
On the random-oracle methodology as applied to length-restrictedsignature schemesRan Canetti� Oded Goldreichy Shai Halevi�July 31, 2003AbstractIn earlier work, we described a \pathological" example of a signature scheme that is securein the Random Oracle Model, but for which no secure implementation exists. For that example,however, it was crucial that the scheme is able to sign \long messages" (i.e., messages whoselength is not a-priori bounded). This left open the possibility that the Random Oracle Method-ology is sound with respect to signature schemes that sign only \short" messages (i.e., messagesof a-priori bounded length, smaller than the length of the keys in use), and are \memoryless"(i.e., the only thing kept between di�erent signature generations is the initial signing-key). Inthis work, we extend our negative result to address such signature schemes. A key ingredient inour proof is a new type of interactive proof systems, which may be of independent interest.

Keywords: Signature Schemes, The Random Oracle Model, Interactive Proof systems.�IBM Watson, P.O. Box 704, Yorktown Height, NY 10598, USA. fcanetti,shaihg@watson.ibm.comyDepartment of Computer Science, Weizmann Institute of Science, Rehovot, Israel.oded@wisdom.weizmann.ac.il. 1

1 IntroductionA popular methodology for designing cryptographic protocols consists of the following two steps.One �rst designs an ideal system in which all parties (including the adversary) have oracle accessto a truly random function, and proves the security of this ideal system. Next, one replaces therandom oracle by a \good cryptographic hashing function" such as MD5 or SHA, providing allparties (including the adversary) with a succinct description of this function. Thus, one obtainsan implementation of the ideal system in a \real-world" where random oracles do not exist. Thismethodology, explicitly formulated by Bellare and Rogaway [1] and hereafter referred to as therandom oracle methodology, has been used in many works (see some references in [4]).In our earlier work [4] we investigated the relationship between the security of cryptographicschemes in the RandomOracle Model, and the security of the schemes that result from implementingthe random oracle by so called \cryptographic hash functions". In particular, we demonstrated theexistence of \pathological" signature schemes that are secure in the Random Oracle Model, but forwhich no secure implementation exists. However, one feature of these signature schemes was thatthey were required to sign \long messages", in particular messages that are longer than the lengthof the public veri�cation-key. Thus, that work left open the possibility that the Random OracleMethodology may still be sound with respect to limited schemes that only sign \short messages"(i.e., messages that are signi�cantly shorter than the length of the public veri�cation-key). In thiswork we extend the negative result of [4] and show that it holds also with respect to (memoryless)signature schemes that are only required to sign \short messages". That is:Theorem 1 (sketch) There exists an ordinary (i.e., memoryless) signature scheme that is secure inthe Random Oracle Model, but has no secure implementations by function ensembles. Furthermore,insecurity is demonstrated by an attack in which the scheme is only applied to messages of poly-logarithmic length (in the security parameter).Indeed, the improvement of Theorem 1 over the corresponding result of [4] is merely in the \fur-thermore" clause.Our proof extends the technique from [4] of constructing these \pathological" signature schemes.Intuitively, in these schemes the signer �rst checks whether the message to be signed contains a\proof of the non-randomness of the oracle". If the signer is convinced it performs some highlydisastrous action, and otherwise it just employs some secure signature scheme. Such a scheme willbe secure in the Random Oracle Model, since the the signer is unlikely to be convinced that itsoracle is not random. In a \real world implementation" of the scheme, on the other hand, theoracle is completely speci�ed by a portion of the public veri�cation-key. The attacker, who hasaccess to this speci�cation, can use it to convince the signer that this oracle is not random, thusbreaking the scheme. The \proof of non-randomness" that was used in [4] was non-interactive,and its length was longer than the veri�cation-key, which is the reason that it is not applicable to\short messages". The crux of our extension is a new type of interactive proof systems, employinga stateless veri�er and short messages, which may be of independent interest.To prove \non-randomness" of a function, we would like to show that there exists a programthat can predict the value of this function at \su�ciently many" points. However, it seems thatsuch proof must be at least as long as said program. In our application, the proof needs to predicta function described in a portion of the veri�cation-key, hence it needs to be of length comparableto that portion. But we want a signature scheme that only signs short messages, so the attacker(prover) cannot submit to the signer (veri�er) such a long proof in just one message. It followsthat we must use many messages to describe the proof, or in other words, we must have a long1

