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1 IntroductionHaving gained a reasonable understanding of the security of cryptographic schemes and protocolsas stand-alone, cryptographic research is moving towards the study of stronger notions of security.Examples include the e�ect of executing several instances of the same protocol concurrently (e.g.,the malleability of an individual protocol [10]) as well as the e�ect of executing the protocol con-currently to any other activity (or set of protocols) [6]. Another example of a stronger notion ofsecurity, which is of theoretical and practical interest, is the security of protocols under a \reset-ting" attack. In a resetting attack, a party (being attacked) can be forced to execute a protocolseveral times while using the same random tape and without the ability to coordinate betweenthese executions (as he may not even be aware of all the executions taking place). The theoreticalinterest in this notion stems from the fact that randomness plays a pivotal role in cryptographicprotocols, and thus the question of whether one needs fresh (and independent) randomness in eachinvocation of a cryptographic protocol is natural. The practical importance is due to the fact thatin many settings it is impossible or too costly to generate fresh randomness on the y. Moreover,when parties in a cryptographic procotol are implemented by devices which cannot reliably keepstate (e.g., smart cards), being maliciously \reset" to a prior state could be a real threat.1.1 Resettable ProversResettability of players in a cryptographic protocol was �rst addressed by Canetti et al. in [7] whoconsidered what happens to the security of zero-knowledge interactive proofs and arguments whenthe veri�er can reset the prover to use the same random tape in multiple executions. Protocols whichremain zero-knowledge against such a veri�er, are called resettable zero-knowledge (rZK) protocols.Put di�erently, the question of prover resettability, is whether zero-knowledge is achievable whenthe prover cannot use fresh randomness in new interactions, but rather is restricted to (re-)using a�xed number of coins.Resettability implies security under concurrent executions: any rZK protocol constitutes aconcurrent zero-knowledge protocol. The opposite direction does not hold, and indeed it was nota-priori clear whether (non-trivial) rZK protocols exist. The main result of Canetti et al. answersthis question a�rmatively, under some standard complexity assumptions. Speci�cally, assumingthe existence of perfectly hiding and computationally binding commitment schemes, resettablezero-knowledge interactive proofs for NP using polynomially many rounds do exist [7].1In order to obtain a constant-round rZK protocol, Canetti et al. introduced a weak public-keymodel and used a strong intractability assumption - the existence of a perfectly hiding and compu-tationally binding commitment scheme that cannot be broken by sub-exponential size circuits, andnot merely by polynomial-size ones. In this model and under that assumption,2 they were able toconstruct a constant-round rZK argument system for NP [7].On the negative side, [7] point out that resettable zero-knowledge proofs of knowledge are im-possible to achieve for non-trivial languages, ruling out the use of the Fiat-Shamir [17] paradigm of1The number of rounds was recently improved to poly-logarithmic [26]. Interestingly, poly-logarithmic manyrounds are necessary for any protocol that can be shown to be concurrent zero-knowledge via a black-box simulator [8].2An essential use of this sub-exponential hardness assumption, is made when demonstrating the computational-soundness of the protocol. The prover and veri�er in the protocol both utilize commitment schemes in an interleavedfashion, which raises the danger of malleability of one commitment scheme with respect to the other. By choosingdi�erent security parameters k and K for each commitment scheme such that 2k� > 2K and relying on the assumedsub-exponential hardness 2t� of breaking a commitment scheme with parameter t, successful malleability is ruledout. The same assumption is used by Micali and Reyzin [29] who subsequently achieved resettable zero-knowledgearguments in the public-key model in an optimal number of rounds.2



identi�cation protocols based on proofs of knowledge when the provers may be resettable. This im-possibility extends to resettable zero-knowledge arguments of knowledge and to resettable witnessindistinguishable proofs and arguments of knowledge. All these negative results are with respectto the standard de�nition of proofs of knowledge (cf. [3]), in which the extractor of knowledge islimited to oracle access to the prover ( for detailed discussion see Section 1.3.2).1.2 Resettable Veri�ersIn a similar fashion, one may consider what happens to the soundness of (zero-knowledge) interac-tive proofs and arguments when the prover can reset the veri�er to use the same random tape inmultiple concurrent executions.Informally, we say that an interactive proof or argument achieves resettable soundness if a provercannot convince a veri�er of an incorrect statement with non-negligible probability, even when theprover can reset the veri�er to use the same random tape in multiple concurrent executions. Theveri�er resettability question can be recast as whether soundness can be achieved, when the veri�eris restricted to (re-)using a �xed number of coins rather than using fresh coins in every interaction.Resettable-soundness in the public key model was already de�ned and studied by Micali andReyzin [30]. They showed that the existing rZK protocols in the public-key model (i.e., [7, 29]) arenot resettably-sound (i.e., do not maintain soundness when the veri�er can be reset). Furthermore,they demonstrated the non-robustness of soundness in the public key model by considering severalnatural notions of soundness (i.e., one-time soundness, sequential soundness, concurrent soundness,and resettable soundness), and showing separations between these notions.1.3 Our contributionsIn this paper we study resettable-soundness in the standard model, rather than in the public-keymodel considered in [7, 30]. As was the case for resettable zero-knowledge, it is not clear a-prioriwhether non-trivial resettably-sound zero-knowledge protocols exist at all.Indeed, the situation here is worse: we show that resettably-sound zero-knowledge proofs existonly for P=poly.3 Furthermore, if one is restricted to showing zero-knowledge via a black-boxsimulator, resettably-sound zero-knowledge arguments exist only for BPP -languages. Thus, ourstudy would have come to an end, if it were not for the recent result of Barak [1] in which for the�rst time, zero-knowledge arguments are constructed using non-black-box simulators. This opensthe door to hope to get around impossibility results regarding zero-knowledge proved via black-boxsimulators.Indeed, we construct resettably-sound zero-knowledge arguments for NP , using Barak's con-struction. In turn, using resettably-sound zero-knowledge arguments for NP, we obtain two mainapplications:1. Resettable zero-knowledge arguments of knowledge for NP, using a relaxed and yet naturalde�nition of arguments (and proofs) of knowledge (see Section 1.3.2).2. Constant-round resettable zero-knowledge arguments for NP , in the public-key model, underweaker assumptions than known previously: instead of assuming sub-exponential hardness,we only assume super-polynomial hardness.3We also show that resettably sound proofs { without the zero-knowledge requirement { are possible only forlanguages in NP=poly. 3



All our positive results inherit Barak's [1] intractability assumption { the existence of collision-freehash functions [2]. As the existence of collision-free hash functions implies the existence of one-wayfunctions, we use the latter freely. Our protocols also inherit from [1] non-black-box demonstrationsof various properties.We proceed to give details on our main result and its applications.1.3.1 Main resultOur main result is a constant-round resettably-sound zero-knowledge argument for NP, assumingthe existence of collision-free hash functions. This is achieved by showing how to transform anyconstant-round public-coin zero-knowledge interactive argument into a constant-round resettably-sound zero-knowledge argument for the same language, and then applying the transformation tothe recent construction [1] of a constant-round public-coin zero-knowledge argument of knowledgefor NP .Recall, that until recently, this transformation would have been useless as no constant-roundpublic-coin zero-knowledge arguments were known for languages outside of BPP. Indeed, Goldreichand Krawczyk proved that only languages in BPP have constant-round public-coin arguments andproofs that are black-box zero-knowledge [22]. Naturally, the [1] construction of a constant-roundpublic-coin zero-knowledge argument of knowledge for NP must (and does) use a non-black-boxsimulator. Thus, we obtain:Theorem 1.1 If there exist collision-free hash functions, then any NP-language has a (constant-round) resettably-sound zero-knowledge argument. Furthermore, these protocols are arguments ofknowledge.Using Theorem 1.1 we obtain the following applications.1.3.2 Application 1: Resettable-ZK Arguments of KnowledgeThe standard de�nition of an argument (or proof) of knowledge requires the knowledge-extractorto use the prover's strategy as a black-box. Furthermore, in a resetting attack on the prover, theveri�er has this very same capability during the execution of the protocol . Loosely speaking, then,if the extractor can extract anything (e.g., an NP-witness) from the prover, then so can a cheatingveri�er mounting a resetting attack. Thus, under the standard de�nition (cf. [3]), resettable zero-knowledge arguments of knowledge exist only for BPP .We adopt a relaxation of the de�nition of an argument (or proof) of knowledge in which theknowledge-extractor is given the prover's program as auxiliary input (rather than given only black-box access to it). The knowledge-extractor, now, is (at least syntactically) more powerful than thecheating veri�er during a resetting attack in which the latter has in essence black-box access tothe prover's strategy. The relaxed de�nition appeared originally in Feige and Shamir [16] (whichdi�ers from the de�nition in [14]; see discussion in [3]), and su�ces for all practical applications ofarguments of knowledge.The standard de�nition, allowing only oracle access to the prover's strategy, was used in theliterature in the past as in principle it allows the consideration of prover strategies which are notin P=poly (an irrelevant consideration for practical applications and for arguments in particular).Moreover, it was generally believed, that one cannot bene�t from non-black-box access to theprover's code, and thus restricting access to the prover poses no limitation.Henceforth we will use \proof of knowledge" to refer to the relaxed de�nition.4



Using Theorem 1.1, we construct resettable zero-knowledge and resettable witness-indistinguishablearguments of knowledge for NP . Our construction is based on a modi�cation of a well-known de-sign principle underlying protocols such as those in [21, 32, 7]: In these protocols, the veri�er startsby committing to its queries, then the prover sends some information, and the veri�er decommitsto the abovementioned queries, which the prover is now supposed to answer. Such protocols usu-ally fail to yield proofs of knowledge, as the typical way in which a knowledge-extractor worksis by obtaining answers to several di�erent queries regarding the same piece of information, butthis way is blocked when the queries are committed to before the information is presented. Ourmodi�cation is to replace the action of decommitment by merely revealing the committed valuesand proving in zero-knowledge that the revealed values are indeed those committed to. Towardthis end, the veri�er needs to employ a zero-knowledge proof (or argument), in which the proverplays the role of the veri�er, which is why in our setting (in which the main prover is resettable)this subprotocol has to be resettably-sound. Here is where we use Theorem 1.1, which supplies uswith a resettably-sound zero-knowledge argument for NP . Thus, we obtain:Theorem 1.2 If there exist collision-free hash functions, then there exists1. A constant-round resettable witness-indistinguishable argument of knowledge for NP.2. A poly-logarithmic round resettable zero-knowledge argument of knowledge for NP.All applications of the notion of a proof of knowledge, including the Fiat-Shamir paradigm of build-ing identi�cation protocols from zero-knowledge (and witness indistinguishable) proofs of knowl-edge [17], are thus salvaged for resettable provers. This holds also with respect to constant-roundprotocols in the public-key model; see Theorem 1.3 (below). Of course, for any particular proofof knowledge, one needs to explicitly prove being resettable zero-knowledge (or witness indistin-guishable).1.3.3 Application 2: rZK in the Public-Key Model under weaker assumptionsCurrent protocols that achieve constant-round resettable zero-knowledge arguments for NP, in thepublic-key model, assume a sub-exponential lower bound on the size of circuits attempting to breakcommitment schemes.In contrast, using Theorem 1.1 we construct constant-round resettable zero-knowledge argu-ments for NP in the public-key model, relying only on the existence of collision-free hash func-tions. Thus, we replace a sub-exponential hardness assumption by a standard hardness assumptionof collision-free hashing secure against all polynomial time adversaries. Furthermore, both theprotocol and its analysis are conceptually simpler than the corresponding constructions presentedin [7, 29].Moreover, the constant-round protocol constructed is also an argument of knowledge (in therelaxed sense discussed in previous section).Theorem 1.3 If there exist collison-free hash functions, then there exists a constant-round reset-table zero-knowledge argument of knowledge for NP in the public-key model.We stress that previously known resettable zero-knowledge protocols (also in the public-key model)were not known to be arguments of knowledge. 5



1.4 Simultaneous resettabilityA natural question that arises is whether it is possible to simultaneously protect both the proverand the veri�er from resetting attacks. That is:Open Problem 1.4 Do languages outside of BPP have resettably-sound arguments that are re-settable zero-knowledge.Some hope for an a�rmative resolution of the above question is provided by the fact that somelevel of resettable-security for both parties does seem to be achievable.4 That is:Theorem 1.5 (implicit in [11]): Assuming the existence of trapdoor permutations, any NP-languagehas a resettably-sound proof that is resettable witness-indistinguishable.Theorem 1.5 follows from the following facts regarding ZAPs (as de�ned by Dwork and Naor [11]).Loosely speaking, ZAPs are two-round public-coin witness-indistinguishable proofs. Thus, by def-inition, ZAPs are resettably-sound (because even in a single session the prover obtains all theveri�er's coins before sending its own message). On the other hand, as noted in [11], any ZAP canbe made resettable witness-indistinguishable (by using pseudorandom functions as in the transfor-mation of [7]). Using a main result of [11], by which ZAPs for NP can be constructed based on anynon-interactive zero-knowledge proofs for NP , which in turn can be constructed based on trapdoorpermutations (cf. [15, 5]), Theorem 1.5 follows.We conjecture that resettably-sound resettable zero-knowledge arguments for NP do exist, andhave made some progress towards establishing this.2 Preliminaries2.1 General PreliminariesWe briey review some well-known notions.Polynomial-size adversaries. We focus on polynomial-size adversaries. By this we mean adver-saries that employ a strategy that can be implemented by a non-uniform family of polynomial-sizecircuits.Interactive proof systems [24]. We consider computationally-sound interactive proof systems(a.k.a arguments) [4] in which it is infeasible for any polynomial-size circuit to cheat with non-negligible probability. Speci�cally, for every polynomial p and all su�ciently large inputs x notin the language, every circuit of size p(jxj) (representing a cheating prover strategy) may convincethe veri�er to accept only with probability less than 1=p(jxj). We further restrict the meaningof the term `interactive proof system' by requiring that inputs in the language are accepted withprobability 1 (i.e., so-called perfect completeness).4The evidence provided by Theorem 1.5 (towards an a�rmative resolution of the above question) is admit-tingly not very strong. In general, zero-knowledge seems a signi�cantly stronger notion of security than witness-indistinguishability. Furthermore, Theorem 1.5 yields resettably-sound proofs, whereas (as mentioned above) there isno hope of obtaining resettably-sound zero-knowledge proofs (rather than arguments) for languages outside P=poly.
6



