
PseudorandomnessOded GoldreichDepartment of Computer Science and Applied MathematicsWeizmann Institute of Science, Rehovot, Israel.March 27, 2000AbstractWe postulate that a distribution is pseudorandom if it cannot be told apart from the uniformdistribution by any e�cient procedure. This yields a robust de�nition of pseudorandom genera-tors as e�cient deterministic programs stretching short random seeds into longer pseudorandomsequences. Thus, pseudorandom generators can be used to reduce the randomness-complexityin any e�cient procedure. Pseudorandom generators and computational di�culty are closelyrelated: loosely speaking, each can be e�ciently transformed into the other.1 IntroductionThe second half of this century has witnessed the development of three theories of randomness,a notion which has been puzzling thinkers for ages. The �rst theory (cf. [9]), initiated by Shan-non [33], is rooted in probability theory and is focused at distributions that are not perfectlyrandom. Shannon's Information Theory characterizes perfect randomness as the extreme case inwhich the information content is maximized (and there is no redundancy at all).1 Thus, perfectrandomness is associated with a unique distribution { the uniform one. In particular, by de�nition,one cannot generate such perfect random strings from shorter random strings.The second theory (cf. [22, 23]), due to Solomonov [34], Kolmogorov [21] and Chaitin [6],is rooted in computability theory and speci�cally in the notion of a universal language (equiv.,universal machine or computing device). It measures the complexity of objects in terms of theshortest program (for a �xed universal machine) that generates the object.2 Like Shannon's the-ory, Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.Interestingly, in this approach one may say that a single object, rather than a distribution over ob-jects, is perfectly random. Still, Kolmogorov's approach is inherently intractable (i.e., KolmogorovComplexity is uncomputable), and { by de�nition { one cannot generate strings of high KolmogorovComplexity from short random strings.The third theory, initiated by Blum, Goldwasser, Micali and Yao [17, 4, 37], is rooted in com-plexity theory and is the focus of this survey. This approach is explicitly aimed at providing a1 In general, the amount of information in a distribution D is de�ned as �PxD(x) log2D(x). Thus, the uniformdistribution over strings of length n has information measure n, and any other distribution over n-bit strings haslower information measure. Also, for any function f : f0; 1gn ! f0; 1gm with n < m, the distribution obtained byapplying f to a uniformly distributed n-bit string has information measure at most n, which is strictly lower thanthe length of the output.2 For example, the string 1n has Kolmogorov Complexity O(1) + log2 n (by virtue of the program \print n ones"which has length dominated by the binary encoding of n. In contrast, a simple counting argument shows that mostn-bit strings have Kolmogorov Complexity at least n (since each program can produce only one string).1



notion of perfect randomness that nevertheless allows to e�ciently generate perfect random stringsfrom shorter random strings. The heart of this approach is the suggestion to view objects as equalif they cannot be told apart by any e�cient procedure. Consequently a distribution that cannotbe e�ciently distinguished from the uniform distribution will be considered as being random (orrather called pseudorandom). Thus, randomness is not an \inherent" property of objects (or dis-tributions) but is rather relative to an observer (and its computational abilities). To demonstratethis approach, let us consider the following mental experiment.Alice and Bob play head or tail in one of the following four ways. In all of themAlice 
ips a coin high in the air, and Bob is asked to guess its outcome before the coinhits the 
oor. The alternative ways di�er by the knowledge Bob has before makinghis guess. In the �rst alternative, Bob has to announce his guess before Alice 
ips thecoin. Clearly, in this case Bob wins with probability 1=2. In the second alternative,Bob has to announce his guess while the coin is spinning in the air. Although theoutcome is determined in principle by the motion of the coin, Bob does not have accurateinformation on the motion and thus we believe that also in this case Bob wins withprobability 1=2. The third alternative is similar to the second, except that Bob hasat his disposal sophisticated equipment capable of providing accurate information onthe coin's motion as well as on the environment e�ecting the outcome. However, Bobcannot process this information in time to improve his guess. In the fourth alternative,Bob's recording equipment is directly connected to a powerful computer programmedto solve the motion equations and output a prediction. It is conceivable that in such acase Bob can improve substantially his guess of the outcome of the coin.We conclude that the randomness of an event is relative to the information and computing resourcesat our disposal. Thus, a natural concept of pseudorandomness arises { a distribution is pseudo-random if no e�cient procedure can distinguish it from the uniform distribution, where e�cientprocedures are associated with (probabilistic) polynomial-time algorithms.Orientation RemarksWe consider �nite objects, encoded by binary �nite sequences called strings. When we talk ofdistributions we mean discrete probability distributions having a �nite support that is a set ofstrings. Of special interest is the uniform distribution, that for a length parameter n (explicit orimplicit in the discussion), assigns each n-bit string x 2 f0; 1gn equal probability (i.e., probability2�n). We will colloquially speak of \perfectly random strings" meaning strings selected accordingto such a uniform distribution.We associate e�cient procedures with probabilistic polynomial-time algorithms. An algorithmis called polynomial-time if there exists a polynomial p so that for any possible input x, the algorithmruns in time bounded by p(jxj), where jxj denotes the length of the string x. Thus, the runningtime of such algorithm grows moderately as a function of the length of its input. A probabilisticalgorithm is one that can take random steps, where, without loss of generality, a random stepconsists of selecting which of two predetermined steps to take next so that each possible step istaken with probability 1=2. These choices are called the algorithm's internal coin tosses.Organization, acknowledgment and further detailsSections 2 and 3 provide a basic treatment of pseudorandom generators (as brie
y discussed in theabstract). The rest of this survey goes somewhat beyond: In Section 4 we treat pseudorandom2