interaction. But recall that in our application, the proof has to be received and veri�ed by thesigning device, which by standard de�nitions is stateless.1 Thus, the essence of what we need is aninteractive proof with a stateless veri�er.At a �rst glance, this last notion may not seem interesting. What good is an interaction ifthe veri�er cannot remember any of it? If it didn't accept after the prover's �rst message, whywould it accept after the second? What makes this approach workable is the observation that theveri�er's state can be kept by the prover, as long as the veri�er has some means of authenticatingthis state. What we do is let the veri�er (i.e., signer) emulate a computation of a Turing machineM(which in turn veri�es a proof provided by the prover), and do so in an authenticated manner. Themessages presented to the veri�er will have the form (cc; �; aux), where cc is a compressed versionof an instantaneous con�guration of the machine, � is a \signature on cc", and aux is an auxiliaryinformation to be used in the generation of a compressed version of the next con�guration. Ifthe signature is valid then the veri�er will respond with the triple (cc0; �0; aux0), where cc0 is acompressed version of the next con�guration, �0 is a \signature on cc0", and aux0 is an auxiliaryinformation regarding its update.Relation to the adversarial-memory model. Our approach of emulating a computation byinteraction between a memoryless veri�er and an untrusted prover, is reminiscent of the interactionbetween a CPU and an adversarially-controlled memory in the works of Goldreich and Ostrovsky [6]and Blum et al. [2]. Indeed, the technique that we use in this paper to authenticate the memory isvery close to the \on line checker" of Blum et al. However, our problem still seems quite di�erentthan theirs. On one hand, our veri�er cannot maintain state between interactions, whereas theCPUs in both the works from above maintain a small (updated) state. On the other hand, ourauthenticity requirement from the memory is weaker than in [6, 2], in that our solution allows theadversary to \roll back" the memory to a previous state. (Also, a main concern of [6], which is notrequired in our context, is hiding the \memory-access structure" from the adversary.)Organization. We �rst present our interactive proof with stateless veri�er while taking advantageof several speci�c features of our application: We start with an overview (Section 2), and providethe details in Section 3. In Section 4 we then sketch a more general treatment of this kind ofinteractive proofs.2 Overview of our approachOn a high level, the negative result in our earlier work [4] can be described as starting from asecure signature scheme in the Random Oracle Model, and modifying it as follows: The signer inthe original scheme was interacting with some oracle (which was random in the Random OracleModel, but implemented by some function ensemble in the \real world"). In the modi�ed scheme,the signer examines each message before it signs it, looking for a \proof" that its oracle is notrandom. If it �nds such a convincing \proof" it does some obviously stupid thing, like outputtingthe secret key. Otherwise, it reverts to the original (secure) scheme. Hence, the crucial step inthe construction is to exhibit a \proof" as above. Namely, we have a prover and a veri�er, bothpolynomial-time interactive machines with access to an oracle, such that the following holds:1Indeed, the statelessness condition is the reason that a non-interactive information transfer seems a naturalchoice, but in the current work we are unwilling to pay the cost in terms of message length.2

� When the oracle is a truly random function, the veri�er rejects with overwhelming probability,regardless of what the prover does. (The probability is taken also over the choice of the oracle.)� For any polynomial-time function ensemble,2 there is a polynomial-time prover that causesthe veri�er to accept with noticeable probability, when the oracle is implemented by a randommember of that ensemble. In this case, the prover receives a full description of the functionused in the role of the oracle. (In our application, this description is part of the veri�cation-keyin the corresponding implementation of the signature scheme.)In [4] we used correlation-intractable functions to devise such a proof system.3 However, simplerconstructions can be obtained. For example, when the oracle is implemented by a polynomial-time function ensemble, the prover could essentially just send to the veri�er the description ofthe function that implements the oracle. The veri�er can then evaluate that function on severalinputs, and compare the outputs to the responses that it gets from the oracle. If the outputsmatch for su�ciently many inputs (where su�ciently many means more that the length of thedescription), then the veri�er concludes that the oracle cannot be a random function. Indeed,roughly this simpli�ed proof was proposed by Holenstein, Maurer, and Renner [9]. We remark thatboth our original proof and the simpli�ed proof of Holenstein et al., are non-interactive proofs ofnon-randomness: The prover just sends one string to the veri�er, thus convincing it that its oracleis not a random function.However, implementing the proof in this manner implies that the attacker must send to theveri�er a complete description of the function, which in our application may be almost as long asthe veri�cation-key. In terms of the resulting \pathological example", this means that the signaturescheme that we construct must accept long enough messages.Clearly, one can do away with the need for long messages, if we allow the signature schemeto \keep history" and pass some evolving state from one signature to the next. In that case theattacker can feed the long proof to the scheme bit by bit, and the scheme would only act on itonce its history gets long enough. In particular, this means that the signature scheme will not onlymaintain a state (between signatures) but rather maintain a state of a-priori unbounded length.Thus, the negative result will refer only to such signature schemes, while we seek to present anegative result that refers to any signature scheme (even stateless ones), and in particular to onesthat only sign \short messages".In this work we show how such a result can be obtained. Speci�cally, we present a signaturescheme that operates in the random-oracle model, with the following properties:� The scheme is stateless: the signer only keeps in memory the secret key, and this key doesnot evolve from one signature to the next.� The scheme is only required to sign short messages: On security parameter k, the schemecan only be applied to messages whose length is less than k. Furthermore, one could evenrestrict it to messages of length sub-linear in k (e.g., polylog(k)).� The scheme is secure in the Random Oracle Model : When the oracle is implemented by a trulyrandom function, the scheme is existentially unforgeable under an adaptive chosen-messageattack.2A polynomial-time function ensemble is a sequence F = fFkgk2N of families of functions, Fk = ffs : f0; 1g�!f0; 1g`out(k)gs2f0;1gk , such that there exists a polynomial-time algorithm that given s and x returns fs(x). In thesequel we often call s the description or the seed of the function fs.3We used (non-interactive) CS-proofs (cf. [12]) to make it possible for the veri�er to run in �xed polynomial time,regardless of the polynomial that bounds the running time of the ensemble.3

