
The Random Oracle Methodology, Revisited(preliminary version)Ran Canetti� Oded Goldreichy Shai HalevizMarch 31, 1998AbstractWe take a formal look at the relationship between the security of cryptographic schemes inthe Random Oracle Model, and the security of the schemes which result from implementing therandom oracle by so called \cryptographic hash functions".The main result of this paper is a negative one: There exist signature and encryption schemeswhich are secure in the RandomOracle Model, but for which any implementation of the randomoracle results in insecure schemes.In the process of devising the above schemes, we consider possible de�nitions for the notionof a \good implementation" of a random oracle, pointing out limitations and challenges.
Keywords: Cryptography (Encryption and Signature Schemes) and Complexity Theory (use ofCS-Proofs).�IBM Watson, P.O. Box 704, Yorktown Height, NY 10598, USA. E-mail: canetti@watson.ibm.comyDepartment of Computer Science, Weizmann Institute of Science, Rehovot, Israel. E-mail:oded@wisdom.weizmann.ac.il. Work done while visiting LCS, MIT. Partially supported by DARPA grant DABT63-96-C-0018.zIBM Watson, P.O. Box 704, Yorktown Height, NY 10598, USA. E-mail: shaih@watson.ibm.com0

1 IntroductionA popular methodology for designing cryptographic protocols consists of the following two steps.One �rst designs an ideal system in which all parties (including the adversary) have oracle accessto a truly random function, and proves the security of this ideal system. Next, one replaces therandom oracle by a \good cryptographic hashing function" (such as MD5 or SHA), providing allparties (including the adversary) with the succinct description of this function. Thus, one obtainsan implementation of the ideal system in a \real-world" where random oracles do not exist. Thismethodology, explicitly formulated by Bellare and Rogaway [1] and hereafter referred to as therandom oracle methodology, has been used in many works (see, for example, [7, 20, 11, 17, 1, 15, 2,18]).Although the random oracle methodology seems to be useful in practice, it is unclear how to putthis methodology on �rm grounds. One can indeed make clear statements regarding the operationof the ideal system, but it is not clear what happens when one replaces the random oracle by afunction which has a succinct description available to all parties. What one would have liked is (atleast a de�nition of) a class of functions which, when used to replace the random oracle, maintainsthe security of the ideal scheme. The purpose of this work is to point out fundamental di�cultiesin proceeding towards this goal. Speci�cally, we argue that the traditional approach of providing asingle robust de�nition which supports a wide range of applications is bound to fail. That is, oneshould not expect to see de�nitions such as of pseudorandom generators [3, 21] (or functions [8]),and general results of the type saying that these can be used in any application in which partiesare restricted merely by computing resources.Instead, we suggest that one should proceed by identifying useful (special-purpose) propertiesof a random oracle, which can be also provided by a fully speci�ed function (or function ensemble),and so yield implementations of certain useful ideal systems. Alas, the results in this paper implythat such properties cannot cover all that is doable in the Random Oracle Model. Speci�cally, weconsider a property which we call \correlation intractability" (which seems to underline heuristicssuch as the Fiat{Shamir transformation of a three-round identi�cation scheme into a signaturescheme [7]), and show that even a minimalistic formulation of this property cannot be obtained byany fully speci�ed function (or function ensemble).To demonstrate the implications of the above to the security of cryptographic systems, we showthat systems whose security relies on the \correlation intractability" of their oracle may be securein the Random Oracle Model, and yet be insecure when implemented using any fully speci�edfunction (or function ensemble). Speci�cally, we describe schemes for digital signatures and public-key encryption which are secure in the Random Oracle Model, but for which any implementationyields insecure schemes. This refutes the belief that a security proof in the Random Oracle Modelmeans that there are no \structural aws" in the scheme.1.1 The Setting1.1.1 The Random Oracle ModelIn a scheme which operates in the Random Oracle Model, all parties (including the adversary)are modeled by probabilistic polynomial-time interactive machines with oracle access. That is, theparties interact with one another as usual interactive machines, but in addition they can makeoracle queries. It is postulated that all oracle queries, regardless of the identity of the partymaking them, are answered by a single function, denoted O, which is uniformly selected among allpossible functions. The set of possible functions is determined by a length function, `out(�), and by1

the security parameter of the system. Speci�cally, on security parameter k we consider functionsmapping f0; 1gpoly(k) to f0; 1g`out(k).A set of interactive oracle machines as above corresponds to an ideal system for one speci�c ap-plication. The application also comes with a security requirement specifying the adversary's abilitiesand when it is considered successful. The abilities of the adversary include its computational power(typically, an arbitrary polynomial-time machine) and the ways in which it can interact with theother parties. The success of the adversary is de�ned by means of a predetermined polynomial-timepredicate of the application view.1 An ideal system is considered secure if any adversary with thegiven abilities has only a negligible probability of success.1.1.2 Implementing an ideal systemLoosely speaking, by \implementing" a particular ideal system we mean using an easy-to-evaluatefunction f instead of the random oracle. That is, whenever the ideal system queries the oracle witha value x, the implementation instead evaluates the function f(x). Formally de�ning this notion,however, takes some care. Below we briey examine (and discard of) the notion of implementationby a single function, and then present the notion of implementation by a function ensemble, whichis the notion we use throughout the paper.Implementation by a single function. Each ideal system (for some speci�c application), �, istransformed into a real system (for the same application) as follows. We transform each interactiveoracle machine, into a standard interactive machine in the natural manner. That is, each oraclecall is replaced by the evaluation of a �xed function f on the corresponding query.2The above system is called an implementation of � using function f . The adversary, attackingthis implementation, may mimic the behavior of the adversary of the ideal system, by evaluatingf at arguments of its choice, but it needs not do so. In particular, it may obtain some globalinsight into the structure of the function f , and use this insight towards its vicious goals. Animplementation is called secure if any adversary attacking it may succeed only with negligibleprobability, where the success event is de�ned exactly as in the ideal system (i.e., it is de�ned bythe same polynomial-time computable predicate of the application view).Using this notion of an implementation, we would like to say that a function f is a \good imple-mentation of a random oracle" if for any ideal system �, if � is secure then so is the implementationof � using f . It is very easy to see, however, that no (single) polynomial-time computable functioncan provide a good implementation of a random oracle. Consider, for example, a candidate functionf . Then, a (contrived) application for which f does not provide a good implementation consistsof an oracle machine (representing an honest party) which upon receiving a message m, makesquery m to the oracle and reveals its private input if the oracle answers with f(m). Suppose thatthe adversary is deemed successful whenever the honest party reveals its private input. Clearly,this ideal system is secure (in the Random Oracle Model); however, its implementation using f iscertainly not secure.Implementation by a function ensemble. Implementations by a single function, as discussedabove, is the straightforward interpretation of the Random Oracle methodology. A more sophisti-1 The application view consists of the initial inputs of all the parties (including the adversary), their internal cointosses, and all the messages which were exchanged among them.2 Formally, the function f also takes as input the security parameter k, so that the function fk(�) def= f(k; �) mapsf0; 1gpoly(k) to f0; 1g`out(k). 2

