Pseudorandomness

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.

March 27, 2000

Abstract

We postulate that a distribution is pseudorandom if it cannot be told apart from the uniform
distribution by any efficient procedure. This yields a robust definition of pseudorandom genera-
tors as efficient deterministic programs stretching short random seeds into longer pseudorandom
sequences. Thus, pseudorandom generators can be used to reduce the randomness-complexity
in any efficient procedure. Pseudorandom generators and computational difficulty are closely
related: loosely speaking, each can be efficiently transformed into the other.

1 Introduction

The second half of this century has witnessed the development of three theories of randomness,
a notion which has been puzzling thinkers for ages. The first theory (cf. [9]), initiated by Shan-
non [33], is rooted in probability theory and is focused at distributions that are not perfectly
random. Shannon’s Information Theory characterizes perfect randomness as the extreme case in
which the information content is maximized (and there is no redundancy at all).! Thus, perfect
randomness is associated with a unique distribution — the uniform one. In particular, by definition,
one cannot generate such perfect random strings from shorter random strings.

The second theory (cf. [22, 23]), due to Solomonov [34], Kolmogorov [21] and Chaitin [6],
is rooted in computability theory and specifically in the notion of a universal language (equiv.,
universal machine or computing device). It measures the complexity of objects in terms of the
shortest program (for a fixed universal machine) that generates the object.? Like Shannon’s the-
ory, Kolmogorov Complexity is quantitative and perfect random objects appear as an extreme case.
Interestingly, in this approach one may say that a single object, rather than a distribution over ob-
jects, is perfectly random. Still, Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov
Complexity is uncomputable), and — by definition — one cannot generate strings of high Kolmogorov
Complexity from short random strings.

The third theory, initiated by Blum, Goldwasser, Micali and Yao [17, 4, 37|, is rooted in com-
plexity theory and is the focus of this survey. This approach is explicitly aimed at providing a

! In general, the amount of information in a distribution D is defined as — Y D(x)log, D(z). Thus, the uniform
distribution over strings of length n has information measure n, and any other distribution over n-bit strings has
lower information measure. Also, for any function f : {0,1}" — {0,1}™ with n < m, the distribution obtained by
applying f to a uniformly distributed n-bit string has information measure at most n, which is strictly lower than
the length of the output.

% For example, the string 1™ has Kolmogorov Complexity O(1) + log, n (by virtue of the program “print n ones”
which has length dominated by the binary encoding of n. In contrast, a simple counting argument shows that most
n-bit strings have Kolmogorov Complexity at least n (since each program can produce only one string).

notion of perfect randomness that nevertheless allows to efficiently generate perfect random strings
from shorter random strings. The heart of this approach is the suggestion to view objects as equal
if they cannot be told apart by any efficient procedure. Consequently a distribution that cannot
be efficiently distinguished from the uniform distribution will be considered as being random (or
rather called pseudorandom). Thus, randomness is not an “inherent” property of objects (or dis-
tributions) but is rather relative to an observer (and its computational abilities). To demonstrate
this approach, let us consider the following mental experiment.

Alice and Bob play HEAD OR TAIL in one of the following four ways. In all of them
Alice flips a coin high in the air, and Bob is asked to guess its outcome before the coin
hits the floor. The alternative ways differ by the knowledge Bob has before making
his guess. In the first alternative, Bob has to announce his guess before Alice flips the
coin. Clearly, in this case Bob wins with probability 1/2. In the second alternative,
Bob has to announce his guess while the coin is spinning in the air. Although the
outcome is determined in principle by the motion of the coin, Bob does not have accurate
information on the motion and thus we believe that also in this case Bob wins with
probability 1/2. The third alternative is similar to the second, except that Bob has
at his disposal sophisticated equipment capable of providing accurate information on
the coin’s motion as well as on the environment effecting the outcome. However, Bob
cannot process this information in time to improve his guess. In the fourth alternative,
Bob’s recording equipment is directly connected to a powerful computer programmed
to solve the motion equations and output a prediction. It is conceivable that in such a
case Bob can improve substantially his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and computing resources
at our disposal. Thus, a natural concept of pseudorandomness arises — a distribution is pseudo-
random if no efficient procedure can distinguish it from the uniform distribution, where efficient
procedures are associated with (probabilistic) polynomial-time algorithms.

Orientation Remarks

We cousider finite objects, encoded by binary finite sequences called strings. When we talk of
distributions we mean discrete probability distributions having a finite support that is a set of
strings. Of special interest is the uniform distribution, that for a length parameter n (explicit or
implicit in the discussion), assigns each n-bit string = € {0,1}" equal probability (i.e., probability
27"). We will colloquially speak of “perfectly random strings” meaning strings selected according
to such a uniform distribution.

We associate efficient procedures with probabilistic polynomial-time algorithms. An algorithm
is called polynomial-time if there exists a polynomial p so that for any possible input x, the algorithm
runs in time bounded by p(|z|), where |z| denotes the length of the string . Thus, the running
time of such algorithm grows moderately as a function of the length of its input. A probabilistic
algorithm is one that can take random steps, where, without loss of generality, a random step
consists of selecting which of two predetermined steps to take next so that each possible step is
taken with probability 1/2. These choices are called the algorithm’s internal coin tosses.

Organization, acknowledgment and further details

Sections 2 and 3 provide a basic treatment of pseudorandom generators (as briefly discussed in the
abstract). The rest of this survey goes somewhat beyond: In Section 4 we treat pseudorandom

functions, and in Section 5 we further discuss the practical and conceptual significance of pseu-
dorandom generators. In Section 6 we discuss alternative notions of pseudorandom generators,
viewing them all as special cases of a general paradigm. The survey is based on [11, Chap. 3], and
the interested reader is referred to there for further details.

2 The Notion of Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient program (or algorithm) that stretches
short random strings into long pseudorandom sequences. The latter sentence emphasizes three
fundamental aspects in the notion of a pseudorandom generator:

1. Efficiency: The generator has to be efficient. As we associate efficient computations with
polynomial-time ones, we postulate that the generator has to be implementable by a deter-
ministic polynomial-time algorithm.

