora and Safra showed thatNP = PCP(log; f(�)) ; where f(n) = o(logn). (3)Hence, a new challenge arose, namely, further reducing the query complexity { in particular to aconstant { while maintaining the logarithmic randomness complexity. Again, additional motivationfor this challenge came from the relevance of such a result to the study of approximation problems(see subsection 3.2). The new challenge was met by Arora, Lund, Motwani, Sudan and Szegedy [5]and is captured by the equation NP = PCP(log; O(1)): (4)In addition to building on the ideas of Arora and Safra [6], the above result of [5] utilizes ideasand techniques from the works on self-testing/self-correcting [25], degree-tests for multi-variantpolynomials [40, 70], and parallelization of multi-prover proof systems [56].16



3.1.6 Computationally Sound Proof SystemsArgument systems were de�ned in 1986 by Brassard, Chaum and Cr�epeau [27], but their complexity-theoretic signi�cance became apparent only in 1992. This happened when Kilian, using early resultson PCP (due to [32]), showed that, under some intractability assumptions, every language in NPhas a computationally-sound proof in which the randomness and communication complexities arepolylogarithmic [55].Consequently, Micali suggested three new types of computationally-sound proof systems that hecalls CS-proofs [62, 63]. Micali showed that Kilian's construction can be applied also for languagesbeyond NP, and more importantly that using interaction with a trusted random oracle allows oneto get rid of the interaction between the parties as well as of the intractability assumptions [63].The latter idea can be traced back to a paper of Fiat and Shamir [34]3.1.7 Other Types of Proof SystemsThe setting of non-interactive proofs was �rst introduced by Blum, Feldman and Micali [22]. Theconcept of proofs of knowledge was introduced in the paper of Goldwasser, Micali and Racko� [48],but it is only recently that it has been given a satisfactory formal treatment [13].3.2 PCP and ApproximationAs stated above, probabilistic checkable proofs became the focus of so much attention due to theirrelation to the di�culty of approximation.The relation between PCP and approximation was �rst pointed out by Feige, Goldwasser, Lovaszand Safra [31] (see [32]). Speci�cally, they showed how to construct a graph representing the possiblecomputations of a pcp veri�er on a speci�c input so that the size of the maximum clique in thisgraph equals the accepting probability (scaled down by an easy to determine factor). The timeneeded to construct the graph is (linearly) exponential in the randomness and query complexityof the pcp system. It follows, for example, that any polynomial-time algorithm approximatingMax-Clique, up to a constant factor, yields an algorithm for deciding a language in PCP(r(�); q(�))such that the algorithm runs in time 2r(n)+q(n) � poly(n). This has provided a strong motivationtowards showing that NP � PCP(log; log).Although Feige et. al. only related PCP to the approximation of Max-Clique, it was understoodthat the relation between PCP and approximation is not speci�c to the Max-Clique Problem. Thequestion was how well do the results for Max-Clique translate to other approximation problems, oralternatively whether better results can be obtained by \directly" relating PCP to the approxima-tion of di�erent problems.It turned out that stronger non-approximability results are possible when treating the twocomplexity measures of PCP (i.e., randomness and query complexities) separately. In particular,languages in the class PCP(r(�); O(1)) are naturally represented by 3CNF formulae of size O(2r(n)),so that if the input is in the language then the formula is satis�able and otherwise no truthassignment can satisfy more than a constant (< 1) fraction of its clauses (see this chapter's TechnicalPart). Furthermore, the time required to compute this formula is (linearly) exponential in r(�).Hence, any polynomial-time approximation scheme for Max3SAT yields a polynomial-time decisionprocedure for any language in PCP(log; O(1)). This implication has provided a strong motivationtowards showing that NP � PCP(log; O(1)). Additional motivation comes from the fact that thelatter inclusion also implies that Max-Clique is NP-hard to approximate even to within a factor ofN �, for some � > 0, where N denotes the number of vertices in the graph. These facts were observed17



