
Pseudorandomness(Notes for an overview talk)Oded GoldreichDepartment of Computer ScienceWeizmann Institute of Science, Israel.oded.goldreich@weizmann.ac.ilJuly 5, 2006AbstractA fresh view at the question of randomness was taken in the theory of computing: It has beenpostulated that a distribution is pseudorandom if it cannot be told apart from the uniform distri-bution by an e�cient procedure. The paradigm, originally associating e�cient procedures withpolynomial-time algorithms, has been applied also with respect to a variety of limited classesof such distinguishing procedures. Starting with the general paradigm, we present the case ofgeneral-purpose pseudorandom generators (running in polynomial-time and withstanding anypolynomial-time distinguisher), as well as derandomization-aimed generators (used towards thederandomization of complexity classes such as BPP), generators withstanding space-boundeddistinguishers, and some special-purpose generators.This document contains preparation notes for a one-hour talk on the subject. Referencesand further details can be found in the author's texts [2, Chap. 3] and [3, Chap. 8].
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1 Randomness and ComputationContrasting two points of view:1. Randomness as a tool, used in computation.Essential uses include� Cryptography and distributed computing.� Probabilistic Proof Systems (e.g., IP, ZK, and PCP).� Sampling and Property Testing.Arguably these have an information theoretic 
avour. I have omitted, on purpose, the appli-cations to standard algorithms (as these may be non-essential).2. Randomness as an object, viewed by (resource-bounded) computations.Computational perspective of randomness: Computational Indistinguishability.The question is how are di�erent random phenomena viewed by computational-bounded ob-servers. In particular, can such observers tell these phenomena apart?Leads to saving (and sometimes even elimination) of randomness in computation settings.
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2 Computational view of randomnessA computational view of randomness leads to the notion of computational indistinguishability.Consider the following three cases:1. Identically distributed random variables (or probability ensembles), denoted X � Y .2. Statistically indistinguishable random variables, denoted X s= Y . This means that the varia-tion distance between these probability ensembles is negligible.3. Computationally indistinguishable random variables, denoted X c= Y . This means that noalgorithm, in a speci�ed class of algorithms, can tell these probability ensembles apart.The classes we shall consider are: probabilistic polynomial-time algorithms, (non-uniform)polynomial-size circuits, (non-uniform) quadratic-size [sic] circuits, space-bounded algorithms,syntactically restricted algorithms (e.g., projection tests, linear tests, hitting tests).The potential bene�t of the relaxed notion of indistinguishability is that it may allow for thegeneration of pseudorandom sequences (i.e., computationally indistinguishable from uniform) usingless randomness. [Indeed, wait and see...]
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3 Computational IndistinguishabilityThe formulation refers to probability ensembles of the type Z = fZkg, where Zk 2 f0; 1gk (orZk 2 f0; 1gpoly(k).For an algorithm (potential distinguisher) D, we consider the probability that D outputs 1 (in-dicating that the sample is taken from X) when given a sample of Xk versus the probabilitythat D outputs 1 when given a sample of Yk. If these two probabilities are fairly close (i.e.,Pr[D(Xk) = 1] � Pr[D(Yk) = 1]) then this indication is meaningless; that is, D does not distin-guish X from Y .Formally, we require that the di�erence �(k) def= jPr[D(Xk) = 1]�Pr[D(Yk) = 1]j is negligible; thatis, � is a negligible function, where typically negligible means being inversely proportional to thecomplexity (e.g., running-time) of the distinguisher.We consider various classes of distinguishers. In particular:� probabilistic polynomial-time algorithms, and (non-uniform) polynomial-size circuits,� (non-uniform) quadratic-size [sic] circuits,� space-bounded algorithms,� syntactically restricted algorithms (e.g., projection tests, linear tests, hitting tests).
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4 Notions of pseudorandom generatorsA (generic) notion of a pseudorandom generator (PRG) refers to three issues:1. Stretch: G : f0; 1gk ! f0; 1g`(k), for `(k) > k (and actually `(k) � k). Typically, we alsoupper-bound the stretch analogously to the next item (i.e., \e�cient generation"):(a) ` is polynomially bounded (i.e., `(k) � poly(k))(b) ` is exponentially bounded (i.e., `(k) � exp(O(k)))2. E�cient generation:(a) G produces each output bit in polynomial-time(b) G produces each output bit in exponential-timeTime is stated as a function of the generator's input, called its seed.3. Pseudorandomness; that is, computational indistinguishability from the uniform probabilityensemble (i.e., fG(Uk)g c= fU`(k)g). Two central notions of computational indistinguishabilityare:(a) computational indistinguishability by probabilistic polynomial-time algorithms(b) computational indistinguishability by (non-uniform) quadratic-size circuits,Two famous (popular) incarnations follow.General-purpose PRG: Taking the �rst option of each item (i.e., 1a+2a+3a). This yields aPRG that works in polynomial-time, stretches its seed by a polynomial amount, and producessequences that are as good as random ones with respect to any (feasible) application. That is,this PRG is universal, and it can be used to shrink the randomness consumption of any e�cientprocedure. In particular, the output looks random also to observers that use more resources thanwere used in the generation process, which is essential for cryptographic applications.Canonical derandomizers: Taking the second option of each item (i.e., 1b+2b+3b). In contrastto the general-purpose PRG, here the generation may (and typically does) take more resourcesthan available to the observer. Although this seems \unfair", such construct are useful (esp., inthe context of derandomization (e.g., emulating BPP by P)).
