
Probabilistic Proof Systems { Lecture NotesOded Goldreich�Department of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.September 1996AbstractVarious types of probabilistic proof systems have played a central role in the developmentof computer science in the last decade. In these notes, we concentrate on three such proofsystems | interactive proofs, zero-knowledge proofs, and probabilistic checkable proofs.

Remark: These are lecture notes in the strict sense of the word. Surveys of mine on this subjectcan be obtained from URL http://theory.lcs.mit.edu/~oded/pps.html.These notes were prepared for a series of lectures given in the Theory Student Seminar of the CSDepartment of UC-Berkeley.�Visiting Miller Professor, Aug. { Sept. 1996, EECS Dept., UC{Berkeley.0

1 IntroductionThe glory given to the creativity required to �nd proofs, makes us forget that it is the less glori-�ed procedure of veri�cation which gives proofs their value. Philosophically speaking, proofs aresecondary to the veri�cation procedure; whereas technically speaking, proof systems are de�ned interms of their veri�cation procedures.The notion of a veri�cation procedure assumes the notion of computation and furthermore thenotion of e�cient computation. This implicit assumption is made explicit in the de�nition of NP ,in which e�cient computation is associated with (deterministic) polynomial-time algorithms.Traditionally, NP is de�ned as the class of NP-sets. Yet, each such NP-set can be viewed as aproof system. For example, consider the set of satis�able Boolean formulae. Clearly, a satisfyingassignment � for a formula � constitutes an NP-proof for the assertion \� is satis�able" (theveri�cation procedure consists of substituting the variables of � by the values assigned by � andcomputing the value of the resulting Boolean expression).The formulation of NP-proofs restricts the \e�ective" length of proofs to be polynomial in lengthof the corresponding assertions. However, longer proofs may be allowed by padding the assertionwith su�ciently many blank symbols. So it seems that NP gives a satisfactory formulation of proofsystems (with e�cient veri�cation procedures). This is indeed the case if one associates e�cientprocedures with deterministic polynomial-time algorithms. However, we can gain a lot if we arewilling to take a somewhat non-traditional step and allow probabilistic veri�cation procedures. Inparticular,� Randomized and interactive veri�cation procedures, giving rise to interactive proof systems,seem much more powerful (i.e., \expressive") than their deterministic counterparts.� Such randomized procedures allow the introduction of zero-knowledge proofs which are ofgreat theoretical and practical interest.� NP-proofs can be e�ciently transformed into a (redundant) form which o�ers a trade-o�between the number of locations examined in the NP-proof and the con�dence in its validity(see probabilistically checkable proofs).In all abovementioned types of probabilistic proof systems, explicit bounds are imposed on thecomputational complexity of the veri�cation procedure, which in turn is personi�ed by the notionof a veri�er. Furthermore, in all these proof systems, the veri�er is allowed to toss coins andrule by statistical evidence. Thus, all these proof systems carry a probability of error; yet, thisprobability is explicitly bounded and, furthermore, can be reduced by successive application of theproof system.2 Interactive Proof SystemsIn light of the growing acceptability of randomized and distributed computations, it is only naturalto associate the notion of e�cient computation with probabilistic and interactive polynomial-timecomputations. This leads naturally to the notion of interactive proof systems in which the veri�ca-tion procedure is interactive and randomized, rather than being non-interactive and deterministic.Thus, a \proof" in this context is not a �xed and static object but rather a randomized (dynamic)process in which the veri�er interacts with the prover. Intuitively, one may think of this interaction1