by Arora, Lund, Motwani, Sudan and Szegedy [5]. They also observed that, since Max3SAT is inthe class MAX-SNP [68], it followed that each complete problem in that class (e.g., Max2SAT,MaxCUT, MinVC) is hard to approximate to within some constant factor.21The results of [32, 6, 5] have renewed interest in the complexity of approximation problems, aftermany years of frustration. Subsequent work established the hardness of approximation problemsvia the following two approaches.1st approach: generic reductions from PCP/MIP. That is, reducing the evaluation of the acceptanceprobability of a PCP/MIP system directly to the approximation problem being considered (cf.,Bellare [12], Lund and Yannakakis [61]). Furthermore, sometimes such a reduction is coupled witha new PCP/MIP system that is more e�cient in some parameters yielding stronger negative resultsthan those obtained by reducing previously known PCP/MIP systems (cf., Bellare, Goldwasser,Lund and Russell [17], Bellare and Sudan [18] and Bellare, Goldreich and Sudan [15]). Lastly, itis important to select the \right" complexity parameters to be optimized (cf., [17, 33, 18]). For anelaborate discussion of the latter point see [15].2nd approach: reductions among approximation problems. The newly acquired collection of hardapproximation problems motivates and facilitates attempts to prove the hardness of new problemsby using approximation-preserving reductions. Typical examples are given in the works of Lundand Yannakakis [61], Khanna, Linial and Safra [53], and F�urer [37].3.3 Interactive Proofs and Program CheckingWhen introducing the concept of program checking, Blum (cf. [23]) was indeed aware of its relationto interactive proof systems. In particular, his program checker for Graph Isomorphism mimics theinteractive proof of [43]. Subsequently, the development paths of the two concepts (i.e., programchecking and e�cient proof systems) have continued to intersect. The contribution of programchecking techniques to the results concerning IP and PCP has been discussed above. Here I wishto further discuss the opposite direction in which various proof systems have yielded applicationsto program checking.In [8], Babai, Fortnow, Levin and Szegedy stress the application of their result to programchecking. At the expense of having a powerful computer do some extra work, its computation canbe checked by a much weaker computer. Speci�cally, the powerful computer outputs a certi�catefor the correctness of the computation so that the certi�cate has length comparable to the \length"of the computation and yet its correctness can be veri�ed in time that is much shorter than thetime of the original computation. This holds in a Random Access Machine computation model.Recently, Micali showed that using \Cryptographic CS-proofs" (see this chapter's TechnicalPart) one can transform programs to ones that in addition to the result of the computation supplya very short certi�cate of the validity of the computation [63]. This certi�cate can then be checkedin time that is negligible (also in a Turing Machine model) compared to the original computationtime.Both the results of [8] and [63] refer to program checking in a sense di�erent from Blum's(cf. [23]), namely, the computation of a program � on a speci�c input is checked against theprogram � itself (rather than against a functional description of what � is supposed to do). Theprover, which is an extension of �, needs to run more time than � (but not drastically more), yetthe advantage is that a veri�er can check this long computation very fast.21On the other hand, each problem in this class is easy to approximate to within a (di�erent) constant.18



3.4 Zero-Knowledge ProofsAs mentioned a few times above, the search for zero-knowledge proofs has been the driving forcebehind many of the de�nitions of proof systems. In particular, zero-knowledge has motivated the�rst leap beyond NP taken when interactive proofs were conceived by Goldwasser, Micali andRacko� [48]. The reason being that a more liberal notion of a proof seemed (and in fact is [44])necessary in order to enable simulation of the transcript without ability to perform the interaction(\in real time").The notion of computational indistinguishability, introduced by Goldwasser and Micali (in thecontext of de�ning security of encryption schemes [47]) and Yao (in full generality [75]), is central tothe de�nition of zero-knowledge. However, most of the complexity-theoretic impact of the formernotion was on the theory of pseudorandomness (cf., for example, [24, 75] and [66, 65]) which hasevolved almost concurrently to the evolution of interactive proof systems.The wide applicability of zero-knowledge proofs has been demonstrated by Goldreich, Micaliand Wigderson [43]. Most importantly, they showed how to construct zero-knowledge proof systemsfor any language in NP.22 Their construction uses a cryptographic primitive called a commitmentscheme that may be implemented using any one-way function [50, 64]. Actually, under the sameassumption, zero-knowledge proofs exists for any language in IP [51, 19], but the latter elegantresult has almost no applications.Subsequently, zero-knowledge proofs have become the focus of much attention in cryptographiccircles and, as one may expect, many interesting results followed. But this is a story for a separateessay.

