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Abstract

A fresh view at the question of randomness was taken in the theory of computing: It has been
postulated that a distribution is pseudorandom if it cannot be told apart from the uniform distri-
bution by an efficient procedure. The paradigm, originally associating efficient procedures with
polynomial-time algorithms, has been applied also with respect to a variety of limited classes
of such distinguishing procedures. Starting with the general paradigm, we present the case of
general-purpose pseudorandom generators (running in polynomial-time and withstanding any
polynomial-time distinguisher), as well as derandomization-aimed generators (used towards the
derandomization of complexity classes such as BPP), generators withstanding space-bounded
distinguishers, and some special-purpose generators.

This document contains preparation notes for a one-hour talk on the subject. References
and further details can be found in the author’s texts [2, Chap. 3] and [3, Chap. 8].

Keywords: Pseudorandom generators, Derandomization, One-way functions, Hard-core predi-
cates, Worst-case vs Average-case, Hardness vs Randomness, Pairwise independence.
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1 Randomness and Computation
Contrasting two points of view:

1. Randomness as a tool, used in computation.

Essential uses include

e Cryptography and distributed computing.
e Probabilistic Proof Systems (e.g., IP, ZK, and PCP).
e Sampling and Property Testing.
Arguably these have an information theoretic flavour. I have omitted, on purpose, the appli-
cations to standard algorithms (as these may be non-essential).
2. Randomness as an object, viewed by (resource-bounded) computations.
Computational perspective of randomness: Computational Indistinguishability.

The question is how are different random phenomena viewed by computational-bounded ob-
servers. In particular, can such observers tell these phenomena apart?

Leads to saving (and sometimes even elimination) of randomness in computation settings.



2 Computational view of randomness

A computational view of randomness leads to the notion of computational indistinguishability.
Consider the following three cases:

1. Identically distributed random variables (or probability ensembles), denoted X =Y.

2. Statistically indistinguishable random variables, denoted X =Y. This means that the varia-
tion distance between these probability ensembles is negligible.

3. Computationally indistinguishable random variables, denoted X = Y. This means that no
algorithm, in a specified class of algorithms, can tell these probability ensembles apart.

The classes we shall consider are: probabilistic polynomial-time algorithms, (non-uniform)
polynomial-size circuits, (non-uniform) quadratic-size [sic| circuits, space-bounded algorithms,
syntactically restricted algorithms (e.g., projection tests, linear tests, hitting tests).

The potential benefit of the relaxed notion of indistinguishability is that it may allow for the

generation of pseudorandom sequences (i.e., computationally indistinguishable from uniform) using
less randomness. [Indeed, wait and see...|



3 Computational Indistinguishability

The formulation refers to probability ensembles of the type Z = {Z;}, where Z, € {0,1}* (or
Zy, € {0,1}poly(k),

For an algorithm (potential distinguisher) D, we consider the probability that D outputs 1 (in-
dicating that the sample is taken from X) when given a sample of X} versus the probability
that D outputs 1 when given a sample of Y. If these two probabilities are fairly close (i.e.,
Pr[D(Xy) = 1] = Pr[D(Yr) = 1]) then this indication is meaningless; that is, D does not distin-
guish X from Y.

Formally, we require that the difference 6(k) o |Pr[D(X}y) = 1] — Pr[D(Y)) = 1]| is negligible; that

is, 6 is a negligible function, where typically negligible means being inversely proportional to the
complexity (e.g., running-time) of the distinguisher.

We consider various classes of distinguishers. In particular:

e probabilistic polynomial-time algorithms, and (non-uniform) polynomial-size circuits,

(non-uniform) quadratic-size [sic| circuits,

e space-bounded algorithms,

syntactically restricted algorithms (e.g., projection tests, linear tests, hitting tests).



4 Notions of pseudorandom generators
A (generic) notion of a pseudorandom generator (PRG) refers to three issues:

1. Stretch: G : {0,1}* — {0,1}*®) for £(k) > k (and actually (k) > k). Typically, we also
upper-bound the stretch analogously to the next item (i.e., “efficient generation”):
(a) (£ is polynomially bounded (i.e., £(k) < poly(k))
(b) ¢ is exponentially bounded (i.e., (k) < exp(O(k)))

2. Efficient generation:

(a) G produces each output bit in polynomial-time

(b) G produces each output bit in exponential-time
Time is stated as a function of the generator’s input, called its seed.