as consisting of \tricky" questions asked by the veri�er to which the prover has to reply \convinc-ingly". The above discussion, as well as the actual de�nition, makes explicit reference to a prover,whereas a prover is only implicit in the traditional de�nitions of proof systems (e.g., NP-proofs).2.1 The De�nitionInteraction: Going beyond the uni-directional \interaction" of the NP-proof system. (If theveri�er does not toss coins then interaction can be collapsed to a single message.)(computationally unbounded) Prover: As in NP, we start by not considering the complexityof proving.(probabilistic polynomial-time) Veri�er: We maintain the paradigm that veri�cation oughtto be easy, alas we allow random choices (in our notion of easiness).Completeness and Soundness: We relax the traditional soundness condition by allowing smallprobability of being fooled by false proofs. The probability is taken over the veri�er's randomchoices. (We still require \perfect completeness"; that is, that correct statements are proven withprobability 1). Error probability, being a parameter, can be further reduced by successive repeti-tions.Variations: Relaxing the \perfect completeness" requirement yields a two-sided error variant ofIP (i.e., error probability allowed also in the completeness condition). Restricting the veri�er tosend only \random" (i.e., uniformly chosen) messages yields the restricted Arthur-Merlin interactiveproofs (aka public-coins interactive proofs). Alas, both variants are essentially as powerful as theone above.2.2 An Example: interactive proof of Graph Non-IsomorphismThe problem: (not known to be in NP). Proving that two graphs are isomorphic can be doneby presenting an isomorphism, but how do you prove that no such isomorphism exists?The construction: the \two di�erent object protocol" { if you claim that two objects are di�erentthen you should be able to tell which is which (when I present them to you in random order). Inthe context of the Graph Non-Isomorphism interactive proof, two (supposedly) di�erent objectsare de�ned by taking random isomorphic copies of each of the input graphs. If these graphs areindeed non-isomorphic then the objects are di�erent (the distributions have distinct support) elsethe objects are identical.2.3 Interactive proof of Non-Satis�abilityArithmetization of Boolean (CNF) formulae: Observe that the arithmetic expression is alow degree polynomial. Observe that, in any case, the value of the arithmetic expression is bounded.2

Moving to a Finite Field: Whenever we check equality between two integers in [0;M], it su�cesto check equality mod q, where q > M . The bene�t is that the arithmetic is now in a �nite �eld(mod q) and so certain things are \nicer" (e.g., uniformly selecting a value). Thus, proving that aCNF formula is not satis�able reduces to proving equality of the following formXx1=0;1 � � � Xxn=0;1�(x1; :::; xn) � 0 mod qwhere � is a low degree multi-variant polynomial.The construction: stripping summations in iterations. In each iteration the prover is supposedto supply the polynomial describing the expression in one (currently stripped) variable. (By theabove observation, this is a low degree polynomial and so has a short description.) The veri�erchecks that the polynomial is of low degree, and that it corresponds to the current value beingclaimed (i.e., p(0)+ p(1) � v). Next, the veri�er randomly instantiates the variable, yielding a newvalue to be claimed for the resulting expression (i.e., v p(r), for uniformly chosen r 2 GF(q)).The veri�er sends the uniformly chosen instantiation to the prover. (At the end of the last iteration,the veri�er has a fully speci�ed expression and can easily check it against the claimed value.)Completeness of the above: When the claim holds, the prover has no problem supplying thecorrect polynomials, and this will lead the veri�er to always accept.Soundness of the above: It su�ces to bound the probability that for a particular iteration theinitial claim is false whereas the ending claim is correct. Both claims refer to the current summationexpression being equal to the current value, where `current' means either at the beginning of theiteration or at its end. Let T (�) be the actual polynomial representing the expression when strippingthe current variable, and let p(�) be any potential answer by the prover. We may assume thatp(0) + p(1) � v and that p is of low-degree (as otherwise the veri�er will reject). Using ourhypothesis (that the initial claim is false), we know that T (0) + T (1) 6� v. Thus, p and T aredi�erent low-degree polynomials and so they may agree on very few points. In case the veri�erinstantiation does not happen to be one of these few points, the ending claim is false too.Open Problem 1 (alternative proof of coNP � IP): Polynomials play a fundamental role in theabove construction and this trend has even deepened in subsequent works on PCP. It does not seempossible to abstract that role, which seems to be very annoying. I consider it important to obtainan alternative proof of coNP � IP; a proof in which all the underlying ideas can be presented atan abstract level.2.4 The Power of Interactive ProofsIP = PSPACEInteractive Proofs for PSPACE: Recall that PSPACE languages can be expressed by Quan-ti�ed Boolean Formulae. The number of quanti�ers is polynomial in the input, but there areboth existential and universal quanti�ers, and furthermore these quanti�ers may alternate. Con-sidering the arithmetization of these formulae, we face two problems: Firstly, the value of theformulae is only bounded by a double exponential function (in the length of the input), and sec-ondly when stripping out summations, the expression may be a polynomial of high degree (due3