This algorithm takes as input a string, called its seed. The seed captures a bounded amount
of randomness used by a device that “generates pseudorandom sequences.” The formulation
views any such device as counsisting of a deterministic procedure applied to a random seed.

2. Stretching: The generator is required to stretch its input seed to a longer output sequence.
Specifically, it stretches n-bit long seeds into ¢(n)-bit long outputs, where ¢(n) > n. The
function £ is called the stretching measure (or stretching function) of the generator.

3. Pseudorandomness: The generator’s output has to look random to any efficient observer. That
is, any efficient procedure should fail to distinguish the output of a generator (on a random
seed) from a truly random sequence of the same length. The formulation of the last sentence
refers to a general notion of computational indistinguishability, which is the heart of the entire
approach.

2.1 Computational Indistinguishability

Intuitively, two objects are called computationally indistinguishable if no efficient procedure can
tell them apart. As usual in complexity theory, an elegant formulation requires asymptotic analysis
(or rather a functional treatment of the running time of algorithms in terms of the length of their
input).> Thus, the objects in question are infinite sequences of distributions, where each distribution
has a finite support. Such a sequence will be called a distribution ensemble. Typically, we consider
distribution ensembles of the form {D,,},cn, where for some function ¢ : N—N, the support of
each D, is a subset of {0,1}(™). Furthermore, typically ¢ will be a positive polynomial. For such
D,,, we denote by e~D,, the process of selecting e according to distribution D,,. Consequently, for
a predicate P, we denote by Pr..p, [P(e)] the probability that P(e) holds when e is distributed (or
selected) according to D,,.

Definition 1 (Computational Indistinguishability [17, 37]): Two probability ensembles, { X, }nen
and {Yp}tnen, are called computationally indistinguishable if for any probabilistic polynomial-time
algorithm A, for any positive polynomial p, and for all sufficiently large n’s
1
Prp.x,|A(x) =1] — Pryoy, [Aly) =1]| < —=
| [A(z) = 1] v, [Aly) = 1]| e

3 We stress that the asymptotic (or functional) treatment is not essential to this approach. One may develop the
entire approach in terms of inputs of fixed lengths and an adequate notion of complexity of algorithms. However,
such an alternative treatment is more cumbersome.

The probability is taken over X,, (resp., Yy,) as well as over the coin tosses of algorithm A.

A couple of comments are in place. Firstly, we have allowed algorithm A (called a distinguisher)
to be probabilistic. This makes the requirement only stronger, and seems essential to several
important aspects of our approach. Secondly, we view events occuring with probability that is
upper bounded by the reciprocal of polynomials as negligible. This is well-coupled with our notion
of efficiency (i.e., polynomial-time computations): An event that occurs with negligible probability
(as a function of a parameter n), will also occur with negligible probability if the experiment is
repeated for poly(n)-many times.

We note that computational indistinguishability is a strictly more liberal notion than statistical
indistinguishability (cf. [37, 15]). An important case is the one of distributions generated by a
pseudorandom generator as defined next.

2.2 Basic definition and initial discussion

We are now ready for the main definition. Recall that a stretching function, ¢ : N— N, satisfies
{(n) > n for all n.

Definition 2 (Pseudorandom Generators [4, 37]): A deterministic polynomial-time algorithm G is
called a pseudorandom generator if there exists a stretching function, £:N— N, so that the following
two probability ensembles, denoted {G,}nen and { R, }nen, are computationally indistinguishable

1. Distribution Gy, is defined as the output of G on a uniformly selected seed in {0,1}™.
2. Distribution R, is defined as the uniform distribution on {0,1}4").

That is, letting U,,, denote the uniform distribution over {0,1}™, we require that for any probabilistic
polynomial-time algorithm A, for any positive polynomaial p, and for all sufficiently large n’s

| Prone, [A(G(s)) = 1] = Prrayy, [A(r) = 1] < ——

Thus, pseudorandom generators are efficient (i.e., polynomial-time) deterministic programs that
expand short randomly selected seeds into longer pseudorandom bit sequences, where the latter
are defined as computationally indistinguishable from truly random sequences by efficient (i.e.,
polynomial-time) algorithms. It follows that any efficient randomized algorithm maintains its per-
formance when its internal coin tosses are substituted by a sequence generated by a pseudorandom
generator. That is,

Construction 3 (typical application of pseudorandom generators): Let A be a probabilistic polynomial-
time algorithm, and p(n) denote an upper bound on its randomness complexity. Let A(x,r) denote

the output of A on input x and coin tosses sequence 1 € {0,1}’)('1"). Let G be a pseudorandom
generator with stretching function £:N—N. Then Ag is a randomized algorithm that on input x,
proceeds as follows. It sets k = k(|x|) to be the smallest integer such that (k) > p(|z|), uniformly
selects s € {0,1}F, and outputs A(x,r), where r is the p(|z|)-bit long prefiz of G(s).

It can be shown that it is infeasible to find long x’s on which the input-output behavior of Ag is
noticeably different from the one of A, although Ag may use much fewer coin tosses than A. That
is

Proposition 4 Let A and G be as above. For any algorithm D, let A4 p(x) denote the discrepancy,
as judged by D, in the behavior of A and Ag on input x. That 1s,

Aap(a) € |Prey [D(x, Alz,r)) = 1] — Pry,,, [D(@, Ag(e,) = 1]|

where the probabilities are taken over the Uy, s as well as over the coin tosses of D. Then for every
parr of probabilistic polynomaial-time algorithms, a finder F' and a distinguisher D, every positive
polynomial p and all sufficiently long n’s
Pr A p(FAm) >] <« L
r(AaD — —
p(n) p(n)

where |F(1™)| = n and the probability is taken over the coin tosses of F'.