cated interpretation is indeed called for. Here one considers the substitution of the random oracleby a function randomly selected from a collection of functions. In this setting, we have a \systemset-up" phase, in which the function is selected once and for all, and its description is availableto all parties.3 After this set-up phase, this function is used in place of the random oracle just asabove.A little more precisely, we consider a function ensemble F = fFkjk 2 Ng, where Fk = ffs :f0; 1gpoly(k) 7! f0; 1g`out(k)s2f0;1gkg, such that there exists a polynomial time algorithm which on inputs and x returns fs(x). The implementation of an ideal system, �, by the function ensemble F isobtained as follows. On security parameter k, we uniformly select s 2 f0; 1gk, and make s availableto all parties including the adversary. Given this initialization phase, we replace each oracle call ofan interactive oracle machine by the evaluation of the function fs on the corresponding query. Theresulting system is called an implementation of � using function ensemble F .Again, the adversary may (but need not necessarily) mimic the behavior of the adversary inthe Random Oracle Model by evaluating fs at arguments of its choice. Such a real system iscalled secure if any adversary attacking it has only a negligible probability of success, where theprobability is taken over the random choice of s, as well as the coins of all the parties. As before,we would like to say that an ensemble F provides a \good implementation of a random oracle" iffor every ideal system �, if � is secure then so is the implementation of � using F . Notice thatin this case, the contrived example from above does not work anymore, since the success eventmust be independent of the random choice of s. Nonetheless, the results which we obtain in thiswork imply that no function ensemble can provide a good implementation of a random oracle. Weelaborate in the next subsection.1.2 Our Results1.2.1 Correlation intractability.One property we certainly expect from a good implementation of a random oracle is that it shouldbe infeasible to �nd inputs to the function which stand in some \rare" relationship with the cor-responding outputs. Indeed, many applications of the random-oracle methodology (such as theFiat-Shamir heuristic) assume that it is infeasible to �nd an input-output pair which stands in aparticular relations induced by the application. Trying to formulate this property, we may requirethat given the description of the function it is hard to �nd a sequence of preimages which togetherwith their images (under this function) satisfy some given relation. Clearly, this can only holdfor relations for which �nding such sequences is hard in the Random Oracle Model. That is, if itis hard to �nd a sequence of preimages which together with their images under a random oraclesatisfy relation R, then given the description of a \good" function fs it should be hard to �nd asequence of preimages which together with their images under fs satisfy R.In fact, in the sequel we only consider the task of �nding a single preimage which together withits image satis�es some property. Loosely speaking, a relation is called evasive if when given accessto a random oracle O, it is infeasible to �nd a string x so that the pair (x;O(x)) is in the relation. Afunction ensemble F (as above) is called correlation intractable if for every evasive relation, given thedescription of a uniformly selected function fs 2 Fk it is infeasible to �nd an x such that (x; fs(x))is in the relation. We show thatInformal Theorem 1.1 There exist no correlation intractable function ensembles.3 In the sequel we consider examples of public key signature and encryption schemes. In these schemes, theinitialization step is combined with the key-generation step of the original scheme.3

Restricted correlation intractability. The proof of the above negative result relies on the factthat the description of the function is shorter than its input. Thus we also investigate the casewhere one restricts the function fs to inputs whose length is less than the length of s. We showthat the negative result can be extended to the case where the function description is shorter thanthe sum of the lengths of the input and output of the function. (Furthermore, if one generalizesthe notion of correlation intractability to relations on sequences of inputs and outputs, then thenegative result holds as long as the total length of all the inputs and outputs is more than the lengthof the function description.) This still leaves open the possibility that there exist function ensemblesthat are correlation intractable with respect to input-output sequences of a-priori bounded totallength. See further discussion in Section 5.1.2.2 A failure of the Random Oracle MethodologyUpon formulating the random oracle methodology, Bellare and Rogaway did warn that a proofof security in the Random Oracle Model should not be taken as guarantee to the security ofimplementations (in which the Random Oracle is replaced by functions such as MD5) [1]. However,it is widely believed that a security proof in the Random Oracle Model means that there are no\structural aws" in the scheme. That is, any attack against an implementation of this schememust take advantage of speci�c aws in the function which is used to implement the oracle. In thiswork we demonstrate that these beliefs are false. Speci�cally, we show thatInformal Theorem 1.2 There exists encryption and signature schemes which are secure in theRandom Oracle Model, but have no secure implementation in the real model (where a Ran-dom Oracle does not exist). That is, implementing these secure ideal schemes, using any functionensemble, results in insecure schemes.The encryption and signature schemes presented to prove Theorem 1.2 are \unnatural". We do notclaim (or even suggest) that a statement as above holds with respect to schemes presented in theliterature. Still, the lesson is that the mere fact that a scheme is secure in the Random Oracle Modeldoes not necessarily imply that a particular implementation of it (in the real world) is secure, oreven that this scheme does not have any \structural aws". Furthermore, unless otherwise justi�ed,such ideal scheme may have no secure implementations at all.1.3 Related WorkOur de�nition of correlation-intractability is related to a de�nition by Okamoto [17]. In terms of ourterminology, Okamoto considers function ensembles for which it is infeasible to form input-outputrelations with respect to a speci�c evasive relation [17, Def. 19] (rather than all such relations).He uses the assumption that such function ensembles exists, for a speci�c evasive relation in [17,Thm. 20].First steps in the direction of identifying and studying useful special-purpose properties of theRandom Oracle Model have been recently taken by Canetti [4]. Speci�cally, Canetti considereda property called \perfect one-wayness", and provided a de�nition of this property, constructionswhich possess this property (under some reasonable assumptions), and applications for which suchfunctions su�ce. Additional constructions have been recently suggested by Canetti, Micciancioand Reingold [5].Our proof of Theorem 1.2 uses CS-proofs (in the Random Oracle Model), as de�ned and con-structed by Micali [15], in an essential way. (The underlying ideas of Micali's construction [15] canbe found in Kilian's construction [14].) 4

1.4 OrganizationIn Section 2 we present syntax necessary for the rest of the paper. In Section 3 we discuss thereasoning that led us to de�ne the correlation intractability property, and prove that even such aminimalistic de�nition cannot be met by a function ensemble. In Section 4 we present our mainnegative results { demonstrating the existence of secure ideal signature and encryption schemeswhich do not have secure implementations. Restricted correlation intractability is de�ned andstudied in Section 5.2 Function EnsemblesTo make the discussion in the Introduction more precise, we explicitly associate a length function,`out : N 7!N, with the random oracle and its candidate implementations. We always assume that thelength functions are superlogarithmic and polynomially bounded (i.e. !(logk) � `out(k) � poly(k)).We refer to an oracle with length function `out as an `out-oracle. On security parameter k, such anoracle answers each query with a string of length `out(k). A candidate implementation of a random`out-oracle is an `out-ensemble as de�ne below.De�nition 1 (function ensembles) Let `out : N 7!N be a length function. An `out-ensemble is asequence F = fFkgk2N of families of functions, Fk = ffs : f0; 1g� 7!f0; 1g`out(k)gs2f0;1gk, so that thefollowing holdsLength requirement. For every s 2 f0; 1gk and every x 2 f0; 1g�, jfs(x)j = `out(k).E�ciency. There exists a poly-time algorithm Eval so that for all s; x 2 f0; 1g�, Eval(s; x) = fs(x).In the sequel we often call s the description or the seed of the function fs.Remark 1. The length of the seed in the above de�nition serves as a \security parameter" andis meant to control the \quality" of the implementation. It is important to note that although fs(�)is syntactically de�ned on every input, in a cryptographic applications it is only used on inputs oflength at most poly(jsj). We stress that all results presented in this paper refer to such usage.Remark 2. One may even envision applications in which a more stringent condition on theuse of fs holds. Speci�cally, one may require that the function fs be only applied to inputs oflength at most `in(jsj), where `in : N 7!N is a speci�c (polynomially bounded) length function (e.g.,`in(k) = 2k). We discuss the e�ects of making such a stringent requirement in Section 5.3 Correlation IntractabilityIn this section we present and discuss the di�culty of de�ning the requirements that a functionensemble \behaves like a random oracle" even when its description is given. In particular, we showthat even minimalistic de�nitions cannot be realized.An obvious failure. We �rst comment that an obvious maximalistic de�nition, which amountto adopting the pseudorandom requirement of [8], fails poorly. That is, we cannot demand that an(e�cient) algorithm that is given the description of the function cannot distinguish its input-outputbehavior from the one of a random function. This is so since the function description determinesits input-output behavior. 5