to the universal quanti�ers which are replaced by products). The �rst problem is easy to dealwith by using the Chinese Reminder Theorem (i.e., if two integers in [0;M] are di�erent then theymust be di�erent modulo most of the primes up-to poly(logM)). The second problem is resolvedby \refreshing" variables after each universal quanti�er (e.g, 9x8y9z�(x; y; z) is transformed into9x8y9x0(x = x0) ^ 9y�(x0; y; z)).IP in PSPACE: We show that for every interactive proof there exists an optimal prover strategy,and furthermore that this strategy can be computed in polynomial-space. This follows by lookingat the tree of all possible executions.The IP Hierarchy: Let IP(r(�)) denote the class of languages having an interactive proof inwhich at most r() messages are exchanges. Then, IP(0) = coRP � BPP. The class IP(1) is arandomized version of NP; witnesses are veri�ed via a probabilistic polynomial-time pprocedure,rather than a deterministic one. The class IP(2) seems fundamentally di�erent; the veri�cationprocedure here is truly interactive. Still, this class seems close to NP; speci�cally, it is contained inthe polynomial-time hierarchy (which seems `low' when contrasted with PSPACE = IP(poly)). In-terestingly, IP(2r(�)) = IP(r(�)), and so in particular IP(O(1)) = IP(2). (Note that \IP(2r(�)) =IP(r(�))" can be applied successively a constant number of times, but not more.)Open Problem 2 (the structure of the IP(�) hierarchy):Suppose that L 2 IP(r). What can be said about L ?Currently, we only know to argue as follows: IP(r) � IP(poly) � PSPACE and so L 2 PSPACEand is in IP(poly). This seems ridiculous: we do not use the extra information on IP(r). On theother hand, we don't expect L to be in IP(g(r)), for any function g, since this will put coNP �coIP(1) in IP(2). So another parameter may be relevant here; how about the lengths of themessages exchanged in the interaction. Indeed, if L has an interactive proof in which the totalmessage length is m then L has an interactive proof in which the total message length is O(m3).(This just follows by the known PSPACE � IP construction.) I consider it important to obtain abetter result! In general, it would be interesting to get a better understanding of the IP(�) Hierarchy.2.5 How Powerful Should the Prover be?The Cryptographic Angle: Interactive proofs occur inside \cryptographic" protocols and sothe prover is merely a probabilistic polynomial-time machine; yet it may have access to an auxiliaryinput (given to it or generated by it in the past). Such provers are relatively weak (i.e., they can onlyprove languages in IP(1)); yet, they may be of interest for other reasons (e.g., see zero-knowledge).The Complexity Theoretic Angle: It make sense to try to relate the complexity of provinga statement (to another party) to the complexity of deciding whether the statement holds. Thisgives rise to two related approaches:1. The prover is a probabilistic polynomial-time oracle machine with access to the language. Thisapproach can be thought of as extending the notion of self-reducibility (of NP-languages):These languages have an NP-proof system in which the prover is a polynomial-time machinewith oracle access to the language. Indeed, alike NP-complete languages, the IP-completelanguages also have such a \relatively e�cient" prover. (Recall that an optimal prover strategycan be implemented in polynomial-space, and thus by a polynomial-time machine havingoracle access to a PSPACE-complete language.)4

2. The prover runs in time which is polynomial in the complexity of the languages.Open Problem 3 Further investigate the power of the various notions, and in particular the oneextending self-reducibility on NP languages. Better understanding of the latter is also long due.A speci�c challenge: provide an NP-proof system for Quadratic Non-Residucity (QNR), using aprobabilistic polynomial-time prover with access to QNR language.2.6 Computationally-Sound ProofsSuch proofs systems are fundamentally di�erent from the above discussion (which did not e�ectthe soundness of the proof systems): Here we consider relations of the soundness conditions { falseproofs may exist (even with high probability) but are hard to �nd. Variants may correspond to theabove