functions, and in Section 5 we further discuss the practical and conceptual signi�cance of pseu-dorandom generators. In Section 6 we discuss alternative notions of pseudorandom generators,viewing them all as special cases of a general paradigm. The survey is based on [11, Chap. 3], andthe interested reader is referred to there for further details.2 The Notion of Pseudorandom GeneratorsLoosely speaking, a pseudorandom generator is an e�cient program (or algorithm) that stretchesshort random strings into long pseudorandom sequences. The latter sentence emphasizes threefundamental aspects in the notion of a pseudorandom generator:1. E�ciency: The generator has to be e�cient. As we associate e�cient computations withpolynomial-time ones, we postulate that the generator has to be implementable by a deter-ministic polynomial-time algorithm.This algorithm takes as input a string, called its seed. The seed captures a bounded amountof randomness used by a device that \generates pseudorandom sequences." The formulationviews any such device as consisting of a deterministic procedure applied to a random seed.2. Stretching: The generator is required to stretch its input seed to a longer output sequence.Speci�cally, it stretches n-bit long seeds into `(n)-bit long outputs, where `(n) > n. Thefunction ` is called the stretching measure (or stretching function) of the generator.3. Pseudorandomness: The generator's output has to look random to any e�cient observer. Thatis, any e�cient procedure should fail to distinguish the output of a generator (on a randomseed) from a truly random sequence of the same length. The formulation of the last sentencerefers to a general notion of computational indistinguishability, which is the heart of the entireapproach.2.1 Computational IndistinguishabilityIntuitively, two objects are called computationally indistinguishable if no e�cient procedure cantell them apart. As usual in complexity theory, an elegant formulation requires asymptotic analysis(or rather a functional treatment of the running time of algorithms in terms of the length of theirinput).3 Thus, the objects in question are in�nite sequences of distributions, where each distributionhas a �nite support. Such a sequence will be called a distribution ensemble. Typically, we considerdistribution ensembles of the form fDngn2N, where for some function ` : N!N , the support ofeach Dn is a subset of f0; 1g`(n). Furthermore, typically ` will be a positive polynomial. For suchDn, we denote by e�Dn the process of selecting e according to distribution Dn. Consequently, fora predicate P , we denote by Pre�Dn [P (e)] the probability that P (e) holds when e is distributed (orselected) according to Dn.De�nition 1 (Computational Indistinguishability [17, 37]): Two probability ensembles, fXngn2Nand fYngn2N, are called computationally indistinguishable if for any probabilistic polynomial-timealgorithm A, for any positive polynomial p, and for all su�ciently large n'sjPrx�Xn [A(x) = 1] � Pry�Yn [A(y) = 1] j < 1p(n)3 We stress that the asymptotic (or functional) treatment is not essential to this approach. One may develop theentire approach in terms of inputs of �xed lengths and an adequate notion of complexity of algorithms. However,such an alternative treatment is more cumbersome. 3



The probability is taken over Xn (resp., Yn) as well as over the coin tosses of algorithm A.A couple of comments are in place. Firstly, we have allowed algorithm A (called a distinguisher)to be probabilistic. This makes the requirement only stronger, and seems essential to severalimportant aspects of our approach. Secondly, we view events occuring with probability that isupper bounded by the reciprocal of polynomials as negligible. This is well-coupled with our notionof e�ciency (i.e., polynomial-time computations): An event that occurs with negligible probability(as a function of a parameter n), will also occur with negligible probability if the experiment isrepeated for poly(n)-many times.We note that computational indistinguishability is a strictly more liberal notion than statisticalindistinguishability (cf. [37, 15]). An important case is the one of distributions generated by apseudorandom generator as de�ned next.2.2 Basic de�nition and initial discussionWe are now ready for the main de�nition. Recall that a stretching function, ` : N!N , satis�es`(n) > n for all n.De�nition 2 (Pseudorandom Generators [4, 37]): A deterministic polynomial-time algorithm G iscalled a pseudorandom generator if there exists a stretching function, ` :N!N , so that the followingtwo probability ensembles, denoted fGngn2N and fRngn2N, are computationally indistinguishable1. Distribution Gn is de�ned as the output of G on a uniformly selected seed in f0; 1gn.2. Distribution Rn is de�ned as the uniform distribution on f0; 1g`(n).That is, letting Um denote the uniform distribution over f0; 1gm, we require that for any probabilisticpolynomial-time algorithm A, for any positive polynomial p, and for all su�ciently large n'sjPrs�Un [A(G(s)) = 1] � Prr�U`(n) [A(r) = 1] j < 1p(n)Thus, pseudorandom generators are e�cient (i.e., polynomial-time) deterministic programs thatexpand short randomly selected seeds into longer pseudorandom bit sequences, where the latterare de�ned as computationally indistinguishable from truly random sequences by e�cient (i.e.,polynomial-time) algorithms. It follows that any e�cient randomized algorithm maintains its per-formance when its internal coin tosses are substituted by a sequence generated by a pseudorandomgenerator. That is,Construction 3 (typical application of pseudorandom generators): Let A be a probabilistic polynomial-time algorithm, and �(n) denote an upper bound on its randomness complexity. Let A(x; r) denotethe output of A on input x and coin tosses sequence r 2 f0; 1g�(jxj). Let G be a pseudorandomgenerator with stretching function ` :N!N . Then AG is a randomized algorithm that on input x,proceeds as follows. It sets k = k(jxj) to be the smallest integer such that `(k) � �(jxj), uniformlyselects s 2 f0; 1gk, and outputs A(x; r), where r is the �(jxj)-bit long pre�x of G(s).It can be shown that it is infeasible to �nd long x's on which the input-output behavior of AG isnoticeably di�erent from the one of A, although AG may use much fewer coin tosses than A. Thatis 4