3. Pseudorandomness; that is, computational indistinguishability from the uniform probability
ensemble (i.e., {G(Up)} = {Ue(ry})- Two central notions of computational indistinguishability
are:

(a) computational indistinguishability by probabilistic polynomial-time algorithms

(b) computational indistinguishability by (non-uniform) quadratic-size circuits,

Two famous (popular) incarnations follow.

General-purpose PRG: Taking the first option of each item (i.e., la4+2a+3a). This yields a
PRG that works in polynomial-time, stretches its seed by a polynomial amount, and produces
sequences that are as good as random ones with respect to any (feasible) application. That is,
this PRG is universal, and it can be used to shrink the randomness consumption of any efficient
procedure. In particular, the output looks random also to observers that use more resources than
were used in the generation process, which is essential for cryptographic applications.

Canonical derandomizers: Taking the second option of each item (i.e., 1b4+2b+3b). In contrast
to the general-purpose PRG, here the generation may (and typically does) take more resources
than available to the observer. Although this seems “unfair”, such construct are useful (esp., in
the context of derandomization (e.g., emulating BPP by P)).



5 On constructing general-purpose PRGs

Recall G : {0,1}* — {0,1}®), where £(k) > k (or £ is any polynomial), is polynomial-time

t
computable and {G(Ug)} PP {Ue(ry}- Indeed, having a PRG with some stretch (even ((k) = k+1)
yields PRGs with arbitrary polynomial stretch (e.g., by “simple” or “sophisticated” iterations).!

THM (“Randomness vs Hardness”): Such PRGs exists if and only if one-way functions exist.

DEF (one-way functions (OWF)): f:{0,1}* — {0,1}* is a OWF if
1. it is polynomial-time computable

2. it hard to invert on the average-case; that is, for every probabilistic polynomial-time algorithm
A,
Pr,y, [A(f () € f7H(f(2))] = negl(k)
PRG implies OWF: Let G : {0,1}* — {0,1}* be a PRG. Consider f(x,y) = G(z), where
|z| = |y|. If you can invert f on f(Usi) = G(Uy) then you can distinguish G(Uy) from Uy, since
the probability that the latter has a f-preimage (at all!) is negligible.

OWEF implies PRG: Far more complicated. We’ll see a special case next.

!The simple iteration yields G'(s) = G*(*D=IsI(s), where G**!(z) = G(G'(x)) and G°(x) = z. In the alternative
(“fixed-length” iteration) method we have G'(s) = 01 - 04(|s|), Where so = s and oys; = G(si—1) for i = 1,...,£(]s|). In
both cases, the analysis relies on the distinguisher’s ability to apply G.



6 OWF imply PRG

An “intermediate” notion is that of a hardcore of a function f.

DEF (hardcore): The predicate b: {0,1}% — {0,1} is a hardcore of f: {0,1}* — {0,1}* if
1. b is polynomial-time computable
2. b(x) hard to predict from f(x), in the average-case sense; that is, for every probabilistic
polynomial-time algorithm A,

Prec o, [A(f(2)) = b(z)] < 5 + negl(F)

The claim that b(Uy) is hard to predict from f(Uy) is related to the claim that f(Uy)b(Uy) is
computationally indistinguishable from f(Uy)U;. See more below. But first note that

1. An individual bit of the input of a OWF f need NOT be a hardcore of f. Consider, for
example, f(z,y) = (f'(z),y).
2. If f is 1-1 and polynomial-time invertible then it has no hardcore, because f(z) — x — b(z)

is easy to compute.

In the case that a OWF f is 1-1, any hardcore of f yields a PRG. For a hardcore b of f, we
set G(s) = f(s)b(s). Note that G(Uy) = f(Ur)b(Ug) is computationally indistinguishable from
f(Ug)Uy = Ugyq (by the 1-1 property).

Thus, we merely need to show that and (1-1) OWF has a hardcore. This is done next.



7 OWF imply Hardcore

Given an arbitrary OWF fy, we claim that b(x,r) = Z;“:l x;T; mod 2 is a hardcore of the OWF
flx,r) = (fo(x),r). That is, if given fo(z) is hard to obtain = then it is hard to predict b(z,r)
when given fo(x) and a random r (i.e., it is hard to predict the XOR of a random subset of the
bits of z).