� The scheme has no secure implementation: When the oracle is implemented by any functionensemble (even one with functions having description length that is polynomially longer thank), the scheme is completely breakable under an adaptive chosen-message attack. We remarkthat in this case the function's description is part of the veri�cation-key.4To construct such a scheme we need to design a \proof system" that only uses very short messages.As opposed to previous examples, we will now have an interactive proof system, with the prooftaking place during the attack. Each communication-round of the proof is being \implemented"by the attacker (in the role of the prover) sending a message to be signed, and the signer (in therole of the veri�er) signing that message.The ideas that make this work are the following: We start from the aforementioned non-interactive proof (of \non-randomness"), where the veri�er is given the description of a function,and compares that function to its own oracle (i.e., compares their values at su�ciently many points).Then, instead of having the veri�er execute the entire test on its own, we feed the execution of thistest to the veri�er \one step at a time" (and, in particular, the input function is fed \one step at atime"). Namely, let M be the oracle Turing machine implementing the aforementioned test. Theadversary provides the veri�er with the relevant information pertaining to the current step in thetest (e.g., the state of the control of M and the character under the head) and the veri�er returnsthe information for the next step. This requires only short messages, since each step of M has asuccinct description.To keep the security of the scheme in the Random Oracle Model, we need to make sure that theadversary can only feed the veri�er with \valid states" of the machine M . (Namely, states that canindeed result from the execution of this machine on some input.) To do that, we have the veri�erauthenticate each step of the computation. That is, together with the \local information" about thecurrent step, the veri�er also compute an authentication tag for the \global state" of the machinein this step, which is done using Merkle trees [11]. Such authentication has the property that itcan be computed and veri�ed using only the path from the root to the current leaf in the tree,and the authentication tag itself is very short. A little more precisely, the current con�guration ofthe machine M (using some standard encoding) is viewed as the leaves of a Merkle tree, and theveri�er provides the prover with an authentication tag for the root of this tree. Then a typical stepin the proof proceeds as follows:1. The attacker sends to the veri�er the \relevant leaf" of the tree (i.e., the one containing thehead of M), together with the entire path from the root to that leaf (and the siblings for thatpath), and the authentication tag for the root.2. The veri�er checks the authentication tag of the root and the validity of the root{leaf path(using the siblings). If everything is valid, then the veri�er executes the next step of M , andreturns to the attacker the updated path to the root, and an authentication tag for the newroot.If the machine M ever enters an accept state, then the veri�er accepts. This proof can still beimplemented using only short messages, since the root-leaf path has only logarithmic depth. As forsecurity, since it is infeasible for the attacker to \forge a state" of M , then the veri�er will acceptonly if the machine M indeed has an accepting computation.4In contrast, if the function's description is only part of the signing-key then using any pseudorandom function [5]would yield a secure signature scheme. However, this would not be an application of the Random Oracle Methodology,which explicitly refers to making the function's description public.4

3 The detailsWe now
esh out the description from Section 2. We begin in x3.1 with the basic test that we aregoing to implement step-by-step. In x3.2 we describe the Merkle-tree authentication mechanismthat we use, and in x3.3 we describe the complete \interactive proof system". Finally, we show inx3.4 how this proof system is used to derive our counter-example.As we did in [4], we avoid making intractability assumptions by using the random oracle itselffor various constructs that we need. For example, we implement the Merkle-tree authenticationmechanism (which typically requires collision-resistant hash functions) by using the random oracle.We stress that we only rely on the security of this and other constructs in the Random OracleModel, and do not care whether or not its implementation is secure (because we are going todemonstrate the insecurity of the implementation anyhow). Formally, in the context of the proofsystem, the security of the constructs only e�ects the soundness of the proof, which in turn refersto the Random Oracle Model.In both the basic test and the authentication mechanisms we use access to an oracle (whichwill be a random function in the Random Oracle Model, and a random member in an arbitraryfunction ensemble in the \real world"). When we work in the Random Oracle Model, we wish thesetwo oracles to be independent. Thus, we use the single oracle to which we have access to de�netwo oracles that are independent if the original oracle is random (e.g., using the oracle O, we de�neoracles Oi(x) def= O(i; x)).In the rest of this section, we assume that the reader is familiar with the notion of a polynomial-time function ensemble (as reviewed in Footnote 2).3.1 The basic testOur starting point is a very simple non-interactive \proof of non-randomness" of an oracle O. (Thebasic idea for this proof is described by Holenstein et al. in [9].) The veri�er is a (non-interactive)oracle Turing machine, denoted M, which is given a candidate proof, denoted �, as input. The input� is supposed to be a program (or a description of a Turing machine) that predicts O. Intuitively,if O is random then no � may be successful (when we try to use it in order to predict the value of Oon more than j�j predetermined inputs). On the other hand, if O has a short description (as in casewhere it is taken from some function ensemble) then setting � to be the program that computesO will do perfectly well. The operation of M, on security parameter k, input � and access to anoracle O, is given below:Procedure MO(1k; �):1. Let n = j�j be the bit length of �.(� is viewed as a description of a Turing-machine.)2. For i = 1 to 2n+ k, let yi O(i) and zi �(i).3. If yi and zi agree on their �rst bit for all i 2 [1::2n + k], then accept.4. Else reject.Below it will be convenient to think of the machineM as having one security-parameter tape (a read-only tape containing 1k), one \regular" work tape that initially contains �, one oracle query tapeand one oracle reply tape (the last having just a single bit, since we only look at the �rst bit of theanswer). A con�guration of this machine can therefore be described as a 4-tuple c = (q; r; w; sp)describing the contents of each tape (i.e., q describes the query, r the reply, w the contents ofthe work-tape and sp the security-parameter). By convention, we assume that the description of5