Zero-knowledge. We adopt the basic paradigm of the de�nition of zero-knowledge [24]: Theoutput of every probabilistic polynomial-time adversary (veri�er) that interacts with the designatedprover on a common input in the language, ought to be simulatable by a probabilistic polynomial-time machine (which interacts with nobody), called the simulator. In fact, we focus on universalsimulators that given the code of any polynomial-size adversary (or oracle access to its strategy)simulates (by itself and without interacting with the prover) the interaction of this adversary withthe prover. In case this universal simulator only uses oracle access to the adversary's strategy(rather than being given its code) , we call it black-box.Witness indistinguishable proof systems [16]. Loosely speaking, these are proof systemsin which the prover is a probabilistic polynomial-time machine with auxiliary input (typically,an NP-witness), having the property that interactions in which the prover uses di�erent \legit-imate" auxiliary-inputs are computationally indistinguishable from each other. Recall that anyzero-knowledge proof system is also witness indistinguishable, and there are witness indistinguish-able proof systems that are not zero-knowledge.2.2 Resettable Zero-Knowledge (and Witness Indistinguishability)In this section we recall the de�nition of resettable zero-knowledge and witness indistinguishability.The text is adapted from [7].Given a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y may be anNP-witness for x being in some NP-language), we consider polynomially-many interactions withthe deterministic prover strategy Px;y;! determined by uniformly selecting and �xing P 's coins,denoted !. That is, ! is uniformly selected and �xed once and for all, and the adversary mayinvoke and interact with many instances of Px;y;!. An interaction with an instance of Px;y;! iscalled a session. It is stressed that Px;y;!'s actions in each session are oblivious of other sessions(since Px;y;! mimics the \single session strategy" P ); nonetheless, the actions of the adversary maydepend on other sessions.There are two variants of the above model. In the basic variant, a session must be terminated(either completed or aborted) before a new session can be initiated by the adversary. In theinterleaving variant, this restriction is not made and so the adversary may concurrently initiateand interact with Px;y;! in many sessions. In [7], these variants were proven to be equivalent.Thus, for sake of simplicity, we focus on the simpler basic (i.e., non-interleaving) variant.An extension to the above model is obtained by allowing the adversary to interact (many times)with several random independent incarnations of P (rather than with a single one). That is, ratherthan interacting many times with one Px;y;!, where ! is randomly selected, the adversary manyinteract many times with each Pxi;yi;!j , where the !j's are independently and randomly selected.Intuitively, allowing several independent random incarnations (i.e., several !j's) should not increasethe power of the adversary, but it is not clear whether this intuition is sound. We do know (see [7])that allowing several di�erent inputs (i.e., xi's) for the same random-tape does increase the power ofthe adversary. Anyhow, with these extensions, resettable security implies security under concurrentexecutions.De�nition 2.1 (rZK and rWI - standard model): An interactive proof system (P; V ) for a languageL is said to be resettable zero-knowledge if for every probabilistic polynomial-time adversary V � thereexists a probabilistic polynomial-time simulator M� so that the following two distribution ensembles7



are computational indistinguishable: Let each distribution be indexed by a sequence of distinct5common inputs x = x1; :::; xpoly(n)2 L\f0; 1gn and a corresponding sequence of prover's auxiliary-inputs y = y1; :::; ypoly(n),Distribution 1 is de�ned by the following random process which depends on P and V �.1. Randomly select and �x t = poly(n) random-tapes, !1; :::; !t, for P , resulting in de-terministic strategies P (i;j) = Pxi;yi;!j de�ned by Pxi;yi;!j (�) = P (xi; yi; !j ; � ), fori; j 2 f1; :::; tg. Each P (i;j) is called an incarnation of P .2. Machine V � is allowed to run polynomially-many sessions with the P (i;j)'s. Throughoutthese sessions, V � is required to complete its current interaction with the current copyof P (i;j) before starting a new interaction with any P (i0;j0), regardless if (i; j) = (i0; j0)or not. Thus, the activity of V � proceeds in rounds. In each round it selects one of theP (i;j)'s and conducts a complete interaction with it.3. Once V � decides it is done interacting with the P (i;j)'s, it (i.e., V �) produces an outputbased on its view of these interactions. Let us denote this output by hP (y); V �i(x).Distribution 2: The output of M�(x).In case there exists a universal probabilistic polynomial-time machine, M , so that M� can be im-plemented by letting M have oracle-access to V �, we say that P is resettable zero-knowledge via ablack-box simulation.6An interactive proof system (P; V ) for L is said to be resettable witness indistinguishable (rWI) ifevery two distribution ensembles of Type 1 that are indexed by the same sequence of distinct inputsx = x1; :::; xpoly(n) 2 L \ f0; 1gn, (but possibly di�erent sequences of prover's auxiliary-inputs,aux(1)(x) = y(1)1 ; :::; y(1)poly(n) and aux(2)(x) = y(2)1 ; :::;y(2)poly(n)), are computationally indistinguishable.That is, we require that fhP (aux(1)(x)); V �i(x)gx and fhP (aux(2)(x)); V �i(x)gx are computationallyindistinguishable.2.3 Arguments of Knowledge with Non Black-Box ExtractionIn the standard de�nition of proofs of knowledge (cf. [3]), the knowledge-extractor is given oracle (orblack-box) access to the prover strategy. As mentioned in [7], under this de�nition, resettable zero-knowledge proofs (or arguments) of knowledge exist only for languages in BPP . This is becausein a resetting attack, the veri�er has the same power as the extractor. Therefore, the proof (orargument) cannot be zero-knowledge (or even witness indistinguishable).Below, we recall a natural, yet relaxed de�nition of arguments of knowledge where the extractorhas access to the description of the prover strategy (cf. [16]). Thus, the extractor has (potentially)more power than even a veri�er that can execute a resetting attack.De�nition 2.2 (system of arguments of knowledge, relaxed de�nition [16]): Let R be a binaryrelation. We say that a probabilistic, polynomial-time interactive machine V is a knowledge veri�erfor the relation R with negligible knowledge error if the following two conditions hold:5This condition (of the inputs being distinct) was mistakenly omitted from the de�nition in [7], but their analysisassumes it. It seems that this requirement is essential for the non-triviality of rZK and that no protocol can achievethe stronger de�nition (in which some of the xi's may be equal whereas the corresponding auxiliary yi's may be eitherequal or not). In particular, all known rZK protocol (including ours) are not even rWI under the stronger de�nition.6Recall that the existence of black-box simulators implies auxiliary-input zero-knowledge (cf. [25, 22]).8



� Non-triviality: There exists a probabilistic polynomial-time interactive machine P such that forevery (x; y) 2 R, all possible interactions of V with P (with auxiliary input y) on common inputx are accepting.� Validity (or knowledge soundness) with negligible error: There exists a probabilistic expectedpolynomial-time machine K such that for every probabilistic polynomial-time machine P �, everypolynomial p(�) and all su�ciently large x'sPr[K(desc(P �); x) 2 R(x)] > Pr[hP �; V i(x) = accept]� 1p(jxj)where hP �; V i(x) denotes V 's output after interacting with P � upon common input x, desc(P �)denotes the description of P �'s strategy, and R(x) = fy : (x; y) 2 Rg denotes the set of witnessesfor x.3 Resettable-SoundnessIn this section we de�ne and study various notions of resettable-soundness. Speci�cally, we de�neresettably-sound proofs and arguments, and justify our focus on the latter (where soundness holdsonly with respect to polynomial-size cheating provers, rather than for arbitrary cheating provers).3.1 De�nitionsWe adopt the formalism of resettable zero-knowledge (cf. [7]), with the understanding that here theadversary plays the role of the prover and has the power to reset the veri�er (or invoke it severaltimes on the same sequence of coins).7Given a speci�ed veri�er program V and a common input x, we consider polynomially-manyinteractions with the residual deterministic veri�er strategy Vx;r determined by uniformly selectingand �xing V 's coins, denoted r. That is, r is uniformly selected and �xed once and for all, and theadversary may invoke and interact with Vx;r many times. Each such interaction is called a session.Thus, the adversary and Vx;r engage in polynomially-many sessions; but whereas Vx;r's actions inthe current session are oblivious of other sessions (since Vx;r mimics the \single session strategy"V ), the actions of the adversary may depend on other sessions. Typically, x 62 L and the aim ofthe adversary, or cheating prover, is to convince Vx;r to accept x in one of these sessions. (In thecontext of resettable zero-knowledge, the adversary is called a cheating veri�er and its aim is to\extract knowledge" from the prover by possibly resetting it.)We consider two variants of the model. In the �rst (and main) variant, a session must beterminated (either completed or aborted) before a new session can be initiated by the adversary. Inthe second (interleaving) variant, this restriction is not made and so the adversary may concurrentlyinitiate and interact with Vx;r in many sessions. A suitable formalism must be introduced in orderto support these concurrent executions. (For simplicity, say that the adversary prepends a session-ID to each message it sends, and a distinct copy of Vx;r handles all messages prepended by each�xed ID.) Note that in both variants, the adversary may repeat in the current session the samemessages sent in a prior session, resulting in an identical pre�x of an interaction (since the veri�er'srandomness is �xed). Furthermore, by deviating in the next message, the adversary may obtain twodi�erent continuations of the same pre�x of an interaction. Viewed in other terms, the adversary7In contrast, in the context of resettable zero-knowledge, the adversary plays the role of the veri�er and has thepower to reset the prover. 9



may \e�ectively rewind" (or \reset") the veri�er to any point in a prior interaction, and carry-ona new continuation (of this interaction pre�x) from this point.For sake of simplicity, we will present only the de�nition of the main (non-interleaving) model.We can a�ord to focus on the non-interleaving model because the argument given in [7] by whichthe models are equivalent with respect to resettable zero-knowledge hold also with respect toresettable-soundness; the reason being that this argument merely shows how a resetting-adversaryin the interleaving model can be perfectly emulated by a resetting-adversary in the non-interleavingmodel.Following Canetti et al. [7], we extend the basic model to allow the adversary to interact(many times) with several random independent incarnations of V (rather than with a single one).That is, rather than interacting many times with one Vx;r, where r is randomly selected and x ispredetermined, the adversary may interact many times with di�erent Vxi;rj 's, where the rj's areindependently and randomly selected and the xi's are chosen dynamically by the adversary. Onemay be tempted to say that the ability to interact with several incarnations of V should not addpower to the model, but as shown in [7] this intuition is not valid.One important deviation from the formalism of Canetti et al. [7], is in not �xing a sequence of(polynomially-many) xi's ahead of time, but rather allowing the adversary to select such xi's onthe y. Furthermore, adversarial selection of inputs is used in both the completeness and soundnessconditions. (We comment that the latter strengthening of the de�nition is applicable and desirablealso in the setting of resettable zero-knowledge.)De�nition 3.1 (resettable veri�er { main model): A resetting attack of a cheating prover P � ona resettable veri�er V is de�ned by the following two-step random process, indexed by a securityparameter n.1. Uniformly select and �x t = poly(n) random-tapes, denoted r1; :::; rt, for V , resulting indeterministic strategies V (j)(x) = Vx;rj de�ned by Vx;rj (�) = V (x; rj ; � ), where x 2 f0; 1gnand j 2 [t].8 Each V (j)(x) is called an incarnation of V .2. On input 1n, machine P � is allowed to initiate poly(n)-many interactions with the V (j)(x)'s.The activity of P � proceeds in rounds. In each round P � chooses x 2 f0; 1gn and j 2 [t], thusde�ning V (j)(x), and conducts a complete session with it.Let P and V be some pair of interactive machines, and suppose that V is implementable in proba-bilistic polynomial-time. We say that (P; V ) is a resettably-sound proof system for L (resp., resettably-sound argument system for L) if the following two conditions hold:� Resettable-completeness: Consider an arbitrary resetting attack (resp., polynomial-size resettingattack), and suppose that in some session, after selecting an incarnation V (j)(x), the attackerfollows the strategy P .9 Then, if x 2 L then V (j)(x) rejects with negligible probability.� Resettable-soundness: For every resetting attack (resp., polynomial-size resetting attack), theprobability that in some session the corresponding V (j)(x) has accepted and x 62 L is negligible.8Recall that V (x; r; � ) denotes the message sent by the strategy V on common input x, random-tape r, afterseeing the message-sequence �.9In fact, in order to consider honest prover strategies that are implementable in probabilistic polynomial-time,we need to supply P with an adequate NP-witness. That is, let R be an NP-relation that corresponds to the NP-language L. Then we consider a resetting attack that for every selected x 2 L also provides P with (an NP-witness)w satisfying (x;w) 2 R. In this case, we require that when V (j)(x) interacts with P (w) it rejects with negligibleprobability. 10



We stress that by a resettably-sound proof we mean that the resettable-soundness requirementholds also for computationally unbounded cheating provers, whereas only polynomial-size cheatingprovers are considered in the de�nition of resettably-sound arguments.We also adapt the de�nition of a proof of knowledge to the resettable context. We assumethat the reader is familiar with the basic de�nition of a proof of knowledge (cf., [3]). The basicapproach is to link the probability that any prover strategy convinces the veri�er to the e�ciencyof extracting the claimed knowledge by using this prover strategy as an oracle. Thus, a de�nition ofa resettably-sound proof (or argument) of knowledge should refer to the probability of convincingthe veri�er during a resetting attack (rather than to the probability of convincing the veri�er inan ordinary interaction). On the other hand, we relax the de�nition by allowing the extractorto depend on the size of the prover strategy (i.e., we focus on polynomial-size provers and allowa di�erent extractor per each polynomial size-bound).10 The latter relaxation seems importantfor our positive results and is certainly su�cient for our applications (as well as for any otherapplication we can think of). For simplicity, we consider below only NP-relations.De�nition 3.2 (resettably-sound argument of knowledge, sketch): Let R � f0; 1g��f0; 1g� be anNP-relation for an NP-language L = fx : 9w (x;w)2Rg. We say that (P; V ) is a resettably-soundargument of knowledge for R if� (P; V ) is a resettably-sound argument for L, and� for every polynomial q there exists a probabilistic expected polynomial-time oracle machineE such that for every resetting attack P � of size q(n), the probability that EP �(1n) outputsa witness for the input selected in the last session is at most negligibly smaller than theprobability that P � convinces V in the last session.The focus on the last session of the resetting attack is done for simplicity and is valid without lossof generality (because the prover can always duplicate the interaction of any session of its choicein the last session).Important Note: We stress that, in the rest of this section, zero-knowledge mean the standardnotion (rather than resettable zero-knowledge).3.2 Limitations of resettably-sound proofsIn this subsection we justify our focus on resettably-sound arguments (rather than resettably-soundproofs): As demonstrated below, resettably-sound proofs exist only in an almost trivial manner,and more annoyingly resettably-sound zero-knowledge proofs exist only for languages having (non-uniform) polynomial-size circuits (and thus are unlikely to exist for all NP).Theorem 3.3 Suppose that there exists a resettably-sound proof for L. Then, L is contained innon-uniform NP (i.e., L 2 NP=poly). Furthermore, if this proof system is zero-knowledge then Lis contained in non-uniform polynomial-time (i.e., L 2 P=poly).10In fact, it su�ces to allow a di�erent extractor per each polynomial bound on the number of sessions initiatedby the prover. (Such a relaxation coincides with the standard de�nition for the case of a single session.) However,since we focus on polynomial-size provers, we may as well refer to their size.11