Proposition 4 Let A and G be as above. For any algorithm D, let �A;D(x) denote the discrepancy,as judged by D, in the behavior of A and AG on input x. That is,�A;D(x) def= jPrr�U�(n) [D(x;A(x; r)) = 1] � Prs�Uk(n) [D(x;AG(x; s)) = 1] jwhere the probabilities are taken over the Um's as well as over the coin tosses of D. Then for everypair of probabilistic polynomial-time algorithms, a �nder F and a distinguisher D, every positivepolynomial p and all su�ciently long n'sPr ��A;D(F (1n)) > 1p(n)� < 1p(n)where jF (1n)j = n and the probability is taken over the coin tosses of F .The proposition is proven by showing that a triplet (A;F;D) violating the claim can be convertedinto an algorithm D0 that distinguishes the output of G from the uniform distribution, in contra-diction to the hypothesis. Analogous arguments are applied whenever one wishes to prove thatan e�cient randomized process (be it an algorithm as above or a multi-party computation) pre-serves its behavior when one replaces true randomness by pseudorandomness as de�ned above.Thus, given pseudorandom generators with large stretching function, one can considerably reducethe randomness complexity in any e�cient application.2.3 Amplifying the stretch functionPseudorandom generators as de�ned above are only required to stretch their input a bit; for ex-ample, stretching n-bit long inputs to (n + 1)-bit long outputs will do. Clearly, generator of suchmoderate stretch function are of little use in practice. In contrast, we want to have pseudoran-dom generators with an arbitrary long stretch function. By the e�ciency requirement, the stretchfunction can be at most polynomial. It turns out that pseudorandom generators with the smallestpossible stretch function can be used to construct pseudorandom generators with any desirablepolynomial stretch function. (Thus, when talking about the existence of pseudorandom generators,we may ignore the stretch function.)Theorem 5 [14]: Let G be a pseudorandom generator with stretch function `(n) = n+1, and `0 beany polynomially-bounded stretch function, that is polynomial-time computable. Let G1(x) denotethe jxj-bit long pre�x of G(x), and G2(x) denote the last bit of G(x) (i.e., G(x) = G1(x)G2(x)).Then G0(s) def= �1�2 � � � �`0(jsj) ;where x0 = s, �i = G2(xi�1) and xi = G1(xi�1), for i = 1; :::; `0(jsj)is a pseudorandom generator with stretch function `0.Proof Sketch: The theorem is proven using the hybrid technique (cf. [10, Sec. 3.2.3]): One considersdistributions Hin (for i = 0; :::; `(n)) de�ned by U (1)i P`(n)�i(U (2)n ), where U (1)i and U (2)n are inde-pendent uniform distributions (over f0; 1gi and f0; 1gn, respectively), and Pj(x) denotes the j-bitlong pre�x of G0(x). The extreme hybrids correspond to G0(Un) and U`(n), whereas distinguisha-bility of neighboring hybrids can be worked into distinguishability of G(Un) and Un+1. Looselyspeaking, suppose one could distinguish Hin from Hi+1n . Then, using Pj(s) = G2(s)Pj�1(G1(s))5



(for j � 1), this means that one can distinguish Hin � (U (1)i ; G2(U (2)n ); P(`(n)�i)�1(G1(U (2)n )))from Hi+1n � (U (1)i ; U (10)1 ; P`(n)�(i+1)(U (20)n )). Incorporating the generation of U (1)i and the eval-uation of P`(n)�i�1 into the distinguisher, one could distinguish (G1(U (2)n ); G2(U (2)n )) � G(Un) from(U (20)n ; U (10)1 ) � Un+1, in contradiction to the pseudorandomness of G.3 How to Construct Pseudorandom GeneratorsThe known constructions transform computation di�culty, in the form of one-way functions (de-�ned below), into pseudorandomness generators. Loosely speaking, a polynomial-time computablefunction is called one-way if any e�cient algorithm can invert it only with negligible success prob-ability. For simplicity, we consider only length-preserving one-way functions.De�nition 6 (one-way function): A one-way function, f , is a polynomial-time computable functionsuch that for every probabilistic polynomial-time algorithm A0, every positive polynomial p(�), andall su�ciently large n's Prx�Un hA0(f(x))2f�1(f(x))i < 1p(n)where Un is the uniform distribution over f0; 1gn.Popular candidates for one-way functions are based on the conjectured intractability of integerfactorization (cf. [30] for state of the art), the discrete logarithm problem (cf. [31] analogously),and decoding of random linear code [16]. The infeasibility of inverting f yields a weak notion ofunpredictability: Let bi(x) denotes the ith bit of x. Then, for every probabilistic polynomial-timealgorithm A (and su�ciently large n), it must be the case that Pri;x[A(i; f(x)) 6= bi(x)] > 1=2n,where the probability is taken uniformly over i 2 f1; :::; ng and x 2 f0; 1gn. A stronger (and in factstrongest possible) notion of unpredictability is that of a hard-core predicate. Loosely speaking,a polynomial-time computable predicate b is called a hard-core of a function f if any e�cientalgorithm, given f(x), can guess b(x) only with success probability that is negligible better thanhalf.De�nition 7 (hard-core predicate [4]): A polynomial-time computable predicate b : f0; 1g� !f0; 1g is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A0,every positive polynomial p(�), and all su�ciently large n'sPrx�Un [A0(f(x))=b(x)] < 12 + 1p(n)Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f then f must be one-way.4It turns out that any one-way function can be slightly modi�ed so that it has a hard-core predicate.Theorem 8 (A generic hard-core [13]): Let f be an arbitrary one-way function, and let g be de�nedby g(x; r) def= (f(x); r), where jxj = jrj. Let b(x; r) denote the inner-product mod 2 of the binaryvectors x and r. Then the predicate b is a hard-core of the function g.See proof in [11, Apdx C.2]. We are now ready to present constructions of pseudorandom generators.4 Functions that are not 1-1 may have hard-core predicates of information-theoretic nature; but these are of nouse to us here. For example, functions of the form f(�; x) = 0f 0(x) (for � 2 f0; 1g) have an \information theoretic"hard-core predicate b(�; x) = �. 6