approaches; speci�cally, the following has been investigated:Argument Systems: One only considers prover strategies implementable by (possibly non-uniform) polynomial-size circuits (eq., probabilistic polynomial-time machines with auxiliary in-puts). Under some reasonable assumptions there exist argument systems for NP having poly-logarithmic communication complexity. Analogous interactive proofs cannot exists unless NP iscontained in Quasi-Polynomial Time (i.e., NP � Dtime(exp(poly(logn)))).CS Proofs: One only considers prover strategies implementable in time polynomial in the com-plexity of the language. In an non-interactive version one asks for \certi�cates a la NP-type" whichare only computationally sound. In a model allowing both prover and veri�er access to a randomoracle, one can convert interactive proofs (alike CS proofs) into non-interactive ones. As a heuris-tics, it is also suggested to replace the random oracle by use of \random public functions" (a fuzzynotion, not to be confused with pseudorandom functions).Open Problem 4 Try to provide �rm grounds for the heuristics of making proof systems non-interactive by use of \random public functions": I advise not to try to de�ne the latter notion (in ageneral form), but rather devise some ad-hoc method, using some speci�c but widely believed com-plexity assumptions (e.g., hardness of deciding Quadratic Residucity modulo a composite number),for this speci�c application.3 Zero-Knowledge ProofsZero-knowledge proofs are central to cryptography. Furthermore, zero-knowledge proofs are veryintriguing from a conceptual point of view, since they exhibit an extreme contrast between beingconvinced of the validity of a statement and learning anything in addition while receiving sucha convincing proof. Namely, zero-knowledge proofs have the remarkable property of being bothconvincing while yielding nothing to the veri�er, beyond the fact that the statement is valid.The zero-knowledge paradigm: Whatever can be e�ciently computed after interacting withthe prover on some common input, can be e�ciently computed from this input alone (withoutinteracting with anyone). That is, the interaction with the prover can be e�ciently simulated insolitude. 5

A Technical Note: I have deviated from other presentation in which the simulator works inaverage (probabilistic) polynomial-time and require that it works in strict probabilistic polynomial-time. Yet, I allow the simulator to halt without output with probability at most 12 . Clearly thisimplies an average polynomial-time simulator, but the converse is not known. In particular, someknown positive results regarding perfect zero-knowledge (with average polynomial-time simulators)are not known to hold under the above more strict notion.3.1 Perfect Zero-KnowledgeThe De�nition: A simulator can produce exactly the same distribution as occurring in an inter-action with the prover. Furthermore, in the general de�nition this is required with respect to anyprobabilistic polynomial-time veri�er strategy (not necessarily the one speci�ed for the veri�er).Thus, the zero-knowledge property protects the prover from any attempt to obtain anything fromit (beyond conviction in the validity of the assertion).Zero-Knowledge NP-proofs: Extending the NP-framework to interactive proof is essential forthe non-triviality of zero-knowledge. It is easy to see that zero-knowledge NP-proofs exist only forlanguages in RP. (Actually, that's a good exercise.)A perfect zero-knowledge proof for Graph Isomorphism: The prover sends the veri�er arandom isomorphic copy of the �rst input graph. The veri�er challenges the prover by asking theprover to present an isomorphism (of graph sent) to either the �rst input graph or to the secondinput graph. The veri�er's choice is made at random.The fact that this interactive proof system is zero-knowledge is more subtle than it seems; forexample, (many) parallel repetitions of the proof system are unlikely to be zero-knowledge.3.2 (Computational) Zero-KnowledgeThis de�nition is obtained by substituting the requirement that the simulation is identical to thereal interaction, by the requirement that the two are computational indistinguishable.Computational Indistinguishability is a fundamental concept of independent interest. Twoensembles are considered indistinguishable by an algorithm A if A's behavior is almost invariant ofwhether its input is taken from the �rst ensemble or from the second one. We interpret \behavior"as a binary verdict and require that the probability that A outputs 1 in both cases is the same up-toa negligible di�erence (i.e., smaller than 1=p(n), for any positive polynomial p(�) and all su�cientlylong