each tape include also the location of the head on this tape, and that the description of the worktape also includes the state of the �nite control. Thus, for the above machine M, we always havejqj = log(2j�j + k) + log log(2j�j + k), jrj = 1, jwj � j�j + sk(�) + log(2j�j + k) + log(j�j + s(�) +log(2j�j + k)) + O(1), jspj = k, where sk(�) is the space require for computing �(i) for the worstpossible i 2 [2j�j + k]. It follows that jcj = O(j�j+ sk(�) + k).Note that M itself is not a \veri�er in the usual sense", because its running time may dependarbitrarily on its input. In particular, for some inputs � (describing a non-halting program), themachine M may not halt at all. Nonetheless, we may analyze what happens in the two cases thatwe care about:Proposition 2 (Properties of machine M):1. Random oracle: For security parameter k, if the oracle O is chosen uniformly from all theBoolean functions, thenPrO h9 � 2 f0; 1g� s.t. MO(1k; �) acceptsi < 2�k2. Oracle with succinct description: For every function ensemble ffs : f0; 1g� ! f0; 1ggs2f0;1g�(having a polynomial-time evaluation algorithm), there exists an e�cient mapping s 7! �ssuch that for every s and every k it holds that Mfs(1k; �s) accepts in polynomial-time.Proof Sketch: In Item 1, we apply the union bound on all possible (i.e., in�nitely many) �'s. Foreach �xed � 2 f0; 1g�, it holds that the probability that MO(1k; �) accepts is at most 2�(2j�j+k),where the probability is taken uniformly over all possible choices of O. In Item 2, we use theprogram �s obtained by hard-wiring the seed s into the polynomial-time evaluation algorithmassociated with the function ensemble. 23.2 Authenticating the con�gurationWe next describe the speci�cs of how we use Merkle trees to authenticate the con�gurations of themachine M. In the description below, we view the con�guration c = (q; r; w; sp) as a binary string(using some standard encoding).We assume that the authentication mechanism too has access to a random oracle, and this ran-dom oracle is independent of the one that is used by the machine M. Below we denote this \authen-tication oracle" by A. To be concrete, on security parameter k, denote `out = `out(k) = llog2(k)m,5and assume that the oracle is chosen at random, from all the functions A : f0; 1g� ! f0; 1g`out .(Actually, we may consider the functions A : f0; 1g3`out ! f0; 1g`out .) We stress again that we donot lose much generality by these assumptions, as they can be easily met in the Random OracleModel. Also, when the security parameter is k, we use a random `out-bit string for authenticationkey, which we denote by ak 2R f0; 1g`out .To authenticate a con�guration c (on security parameter k, with access to an oracle A, andwith key ak), we �rst pad the binary encoding of c to length 2d � `out (where d is an integer). Wethen consider a complete binary tree with 2d leaves, where the i'th leaf contains the i'th `out-bitchunk of the con�guration. Each internal node in this tree contains an `out-bit string. For a nodeat distance i from the root, this `out-bit string equals A(i; left; right), where left and right are5The choice of `out(k) = �log2(k)� is somewhat arbitrary. For the construction below we need the output length`out to satisfy !(log k) � `out(k) � o(k= log k), whereas the input length should be at least 2`out(k) +!(log k). (Notethat 2`out(k) + !(log k) < 3`out(k).) 6

the `out-bit strings in the left and right children of that node, respectively. The authentication tagfor this con�guration equals A(d; ak; root), where root is the `out-bit string in the root of the tree.The security property that we need here is slightly stronger than the usual notion for authen-tication codes. The usual notion would say that for an attacker who does not know the key ak, itis hard to come up with any valid pair (con�guration,tag) that was not previously given to him bythe party who knows ak. In our application, however, the veri�er is only presented with root{leafpaths in the tree, never with complete con�gurations. We therefore require that it is hard even tocome up with a single path that \looks like it belongs to a valid con�guration", without this pathbeing part of a previously authenticated con�guration. We use the following notions:De�nition 3 (valid paths) Let A : f0; 1g� ! f0; 1g`out be an oracle and ak 2 f0; 1g`out be astring as above. A valid path with respect to A and ak is a triple(h�1 � � � �di; h(v1;0; v1;1); :::; (vd;0; vd;1)i; t)where the �i's are bits, and the vi;b's and t are all `out-bit strings, satisfying the following conditions:1. For every i = 1; :::; d � 1, it holds that vi;�i = A(i; vi+1;0; vi+1;1).2. t = A(d; ak;A(0; v1;0; v1;1)).This path is said to be consistent with the con�guration c if when placing c in the leaves and prop-agating values described above,6 then for every i = 1; :::; d � 1, the node reached from the root byfollowing the path �1 � � � �i is assigned the value vi;�i, and the sibling of that node is assigned thevalue vi;�i .In this de�nition, vi;�i is the value claimed for the internal node reached from the root by followingthe path �1 � � � �i. The value claimed for the root is v0 def= A(0; v1;0; v1;1), and this value is authen-ticated by A(d; ak; v0), which also authenticates the depth of the tree. Indeed, only the value ofthe root is directly authenticated, and this indirectly authenticates all the rest.Fix some `out 2 N, and let A be a random function from f0; 1g� to f0; 1g`out and ak be arandom `out-bit string. Consider a forger, F , that can query the oracle A on arbitrary strings, andcan also issue authentication queries, where the query is a con�gurations c and the answer is theauthentication tag on c corresponding to A and ak. The forger F is deemed successful if at the endof its run it outputs a path (�; �v; t) that is valid with respect to A and ak but is inconsistent withany of the authentication queries. One can easily prove the following:Proposition 4 For any `out 2 N and any forger F , the probability that F is successful is at mostq2=2`out , where q is the total number of queries made by F (i.e., both queries to the oracle A andauthentication queries). The probability is taken over the choices of A and ak, as well as over thecoins of the forger F .Proof Sketch: Intuitively, the authentication of the root's value makes it hard to produce apath that is valid with respect to A and (the unknown) ak but uses a di�erent value for the root.Similarly for a path of a di�erent length for the same root value. On the other hand, it is hard toform collisions with respect to the values of internal nodes (i.e., obtain two pairs (u;w) and (u0; w0)such that for some i it holds that A(i; u; w) = A(i; u0; w0)). 26That is, an internal node at distance i from the root is assigned the value A(i; u; w), where u and w are the valuesassigned to its children. 7