3.1 The preferred presentationIn view of Theorem 5, we may focus on constructing pseudorandom generators with stretch function`(n) = n+ 1. Such a construction is presented next.Proposition 9 (A simple construction of pseudorandom generators): Let b be a hard-core predicateof a polynomial-time computable 1-1 function f . Then, G(s) def= f(s) b(s) is a pseudorandomgenerator.Proof Sketch: Clearly the jsj-bit long pre�x of G(s) is uniformly distributed (since f is 1-1 andonto f0; 1gjsj). Hence, the proof boils down to showing that distinguishing f(s)b(s) from f(s)�,where � is a random bit, yields contradiction to the hypothesis that b is a hard-core of f (i.e., thatb(s) is unpredictable from f(s)). Intuitively, such a distinguisher also distinguishes f(s)b(s) fromf(s)b(s), where � = 1� �, and so yields an algorithm for predicting b(s) based on f(s).In a sense, the key point in the above proof is showing that the unpredictability of the output ofG implies its pseudorandomness. The fact that (next bit) unpredictability and pseudorandomnessare equivalent in general is proven explicitly in the alternative presentation below.3.2 An alternative presentationThe above presentation is di�erent but analogous to the original construction of pseudorandomgenerators suggested by Blum and Micali [4]: Given an arbitrary stretch function ` :N!N , a 1-1one-way function f with a hard-core b, one de�nesG(s) def= b(x0)b(x1) � � � b(x`(jsj)�1) ;where x0 = s and xi = f(xi�1) for i = 1; :::; `(jsj) � 1. The pseudorandomness of G is establishedin two steps, using the notion of (next bit) unpredictability. An ensemble fZngn2N is called unpre-dictable if any probabilistic polynomial-time machine obtaining a pre�x of Zn fails to predict thenext bit of Zn with probability non-negligibly higher than 1=2.Step 1: One �rst proves that the ensemble fG(Un)gn2N, where Un is uniform over f0; 1gn, is(next-bit) unpredictable (from right to left) [4].Loosely speaking, if one can predict b(xi) from b(xi+1) � � � b(x`(jsj)�1) then one can predictb(xi) given f(xi) (i.e., by computing xi+1; :::; x`(jsj)�1, and so obtaining b(xi+1) � � � b(x`(jsj))).But this contradicts the hard-core hypothesis.Step 2: Next, one uses Yao's observation by which a (polynomial-time constructible) ensemble ispseudorandom if and only if it is (next-bit) unpredictable (cf. [10, Sec. 3.3.4]).Clearly, if one can predict the next bit in an ensemble then one can distinguish this en-semble from the uniform ensemble (which in unpredictable regardless of computing power).However, here we need the other direction which is less obvious. Still, one can show that(next bit) unpredictability implies indistinguishability from the uniform ensemble. Specif-ically, consider the following \hybrid" distributions, where the ith hybrid takes the �rst ibits from the questionable ensemble and the rest from the uniform one. Thus, distinguishingthe extreme hybrids implies distinguishing some neighboring hybrids, which in turn impliesnext-bit predictability (of the questionable ensemble).7



3.3 A general condition for the existence of pseudorandom generatorsRecall that given any one-way 1-1 function, we can easily construct a pseudorandom generator.Actually, the 1-1 requirement may be dropped, but the currently known construction { for thegeneral case { is quite complex. Still we do have.Theorem 10 (On the existence of pseudorandom generators [18]):Pseudorandom generators exist if and only if one-way functions exist.To show that the existence of pseudorandom generators imply the existence of one-way functions,consider a pseudorandom generator G with stretch function `(n) = 2n. For x; y 2 f0; 1gn, de�nef(x; y) def= G(x), and so f is polynomial-time computable (and length-preserving). It must be thatf is one-way, or else one can distinguish G(Un) from U2n by trying to invert and checking the result:Inverting f on its range distribution refers to the distribution G(Un), whereas the probability thatU2n has inverse under f is negligible.The interesting direction is the construction of pseudorandom generators based on any one-wayfunction. In general (when f may not be 1-1) the ensemble f(Un) may not be pseudorandom, and soConstruction 9 (i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. One ideaof [18] is to hash f(Un) to an almost uniform string of length related to its entropy, using UniversalHash Functions [5]. (This is done after guaranteeing, that the logarithm of the probability mass ofa value of f(Un) is typically close to the entropy of f(Un).)5 But \hashing f(Un) down to lengthcomparable to the entropy" means shrinking the length of the output to, say, n0 < n. This foilsthe entire point of stretching the n-bit seed. Thus, a second idea of [18] is to compensate for then� n0 loss by extracting these many bits from the seed Un itself. This is done by hashing Un, andthe point is that the (n� n0 + 1)-bit long hash value does not make the inverting task any easier.Implementing these ideas turns out to be more di�cult than it seems, and indeed an alternativeconstruction would be most appreciated.4 Pseudorandom FunctionsPseudorandom generators allow to e�ciently generate long pseudorandom sequences from shortrandom seeds. Pseudorandom functions (de�ned below) are even more powerful: They allow e�-cient direct access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). Put inother words, pseudorandom functions can replace truly random functions in any e�cient applica-tion (e.g., most notably in cryptography). That is, pseudorandom functions are indistinguishablefrom random functions by e�cient machines that may obtain the function values at argumentsof their choice. (Such machines are called oracle machines, and if M is such machine and f is afunction, then Mf (x) denotes the computation of M on input x when M 's queries are answeredby the function f .)De�nition 11 (pseudorandom functions [12]): A pseudorandom function (ensemble), with lengthparameters `D; `R :N!N , is a collection of functions F def= ffs : f0; 1g`D(jsj)!f0; 1g`R(jsj)gs2f0;1g�satisfying� (e�cient evaluation): There exists an e�cient (deterministic) algorithm that given a seed, s,and an `D(jsj)-bit argument, x, returns the `R(jsj)-bit long value fs(x).5 Speci�cally, given an arbitrary one way function f 0, one �rst constructs f by taking a \direct product" ofsu�ciently many copies of f 0. For example, for x1; :::; xn2 2 f0; 1gn, we let f(x1; :::; xn2) def= f 0(x1); :::; f 0(xn2).8