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5 On constructing general-purpose PRGsRecall G : f0; 1gk ! f0; 1g`(k), where `(k) > k (or ` is any polynomial), is polynomial-timecomputable and fG(Uk)g ppt= fU`(k)g. Indeed, having a PRG with some stretch (even `(k) = k+1)yields PRGs with arbitrary polynomial stretch (e.g., by \simple" or \sophisticated" iterations).1THM (\Randomness vs Hardness"): Such PRGs exists if and only if one-way functions exist.DEF (one-way functions (OWF)): f : f0; 1gk ! f0; 1gk is a OWF if1. it is polynomial-time computable2. it hard to invert on the average-case; that is, for every probabilistic polynomial-time algorithmA, Prx Uk [A(f(x)) 2 f�1(f(x))] = negl(k)PRG implies OWF: Let G : f0; 1gk ! f0; 1g2k be a PRG. Consider f(x; y) = G(x), wherejxj = jyj. If you can invert f on f(U2k) = G(Uk) then you can distinguish G(Uk) from U2k, sincethe probability that the latter has a f -preimage (at all!) is negligible.OWF implies PRG: Far more complicated. We'll see a special case next.

1The simple iteration yields G0(s) = G`(jsj)�jsj(s), where Gi+1(x) = G(Gi(x)) and G0(x) = x. In the alternative(\�xed-length" iteration) method we have G0(s) = �1 ��`(jsj), where s0 = s and �isi = G(si�1) for i = 1; :::; `(jsj). Inboth cases, the analysis relies on the distinguisher's ability to apply G.5



6 OWF imply PRGAn \intermediate" notion is that of a hardcore of a function f .DEF (hardcore): The predicate b : f0; 1gk ! f0; 1g is a hardcore of f : f0; 1gk ! f0; 1gk if1. b is polynomial-time computable2. b(x) hard to predict from f(x), in the average-case sense; that is, for every probabilisticpolynomial-time algorithm A,Prx Uk [A(f(x)) = b(x)] < 12 + negl(k)The claim that b(Uk) is hard to predict from f(Uk) is related to the claim that f(Uk)b(Uk) iscomputationally indistinguishable from f(Uk)U1. See more below. But �rst note that1. An individual bit of the input of a OWF f need NOT be a hardcore of f . Consider, forexample, f(x; y) = (f 0(x); y).2. If f is 1-1 and polynomial-time invertible then it has no hardcore, because f(x) 7! x 7! b(x)is easy to compute.In the case that a OWF f is 1-1, any hardcore of f yields a PRG. For a hardcore b of f , weset G(s) = f(s)b(s). Note that G(Uk) = f(Uk)b(Uk) is computationally indistinguishable fromf(Uk)U1 � Uk+1 (by the 1-1 property).Thus, we merely need to show that and (1-1) OWF has a hardcore. This is done next.
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7 OWF imply HardcoreGiven an arbitrary OWF f0, we claim that b(x; r) = Pki=1 xiri mod 2 is a hardcore of the OWFf(x; r) = (f0(x); r). That is, if given f0(x) is hard to obtain x then it is hard to predict b(x; r)when given f0(x) and a random r (i.e., it is hard to predict the XOR of a random subset of thebits of x).Analysis of the counter-positive. Suppose we are given oracle access to a function B :f0; 1gk ! f0; 1g such that for some x it holds thatPrr Uk [B(r) = b(x; r)] � 12 + �Then, in poly(k=�)-time, we can guess x correctly with probability at least poly(�=k).[Indeed, think of B as an algorithm that violates the claim that b is a hardcore of f . Actually, Bis derived from such an algorithm A by setting Bx(r) = A(f(x); r).]Warm-up. Suppose px def= Prr Uk [B(r) = b(x; r)] � 34+�. Recover xj with probability at least 1�2 � (1�px) � 0:5+2� by selecting uniformly r 2 f0; 1gk and outputting B(r)�B(r�ej).2 Repeatingthis experiment m = O(k=�2) times, and ruling by majority we are correct with probability at least1� (1=2k), even if the samples are only pairwise independent.Eliminating the error-doubling phenomenon. Suppose we can generate uniformly distributedand pairwise independent r(1); :::; r(m) 2 f0; 1gk such that we know the value of each b(x; r(i)). Then,with probability at least 1� (1=2k), the majority vote of b(x; r(i))�B(r(i)�ej) yields xj .So it is left to provide a procedure for generating such r(i)'s. More accurately, generate uniformlydistributed and pairwise independent r(1); :::; r(m) 2 f0; 1gk such that, with probability poly(�=k),we correctly guess the value of all b(x; r(i))'s.Detail: how to generate the samplesFor ` = log2(m+ 1), select uniformly s(1); :::; s(`) 2 f0; 1gk .Guess b(x; s(1)); :::; b(x; s(`)) 2 f0; 1g. The guess is correct with probability 2�` = 1=(m+ 1).Compute (r(I));6=I�[`] such that r(I) = �i2Is(i). Compute b(x; r(I)) asb(x;�i2Is(i)) = �i2Ib(x; s(i)):These (r(I));6=I�[`] are pairwise independent and uniformly distributed in f0; 1gk. If the guesses forall b(x; s(i))'s are correct then the values of all b(x; r(I))'s are correct.