3.3 An interactive proof of non-randomnessWe are now ready to describe our interactive proof, where a prover can convince a \stateless"veri�er that their common oracle is not random, using only very short messages.The setting is as follows: We have a prover and a veri�er, both work in polynomial time intheir input, both sharing a security parameter k 2 N (encoded in unary), and both having accessto an oracle, say O0 : f0; 1g� ! f0; 1g`out . (The parameter `out is quite arbitrary. Below we assumefor convenience that this is the same parameter as we use for the authentication scheme, namely`out = llog2(k)m.)7 In this proof system, the prover is trying to convince the veri�er that theircommon oracle in not random. Speci�cally, both prover and veri�er interpret their oracle as twoseparate oracles, A and O (say, O(x) = O0(0x) and A(x) = O0(1x)), and the honest prover hasas input a description of a Turing machine that computes the function O. However, we placesome severe limitations on what the veri�er can do. Speci�cally, the veri�er has as private inputa random string ak 2 f0; 1g`out , but other than this �xed string, it is not allowed to maintain anystate between steps. That is, when answering a message from the prover, the veri�er always beginthe computation from a �xed state consisting only of the security parameter k and the string ak.In addition, on security parameter k, the veri�er is only allowed to see prover-messages of lengthstrictly smaller than k. (In fact, below we only use messages of size polylog(k).)The proof that we describe below consists of two phases. In the �rst (initialization) phase, theprover uses the veri�er to authenticate the initial con�guration of the machine MO(1k; x), where kis the security parameter that they both share, and x is some input that the prover chooses. Forthe honest prover, this input x will be the description of the Turing-machine that implements theoracle O. In the second (computation) phase, the prover takes the veri�er step-by-step throughthe computation of MO(1k; x). For each step, the prover gives to the veri�er the relevant part fromthe current authenticated con�guration, and the veri�er returns the authentication tag for the nextcon�guration. The veri�er is convinced if the machine M ever reaches the accepting state.For notational convenience, we assume below that on security parameter k, the veri�er onlyagrees to authenticate con�gurations of M whose length is less than 2`out(k). Indeed, in our appli-cation the honest prover will never need to use larger con�guration (for large enough k).3.3.1 Initialization phaseThis phase consists of two steps. In the �rst step, the prover will use the veri�er in order toauthenticate \blank con�guration" (lacking a real input) for the computation, whereas in thesecond step the prover will feed an input into this con�guration and obtain (via interaction withthe veri�er) an initial con�guration �tting this input.First step. The prover begins this phase by sending a message of the form (`Init', 0, sb) to theveri�er, where the integer sb < 2`out(k) is an upper bound on the length of the con�gurations of Min the computation to come, and it is encoded in binary. In response, the veri�er computes ablank con�guration, denoted c0, of length sb and sends the authentication tag for this con�guration,with respect to oracle A and key ak. The blank con�guration c0 consists of the security-parametertape �lled with 1k, all the other tapes being \empty" (e.g., �lled with ?'s), the heads being atthe beginning of each tape, and the �nite control being in a special blank state. Speci�cally, the7Note that even a binary oracle (i.e., `out = 1) su�ces, since in the Random Oracle Model it is easy to convertone output length to another. 8

work-tape consists of sb blanks (i.e., ?'s), and the query-tape consists of `out(k)=2 = !(log k)blanks.8We note that authenticating the blank con�guration in a straightforward manner (i.e., by writingdown the con�guration and computing the labels of all nodes in the tree) takes time O(sb), whichmay be super-polynomial in k. Nonetheless, it is possible to compute the authentication tag intime polynomial in k, because the con�guration c0 is \highly uniform". Speci�cally, note that thework tape is �lled with ?'s, and all the other tapes are of size polynomial in k. Thus, in every levelof the con�guration tree, almost all the nodes have the same value (except, perhaps, a polynomialnumber of them). Hence, the number of queries to A and total time that it takes to compute theauthentication tag is polynomial in k.Conventions. For simplicity, we assume that the contents of the query-tape as well as the ma-chine's state are encoded in the �rst `out(k)-bit long block of the con�guration. Typically, in allsubsequent modi�cations to the con�guration, we will use this block as well as (possibly) someother block (in which the \actual action" takes place). We denote by hii the bit-string describingthe path from the root to the leaf that contains the i'th location in the work-tape. Needless to say,we assume that the encoding is simple enough such that hii can be computed e�ciently from i.Second step. After obtaining the authentication tag for the blank con�guration, the prover may�ll in the input in this con�guration by sending messages of the form (`Init', i; b; �p1; �pi; t) to theveri�er. Upon receiving such a message, the veri�er checks that (h1i; �p1; t) and (hii; �pi; t) are validpaths w.r.t. A and ak, that path �p1 shows the heads at the beginning of their tapes and the controlin the special \blank state", and that path �pi shows the i'th location in the work-tape �lled with a?. In case all conditions hold, the veri�er replaces the contents of the i'th location in the work-tapewith the bit b, recomputes values along the path from that tape location to the root, and returnsthe new authentication tag to the prover. That is, the values along that path as recorded in �picorrespond to a setting of the i'th location to ?, and setting this location to b typically yields newvalues that propagate from this leaf up-to the root.Thus, using jxj rounds of interaction, the honest prover can obtain (from the veri�er) theauthentication tag on the initial con�guration of M(1k; x), where x is a string of the prover'schoice. Note that a cheating prover may obtain from the prover an authentication tag that doesnot correspond to such an initial con�guration. (In fact, even the honest prover obtains such tagsin all but the last iterations of the current step.)3.3.2 Computation phaseThis phase begin with a message of the form (`Comp', �p1; t) that the prover sends. The veri�erchecks that (h1i; �p1; t) is a valid path, and that �p1 shows the heads at the beginning of their tapesand the control in the special \blank state". If these conditions hold, the veri�er changes the stateto the initial state of M, recomputes the values on the path �p1 from the initial tape location to theroot, and returns the new authentication tag to the prover. (In fact, one may view this step asbelonging to the initialization step.)Thereafter, upon receiving a message of the form (`Comp', i; j; �p1; �pi; �pj ; t), where j 2 fi�1; i; i+1g (and indeed when j = i it holds that �pi = �pj), the veri�er checks that (h1i; �p1; t), (hii; �pi; t),(hji; �pj ; t), are all valid paths. Furthermore, it checks that �pi contains the head position and �pj8 On input (1k; x), the query tape of M is of size log2(2jxj + k). For ensemble F , the honest prover will usejxj � poly(k) +O(1), and so the length of the query tape would be O(logk).9