(Thus, the seed s is an \e�ective description" of the function fs.)� (pseudorandomness): For every probabilistic polynomial-time oracle machine, M , for everypositive polynomial p and all su�ciently large n's���Prf�Fn [Mf (1n) = 1]� Pr��Rn [M�(1n) = 1] ��� < 1p(n)where Fn denotes the distribution on fs 2 F obtained by selecting s uniformly in f0; 1gn, andRn denotes the uniform distribution over all functions mapping f0; 1g`D(n) to f0; 1g`R(n).Suppose, for simplicity, that `D(n) = n and `R(n) = 1. Then a function uniformly selected among2n functions (of a pseudorandom ensemble) presents an input-output behavior that is indistin-guishable in poly(n)-time from the one of a function selected at random among all the 22n Booleanfunctions. Contrast this with the 2n pseudorandom sequences, produced by a pseudorandom gener-ator, that are computationally indistinguishable from a sequence selected uniformly among all the2poly(n) many sequences. Still pseudorandom functions can be constructed from any pseudorandomgenerator.Theorem 12 (How to construct pseudorandom functions [12]): Let G be a pseudorandom gener-ator with stretching function `(n) = 2n. Let G0(s) (resp., G1(s)) denote the �rst (resp., last) jsjbits in G(s), and G�jsj����2�1(s) def= G�jsj(� � �G�2(G�1(s)) � � �)Then, the function ensemble ffs : f0; 1gjsj!f0; 1gjsjgs2f0;1g� , where fs(x) def= Gx(s), is pseudoran-dom with length parameters `D(n) = `R(n) = n.The above construction can be easily adapted to any (polynomially-bounded) length parameters`D; `R :N!N . We mention that pseudorandom functions have been used to derive negative resultsin computational learning theory [35] and in complexity theory (e.g., in the context of NaturalProofs [32]).5 Further Discussion of Pseudorandom GeneratorsIn this section we discuss some of the applications and conceptual aspects of pseudorandom gener-ators.5.1 The applicability of pseudorandom generatorsRandomness is playing an increasingly important role in computation: It is frequently used in thedesign of sequential, parallel and distributed algorithms, and is of course central to cryptography.Whereas it is convenient to design such algorithms making free use of randomness, it is also desirableto minimize the usage of randomness in real implementations (since generating perfectly randombits via special hardware is quite expensive). Thus, pseudorandom generators (as de�ned above)are a key ingredient in an \algorithmic tool-box" { they provide an automatic compiler of programswritten with free usage of randomness into programs that make an economical use of randomness.Indeed, \pseudo-random number generators" have appeared with the �rst computers. However,typical implementations use generators that are not pseudorandom according to the above de�ni-tion. Instead, at best, these generators are shown to pass some ad-hoc statistical test (cf. [20]).9



We warn that the fact that a \pseudo-random number generator" passes some statistical tests,does not mean that it will pass a new test and that it is good for a future (untested) application.Furthermore, the approach of subjecting the generator to some ad-hoc tests fails to provide generalresults of the type stated above (i.e., of the form \for all practical purposes using the output of thegenerator is as good as using truly unbiased coin tosses"). In contrast, the approach encompassedin De�nition 2 aims at such generality, and in fact is tailored to obtain it: The notion of compu-tational indistinguishability, which underlines De�nition 2, covers all possible e�cient applicationspostulating that for all of them pseudorandom sequences are as good as truly random ones.Pseudorandom generators and functions are of key importance in Cryptography. They aretypically used to establish private-key encryption and authentication schemes (cf. [11, Sec. 1.5.2& 1.6.2]). For example, suppose that two parties share a random n-bit string, s, specifying apseudorandom function (as in De�nition 11), and that s is unknown to the adversary. Then, theseparties may send encrypted messages to one another by XORing the message with the value of fsat a random point. That is, to encrypt m 2 f0; 1g`R(n), the sender uniformly selects r 2 f0; 1g`D(n),and sends (r;m� fs(r)) to the receiver. Note that the security of this encryption scheme relies onthe fact that, for every computationally-feasible adversary (not only to adversary strategies thatwere envisioned and tested), the values of the function fs on such r's look random.5.2 The intellectual contents of pseudorandom generatorsWe shortly discuss some intellectual aspects of pseudorandom generators as de�ned above.Behavioristic versus Ontological. Our de�nition of pseudorandom generators is based onthe notion of computational indistinguishability. The behavioristic nature of the latter notionis best demonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness.Loosely speaking, a string is Kolmogorov-random if its length equals the length of the shortestprogram producing it. This shortest program may be considered the \true explanation" to thephenomenon described by the string. A Kolmogorov-random string is thus a string that doesnot have a substantially simpler (i.e., shorter) explanation than itself. Considering the simplestexplanation of a phenomenon may be viewed as an ontological approach. In contrast, consideringthe e�ect of phenomena (on an observer), as underlying the de�nition of pseudorandomness, is abehavioristic approach. Furthermore, there exist probability distributions that are not uniform (andare not even statistically close to a uniform distribution) but nevertheless are indistinguishable froma uniform distribution by any e�cient procedure [37, 15]. Thus, distributions that are ontologicallyvery di�erent, are considered equivalent by the behavioristic point of view taken in the de�nitionsabove.A relativistic view of randomness. Pseudorandomness is de�ned above in terms of its ob-server. It is a distribution that cannot be told apart from a uniform distribution by any e�cient(i.e. polynomial-time) observer. However, pseudorandom sequences may be distinguished fromrandom ones by in�nitely powerful computers (not at our disposal!). Speci�cally, an exponential-time machine can easily distinguish the output of a pseudorandom generator from a uniformlyselected string of the same length (e.g., just by trying all possible seeds). Thus, pseudorandomnessis subjective to the abilities of the observer.Randomness and Computational Di�culty. Pseudorandomness and computational di�-culty play dual roles: The de�nition of pseudorandomness relies on the fact that putting com-10