22Some sources credit Brassard and Cr�epeau [28] for independently discovering the same result. To say the veryleast, this is technically inaccurate since Brassard and Cr�epeau use a much stronger intractability assumption {speci�cally, the intractability of the Quadratic Residue Problem.19



4 Addendum: Some Open ProblemsOpen Problem 1: Polynomials play a fundamental role in the construction of interactive proofsystems for coNP, and this trend continues in the construction of PCP systems for NP. Fur-thermore, it does not seem possible to abstract that role. I consider it important to obtain analternative proof of coNP � IP ; a proof in which all the underlying ideas can be presented at anabstract level.Open Problem 2: Suppose that L 2 IP(r). What can be said about L ? Currently, we onlyknow that L 2 IP(poly). This does not utilize the extra information regarding the IP(�) levelin which L resides. On the other hand, we don't expect L to be in IP(g(r)), for any function g,since this will put coNP � coIP(1) in IP(2). Thus, another parameter may be relevant here; forexample, the lengths of the messages exchanged in the interaction. Indeed, if L has an interactiveproof in which the total message length is m then L has an interactive proof in which the totalmessage length is O(m3). I consider it important to obtain a better result. In general, it would beinteresting to get a better understanding of the IP(�) Hierarchy.Open Problem 3: Regarding subsection 2.1.3, it will be interesting to understand the limitationsof \relatively e�cient provers" according to the 2nd and 3rd interpretations. A better understandingof the self-reducibility on NP-languages is also long due. A speci�c challenge (cf., [16]): providean NP-proof system for Quadratic Non-Residucity (QNR), using a probabilistic polynomial-timeprover with access to QNR language.Open Problem 4: Try to provide �rm grounds for the heuristics of making proof systems non-interactive by use of \random public functions" (cf., [34, 63]): I advise not to try to de�ne thelatter notion (in a general form), but rather devise some ad-hoc method, using some speci�c butwidely believed complexity assumptions (e.g., hardness of deciding Quadratic Residucity modulo acomposite number), for this speci�c application.Open Problem 5: It would be interesting to �gure out and utilize the minimal possible assump-tion required for constructing \zero-knowledge protocols for NP" in various models like constant-round interactive proofs, the \non-interactive" model, and perfect zero-knowledge arguments.Open Problem 6: As a �rst step towards the simpli�cation of the proof of the PCP Character-ization, one may want to provide an alternative (randomness-e�cient) \parallelization" procedurewhich does not rely on polynomials or any other algebraic creatures. A �rst step towards this par-tial goal was taken by Safra and myself (cf., TR96-047 of ECCC): We have constructed an e�cientlow-degree test which utilizes a simple/ine�cient low-degree test which is parallelized using a new\combinatorial consistency lemma".AcknowledgmentsI am grateful to Sha� Goldwasser, Leonid Levin, Dana Ron, Madhu Sudan and two anonymousreviewers for helpful remarks. 20



The Electronic Colloquium on Computational Complexity, ECCC, is a new forum for the rapid andwidespread interchange of ideas in computational complexity. Online access to ECCC is possiblevia url http://www.eccc.uni-trier.de/eccc/, anonymous ftp to site ftp.eccc.uni-trier.de(directory /pub/eccc/), and email to ftpmail@ftp.eccc.uni-trier.de (use subject \help eccc"for initial instructions).References[1] W. Aiello, M. Bellare and R. Venkatesan. Knowledge on the Average { Perfect, Statisticaland Logarithmic. In 27th ACM Symposium on the Theory of Computing, pages 469{478,1995.