The proposition is proven by showing that a triplet (A, F, D) violating the claim can be converted
into an algorithm D’ that distinguishes the output of G from the uniform distribution, in contra-
diction to the hypothesis. Analogous arguments are applied whenever one wishes to prove that
an efficient randomized process (be it an algorithm as above or a multi-party computation) pre-
serves its behavior when one replaces true randomness by pseudorandomness as defined above.
Thus, given pseudorandom generators with large stretching function, one can considerably reduce
the randommness complexity in any efficient application.

2.3 Amplifying the stretch function

Pseudorandom generators as defined above are only required to stretch their input a bit; for ex-
ample, stretching n-bit long inputs to (n + 1)-bit long outputs will do. Clearly, generator of such
moderate stretch function are of little use in practice. In contrast, we want to have pseudoran-
dom generators with an arbitrary long stretch function. By the efficiency requirement, the stretch
function can be at most polynomial. It turns out that pseudorandom generators with the smallest
possible stretch function can be used to construct pseudorandom generators with any desirable
polynomial stretch function. (Thus, when talking about the existence of pseudorandom generators,
we may ignore the stretch function.)

Theorem 5 [14]: Let G be a pseudorandom generator with stretch function {(n) =n+1, and {' be
any polynomially-bounded stretch function, that is polynomial-time computable. Let G1(x) denote
the |z|-bit long prefiz of G(x), and Ga(x) denote the last bit of G(z) (i.e., G(x) = Gi(x) Ga(x)).
Then

G'(s) = oyo9--- Ter(ls]) »

where xy = s, 0; = Go(x;—1) and x; = Gy(x;1), for i =1,...,0(|s])
is a pseudorandom generator with stretch function (.

Proof Sketch: The theorem is proven using the hybrid technique (cf. [10, Sec. 3.2.3]): One considers
distributions H! (for i = 0,...,£(n)) defined by Ui(l)Pg(n),i(U,sz)), where Ui(l) and US? are inde-
pendent uniform distributions (over {0,1}" and {0, 1}", respectively), and P;j(z) denotes the j-bit
long prefix of G'(x). The extreme hybrids correspond to G'(U,) and Uy, whereas distinguisha-
bility of neighboring hybrids can be worked into distinguishability of G(U,,) and U, 1. Loosely
speaking, suppose one could distinguish HY from H:™.. Then, using Pj(s) = Ga(s)Pj_1(G1(s))

(for 5 > 1), this means that one can distinguish H! = (Uz-(l),GQ(UT?)),P(g(n)_i)_l(Gl(UTSz))))

from HM' = (Ui(l), 1(1’),Pg(n),(Hl)(U,sz’))). Incorporating the generation of Ui(l) and the eval-

uation of Py,)_;_; into the distinguisher, one could distinguish (Gl(U,gz)), GQ(Uy))) = G(Up,) from
(U,gz’), Ul(lr)) = U, 41, in contradiction to the pseudorandomness of G. W

3 How to Construct Pseudorandom Generators

The known constructions transform computation difficulty, in the form of one-way functions (de-
fined below), into pseudorandomness generators. Loosely speaking, a polynomial-time computable
function is called one-way if any efficient algorithm can invert it only with negligible success prob-
ability. For simplicity, we consider only length-preserving one-way functions.

Definition 6 (one-way function): A one-way function, f, is a polynomial-time computable function
such that for every probabilistic polynomial-time algorithm A', every positive polynomial p(-), and
all sufficiently large n’s
1
Prou, |A'(f(x)efHf(z))| < —
AUEerUE] < oo
where U, is the uniform distribution over {0,1}".

Popular candidates for one-way functions are based on the conjectured intractability of integer
factorization (cf. [30] for state of the art), the discrete logarithm problem (cf. [31] analogously),
and decoding of random linear code [16]. The infeasibility of inverting f yields a weak notion of
unpredictability: Let b;(x) denotes the i*" bit of 2. Then, for every probabilistic polynomial-time
algorithm A (and sufficiently large n), it must be the case that Pr; ;[A(Z, f(z)) # bi(z)] > 1/2n,
where the probability is taken uniformly over i € {1,...,n} and z € {0,1}"™. A stronger (and in fact
strongest possible) notion of unpredictability is that of a hard-core predicate. Loosely speaking,
a polynomial-time computable predicate b is called a hard-core of a function f if any efficient
algorithm, given f(x), can guess b(x) only with success probability that is negligible better than
half.

Definition 7 (hard-core predicate [4]): A polynomial-time computable predicate b : {0,1}* —
{0,1} is called a hard-core of a function f if for every probabilistic polynomial-time algorithm A’,
every positive polynomial p(-), and all sufficiently large n’s

1 N 1

2 p(n)

Clearly, if b is a hard-core of a 1-1 polynomial-time computable function f then f must be one-way.*
It turns out that any one-way function can be slightly modified so that it has a hard-core predicate.

Prou, [A'(f(z))=b(z)] <

Theorem 8 (A generic hard-core [13]): Let f be an arbitrary one-way function, and let g be defined

by g(xz,7) def (f(x),r), where |x| = |r|. Let b(x,r) denote the inner-product mod 2 of the binary
vectors x and r. Then the predicate b is a hard-core of the function g.

See proofin [11, Apdx C.2]. We are now ready to present constructions of pseudorandom generators.

* Functions that are not 1-1 may have hard-core predicates of information-theoretic nature; but these are of no
use to us here. For example, functions of the form f(o,z) = 0f'(z) (for o € {0,1}) have an “information theoretic”
hard-core predicate b(o,z) = 0.

3.1 The preferred presentation

In view of Theorem 5, we may focus on constructing pseudorandom generators with stretch function
f(n) =n+ 1. Such a construction is presented next.

Proposition 9 (A simple construction of pseudorandom generators): Let b be a hard-core predicate

of a polynomial-time computable 1-1 function f. Then, G(s) ot f(s)b(s) is a pseudorandom

generator.

