
Preface to Special Issue onEncryption in the Bounded Storage ModelOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israeloded@wisdom.weizmann.ac.ilAugust 10, 2003Most special-issues are triggered by some general idea (e.g., the desireto commemorate a special event or date, the realization that some areadeserves special attention, etc). Typically, in these cases, a call for papersis posted, and the editor selects papers among those submitted. Thus, thedecision to have a special issue precedes the speci�c choice of papers to beincluded in it.The current special issue has evolved in the reverse order. First it oc-curred to me that the three papers included in the current issue would makea very nice special issue. Next, it occured to me that this is indeed a goodtime to draw attention to the Bounded-Storage Model. Finally, I initiatedthis special issue and asked the authors to submit these papers to it. Need-less to say, the papers went through a regular review process.Having started this preface on a personal note, let me continue by provid-ing my personal perspective on some issues related to the Bounded-StorageModel. I aim to o�er an unusually wide and somewhat controversial perspec-tive, and refer the readers to the papers themselves for more conventionalperspectives.Onmaking no assumptions. In some discussions of \information-theoreticsecurity", one may hear the claim that in this arena \no assumptions aremade" (and that this stands in contrast to \complexity-based Cryptogra-phy"). This claim is clearly false. For example, any cryptographic workassumes the ability to generate random secrets (i.e., to generate objects1



that are unpredictable by the adversary).1 In general, we always make as-sumptions about the (computational) abilities of the legitimate parties; thatis, that the legitimate parties can perform certain actions. However, whenone says that \no assumptions are made", one typically means assumptionsabout the (computational) limitations of the adversary; that is, that the ad-versary cannot perform certain actions, typically because its computationalresources are bounded. A third level of assumptions refers to widely believedconjectures. These may be conjectures from Number Theory (e.g., the Ex-tended Riemann Hypothesis), from Physics (e.g., the hypothesis that Quan-tum Mechanics provides a complete model of the physical world), or fromComplexity Theory (e.g., the existence of one-way functions). We commentthat, whereas it seems that the popular famous conjectures of Mathematicsor Complexity Theory can be proved or disproved (albeit possibly not inthis century), in principle, the conjectures of Physics can only be disproved.Traditional work in \information-theoretic cryptography" make only as-sumptions of the �rst kind. Although the bounded-storage model may beviewed as part of \information-theoretic cryptography" (by placing boundson the information available to the adversary), it can also be viewed aspart of \complexity-based cryptography" (where the bounded complexityresource is that of space).2 Either way, the bounded-storage model makesan assumption of the second kind; that is, an assumption referring to the(storage) limitations of the adversary. The fact that space-complexity is bet-ter understood than time-complexity, allows typical work in the bounded-storage model to obtain (positive) results without resorting to unprovenconjectures (i.e., assumptions of the third kind).On space-bounded versus time-bounded adversaries. As stated above,work in the bounded-storage model may be viewed as an application ofspace-complexity to cryptography. Arguably, this application of space-complexity is quite straightforward; that is, it does not refer to the actual1Here and below, we actually combine two types of assumptions regarding the abilitiesof the legitimate parties. The �rst type refers to the ability of these parties to conductcertain actions (e.g., toss coins), whereas the second type refers to their ability to conductactions in private (e.g., toss a coin without anybody else seeing or a-priori knowing theoutcome).2Indeed, the intimate relation between space-complexity and information theory isevident in works such as Nisan's work \Pseudorandom Generators for Space BoundedComputation" (Combinatorica, Vol. 12 (4), pages 449{461, 1992) and Nisan and Zuck-erman's work \Randomness is Linear in Space" (J. of Comp. and Sys. Sci., Vol. 52 (1),pages 43{52, 1996). 2