Towards a minimalistic de�nition. Although we cannot require the value of a fully speci�edfunction to be \random", we may still be able to require that it has some properties. For example,we may require that given a description of a family and a function chosen at random from athis family it is hard to �nd two preimages which the function maps to the same image. Indeed,this sound de�nition coincides with the well-known collision-intractability property [6]. Trying togeneralize, we may replace the \equality of images" relation by any other relation among the pre-images and images of the function. Namely, we would like to say that an ensemble is correlationintractable if for any relation, given the description of a randomly chosen function, it is infeasibleto �nd a sequence of preimages which together with their images satisfy this relation.This requirement, however, is still unreasonably strong since there are relations which are easy tosatisfy even in the Random Oracle Model. We therefore restrict the above infeasibility requirementby saying that it holds only with respect to relations which are hard to satisfy in the Random OracleModel. That is, if it is hard to �nd a sequence of preimages which together with their images undera random function satisfy relation R, then given the description of a randomly chosen function fsit should be hard to �nd a sequence of preimages which together with their images under fs satisfyR. This seems to be a minimalistic notion of correlation intractable collection of functions, yet weshow below that no collection can satisfy it. In fact, in the de�nition below we only consider thetask of �nding a single preimage which together with its image satis�es some property. Namely,instead of considering all possible relations, we only consider binary ones. Since we are showingimpossibility result, this syntactic restriction only strengthens the result.3.1 De�nitionsWe start with a formal de�nition of a relation which is hard to satisfy in the random oracle model.De�nition 2 (Evasive Relations) A binary relation R is said to be evasive with respect to lengthfunction `out if for any probabilistic polynomial time oracle machine MPrO [x MO(1k); (x;O(x))2R] = negl(k)where O : f0; 1g� 7! f0; 1g`out(k) is a uniformly chosen function and negl(�) is a negligible function.4A special case of evasive relations consists of R's for which there exists a negligible function negl(�)so that for all k maxx2f0;1g� � Pry2f0;1g`out(k)[(x; y)2R]� = negl(k)(All the relations used in the sequel falls into this category.) The reason such an R is evasive isthat any oracle machine, M , making at most poly(k) queries to a random O satis�esPrO [x MO(1k); (x;O(x))2R] � poly(k) � maxx2f0;1g�f PrO [(x;O(x))2R] g� poly(k) � negl(k)We are now ready to state our minimalistic de�nition of a correlation intractable ensemble:4 A function � :N 7!R is negligible if for every positive polynomial p and all su�ciently large n's, �(n) < 1=p(n).6

De�nition 3 (correlation intractability) Let `out : N ! N be length function, and let F be an`out-ensemble. We say that F is correlation intractable if for every polynomial time machine M andevery evasive relation R (w.r.t. `out), it holds thatPrs2f0;1gk[x M(s); (x; fs(x)) 2 R] = negl(k)where negl(�) is a negligible function, and the probability is taken over the choice of s 2 f0; 1gk andthe coins of M .Remark 3. In the above de�nition we quantify over all evasive relations. A weaker notion, calledweak correlation intractability, is obtained by quantifying only over all polynomial-time recognizableevasive relations (i.e., we only consider those relations R such that there exists a polynomial timealgorithm which given (x; y) decides whether or not (x; y) 2 R). In the sequel we consider bothnotions.3.2 Correlation-intractable ensembles do not existTheorem 4 There exist no correlation intractable ensembles, not even in the weak sense.Proof: Let `out be a length function and let F = ffsg be an `out-ensemble. We de�ne the binaryrelation RF def= [k �(s; fs(s)) : s 2 f0; 1gk	 (1)Clearly, this relation is polynomial-time recognizable, since fs can be computed in polynomialtime. Also, the relation is evasive (w.r.t. `out) since for every x 2 f0; 1g� there is at most5 oney 2 f0; 1g`out(k) satisfying (x; y) 2 RF , and soPry [(x; y) 2 RF] � 2�`out(k) = 2�!(logk) = negl(k) :On the other hand, consider the machine I which computes the identity function, I(x) = x for allx. It violates the correlation intractability requirement, since for all k,Prs2f0;1gk[(I(s); fs(I(s))) 2 RF] = 1 :In fact, since RF is polynomial-time recognizable, then even the weak correlation intractabilityrequirement is violated.4 A failure of the Random Oracle MethodologyIn this section we show that the security of a cryptographic scheme in the Random Oracle Modelmay not always imply its security under some speci�c choice of \good hash function" which imple-ments the random oracle. To prove this statement we construct signature and encryption schemes,which are secure in the Random Oracle Model, yet for which any implementation of the randomoracle yield insecure schemes. Put in other words, although the ideal scheme is secure, any imple-mentation of it is necessarily insecure.5Such a y exists if and only if `out(jxj) = `out(k). 7

The underlying idea is to start with a secure scheme (which may or may not use a randomoracle) and modify it to get a scheme which is secure in the Random Oracle Model, but such thatits security is easily violated when trying to replace the random oracle by any ensemble. This isdone by using evasive relations as constructed in Theorem 4. The modi�ed schemes start by tryingto �nd a preimage which together with its image yields a pair in the evasive relation. In casethe attempt succeeds the scheme does something which is clearly insecure (e.g., apply the identitytransformation to the message, or output the secret key). Otherwise, the scheme behaves as theoriginal (secure) scheme. The former case (i.e., �nding a pair in the relation) will occur rarely inthe Random Oracle Model, and thus the scheme will maintain its security there. However, theformer case will always occur under an implementation of the Random Oracle Model, thus noimplementation may be secure. For clarity of presentation we start with the case of a signaturescheme, and present the construction in three steps.� In the �rst step we carry out the above idea in a naive way. This allows us to prove a weakerstatement, saying that for any function ensemble F , there exists a signature scheme which issecure in the Random Oracle Model, but is not secure when implemented using F .This, by itself, means that one cannot construct a function ensemble which provides secureimplementation of any cryptographic scheme which is secure in the Random Oracle Model.But it does not rule out the possibility (ruled out below) that for any cryptographic schemewhich is secure in the Random Oracle Model there exists a secure implementation (via adi�erent function ensemble).� In the second step we use diagonalization techniques to reverse the order of quanti�ers.Namely, we show that there exists a signature scheme which is secure in the Random OracleModel, but for which any implementation (using any function ensemble) results in an inse-cure scheme. However, the scheme constructed in this step utilizes signing and veri�cationprocedures which are slightly super-polynomial time.� In the third step we use CS-proofs [15] to get rid of the super-polynomial running-time, henceobtaining a standard signature scheme which is secure in the Random Oracle Model, but hasno secure implementation.Speci�cally, in this step we use CS-proofs as a tool to \diagonalize against all polynomial-timeensembles in polynomial time". (As noted by Silvio Micali, this technique may be useful alsoin other settings where diagonalization techniques are applied.)The reader is referred to [10] for basic terminology regarding signature schemes and correspondingnotions of security. As a starting point for our constructions, we use a signature scheme, denotedS = (G; S; V), where G is the key-generation algorithm, S is the signing algorithm, and V is theveri�cation algorithm. We assume that the scheme (G; S; V) is existentially unforgeable underadaptive chosen message attack, in the Random Oracle Model. Somewhat surprisingly, we donot need to rely on any cryptographic assumptions here, since such (ideal) schemes can be easilyshown to exist using the techniques of [16, 19] (since one-way functions exist in the Random OracleModel).66 Alternatively, we could use an `ordinary' signature scheme, but then our Theorem 8 would be conditioned onthe existence of one-way functions. 8