describes a legal contents of the position that the head will move to after the current step. Thatis, �p1 and �pi provide su�cient information to determine the single-step modi�cation of the currentcon�guration (which may include a movement of some heads and a change in the contents of asingle symbol in some of the tapes). In case all conditions hold, then the veri�er executes thecurrent step (making a query to its oracle O if this step is an oracle query), recomputes the valueson the three paths to the root, and returns the new authentication tag to the prover. If after thisstep the machine M enters its accept state, the veri�er accepts.It can be seen that the honest prover can use these interaction steps to take the veri�er step-by-step through the computation of M. It follows that if the input to the honest prover is indeeda polynomial-time machine that computes the function O, then the veri�er will halt and acceptafter polynomially many steps. We conclude this subsection by showing that the above constitutesa proof system for non-randomness (satisfying additional properties that we will need in the nextsubsection).Proposition 5 The above construction constitutes a proof system with these properties:E�ciency. Each veri�er step can be computed in time polynomial in the security parameter k.Stateless veri�er. The veri�er is stateless in the sense that it begins every step from the same state,consisting only of the security parameter k and its private input ak 2 f0; 1g`out . Formally, theveri�er replies to each incoming message m with V (1k; ak;m), where V is a �xed (e�cientlycomputable) function.9Soundness. If O0 is chosen as a random function O0 : f0; 1g� ! f0; 1g`out(k) and ak is chosen atrandom in f0; 1g`out(k), then for every (possibly cheating) prover P it holds thatPrO0;ak hThe veri�er V O0(1k; ak) accepts when talking to PO0i � (q+ `out(k) �m)2 � 2�`out + 2�kwhere q is the total number of queries that P makes to the oracle A and m is the total numberof messages that it sends to the veri�er V .Completeness with short messages. For every polynomial-time-computable function ensemble F ,there exists a polynomial-time prover PF such that:1. For every choice of s 2 f0; 1gpoly(k) and ak 2 f0; 1g`out(k), the veri�er V fs(1k; ak) alwaysaccepts when talking to PF (s).2. On security parameter k, the prover PF (s) only sends to the veri�er poly(k) many mes-sages, each of length O((log k) � `out(k)) = O(log3 k).Proof Sketch: The only assertions that are not obvious are the soundness bound and the size ofthe messages. For the soundness bound, recall that (by Proposition 2) whenO0 is a random function(and therefore also O is a random function), the probability that there exists an input x that makesMO(1k; x) accept is at most 2�k. If there is no such input, then the only way to make V O0 acceptis \forge" some valid paths, and (by Proposition 4) this can only be done with probability at mostq22�`out . Slightly more formal, consider the transcript of a proof in which PO0 causes V O0 to accept.Considering all the messages that P sent to V in this transcript, one can easily de�ne a \depend-on" relation among then (namely, when one message contains an authentication tag that was9We slightly abuse notations here, and use V for both the veri�er and the functions that it implements.10

obtained in a previous message). This, in turn, allows us to de�ne the complete con�gurations thatwere \rightly authenticated" during this transcript (namely, those con�gurations that correspondto a computation that starts from the initial con�guration of Mk on some input x.) Hence, weeither �nd an initial con�guration from which M(1k; x) accepts (a probability 2�k event), or we�nd a computation that begins from some non-initial con�guration. Since the veri�er V O0 neverauthenticates a non-initial con�guration unless it sees a valid path belonging to a con�gurationthat directly precedes it, the valid path belonging to the �rst non-initial con�guration must be aforgery. (By making suitable oracle calls before sending each message to the veri�er, we can convertthe cheating prover to a forger that makes at most q + `out �m queries, and soundness follows.)As for the size of the messages sent by the honest prover, let F be any polynomial-time-computable functions ensemble. This means that there is a polynomial p(�) such that on securityparameter k, specifying any function fs 2 Fk can be done using at most p(k) bits, and moreover,computing fs(x) for any jxj < k takes at most p(k) time. (Below we assume for convenience thatp(k) � k.) For any fs 2 Fk, let �s be a description of a Turing machine computing fs. By theabove, j�sj = jsj + O(1) < p(k) + O(1). This implies that for any fs 2 Fk, the non-interactiveveri�er M(1k; �s) runs in time at most O(k + 2p(k)) � p(k) = O(p2(k)), and therefore it only hascon�gurations of length at most O(p2(k)).The honest prover PF , having access to s, can compute the description �s and take the veri�erstep-by-step through the execution of Mfs(1k; �s), which consists only of O(p2(k)) steps. It beginsby sending a message (`Init', 0, sb), with the bound sb being set to sb = O(p2(k)), and in eachstep thereafter it only needs to send a constant number of paths in the tree, each of length log(sb).Since each node in the tree contains a string of length `out(k), it follows that the total length ofthe prover's queries is O(log(sb) � `out(k)) = O(`out(k) � log(p2(k))) = O(`out(k) � log k). 23.4 The signature schemeCombining the proof system from the previous section with the ideas outlined in Sections 1 and 2,it is quite straightforward to construct the desired signature scheme (summarized in the nexttheorem).Theorem 6 (Theorem 1, restated) There exists a signature scheme S that is existentially unforge-able under a chosen message attack in the Random Oracle Model, but such that when implementedwith any e�ciently computable function ensemble, the resulting scheme is totally breakable underchosen message attack. Moreover, the signing algorithm of S is stateless, and on security parame-ter k, it can only be applied to messages of size poly-logarithmic in k.Proof: Let (Ppf ; Vpf) be the proof system for \non-randomness" described in Section 3.3. LetS = (Gsig; Ssig; Vsig) be any stateless signature scheme that is existentially unforgeable under achosen message attack in the Random Oracle Model (we know that such schemes exist, e.g., usingNaor-Yung [13] with the random oracle used in the role of a universal one-way hash function)). Weview all the machines Ppf , Vpf , Gsig, Ssig, and Vsig as oracle machines (although Gsig, Ssig, or Vsigmay not use their oracle). We modify the signature scheme to obtain a di�erent signature schemeS 0 = (G0; S0; V 0).� On input 1k (k being the security parameter), the key generation algorithm G0 �rst runsGsig to obtain a private/public key-pair of the original scheme, (sk; vk) GOsig(1k). Then itchooses a random `out-bit \authentication key" ak 2R f0; 1g`out(k) (to be used by Vpf). Thepublic veri�cation key is just vk, and the secret signing key is the pair (sk; ak). (We assumethat the security parameter k is implicit in both vk and sk.)11