Note that AM � NP=poly does have resettably-sound proof systems (e.g., the �rst message sentin a properly ampli�ed AM-proof system can be used to correctly prove membership of all stringsof adequate length).11 Similarly, BPP � P=poly does have resettably-sound zero-knowledge proofsystems (in which the veri�er just decides by inspecting the input). We believe that Theorem 3.3holds also with NP=poly replaced by AM and P=poly replaced by BPP .Proof Sketch: Intuitively, the veri�er's randomness is a-priori bounded, whereas the number ofsessions in which it takes place (in a resettable attack) is not a priori bounded. Thus, there must bea session in which the veri�er uses very little truly new randomness (i.e., there is a session in whichthe veri�er's moves are almost determined by the history of previous sessions). Loosely speaking,the limitations of deterministic veri�ers (with respect to interactive proofs and zero-knowledgeproofs; cf., [18] and [25], respectively) should apply here. The actual proof is more complex; seebelow.We start with the main part of the theorem: Suppose that (P; V ) is an interactive proof as in themain part of the theorem, and suppose that on common input x machine V uses a random-tapeof length m = poly(jxj). We consider a (generic) deterministic cheating (resetting) prover thatinteracts with V for several sessions. Each possible execution sequence of i sessions determines aset of possible veri�er tapes that are consistent with the veri�er's actions in these i sessions. Wesay that a certain transcript of i sessions is critical if there is no way for the prover to interact inthe i+1st session so that the possible sets determined by the i+1 session-executions are all smallerthan 99% of the size of the set determined by the i �rst sessions. (The above prover's actionsinclude the selection of a common input of adequate length.)Let us consider such a critical transcript, and denote by S the set of possible veri�er tapes thatare consistent with the veri�er's actions in this transcript. In fact, we consider a critical transcriptand a corresponding set S so that completeness and soundness of the next session hold also whenthe veri�er's random-tape is uniformly distributed in S.12 The actions of V during the next sessioncan be (almost) determined ahead of time by the cheating prover (which, being computationallyunbounded, may uniformly select s 2 S and act according to the tape s). Thus, given the criticaltranscript, one may provide \almost an NP-proof" for membership in L. It is instructive to thinkof S as a singleton, in which case the prover can supply NP-proofs for membership in L. In general,when S is not a singleton, we construct a non-uniform constant-round proof system as follows.The new (non-uniform) veri�er incorporates in its code a critical transcript � (possibly of severalsessions) and the cardinality of the set S of the corresponding tapes of V that are consistent withthis transcript. On common input x, the new prover uniformly selects s 2 S and sends to the veri�erthe corresponding transcript of the next session that is consistent with the actions of V on inputx and random-tape s. Next, the parties execute a (constant-round) random selection protocol sothat the new veri�er obtains an almost-random r 2 S. (The new veri�er uses the critical transcript� and jSj in order to execute its part in the protocol, which requires the veri�er to know jSj andto be able to decide membership in S. The fact that the prover is computationally unbounded isnecessary for playing its role in the random selection protocol.) Finally, the new veri�er accepts xif and only if the the transcript of the current session (sent by the prover) is consistent with theactions of V on input x and random-tape r (rather than s). Observe that the new interactive proofemulates almost perfectly the execution of the next session of the original proof system (under aresetting attack). Using the hypothesis that completeness and soundness of the next session (playedby V ) hold also when the veri�er's random-tape is uniformly distributed in S, it follows that the11Recall that AM stands for the class of languages having two-round public-coin interactive proofs.12The last sentence makes sense only when considering computationally-unbouded cheating provers.12



new proof system satis�es the completeness and soundness properties. Thus, L has a non-uniformconstant-round proof system. Using known results about constant-round interactive proofs (i.e.,IP(O(1)) � AM and AM � NP=poly), the �rst part of the theorem follows.We now turn to the second part of the theorem, and consider the case where the above(resettably-sound) proof system is zero-knowledge. We consider the critical transcript � and set Sas de�ned above. Recall that the completeness and soundness of the next session hold also whenthe veri�er's random-tape is uniformly distributed in S. Fixing two random strings s; r 2 S, andusing the simulator guaranteed by the (ordinary) zero-knowledge condition of (P; V ), we obtain anon-uniform polynomial-size circuit that decides whether or not x (of suitable length) is in L asfollows. The circuit, which incorporates the strings s and r, uses the original simulator to generatea transcript of an interaction of V 0 with P , where V 0 behaves as V on input x and coins s. Thecircuit accepts if and only if the generated transcript is accepting and consistent with the actionsof V on input x and coins r (rather than coins s). Using the hypothesis that completeness andsoundness of the next session (played by V ) hold also when the veri�er's random-tape is uniformlydistributed in S, it follows that the circuit decides correctly.3.3 On the triviality of resettably-sound black-box zero-knowledgeIn this section we explain why the resettably-sound zero-knowledge arguments presented in thenext subsection are not accompanied (as usual) by a black-box simulator. Speci�cally, we showthat only a language in BPP can have a resettably-sound argument with a black-box zero-knowledgesimulator (and, in fact, BPP languages have trivial \proof" systems in which the prover does noteven take part). Independently, Reyzin in [31] showed that Theorem 3.4 holds even in the public-keymodel.Theorem 3.4 Suppose that there exists a resettably-sound argument for L, and that this protocolis black-box zero-knowledge. Then, L 2 BPP.Proof Sketch: Intuitively, a (probabilistic polynomial-time) cheating prover mounting a resettableattack on the veri�er, may emulate the actions of the black-box simulator (with access to thedeterministic veri�er de�ned by �xing the random-tape). Thus, in case x 2 L, this cheating provercauses the veri�er to accept x (because the emulated simulator succeeds in producing an acceptingconversation). On the other hand, by the resettable-soundness condition, the cheating prover isunlikely to cause the veri�er to accept x 62 L. Finally, observing that the cheating prover describedabove is implementable in probabilistic polynomial-time, we obtain a probabilistic polynomial-timedecision procedure for L. Details follows.Let (P; V ) be a resettably-sound argument for L, and letM be a (probabilistic polynomial-time)black-box simulator such that for every family of polynomial-size circuits fVxgx2L the distributionsfhP; Vxi(x)gx2L and fMVx(x)gx2L are computationally indistinguishable, where hP; Vxi(x) meansthe transcript of an ordinary interaction between (non-resettable) interactive machines. Using M ,we construct a cheating prover P � that operates in the model of resettable-soundness and thusmay reset the veri�er. (In fact, P � uses its input, x, in all sessions it conducts with Vx, ratherthan selecting adaptively an input for each session.) The cheating prover P �(x) just emulates theactions of M(x), while treating the (resettable) veri�er as an oracle. (Recall that each query to theoracle corresponds to a sequence of prover messages, and so obtaining the corresponding answeramounts to initiating a new session with Vx and sending messages as in the given sequence/query.)We will focus on the last session in the interaction of the cheating prover with the veri�er, which13



corresponds to the output produced by M (since, w.l.o.g., M performs a full session correspondingto its output before writing-out its output).For every common-input x and random-input r (for V ), we consider the (deterministic) veri�erstrategy Vx;r (as in De�nition 3.1). By the completeness condition, for every x 2 L and almost allr's, with high probability, the strategy Vx;r accepts x when interacting with (the honest prover) P .Thus, with high probability over the choices of r and the internal coin tosses of M , it is the casethat MVx;r(x) is an accepting transcript (of a single session). It follows that (with high probabilityover the internal coin tosses of V and of the cheating resetting prover P �), the last session inthe interaction of Vx;r with P � on common input x 2 L is convincing. On the other hand, by theresettable-soundness condition, with high probability, every session of V (with any feasible resettingcheating prover) on common input x 62 L is not convincing. Thus, with very high probability, thelast session in the interaction of Vx;r with P � on common input x 62 L is not convincing.Combining the (probabilistic polynomial-time) cheating prover P � with V , we obtain a proba-bilistic polynomial-time decision procedure for L: On input x, we select a random r and emulatethe interaction of the cheating prover P � with Vx;r. We accept x if and only if the last session inthis interaction is accepting.3.4 How to construct resettably-sound zero-knowledge argumentsThe main result of this section is obtained by combining the following transformation with a recentresult of Barak [1].Proposition 3.5 (a transformation): Let L 2 NP and R be a corresponding witness relation.Suppose that (P; V ) is a constant-round public-coin argument of knowledge for R, and let ffs :f0; 1g� ! f0; 1gjsjg be a collection of pseudorandom functions. Assume, without loss of generality,that on common input x, in each round, the veri�er V sends a uniformly distributed jxj-bit string.Let Ws be a deterministic veri�er program that, on common input x 2 f0; 1gjsj, emulates V exceptthat it determines the the current round message by applying fs to the transcript so far. Let Wbe de�ned so that on common input x and uniformly random-tape s 2 f0; 1gjxj, it acts as Ws(x).Then:1. (P;W ) is a resettably-sound argument for L. Futhermore, (P;W ) is a resettably-sound argu-ment of knowledge for R.2. If (P; V ) is zero-knowledge then so is (P;W ). Furthermore, if the simulator of (P; V ) runs instrict polynomial-time, then so does the simulator of (P;W ).3. If (P; V ) is witness-indistinguishable then so is (P;W ).Recall that only languages in BPP have a constant-round public-coin zero-knowledge argumentwith a black-box simulator. Thus, Proposition 3.5 may yields something interesting only whenapplied to protocols that do not have a black-box simulator.13 Recall that no such (non-trivial)zero-knowledge arguments were known until very recently. Here is where the result of Barak [1]13In particular, we may apply Proposition 3.5 to some known constant-round public-coin interactive proofs thatare known to be witness-indistinguishable (e.g., parallel repetitions of the basic zero-knowledge proof of Goldreich,Micali and Wigderson [23]). This yields witness-indistinguishable arguments that are resettably-sound. However,for witness-indistinguishable protocols, stronger results are known; see Section 1.4. Thus, we focus below on zero-knowledge protocols. 14



plays a role: Using his recent constant-round public-coin zero-knowledge argument of knowledgefor NP (which indeed uses a non-black-box simulator), we obtain resettably-sound zero-knowledgearguments (of knowledge) for NP . This establishes Theorem 1.1.Proof Sketch for Proposition 3.5: Parts 2 and 3 follows immediately because the zero-knowledge condition (as well as the witness-indistinguishability condition) does not refer to thehonest veri�er (which is the only thing we have modi�ed) but rather to all possible polynomial-sizeadversaries (representing cheating veri�ers).As a preliminary step towards proving Part 1, we consider an imaginary veri�er (denoted WF )that, on common input x, uses a truly random function F : f0; 1g� ! f0; 1gjxj (rather than apseudorandom function fs, for jsj = jxj). Loosely speaking, by the de�nition of pseudorandom-ness, all non-uniform polynomial-size provers must behave in essentially the same way under thisreplacement.(The actual proof is slightly more subtle than one may realize because in our context this\behavior" is the ability to convince the veri�er of the membership in L of x 62 L that is chosenon the y by the prover. The problem is how will the distinguisher determine that this eventtook place (notice that the distinguisher itself may not necessarily know whether or not x 2 L).Thus, we actually proceed as follows. First, we show (below) that P 0 may convince WF to acceptan input not in L only with negligible probability. Next, we use the hypothesis that (P; V ) is anargument of knowledge of an NP-witness, to extract such witnesses for every input accepted byWF .Speci�cally, for any input accepted by WF we may employ the knowledge-extractor to to a related(non-resetting) P 00 (de�ned below) and obtain an NP-witness. Thus, for the (P 0;WF ) transcript,we expect to couple each accepted input with a corresponding NP-witness. If this does not occurwith respect to the (P 0;Ws) transcript (where a pseudorandom function), then we distinguish arandom function from a pseudorandom one. Otherwise, we are done (because when a randomfunction is used all accepted inputs will be coupled with NP-witness guaranteeing that they areindeed in L.)14We claim that for any polynomial-size cheating prover P 0 that convinces the resettable-veri�erWF to accept some common input x with probability �, there exists a polynomial-size cheatingprover P 00 that convinces the original (non-resettable) veri�er V to accept the same x with proba-bility at least �=mc, where m is a bound on the number of messages sent by the prover P 0 and cis the number of rounds in the original protocol. Furthermore, we shall show how to transform acheating prover for the resettable-veri�er setting into a cheating prover for the standard setting ofinteractive proofs. This will establish Part 1 (both its main claim and the furthermore-clause).For sake of simplicity, we shall assume that the original cheating prover P 0 tries to convincethe resettable-veri�er WF to accept a �xed x, and only invokes a single incarnation of WF (anddoes so on common input x). The argument extends easily to the general case in which P 0 invokesmultiple incarnations of WF and selects the common inputs adaptively.The new cheating prover, denoted P 00, tries to convince the original (non-resettable) veri�erV to accept x, while emulating the actions of a cheating prover P 0 that may reset the imaginaryresettable veri�er WF . The new cheating prover P 00 proceeds as follows: It uniformly selectsi1; :::; ic 2 f1; :::;mg, and invokes (the resetting prover) P 0 while emulating an imaginary veri�erWF as follows. If the pre�x of the current session transcript is identical to a corresponding pre�x of14The above text su�ces for establishing the main part of Part 1. To establish the furthermore-part, we employanalogous reasoning with respect to the event that P 0 convinces WF (or Ws) to accept an input without \knowing"a corresponding NP-witness, where \knowing" means that our extraction succeeds. As before, this event occurs withnegligible probability when P 0 interacts with WF and therefore the same must hold with respect to the interactionof P 0 with Ws. 15



a previous session, then P 00 answers by copying the same answer it has given in the previous session(to that very same session transcript pre�x). If (in the current session) P 0 sends along a messagethat together with the previous messages of the current session forms a new transcript pre�x (i.e.,the pre�x of the current session transcript is di�erent from the pre�xes of all prior sessions), thenP 00 answers according to the following two cases:1. The index of the current message of P 0 does not equal any of the c integers i1; :::; ic selectedabove. In this case, P 00 provides P 0 with a uniformly selected jxj-bit long string.2. Otherwise (i.e., the index of the current message of P 0 equals one of the c integers i1; :::; ic),P 00 forwards the current message (of P 0) to V and feeds P 0 with the message it obtains fromV . (We stress that these are the only c messages of P 0 for which the emulation involvesinteraction with V .)In both cases, the message passed to P 0 is recorded for possible future use.Clearly, for any possible choice of the integers i1; :::; ic, the distribution of messages seen by P 0when P 00 emulates an imaginary veri�er is identical to the distribution that P 0 sees when actuallyinteracting with such an imaginary veri�er. The reason being that in both cases di�erent pre�xes ofsession transcripts are answered with uniformly and independently distributed strings, while sessiontranscripts with identical pre�xes are answered with the same string. (Observe that indeed thisemulation is possible because the original veri�er is of the public-coin type, and thus it is possibleto e�ciently emulate the next veri�er message.)15Towards the analysis, we call a message sent by P 0 novel if together with the previous messages ofthe current session it forms a new transcript pre�x (i.e., the pre�x of the current session transcriptis di�erent from the pre�xes of all prior sessions). Recall that the novel messages are exactlythose that cause P 00 to pass along (to P 0) a new answer (rather than copying an answer givenin some previous session). The UrMessage16 of a non-novel message is the corresponding messagethat appears in the �rst session having a transcript-pre�x that is identical to the current sessiontranscript-pre�x. That is, the answer to the UrMessage of a (non-novel) message is the one beingretrieved from memory in order to answer the current message. The UrMessage of a novel messageis just the message itself. Using this terminology, note that the new prover P 00 succeeds in cheatingV if the chosen integers i1; :::; ic equal the indices (within the sequence of all messages sent by P 0)of the c UrMessages that correspond to the c messages sent in a session in which P 0 convinced theimaginary veri�er. Since with probability � such a convincing session exists, P 00 succeeds providedit has guessed its message indices (i.e., c indices out of m).4 Constructing rWI and rZK Protocols: A paradigm revisitedA general paradigm for constructing rWI (resettable witness indistinguishable) and rZK (resettablezero-knowledge) protocols was presented in [7]. They considered a certain class of proof systems,called admissible proof systems, and de�ned a slight strengthening of the concurrent model, calledthe hybrid model. Next, they presented a transformation applicable to admissible proof systemsand showed that if the original proof system is admissible and WI (respectively, ZK) in the hybridmodel, then the transformed proof system is rWI (respectively, rZK).15In contrast, if the veri�er were not of the public-coin type, then generating a next veri�er message might haverequired to invert an arbitrary polynomial-time computable function (mapping the veri�er's coins to its �rst message.)16We use the German pre�x Ur, which typically means the most ancient version of.16