Conventions. In the three steps below we assume, without loss of generality, that the securityparameter (i.e., k) is implicit in the keys generated by G(1k). Also, let us �x some length function`out : N 7!N, which would be implicit in the discussions below (i.e., we assume that the randomoracles are all `out-oracles, the relations are evasive w.r.t. `out, etc.).4.1 First StepDe�nition. Let S = (G; S; V) be a signature scheme (which may or may not use a randomoracle), and let R be any binary relation, which is evasive w.r.t. length function `out. Then, bySR = (G; SR; VR) we denote the following modi�cation of S which utilizes a random `out-oracle:Modi�ed signature, SOR (sk;msg), of message msg using signing key sk:1. If (msg;O(msg))2R, output (sk;msg).2. Otherwise (i.e., (msg;O(msg)) 62R), output SO(sk;msg).Modi�ed veri�cation, V OR (vk;msg; �), of alleged signature � to msg using veri�cation key vk:1. If (msg;O(msg))2R then accept2. Otherwise output V O(vk;msg; �).(Note that the key-generation algorithm, G, is the same as in the original scheme S.) Item 1 in thesigning/veri�cation algorithms is a harmful modi�cation to the original signature scheme. Yet, ifR is evasive, then it has little e�ect on the ideal system, and the behavior of the modi�ed schemeis \indistinguishable" from the original one. In particular,Proposition 5 Suppose that R is evasive (w.r.t. `out) and that S is existentially unforgeable undera chosen message attack in the Random Oracle Model. Then SR is also existentially unforgeableunder a chosen message attack in the Random Oracle Model.Proof Sketch: Since R is evasive, it is infeasible for the forger to �nd a message m so that(m;O(m)) 2 R. Thus, a forgery of the modi�ed scheme must be due to Item (2), which yields abreaking of the original scheme. 2The modi�cation enables to break the modi�ed scheme when implemented with a real ensemble F ,in the case where R is the relation RF from Proposition 4. Indeed, as corollary to Propositions 4and 5, we immediately obtain:Corollary 6 For every e�ciently computable `out-ensemble F , there exists an e�cient signaturescheme which is secure in the Random Oracle Model, yet when implemented with F , the resultingscheme is totally breakable under an adaptive chosen message attack, and existentially forgeableunder a key-only attack.Proof Sketch: Recall that when we use an ensemble F to implement the random oracle in thescheme SR, we obtain the following real scheme (which we denote S0R = (G0; S 0R; V 0R))G0(1k) def= Uniformly pick s 2 f0; 1gk, set (sk, vk) Gfs(1k), and output (hsk; si; hvk; si).S0R(hsk; si;msg) def= Output SfsR (sk;msg).V 0R(hvk; si;msg; �) def= Output V fsR (vk;msg; �). 9

Consider now what happens when we use the ensemble F to implement the the scheme SRF (recallthe de�nition of RF from Eq. (1)). Since RF is evasive, then from Proposition 5 we infer that theSRF is secure in the Random Oracle Model. However, when we use the ensemble F to implementthe scheme, the seed s becomes part of the public veri�cation key, and hence is known to theadversary. The adversary can simply output the pair (s; �), which will be accepted by V 0RF asa valid message-signature pair (since (s; fs(s)) 2 RF). Hence, the adversary achieves existentialforgery (of S0RF) under key-only attack. Alternatively, the adversary can ask the legitimate signerfor a signature on s, hence obtaining the secret signing-key (i.e., total forgery). 24.2 Second StepEnumeration. Loosely speaking, for this (and the next) subsection we need an enumeration ofall e�ciently computable function ensembles. Such enumeration is achieved via an enumerationof all polynomial-time algorithms (i.e., candidates for evaluation of such ensembles). Several stan-dard technicalities arise. First, enumerating all polynomial-time algorithms is problematic sincethere is no single polynomial that bounds the running time of all these algorithms. Instead, we�x an arbitrary super-polynomial proper complexity function7 t : N 7!N (e.g., t(n) = nlogn), andenumerate all algorithms of running-time bounded by t. The latter is done by enumerating allpossible algorithms, and modifying each algorithm by adding a time-out mechanism which termi-nates the execution in case more than t(jinputj) steps are taken. This modi�cation does not e�ectthe polynomial-time algorithms. Also, since we are interested in enumerating `out-ensembles, wemodify each algorithm by viewing its input as a pair hs; xi (using some standard parsing rule8) andpadding or truncating its output to length `out(jsj). Again, this modi�cation has no e�ect on the`out-ensembles.Let us denote by F i the ith function ensemble according to the above enumeration, and denoteby f is the function indexed by s from the ensemble F i. Below we again use some standard rule forparsing a string � as a pair hi; si and viewing it as a description of the function f is.Universal ensemble. Let U denote the \universal function ensemble" which is induced by theenumeration above, namely, U(hi; si; x) = f is(x). We remark that there exists a machine whichcomputes the universal function U and works in time t.Universal relation. Denote by RU the universal relation which is de�ned with respect to theuniversal ensemble U similarly to the way that RF is de�ned with respect to any ensemble F(x; y) 2 RU () y = U(x; x)(i.e., x = hi; si and y = f is(x))Modi�ed signature scheme. Let S = (G; S; V) be a signature scheme (as above). We thendenote by Su = (G; Su; Vu) the modi�ed signature scheme which is derived by using RU in place ofR in the previous construction. Speci�cally:SOu (sk;msg) def=7 Recall that t(n) is a proper complexity function (or time-constructible) if there exists a machine which computest(n) and works in time O(t(n)). This technical requirement is needed to ensure that the enumeration itself iscomputable in time O(t(n)).8 For example, we can parse a string � as hs; xi if � = C(s)x, where C is any e�ciently computable pre�x-freeencoding. 10