Analysis of the counter-positive. Suppose we are given oracle access to a function B :
{0,1}* — {0,1} such that for some x it holds that

Pry o, [B(r) = bz, 1)] > % +e

Then, in poly(k/e)-time, we can guess x correctly with probability at least poly(e/k).
[Indeed, think of B as an algorithm that violates the claim that b is a hardcore of f. Actually, B
is derived from such an algorithm A by setting B, (r) = A(f(x),r).]

Warm-up. Suppose p; def Pr,y [B(r) =b(x,r)] > %—i—e. Recover x; with probability at least 1—
2-(1—ps) > 0.5+ 2¢ by selecting uniformly r € {0, 1}* and outputting B(r)®B(r@&e’).? Repeating
this experiment m = O(k/€?) times, and ruling by majority we are correct with probability at least
1 — (1/2k), even if the samples are only pairwise independent.

Eliminating the error-doubling phenomenon. Suppose we can generate uniformly distributed
and pairwise independent ("), .., #(™) € {0,1}* such that we know the value of each b(z, r(?)). Then,
with probability at least 1 — (1/2k), the majority vote of b(z, 7))@ B(rHme?) yields z;.

So it is left to provide a procedure for generating such r(’s. More accurately, generate uniformly
distributed and pairwise independent (1), ..., 7(™) € {0,1}*¥ such that, with probability poly(e/k),
we correctly guess the value of all b(z,r(®)’s.

Detail: how to generate the samples
For £ = logy(m + 1), select uniformly s, ..., s € {0,1}*.
Guess b(x, s(D), ..., b(x,54)) € {0,1}. The guess is correct with probability 2% = 1/(m + 1).

Compute (r1))g.cpq such that rD) = @;ers). Compute bz, r) as
b(z, Diers”) = @ierbla, sD).

These (T(I)>@7g[c[g] are pairwise independent and uniformly distributed in {0, 1}*. If the guesses for
all b(z,s®)’s are correct then the values of all b(z,7(!))’s are correct.

2Note that b(x, r)®b(x, r®e’ ) equals (Zle z;ri) + (z; + Zle TiTi) = Tj.



8 Hardness vs Randomness, Act 2

Recall G : {0,1}F — {0,1}¥(®) is called a canonical derandomizer if G is exponential-time com-
Lsi
putable and {G(Ux)} " =77 (U }-

Using such G we derandomize a probabilistic polynomial-time A (viewed as a two-input algorithm
with a second input having length that equals the running-time as a function of first input) as
follows.

1. Al(z,s) = A(z,G(s)).

This reduces randomness from poly(|z|) = £(k) to k = £~ (poly(|z])). For £(k) = 29F) we
get k = (~*(poly(|z])) = O(log |]).

The existence of x for which [Pr[A(x,Uyyy) = 1] — Pr[A(z, G(Ux)) = 1]| > 0.1 implies a
quadratic-size (£(k)*-size) circuit distinguishing Uy, from G(Uy).

2. A”(I) = majsE{O,l}k {Al(x7 5)}
The running-time of A” is 2% - (time 4 (|z|) + timeg(k)).

Our aim is constructing canonical derandomizers with as large as possible stretch function (ideally,
exponential stretch function).

THM: A canonical derandomizer with stretch ((k) = 2%%) implies BPP = P.

THM: If& = Dtime(ZO(")) contains a set that requires exponential size circuits® then there exists
a canonical derandomizer with stretch ((k) = 29k,

3That is, for all but finitely many n’s deciding this set on {0, 1}™ requires circuits of size 294" Note that we refer
to worst-case complexity, but in the almost-everywhere (a.e.) sense.



9 On constructing canonical derandomizers

Not shown: worst-case hardness (for £) implies average-case hardness (for £). Thus, our starting
point is a function f (in &) such that for every 2(™)_size circuit C,, it holds that

Proc i, [Conle) = (@) < 5 + 277"

The construction follows, where s; denotes the projection of s € {0,1}* on the coordinates in
IC k]
G(s) = f(s1) f(sm) - fs10),

where I; C [k] such that |[;| = m and |I[; N I;| < m' < m (for any j' # j).

Computing G involves computing I1, I, ..., Iy(x), and evaluating f on {(k) < 2% points. The time for
computing G is 200™) > 2% which will be smaller than £(k) and even £(k)?. [Thus, by construction,
computing G is infeasible for the distinguisher, and indeed we shall show that not only that G(Uy) is
indistinguishable from Uy, (by ((k)?-size circuits) but Uy G(Uy) is indistinguishable from Uk+e(ry]

Pseudorandomness versus unpredictability. [This theme has already appeared wrt hard-
core.]

e Pseudorandomness implies unpredictability, simply because the uniform ensembles is unpre-
dictable.

e But the direction we need here is unpredictability implies pseudorandomness. [See details in
next slide.]