Proof Sketch: Clearly the |s|-bit long prefix of G(s) is uniformly distributed (since f is 1-1 and
onto {0,1}*l). Hence, the proof boils down to showing that distinguishing f(s)b(s) from f(s)o,
where o is a random bit, yields contradiction to the hypothesis that b is a hard-core of f (i.e., that
b(s) is unpredictable from f(s)). Intuitively, such a distinguisher also distinguishes f(s)b(s) from
f(5)b(s), where @ = 1 — o, and so yields an algorithm for predicting b(s) based on f(s).

In a sense, the key point in the above proof is showing that the unpredictability of the output of
G implies its pseudorandomness. The fact that (next bit) unpredictability and pseudorandomness
are equivalent in general is proven explicitly in the alternative presentation below.

3.2 An alternative presentation

The above presentation is different but analogous to the original construction of pseudorandom
generators suggested by Blum and Micali [4]: Given an arbitrary stretch function £: N—N, a 1-1
one-way function f with a hard-core b, one defines

G(s) = b(zo)b(21) -+ b(mg(psp)-1) 5

where g = s and z; = f(z;_1) for i = 1,...,£(|s|) — 1. The pseudorandomness of G is established
in two steps, using the notion of (next bit) unpredictability. An ensemble {Z, },cn is called unpre-
dictable if any probabilistic polynomial-time machine obtaining a prefix of Z,, fails to predict the
next bit of Z, with probability non-negligibly higher than 1/2.

Step 1: One first proves that the ensemble {G(U,)}.cn, where U, is uniform over {0,1}", is
(next-bit) unpredictable (from right to left) [4].

Loosely speaking, if one can predict b(x;) from b(zit1) - b(we(s)—1) then one can predict
b(w;) given f(z;) (i.e., by computing w1, ..., Ty(|s)—1, and so obtaining b(z;11) - - - b(z(s|)))-
But this contradicts the hard-core hypothesis.

Step 2: Next, one uses Yao’s observation by which a (polynomial-time constructible) ensemble is
pseudorandom if and only if it is (next-bit) unpredictable (cf. [10, Sec. 3.3.4]).

Clearly, if one can predict the next bit in an ensemble then one can distinguish this en-
semble from the uniform ensemble (which in unpredictable regardless of computing power).
However, here we need the other direction which is less obvious. Still, one can show that
(next bit) unpredictability implies indistinguishability from the uniform ensemble. Specif-
ically, consider the following “hybrid” distributions, where the 't hybrid takes the first i
bits from the questionable ensemble and the rest from the uniform one. Thus, distinguishing
the extreme hybrids implies distinguishing some neighboring hybrids, which in turn implies
next-bit predictability (of the questionable ensemble).

3.3 A general condition for the existence of pseudorandom generators

Recall that given any one-way 1-1 function, we can easily construct a pseudorandom generator.
Actually, the 1-1 requirement may be dropped, but the currently known construction — for the
general case — is quite complex. Still we do have.

Theorem 10 (On the existence of pseudorandom generators [18]):
Pseudorandom generators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators imply the existence of one-way functions,
consider a pseudorandom generator G with stretch function ¢(n) = 2n. For x,y € {0,1}", define

flz,y) def G(z), and so f is polynomial-time computable (and length-preserving). It must be that
f is one-way, or else one can distinguish G(U,,) from Uy, by trying to invert and checking the result:
Inverting f on its range distribution refers to the distribution G(U,), whereas the probability that
Us,, has inverse under f is negligible.

The interesting direction is the construction of pseudorandom generators based on any one-way
function. In general (when f may not be 1-1) the ensemble f(U,,) may not be pseudorandom, and so
Construction 9 (i.e., G(s) = f(s)b(s), where b is a hard-core of f) cannot be used directly. One idea
of [18] is to hash f(U,) to an almost uniform string of length related to its entropy, using Universal
Hash Functions [5]. (This is done after guaranteeing, that the logarithm of the probability mass of
a value of f(U,) is typically close to the entropy of f(U,).)> But “hashing f(U,) down to length
comparable to the entropy” means shrinking the length of the output to, say, n’ < m. This foils
the entire point of stretching the n-bit seed. Thus, a second idea of [18] is to compensate for the
n —n' loss by extracting these many bits from the seed U, itself. This is done by hashing U,,, and
the point is that the (n — n' + 1)-bit long hash value does not make the inverting task any easier.
Implementing these ideas turns out to be more difficult than it seems, and indeed an alternative
construction would be most appreciated.

4 Pseudorandom Functions

Pseudorandom generators allow to efficiently generate long pseudorandom sequences from short
random seeds. Pseudorandom functions (defined below) are even more powerful: They allow effi-
cient direct access to a huge pseudorandom sequence (which is infeasible to scan bit-by-bit). Put in
other words, pseudorandom functions can replace truly random functions in any efficient applica-
tion (e.g., most notably in cryptography). That is, pseudorandom functions are indistinguishable
from random functions by efficient machines that may obtain the function values at arguments
of their choice. (Such machines are called oracle machines, and if M is such machine and f is a
function, then M/ (x) denotes the computation of M on input = when M’s queries are answered
by the function f.)

Definition 11 (pseudorandom functions [12]): A pseudorandom function (ensemble), with length
parameters {p, (g : N—N, is a collection of functions F def {fs:{0,1}00sD — (0, 1}ZR(|5‘)}36{071}*
satisfying

o (efficient evaluation): There exists an efficient (deterministic) algorithm that given a seed, s,
and an lp(|s])-bit argument, x, returns the {g(|s|)-bit long value fq(x).