input lengths (denoted by n)). Two ensembles are computational indistinguishable if they areindistinguishable by all probabilistic polynomial-time algorithms.A zero-knowledge proof for NP { abstract (boxes) setting: It su�ces to construct such aproof system for 3-Colorability (3COL). (To obtain a proof system for other NP-languages use thefact that the (standard) reduction of NP to 3COL is polynomial-time invertible.)The prover uses a �xed 3-coloring of the input graph and proceeds as follows. First, it uniformlyselects a relabeling of the colors (i.e., one of the 6 possible ones) and puts the resulting color ofeach vertex in a locked box (marked with the vertex name). All boxes are sent to the veri�er whoresponse with a uniformly chosen edge, asking to open the boxes corresponding to the endpoint ofthis edge. The prover sends over the corresponding keys, and the veri�er opens the two boxes andaccepts i� he sees two di�erent legal colors. 6

A zero-knowledge proof for NP { real setting: The locked boxes need to be implementeddigitally. This is done by a commitment scheme, a cryptographic primitive designed to implementsuch locked boxes. Loosely speaking, a commitment scheme is a two-party protocol which proceedsin two phases so that at the end of the �rst phase (called the commit phase) the �rst party(called sender) is committed to a single value (which is the only value he can later reveal in thesecond phase), whereas at this point the other party gains no knowledge on the committed value.Commitment schemes exist if (and actually i�) one-way functions exist. Thus, the mildest of allcryptographic assumptions su�ces for constructing zero-knowledge proofs for NP (and actually forall of IP). Furthermore, zero-knowledge proofs for languages which are \hard on the average" implythe existence of one-way functions; thus, the above construction essentially utilizes the minimalpossible assumption. one-way functions implyIP = ZKIP3.3 Concluding RemarksThe prover's strategy in the above zero-knowledge proof for NP can be implementedby a probabilistic polynomial-time machine which is given (as auxiliary input) an NP-witnessfor the input. (This is clear for 3COL, and for other NP-languages one needs to use the factthat the relevant reductions are coupled with e�cient witness transformations.) The e�cientimplementation of the prover strategy is essential to the applications below.Applications to Cryptography: Zero-knowledge proofs are a powerful tool for the design ofcryptographic protocols, in which one typically wants to guarantee proper behavior of a partywithout asking him to reveal all his secrets. Note that proper behavior is typically a polynomial-time computation based on the party's secrets as well as on some known data. Thus, the claimthat the party behaves consistently with its secrets and the known data can be casted as an NP-statement, and the above result can be utilized. More generally, using additional ideas, one canprovide a secure protocol for any functional behavior. These general results have to be considered asplausibility arguments; you would not like to apply these general constructions to speci�c practicalproblems, yet you should know that these speci�c problems are solvable.Open Problems do exists, but seem more specialized in nature. For example, it would beinteresting to �gure out and utilize the minimal possible assumption required for constructing\zero-knowledge protocols for NP" in various models like constant-round interactive proofs, the\non-interactive" model, and perfect zero-knowledge arguments.Further Reading: see chapter on Zero-Knowledge in my \fragments of a book" on Foundationsof Cryptography (available from URL http://theory.lcs.mit.edu/~oded/frag.html).Solution to Exercise regarding Zero-Knowledge NP-proofs: An NP-proof system for alanguage L yields an NP-relation for L (de�ned using the veri�er). On input x 2 L a perfectzero-knowledge simulator either halts without output or outputs an accepting conversation (i.e.,an NP-witness for x). 7