[2] W. Aiello and J. H�astad. Statistical Zero-Knowledge Languages can be Recognized in TwoRounds. Journal of Computer and System Science, Vol. 42, pages 327{345, 1991.[3] S. Arora. Probabilistic Checking of Proofs and the Hardness of Approximation Problems.PhD thesis, U.C. Berkeley, 1994. Available from ECCC.[4] S. Arora and C. Lund. Hardness of Approximations. In Approximation Algorithms forNP-hard Problems, D. Hochbaum ed., PWS, 1996.[5] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and In-tractability of Approximation Problems. In 33rd IEEE Symposium on Foundations of Com-puter Science, pages 14{23, 1992.[6] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP. In33rd IEEE Symposium on Foundations of Computer Science, pages 1{13, 1992.[7] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theoryof Computing, pages 421{420, 1985.[8] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in PolylogarithmicTime. In 23rd ACM Symposium on the Theory of Computing, pages 21{31, 1991.[9] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-ProverInteractive Protocols. Computational Complexity, Vol. 1, No. 1, pages 3{40, 1991. Prelimi-nary version in 31st FOCS, 1990.[10] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchyof Complexity Classes. Journal of Computer and System Science, Vol. 36, pages 254{276,1988.[11] D. Beaver and J. Feigenbaum. Hiding Instances in Multioracle Queries. In 7th Symposiumon Theoretical Aspects of Computer Science, Springer Verlag, LNCS Vol. 415, pages 37{48,1990.[12] M. Bellare. Interactive Proofs and Approximation: Reductions from Two Provers in OneRound. In Proc. 2nd Israel Symp. on Theory of Computing and Systems (ISTCS93), IEEEComputer Society Press, pages 266{274, 1993.[13] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto92, SpringerVerlag, LNCS Vol. 740, pages 390{420, 1992.21



[14] M. Bellare, O. Goldreich and S. Goldwasser. Randomness in interactive proofs. Computa-tional Complexity, Vol. 4, No. 1, pages 319{354, 1993.[15] M. Bellare, O. Goldreich and M. Sudan. Free Bits, PCPs and Non-Approximability {Towards Tight Results. Extended abstract in 36th IEEE Symposium on Foundations ofComputer Science, pages 422{431, 1995. Full version appeared as TR95-024 of ECCC.[16] M. Bellare and S. Goldwasser. The Complexity of Decision versus Search. SIAM J. onComputing, Vol. 23, No. 1, pages 97{119, 1994.[17] M. Bellare, S. Goldwasser, C. Lund and A. Russell. E�cient Probabilistically CheckableProofs and Applications to Approximation. In 25th ACM Symposium on the Theory ofComputing, pages 294{304, 1993. A revised version is available from the authors.[18] M. Bellare and M. Sudan. Improved Non-Approximability Results. In 26th ACM Symposiumon the Theory of Computing, pages 184{193, 1994.[19] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway.Everything Provable is Probable in Zero-Knowledge. In Crypto88, Springer Verlag, LNCSVol. 403, pages 37{56, 1990[20] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs:How to Remove Intractability. In 20th ACM Symposium on the Theory of Computing, pages113{131, 1988.[21] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge ProofSystems. SIAM J. on Computing, Vol. 20, No. 6, pages 1084{1118, 1991.[22] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications.In 20th ACM Symposium on the Theory of Computing, pages 103{112, 1988.[23] M. Blum and S. Kannan. Designing Programs that Check their Work. In 21st ACMSymposium on the Theory of Computing, pages 86{97, 1989.[24] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM J. Comput., Vol. 13, pages 850{864, 1984. In 23rd FOCS, pages 80{91,1982.[25] M. Blum, M. Luby and R. Rubinfeld. Self-Testing/Correcting with Applications to Numer-ical Problems. Journal of Computer and System Science, Vol. 47, No. 3, pages 549{595,1993. Preliminary version in 22th STOC, 1990.[26] R. Boppana, J. H�astad, and S. Zachos. Does Co-NP Have Short Interactive Proofs? Infor-mation Processing Letters, Vol. 25, pages 127{132, May 1987.[27] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. Journalof Computer and System Science, Vol. 37, No. 2, pages 156{189, 1988. Preliminary versionby Brassard and Cr�epeau in 27th FOCS, 1986.[28] G. Brassard and C. Cr�epeau. Zero-Knowledge Simulation of Boolean Circuits. In Crypto86,Springer Verlag, LNCS Vol. 263, pages 223{233, 1987.22