Thus, we focus on establishing the unpredictability of G(Uy).

A warm-up and beyond. Suppose that the I;’s are disjoint (which is impossible as this implies
(k) < k/m). Then unpredictability is straightforward. The intuition is that small intersections
bound the gain towards guessing f(s;;,,) obtained from having f(sp,)--- f(sz;). The point is that,
for j' € [j], the value of f(s1;,) depends on at most m' bits of s7,_,.

Detail: unpredictability implies pseudorandomness

Suppose that {Zx} is not pseudorandom; that is, for some adequate distinguisher D, it holds that

(22} 2 (U}

Consider the following hybrids, i = 0,1, ..., £(k). The i*" hybrid, denoted H,gi), consists of an -
bit long prefix of Zj, followed by £(k)—1i uniformly distributed bits (i.e., an (¢(k)—1)-bit long suffix of
Ugr))- Note that H,(CO) = Uy(y) whereas H,gi) = Zy. Thus, {Z;} 2 {Ug(r)} implies {H,gz)} D {H,giﬂ)}
for some 7 € {0,1...,£(k) — 1} (with a possible loss of a factor of £(k) in the gap).

This means that we can distinguish the (i + 1)-bit long prefix of H,(ci) from the (¢ + 1)-bit long
prefix of H,(ciH), which can be translated to predicting the 4 + 15 bit of H,g”l) (equiv., predicting
the i + 1% bit of Z;) based on the preceding i bits.



10 PRGs for space-bounded distinguishers

Typical probabilistic polynomial-time applications have space complexity that is significantly smaller
than their time complexity. This motivates the study of PRGs that fool the corresponding space-
bounded distinguishers. A useful result to bear in mind follows.

THM: Ewvery probabilistic polynomial-time algorithm can be emulated by a probabilistic polynomaial-
time algorithm that uses randomness that is linear in the sum of the space complexity (of the original
algorithm) and the length of the input.

Note: This THM is based on a construction of a PRG that (in contrast to the previous PRGs) does
not rely on any computational assumptions. That is, the corresponding hardness needed here can
be proved (rather than needs to be assumed).

CONJ: Every probabilistic polynomial-time algorithmm can be emulated by a probabilistic polynomial-
time algorithm that uses randomness that is linear in the sum of the space complexity (of the original
algorithm) and the logarithm of the length of the input.

Evidence in support of CONJ is provided by a PRG that uses randomness that is quadratic in the
space complexity, by BPL C SC, and by the deterministic log-space algorithm for undirected graph
connectivity (which for a couple of decades was only known to be in RL).

10



11 Special-purpose PRGs

Special-purpose PRGs are useful in many applications. These PRGs should only withstand re-
stricted (syntactic) tests, and can be constructed without relying on any assumptions.

Projection tests and ¢t-wise PRGs. These require that the projection of any ¢ coordinates (in
the tested distribution) is uniformly distributed. Known constructions include random univariate
polynomials of degree ¢ — 1, and random affine transformations.

Linear tests and small-bias PRGs. These require that any (non-zero) linear combination of
the bits (of the tested distribution) is almost-uniformly distributed. One of the known construction
is a random LFSR (i.e., one with a random feedback rule). A typical application of is for the
construction of PCPs for the satisfiability of systems of equations.

Hitting tests and expander walk PRGs. We refer to a distribution on sequences of length
¢ over {0,1}™. The criteria is that for any set S C {0,1}" of density 1/2, the probability that all
blocks in the distribution miss S is exp(—£(¢)). That is, some block hits S with probability at
least 1 —exp(—£(¢)). One of the known construction is a random walk of length ¢ over a 2"-vertex
expander graph.

11



12 Credits

The concept of computational indistinguishability [5, 13]
The notion of (general-purpose) pseudorandom generator [1, 13]

Constructions of (general-purpose) pseudorandom generator (PRG): hardcore and iterations [1],
hardcore for any one-way function [4], PRG based on any one-way function [6].

Notion and construction of canonical derandomizers [10]. The conditional full derandomization of
BPP [7].

PRG for space-bounded computations: reducing randomness to linear in space and length [11],
towards reducing it to linear in space [8, 9, 12].

Special-purpose PRGs: see credits in [2, Chap. 3] and [3, Chap. 8].
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