5 Specifically, given an arbitrary one way function f', one first constructs f by taking a “direct product” of

sufficiently many copies of f'. For example, for z1,...,z,2 € {0,1}", we let f(z1,...,,2) <f F(z1), oy f(T02)-

(Thus, the seed s is an “effective description” of the function fs.)

e (pseudorandomness): For every probabilistic polynomial-time oracle machine, M, for every
positive polynomial p and all sufficiently large n’s
1
Priop, [M/(1") =1] — Pr,up, [MP(1") =1]| < —
| Pryr, (M7 (1) = 1] = Prye, [M7(1") = 1) < s
where F,, denotes the distribution on fs € F obtained by selecting s uniformly in {0,1}", and
R,, denotes the uniform distribution over all functions mapping {0,1}() to {0,1}r("),

Suppose, for simplicity, that /p(n) = n and fr(n) = 1. Then a function uniformly selected among
2" functions (of a pseudorandom ensemble) presents an input-output behavior that is indistin-
guishable in poly(n)-time from the one of a function selected at random among all the 22" Boolean
functions. Contrast this with the 2" pseudorandom sequences, produced by a pseudorandom gener-
ator, that are computationally indistinguishable from a sequence selected uniformly among all the
2Py (") many sequences. Still pseudorandom functions can be constructed from any pseudorandom
generator.

Theorem 12 (How to construct pseudorandom functions [12]): Let G be a pseudorandom gener-
ator with stretching function {(n) = 2n. Let Gy(s) (resp., G1(s)) denote the first (resp., last) |s|

bits in G(s), and
def)

GU|S|'"0201 (s) = GU\S\ (- Goy(Goy(s)) -
Then, the function ensemble {f,:{0,1}* — {0, 1}|5‘}se{0,1}*; where fs(x) def G.(s), 1s pseudoran-
dom with length parameters {p(n) = (r(n) = n.

The above construction can be easily adapted to any (polynomially-bounded) length parameters
Ip,lr:N—N. We mention that pseudorandom functions have been used to derive negative results
in computational learning theory [35] and in complexity theory (e.g., in the context of Natural
Proofs [32]).

5 Further Discussion of Pseudorandom Generators

In this section we discuss some of the applications and conceptual aspects of pseudorandom gener-
ators.

5.1 The applicability of pseudorandom generators

Randomness is playing an increasingly important role in computation: It is frequently used in the
design of sequential, parallel and distributed algorithms, and is of course central to cryptography.
Whereas it is convenient to design such algorithms making free use of randomness, it is also desirable
to minimize the usage of randomness in real implementations (since generating perfectly random
bits via special hardware is quite expensive). Thus, pseudorandom generators (as defined above)
are a key ingredient in an “algorithmic tool-box” — they provide an automatic compiler of programs
written with free usage of randomness into programs that make an economical use of randomness.

Indeed, “pseudo-random number generators” have appeared with the first computers. However,
typical implementations use generators that are not pseudorandom according to the above defini-
tion. Instead, at best, these generators are shown to pass SOME ad-hoc statistical test (cf. [20]).

We warn that the fact that a “pseudo-random number generator” passes some statistical tests,
does not mean that it will pass a new test and that it is good for a future (untested) application.
Furthermore, the approach of subjecting the generator to some ad-hoc tests fails to provide general
results of the type stated above (i.e., of the form “for ALL practical purposes using the output of the
generator is as good as using truly unbiased coin tosses”). In contrast, the approach encompassed
in Definition 2 aims at such generality, and in fact is tailored to obtain it: The notion of compu-
tational indistinguishability, which underlines Definition 2, covers all possible efficient applications
postulating that for all of them pseudorandom sequences are as good as truly random ones.

Pseudorandom generators and functions are of key importance in Cryptography. They are
typically used to establish private-key encryption and authentication schemes (cf. [11, Sec. 1.5.2
& 1.6.2]). For example, suppose that two parties share a random n-bit string, s, specifying a
pseudorandom function (as in Definition 11), and that s is unknown to the adversary. Then, these
parties may send encrypted messages to one another by XORing the message with the value of f;
at a random point. That is, to encrypt m € {0,1}*#(")_ the sender uniformly selects r € {0, 1}¢0(™)
and sends (r,m @ fs(r)) to the receiver. Note that the security of this encryption scheme relies on
the fact that, for every computationally-feasible adversary (not only to adversary strategies that
were envisioned and tested), the values of the function f; on such r’s look random.

5.2 The intellectual contents of pseudorandom generators

We shortly discuss some intellectual aspects of pseudorandom generators as defined above.

Behavioristic versus Ontological. Our definition of pseudorandom generators is based on
the notion of computational indistinguishability. The behavioristic nature of the latter notion
is best demonstrated by confronting it with the Kolmogorov-Chaitin approach to randomness.
Loosely speaking, a string is Kolmogorov-random if its length equals the length of the shortest
program producing it. This shortest program may be considered the “true explanation” to the
phenomenon described by the string. A Kolmogorov-random string is thus a string that does
not have a substantially simpler (i.e., shorter) explanation than itself. Considering the simplest
explanation of a phenomenon may be viewed as an ontological approach. In contrast, considering
the effect of phenomena (on an observer), as underlying the definition of pseudorandomness, is a
behavioristic approach. Furthermore, there exist probability distributions that are not uniform (and
are not even statistically close to a uniform distribution) but nevertheless are indistinguishable from
a uniform distribution by any efficient procedure [37, 15]. Thus, distributions that are ontologically
very different, are considered equivalent by the behavioristic point of view taken in the definitions
above.

A relativistic view of randomness. Pseudorandomness is defined above in terms of its ob-
server. It is a distribution that cannot be told apart from a uniform distribution by any efficient
(i.e. polynomial-time) observer. However, pseudorandom sequences may be distinguished from
random ones by infinitely powerful computers (not at our disposal!). Specifically, an exponential-
time machine can easily distinguish the output of a pseudorandom generator from a uniformly
selected string of the same length (e.g., just by trying all possible seeds). Thus, pseudorandomness
is subjective to the abilities of the observer.

Randomness and Computational Difficulty. Pseudorandomness and computational diffi-
culty play dual roles: The definition of pseudorandomness relies on the fact that putting com-

10

putational restrictions on the observer gives rise to distributions that are not uniform and still
cannot be distinguished from uniform. Furthermore, the construction of pseudorandom generators
rely on conjectures regarding computational difficulty (i.e., the existence of one-way functions),
and this is inevitable: given a pseudorandom generator, we can construct one-way functions. Thus,
(non-trivial) pseudorandomness and computational hardness can be converted back and forth.