In this section, we generalize the class of admissible proof systems and show that for this moregeneral class, the transformation of [7] also holds. We use this generalization for showing thatthe admissible hybrid WI argument of knowledge presented in Section 5 yields a rWI argumentof knowledge. (We note that this generalization is necessary, since the argument of knowledge ofSection 5.1 is not admissible by the de�nition of [7].)4.1 The Generalized Class of Admissible ProtocolsIntuitively, as in [7], we consider protocols (P; V ) in which the �rst veri�er-message \essentiallydetermines" all its subsequent messages. That is, the only freedom retained by the veri�er aftersending its �rst message is either to abort (or act so that the prover aborts) or to send a practicallypredetermined message.We formalize the above intuition as follows. After the �rst veri�er-message, called the determin-ing message, each subsequent message of the veri�er is categorized as either a main message or as amessage belonging to an authenticator module. Every main message is followed by an authenticatormodule and the role of this module is to assure the prover that the main message sent is consistentwith the determining message. In the special case that the �rst veri�er-message is a commitmentand the main veri�er-message is the revealed value, a possible authenticator module is simply the(single) message consisting of the extra decommitment information that establishes the validity ofthis revealed value. However, in general, the authenticator module may be a protocol consistingof a number of messages (note that unlike the main message, these messages may not be deter-mined by the veri�er's determining message). For example, rather than sending the decommitmentinformation, the veri�er may authenticate the revealed value by proving (say, in zero-knowledge)that this value is indeed the value committed to in the determining message. In this case, theauthenticator module contains more than one message and varies depending on the randomness ofboth the prover and veri�er.In an admissible protocol (as de�ned below), the veri�cation of the authenticator module de-pends only on the prover's random-tape, the �rst veri�er-message and the accompanying mainmessage. (That is, the prover does not consider any other messages sent during the protocol whenchecking the validity of an authenticator module.) Furthermore, the prover's subsequent actionsin the rest of the protocol must depend solely on whether the authenticator module is accepted(otherwise it aborts), and in case it is accepted the subsequent actions must depend only on themain message.We �rst set some useful conventions regarding the presentation of protocols in the concurrentand resettable settings. The �rst message in a session is always sent by the veri�er and speci�es anincarnation of P . The second message is sent by the prover, and is called the prover initializationmessage. (In our protocol below, this message will actually be empty; however we include it inorder to cover the class of admissible protocols de�ned in [7].17) As mentioned above, the thirdmessage, sent by the veri�er, is called the determining message of the session. (By our convention,the determining message includes the previous two messages.) This terminology will become self-explanatory below.De�nition 4.1 (admissible proof-systems): A proof-system (P; V ) is called admissible if the follow-ing requirements hold:1. The prover P consists of two parts, P1; P2. Similarly, the prover's random input ! is parti-tioned into two disjoint parts, !(1); !(2), where !(i) is given to Pi. The prover initialization17This prover initialization message is important for the constructions shown in [7].17



message is sent by P1.2. Each veri�er message (other than the �rst one) is �rst received by P1. If the message isa main message, then P1 interprets the following messages as belonging to an authenticatormodule. P1 decides whether to accept the authenticator module or to abort based on the �rstveri�er-message (called the determining message), the main message and the transcript of theauthenticator module itself.18 If P1 accepts, it forwards the main message to P2, who generatesthe next prover message.3. Let V � be an arbitrary (deterministic) polynomial-size circuit, where V � may execute a resetting-attack on P (as described in Distribution 1 of De�nition 2.1). Recall that all messages sentby V � to P are prepended by the full transcript of messages sent so far. Thus, in particular,the pre�x of any message sent by V � contains the determining message. Now, let m be somedetermining message and let V � interact with some incarnation of P = (P1; P2). Then, ex-cept with negligible probability, V � is unable to generate two di�erent main messages for someround ` whose pre�x contains the same determining message m, and yet P1 accepts both.There are several di�erences between our generalized de�nition of admissible protocols and thede�nition of [7]. Firstly, in [7], the authenticator is limited to being a single message, rather thana module. Furthermore, P1's decision whether or not to accept the authenticator is not dependenton its randomness !(1) (and so is universally veri�able). Finally, in [7], the requirement of item (3)is stated with respect to V � who does not have the capability of executing a resetting-attack onP .19 However, here this (stronger) requirement is needed for the transformation.4.2 The hybrid model and the CGGM transformationThe hybrid model. We consider the same hybrid model as that de�ned in [7] and recall thede�nition here. Loosely speaking, the hybrid model is a model of attacks that stands somewherebetween the concurrent and resettable models. That is, in this model the veri�er is given theability to \partially" reset the prover (while otherwise interacting in a concurrent setting). Morespeci�cally, the di�erence between the concurrent model and the resettable model is that in theresettable model the \cheating veri�er" V � can invoke many incarnations of the prover with thesame random input !, whereas in the concurrent model any two incarnations of the prover haveindependently chosen random inputs. The hybrid model is de�ned for admissible protocols asde�ned above (where the random input of the prover is of the form ! = !(1); !(2)) and providesthe following intermediate power to V �. Here V � can invoke many incarnations of the prover withthe same value of !(1); but any two incarnations of the prover must have independently chosenvalues for !(2). Thus, the randomness used in the prover initialization message and the veri�cationof the authenticator modules may be reused (as in the resettable setting). On the other hand,the randomness used for the other prover messages (i.e., those determined by P2) is fresh for eachsession (as in the concurrent setting).18We stress that P1's decision may depend on the randomness !(1). Thus, unlike in [7], we do not require that thevalidity of the veri�er's messages be universally veri�able (but rather may be veri�able only by the prover).19In the context of [7], if the prover speci�ed by the protocol de�nition is probabilistic polynomial-time, thenthere is no di�erence between the power of an adversarial V � who can reset P and one who cannot. That is, thetransformation from admissible hybrid ZK (resp., WI) to rZK (resp., rWI) holds either way. This is due to theuniversal veri�ability of the authenticators de�ned there. However, in our case, where the authentication may beinteractive and dependent upon the prover's randomness, it is crucial to the transformation that in an admissibleprotocol, V �'s main messages are determined even if it is able to reset the prover.18



More formally, in admissible proof systems an incarnation of the prover is identi�ed via threeindices: P (i;j;k) = Pxi;yi;!j;k , where !j;k = !(1)j ; !(2)k . That is, i speci�es the input, j speci�es therandom input to P1 and k speci�es the random input to P2.De�nition 4.2 (hZK and hWI): A hybrid cheating veri�er V � works against admissible proof sys-tems as described above. That is, V � proceeds as in Distribution 1 of De�nition 2.1 with theexception that V � cannot interact with incarnations P (i;j;k) and P (i0;j0;k0) such that k = k0. Anadmissible proof system is hZK (resp., hWI) if it satis�es De�nition 2.1 with respect to hybridcheating veri�ers.The transformation. We now recall the transformation of [7] from admissible proof systems toresettable ones:Construction 4.3 Given an admissible proof system (P; V ), where P = (P1; P2), and a collectionffg of pseudorandom functions (see [20]), we de�ne a new proof system (P;V) as follows.The new veri�er is identical to V .The new prover: The new prover's randomness is viewed as a pair (!(1); f), where !(1) 2 f0; 1gpoly(n)is of length adequate for the random-tape of P1, and f : f0; 1g�poly(n) ! f0; 1gpoly(n) is a de-scription of a function taken from an ensemble of pseudorandom functions. For conveniencewe describe the new prover, P, as a pair P = P1;P2. P1 is identical to P1 with random-tape!(1); P2 emulates the actions of P2 with a random tape that is determined by applying f tothe determining message and the input. That is, upon receiving the determining message,denoted msg, P2 sets !(2) = f(x; !(1); msg) and runs P2 with random input !(2). From thisstep on, P2 emulates the actions of P2 using !(2) as P2's random-tape.4.3 Validity of the transformation w.r.t the generalized classWe now prove that the above transformation su�ces for achieving resettable witness indistinguisha-bility and resettable zero-knowledge. Our proof is similar in spirit to that of [7], with some crucialdi�erences. In particular, our treatment of main messages and their corresponding authenticatormodules is completely di�erent (and signi�cantly more complex).Theorem 4.4 Suppose that (P; V ) is admissible, and let P be the prover strategy obtained from Pby applying Construction 4.3. Then:� Assuming that pseudorandom functions exist, for every probabilistic polynomial-time resettingcheating veri�er V� (as in De�nition 2.1) there exists a probabilistic polynomial-time hybridcheating veri�er W � (as in De�nition 4.2) so that hP (y);W �i(x) is computationally indistin-guishable from hP(y);V�i(x).� If (P; V ) is a proof (or argument) of knowledge, then so too is (P;V).Corollary 4.5 For (P; V ) and (P;V) as in Construction 4.3, if (P; V ) is hWI then (P;V) is rWI.Similarly, if (P; V ) is hZK then (P;V) is rZK.Proof of Theorem 4.4 (sketch): Our analysis refers to a mental experiment in which P utilizesa truly random function rather than a pseudorandom one. As usual, the corresponding views ofthe veri�er V� in the two cases (i.e., random versus pseudorandom function) are computationally19



indistinguishable. From this point on, we identify the random-tape of P with a truly randomfunction. Recall that hP(y);V�i(x) denotes the view (or output) of V� after interacting with P onvarious inputs under the resettable model. Similarly, hP (y);W �i(x) denotes the view (or output)of W � after interacting with P on various inputs under the hybrid model.We construct a hybrid-model adversary, W �, that interacts with incarnations of P , denotedP (i;j;k) (as in Def. 4.2). To satisfy De�nition 4.2, this W � will invoke each P (i;j;k) at most once, andfurthermore if it invokes P (i;j;k) then it will not invoke any other P (i0;j0;k). Essentially, W � servesas a \mediator" between adversary V� and (the incarnations) of the prover P . That is, W � runsV�; whenever V� starts a new session whose determining message is di�erent from all previousones, W � merely relays the messages of this session between V� and P . When V� \replays" anexisting session s (i.e., V� starts a new session whose determining message is identical to that ofan existing session s), W � responds to V� using the answers of P in session s, without interactingwith P . Finally W � outputs whatever V� outputs.The construction of W �. Working in the hybrid model, W � handles the messages of V� asfollows (we note that the handling of authenticator messages sent by V� is described in Item (4)and this is the only deviation from the description in [7]):1. V� initiates a new session with some P(i;j): In this case W � initiates a new session withP (i;j;k), where k is a new index not used so far. Next it obtains the prover initializationmessage, and forwards it to V�.We stress that a session with P (i;j;k) may be invoked (in the hybrid model) even if a sessionwith some P (i;j;k0), with k0 6= k, was invoked before. In the latter case, since the randomness!(1)j is identical in both sessions, the prover initialization message obtained from P (i;j;k) isidentical to the prover initialization message obtained previously from P (i;j;k0).2. V� sends a new determining message to P(i;j): That is, we refer to the case where V� sendsa determining message in the current session, and assume that this message is di�erent fromall determining messages sent in prior sessions with P(i;j). Let msg denote the message sentby V�. Then W � sends msg to one of the sessions of the form P (i;j;�) that still awaits adetermining message, obtains the response, and forwards it to V�. It designates this session(with P(i;j)) as the active session of (i; j; msg), and stores the prover's response.(All subsequent sessions of V� with P(i;j) in which the determining message equals msg willbe \served" by the single session of W � designated as the active session of (i; j; msg).)3. V� repeats a �rst-message to P(i;j): That is, we refer to the case where the current messagesent by V� is the determining message in the current session, and assume that this messageequals a determining message, msg, sent in a prior session of V� with P(i;j). In this case, W �retrieves from its storage P 's answer in the active session of (i; j; msg), and forwards it to V�.We stress that W � does not communicate with any session of P in this case. (Note that ifW � were to send the same message msg to two sessions of the form P (i;j;�) then the responsescould have di�ered, whereas V� expects to see exactly the same answer in sessions with P(i;j)in which it sends the same msg.)4. V� sends a main message to P(i;j): That is, we refer to the case where V� sends a mainmessage in the current session with P(i;j). The key point here is to ensure that W � forwardsthe message to P in the active session of (i; j; msg) only if the message is valid. Actually,20