1. If (msg;O(msg)) 2 RU (i.e., if msg = hi; si and O(msg) = f is(msg)) then output (sk;msg).2. Otherwise, output SO(sk;msg)V Ou (vk;msg; �) def=1. If (msg;O(msg)) 2 RU then accept.2. Otherwise, output V O(vk;msg; �).We note that since these signature and veri�cation algorithms need to compute U , they both runin time O(t), which is slightly super-polynomial.Proposition 7 Suppose that S is existentially unforgeable under a chosen message attack in theRandom Oracle Model. Then Su is also existentially unforgeable under a chosen message attack inthe Random Oracle Model, but implementing it with any function ensemble yields a scheme whichis totally breakable under chosen message attack and existentially forgeable under key-only attack.Recall that Su is not a `proper' signature scheme, as it operates in (slightly) super-polynomial-time.Proof Sketch: Since RU is evasive, then from Proposion 5 it follows that Su is secure in theRandom Oracle Model. On the other hand, suppose that one tries to replace the random oracle inthe scheme by an ensemble F i (where i be the index in the enumeration). An adversary, given aseed s of a function in F i can then set msg = hi; si and output the pair (msg; �), which would beaccepted as a valid message-signature pair by Vu. Alternatively, it can ask the signer for a signatureon this msg, and so obtain the secret signing-key. 24.3 Third stepTo eliminate the super-polynomial time in the above signature scheme, we use CS-proofs as de�nedand constructed by Micali [15]. Recall that in a CS-proof system, a prover, Prv, is trying toconvince a veri�er, Ver, of the validity of an assertion of the type \machine M accepts input xwithin t steps". The central feature of CS-proofs is that the running-time of the prover on inputx is (polynomially) related to the actual running time of M(x) (rather than to the global upperbound t), whereas the veri�er's running-time is poly-logarithmic relative to t. In our context, weuse CS-proofs that work in the Random Oracle Model, where both prover and veri�er have accessto a random oracle. A construction for such CS-proofs was presented by Micali, and requires nocomputational assumptions. A more precise formulation of CS-proofs is given in the Appendix.We use CS-proofs to construct a new signature scheme which works in the Random OracleModel. This construction is similar to the one in Subsection 4.2, except that instead of checkingthat (msg;O(msg)) 2 RU , the signer/veri�er gets a CS-proof of that claim, and it only needs toverify the validity of that proof. Since verifying the validity of a CS-proof can be done much moree�ciently than checking the claim \from scratch", the signing and veri�cations algorithms in thenew scheme may work in polynomial time. This yields the followingTheorem 8 There exists a signature scheme which is existentially unforgeable under a chosenmessage attack in the Random Oracle Model, but such that when implemented with any functionensemble, the resulting scheme is existentially forgeable using key-only attack and totally breakableunder chosen message attack. 11

We note again that unlike the \signature scheme" presented in Subsection 4.2, the signature schemepresented below works in polynomial-time.Proof Sketch: Below we describe such a signature scheme. For this construction we use thefollowing ingredients.� S = (G; S; V) is a signature scheme, operating in the Random Oracle Model, which is exis-tentially unforgeable under a chosen message attack.� A �xed (and easily computable) parsing rule which interpret messages as triples of stringsmsg = hi; s; �i.� The algorithms Prv and Ver of the CS-proof system described above.� Access to three independent random oracles. This is very easy to achieve given access to oneoracle O; speci�cally, by setting O0(x) def= O(00x), O00(x) def= O(01x) and O000(x) def= O(11x).Below we use oracle O000 for the basic scheme S, oracle O00 for the CS-proofs, and oracle O0for our evasive relation. We note that if O is an `out-oracle, then so are O0;O00 and O000.� The universal function U from Subsection 4.2, with proper complexity bound t(n) = nlogn.We denote by MU the universal machine which decides the relation RU . That is, on input(hi; si; y), machine MU invokes the ith evaluation algorithm, and accepts if f is(hi; si) = y.We note that MU works in time t in the worst case. More importantly, if F i is a functionensemble which can be computed in time pi(�) (where pi is some polynomial), then for anystrings s; y, machine MU works on input (hi; si; y) for only poly(jij) � pi(jsj) many steps.9Using all the above, we describe an ideal signature scheme S0u = (G; S0u; V 0u). As usual, the keygeneration algorithm G remains unchanged. The signature and veri�cation algorithms proceed asfollows.S0uO(sk;msg) def=1. Parse msg as hi; s; �i, and set x = hi; si and y = O0(x). Let n = j(x; y)j.2. Apply VerO00 to verify whether � is a valid CS-proof, w.r.t oracle O00 and security param-eter 1n+k, for the claim that the machine MU accepts the input (x; y) within time t(n).3. If � is a valid proof, output (sk;msg).4. Otherwise, output SO000(sk;msg).V 0uO(vk;msg; �) def=1+2. As above3. If � is a valid proof, then accept4. Otherwise, output V O000(vk;msg; �).The computation required in Item 2 of the signature and veri�cation algorithms can be executedin polynomial-time. The reason being that (by de�nition) verifying a CS-proof can be done inpolynomial-time, provided the statement can be decided in at most exponential time (which is thecase here since we have t(n) = O(nlogn)). It is also easy to see that for every pair (sk; vk) output9 The point is merely that, for every �xed i, the expression poly(jij) � pi(jsj) is bounded by a polynomial in jsj.12

by G, and for every msg and every O, the string S0uO(sk;msg) constitutes a valid signature of msgrelative to vk and the oracle O.To show that the scheme is secure in the Random Oracle Model, we �rst observe that on securityparameter 1k it is infeasible to �nd a string x so that (x;O0(x)) 2 RU , since RU is evasive. Bysoundness of CS-proofs, it is also infeasible to �nd (x; �) such that (x;O0(x)) 62 RU and yet � isa valid CS-proof of the contrary relative to O00 (with security parameter 1jxj+`out(k)+k). Thus, it isinfeasible for a polynomial-time adversary to �nd a message that would pass the test on Item 2 ofthe signature/veri�cation algorithms above, and so we infer that the modi�ed signature is securein the Random Oracle Model.We now show that for every candidate implementation, F , there exists a polynomial-timeadversary e�ecting total break via a chosen message attack (or, analogously, an existential forgeryvia a \key only" attack). First, for each function fs 2 F denote f 0s(x) def= fs(00x), f 00s (x) def= fs(01x),and f 000s (x) def= fs(11x). Then denote by F 0 the ensemble of the f 0s functions.Suppose that F 0 is the ith function ensemble in the enumeration mentioned above, namelyF 0 = F i. Given a randomly chosen k-bit seed s, the adversary generate a message msg = hi; s; �iso that � is a CS-proof (w.r.t the adequate security parameter) for the true statement that MUaccepts the input (x; y) within t(jxj + jyj) steps, where x = hi; si and y = f 0s(x). Recall that theabove statement is indeed true since we haveU(x; x) = f is(x) = f 0s(x) = yand hence the adversary can generate a proof for it in time which is polynomial in the time thatit takes to compute f is. (Note that by perfect completeness of the CS-proof system, the ability toprove correct statements holds for any choice of the random oracle, and in particular when it isequal to f 00s . See Appendix.)Also note that since this adversary is speci�cally designed to break the scheme in which therandom oracle is implemented by F , then the index i { which depends only on the choice of F {can be incorporated into the program of this adversary.By the e�ciency condition of CS-proofs, it is possible to �nd � (given an oracle access to f 00s)in time polynomial in the time that it takes MU to accept the input (x; y). Since F i is polynomial-time computable, then MU works on the input (x; y) = (hi; si; y) in polynomial time, and thus thedescribed adversary also operates in polynomial-time.By construction of the modi�ed veri�cation algorithm, � is a valid signature on msg = hi; s; �i,and so existential forgery is feasible a-priori. Furthermore, requesting the signer to sign msg yieldsthe signing key and thus total forgery. 2Remark 4. Note that, for the above argument, it is immaterial whether CS-proofs can be imple-mented in the \real world" (i.e., without access to random oracles). Speci�cally, it doesn't matterif one can cheat when the oracle is substituted by a candidate function ensemble, as in this case(i.e., in the real world implementation) it is su�cient for the adversary to invoke the proof systemon valid statements. (We do rely, however, on the perfect completeness of CS-proofs which impliesthat valid statements can be proven for any possible choice of oracle used in the proof system.)13

