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1 Research Experience

My most important contributions to theoretical computer science are in the areas of compu-
tational complexity and cryptography. More specifically, I have worked mostly on a variety
of subjects related to randomized computations (e.g., pseudorandom generators, probabilis-
tic proof systems, small probability spaces, and weak random sources), cryptography (e.g.,
zero-knowledge and fault-tolerant protocols), and distributed computing.

1.1 Randomized Computations

In recent years, randomness has become a central aspect of the theory of computation.
The effects of randomness on computation can be appreciated from a variety of points of
view ranging from the abstract study of complexity classes to the concrete construction
of efficient algorithms. In particular, the notions of pseudorandom generators, interactive
proofs, weak random sources and constructions of small probability spaces have played an
important role in the development of complexity theory and in the analysis of algorithms.
I am proud of having contributed to the development and understanding of these notions.

Pseudorandomness

Loosely speaking, a pseudorandom generator is an efficient (i.e., polynomial-time) deter-
ministic algorithm that stretches a uniformly chosen seed into a much longer sequence,
which nevertheless looks random to and efficient observer. Pseudorandom generators allow
to shrink the amount of randomness, in any efficient application, by an constant power
(i.e., instead of using n uniformly chosen bits, the application can be modified to use only
n¢ uniformly chosen bits, where ¢ >0 is any constant). The construction of pseudorandom
generators, under various intractability assumptions, has been a major enterprise in the last
decade.

A key tool in the construction of pseudorandom generators is the construction of hard-
core predicates. A hard-core predicate of the function f is a polynomial-time computable
predicate of 2 which is hard to approximate from f(x). Together with Levin, I was able to
prove that any one-way function of the form f(z,r) = (f(x),r) has a hard-core predicate
[20]. This result played an important role in further development in the area of pseudo-
randomness. In particular, our result yields a very simple construction of a pseudorandom



generator based on any one-way permutation and was used (by Hastad, Impagliazzo, Levin
and Luby) to construct a pseudorandom generator based on any one-way function. Our re-
sult improves over a previous general result of Yao and previous results concerning specific
functions of Blum and Micali, and Alexi, Chor, Schnorr and myself [1]. Put in more general
terms, the result in [20] asserts that the complexity of any search problem is related to the
complexity of answering “random (linear) queries” concerning the solution.

Getting back to [1], it is worthwhile to note that this work, which demonstrates a
hardcore for the RSA and Rabin functions, still offers the most efficient pseudorandom
generator based on the intractability of factoring.

Another contribution to the construction of pseudorandom generators is presented in
[19]. This work contains a construction of pseudorandom generators based on any “regular”
function. (Loosely speaking, a function f is called regular if each point in its range has the
same number of preimages.) The construction used in [19] utilizes hash functions in order
to preserve the difficulty of successive iterations of a (regular) one-way function. Traces of
this paradigm can be seem in many subsequent works in the area.

The theory of pseudorandomness has been extended to functions by Goldwasser, Micali
and myself [16]. In particular, it has been shown how to construct pseudorandom functions,
using an arbitrary pseudorandom (bit) generator. This means that a black box which has
only k secret bits of storage can implement a function from k bit strings to & bit strings,
which cannot be distinguished from a random function by any poly(k)-time observer which
can “query” the function on arguments of his choice.

Other works of mine in the area of pseudorandomness include [18, 15, 26, 17, 21, 22].
In particular, in [15] I've shown that two efficiently sampleable distributions which are
statistically different can be computational indistinguishable only if one-way functions exist.
In [17] an efficient amplification of one-way permutations is presented. Amplification of
one-way function is an important tool, especially in the construction of pseudorandom
generators.

Construction of Small Sample Spaces

A careful investigation of many randomized algorithms reveals the fact that they perform
as well when their random input only possesses weak random properties (rather than be-
ing uniformly distributed). Consequently, the construction of small sample spaces which
exhibit some desired (weak) random properties is the key to transforming these algorithms
into deterministic ones at a reasonable cost. An archetypical example is Luby’s Maximal
Independent Set algorithm. The construction of small sample spaces, inducing weak ran-
domness properties, is addressed in [11, 9, 2, 13]. The first two works deal with generating
and using constant amount of independence between the random variables, whereas the
last two works deal with approzimating larger amounts of independence. In particular, [2]
contains three simple constructions of small sample spaces which are almost unbiased, and
[13] contains general constructions for approximating any product-distribution.

Universal Hashing are used in many works in complexity theory. These works typically
use two random properties of hash functions (i.e., “extraction” and “mixing”). In [25],
we construct small families of functions having these random properties, demonstrating a
trade-off between the quality of the functions and the size of the families from which they



are drawn. It is stressed that the size of the family does not depend on the size of the
domain on which the functions operate.