� On message m, signing key (sk; ak) and access to oracle O, the signature algorithm S0 worksas follows: If the message m is too long (i.e., jmj > log4 k) then it outputs an empty sig-nature ?.10 Otherwise, it invokes both the proof-veri�er Vpf and the signer Ssig on themessage m to get �pf V Opf (ak;m), and �sig SOsig(sk;m).If the proof-veri�er accepts (i.e., �pf = \accept") then the signature consists of the secret key� = (�sig; (sk; ak)). Otherwise, the signature is the pair � = (�sig; �pf).� The veri�cation algorithm V 0, on message m, alleged signature � = (�1; �2), veri�cationkey vk and access to oracle O, just invokes the original signature-veri�er Vsig on the �rst partof the signature, outputting V Osig(vk;m; �1).It is clear from the description that this scheme is stateless, and that it can only be used tosign messages of length at most log4 k. It is also easy to see that with any implementation viafunction ensemble, the resulting scheme is totally breakable under adaptive chosen message attack.When implemented using function ensemble F , an attacker uses the prescribed prover PF (ofProposition 5). Recall that the seed s for the function fs that is used to implement the oracle isincluded in the public key, so the attacker can just run PF (s). The attacker sends the prover'smessages to the signer S0, and the size of these messages is O(log3 k) < log4 k, where the constantin the O-notation depends on the ensemble F . The second component of the signatures on thesemessages are the replies from the proof-veri�er V fspf . From Proposition 5 we conclude that aftersigning polynomially many such messages, the proof-veri�er accepts (with probability one), atwhich point the signing algorithm will output the secret signing key. Thus, we totally break thescheme's implementation (by any function ensemble).Next we show that the scheme S 0 is existentially unforgeable under a chosen message attack inthe Random Oracle Model. Informally, the reason is that in the Random Oracle Model a forgerwill not be able to cause the proof-veri�er to accept, and thus it will be left with the task of forginga signature with respect to the original (secure) signature scheme.Formally, consider a polynomial-time forger F 0, attacking the scheme S 0, let � = �(k) denote theprobability that F 0 issues a forgery, and assume { toward contradiction { that � is non-negligible.Consider the invocations that the signing algorithm makes to the proof-veri�er Vpf during theattack. Let � = �(k) be the probability that Vpf replies to some query with \accept". Since wecan view the combination of F 0 and the signing algorithm as a (cheating) prover PO, Proposition 5tells us that � � q2=2`out +2�k where q is bounded by the running time of F 0 (which is polynomialin k). Hence � is negligible.Next we show a polynomial-time forger Fsig against the original scheme S that issues a forgerywith probability at least ���, contradicting the security of S. The forger Fsig is given a public key vkthat was generated by Gsig(1k), it has access to the signing oracle SOsig(sk; �) for the correspondingsigning key sk, and also access to the random oracle O. It picks at random an \authentication key"ak 2 f0; 1g`out(k), and then invokes the forger F 0 on the same public key vk.When F 0 asks for a signature on a message m, the forger Fsig behaves much like the signaturealgorithm S0. Namely, if jmj > log4 k it returns ?. Otherwise, it computes �pf V Opf (ak;m),and it queries its signing oracle on m to get �sig SOsig(sk;m). If the proof-veri�er accepts,�pf = \accept", then Fsig aborts. Else it returns the pair � = (�sig; �pf). If F 0 issues a forgedmessage m0 with signature (�01; �02) then Fsig issues the same forged message m0 and signature �01.It is clear that Fsig succeeds in forging a signature if and only if F 0 forges a signature withoutcausing the proof-veri�er Vpf to accept, which happens with probability at least �� �.10Alternatively, S0 may return (SOsig(sk;m);?), and we should note that in the (\real world") attack describedbelow only short messages are used. 12