putational restrictions on the observer gives rise to distributions that are not uniform and stillcannot be distinguished from uniform. Furthermore, the construction of pseudorandom generatorsrely on conjectures regarding computational di�culty (i.e., the existence of one-way functions),and this is inevitable: given a pseudorandom generator, we can construct one-way functions. Thus,(non-trivial) pseudorandomness and computational hardness can be converted back and forth.6 A General ParadigmPseudorandomness as surveyed above can be viewed as an important special case of a generalparadigm. A generic formulation of pseudorandom generators consists of specifying three fun-damental aspects { the stretching measure of the generators; the class of distinguishers that thegenerators are supposed to fool (i.e., the algorithms with respect to which the computational indis-tinguishability requirement should hold); and the resources that the generators are allowed to use(i.e., their own computational complexity). In the above presentation we focused on polynomial-timegenerators (thus having polynomial stretching measure) that fool any probabilistic polynomial-timeobservers. A variety of other cases are of interest too, and we brie
y discuss some of them.6.1 Weaker notions of computational indistinguishabilityWhenever the aim is to replace random sequences utilized by an algorithm with pseudorandomones, one may try to capitalize on knowledge of the target algorithm. Above we have merelyused the fact that the target algorithm runs in polynomial-time. However, if the applicationutilizes randomness in a restricted way then feeding it with sequences of lower \randomness-quality"may do. For example, if we know that the algorithm uses very little work-space then we mayuse weaker forms of pseudorandom generators, which may be easier to construct, that su�ce tofool bounded-space distinguishers. Similarly, very weak forms of pseudorandomness su�ce forrandomized algorithms that can be analyzed when only referring to some speci�c properties of therandom sequence they uses (e.g., pairwise independence of elements of the sequence). In general,weaker notions of computational indistinguishability such as fooling space-bounded algorithms,constant-depth circuits, and even speci�c tests (e.g., testing pairwise independence of the sequence),arise naturally, and generators producing sequences that fool such distinguishers are useful in avariety of applications. Needless to say that we advocate a rigorous formulation of the characteristicsof such applications and rigorous constructions of generators that fool the type of distinguishersthat emerge. We mention some results of this type.Fooling space-bounded algorithms. Here we consider space-bounded randomized algorithmsthat have on-line access to their random-tape, and so the potential distinguishers have on-lineaccess to the input that they inspect. Two main results in this area are:Theorem 13 (RL � SC [26, 27]): Any language decidable by a log-space randomized algorithm isdecidable by a polynomial-time deterministic algorithm of poly-logarithmic space complexity.Theorem 14 (The Nisan{Zuckerman Generator [29]): Any language decidable by a linear-spacepolynomial-time randomized algorithm is decidable by a randomized algorithm of the same complex-ities that uses only a linear number of coin tosses.Both theorems are actually special cases of more general results that refer to arbitrary computations(rather than to decision problems). 11



Fooling constant-depth circuits. As a special case, we consider the problem of approximatelycounting the number of satisfying assignments of a DNF formula. Put in other words, we wish togenerate \pseudorandom" sequences that are as likely to satisfy a given DNF formula as uniformlyselected sequences. Nisan showed that such \pseudorandom" sequences can be produced usingseeds of polylogarithmic length [25]. By trying all possible seeds, one can approximately count thenumber of satisfying assignments of a DNF formula in deterministic quasi-polynomial time.Pairwise independent generators. We consider distributions of n-long sequences over a �niteset S. For t 2 N , such a distribution is called t-wise independent if its projection on any t coordinatesyields a distribution that is uniform over St. We focus on the case where jSj is a prime power,and so S can be identi�ed with a �nite �eld F . In such a case, given 1n; 1t and a representationof the �eld F so that jF j > n, one can generated a t-wise independent distribution over F n inpolynomial-time, using a random seed of length t � log2 jF j. Speci�cally, the seed is used to specifya polynomial of degree t � 1 over F , and the ith element in the output sequence is the result ofevaluating this polynomial at the ith �eld element (cf. [2, 7]).Small-bias generators. Here, we consider distributions of n-long sequences over f0; 1g. For� 2 [0; 1], such a distribution is called �-bias if for every non-empty subset I, the exclusive-or of thebits at locations I equals 1 with probability at least (1� �) � 12 and at most (1 + �) � 12 .Theorem 15 (small-bias generators [24]): Given n and �, one can generate an �-bias distributionover f0; 1gn in poly(n; log(1=�))-time, using a random seed of length O(log(n=�)).See [11, Sec. 3.6.2] for more details.Samplers (and hitters) and extractors (and dispersers). Here we consider an arbitraryfunction � : f0; 1gn ! [0; 1], and seeks a universal procedure for approximating the average valueof �, denoted � (i.e., � def= 2�nPx �(x)). Such a (randomized) procedure is called a sampler. It isgiven three parameters, n; � and �, as well as oracle access to �, and needs to output a value e� sothat Pr[j� � e�j > �] < �. A hitter is given the parameters, n; � and �, as well as a value v so thatjfx : �(x) = vgj > � � 2n (and oracle access to �), and is required to �nd, with probability at least1 � �, a preimage x so that �(x) = v. A sampler is called non-adaptive if it determines its queriesbased only on its internal coin tosses (i.e., independently on the answers obtained for previousqueries); it is called oblivious if its output is a predetermined function of the sequence of oracleanswers; and it is called averaging if its output equals the average value of the oracle answers.(In a sense, a non-adaptive sampler corresponds to a \pseudorandom generator" that producesat random a sequence of queries that, with high probability, needs to be \representative" of theaverage value of any function.) We focus on the randomness and query complexities of samplers,and mention that any sampler yields a hitter with identical complexities.Theorem 16 (The Median-of-Averages Sampler [3]): There exists a polynomial-time (oblivious)sampler of randomness complexity O(n+ log(1=�)) and query complexity O(��2 log(1=�)). Speci�-cally, the sampler outputs the median value among O(log(1=�)) values, where each of these valuesis the average of O(��2) distinct oracle answers.66 Each of the O(log(1=�)) sequences of O(��2) queries is produced by a pairwise independent generator, andthe seeds used for these di�erent sequences are generated by a random walk on an expander graph (cf. [1] and [11,Sec. 3.6.3]). 12