the requirement is even more strict and demands that W � forwards the message to P only ifP itself would accept the authenticator. We stress that W � must not forward to an activesession of P , any invalid main message of V� (or, likewise messages from an authenticatormodule that P would reject). Otherwise, P would close the active session and W � would notbe able use it in order to handle a corresponding valid message or accepting authenticatormodule that may be sent by V� in a future session.20Therefore, at this point W �'s aim is to check whether or not P , in the active session of(i; j; msg), will accept the main message and authenticator module from V�. Machine W �does this as follows: W � invokes a new session with P (i;j;k), where k is a new index not usedso far. We stress that this invocation is used only by W � and messages from it are neverpassed to V�. Then, after invoking P (i;j;k), machine W � sends it the veri�er's determiningmessage msg. Next, W � replays every message to P (i;j;k), as sent by V� in the active session of(i; j; msg), until the current main message. Now, W � is ready to use P (i;j;k) to check whetheror not this main message and authenticator module from V� will be accepted by the activesession of (i; j; msg).Before showing how this is done by W �, we �rst claim that P (i;j;k)'s response to the currentmain message and the corresponding authenticator is identical to the way P would haveresponded in the active session of (i; j; msg). First, note that msg is a valid determiningmessage for the session with P (i;j;k) (even though V� sent it in a session with P (i;j;k0) forsome k0 6= k). This is because the validity of msg can depend only on the prover initializationmessage, which in turn depends only on the input xi and the random string !(1)j . Since xiand !(1)j are common to both P (i;j;k) and the active session of (i; j; msg), we have that theprover initialization message is the same in both cases. Next, we argue that a main messageand authenticator module is accepted by the P (i;j;k) if and only if it is accepted by theactive session of (i; j; msg). This is because P (i;j;k) and the active session of (i; j; msg) usethe same randomness (i.e., !(1)j ) for verifying the authenticator modules. Furthermore, theauthentication procedure of P depends only on this randomness, the veri�er's determiningmessage and the current main message. Therefore, if these authenticator modules are acceptedby the active session of (i; j; msg), then they are also accepted by P (i;j;k), and visa versa. Thisimplies that all the main messages and authenticator modules sent by W � to P (i;j;k) areaccepted by P (i;j;k) (recall that these authenticator modules were previously accepted by theactive session of (i; j; msg)). We therefore conclude that at this point P (i;j;k) expects to receivea main message from V � (and has not aborted), exactly as P in the active session of (i; j; msg).Now, the argument above also implies that if P (i;j;k) accepts the current main message andauthenticator module from V�, then P in the active session of (i; j; msg) will also accept thecurrent main message authenticator module.Thus, all W � needs to do in order to check if the current main message and authenticatormodule will be accepted by the active session of (i; j; msg) is to see if P (i;j;k) accepts them. So,20One may think that a possible solution to this problem is to �rst have W � verify the authenticator module itself.Then, if the authentication succeeds, W � knows that the main message is valid. Therefore, W � can forward thismessage to P and continue with the authenticator module (after \rewinding" V� back to this point). The problemthat arises with such a strategy is that although W � may accept the authenticator, this does not mean that P will.(For example, V�'s strategy may be such that the authenticator is accepted with probability 1=2. Then, even thoughthe main message is valid, W � may accept the authenticator and P may reject it.) Furthermore, by the de�nitionof admissible protocols, we allow the authenticator module to be such that only P (with its randomness !(1)) canauthenticate it. This means that W � must use P in some way in order to verify the module, without aborting anactive session in the case that the authentication fails. 21



W � continues by sending the current main message to P (i;j;k) and forwarding the messagesof the authenticator module between V� and P (i;j;k). Following this, W � receives P (i;j;k)'sresponse (which is either abort or the next prover message). We di�erentiate between twocases:� If P (i;j;k) aborts after completing the authentication, then W � sends the standard abortmessage to V�. We stress that in this case no messages are sent to the active session of(i; j; msg).� If P (i;j;k) does not abort after completing the authentication, then we know that the mainmessage is valid and the accompanying authenticator module will be accepted in the activesession of (i; j; msg). We now distinguish two cases, depending on whether this is the �rsttime that an accepting main-message and authenticator of the current round was sent in asession of V� with P(i;j), in which the determining message equals msg. Let � > 1 denotethe index (within the current session) of the current message sent by V�.(a) The current session is the �rst session of V� with P(i;j) in which the determiningmessage equals msg and the �th veri�er-message along with its authenticator moduleis accepted by some P (i;j;�): In this case W � forwards the current main message to theactive session of (i; j; msg). Then, W � rewinds V� to the point after it sends the mainmessage (before beginning the authenticator module) and relays all messages from theauthenticator module between V� and the active session of (i; j; msg). Finally, aftercompleting the authenticator module, W � obtains P 's response (i.e., its response tothe main message), stores it, and forwards it to V�.(As explained above, we are assured here that W � obtains the next prover messagefrom the active session of (i; j; msg) and not abort.)(b) The current session is not the �rst session of V� with P(i;j) in which the determiningmessage equals msg and the �th veri�er-message along with its authenticator is acceptedby some P (i;j;�): In this case W � does not communicate with any session of P . Instead,it merely retrieves the corresponding prover response from its storage, and forwards itto V�. (Here, W � does not rewind V� and as such the next message that V� expectsto receive is indeed the prover's response.) Note that the corresponding answer isstored in the history of the active session of (i; j; msg).21(Note that by De�nition 4.1, it is infeasible for V� to send two di�erent main mes-sages along with authenticator modules that are accepting in the same round of twosessions starting with the same veri�er determing message. Thus, the responses ofP(i;j) to valid �th messages, in sessions starting with the same determining message,are identical. It follows that V� will be content with the identical responses suppliedto it by W �.)5. V� terminates: When V� sends a termination message, which includes its output, W � justoutputs this message and halts.We stress that W � is de�ned to operate in the hybrid model. That is, in every session it invokeswith P , a di�erent incarnation is used, and furthermore for every k the adversaryW � holds at mostone session with an incarnation of the form P (�;�;k). Thus the second part of P 's random-tape in this21We stress that it is also imperative in this case that W � �rst veri�es that P will accept the authenticator. Thisis because it is possible that in the past V � sent the same main message with an accepting authenticator and thistime V � sends it with a rejecting authenticator. Therefore, were W � to reply to V � with the next prover messagewithout �rst checking if P accepts the authenticator, the simulation would no longer be accurate.22



session is independent from the random-tape in all other sessions. In contrast, V� that operatesin the (stronger) resettable model may invoke each incarnation of P many times, and so the tape!(2) as determined (by the same incarnation of P) in these sessions is identical. Nevertheless, weclaim that the output of W � is computationally indistinguishable from the output of V�. The keyobservations justifying this claim refer to the actions of P in the various sessions invoked by V�:� In sessions having di�erent determining messages, the second parts of the random-tape (i.e.,the !(2) part) are independent. The same is true for sessions in which a di�erent incarnationP(i;j) is used. This is because P determines !(2) by applying a random function on the triplet(xi; !(1)j ; msg), where msg is the determining message. (Recall that for i 6= i0, the inputs xi andxi0 are distinct and thus for di�erent incarnations of P, the randomness of !(2) is independent.)This explains the strategy of W � in opening a new incarnation of P (i;j;k) whenever V � sends anew determining message (or invokes a new P(i;j)).� In sessions having the same common-input, the same !(1), and the same determining message,the actions of P are essentially determined by the determining message. This is because in thiscase P determines the same !(2), and practically the only freedom of V� with respect to themain messages is to choose whether to send the predetermined value or to abort. Thus, P2'sresponses (that are dependent only on !(2) and V�'s main messages) are also determined here.We note that by the de�nition of admissible protocols, V�'s lack of freedom in sending its mainmessages holds even when V� can execute a resetting attack (and it therefore holds here, in thehybrid setting, in which V� is emulated).Therefore, the transcripts of all these sessions correspond to various (augmented) pre�xes ofone predetermined transcript, where each pre�x is either the complete transcript or a strict pre�xof it augmented by an abort message. This explains W �'s strategy of replaying the prover'sresponse in the case that V � repeats a main message in a session with the same determiningmessage.The corresponding transcripts (of imaginary sessions with P) are generated byW � by merely copy-ing from real sessions it conducts with P . Each set of P(i;j)-sessions sharing the same determiningmessage, is generated from a single (distinct) session with P (called the active session of thatmessage). The way in which W � detects and handles invalid main messages of V� (or likewise,main messages with accompanying authenticator modules that fail) guarantees that it never abortsan active session, and so such a session can always be extended (up-to completion) to allow thegeneration of all P(i;j)-sessions sharing that determining message. We stress again that W � doesnot need to (and in fact does not) abort a session in order to produce P's abort message; it merelydetermines whether P aborts (and, if so, generates the standard abort message by itself).Finally, we note that if the original protocol (P; V ) is a system of arguments of knowledge, thenso too is the transformed protocol (P;V). This is because the extractor (of (P; V )) must work forany P �, and in particular for a P � that works as de�ned in the transformation. (Recall that V isidentical to V .)4.4 DiscussionThe above proof of the transformation of hybrid protocols to resettable ones has some essential dif-ferences to the analogous proof in [7]. In particular, unlike here, the authenticator of an admissibleprotocol as de�ned in [7] is universally veri�able. Thus, in the emulation by W �, machine W � isable to verify itself whether or not P will accept a message from V�. This also means that for everysession with P opened by V�, machine W � opens a single session with P . This is very di�erent23



from what we have done above, where W � used P in order to verify authenticators (because itcannot authenticate messages itself). Thus, W � opens a new incarnation of P (i;j;�) for every mainmessage sent by V�.The motivation regarding the use of the hybrid model is also very di�erent. In [7], the hybridmodel was introduced in order to overcome a technical di�culty; speci�cally, that known proofsystems start with the prover sending a message (this message is the receiver-message of a two-round perfectly-hiding commitment scheme). However, the intuition underlying the transformation(obtaining resettability) is to have the veri�er send the �rst message that then determines all itsfuture messages. The hybrid model was thus introduced in order to allow a separate analysis of thesetting in which (only) the �rst prover message may be re-used (or \reset"). On the other hand,our use of the hybrid model enables us to analyze the case that the prover may be reset duringthe authentication of every main message (and where this authentication may be interactive anddependent on the prover's re-useable randomness).5 rZK and rWI Arguments of KnowledgeIn this section we will prove Theorem 1.2. We begin by proving (in Section 5.1) the �rst partof the theorem; that is, the existence of constant-round rWI arguments of knowledge for NP .We do this by constructing an admissible hWI argument of knowledge for NP and then applyingthe transformation of Construction 4.3. Next, we prove the second part of the theorem; that is,the existence of rZK arguments of knowledge. We present two alternative constructions of rZKarguments of knowledge (both using the construction of Section 5.1 as a building block):1. The �rst construction (presented in Section 5.2) involves a modi�cation of the Richardson-Kilian protocol [32] while using an (admissible) rWI argument of knowledge.2. The second construction (presented in Section 5.3) works by combining any rWI argumentof knowledge, any rZK proof and any perfectly-binding commitment scheme. We note thatrZK proofs are known to exist by [7].In both cases, improved (i.e., poly-logarithmic) round complexity is obtained by referring to theanalysis of [26].We stress that our arguments of knowledge are according to De�nition 2.2, where the extractoris given access to the description of the prover's strategy (and not just black-box access). As wehave mentioned, this additional information is essential for obtaining rWI or rZK arguments ofknowledge.5.1 Resettable Witness Indistinguishable Arguments of KnowledgeWe now present a rWI argument of knowledge for Hamiltonicity. The core of the protocol is the3-round proof of Hamiltonicity of Blum (see Appendix). As in [21], we augment Blum's protocol22by having the veri�er initially commit to its query string (rather than choose it after the prover'scommitment). Then, after receiving the prover's commitments, the veri�er reveals its query stringand \proves" to the prover that this is indeed the string that was committed to in the �rst stepof the protocol. In the protocol of [21], the veri�er proves the consistency of the query string22The reason we use Blum's protocol rather than the 3-colorability protocol of [23] is that knowledge-extraction iseasier with it. The protocol of [21] was not a proof of knowledge anyhow, and so there was no reason to prefer oneprotocol over the other. 24



with the initial commitment by simply decommitting. (The prover then continues as in Blum'sprotocol.) In contrast, in our protocol (below), the veri�er proves the consistency of the querystring using a resettably-sound zero-knowledge argument. The zero-knowledge proof used mustbe resettably-sound in order to protect the prover, who may be reset, against a cheating veri�er.(This technique of achieving simulation by proving the validity of the revealed value rather thanactually decommitting was introduced in [27].) Since the veri�er is bound to its initial commitmentby the above argument, the fact that the protocol is hWI is shown in a similar manner to the proof(shown in [7]) that the protocol of [21] is hWI. Thus, using the transformation of Construction 4.3we obtain a rWI protocol.Indeed, the novelty of our protocol is that it is an argument of knowledge (for Hamiltonicity)rather than merely an argument of membership. That is, we construct an extractor K who, givenaccess to the code of a prover P �, extracts a Hamiltonian cycle (with probability negligibly closeto the probability that P � convinces V ). In general, the strategy for extraction from the basicproof of Hamiltonicity (of Blum) involves obtaining the answer to two di�erent query strings withrespect to the same set of prover commitments. The real veri�er is unable to do this since it isbound to its queries by the initial commitment (otherwise, the protocol would clearly not be witnessindistinguishable). However, K has an advantage over the veri�er in that it has access to the codeof P �. Therefore, K can run the (non black-box) simulator for the resettably-sound zero-knowledgeproof that asserts the validity of the decommitment. This enables K to cheat and \decommit" todi�erent query strings, thus extracting the Hamiltonian cycle.As we have mentioned, we construct only a hWI argument of knowledge here and use thetransformation of Construction 4.3 to convert this into a rWI argument of knowledge.Protocol 5.1 (hWI Argument of Knowledge for Hamiltonicity):� Common Input: A directed graph G = (VG; EG), with n def= jVGj.� Auxiliary Input for P : a directed Hamiltonian Cycle, C � EG, in G.� Fixed Randomness for P : ! = (!1; !2) 2R f0; 1g2n.� The Protocol:1. V chooses a random query string q 2R f0; 1gn and sends a perfectly-binding commitmentc = Commit(q) = C(q; r) to P .2. P selects n random permutations �1; : : : ; �n of the vertices VG and sends the veri�er V(perfectly binding) commitments to the adjacency matrices of the resulting permuted graphs.That is, P sends an n-by-n matrix of commitments so that the (�i(j); �i(k))'th entry is acommitment to 1 if (j; k) 2 E and is a commitment to 0 otherwise. Denote by ci thecommitment to the adjacency matrix of �i(G).All the random choices in this step are determined by !2.3. V sends q to P (without decommitting).4. V proves to P that there exists a pair (q; r) such that c = C(q; r), using a resettably-soundzero-knowledge proof system (i.e., V proves that q is the correct decommitment).All the random choices of P in this step are determined by !1.5. If P accepts the proof (in Step 4), then it replies to the queries qi (for every 1 � i � n) asfollows.� If qi = 0, then P sends �i along with all the decommitments to ci.25