[29] R. Chang, B. Chor, O. Goldreich, J. Hartmanis, J. H�astad, D. Ranjan, and P. Rohatgi.The Random Oracle Hypothesis is False. Journal of Computer and System Science, Vol. 49,No. 1, pages 24{39, 1994.[30] S. A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd ACM Symposium onthe Theory of Computing, pages 151{158, 1971.[31] U. Feige, S. Goldwasser, L. Lov�asz and S. Safra. On the Complexity of Approximating theMaximum Size of a Clique. Unpublished manuscript, 1990.[32] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique isalmost NP-complete. In 32nd IEEE Symposium on Foundations of Computer Science, pages2{12, 1991.[33] U. Feige and J. Kilian. Two Prover Protocols { Low Error at A�ordable Rates. In 26thACM Symposium on the Theory of Computing, pages 172{183, 1994.[34] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identi�cation andSignature Problems. In Crypto86, Springer Verlag, LNCS Vol. 263, pages 186{189, 1987.[35] L. Fortnow, The Complexity of Perfect Zero-Knowledge. Advances in Computing Research:a research annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 327{343,1989.[36] L. Fortnow, J. Rompel and M. Sipser. On the Power of Multi-Prover Interactive Protocols.Theoretical Computer Science, Vol. 134, pages 545{557, 1994. Preliminary version in Proc.3rd IEEE Symp. on Structure in Complexity Theory, 1988.[37] M. F�urer. Improved Hardness Results for Approximating the Chromatic Number. In 36thIEEE Symposium on Foundations of Computer Science, pages 414{421, 1995.[38] M. F�urer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and Sound-ness in Interactive Proof Systems. Advances in Computing Research: a research annual, Vol.5 (Randomness and Computation, S. Micali, ed.), pages 429{442, 1989.[39] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory ofNP-Completeness. W. H. Freeman, 1979.[40] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-Testing/Correctingfor Polynomials and for Approximate Functions. In 23th ACM Symposium on the Theoryof Computing, pages 32{42, 1991.[41] O. Goldreich. Foundation of Cryptography { Fragments of a Book. February 1995. Availablefrom ECCC.[42] O. Goldreich and J. H�astad. On the Message Complexity of Interactive Proof Systems.TR96-018 of ECCC, March 1996.[43] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38,No. 1, pages 691{729, 1991. Preliminary version in 27th FOCS, 1986.23



[44] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.Journal of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[45] O. Goldreich, R. Ostrovsky and E. Petrank, Knowledge Complexity and ComputationalComplexity. In 26th ACM Symposium on the Theory of Computing, pages 534{543, 1994.[46] O. Goldreich and E. Petrank. Quantifying Knowledge Complexity. In 32nd IEEE Symposiumon Foundations of Computer Science, pages 59{68, 1991.[47] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and SystemScience, Vol. 28, No. 2, pages 270{299, 1984. Preliminary version in 14th STOC, 1982.[48] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM Journal on Computing, Vol. 18, pages 186{208, 1989. Preliminary versionin 17th STOC, 1985.[49] S. Goldwasser and M. Sipser. Private Coins versus Public Coins in Interactive Proof Systems.Advances in Computing Research: a research annual, Vol. 5 (Randomness and Computation,S. Micali, ed.), pages 73{90, 1989.