The randomness complexity can be further reduced to n+O(log(1=��)), and both complexities areoptimal up-to a constant multiplicative factor; see [11, Sec. 3.6.4]. Averaging samplers are closelyrelated to extractors, but the study of the latter tends to focus more closely on the randomnesscomplexity (and allow query complexity that is polynomial in the above).7 A function E : f0; 1gn�f0; 1gt ! f0; 1gm is called a (k; �)-extractor if for any random variable X so that maxxfPr[X =x]g � 2�k it holds that the statistical di�erence between E(X;Ut) and Um is at most �, where Utand Um are independently and uniformly distributed over f0; 1gt and f0; 1gm, respectively. (Anaveraging sampler of randomness complexity r(m; �; �) and query complexity q(m; �; �) correspondsto an extractor in which (the yet unspeci�ed parameters are) n = r(m; �; �), t = log2 q(m; �; �), andk = n� log2(1=�).) A landmark in the study of extractors is the followingTheorem 17 (Trevisan's Extractor [36]): For any a; b > 0, let k(n) = na and m(n) = dk(n)1�be.For t(n) = O(log n) and �(n) > 1=poly(n), there exists a polynomial-time computable family offunctions fEn : f0; 1gn � f0; 1gt(n) ! f0; 1gm(n)gn2N so that En is an (k(n); �(n))-extractor.The theorem is proved by reducing the construction of extractors to the construction of certainpseudorandom generators (considered in the next subsection). The reduction is further discussedat the end of the next subsection.6.2 Alternative notions of generator e�ciencyThe above discussion has focused on one aspect of the pseudorandomness question { the resourcesor type of the observer (or potential distinguisher). Another important question is at what cost canpseudorandom sequences be generated (from much shorter seeds, assuming this is at all possible).Throughout this survey we have required the generation process to be at least as e�cient as thee�ciency limitations of the distinguisher.8 This seems indeed \fair" and natural. Allowing thegenerator to be more complex (i.e., use more time or space resources) than the distinguisher seemsunfair (and is typically unreasonable in the context of cryptography), but still yields interestingconsequences in the context of \de-randomization" (i.e., transforming randomized algorithms intoequivalent deterministic algorithms (of slightly higher complexity)). For example, one may considergenerators working in time exponential in the length of the seed. As observed by Nisan andWigderson [28], in some cases we lose nothing by being more liberal (i.e., allowing exponential-timegenerators). To see why, we consider a typical de-randomization argument, proceeding in two steps:First one replaces the true randomness of the algorithm by pseudorandom sequences generated frommuch shorter seeds, and next one goes deterministically over all possible seeds and looks for themost frequent behavior of the modi�ed algorithm. Thus, in such a case the deterministic complexityis anyhow exponential in the seed length. The bene�t of allowing exponential-time generators isthat constructing exponential-time generators may be easier than constructing polynomial-timeones. A typical result in this vein follows.Theorem 18 (De-randomization of BPP [19] (building upon [28])): Suppose that there exists alanguage L 2 E having almost-everywhere exponential circuit complexity.9 Then, BPP = P.7 The relation between hitters and dispersers is analogous.8 If fact, we have required the generator to be more e�cient than the distinguisher: The former was required tobe a �xed polynomial-time algorithm, whereas the latter was allowed to be any algorithm with polynomial runningtime.9 We say that L is in E if there exists an exponential time algorithm for deciding L; that is, the running-time ofthe algorithm on input x is at most 2O(jxj). By saying that L has almost-everywhere exponential circuit complexitywe mean that there exists a constant b > 0 such that, for all but �nitely many k's, any circuit Ck that correctlydecides L on f0; 1gk has size at least 2bk. 13



Proof Sketch: Underlying the proof is a construction of a pseudorandom generator due to Nisanand Wigderson [25, 28]. This construction utilizes a predicate computable in exponential-timebut unpredictable, even to within a particular exponential advantage, by any circuit family of aparticular exponential size. (The crux of [19] is in supplying such a predicate, given the hypothesis.)Given such a predicate the generator works by evaluating the predicate on exponentially-manysubsequences of the bits of the seed so that the intersection of any two subsets is relatively small.10Thus, for some constant b > 0 and all k's, the generator stretches seeds of length k into sequencesof length 2bk that (as loosely argued below) cannot be distinguished from truly random sequencesby any circuit of size 2bk. The de-randomization of BPP proceeds by setting the seed-length to belogarithmic in the input length, and utilizing the above generator.The above generator fools circuits of the stated size, even when these circuits are presentedwith the seed as auxiliary input. (These circuits are smaller than the running time of the generatorand so they cannot just evaluate the generator on the given seed.) The proof that the generatorfools such circuits refers to the characterization of pseudorandom sequences as unpredictable ones.Thus, one proves that the next bit in the generator's output cannot be predicted given all previousbits (as well as the seed). Assuming that a small circuit can predict the next bit of the generator,we construct a circuit for predicting the hard predicate. The new circuit incorporates the best(for such prediction) augmentation of the input to the circuit into a seed for the generator (i.e.,the bits not in the speci�c subset of the seed are �xed in the best way). The key observation isthat all other bits in the output of the generator depend only on a small fraction of the input bits(i.e., recall the small intersection clause above), and so circuits for computing these other bits haverelatively small size (and so can be incorporated in the new circuit). Using all these circuits, thenew circuit forms the adequate input for the next-bit predicting circuit, and outputs whatever thelatter circuit does.Connection to extractors. Trevisan's construction [36] adapts the computational frameworkunderlying the Nisan{Wigderson Generator [28] to the information-theoretic context of extractors.His adaptation is based on two key observations. The �rst observation is that the generator itselfuses a (supposedly hard) predicate as a black-box. Trevisan's construction utilizes a \random"predicate which is encoded by the �rst input to the extractor. For example, the n-bit input mayencode a predicate on log2 n bits in the obvious manner. The second input to the extractor,having length t = O(log n), will be used as the seed to the resulting generator (de�ned by usingthis random predicate in a black-box manner). The second key observation is that the proof ofindistinguishability of the generator provides a black-box procedure for computing the underlyingpredicate when given oracle access to a distinguisher. Thus, any subset S � f0; 1gm of the possibleoutputs of the extractor gives rise to a relatively small set PS of predicates, so that for each valuex 2 f0; 1gn of the �rst input to the extractor, if S \distinguishes" the output of the extractor (ona random second input) from the uniform distribution then one of the predicates in PS equals thepredicate associated with x. It follows that for every set S, the set of possible �rst inputs for whichthe probability that the extractor hits S does not approximate the density of S is small. Thisestablishes the extraction property.
10 These subsets have size linear in the length of the seed, and intersect on a constant fraction of their respectivesize. Furthermore, they can be determined within exponential-time.14