4 Probabilistically Checkable Proof SystemsWhen viewed in terms of an interactive proof system, the probabilistically checkable proof settingconsists of a prover which is memoryless. Namely, one can think of the prover as being an oracleand of the messages sent to it as being queries. A more appealing interpretation is to view the prob-abilistically checkable proof setting as an alternative way of generalizing NP. Instead of receivingthe entire proof and conducting a deterministic polynomial-time computation (as in the case ofNP), the veri�er may toss coins and probe the proof only at location of its choice. Potentially,this allows the veri�er to utilize very long proofs (i.e., of super-polynomial length) or alternativelyexamine very few bits of an NP-proof.4.1 The De�nitionThe Basic Model: A probabilistically checkable proof system consists of a probabilistic polynomial-time veri�er having access to an oracle which represents a proof in redundant form. Typically, theveri�er accesses only few of the oracle bits, and these bit positions are determined by the outcomeof the veri�er's coin tosses. Completeness and soundness are de�ned similarly to the way theywere de�ned for interactive proofs: for valid assertions there exist proofs making the veri�er alwaysaccepts, whereas no oracle can make the veri�er accept false assertions with probability above 12 .(We've speci�ed the error probability since we intend to be very precise regarding some complexitymeasures.)Additional complexity measures of fundamental importance are the randomness and querycomplexities. Speci�cally, PCP(r(�); q(�)) denotes the set of languages having a probabilistic check-able proof system in which the veri�er, on any input of length n, makes at most r(n) coin tossesand at most q(n) oracle queries. (As usual in complexity theory, unless stated otherwise, the oracleanswers are always binary (i.e., either 0 or 1).)Observed that the \e�ective" oracle length is at most 2r �q (i.e., locations which may be accessedon some random choices). In particular, the e�ective length of oracles in a PCP(log; �) system ispolynomial.PCP augments the traditional notion of a proof: An oracle which always makes the pcp-veri�er accept constitutes a proof in the standard mathematical sense. However a pcp system hasthe extra property of enabling a lazy veri�er, to toss coins, take its chances and \assess" the validityof the proof without reading all of it (but rather by reading a tiny portion of it).4.2 The power of probabilistically checkable proofsThe PCP Characterization Theorem states thatPCP(log; O(1)) = NPThus, probabilistically checkable proofs in which the veri�er tosses only logarithmically many coinsand makes only a constant number of queries exist for every NP-language. It follows that NP-proofscan be transformed into NP-proofs which o�er a trade-o� between the portion of the proof beingread and the con�dence it o�ers. Speci�cally, if the veri�er is willing to tolerate an error probabilityof � then it su�ces to let it examine O(log(1=�)) bits of the (transformed) NP-proof. These bitlocations need to be selected at random. Furthermore, an original NP-proof can be transformed8

into an NP-proof allowing such trade-o� in polynomial-time. (The latter is an artifact of the proofof the PCP Theorem.)The Proof of the PCP Characterization Theorem is one of the most complicated proofsin the Theory of Computation. Its main ingredients are:1. A pcp(log; poly(log)) proof system for NP . Furthermore, this proof system has additionalproperties which enable proof composition as in item (3) below.2. A pcp(poly; O(1)) proof system for NP. This proof system also has additional propertiesenabling proof composition as in item (3).3. The proof composition paradigm: Suppose you have a pcp(r(�); O(`(�))) system for NP inwhich a constant number of queries are made (non-adaptively) to an 2`-valued oracle andthe veri�er's decision regarding the answers may be implemented by a poly(`)-size circuit.Further suppose that you have a pcp(r0(�); q(�))-like system for P in which the input is given inencoded form via an additional oracle so that the system accepts input-oracles which encodeinputs in the language and reject any input-oracle which is \far" from the encoding of anyinput in the language. In this latter system access to the input-oracle is accounted in thequery complexity. Furthermore, suppose that the latter system may handle inputs whichresult from concatenation of a constant number of sub-inputs each encoded in a separatesub-input oracle. Then, NP has a pcp(2(r(�) + r0(s(�))); 2q(s(�))), where s(n) def= poly(`(n)).[The extra factor of 2 is an artifact of the need to amplify each of the two pcp systems sothat the total error probability sums up to at most 1=2.]In particular, the proof system of item (1) is composed with itself [using r = r0 = log, ` = q =poly(log), and s(n) = poly(log(n))] yielding a pcp(log; poly(log log)) system for NP, which is thencomposed with the system of item (2) [using r = log, ` = poly(log log), r0 = poly, q = O(1), ands(n) = poly(log log(n))] yielding the desired pcp(log; O(1)) system for NP .The pcp(log; poly(log)) system for NP: We start with a di�erent arithmetization of CNF for-mulae (than the one used for constructing an interactive proof for coNP). Logarithmically manyvariables