4.4 EncryptionThe construction presented for signature schemes can be adapted to (public-key)10 encryptionschemes in a straightforward way, yielding the following theoremTheorem 9 (a) Assume that there exists a public key encryption scheme which is semanticallysecure in the Random Oracle Model. Then there exists a public key encryption scheme which issemantically secure in the Random Oracle Model but is not semantically secure when implementedwith any function ensemble.(b) Assume that there exists a public key encryption scheme which is secure under adaptivechosen ciphertext attack in the Random Oracle Model. Then there exists a scheme which is secureunder adaptive chosen ciphertext attack in the Random Oracle Model, but implementing it withany function ensemble yields a scheme which is not semantically secure, and in which a chosenciphertext attack reveals the secret decryption key.Proof: In this proof we use the same notations as in the proof of Theorem 8. Let E = (G;E;D)be an encryption scheme which is semantically secure in the Random Oracle Model, and we modifyit to get another scheme E 0 = (G;E 0; D0). The key generation algorithm remains unchanged, andthe encryption and decryption algorithms utilize a random oracle O, which is again viewed as threeoracles O0;O00 and O000.Modi�ed encryption, E 0ekO(msg), of plaintext msg using the public encryption-key ek:1. Parse msg as hi; s; �i, set x = hi; si and y = O0(x), and let n = j(x; y)j.2. If � is a valid CS-proof, w.r.t oracle O00 and security parameter 1n+k, for the assertion thatMU accepts the pair (x; y) within t(n) steps, then output (1;msg).3. Otherwise (i.e., � is not such a proof), output (2; EO000ek (msg)).Modi�ed decryption, D0dkO(c), of ciphertext c using the private decryption-key dk:1. If c = (1; c0), output c0 and halt.2. If c = (2; c0), output DO000dk (c0) and halt.3. If c = (3; c0) then parse c0 as hi; s; �i, and set x = hi; si, y = O0(x), and n = j(x; y)j. If �is a valid CS-proof, w.r.t oracle O00 and security parameter 1n+k, for the assertion that MUaccepts the pair (x; y) within t(n) steps, then output dk.4. Otherwise output �.The e�ciency of this scheme follows as before. It is also easy to see that for every pair (ek; dk)output by G, and for every plaintext msg, D0dkO(E 0ekO(msg)) = msg holds for every O. To showthat the scheme is secure in the Random Oracle Model, we observe again that it is infeasibleto �nd a plaintext which satis�es the condition in Item 2 of the encryption algorithm (resp., aciphertext which satis�es the condition in Item 3 of the decryption algorithm). Thus, the modi�edideal encryption scheme (in the Random Oracle Model) inherits all security features of the originalscheme.Similarly, to show that replacing the random oracle by any function ensemble yields an insecurescheme, we again observe that for any such ensemble there exists an adversary who { given the10 Similarly, we can adapt the argument to shared-key (aka private-key) encryption schemes. In this case nocomputational assumptions are needed since shared-key encryption is implied by one-way functions [3, 12, 8], andthe later exist in the Random Oracle Model. 14

seed s { can generate a plaintext msg (resp., a ciphertext c) which satis�es the condition in Item 2of the encryption algorithm (resp., the condition in Item 3 of the decryption algorithm). Hence,such an adversary can identify when msg is being encrypted (thus violates semantic security), orask for a decryption of c, thus obtaining the secret decryption key.Remark 5. As opposed to Theorem 8, here we need to make computational assumptions, namely,that there exist schemes which are secure in the Random Oracle Model. (The result in [13] implythat it is highly unlikely that such schemes are proven to exists without making any assumptions.)Clearly, any scheme which is secure without random oracles is also secure in the Random OracleModel. Recall that the former exist, provided trapdoor permutations exist [9, 21].5 Restricted correlation intractabilityFaced with the negative result of Theorem 4, one may explore restricted (and yet possibly useful)versions of the correlation intractability property. One possibility is to put more stringent con-straints on the use of the ensemble in a cryptographic scheme, and then to show that as long asthe ensemble is only used in this restricted manner, it is guaranteed to maintain some aspects ofcorrelation intractability.In particular, notice that the proof of Theorem 4 relies heavily on the fact that the input to fscan be as long as the seed s. This was used by \the adversary" to feed s as the input to the functionfs. Thus, one option would be to require that we only use fs on inputs which are shorter than s.Speci�cally, we require that each function fs will only be applied to inputs of length `in(jsj), where`in : N 7!N is some pre-speci�ed function (e.g. `in(k) = k=2). The corresponding restricted notionof correlation intractability is derived from De�nition 3:De�nition 10 (restricted correlation intractability) Let `in; `out : N 7!N be length functions.A machine M is called `in-respectful if jM(s)j = `in(jsj) for all s 2 f0; 1g�.A binary relation R is evasive with respect to (`in; `out) if for any `in-respectful polynomial timemachine M PrO [x MO(1k); (x;O(x))2R] = negl(k)where O : f0; 1g`in(k) 7! f0; 1g`out(k) is a uniformly chosen function and negl(�) is a negligiblefunction.We say that an `out-ensemble F is (`in; `out)-restricted correlation intractable (or just `in-correlationintractable, for short), if for every `in-respectful polynomial time machine M and every evasiverelation R w.r.t. (`in; `out), it holds thatPrs2f0;1gk[x M(s); (x; fs(x)) 2 R] = negl(k)Weak `in-correlation intractability is de�ned analogously by considering only polynomial-time rec-ognizable R's.5.1 More negative resultsThe proof ideas of Theorem 4 can be easily applied to rule out the existence of certain restrictedcorrelation intractable ensembles. 15