2Note that b(x; r)�b(x; r�ej) equals (Pki=1 xiri) + (xj +Pki=1 xiri) = xj .7



8 Hardness vs Randomness, Act 2Recall G : f0; 1gk ! f0; 1g`(k) is called a canonical derandomizer if G is exponential-time com-putable and fG(Uk)g quad-size= fU`(k)g.Using such G we derandomize a probabilistic polynomial-time A (viewed as a two-input algorithmwith a second input having length that equals the running-time as a function of �rst input) asfollows.1. A0(x; s) = A(x;G(s)).This reduces randomness from poly(jxj) = `(k) to k = `�1(poly(jxj)). For `(k) = 2
(k), weget k = `�1(poly(jxj)) = O(log jxj).The existence of x for which jPr[A(x;U`(k)) = 1] � Pr[A(x;G(Uk)) = 1]j > 0:1 implies aquadratic-size (`(k)2-size) circuit distinguishing U`(k) from G(Uk).2. A00(x) = majs2f0;1gkfA0(x; s)g.The running-time of A00 is 2k � (timeA(jxj) + timeG(k)).Our aim is constructing canonical derandomizers with as large as possible stretch function (ideally,exponential stretch function).THM: A canonical derandomizer with stretch `(k) = 2
(k) implies BPP = P.THM: If E = Dtime(2O(n)) contains a set that requires exponential size circuits3 then there existsa canonical derandomizer with stretch `(k) = 2
(k).

3That is, for all but �nitely many n's deciding this set on f0; 1gn requires circuits of size 2
(n). Note that we referto worst-case complexity, but in the almost-everywhere (a.e.) sense.8



9 On constructing canonical derandomizersNot shown: worst-case hardness (for E) implies average-case hardness (for E). Thus, our startingpoint is a function f (in E) such that for every 2
(m)-size circuit Cm it holds thatPrx Um[Cm(x) = f(x)] < 12 + 2�
(m)The construction follows, where sI denotes the projection of s 2 f0; 1gk on the coordinates inI � [k]. G(s) = f(sI1)f(sI2) � � � f(sI`(k));where Ij � [k] such that jIjj = m and jIj \ Ij0 j � m0 < m (for any j0 6= j).Computing G involves computing I1; I2; :::; I`(k), and evaluating f on `(k) < 2k points. The time forcomputing G is 2O(m) > 2k, which will be smaller than `(k) and even `(k)2. [Thus, by construction,computing G is infeasible for the distinguisher, and indeed we shall show that not only that G(Uk) isindistinguishable from U`(k) (by `(k)2-size circuits) but UkG(Uk) is indistinguishable from Uk+`(k).]Pseudorandomness versus unpredictability. [This theme has already appeared wrt hard-core.]� Pseudorandomness implies unpredictability, simply because the uniform ensembles is unpre-dictable.� But the direction we need here is unpredictability implies pseudorandomness. [See details innext slide.]Thus, we focus on establishing the unpredictability of G(Uk).A warm-up and beyond. Suppose that the Ij 's are disjoint (which is impossible as this implies`(k) � k=m). Then unpredictability is straightforward. The intuition is that small intersectionsbound the gain towards guessing f(sIj+1) obtained from having f(sI1) � � � f(sIj ). The point is that,for j0 2 [j], the value of f(sIj0 ) depends on at most m0 bits of sIj+1 .Detail: unpredictability implies pseudorandomnessSuppose that fZkg is not pseudorandom; that is, for some adequate distinguisher D, it holds thatfZkg 6D= fU`(k)g.Consider the following hybrids, i = 0; 1; :::; `(k). The ith hybrid, denoted H(i)k , consists of an i-bit long pre�x of Zk followed by `(k)�i uniformly distributed bits (i.e., an (`(k)�i)-bit long su�x ofU`(k)). Note that H(0)k � U`(k) whereas H(i)k � Zk. Thus, fZkg 6D= fU`(k)g implies fH(i)k g D= fH(i+1)k gfor some i 2 f0; 1:::; `(k) � 1g (with a possible loss of a factor of `(k) in the gap).This means that we can distinguish the (i+ 1)-bit long pre�x of H(i)k from the (i+ 1)-bit longpre�x of H(i+1)k , which can be translated to predicting the i+ 1st bit of H(i+1)k (equiv., predictingthe i+ 1st bit of Zk) based on the preceding i bits.