[50] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Gen-erator from any One-Way Function. To appear in SIAM J. on Computing. Preliminaryversions by Impagliazzo et. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).[51] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87, SpringerVerlag, LNCS Vol. 293, pages 40{51, 1987.[52] R.M. Karp. Reducibility Among Combinatorial Problems. In Complexity of ComputerComputations, (Raymond E. Miller and James W. Thatcher, eds.), Plenum Press, pages85{103, 1972.[53] S. Khanna, N. Linial and S. Safra. On the Hardness of Approximating the ChromaticNumber. In Proc. 2nd Israel Symp. on Theory of Computing and Systems (ISTCS93),IEEE Computer Society Press, pages 250{260, 1993.[54] S. Khanna, R. Motwani, M. Sudan and U. Vazirani. On Syntatic versus ComputationalViews of Approximability. In 35th IEEE Symposium on Foundations of Computer Science,pages 819{830, 1994.[55] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th ACM Sym-posium on the Theory of Computing, pages 723{732, 1992.[56] D. Lapidot and A. Shamir. Fully Parallelized Multi Prover Protocols for NEXP-time. In32nd IEEE Symposium on Foundations of Computer Science, pages 13{18, 1991.[57] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing Letters, Vol. 17(4), pages 215{217, 1983.[58] L. Levin. Universal'ny��e pereborny��e zadachi (Universal Search Problems: in Russian).Problemy Peredachi Informatsii, 9 (3), pages 265{266, 1973.[59] R.J. Lipton. New Directions in Testing, Unpublished manuscript, 1989.24



[60] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for Interactive ProofSystems. Journal of the ACM, Vol. 39, No. 4, pages 859{868, 1992. Preliminary version in31st FOCS, 1990.[61] C. Lund and M. Yannakakis. On the Hardness of Approximating Minimization Problems,Journal of the ACM, Vol. 41, pages 960{981, 1994. Preliminary version in 25th STOC, 1993.[62] S. Micali. CS Proofs. Unpublished manuscript, 1992.[63] S. Micali. CS Proofs. In 35th IEEE Symposium on Foundations of Computer Science, pages436{453, 1994.[64] M. Naor. Bit Commitment using Pseudorandom Generators. Journal of Cryptology, Vol. 4,pages 151{158, 1991.[65] N. Nisan. Pseudorandom Generators for Space-Bounded Computation. Combinatorica,Vol. 12, No. 4, pages 449{461, 1992. Preliminary version in 22nd STOC, 1990.[66] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and SystemScience, Vol. 49, No. 2, pages 149{167, 1994. Preliminary version in 29th FOCS, 1988.[67] R. Ostrovsky and A. Wigderson. One-Way Functions are essential for Non-Trivial Zero-Knowledge, In Proc. 2nd Israel Symp. on Theory of Computing and Systems (ISTCS93),IEEE Computer Society Press, pages 3{17, 1993.[68] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and ComplexityClasses. Journal of Computer and System Science, Vol. 43, pages 425{440, 1991. Preliminaryversion in 20th STOC, 1988.[69] R. Raz. A Parallel Repetition Theorem. In 27th ACM Symposium on the Theory of Com-puting, pages 447{456, 1995.[70] R. Rubinfeld and M. Sudan. Robust Characterizations of Polynomials with Applications toProgram Checking. SIAM J. of Computing, Vol. 25, No. 2, pages 252{271, 1996. Preliminaryversion in 3rd SODA, 1992.[71] A. Shamir. IP=PSPACE. Journal of the ACM, Vol. 39, No. 4, pages 869{877, 1992.Preliminary version in 31st FOCS, 1990.[72] M. Sudan. E�cient Checking of Polynomials and Proofs and the Hardness of ApproximationProblems. ACM Distinguished Theses, Springer Verlag, LNCS Vol. 1001, 1995.[73] A. Ta-Shma. A Note on PCP vs. MIP. TR 94{12, Institute of Computer Science, HebrewUniversity, Israel, 1994. To appear in Information Processing Letters.[74] B.A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute-Force Search) Al-gorithms. Annals of the History of Computing, Vol. 6, No. 4, pages 384{400, 1984.[75] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.25