Using Sources of Weak Randomness

The above mentioned works capitalize on the fact that particular randomized algorithms
perform as well when their input is taken from a source of weak randomness. A complemen-
tary approach is to transform every randomized algorithm into a more robust algorithm so
that the robust algorithm, when fed with a random input produced by a source of weak
randomness, performs as well as the original algorithm when given a random input pro-
duced by a perfect source. This way of using sources of weak randomness in algorithms
and other algorithmic settings is investigated in [9, 10]. In [10], Chor and myself introduce
and investigate probability bounded sources of randomness which output a stream of blocks
so that no string is “too likely” to appear in the next block. The notion of a probability
bounded source turned out to be very central to subsequent developments in this area.

The use of random sources in algorithms is a major motivation for statistical tests,
which may be thought of as “program checkers” for devices producing random outputs. A
systematic approach to statistical tests has been recently initiated by Blum and myself [5].

Probabilistic Proof Systems

Probabilistic checkable proof (pcp) systems have been a focus of intensive research, mainly
due to the FGLSS-methodology of proving hardness results for combinatorial approximation
problems. In [4], we show that this methodology is “complete” in the following sense. We
study the free bit complexity, denoted f, of probabilistic verifiers for NP and show that
an NP-hardness result for the approximation of MaxClique to within a factor of N!/(s+1)
would imply f < g. In addition, we reduce this complexity to two (i.e., f < 2) which yields
(via the FGLSS-method) that approximating the clique to within a factor of N/ (in an
N-vertex graph) is NP-hard. We also obtain improved non-approximability results for other
Max-SNP problems such as Max-2SAT and Max-3SAT.

Interactive proof systems were presented by Goldwasser, Micali and Rackoff as a ran-
domized (and more interactive) generalization of NP. The generalization was aimed at
providing a convenient framework for the presentation of zero-knowledge proofs. In fact, in
[55] it was proved that this generalization is indeed essential for the (non-trivial) existence
of zero-knowledge proofs. Also, back in 1985 it was not clear whether interactive proofs
are more powerful than A/P. First evidence to the power of interactive proof systems was
given by Micali, Wigderson and myself, by showing that Graph Non-Isomorphism (that is
not known to be in A’P) has an interactive proof system [53]. Alas, the focus of that paper
is on the zero-knowledge aspects of interactive proofs — see next section.

More refined studies of the role of randomness in interactive proof systems were the
subject of [14, 3]. In [14], it is shown that the error probability in the completeness condition
of interactive proof systems is unessential. In [3] the problem of efficient error reduction
in interactive proofs is addressed. This work also presents a randomness-eflicient sampling
algorithm that is of independent interest.



In [8], interactive proofs were used to present a dramatic contradiction to the “classic”
Random Oracle Hypothesis. In contradiction to coNP C IP, it was shown that, relative
to a random oracle, coN'P is not contained in ZP.

A fundamental complexity measure associated to interactive proof systems is their
knowledge complexity. This measure was suggested by Goldwasser, Micali and Rackoff,
yet without satisfactory definition (for the case where complexity is greater than zero). In
[24], two satisfactory definitions were presented and shown equivalent up to a constant. In
[23], evidence was given to show that not all languages in ZP have interactive proof systems
of small (e.g., up to logarithmic) knowledge complexity.

Probabilistic Communication Complexity

Another area in which randomness plays a central role is communication complexity. Here
the setting consists of two parties each having an input and a predetermined two-argument
function. The goal is to exchange as little bits of communication in order to obtain the value
of the function. In [10], a tight relation between the problem of extracting unbiased bits
from two weak sources and probabilistic communication complexity is established, leading
in turn to tight bounds on the probabilistic communication complexity of most functions
and of specific functions such as inner-product mod 2. Tradeoffs between randomness and
communication were investigated in [7].
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[27] O. Goldreich and S. Micali, “The Weakest Pseudo-Random Generator Implies the
Strongest One”, October 1984.

1.2 Cryptography and related areas

I have participated in the revolutionary developments that have transformed the field of
Cryptography from a semi-scientific discipline to a respectable field in theoretical computer
science. Cryptography today not only has its own merits but also sheds light on fundamental
issues concerning computation such as randomization, knowledge and interaction.

Zero-Knowledge and Protocol Design

My most important contribution to the field is the work on zero-knowledge, coauthored by
Micali and Wigderson [53]. In this work we demonstrate the generality and wide applicabil-
ity of zero-knowledge proofs, a notion introduced by Goldwasser, Micali and Rackoff. These
are probabilistic and interactive proofs that, for the members & of a language L, efficiently
demonstrate membership in the language without conveying any additional knowledge. Un-
til then, zero-knowledge proofs were known only for some number theoretic languages in
NP N coNP. Assuming the existence of one-way functions, we showed that every language
in NP has a zero-knowledge proof.