are used to represent (in binary) the names of variables and clauses in the input formula,and an oracle from variables to Boolean values is supposed to represent a satisfying assignment.An arithmetic expression involving a logarithmic number of summations is used to represent thevalue of the formula under the truth assignment represented by the oracle. This expression is alow-degree polynomial in the new variables and has a cubic dependency on the assignment-oracle.Small-biased probability spaces are used to generate a polynomial number of such expressions sothat if the formula is satis�able then all these expressions evaluate to zero, and otherwise at mosthalf of them evaluate to zero. Using a summation test (as in the interactive proof for coNP) anda low-degree test, this yields a pcp(t(�); t(�)) system for NP, where t(n) def= O(log(n) � log log(n)).[We use a �nite �eld of poly(log(n)) elements, and so we need (logn) � O(log log n) random bitsfor the summation test.] To obtain the desired pcp system, one uses O(logn)log logn -long sequences overf1; :::; logng to represent variable/clause names (rather than logarithmically-long binary sequences).[We can still use a �nite �eld of poly(log(n)) elements, and so we need only O(logn)log logn � O(log logn)random bits for the summation test.] All this is relatively easy compared to what is needed in orderto transform the pcp system so that only a constant number of queries are made to a (multi-valued)oracle. This is obtained via (randomness-e�cient) \parallelization" of pcp systems, which in turndepends heavily on e�cient low-degree tests. 9

Open Problem 5 As a �rst step towards the simpli�cation of the proof of the PCP Characteri-zation, one may want to provide an alternative \parallelization" procedure which does not rely onpolynomials or any other algebraic creatures. A �rst step towards this partial goal was taken bySafra and myself (see TR96-047 of http://www.eccc.uni-trier.de/eccc): We have constructedan e�cient low-degree test which utilizes a simple/ine�cient low-degree test which is parallelizedusing a new \combinatorial consistency lemma".The pcp(poly; O(1)) system for NP: It su�ces to prove the satis�ability of a systems ofquadratic equations over GF(2) (as this problem in NPC). The oracle is supposed to hold thevalues of all quadratic expressions under a satisfying assignment to the variables. We distinguishtwo tables in the oracle: One corresponding to the (2n) linear expressions and the other to the (2n2pure) bilinear expressions. Each table is tested for self-consistency (via a linearity test) and the twotables are tested to be consistent (via a matrix-equality test which utilizes \self-correction"). Eachof these tests utilizes a constant number of Boolean queries, and randomness which is logarithmicin the size of the corresponding table.4.3 PCP and ApproximationPCP-Characterizations of NP plays a central role in recent developments concerning the di�cultyof approximation problems. To demonstrate this relationship, we �rst note that the PCP Char-acterization Theorem can be rephrased without mentioning the class PCP altogether. Instead, anew type of polynomial-time reductions, which we call amplifying, emerges.Amplifying reductions: There exists a constant � > 0, and a polynomial-time reduction f , of3SAT to itself so that f maps non-satis�able 3CNF formulae to 3CNF formulae for which everytruth assignment satis�es at most a 1 � � fraction of the clauses. I call the reduction f amplify-ing. Its existence follows from the PCP Characterization Theorem by considering the guaranteedpcp system for 3SAT, associating the bits of the oracle with Boolean variables and introducing a(constant size) Boolean formula for each possible outcome of the sequence of O(logn) coin tosses(describing whether the veri�er would have accepted given this outcome).Amplifying reductions and Non-Approximability: The above amplifying reduction of 3SATimplies that it is NP-Hard to distinguish satis�able 3CNF formulae from 3CNF formulae for whichevery truth assignment satis�es less than a 1�� fraction of its clauses. Thus, Max-3SAT is NP-Hardto approximate to within a 1� � factor.Stronger Non-Approximability Results were obtained via alternative PCP Characterizationsof NP. For example, the NP-Hardness of approximating Max-Clique to within N1��, 8� > 0, wasobtained via NP = FPCP(log; �), where the second parameter in FPCP measures the \amortizedfree-bit" complexity of the pcp system.Open Problems regarding various parameters in PCP Characterizations of NP will probablyremain also after the turbulence currently created by works in progress by Hastad and by Raz &Safra. 10