� If qi = 1, then P decommits to the n entries (�i(j); �i(k)) of ci with (j; k) 2 C.6. For every i, 1 � i � n, V checks P 's replies as follows.� If qi = 0, then V checks that the revealed graph is isomorphic to G (with isomorphism�i).� If qi = 1, then V checks that all n revealed values equal 1 and that the correspondingentries form a simple n-cycle.In both cases V also checks that the prover's decommitments are proper.V accepts if and only if all the above conditions hold.Theorem 5.2 Protocol 5.1 is an admissible system of arguments of knowledge that is hWI.Proof: We begin by showing that the protocol is sound as an argument of knowledge (with respectto computationally bounded provers). (Completeness is trivial.)Lemma 5.1.1 (knowledge soundness with negligible error): There exists a probabilistic expectedpolynomial-time knowledge algorithm (i.e., knowledge extractor) K such that for every probabilisticpolynomial-time P �, every polynomial p(�) and every su�ciently large graph G,Pr[K(desc(P �); G) 2 HAM(G)] > Pr[hP �; V i(G) = accept]� 1p(jGj)where desc(P �) denotes the description of P �'s strategy and HAM(G) denotes the set of Hamiltoniancycles in G.Proof: The principle upon which the extraction is based is that if K obtains replies from P � to twodi�erent query strings (for the same series of permuted adjacency matrices), then the Hamiltoniancycle can be retrieved. This is because for some i, the extractor K obtains �i(G),�i and a simplecycle of length n in �i(G). Therefore, it is easy for K to compute a simple cycle of length n in Gitself.However, notice that K is committed to its query string before the prover commits to theadjacency matrices. Thus, we must show how, despite this initial commitment by K, it is able toobtain replies to di�erent query strings. The key point is that K can cheat in the zero-knowledgeproof of Step 4 by running the proof simulator. Then, due to the hiding property of the commitmentscheme, P � cannot distinguish this behavior from the behavior of an honest veri�er. Thus, K can\decommit" in two di�erent ways and obtain replies for di�erent queries. As discussed above, thisenables K to reconstruct a Hamiltonian cycle in G.The extractor K (upon input a description of P � and the graph G) works as follows:231. K chooses a uniform string R for the random tape of P �.23The extraction procedure described here is slightly non-standard in the following sense. Usually, extraction worksby K �rst verifying the proof from P � (according to the instructions of an honest veri�er). Then, if the proof isaccepting, it begins a procedure that involves many rewindings until enough information is gathered to constructa witness. Furthermore, this second stage usually takes time that is inversely proportional to the probability thatthe veri�cation of the �rst stage succeeds. Thus, the overall running time of K remains expected polynomial-time.However, were we to use such a strategy, our analysis would become considerably more complex. In particular, inour case the second stage would take time that is inversely proportional to a function that is negligibly close (andnot equal) to the probability that the veri�cation of the �rst stage succeeds. Thus, in order to ensure expectedpolynomial-time, we would need to apply the (somewhat complex) techniques of [21].26



2. K chooses q 2R f0; 1gn, computes c = Commit(q) = C(q; r) for a uniform r and (internally)passes c to P �. K then receives a message from P � which is denoted by c1; : : : ; cn. Formally,this is obtained by K computing P �(G;R; c), where P �(G;R;m) denotes the message sentby P � upon input G, random tape R and sequence of incoming messages m.3. K chooses q0 2R f0; 1gn (independently of the above q) and sends q0 to P �. Furthermore,K runs the zero-knowledge simulator for the proof given to P � in Step 4, where the veri�eris de�ned by P �(G;R; c; q0). Denote the resulting transcript by tpf . (Note that since thesimulator for the zero-knowledge proof must be non black-box, K needs non black-box accessto P � to implement this stage.24)4. K obtains P �'s decommitments by computing P �(G;R; c; q0; tpf ).5. K veri�es the answer according to V 's instructions.(a) If the veri�cation fails, then K halts with output ?.(b) If the veri�cation succeeds, thenK continues by repeating Steps 3{5 until another successoccurs. Denote the string for which the success occurs by q00. (In each of these repetitions,K uses the same randomness for the zero-knowledge simulation; this technical pointsimpli�es the analysis.)If q00 6= q0, then extraction succeeds and K outputs the cycle C. On the other hand, ifq00 = q0, then extraction fails and K outputs failure.We �rst claim that the probability that K halts with output ? is negligibly close to the probabilitythat V rejects a proof upon interaction with P �. That is:Claim 5.1.2 For every probabilistic polynomial-time prover P �, every polynomial p(�) and everysu�ciently large graph G,jPr[hP �; V i(G) = reject]� Pr[K(desc(P �); G) = ?]j < 1p(jGj)Proof: Notice the following two di�erences between a transcript generated by K (in Steps 1{4)and the transcript of a real (P �; V ) execution:� The query string q0 sent by K is independent of the value initially committed to.� The zero-knowledge proof is simulated and not real.Intuitively, despite these di�erences, the distribution of transcripts generated by K is computa-tionally indistinguishable from transcripts resulting from real (P �; V ) executions. This is due tothe hiding property of the commitment scheme and the indistinguishability of simulated proofsfrom real ones. Now, Protocol 5.1 is such that given the proof transcript one can easily derive theveri�er's decision of whether to accept or reject the proof from P �. Thus the indistinguishabilityof the transcripts implies that the probability that K outputs ? (which occurs when P � fails tosupply a convincing proof) is negligibly close to the probability that V rejects after interaction withP �. (Otherwise, this could be used to distinguish the transcripts.) We now formally prove that the24Recall that the proof here is resettably-sound and therefore by Theorem 3.4, the simulator here must be nonblack-box. 27



transcripts in the above two scenarios are indeed indistinguishable. This proof is quite standardand may be skipped with little loss.First consider a hybrid, mental experiment in which the query string sent by K is indeed thesame string as that committed to initially, yet the zero-knowledge proof is simulated. We claimthat the transcript output in this hybrid experiment is computationally indistinguishable from thetranscript of a (P �; V ) execution. This is because the only di�erence between them is that in thetranscript output in the hybrid experiment, the zero-knowledge proof is simulated and not a realproof. Therefore, indistinguishability is guaranteed by the zero-knowledge property of the proof;speci�cally by the formulation of zero-knowledge with respect to auxiliary inputs.Next, we claim that the transcript output in the hybrid experiment is indistinguishable from atranscript output by K (where the only di�erence is regarding the value of the initial commitment).Intuitively, this is due to the hiding property of the commitment scheme. Formally, if the transcriptscan be distinguished, then we can construct a distinguisher D for the commitment scheme in thefollowing sense. D generates two independent and uniformly distributed strings of length n: q0and q1. Next, a bit b 2R f0; 1g is chosen and D receives a commitment c, where c = Commit(qb),and D's goal is to attempt to guess b with probability non-negligibly greater than 1=2. Indeed, Dsucceeds in its goal by simulating an interaction with P � as follows (D internally incorporates P �and works similarly to K). First D (internally) passes P � its challenge commitment c. Then, afterreceiving P �'s reply (which should consist of commitments to adjacency matrices), it passes P � thequery string q0 and runs the simulator for the zero-knowledge proof of Step 4 with P � as the veri�er.Finally, D runs a distinguisher D0 on the resulting transcript, outputting whatever D0 does. Now,consider the transcript resulting from D's simulation. If b = 0 (i.e., c = Commit(q0)), then thetranscript has exactly the same distribution as a transcript from the hybrid experiment. On theother hand, if b = 1 (i.e., c = Commit(q1)), then the transcript has exactly the same distributionas a transcript output by K. We conclude that if there exists a D0 who, with non-negligibleprobability, can distinguish transcripts from the hybrid experiment from transcripts output by K,then D can distinguish the commitments with non-negligible probability. By combining the above,we conclude that the distribution of transcripts output by K is computationally indistinguishablefrom the distribution of transcripts resulting from (P �; V ) executions.Having bounded the probability that K outputs ?, we now bound the probability that it fails.That is,Claim 5.1.3 For every probabilistic polynomial-time prover P � and every su�ciently large graphG (over n nodes), Pr[K(desc(P �); G) = failure] = 12nProof: Recall that K outputs failure in the event that it reaches Step 5 and q00 = q0. Denote byR0 the (�xed) coins used by K in the simulation of the zero-knowledge proof given to P � in Step 4and denote by pR;R0 the probability (over K's other coin tosses) that the proof (of Steps 1{4) fromP � is successful, when P � uses the random string R. (We say that the proof is successful if theveri�cation by K succeeds.) Thus, the probability that K reaches Step 5(b) equals pR;R0 exactly.Now, since K uses the same random coins in the simulated proof each time (i.e., R0 is �xed), theprobability that P � (with �xed randomness R) successfully completes the proof is dependent onthe choice of q only (and not on the zero-knowledge simulation). This means that there are exactlypR;R0 � 2n di�erent strings q for which P � successfully completes the proof. Therefore, given that28



K reaches Step 5, the probability that the same success string is obtained equals 1pR;R0 �2n . Weconclude that the probability that K outputs failure equals pR;R0pR;R0 �2n = 2�n.We have shown that K outputs failure with probability 2�n. Furthermore, we have shown thatthe probability that K outputs ? is negligibly close to the probability that V rejects. Finally,notice that if K does not output failure and does not output ?, then this means that it outputs aHamiltonian cycle. Therefore, by combining Claims 5.1.2 and 5.1.3, we have that the probabilitythat K extracts a Hamiltonian cycle is negligibly close to the probability that V accepts in aninteraction with P �.It remains to show that K runs in expected polynomial-time. Recall that the extraction works byrunning the protocol (with the simulated proof and independent query string) once and then in casethe �rst execution was accepting, this is repeated until another success occurs. Now, each repetitionof Steps 3{5 involves a polynomial number of steps plus a single invocation of the (resettably-sound)zero-knowledge simulator. Recall that the random coins R0 used by the simulator are �xed andthat the running-time depends only on this R0. (We note that the running-time does not dependon P �'s random coins R. This is because they are previously �xed and the simulator must workfor any veri�er, in particular a veri�er with �xed random coins.) We thus denote by tR0 the (exact)running-time of the simulator where the simulator's coins R0 are �xed. Therefore, the expectedrunning-time of the extractor is:12jR0j XR0  1 + pR;R0 � 1pR;R0! (poly(n) + tR0) = poly(n) + 12jR0j XR0 tR0where pR;R0 equals the probability (over K's coin tosses with the coins of the simulator �xed byR0) that the veri�cation of the proof received by K from P � is successful and the poly(n) factorincludes all steps of K excluding the simulation of the zero-knowledge proof. Since the simulatoris expected polynomial-time, we have that the overall expected running-time of the extractor ispolynomial, as required.Having established that Protocol 5.1 is a system of arguments of knowledge, we proceed to showthat it is hWI.Lemma 5.1.4 (hybrid witness indistinguishability): Protocol 5.1 is an admissible system of argu-ments that is hWI.Proof: It is easy to verify that Protocol 5.1 is admissible: the �rst message sent by the veri�er (i.e.,in Step 1) is a commitment to its query string that is later sent in Step 3 (this is the determiningmessage). There is only one main message sent by V (i.e., in Step 3) and one accompanyingauthenticator module (Step 4). By the resettable-soundness of the zero-knowledge argument ofStep 4, we have that except with negligible probability, in two executions with the same determiningmessage, V cannot send two di�erent messages in Step 3 such that P accepts both. (We stressthat due to the resettable soundness of the zero-knowledge argument, this holds even when V canexecute a resetting-attack on P .) Finally, we note that syntantically P ful�lls the requirements ofan admissible protocol. That is, P indeed consists of two parts, where P1 controls Steps 4 and 5and uses randomness !1, and P2 controls Steps 2 and 5 and uses randomness !2. Furthermore, P2computes its response (of Step 5) based only on the main message sent by V in Step 3.Next, notice that Protocol 5.1 is zero-knowledge in a standard setting. This can be shownusing almost the same argument as in [21]. (In fact the only di�erence is that in [21] the veri�erdecommits to its query string, whereas here it proves that its decommitment is correct. Thus, there29



is at most a negligible di�erence.) Thus, it follows that Protocol 5.1 is witness indistinguishable inthe concurrent setting (cf. [13]). However, we need to show that it is witness indistinguishable inthe hybrid model. Denote the randomness used by P in generating the commitments in Step 2 by!2 and the randomness used by P in verifying the zero-knowledge proof of Step 4 by !1. Then,the extra power of the adversary in the hybrid model is to invoke sessions with the same (random)value of !1. (Recall that in the hybrid model, V � may invoke di�erent incarnations of P , using thesame randomness for the prover initialization message and for the veri�cation of the authenticatormodules.) However, P only uses the random string !1 for verifying a resettably-sound proof.Therefore, soundness holds even when !1 is reused in a polynomial number of di�erent sessions.(Note that here we need the adaptive version of soundness where the statements are not chosen bythe adversary ahead of time, but are rather selected on the y.) This means that if we limit V �'sview to the messages outside of this zero-knowledge argument, then there is at most a negligibledi�erence between V �'s view in the concurrent and hybrid models. Therefore, Protocol 5.1 remainswitness indistinguishable in the hybrid model. This completes the proof.Combining Lemmas 5.1.1 and 5.1.4, we complete the proof of Theorem 5.2.By combining Theorem 4.4 with Theorem 5.2 we obtain the following Corollary:Corollary 5.3 The result of applying the transformation of Construction 4.3 to Protocol 5.1 is asystem of resettable witness-indistinguishable arguments of knowledge.5.2 Deriving a rZK arguments of knowledge for NPPart 2 of Theorem 1.2 is proved by applying Construction 4.3 to an admissible (as per De�nition 4.1)argument of knowledge forNP that is zero-knowledge in the hybrid model (of De�nition 4.2). Thus,we need to assert the existence of such a protocol.Proposition 5.4 Suppose that there exists a two-round perfectly-hiding commitment scheme. Then,every NP-relation has an admissible argument of knowledge that is zero-knowledge in the hybridmodel. Furthermore, the round complexity of this protocol is poly-logarithmic.Combining Theorem 4.4 and Proposition 5.4, Part 2 of Theorem 1.2 follows.Proof Sketch: We show that the concurrent zero-knowledge proof system of Richardson andKilian [32] (with as setting of parameters as in [26]) can be modi�ed so that the resulting protocolsatis�es all requirements. Recall that the Richardson and Kilian protocol, hereafter referred to asthe RK-protocol, consists of two stages with Stage 2 being any witness-indistinguishable proof (orargument) system applied to a statement de�ned by Stage 1. The modi�cation is analogous tothe one presented in [7]: As in [7], we use an admissible witness-indistinguishable (WI) protocol inStage 2, and the modi�cation amounts to moving the �rst (i.e., determining) message veri�er of theWI protocol to the very beginning of the entire protocol.A key di�erence (w.r.t [7]) is that we useour (constant-round) witness-indistinguishable argument of knowledge (i.e., Protocol 5.1), ratherthan using the witness-indistinguishable proof of [21] (or its admissible version derived in [7]). Westress that in contrast to the protocol of [21], which is unlikely to be an argument of knowledge,Protocol 5.1 is an argument of knowledge. Furthermore, like the protocol of [21], Protocol 5.1 isadmissible and is witness-indistinguishable in the hybrid model. Thus, the proposition follows byverifying the following: 30