Proposition 11(a) If `in(k) � k�O(log k) for in�nitely many k's, then there exists no ensemble which is (`in; `out)-correlation intractable, even in the weak sense.(b) If `in(k) + `out(k) � k + !(log k), there exists no ensemble which is (`in; `out)-correlation in-tractable.Proof: The proof of (a) is a straightforward generalization of the proof of Theorem 4. Actually,we need to consider two cases: the case `in(k) � k and the case k � O(log k) � `in(k) < k. In the�rst case, we proceed as in the proof of Theorem 4 (except that we de�ne RF def= f(x; fs(x)) : s 2f0; 1g�; x = s0`in(jsj)�jsjg). In the second case, for every ensemble F , we de�ne the relationRF def= f(x; fxz(x)) : x; z 2 f0; 1g� ; jxj = `in(jxzj)gWe show that RF is evasive by showing that, for every k 2 N and x 2 f0; 1g`in(k), there exist atmost polynomially (in k) many y's such that (x; y) 2 RF . This is the case since (x; y) 2 RF impliesthat there exists some z such that `in(jxzj) = jxj and y = fxz(x). But using the case hypothesiswe have jxj = `in(jxzj) � jxzj � O(log jxzj) which implies that jzj = O(log(jxzj)) and hence alsojzj = O(log jxj). Next, using the other case hypothesis (i.e., k > `in(k) = jxj), we conclude thatjzj = O(log k). Therefore, there could be at most polynomially many such z's, and so the upperbound on the number of y's paired with x follows. The evasiveness of RF as well as the assertionthat RF is polynomial-time computable follow (assuming that `in is polynomial-time computable).On the other hand, consider the machine M which, on input s, outputs the `in(jsj)-bit pre�x of s.Then, for every s 2 f0; 1g�, we have (M(s); fs(M(s))) 2 RF .For the proof of (b), assume that `in(k) < k (for all but �nitely many k's). We start by de�ningthe \inverse" of the `in function `�1in (n) def= minfk : `in(k) = ng(where, in case there exists no k such that `in(k) = n, we de�ne `�1in (n) = 0). By de�nition itfollows that k � `�1in (`in(k)), for all k's (because k belongs to the set fk0 : `in(k0) = `in(k)g), andthat `in(`�1in (n)) = n, whenever there exists some k for which n = `in(k). Next we de�neRF def= �(x; fxz(x)) : x; z 2 f0; 1g� ; jxj+ jzj = `�1in (jxj)	This relation is well de�ned since, by the conditions on the lengths of x and z, we have `in(jxzj) =`in(`�1in (jxj)) = jxj and so the function fxz is indeed de�ned on the input x. In case `in(k) �k � !(log k), this relation may not be polynomial-time recognizable. Still, it is evasive w.r.t.(`in; `out), since with security parameter k we have for every x 2 f0; 1g`in(k)���ny 2 f0; 1g`out(k) : (x; y) 2 RFo��� = ����fxz(x) : jzj = `�1in (`in(k))� `in(k)	 \ f0; 1g`out(k)���� 2`�1in (`in(k))�`in(k)� 2k�`in(k)Using k�`in(k) � `out(k)�!(log k), we conclude that the set of y's paired with x forms a negligiblefraction of f0; 1g`out(k), and so that RF is evasive. Again, the machine M , which on input s outputsthe `in(jsj)-bit pre�x of s, satis�es (M(s); fs(M(s))) 2 RF , for all s's.16

Open Problems: Proposition 11 still leaves open the question of existence of (`in; `out)-restrictedcorrelation intractable ensembles, for the case `in(k) + `out(k) < k +O(log k).11 We believe that itis interesting to resolve the situation either way: Either provide negative results also for the abovespecial case, or provide a plausible construction. Also open is the sub-case where `in(k)+ `out(k) =k+!(log k) but one considers only weak (`in; `out)-restricted correlation intractability. (Recall thatCase (b) of Proposition 11 is proven using relations which are not known to be polynomial-timerecognizable.)We comment that even if restricted correlation intractable ensembles exist, then they are verynon-robust constructs. For example, even if the ensemble F = ffs : jsj = kgk is correlationintractable with respect to some length functions (`in; `out), the ensemble which is obtained byapplying many independent copies of F and concatenating the results may not be. That is, form :N 7!N, de�ne Fm def= ff 0s1k���ksm(k) : js1j = � � � = jsm(k)j = kgk ; (2)where, for x1k � � �kxm(k) 2 f0; 1gm(k)�`in(k),f 0s1k���ksm(k)(x1k � � �kxm(k)) def= fs1(x1)k � � �kfsm(k)(xm(k)) : (3)Then, for su�ciently large m (e.g., m(k) � k=`in(k) will do), the \direct product" ensemble Fm isnot correlation intractable (not even in the natural restricted sense). That is,Proposition 12 Let `in; `out : N 7!N be length functions, and let m : N 7!N be another function sothat m(k) � k=`in(k). Let F be an arbitrary function ensemble, and Fm be as de�ned in Eq. (2)and (3). Then, Fm is not correlation intractable, not even in the natural (`min ; `mout)-restricted sense,where `mxx(m(k) � k) def= m(k) � `xx(k), for xx 2 fin; outg.Proof: We assume, for simplicity that m(k) = k=`in(k). Given Fm as stated, we again adapt theproof of Theorem 4. This time, we de�ne the relationRFm def= [k f (s; fs(s0)kt) : jsj = k; s0is the `in(k)-pre�x of s; jtj = (m(k)� 1) � `out(k) gNotice that in this de�nition we have jsj = k`in(k) � `in(k) = m(k) � `in(k) = `min(m(k) � k), and alsojfs(s0)j+ jtj = m(k) � `out(k) = `mout(m(k) � k), so this relation is indeed (`min ; `mout)-restricted.Again, it is easy to see that RF is polynomial-time recognizable, and it is evasive since everystring x 2 f0; 1gk is coupled with at most a 2�`out(k) fraction of the possible (m(k) � `out(k))-bit longstrings, and `out(k) = !(log k) = !(log(m(k) � k)).On the other hand, consider a (real-life) adversary that given the seed s = s1k � � �ksm(k) 2f0; 1gm(k)�k for the function f 0s1k���ksm(k) , sets the input to this function to be equal to s1. If wedenote the `in(k)-pre�x of s1 (equiv., of s) by s01 then fs1(s01) is a pre�x of f 0s1k���ksm(k)(s1) andso (s1; f 0s1k���ksm(k)(s1)) 2 RF . Thus, this real-life adversary violates the (restricted) correlationintractability of Fm.5.2 Generalized notion of correlation intractabilityRecall that Proposition 11 does not rule out the existence of restricted ensembles having seedswhich are longer than the sum of lengths of their inputs and outputs. However, even for this11 In fact such ensembles do exist in case k � 2`in(k) � `out(k) (as the seed may be used to directly specify all thefunction's values), but we dismiss this trivial and useless case below.17