The dramatic effect of the above work on the design of cryptographic protocols is demon-
strated in another paper of the same authors [54]. Using additional ideas, it is shown that
any protocol problem can be solved. Specifically, for every n-ary (computable) function f,
we construct a fault-tolerant protocol computing f. The protocol can tolerate adversarial
behaviour of any minority, and no minority can learn from the execution more than it can
learn from its own inputs and the value of the function. In other words, the protocol “simu-
lates” a trusted party in an environment in which no party can be trusted (and furthermore
any minority may be malicious). Furthermore, the construction of the fault-tolerant proto-
col is explicit (in the sense that an efficient algorithm is presented that, on input a Turing
machine description of a function, outputs the desired fault-tolerant protocol). This work
[54] has also inspired the development and study of cryptographic protocols in the private
channel model (cf., work by Ben-Or, Goldwasser and Wigderson).

Other works of mine in the area of zero-knowledge proof systems include [55, 52, 51,
47, 50, 27, 35]. A joint theme in many of these works is the attempt to uncover the
principles underlying the phenomenon of zero-knowledge so that they can be better tuned



towards applications. In particular, in [55, 47, 51] various formulations of zero-knowledge
are suggested and investigated and certain properties of proof systems are demonstrated
essential to the zero-knowledge property.

Other works of mine in the area of cryptographic protocols include [56, 30, 33]. In [56]
it is shown that general multi-party computation reduces to a very simple two-party com-
putation (of a two-bit function). In [30] the scope of multi-party computation is extended
to the asynchronous setting, whereas [33] deals with adaptive/dynamic adversaries (in both
the private channel and the computational models). Early works on testing and designing
simple protocols appear in [37, 43, 41, 39, 44, 32, 42].

Pseudorandomness

Pseudorandom generators, surveyed in the previous section, are very important to cryp-
tography. In particular, pseudorandom generators yield private-key encryption schemes.
Several cryptographic applications (e.g., message authentication) of pseudorandom func-
tions were described in [49]. Pseudorandom functions were also essential to the results in
[46, 45].

Results from cryptography (and in particular pseudorandom functions [16]) were used
to derive many of the impossibility results in the area of machine learning.

New Topics in Cryptography

The notion of incremental cryptography was introduced and developed in [28, 29]. The aim
of this approach is to design cryptographic algorithms with the property that having applied
the algorithm to a document, it is possible to quickly update the result of the algorithm
for a modified document, rather than having to re-compute it from scratch. In particular,
schemes which support powerful update operation and satisfy strong security requirements
were developed yielding an application to the problem of virus protection (which was not
possible before).

In [34], we consider the problem of querying a duplicated database so that none of the
individual copies can know which record has been required by the user. We have obtained
several efficient schemes for this problem.

In [46], I have initiated a theoretical treatment of software protection.

Other Topics in Cryptography

I have also worked on the “classical” problems of cryptography, namely encryption [47] and
signatures [45, 40]. In particular, in [40] the notion of an On-line/Off-line Signature Scheme
is presented and instantiated.

Publications in this area
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Verlag, pp. 390-420, 1993.
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S. Even and O. Goldreich, “On The Security of Multi-Party Ping-Pong Protocols”,
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of Crypto89.

S. Even, O. Goldreich, and Y. Yacobi, “Electronic Wallet”, in Advances in Cryptology:
Proceedings of Crypto83, (D. Chaum editor), Plenum Press, pp. 383-386, 1984.

S. Even, O. Goldreich and A. Shamir, “On the Security of Ping-Pong Protocols when
Implemented Using the RSA”, in Advances in Cryptology — Crypto ‘85 (Proceedings),
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Cryptology — Crypto ‘86 (Proceedings),(A.M. Odlyzko ed.), Lecture Note in Computer
Science (263) Springer Verlag, pp. 104-110, 1987.

0. Goldreich, “Towards a Theory of Software Protection and Simulation by Oblivious
RAMSs”, Proc. of the 19th ACM Symp. on Theory of Computing, pp. 182-194, 1987.

0. Goldreich, “A Uniform Complexity Treatment of Encryption and Zero-Knowledge”,
Journal of Cryptology, Vol. 6, No. 1,pp. 21-53, 1993.

0. Goldreich, S. Goldwasser, and N. Linial, “Fault-tolerant Computations without
Assumptions: the Two-party Case”, extended abstract in $2nd FOCS, 1991.

0. Goldreich, S. Goldwasser and S. Micali, “On the Cryptographic Applications of
Random Functions”, in Advances in Cryptology: Proceedings of Crypto84, pp. 276—
288, 1985.