1. The modi�ed protocol is an argument of knowledge (for the same relation as the original one).The key point is to notice that before modi�cation the above protocol is an argument ofknowledge (and not merely an argument for membership in the language). This fact followsfrom the soundness proof of the RK-protocol which guarantees that, with overwhelmingprobability, in real executions the only possible NP-witness for the statement proven (by theWI argument of knowledge) in Stage 2 is an NP-witness for the common input. Thus, usingthe knowledge-extractor for the WI argument of knowledge (executed in Stage 2), we obtainedthe desired NP-witness.To show that the modi�ed protocol remains an argument of knowledge we observe that theprover is unlikely to gain anything by the modi�cation. This is the case because the messagethat we are discussing is a commitment (which anyhow yields no knowledge to the prover,and this fact is used anyhow in the soundness proof of the RK-protocol).2. The modi�ed protocol is admissible and is zero-knowledge in the hybrid model.Recall that the veri�er's �rst message in the modi�ed protocol consists of two strings, the�rst being the �rst message of Stage 1 and second being the �rst message of Stage 2 in theoriginal (unmodi�ed protocol). The determining feature of the �rst string (w.r.t Stage 1) isproven exactly as in [7], whereas the determining feature of the second string (w.r.t Stage 2)is proven as in Lemma 5.1.4. The modi�ed protocol is clearly concurrent zero-knowledge(because we have only weakened the cheating veri�er by the modi�cation), and the fact thatit is zero-knowledge in the hybrid model is proven analogously to the proof in [7].The proposition follows.5.3 rZK arguments of knowledge for NP: an alternative constructionIn this section, we present an alternative construction of a rZK argument of knowledge. Ourconstruction uses a rWI argument of knowledge (as presented in the previous section), a rZKargument system (these exist as was shown in [7]) and a perfectly-binding commitment scheme. Abasic outline of the protocol is as follows (let x be the statement to be proved and w a witness forthe fact that x 2 L):1. The prover commits to w using a perfectly-binding commitment scheme.2. The provers proves in rZK that the above commitment is correct. That is, it proves that thevalue committed to in Step 1 is indeed a witness proving that x 2 L.3. The prover proves that it knows the value committed to in Step 1 using a rWI argument ofknowledge.Loosely speaking, zero-knowledge is demonstrated by the following simulation strategy. The sim-ulator �rst commits to garbage, then runs the simulator for the rZK of Step 2, and �nally provesthat it knows the decommitment (i.e., executed in Step 3). Using the indistinguishability of com-mitments, and the indistinguishability of real Step 2 proofs from simulated ones, we show thatsuch a simulator generates transcripts that are indistinguishable from real executions of the entireprotocol. (The actual simulation is more complicated as it must work for a veri�er that can carryout a resetting attack on the prover.) On the other hand, extraction is carried out via the rWIargument of knowledge, and the rZK proof guarantees that the extrcated string is indeed a witness.31



Before providing a detailed description of the protocol and its proof, we note that we actuallyneed something stronger than witness indistinguishability in Step 3 of our construction. Intuitively,the simulator described above generates good (i.e., indistinguishable from real) transcripts, as longas the proof it emulates for Step 3 is indistinguishable from the proof given in a real execution ofStep 3 (in a real proof where the commitment is to a valid witness). But witness indistinguishabilitydoes not guarantee the latter, becuase it only relates to possible witnesses (i.e., decommitmentsvalues) to a �xed statement (i.e., a commitment), and in this case there is a single witness (i.e.,decommitment value). What we need is a stronger notion (than WI) called strong witness in-distinguishable, which guarantees that if the commitments are indistinguishable before the proofthen they remain indistinguishable even after seeing the proof. Indeed, in our case, a commitmentto garbage is indistinguishable from a commitment to a real witness (for x 2 L), and thereforestrong-WI implies that the proof emulated (by our simulator) for Step 3 is indistinguishable fromthe proof given in a real execution of Step 3.De�nition 5.5 (strong witness indistinguishability [19]): Let (P; V ) be an interactive proof foran NP-language L, and let RL be a witness relation for the language L. We say that (P; V ) isstrong witness indistinguishable for RL if for every probabilistic polynomial-time interactive machineV � and every two probability ensembles �(X1n; Y 1n ; Z1n)	n2N and �(X2n; Y 2n ; Z2n)	n2N so that each(Xin; Y in; Zin) ranges over (RL � f0; 1g�) \ (f0; 1gn � f0; 1g� � f0; 1g�), the following holds:If �(X1n; Z1n)	n2N and �(X2n; Z2n)	n2N are computationally indistinguishable, then so are�hP (Y 1n ); V �(Z1n)i(X1n)	n2N and �hP (Y 2n ); V �(Z2n)i(X2n)	n2N.Thus, by de�ning X1n to be the distribution over commitments to valid witnesses (followed bya simulated rZK transcript) and X2n the distribution over commitments to garbage (followed bya simulated rZK transcript), we have that after a strong witness indistinguishable proof, thesedistributions are still indistinguishable. Therefore, the simulator generates transcripts that areindistinguishable from in a real execution.Before proceeding, we must show the existence of resettable strong witness indistinguishable(denoted rSWI) arguments of knowledge. However, we claim that applying the transformation ofConstruction 4.3 to Protocol 5.1 yields a resettable strong WI system of arguments of knowledge.This is obtained by combining Theorem 4.4 with the following proposition.Proposition 5.6 Protocol 5.1 is an admissible system of arguments of knowledge that is strongwitness indistinguishable in the hybrid model.The proof of this proposition is identical to the proof of Theorem 5.2. (Note that like standardwitness indistinguishability, zero-knowledge implies strong WI, and strong WI remains strong WIunder concurrent composition.)We are now ready to present the protocol for an arbitrary NP-relation RL (corresponding to L 2NP):Protocol 5.7 (rZK Argument of Knowledge):� Common Input: x 2 L� Auxiliary Input for P : w such that (x;w) 2 RL� Fixed Randomness for P : ! = (!1; !2; !3) 2R f0; 1g3n.� The Protocol: 32



1. P sends a perfectly-binding commitment c = Commit(w) = C(w; r) to the veri�er V .The randomness r used by P in computing the commitment is obtained by applying apseudorandom function, keyed by !1, to the statement x.2. Using a rZK argument, P proves that there exists a pair (w; r) such that c = C(w; r) and(x;w) 2 RL. (That is, P proves in rZK that the commitment in Step 1 is correct.)The randomness used by P in proving this proof equals !2.3. Using a resettable strong witness indistinguishable (rSWI) argument of knowledge, P provesthat it knows a pair (w; r) such that c = C(w; r). (That is, P proves that he knows thedecommitment to c.)The randomness used by P in proving this proof equals !3.4. V accepts if it accepts both the proofs in Steps 2 and 3.Theorem 5.8 Protocol 5.7 is a resettable zero-knowledge argument of knowledge for L.Proof: We �rst show that Protocol 5.7 is an argument of knowledge for RL. Completeness (ornon-triviality) follows by the completeness of the arguments used in Steps (2) and (3). We nowshow that the soundness (or validity) requirement of arguments of knowledge holds. That is, weshow that there exists a expected probabilistic polynomial-time knowledge extractor K such thatfor every polynomial-size P � and all su�ciently large x'sPr[K(desc(P �); x) 2 RL(x)] > Pr[hP �; V i(x) = accept]� 1poly(jxj) (1)Intuitively, the extractor works by �rst verifying the rZK proof, next running the extractor for therSWI argument of knowledge, and �nally outputting the extracted witness. Formally, (on inputdesc(P �) and x) the extractor K works as follows:� K chooses a uniform string R for the random tape of P �.� K invokes P � on input x and random-tape R and obtains a message c (that should be acommitment to a witness).� K plays the honest veri�er for the rZK proof provided by P �(x;R) in Step 2. Denote thetranscript of the proof by tpf . If K rejects the proof, then it outputs ? and halts. Otherwise,it continues to the next step.� K invokes the extractor for the rSWI argument of knowledge giving it input desc(P �(x;R; tpf ))and c (notice that the prover is de�ned by P �(x;R; tpf )). Denote the output of the extractorby (w0; r0). Then, K outputs w0 and halts.We �rst claim that K runs in expected polynomial-time. This follows from the fact that theextraction procedure of the rSWI argument of knowledge runs in expected polynomial-time (andoutputs a witness with probability close to the probability that P � convinces the veri�er), and fromthe fact that all other steps of K can be completed in strict polynomial-time. Next, we claim thatK outputs a valid witness (i.e., w0 such that (x;w0) 2 RL) with probability that is negligibly closeto the probability that V accepts. This can be seen as follows:The probability that K accepts the rZK proof (and thus reaches the rSWI argument of knowl-edge) equals the probability that V accepts the rZK proof. Then, by the property of the extractor ofthe rSWI argument of knowledge, the probability that (w0; r0) is such that c = C(w0; r0) is negligiblyclose to the probability that V accepts the rSWI proof from P �. Therefore, the probability that K33



outputs w0 such that c is a commitment to w0 is negligibly close to the probability that V acceptsthe entire argument system from P �. Finally we note that by the soundness of the rZK proof ofStep 2 (that is properly veri�ed by K), the probability that w0 is not such that (x;w0) 2 RL is atmost negligible. (In this argument we rely on the fact that the commitment scheme is perfectlybinding and therefore there is a single w0 that can be used for convincing a veri�er in both Steps 2and 3.) Eq. (1) follows.Resettable Zero-Knowledge: We now show that Protocol 5.7 is rZK. Intuitively, the simulation iscarried out as follows. First, the simulator S commits to garbage (rather than to a real witness).Next, S invokes the simulator for the rZK proof of Step 2. Denote this simulator by Srzk, anddenote the corresponding prescribed prover (of the rZK proof of Step 2) by Przk. Finally, S provesthat it knows the decommitment using the rSWI proof of Step 3. Intuitively, the simulator for therZK proof enables S to cheat and commit to garbage without being detected. The actual simulationis more involved than this. The reason is that the simulator Srzk is only guaranteed to simulate a(resetting) veri�er that only receives a rZK proof. However, here we wish to use Srzk in order tosimulate a (resetting) veri�er who also receives related messages from a rSWI proof. (If we weresimulating an ordinary (i.e., non-resetting) veri�er then it would have been easy to augment thesimulation, but here the veri�er may reach Step 3 of some session (i.e., the rSWI proof) and thenbeging a new interaction with the rZK prover of Step 2.) We solve this technicality by de�ning averi�er V �� who incorporates V �, and emulates the (�rst and) third steps of Protocol 5.7 by itself.On the other hand, the messages of the rZK proof of Step 2 are relayed by V �� between V � andthe external prover. We then run the simulator Srzk on this V ��, and thus obtain a simulation ofProtocol 5.7.We begin by de�ning the veri�er V �� who is a veri�er for a rZK proof that takes place in Step 2of Protocol 5.7. Recall that this proof system is for the following language:L0 def= f(x; c) j 9(w; r) s:t: c = C(w; r) & (x;w) 2 RLgLoosely speaking, V �� internally incorporates V � and emulates Steps 1 and 3 of Protocol 5.7.(We therefore talk of both internal communication with V � and external communication withthe prover.) Speci�cally, V �� receives inputs x0 = ((x1; c1); : : : ; (xm; cm)) and auxiliary inputsz = (z1; :::; zm) and works as follows:� When V � initiates an interaction with the (i; j)th incarnation of P (i.e., P (i;j)), then V �� actsas follows:1. If the auxiliary input zi equals the decommitment of ci (i.e., zi = (w; r) such that ci =C(w; r)), then V �� continues to the next step. Otherwise, it halts.2. Internally emulate Step 1: V �� internally passes V � the commitment ci and (externally)initiates a session with the (i; j)th incarnation of Przk (i.e., P (i;j)rzk).3. Relay Step 2 to the prover Przk: For every message m sent by V � belonging to the rZKproof of Step 2, machine V �� (externally) forwards m to P (i;j)rzk , and likewise (internally)returns P (i;j)rzk 's response to V �.4. Internally emulate Step 3: For every messagem sent by V � belonging to the rSWI argumentof knowledge of Step 3, machine V �� uses the knowledge of (w; r) in order to (internally)play the prover's role. (Recall that ci = C(w; r) and therefore V �� can execute the prover'srole in this rSWI argument of knowledge. V �� proves this exactly as an honest proverwould and thus uses �xed randomness !3 that is uniformly chosen at the outset.)34



� When V � halts, V �� outputs whatever V � does.The important property of V �� is that when V �� receives auxiliary inputs z such that for everyi, the auxiliary input zi equals the correct decommitment of ci, then the output of V �� (uponinteraction with the prover of the rZK proof) equals the output of V � upon interaction with theprover of Protocol 5.7, conditioned on the commitments generated in Step 1 being equal these ci's.We are now ready to proceed by de�ning the simulator S for Protocol 5.7.The simulator S, on input x = x1; : : : ; xm, works as follows:� For i = 1; : : : ;m, de�ne ci = Commit(0n) = C(0n; ri) for uniformly chosen ri's. Then de�nethe sequence of statements x0 = (x01; :::; x0m) for the rZK proof of Step 2, where for every i,x0i = (xi; ci). (Recall that the rZK proof of Step 2 is based on statements of the form (x; c).)� Invoke the simulator for the rZK proof on V �� with auxiliary input z = (z1; :::; zm) de�ned byzi = (0n; ri). That is, invoke Srzk(V ��(z); x0) and output whatever it outputs.We claim that the output of S is indistinguishable from V �'s output in a real execution of Pro-tocol 5.7. We �rst de�ne a hybrid mental experiment as follows. In this hybrid experiment, thesimulator S commits to the real witnesses, rather than to 0n. Otherwise, everything is the sameas in the simulation. Thus, the only di�erence between the hybrid experiment and the simulationis with respect to the value of the commitments c1; : : : ; cm and essentially the only di�erence be-tween the hybrid experiment and a real execution is the use of the simulator for the rZK insteadof providing a real proof.We now show that the hybrid experiment is indistinguishable from the above simulation by S.As we have mentioned, the only di�erence between the distributions is whether the commitmentsare to valid witnesses or 0n. Thus, by the hiding property of the commitment scheme, the sequenceof statements on which the rZK proof of Step 2 is being invoked in the two cases are indistinguish-able. Next, we claim that we can ignore the rZK proof of Step 2. This is because the same simulatoris used in both experiments (and it receives no input regarding the decommitments) and thereforeany distinguisher can internally run it. However, we must show that the above are indistinguish-able even after the rSWI argument. This follows immediately by the de�nition of strong witnessindistinguishability (the fact that it is resettable is required because this is the attack executedby V � in the emulation by V ��). Thus, we have that the hybrid experiment and simulation areindistinguishable.Next, we show that the hybrid experiment is indistinguishable from a real interaction. In orderto show this, we �rst replace the pseudorandom function used by the prover in order to generatethe commitments with a truly random function. Due to the pseudorandomness of the function,this change is indistinguishable. Next, we note that the random coin tosses used for generating thecommitments in the hybrid experiment are randomly chosen. This is identical to the behavior of the(now modi�ed) prover, since all the xi's are distinct (and the prover applies a random function to thexi's for the coins). Thus, the only di�erence between the hybrid experiment and a real interactionis with respect to the simulated rather than real proof. Since Srzk must succeed in generatingan indistinguishable transcript for any veri�er, it must in particular succeed in generating such atranscript for the speci�c veri�er V ��. As we have mentioned above, when V �� interacts with areal prover, its output is identically distributed to V �'s output in an interaction with the prover ofProtocol 5.7. Thus, Srzk must output a distribution that is indistinguishable from V �'s output asdescribed.Combining the above, we have that S outputs a distribution that is indistinguishable from V �'soutput upon interaction with the prover of Protocol 5.7.35