6 A General Paradigm

Pseudorandomness as surveyed above can be viewed as an important special case of a general
paradigm. A generic formulation of pseudorandom generators consists of specifying three fun-
damental aspects — the stretching measure of the generators; the class of distinguishers that the
generators are supposed to fool (i.e., the algorithms with respect to which the computational indis-
tinguishability requirement should hold); and the resources that the generators are allowed to use
(i.e., their own computational complexity). In the above presentation we focused on polynomial-time
generators (thus having polynomial stretching measure) that fool any probabilistic polynomial-time
observers. A variety of other cases are of interest too, and we briefly discuss some of them.

6.1 Weaker notions of computational indistinguishability

Whenever the aim is to replace random sequences utilized by an algorithm with pseudorandom
ones, one may try to capitalize on knowledge of the target algorithm. Above we have merely
used the fact that the target algorithm runs in polynomial-time. However, if the application
utilizes randomness in a restricted way then feeding it with sequences of lower “randomness-quality”
may do. For example, if we know that the algorithm uses very little work-space then we may
use weaker forms of pseudorandom generators, which may be easier to construct, that suffice to
fool bounded-space distinguishers. Similarly, very weak forms of pseudorandomness suffice for
randomized algorithms that can be analyzed when only referring to some specific properties of the
random sequence they uses (e.g., pairwise independence of elements of the sequence). In general,
weaker notions of computational indistinguishability such as fooling space-bounded algorithis,
constant-depth circuits, and even specific tests (e.g., testing pairwise independence of the sequence),
arise naturally, and generators producing sequences that fool such distinguishers are useful in a
variety of applications. Needless to say that we advocate a rigorous formulation of the characteristics
of such applications and rigorous constructions of generators that fool the type of distinguishers
that emerge. We mention some results of this type.

Fooling space-bounded algorithms. Here we consider space-bounded randomized algorithms
that have on-line access to their random-tape, and so the potential distinguishers have on-line
access to the input that they inspect. T'wo main results in this area are:

Theorem 13 (RL C SC [26, 27]): Any language decidable by a log-space randomized algorithm is
decidable by a polynomial-time deterministic algorithm of poly-logarithmic space complezity.

Theorem 14 (The Nisan—Zuckerman Generator [29]): Any language decidable by a linear-space
polynomial-time randomized algorithm is decidable by a randomized algorithm of the same complex-
ities that uses only a linear number of coin tosses.

Both theorems are actually special cases of more general results that refer to arbitrary computations
(rather than to decision problems).

11

Fooling constant-depth circuits. As a special case, we consider the problem of approximately
counting the number of satisfying assignments of a DNF formula. Put in other words, we wish to
generate “pseudorandom” sequences that are as likely to satisfy a given DNF formula as uniformly
selected sequences. Nisan showed that such “pseudorandom” sequences can be produced using
seeds of polylogarithmic length [25]. By trying all possible seeds, one can approximately count the
number of satisfying assignments of a DNF formula in deterministic quasi-polynomial time.

Pairwise independent generators. We consider distributions of n-long sequences over a finite
set S. Fort € N, such a distribution is called t-wise independent if its projection on any ¢ coordinates
yields a distribution that is uniform over SY. We focus on the case where |S| is a prime power,
and so S can be identified with a finite field . In such a case, given 1", 1" and a representation
of the field F' so that |F| > n, one can generated a t-wise independent distribution over F™ in
polynomial-time, using a random seed of length # - log, | F'|. Specifically, the seed is used to specify
a polynomial of degree t — 1 over F, and the i*" element in the output sequence is the result of
evaluating this polynomial at the i*! field element (cf. [2, 7]).

Small-bias generators. Here, we consider distributions of n-long sequences over {0,1}. For
e € [0, 1], such a distribution is called e-bias if for every non-empty subset I, the exclusive-or of the
bits at locations I equals 1 with probability at least (1 — €)1 and at most (1 +¢) - 3.

Theorem 15 (small-bias generators [24]): Given n and €, one can generate an e-bias distribution
over {0,1}" in poly(n,log(1/¢))-time, using a random seed of length O(log(n/e)).

See [11, Sec. 3.6.2] for more details.

Samplers (and hitters) and extractors (and dispersers). Here we consider an arbitrary

function » : {0,1}" — [0,1], and seeks a universal procedure for approximating the average value

of v, denoted 7 (i.e., 7 &t g > . v(x)). Such a (randomized) procedure is called a sampler. It is

given three parameters, n,e and §, as well as oracle access to v, and needs to output a value ¥ so
that Pr[|7 — 7] > €] < 6. A hitter is given the parameters, n,e and 6, as well as a value v so that
{z : v(x) = v}| > €-2" (and oracle access to v), and is required to find, with probability at least
1 — 6, a preimage x so that v(z) = v. A sampler is called non-adaptive if it determines its queries
based only on its internal coin tosses (i.e., independently on the answers obtained for previous
queries); it is called oblivious if its output is a predetermined function of the sequence of oracle
answers; and it is called averaging if its output equals the average value of the oracle answers.
(In a sense, a non-adaptive sampler corresponds to a “pseudorandom generator” that produces
at random a sequence of queries that, with high probability, needs to be “representative” of the
average value of any function.) We focus on the randomness and query complexities of samplers,
and mention that any sampler yields a hitter with identical complexities.

Theorem 16 (The Median-of-Averages Sampler [3]): There ezists a polynomial-time (oblivious)
sampler of randomness complezity O(n + log(1/6)) and query complezity O(e 2?log(1/6)). Specifi-
cally, the sampler outputs the median value among O(log(1/6)) values, where each of these values
is the average of O(e %) distinct oracle answers.’

® Each of the O(log(1/6)) sequences of O(e™2) queries is produced by a pairwise independent generator, and
the seeds used for these different sequences are generated by a random walk on an expander graph (cf. [1] and [11,

Sec. 3.6.3]).