Remark 7 (Message length) Tracing through the arguments in this section, it can be seenthat the message-length can be decreased from log4 k to !(log2 k): It su�ces to use a space-boundSB = !(log k), which yields a (prescribed) proof system with prover message of length !(log2 k),for any function ensemble. However, achieving poly-logarithmic message length relies heavily onthe fact that we use the random oracle for authentication, and on the fact that the random oracleyields authentication with \exponential hardness". In Section 4 below, we instead use standardcollision-intractable functions and message-authentication codes, that only enjoy \super-polynomialhardness". In this case, the achievable message length would be O(k�) for any desired (�xed) � > 0.4 A proof system for any NP-languageThe description in Section 3 combined the speci�cs of our application (i.e., proving non-randomnessof an oracle) with the general ideas underlying the construction of the new proof system. In thissection, we apply the latter ideas in order to derive a new type of proof systems for any languagein NP .The model is similar to ordinary interactive proofs as in GMR [8] (and arguments as in BCC [3]),except that the veri�er is stateless. That is, the veri�er is represented by a randomized processthat given the veri�er's input and the current in-coming message, determines the veri�er's nextmessage. This process is probabilistic polynomial-time, but it cannot e�ect the veri�er's state. Inparticular, the veri�er's decision to accept or reject (or continue in the interaction) will be re
ectedin its next message. (In a sense, the veri�er will not even remember its decision, but merely notifythe world of it.)The above model, per se, allows to prove membership in any NP-set, by merely having theprover send the corresponding NP-witness. However, we are interested in such proof systems inwhich the prover only sends short messages. This rules out the simple solution just suggested.But, as stated, this model does not allow to do much beyond using short NP-witnesses wheneverthey exist. The reason being that, from the veri�er's point of view, there is no \relation" betweenthe various communication rounds, and the only function of the multiple interactions is to providemultiple attempts of the same experiment. The situation changes once we provide the veri�er withan auxiliary secret input. This input is chosen uniformly from some domain and remains �xedthroughout the run of the protocol. The goal of this auxiliary input is to model some very limitedform of state that is kept between sending a message and receiving the response.To summarize, we are interested in proof systems (or arguments) that satisfy the following threeconditions:1. In addition to the common input, denoted x, the veri�er receives an auxiliary secret input,denoted s, that is chosen uniformly from some domain. As usual, we focus on a probabilisticpolynomial-time prover that also receives an auxiliary input, denoted y.2. The veri�er employs a stateless strategy. That is, there exists a probabilistic polynomial-timealgorithm V such that the veri�er answers the current message m with V (x; s;m).3. The prover can only send short messages. That is, it can only send messages of length `(jxj),where `(n)� n (e.g., `(n) = pn).One may think of such proofs as proving statements to a child: The veri�er's attention span limitsus to sending it only `(n) bits at a time, after which its attention is diverted to something else.Moreover, once we again capture the veri�er's attention, it has already forgotten everything thathad happened before. 13

Assuming the existence of collision-resistant hash functions, we can show that such a proofsystem can emulate any proof system (having an e�cient prescribed prover strategy).11 The emu-lation will only be computationally-sound (i.e., it is possible but not feasible to cause the veri�erto accept false statements). In fact, we have already shown such a proof system: It is implicit inthe description of Section 3, when one replaces the two di�erent roles of A (see proof of Propo-sition 4) by a collision-resistant hash function and a message-authentication scheme, respectively.Indeed, the description in Section 3 referred to the emulation of a speci�c test, but it applies aswell to the emulation of any ordinary veri�er strategy (i.e., one that does maintain state betweencommunication rounds). Speci�cally, one may �rst transform the original interactive proof to onein which the prover sends a single bit in each communication round, and then emulate the interac-tion of the resulting veri�er by following the description in Section 3. Note that what we need toemulate in a non-trivial manner is merely the state maintained by the (resulting) veri�er betweencommunication rounds.Comments: Since anyhow we are obtaining only a computationally-sound interactive proof (i.e.,an argument system), we may as well emulate argument systems of low (total) communicationcomplexity (cf. Kilian [10]), rather than interactive proofs or NP-proofs.12 This way, the resultingproof system will also have low (total) communication complexity (because the length of the statemaintained by the original veri�er between communication rounds need not exceed the length ofthe total communication). (We stress that the original argument systems of low communicationcomplexity cannot be executed, per se, in the current model, because its soundness relies on theveri�er's memory of a previous message.) We also comment that (like in the description of Sec-tion 3), we can handle the case where the actual input (i.e., x) or part of it is sent to the veri�erduring the proof process (rather than being handed to it at the very start).References[1] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing e�cientprotocols. In 1st Conference on Computer and Communications Security, pages 62{73. ACM,1993.[2] M. Blum, W. S. Evans, P. Gemmell, S. Kannan and M. Naor, Checking the Correctness ofMemories, Algorithmica, 12(2/3), pages 225{244, 1994. Preliminary version in 32nd FOCS,1991.[3] G. Brassard, D. Chaum and C. Cr�epeau. Minimum Disclosure Proofs of Knowledge. JCSS,Vol. 37, No. 2, pages 156{189, 1988. Preliminary version by Brassard and Cr�epeau in 27thFOCS, 1986.[4] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited.Preliminary version in Proceedings of the 30th Annual ACM Symposium on the The-ory of Computing, Dallas, TX, May 1998. ACM. TR version(s) available on-line fromhttp://eprint.iacr.org/1998/011 and http://xxx.lanl.gov/abs/cs.CR/0010019.11In fact, the existence of one-way functions su�ces, but this requires a minor modi�cation of the argument usedin Proposition 4. Speci�cally, instead of using a tree structure to hash con�gurations into short strings, we use thetree as an authentication tree, where collision-resistant hashing is replaced by (length-decreasing) MACs.12Recall that interactive proof systems are unlikely to have low (total) communication complexity; see the work ofGoldreich Vadhan and Wigderson [7]. 14

[5] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random functions. Journal ofthe ACM, 33(4):210{217, 1986.[6] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious RAMs.JACM, Vol. 43, 1996, pages 431{473.[7] O. Goldreich, S. Vadhan and A. Wigderson. On interactive proofs with a laconic provers. InProc. of the 28th ICALP, Springer's LNCS 2076, pages 334{345, 2001.[8] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SICOMP, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC, 1985.[9] C. Holenstein and U. Maurer, and R. Renner. manuscript, 1998.[10] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th STOC, pages723{732, 1992.[11] R.C. Merkle. A certi�ed digital signature. Advances in cryptology|CRYPTO '89, Vol. 435of Lecture Notes in Computer Science, pages 218{238, Springer, New York, 1990.[12] S. Micali. Computationally Sound Proofs. SICOMP, Vol. 30 (4), pages 1253{1298, 2000.Preliminary version in 35th FOCS, 1994.[13] M. Naor and M. Yung. Universal one-way hash functions and their cryptographic applications.In Proceedings of the 21st Annual ACM Symposium on Theory of Computing, pages 33{43,1989.

15