References[1] M. Ajtai, J. Komlos, E. Szemer�edi. Deterministic Simulation in LogSpace. In 19th ACMSymposium on the Theory of Computing, pages 132{140, 1987.[2] N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the MaximalIndependent Set Problem. J. of Algorithms, Vol. 7, pages 567{583, 1986.[3] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in Interactive Proofs. Computa-tional Complexity, Vol. 4, No. 4, pages 319{354, 1993.[4] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminaryversion in 23rd IEEE Symposium on Foundations of Computer Science, 1982.[5] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and SystemScience, Vol. 18, 1979, pages 143{154.[6] G.J. Chaitin. On the Length of Programs for Computing Finite Binary Sequences. Journalof the ACM, Vol. 13, pages 547{570, 1966.[7] B. Chor and O. Goldreich. On the Power of Two{Point Based Sampling. Jour. of Complexity,Vol 5, 1989, pages 96{106. Preliminary version dates 1985.[8] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and ProbabilisticCommunication Complexity. SIAM Journal on Computing, Vol. 17, No. 2, pages 230{261,1988.[9] T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,New-York, 1991.[10] O. Goldreich. Foundation of Cryptography { Fragments of a Book. February 1995. Availablefrom http : ==theory:lcs:mit:edu= � oded=frag:html.[11] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithmsand Combinatorics series (Vol. 17), Springer, 1998.[12] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journalof the ACM, Vol. 33, No. 4, pages 792{807, 1986.[13] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACMSymposium on the Theory of Computing, pages 25{32, 1989.[14] O. Goldreich and S. Micali. Increasing the Expansion of Pseudorandom Generators. Unpub-lished manuscript, 1984.[15] O. Goldreich, and H. Krawczyk. On Sparse Pseudorandom Ensembles. Random Structuresand Algorithms, Vol. 3, No. 2, (1992), pages 163{174.[16] O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudorandom Generators.SIAM Journal on Computing, Vol. 22-6, pages 1163{1175, 1993.15



[17] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and SystemScience, Vol. 28, No. 2, pages 270{299, 1984. Preliminary version in 14th ACM Symposiumon the Theory of Computing, 1982.[18] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from anyOne-way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 1364{1396,1999. Preliminary versions by Impagliazzo et. al. in 21st ACM Symposium on the Theory ofComputing (1989) and H�astad in 22nd ACM Symposium on the Theory of Computing (1990).[19] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizingthe XOR Lemma. In 29th ACM Symposium on the Theory of Computing, pages 220{229,1997.[20] D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms).Addison-Wesley Publishing Company, Inc., 1969 (�rst edition) and 1981 (second edition).[21] A. Kolmogorov. Three Approaches to the Concept of \The Amount Of Information". Probl. ofInform. Transm., Vol. 1/1, 1965.[22] L.A. Levin. Randomness Conservation Inequalities: Information and Independence in Math-ematical Theories. Inform. and Control, Vol. 61, pages 15{37, 1984.[23] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications.Springer Verlag, August 1993.[24] J. Naor and M. Naor. Small-bias Probability Spaces: E�cient Constructions and Applica-tions. SIAM J. on Computing, Vol 22, 1993, pages 838{856.[25] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, Vol. 11 (1), pages63{70, 1991.[26] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,Vol. 12 (4), pages 449{461, 1992.[27] N. Nisan. RL � SC. Journal of Computational Complexity, Vol. 4, pages 1-11, 1994.[28] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and SystemScience, Vol. 49, No. 2, pages 149{167, 1994.[29] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of Computer andSystem Science, Vol. 52 (1), pages 43{52, 1996.[30] A.M. Odlyzko. The future of integer factorization. CryptoBytes (The technicalnewsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12, 1995. Available fromhttp://www.research.att.com/�amo[31] A.M. Odlyzko. Discrete logarithms and smooth polynomials. In Finite Fields: Theory, Ap-plications and Algorithms, G. L. Mullen and P. Shiue, eds., Amer. Math. Soc., ContemporaryMath. Vol. 168, pages 269{278, 1994. Available from http://www.research.att.com/�amo[32] A.R. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Science,Vol. 55 (1), pages 24{35, 1997. 16



[33] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech. Jour., Vol. 27,pages 623{656, 1948.[34] R.J. Solomono�. A Formal Theory of Inductive Inference. Inform. and Control, Vol. 7/1,pages 1{22, 1964.[35] L. Valiant. A theory of the learnable. Communications of the ACM, Vol. 27/11, pages1134{1142, 1984.[36] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Generators.In 31st ACM Symposium on the Theory of Computing, pages 141{148, 1998.[37] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.

17