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10 PRGs for space-bounded distinguishersTypical probabilistic polynomial-time applications have space complexity that is signi�cantly smallerthan their time complexity. This motivates the study of PRGs that fool the corresponding space-bounded distinguishers. A useful result to bear in mind follows.THM: Every probabilistic polynomial-time algorithm can be emulated by a probabilistic polynomial-time algorithm that uses randomness that is linear in the sum of the space complexity (of the originalalgorithm) and the length of the input.Note: This THM is based on a construction of a PRG that (in contrast to the previous PRGs) doesnot rely on any computational assumptions. That is, the corresponding hardness needed here canbe proved (rather than needs to be assumed).CONJ: Every probabilistic polynomial-time algorithm can be emulated by a probabilistic polynomial-time algorithm that uses randomness that is linear in the sum of the space complexity (of the originalalgorithm) and the logarithm of the length of the input.Evidence in support of CONJ is provided by a PRG that uses randomness that is quadratic in thespace complexity, by BPL � SC, and by the deterministic log-space algorithm for undirected graphconnectivity (which for a couple of decades was only known to be in RL).
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11 Special-purpose PRGsSpecial-purpose PRGs are useful in many applications. These PRGs should only withstand re-stricted (syntactic) tests, and can be constructed without relying on any assumptions.Projection tests and t-wise PRGs. These require that the projection of any t coordinates (inthe tested distribution) is uniformly distributed. Known constructions include random univariatepolynomials of degree t� 1, and random a�ne transformations.Linear tests and small-bias PRGs. These require that any (non-zero) linear combination ofthe bits (of the tested distribution) is almost-uniformly distributed. One of the known constructionis a random LFSR (i.e., one with a random feedback rule). A typical application of is for theconstruction of PCPs for the satis�ability of systems of equations.Hitting tests and expander walk PRGs. We refer to a distribution on sequences of length` over f0; 1gn. The criteria is that for any set S � f0; 1gn of density 1=2, the probability that allblocks in the distribution miss S is exp(�
(`)). That is, some block hits S with probability atleast 1� exp(�
(`)). One of the known construction is a random walk of length ` over a 2n-vertexexpander graph.
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12 CreditsThe concept of computational indistinguishability [5, 13]The notion of (general-purpose) pseudorandom generator [1, 13]Constructions of (general-purpose) pseudorandom generator (PRG): hardcore and iterations [1],hardcore for any one-way function [4], PRG based on any one-way function [6].Notion and construction of canonical derandomizers [10]. The conditional full derandomization ofBPP [7].PRG for space-bounded computations: reducing randomness to linear in space and length [11],towards reducing it to linear in space [8, 9, 12].Special-purpose PRGs: see credits in [2, Chap. 3] and [3, Chap. 8].References[1] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits.SICOMP, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS, 1982.[2] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms and Combi-natorics series (Vol. 17), Springer, 1999.[3] O. Goldreich. Computational Complexity: A Conceptual Perspective. In preparations. Drafts available athttp://www.wisdom.weizmann.ac.il/�oded/cc-book.html[4] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st STOC, pages 25{32,1989.[5] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages 270{299, 1984. Prelim-inary version in 14th STOC, 1982.[6] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any One-wayFunction. SICOMP, Vol. 28, No. 4, pages 1364{1396, 1999. Preliminary versions by Impagliazzo et. al. in21st STOC (1989) and H�astad in 22nd STOC (1990).[7] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizing the XORLemma. In 29th STOC, pages 220{229, 1997.[8] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica, Vol. 12 (4), pages449{461, 1992. Preliminary version in 22nd STOC, 1990.[9] N. Nisan. RL � SC. J. of Computat. Complex., Vol. 4, pages 1-11, 1994. Preliminary version in 24th STOC,1992.[10] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages 149{167, 1994. Prelim-inary version in 29th FOCS, 1988.[11] N. Nisan and D. Zuckerman. Randomness is Linear in Space. JCSS, Vol. 52 (1), pages 43{52, 1996.Preliminary version in 25th STOC, 1993.[12] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th STOC, pages 376{385, 2005.[13] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91, 1982.
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