special case the only thing which is not ruled out is a narrow de�nition which refers to formingrare relationships between a single input-output pair. Furthermore, if one generalizes the de�nitionof correlation intractability so as to consider evasive relations over unbounded sequences of inputsand outputs, then the negative result in Proposion 11 can be extended for arbitrary `in and `out.That is,De�nition 13 (generalized restricted correlation intractability) Let `in; `out : N 7!N be lengthfunctions.We consider probabilistic polynomial-time oracle machines which on input 1k have oracle access toa function O : f0; 1g`in(k) 7! f0; 1g`out(k). A relation R over pairs of binary sequences is evasive withrespect to (`in; `out) (or (`in; `out)-evasive) if for any polynomial-time machine M as above it holdsthat PrO "(x1; :::; xm) MO(1k) ; jx1j = : : := jxmj = `in(k)and ((x1; :::; xm); (O(x1); :::;O(xm))2R # = negl(k)As usual, O : f0; 1g`in(k) 7! f0; 1g`out(k) is a uniformly chosen function.We say that an `out-ensemble F is (`in; `out)-restricted general correlation intractable (or just `in-general correlation intractable, for short), if for every (`in; `out)-evasive relation R and every poly-nomial time oracle machine M it holds thatPrs "(x1; :::; xm) MO(s) ; jx1j = : : : = jxmj = `in(k)and ((x1; :::; xm); (fs(x1); :::; fs(xm))2R # = negl(k)Proposition 14 Let `in; `out : N 7!N be arbitrary length functions, with `out(k) = !(log k). Thenthere exist no (`in; `out)-restricted general correlation intractable function ensembles.Proof: Below we assume for simplicity that k=`in(k) is always an integer, and denote m(k) =k=`in(k). Let F be an `out-ensemble. Adapting the proof of Theorem 4, we de�ne the relationRF def= [k (((x1; :::; xm(k)); (fs(x1); :::; fs(xm(k)))) : jx1j = : : := jxm(k)j = `in(k)and s = x1 � � �xm(k))We note that this relation is polynomial-time recognizable. Clearly, it is evasive, since everysequence of xi's is coupled with at most one sequence. However, as before the identity functionI demonstrates that the corresponding general restricted correlation intractability condition doesnot hold: For any s 2 f0; 1gk, parsing s = x1; :::; xm(k) where each xi is of length `in(k), we have((x1; :::; xm(k)); (fs(x1); :::; fs(xm(k)))) 2 RF .5.3 DiscussionPropositions 11, 12 and 14 demonstrate that there is only a very narrow margin in which strictcorrelation-intractability may be used. Still, even ensembles which are (strict) correlation-intractablewith respect to relations of a-priori bounded total length (of input-output sequences) may be usefulin some applications. Typically, this may hold in applications where number of invocations of thecryptosystem is a-priori bounded (or where the security of the system depends only on an a-prioribounded partial history of invocations; e.g., the current one). We note that the Fiat-Shamir heuris-tic (for transforming interactive identi�cation protocols into signature schemes [7]) does not fallinto the above category, since the function's seed needs to be �xed with the public key, and usedfor signing polynomially many messages, where the polynomial is not a-priori known.18

AcknowledgmentsWe wish to thank Silvio Micali for enlightening discussions.

19

References[1] M. Bellare and P. Rogaway. Random Oracles are Practical: a Paradigm for DesigningE�cient Protocols. In 1st Conf. on Computer and Communications Security, ACM, pages62{73, 1993.[2] M. Bellare and P. Rogaway. The Exact Security of Digital Signatures: How to Sign withRSA and Rabin. In EuroCrypt96, Springer LNCS (Vol. 1070), pages 399{416.[3] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SICOMP, Vol. 13, pages 850{864, 1984. Preliminary version in 23rd FOCS,1982.[4] R. Canetti. Towards Realizing Random Oracles: Hash Functions that Hide All PartialInformation. In Crypto97, Springer LNCS (Vol. 1294), pages 455{469.[5] R. Canetti, D. Micciancio and O. Reingold. Perfectly One-Way Probabilistic Hashing.30th ACM Symposium on the Theory of Computing, 1998.[6] I.B. Damg�ard. Collision free hash functions and public key signature schemes. In Euro-Crypt87, LNCS (Vol. 304), Springer-Verlag, 1988. Pages 203{216.[7] A. Fiat and A. Shamir. How to Prove Yourself. Practical Solutions to Identi�cation andSignature Problems. In Crypto86, Springer-Verlag LNCS (Vol. 263), pages 186{189, 1987.[8] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. JACM,Vol. 33, No. 4, pages 792{807, 1986.[9] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages270{299, 1984. Preliminary version in 14th STOC, 1982.[10] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure AgainstAdaptive Chosen-Message Attacks. SICOMP, April 1988, pages 281{308.[11] L.C. Guillou and J.J. Quisquater. A Practical Zero-Knowledge Protocol Fitted to SecurityMicroprocessors Minimizing both Transmission and Memory. In EuroCrypt88, Springer-Verlag LNCS (Vol. 330), pages 123{128.[12] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of PseudorandomGenerator from any One-Way Function. To appear in SICOMP. Preliminary versions byImpagliazzo et. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).[13] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permuta-tions. 21th ACM Symposium on the Theory of Computing, 1989.[14] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th ACMSymposium on the Theory of Computing, pages 723{732, 1992.[15] S. Micali. CS Proofs. In 35th IEEE Symposium on Foundations of Computer Science,pages 436{453, 1994.[16] M. Naor and M. Yung. Universal One-Way Hash Functions and their CryptographicApplications. In 21th ACM Symposium on the Theory of Computing, pages 33-43, 1989.20

[17] T. Okamoto Provably Secure and Practical Identi�cation Scheme and CorrespondingSignature Scheme. In Crypto91, pages 31{53.[18] D. Pointcheval and J. Stern. Security Proofs for Signature Schemes. In EuroCrypt96,Springer-Verlag LNCS (Vol. 1070), pages 387{398.[19] J. Rompel. One-Way Functions are Necessary and Su�cient for Secure Signatures. In22nd ACM Symposium on the Theory of Computing, pages 387{394, 1990.[20] C.P. Schnorr. E�cient Signature Generation by Smart Cards. Journal of Cryptology,Vol. 4, No. 3, pages 161{174 (1991).[21] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.

21

Appendix : CS-ProofsFollowing is the formulation of CS-proofs, as de�ned in [15].A Computationally Sound (CS) proof system is a non-interactive system for proving statementsof the type machine M accepts input x within t steps. It consists of two polynomial-time oraclemachines, a Prover Prv and a Veri�er Ver. On security parameter k, the prover has input(1k; hMi; x; 1t) and access to an oracle O, and it computes a proof � = PrvO(1k; hMi; x; 1t). Theveri�er has input (1k; hMi; x; t; �), with t encoded in binary, and access to O, and it decides whetherto accept or reject the proof. The proof system satis�es the follwing conditionsE�ciency conditions: An important aspect of Micali's de�nition (and construction) is that theprover satis�es a stronger condition than just being polynomial-time in the worst case. Specif-ically, if it is given an input (hMi; x; 1t) such that M accepts x within time t0 < t, then onthat input it works in time which is polynomial in t0 (rather than in the upper bound t).Perfect completeness: For any M;x; t such that machine M accepts the string x within t steps,and for any k, PrO " � PrvO(1k; hMi; x; 1t);VerO(1k; hMi; x; t; �) = accept # = 1(In our context it is important that this probability is 1, so that we are guaranteed that aproof for a true statement will always be convincing, even when the random oracle is replacedby some �xed function.)Computational soundness: For any polynomial time oracle machine Bad and any input w =(hMi; x; 1t) such that M does not accepts x within t steps, it holds thatPrO " � BadO(1k; hMi; x; 1t);VerO(1k; hMi; x; t; �) = accept # � poly(k+ jwj)2kRemark 6. The soundness condition that we use in the proof of Theorem 8 is that, given themachine M (and the complexity bound t(�)), it is hard to �nd any pair (x; �) such that M does notaccept x within t steps and yet Ver will accept � as a valid CS-proof to the contrary. The reasonthat we can use this (seemingly stronger) soundness condition, is that on security parameter k anda string x of length n, we always run Ver with security parameter n + k. Hence, even if the badprover can pick an n-bit x depending on the oracle O, the probability that it will be able to foolthe veri�er is still at most poly(k)=2k.
22