12

The randomness complexity can be further reduced to n+ O(log(1/€d)), and both complexities are
optimal up-to a constant multiplicative factor; see [11, Sec. 3.6.4]. Averaging samplers are closely
related to extractors, but the study of the latter tends to focus more closely on the randomness
complexity (and allow query complexity that is polynomial in the above).” A function E : {0,1}" x
{0,1}* — {0,1}™ is called a (k,¢)-extractor if for any random variable X so that max,{Pr[X =
z]} < 27% it holds that the statistical difference between E(X,U;) and U, is at most ¢, where U,
and U, are independently and uniformly distributed over {0,1}* and {0,1}™, respectively. (An
averaging sampler of randomness complexity r(m, €, §) and query complexity g(m, €, §) corresponds
to an extractor in which (the yet unspecified parameters are) n = r(m,¢,6), t = logy q(m,€,6), and
k =mn —logy(1/6).) A landmark in the study of extractors is the following

Theorem 17 (Trevisan’s Extractor [36]): For any a,b > 0, let k(n) = n® and m(n) = [k(n)'~*].
For t(n) = O(logn) and e(n) > 1/poly(n), there exists a polynomial-time computable family of
functions {E,, : {0,1}™ x {0,1}1®) — {0,1}™™}, .y so that E, is an (k(n),e(n))-eztractor.

The theorem is proved by reducing the construction of extractors to the construction of certain
pseudorandom generators (considered in the next subsection). The reduction is further discussed
at the end of the next subsection.

6.2 Alternative notions of generator efficiency

The above discussion has focused on one aspect of the pseudorandomness question — the resources
or type of the observer (or potential distinguisher). Another important question is at what cost can
pseudorandom sequences be generated (from much shorter seeds, assuming this is at all possible).
Throughout this survey we have required the generation process to be at least as efficient as the
efficiency limitations of the distinguisher.® This seems indeed “fair” and natural. Allowing the
generator to be more complex (i.e., use more time or space resources) than the distinguisher seems
unfair (and is typically unreasonable in the context of cryptography), but still yields interesting
consequences in the context of “de-randomization” (i.e., transforming randomized algorithms into
equivalent deterministic algorithms (of slightly higher complexity)). For example, one may consider
generators working in time exponential in the length of the seed. As observed by Nisan and
Wigderson [28], in some cases we lose nothing by being more liberal (i.e., allowing exponential-time
generators). To see why, we consider a typical de-randomization argument, proceeding in two steps:
First one replaces the true randomness of the algorithm by pseudorandom sequences generated from
much shorter seeds, and next one goes deterministically over all possible seeds and looks for the
most frequent behavior of the modified algorithm. Thus, in such a case the deterministic complexity
is anyhow exponential in the seed length. The benefit of allowing exponential-time generators is
that constructing exponential-time generators may be easier than constructing polynomial-time
ones. A typical result in this vein follows.

Theorem 18 (De-randomization of BPP [19] (building upon [28])): Suppose that there exists a
language L € € having almost-everywhere exponential circuit complexity.’ Then, BPP = P.

" The relation between hitters and dispersers is analogous.

8 If fact, we have required the generator to be more efficient than the distinguisher: The former was required to
be a fixed polynomial-time algorithm, whereas the latter was allowed to be any algorithm with polynomial running
time.

¥ We say that L is in £ if there exists an exponential time algorithm for deciding L; that is, the running-time of
the algorithm on input x is at most 200=) By saying that L has almost-everywhere exponential circuit complexity
we mean that there exists a constant b > 0 such that, for all but finitely many k’s, any circuit C} that correctly
decides I on {0,1}* has size at least 2°".

13

Proof Sketch: Underlying the proof is a construction of a pseudorandom generator due to Nisan
and Wigderson [25, 28]. This construction utilizes a predicate computable in exponential-time
but unpredictable, even to within a particular exponential advantage, by any circuit family of a
particular exponential size. (The crux of [19] is in supplying such a predicate, given the hypothesis.)
Given such a predicate the generator works by evaluating the predicate on exponentially-many
subsequences of the bits of the seed so that the intersection of any two subsets is relatively small.!"
Thus, for some constant b > 0 and all &’s, the generator stretches seeds of length k£ into sequences
of length 2% that (as loosely argued below) cannot be distinguished from truly random sequences
by any circuit of size 2°*. The de-randomization of BPP proceeds by setting the seed-length to be
logarithmic in the input length, and utilizing the above generator.

The above generator fools circuits of the stated size, even when these circuits are presented
with the seed as auxiliary input. (These circuits are smaller than the running time of the generator
and so they cannot just evaluate the generator on the given seed.) The proof that the generator
fools such circuits refers to the characterization of pseudorandom sequences as unpredictable ones.
Thus, one proves that the next bit in the generator’s output cannot be predicted given all previous
bits (as well as the seed). Assuming that a small circuit can predict the next bit of the generator,
we construct a circuit for predicting the hard predicate. The new circuit incorporates the best
(for such prediction) augmentation of the input to the circuit into a seed for the generator (i.e.,
the bits not in the specific subset of the seed are fixed in the best way). The key observation is
that all other bits in the output of the generator depend only on a small fraction of the input bits
(i.e., recall the small intersection clause above), and so circuits for computing these other bits have
relatively small size (and so can be incorporated in the new circuit). Using all these circuits, the
new circuit forms the adequate input for the next-bit predicting circuit, and outputs whatever the
latter circuit does.

Connection to extractors. Trevisan’s construction [36] adapts the computational framework
underlying the Nisan—Wigderson Generator [28] to the information-theoretic context of extractors.
His adaptation is based on two key observations. The first observation is that the generator itself
uses a (supposedly hard) predicate as a black-box. Trevisan’s construction utilizes a “random”
predicate which is encoded by the first input to the extractor. For example, the n-bit input may
encode a predicate on logyn bits in the obvious manner. The second input to the extractor,
having length ¢ = O(logn), will be used as the seed to the resulting generator (defined by using
this random predicate in a black-box manner). The second key observation is that the proof of
indistinguishability of the generator provides a black-box procedure for computing the underlying
predicate when given oracle access to a distinguisher. Thus, any subset S C {0,1}™ of the possible
outputs of the extractor gives rise to a relatively small set Pg of predicates, so that for each value
x € {0,1}" of the first input to the extractor, if S “distinguishes” the output of the extractor (on
a random second input) from the uniform distribution then one of the predicates in Pg equals the
predicate associated with x. It follows that for every set S, the set of possible first inputs for which
the probability that the extractor hits S does not approximate the density of S is small. This
establishes the extraction property.