computation but rather to state information passed between two (computa-tionally unbounded) phases. Thus, one may prefer to analyze this setting interms of information theory. Either way, the computational aspect of thissetting is extremely simple. In contrast, most work in Modern Cryptographyrefers to highly complex computational questions (e.g., the time-complexityof various computational tasks), which are only super�cially understood atthe present. This di�erence in the nature of the computational aspects inquestion yields a big di�erence in the technical aspects of the relevant works.But there is also a conceptual di�erence, to be discussed next.Most work in Modern Cryptography refers to time-bounded adversaries,where the time-bound corresponds to \real time" due to the inherent limita-tions on the computing resources available to the adversary (at the presentas well as in the relevant future). In other words, a successful break ofa secure system requires so many computation steps that it is unlikely tooccur in the relevant future (e.g., in the current century). However (typi-cally), in the time-bounded model, a successful break will eventually occur(but, most probably, not in our life-time). In contrast (typically), in thebounded-storage model, if at the present the adversary has limited storagethen security will be preserved throughout eternity.On the importance of scale. Space-bounded adversaries were studiedbefore (mainly in the context of zero-knowledge proofs).3 A key di�erencebetween these prior works and the bounded-storage model is in scale (i.e.,the relation of the space-bound to other parameters). Whereas these priorworks have studied adversaries having a very small amount of storage (e.g.,logarithmic in the security parameter), the bounded-storage model dealswith adversaries having a huge amount of storage that need to deal with a(slightly) larger amount of information (or random noise). Indeed, a changein scale may seem as something very minor (or technical), but often it opensthe door to totally di�erent applications and implications. Such has beenthe case also in the domains of derandomization and PCP:1. Pairwise-independent sample spaces allow to generate many samplesat the (randomness-complexity) cost of generating two samples. When3See Dwork and Stockmeyer's work \Zero-Knowledge With Finite State Veri�ers" (inCrypto88, pages 71{75, 1988) and Kilian's work \Zero-knowledge with Log-Space Veri-�ers" (in 29th FOCS, pages 25{35, 1988). In contrast, the bounded-storage model wasintroduced in Maurer's paper \Secret Key Agreement by Public Discussion from CommonInformation" (IEEE Trans. on Inform. Th. , Vol. 39 (3), pages 733{742, 1993).3



the samples themselves are taken from a huge space, the impact of thisdiscovery is a saving in the randomness-complexity. But when the sam-ples themselves are taken from small sets, such pairwise-independentsample spaces yields a full derandomization (of the computation thatrelies on such a sequence of samples).42. Multi-prover interactive proofs (MIPs) were �rst shown to provide analternative characterization of the class NEXP. Their relevance tothe more fundamental class NP was demonstrated by a scale-down,and has yield alternative characterizations of the class NP. Thesecharacterizations have been the focus of all subsequent exciting devel-opments regarding PCP and the intractability of approximation (ofNP-hard problems).5Interestingly, whereas in these two examples, exciting developments followedby reducing the scale, in the case of the bounded-storage model the excitingdevelopments followed by enlarging the scale.
4The work of Chor and Goldreich \On the Power of Two{Point Based Sampling"(Jour. of Complexity, Vol 5, 1989, pages 96{106) suggests to use such samples for approx-imating the average of a function de�ned over a huge set. Thus, the impact of their workwas con�ned to saving (or \recycling") random bits. In contrast, Luby's (contemporary)work \A Simple Parallel Algorithm for the Maximal Independent Set Problem" (SIAMJ. on Comput., Vol. 15 (4), pages 1036{1053, November 1986) deals with samples takenfrom a relatively small set (e.g., the edge-set of a given graph), and yields a full deran-domization of a simple randomized algorithm for a natural task. Indeed, Luby's work hasinspired a vast amount of further research.5The MIP characterization of NEXP was proven by Babai, Fortnow, and Lund in\Non-Deterministic Exponential Time has Two-Prover Interactive Protocols" (Compu-tational Complexity, Vol. 1 (1), pages 3{40, 1991). Two alternative scale-downs of thisresult (to NP) were shown in subsequent works: Babai, Fortnow, Levin, and Szegedy's\Checking Computations in Polylogarithmic Time" (in 23rd STOC, pages 21{31, 1991)and Feige, Goldwasser, Lov�asz, Safra, and Szegedy's \Approximating Clique is almostNP-complete" (J. of the ACM, Vol. 43, pages 268{292, 1996).4