0. Goldreich, and A. Kahan, “How to Construct Constant-Round Zero-Knowledge
Interactive Proofs for NP”, To appear in Journal of Cryptology,

0. Goldreich, and H. Krawczyk, “On the Composition of Zero-Knowledge Proof Sys-
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Problem Equivalent to Discrete Logarithm”, Journal of Cryptology, Vol. 6, No. 2,
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1.3

Distributed Computing

Throughout the years, I have maintained some interest in the area of distributed computing.

In particular, I am familiar and have worked on problems in various models including

static and dynamic asynchronous networks, fault-tolerant distributed computing, and radio
networks. My contributions include

Lower bounds on the message complexity of broadcast and related tasks in asyn-
chronous networks [59];

Investigation of the deterministic and randomized round-complexity of broadcast in
radio networks [60,61];

Initiating a quantitative approach to the analysis of dynamic networks [58];

Enhancement of fast randomized Byzantine Agreement algorithms so that they always
terminate [63];

Construction of a randomized reliable channel over a highly unreliable media [62]; and

Investigations of the message complexity of computations in the presence of link fail-
ures [64, 65, 66].

Publications in this area
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[62]

[63]

[64]

B. Awerbuch, O. Goldreich, and A. Herzberg, “A Quantitative Approach to Dynamic
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B. Awerbuch, O. Goldreich, D. Peleg, and R. Vainish, “A Trade-off between Informa-
tion and Communication in Broadcast Protocols, Jour. of the ACM, Vol. 37, No. 2,
April 1990, pp. 238-256.

R. Bar-Yehuda, O. Goldreich, and A. Itai, “On the Time-Complexity of Broadcast in
Radio Networks: An Exponential Gap Between Determinism and Randomization”,
Journal of Computer and system Sciences, Vol. 45, (1992), pp. 104-126.

R. Bar-Yehuda, O. Goldreich, and A. Itai, “Efficient Emulation of Single-Hop Radio
Network with Collision Detection on Multi-Hop Radio Network with no Collision
Detection”, Distributed Computing, Vol. 5, 1991, pp. 67-71.

O. Goldreich, A. Herzberg, and Y. Mansour, “Source to Destination Communication
in the Presence of Faults”, 8th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 85-102, 1989.

0. Goldreich, and E. Petrank, “The Best of Both Worlds: Guaranteeing Termination
in Fast Randomized Byzantine Agreement Protocols”, IPL, 36, October 1990, pp.
45-49.

O. Goldreich and L. Shrira, “Electing a Leader in a Ring with Link Failures”, ACTA
Informatica, 24, pp. 79-91, 1987.
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[65] O. Goldreich and L. Shrira, “On the Complexity of Computation in the Presence of
Link Failures: the Case of a Ring”, Distributed Computing, Vol. 5, 1991, pp. 121-131.

[66] O. Goldreich and D. Sneh, “On the Complexity of Global Computation in the Presence
of Link Failures: the case of Unidirectional Faults”, 10th ACM Symp. on Principles
of Distributed Computing (PODC), 1991.

1.4 Other Areas of Complexity Theory

I consider the theory of average case complexity initiated by Levin to be fundamental. This
theory provides a framework for investigating the behaviour of algorithms and problems
under any “reasonable” input distribution. In [67], an attempt was made to further develop
and strengthen this approach. In particular, the class of “reasonable” distributions has
been extended to all distributions for which there exists efficient sampling algorithms, and
a completeness result for the new class has been presented. (Fortunately, Impagliazzo and
Levin subsequently showed a general method for translating completeness results from the
original framework to the new one, thus unifying the two frameworks.) Furthermore, [67]
also contained a reduction of search to decision problems, abolishing the fear that two
separate theories will need to be investigated.

In [72], we study the problem of reconstructing a function when given access to an oracle
(for it) which is very rarely correct. We have obtained such a procedure for the case where
the function is an (unknown) low-degree (multi-variant) polynomial over a large finite field.

I have some research experience in parallel computation (i.e., a parallel algorithm for
integer GCD computation [68]), and in combinatorics (motivated by algorithmic problems
as in [71, 9]). Finally, as many theoretical computer scientist, I've proven several NP-
completeness results (e.g. for problems in permutation groups [69], for several network
testing problems [70], and for a problem concerning games [73]).

Publications in this area

[67] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, “On the Theory of Average Case
Complexity”, Journal of Computer and system Sciences, Vol. 44, NO. 2, April 1992,
pp. 193-219. Extended abstract in the proceedings of 21th STOC, 1989.

[68] B. Chor and O. Goldreich, “An Improved Parallel Algorithm for Integer GCD”, Al-
gorithmica, 5, pp. 1-10, 1990.

[69] S. Even and O. Goldreich, “The Minimum Length Generator Sequence is NP-Hard”,
Journal of Algorithms, Vol. 2, pp. 311-313, 1981.

[70] S. Even, O. Goldreich, S. Moran and P. Tong, “On the NP-Completeness of Certain
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