10 These subsets have size linear in the length of the seed, and intersect on a constant fraction of their respective
size. Furthermore, they can be determined within exponential-time.

14

References

1]

2]

[10]

[11]

[12]

[14]

[15]

[16]

M. Ajtai, J. Komlos, E. Szemerédi. Deterministic Simulation in LogSpace. In 19th ACM
Symposium on the Theory of Computing, pages 132-140, 1987.

N. Alon, L. Babai and A. Itai. A fast and Simple Randomized Algorithm for the Maximal
Independent Set Problem. J. of Algorithms, Vol. 7, pages 567583, 1986.

M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in Interactive Proofs. Computa-
tional Complexity, Vol. 4, No. 4, pages 319-354, 1993.

M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, Vol. 13, pages 850-864, 1984. Preliminary
version in 23rd IEEE Symposium on Foundations of Computer Science, 1982.

L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System
Science, Vol. 18, 1979, pages 143-154.

G.J. Chaitin. On the Length of Programs for Computing Finite Binary Sequences. Journal
of the ACM, Vol. 13, pages 547-570, 1966.

B. Chor and O. Goldreich. On the Power of Two—Point Based Sampling. Jour. of Complexity,
Vol 5, 1989, pages 96-106. Preliminary version dates 1985.

B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness and Probabilistic
Communication Complexity. SIAM Journal on Computing, Vol. 17, No. 2, pages 230-261,
1988.

T.M. Cover and G.A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc.,
New-York, 1991.

O. Goldreich. Foundation of Cryptography — Fragments of a Book. February 1995. Available
from http: //theory.lcs.mit.edu/ ~ oded/frag.html.

O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algorithms
and Combinatorics series (Vol. 17), Springer, 1998.

O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal
of the ACM, Vol. 33, No. 4, pages 792-807, 1986.

O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21st ACM
Symposium on the Theory of Computing, pages 25-32, 1989.

O. Goldreich and S. Micali. Increasing the Expansion of Pseudorandom Generators. Unpub-
lished manuscript, 1984.

O. Goldreich, and H. Krawczyk. On Sparse Pseudorandom Ensembles. Random Structures
and Algorithms, Vol. 3, No. 2, (1992), pages 163-174.

O. Goldreich, H. Krawcyzk and M. Luby. On the Existence of Pseudorandom Generators.
SIAM Journal on Computing, Vol. 22-6, pages 1163-1175, 1993.

15

[17]

[18]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System
Science, Vol. 28, No. 2, pages 270-299, 1984. Preliminary version in 14th ACM Symposium
on the Theory of Computing, 1982.

J. Hastad, R. Impagliazzo, L.A. Levin and M. Luby. A Pseudorandom Generator from any
One-way Function. SIAM Journal on Computing, Volume 28, Number 4, pages 13641396,
1999. Preliminary versions by Impagliazzo et. al. in 21st ACM Symposium on the Theory of
Computing (1989) and Hastad in 22nd ACM Symposium on the Theory of Computing (1990).

R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Derandomizing
the XOR Lemma. In 29th ACM Symposium on the Theory of Computing, pages 220-229,
1997.

D.E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms).
Addison-Wesley Publishing Company, Inc., 1969 (first edition) and 1981 (second edition).

A. Kolmogorov. Three Approaches to the Concept of “The Amount Of Information”. Probl. of
Inform. Transm., Vol. 1/1, 1965.

L.A. Levin. Randomness Conservation Inequalities: Information and Independence in Math-
ematical Theories. Inform. and Control, Vol. 61, pages 15-37, 1984.

M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and its Applications.
Springer Verlag, August 1993.

J. Naor and M. Naor. Small-bias Probability Spaces: Efficient Constructions and Applica-
tions. SIAM J. on Computing, Vol 22, 1993, pages 838-856.

N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, Vol. 11 (1), pages
63-70, 1991.

N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,
Vol. 12 (4), pages 449-461, 1992.

N. Nisan. RL C SC. Journal of Computational Complexity, Vol. 4, pages 1-11, 1994.

N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and System
Science, Vol. 49, No. 2, pages 149-167, 1994.

N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of Computer and
System Science, Vol. 52 (1), pages 43-52, 1996.

A.M. Odlyzko. The future of integer factorization. CryptoBytes (The technical
newsletter of RSA Laboratories), Vol. 1 (No. 2), pages 5-12, 1995. Available from
http://www.research.att.com/~amo

A M. Odlyzko. Discrete logarithms and smooth polynomials. In Finite Fields: Theory, Ap-
plications and Algorithms, G. L. Mullen and P. Shiue, eds., Amer. Math. Soc., Contemporary
Math. Vol. 168, pages 269-278, 1994. Available from http://www.research.att.com/~amo

A.R. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Science,
Vol. 55 (1), pages 24-35, 1997.

16

[33] C.E. Shannon. A mathematical theory of communication. Bell Sys. Tech. Jour., Vol. 27,
pages 623-656, 1948.

[34] R.J. Solomonoff. A Formal Theory of Inductive Inference. Inform. and Control, Vol. 7/1,
pages 1-22, 1964.

[35] L. Valiant. A theory of the learnable. Communications of the ACM, Vol. 27/11, pages
1134-1142, 1984.

[36] L. Trevisan. Constructions of Near-Optimal Extractors Using Pseudo-Random Generators.
In 81st ACM Symposium on the Theory of Computing, pages 141-148, 1998.

[37] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on
Foundations of Computer Science, pages 80-91, 1982.

17