6 Resettable Zero-Knowledge in the Public-Key ModelCanetti et al. [7] introduced a weak notion of a public-key setup, in order to obtain constant-round resettable zero-knowledge arguments (a somewhat stronger assumption was independentlysuggested by Damg�ard [9]). The only requirement in this public-key model is that all veri�ersdeposit some public-key in a public �le before the prover begins any interaction. We stress thatthere is no requirement whatsoever on the \validity" of the public keys deposited. The use ofthe public-�le is simply to limit the number of di�erent identities that a potential adversary mayassume (note that the adversary may try to impersonate any registered user, but it cannot act onbehalf of a non-registered user). For a more detailed description of the public-key model, see [7].Constant-round resettable zero-knowledge arguments were presented in this model in [7, 29].However, these constructions require a subexponential hardness assumption. In this section, wepresent a constant-round resettable zero-knowledge argument of knowledge (in the public-keymodel) under seemingly weaker assumptions. Speci�cally, our construction requires the existenceof one-way functions and resettably-sound zero-knowledge, where the latter follows from the ex-istence of a family of hash functions that are collision-intractable with respect to some speci�edsuper-polynomial security function (say nlog log n). Our protocol and its proof are also much simplerthan that of [7, 29]. Furthermore, our argument is an argument of knowledge. Thus, we extendthe possibility of obtaining resettable zero-knowledge arguments of knowledge to constant-roundprotocols in the public-key model as well.6.1 De�nitionMicali and Reyzin [30] showed that the notion of soundness in the public-key model is delicate andspeci�cally that it is not enough to consider a single execution. In fact, they de�ne four (separate)levels of soundness: one-time soundness, sequential soundness, concurrent soundness and resettablesoundness. Each of these notions refers to an adversarial prover's power when interacting with anhonest veri�er. That is, for sequential soundness, we say that a protocol is sequentially sound ifa cheating prover P � cannot convince the veri�er V of a false statement even after a polynomialnumber of sequential executions. (We stress that P � can adaptively choose the statements tobe proven.) Concurrent soundness is de�ned similarly for concurrent executions of P � with V .(Resettable-soundness concurs with De�nition 3.1 when adapted to the public-key model.)The protocol that we present ful�lls sequential soundness but is probably not concurrentlysound.25 We now proceed by de�ning sequentially-sound resettable zero-knowledge.De�nition 6.1 (sequential soundness in the public-key model): A sequential attack of a cheatingprover P � on a veri�er V in the public-key model is de�ned by the follow two-step random process,indexed by a security parameter n.1. Run the key-generation stage of V to obtain (PK; V K).2. On input 1n and PK, machine P � is allowed to initiate poly(n)-many interactions with V .The activity of P � proceeds in rounds. In round i, the machine P � chooses xi 2 f0; 1gn andinteracts with V on input SK and xi. We stress that the actions of P � in round i may dependon PK (as well as the history of previous rounds).25We note that, in practice, this means that a veri�er must not open more that one session at a time. This is asigni�cant limitation and it means that although resettable zero-knowledge implies concurrent zero-knowledge withrespect to the prover's security, it does not necessarily imply that the veri�er is protected in a concurrent setting.We stress that this problem only arises in the public-key model and is due to the dependence of di�erent sessionsinduced by a common (veri�er) public-key. 36



Let P and V be some pair of probabilistic polynomial-time interactive machines. We say that(P; V ) is a sequentially-sound system of arguments in the public-key model for a language L, if it iscomplete26 and for every polynomial-size P � executing a sequential attack on V , the probability thatthere exists an i such V accepts in the i'th round and xi 62 L is negligible.Naturally, a system of arguments (in the public-key model) is said to be sequentially-sound resettablezero-knowledge if it is both sequentially-sound and resettable zero-knowledge.6.2 The ProtocolSimilarly to the public-key protocol of [7], in the �rst stage of our protocol the veri�er proves azero-knowledge argument of knowledge of the secret-key associated to its public-key (in the public�le). The nature of the public-key is such that simulation is made \easy" (without any necessity forrewinding) if the associated secret-key is known. Therefore, simulation proceeds by �rst extractingthe secret-key and then completing the simulation (without any rewinding). As in [7], the role ofthe public �le is to prevent the adversary from using \too many" public keys. We note, however,that (for reasons to be discussed below) the second stage of our protocol is completely di�erentfrom the protocol of [7]. Despite this di�erence, both protocols share the property that the \hardpart" of the simulation is extracting the secret-key and the \easy part" is simulating the secondstage, given the secret key. Another important di�erence between our protocol and the protocolof [7] relates to the argument of knowledge used by the veri�er in the �rst stage. We use aresettably-sound zero-knowledge argument of knowledge, whereas they rely on a (resettably-sound)proof system that can be simulated in subexponential time. This di�erence expresses itself inthe proof of soundness, and is one of the reasons why we get away with a weaker intractabilityassumption (while using a simpler proof of soundness). The other reason is that our protocolavoids issues related to the malleability of commitment schemes (which are resolved in [7] by usinga subexponential intractability assumption). We now briey describe the protocol. The veri�er'spublic-key consists of a commitment to a pseudorandom function. In the �rst stage of the protocol,the veri�er provides a zero-knowledge argument of knowledge that it knows the decommitment.(Since the prover is resettable and plays the veri�er in this subprotocol, the argument used mustbe resettably-sound.) In the second stage of the protocol, the prover proves that the common inputG is Hamiltonian by running the basic proof of Hamiltonicity in parallel. However, the veri�ermust be prevented from obtaining answers to more than one query for a single series of provercommitments. (Otherwise, a cheating veri�er can extract a cycle by resetting P .) This is achievedby having the veri�er choose its queries by applying the pseudorandom function, committed toin the public-key, to the prover's commitments. In order to prevent the veri�er from cheating, itcontinues by proving that it indeed computed the query correctly, where like before, the proof usedis a resettably-sound zero-knowledge argument.27 Notice that in essence, the veri�er's query stringis determined by its public-key and the prover's set of commitments. Intuitively, this prevents acheating veri�er from gaining anything in a resetting attack. We note that given the pseudorandomfunction, the simulator can generate commitments that it can answer (without accessing the veri�erV �). Thus, the key point in the simulation is showing that the pseudorandom function can beextracted. Having discussed the simulation strategy, we now briey mention an important pointregarding soundness. The veri�er V 's instructions in our protocol ensure that V never applies the26That is, for every x 2 L, the veri�er V outputs accept after interacting with P .27If we had used a Veri�able Pseudorandom Function [28] then this second resettably-sound zero-knowledge ar-gument would not have been needed. But since the �rst resettably-sound zero-knowledge argument of knowledgecannot be avoided (even for VRFs), there is no point in using this stronger primitive here.37



pseudorandom function to the same value twice (even if the prover tries to prove the same theoremtwice and uses the same commitments in the second stage). Therefore, the veri�er's queries asdetermined by the pseudorandom function are indistinguishable from the case that the veri�erchooses its queries at random (and independently of other sessions).Notation: Let ffsgs2f0;1gn be a pseudorandom function ensemble.The public key: Let V be a veri�er with identi�er id. Then, its public-key (denoted PKid),consists of a perfectly-binding commitment to a random n-bit string (to be used as a seed to thepseudorandom function). That is, PKid = c where c = C(s; r). The associated secret key (denotedSKid) consists of the pair (s; r).Protocol 6.2 (rZK Argument of Knowledge of Hamiltonicity):� Common Input: A directed graph G = (VG; EG) with n def= jVGj, and a public-�le F consistingof pairs (id; PKid).� Auxiliary Input for V (with identity id): the secret-key SKid.� Auxiliary Input for P : a directed Hamiltonian Cycle, C � EG, in G.� Fixed Randomness for P : ! = (!1; !2; !3) 2R f0; 1g3n.� Stage 0: V Sends a Unique Session Identi�er: V chooses a random string R 2R f0; 1gn (to beused as a unique session identi�er) and sends it to P , along with its identity id.� Stage 1: V Proves Knowledge of SKidV and P run a resettably-sound zero-knowledge argument of knowledge in which Vproves that it knows (s; r) such that c = C(s; r). The randomness used by P when itplays the veri�er equals !1.� Stage 2: P Proves that G is Hamiltonian.1. P selects n (\random") permutations �1; : : : ; �n of the vertices VG and sends the veri�er V(perfectly binding) commitments to the adjacency matrices of the resulting permuted graphs.That is, P sends an n-by-n matrix of commitments so that the (�i(j); �i(k))'th entry is acommitment to 1 if (j; k) 2 E and is a commitment to 0 otherwise. Denote by Ci thematrix of commitments corresponding to the adjacency matrix of �i(G).The randomness for choosing the permutation and computing the commitments is obtainedby applying a pseudorandom function, keyed by !2, to G and the veri�er's public-key PKid.2. For every i (1 � i � n), V chooses a query bit by computing qi = fs(R;Ci; i) (recall that sis the string committed to in the public �le and R is the random session-identi�er chosenby V in Stage 0). V sends q def= q1 � � � qn to P .2828The reason that V also applies the pseudorandom function to R is to ensure that the queries in di�erent sessionsare (computationally) independent of each other. We note that if we do not include this session-identi�er in thecomputation of the queries, then the protocol is not sequentially-sound. This is because a cheating prover mayexploit the fact that he has learned values of fs(�) in previous sessions in order to cheat in the current session. Byincluding R in the computation of qi, we have that the values of fs(�) from previous sessions are computationallyindependent of the its values in the current session. (Recall that in proving soundness we consider an honest veri�er.Therefore, with overwhelming probability, the session-identi�ers of di�erent sessions are di�erent.)We also note the reason why the index i is included in the computation of the pseudorandom function. This is toprevent the veri�er from replying with the same query bit in the case that the prover sends the same commitment ntimes. Otherwise, the prover could successfully cheat with probability 1=2.38



3. V proves to P that it chose the queries correctly. That is, it proves that9(s; r) s:t: c = C(s; r) and for every i; qi = fs(R;Ci; i)using a resettably-sound zero-knowledge proof system. The randomness used by P when itplays the veri�er equals !3.4. If P accepts the proof, then it replies to the queries qi (for every 1 � i � n) as follows.� If qi = 0, then P sends �i along with the decommitments to the matrix Ci.� If qi = 1, then P decommits to the entries (�i(j); �i(k)) of the matrix Ci with (j; k) 2 C.5. For every i, 1 � i � n, V checks P 's replies as follows.� If qi = 0, then V checks that the revealed graph is isomorphic to G (with isomorphism�i).� If qi = 1, then V checks that all revealed values are 1 and that the corresponding entriesform a simple n-cycle.In both cases V also checks that the decommitments supplied by P are proper.V accepts if and only if all the above conditions hold.Theorem 6.3 Protocol 6.2 is a sequentially-sound system of rZK arguments in the public-keymodel.Proof: It is easy to see that the protocol is complete (i.e., if the graph is Hamiltonian and both Pand V are honest, then V always accepts). We continue by showing that the protocol is sequentiallysound (with respect to arbitrary polynomial-size provers).Sequential Soundness: The di�erences between the above protocol and the (parallelized) basicproof of Hamiltonicity is that V uses a pseudorandom function to choose its queries, and providestwo zero-knowledge proofs related to this pseudorandom function. Intuitively, since the functionused by V to choose its queries is pseudorandom and V never applies the function to the samevalue twice, P � cannot distinguish these choices from the behavior of a veri�er in the basic proofof Hamiltonicity (who chooses its queries independently and at random). (The fact that V neverapplies the function to the same value twice is guaranteed by having V include the random session-identi�er and the index i of the commitment in the computation of the query.) Furthermore, thezero-knowledge proofs are simulatable and thus cannot help P � learn anything about the pseudo-random function. Therefore the soundness of the proof system can be reduced to the soundnessof the parallelized basic proof of Hamiltonicity (for which soundness is known to hold). We nowproceed with the formal proof.Assume by contradiction that there exists a (deterministic) polynomial-size P � executing a sequential-attack on V , such that with non-negligible probability, in one of the rounds the common-input isa graph G that is not Hamiltonian and yet V outputs accept. Then, we show how to use P �to contradict the sequential soundness of the basic parallel proof of Hamiltonicity in the standardmodel (i.e., where there is no public-key). Speci�cally, we show how to construct a cheating proverP ��, who executes an analogous sequential attack in the standard model and with non-negligibleprobability succeeds in convincing a veri�er Vbasic that G is Hamiltonian, where Vbasic is the veri�erspeci�ed by the parallelized version of the basic proof of Hamiltonicity. (We note that sequentialsoundness in the standard model follows immediately from \one-time" soundness.)39



We now de�ne a prover P �� for the parallel version of the basic proof of Hamiltonicity. P �� internallyincorporates P � and uses P � to cheat in its interaction with Vbasic. This is done by having P �� createan interface between P � (who works according to Protocol 6.2) and Vbasic (who works accordingthe parallel basic proof of Hamiltonicity), such that each side sees only the messages it expects tosee. Thus, P �� emulates the veri�er messages of Protocol 6.2 that do not belong to the basic proofof Hamiltonicity (this actually includes all messages except for the string of queries q = q1 � � � qn).Furthermore, P �� only forwards to Vbasic messages belonging to the basic proof of Hamiltonicity.We note that P �� internally incorporates P � and thus has both \internal", emulated communi-cation with P � and real (external) communication with a veri�er Vbasic. The prover P � is a functionof the public-�le, the input graph and the series of incoming messages received by P � during a pro-tocol execution. Thus, formally, P �� obtains P �'s next message by computing P �(F; h;G;m) whereF is the public-�le, h some history transcript (representing messages from previous sessions of thesequential attack), G the current statement being proven and m a series of incoming messages toP �.29 P �� works as follows:� Initialization: P �� chooses a random seed s and computes pk = Commit(s). The commitmentpk is then used by P �� as a public-key PKid for the simulated interface with P �. That is, P ��de�nes a public �le F = f(id; pk)g.30� Let hi denote the history of messages received by P � until the i'th round { in the �rst iterationh1 is empty. Then, for every round of the sequential attack executed by P ��:1. P �� obtains the statement Gi to be proven by P � in this round and forwards it to Vbasic.Formally, P �� obtains Gi by computing P �(F; hi).2. Emulating Stage 0, P �� sends a random string Ri 2R f0; 1gn to P �.3. P �� (internally) plays V 's role in Stage 1 and proves the resettably-sound zero-knowledgeargument of knowledge of the decommitment of pk, with P �(F; hi; Gi; Ri) as the veri�er.P �� can do this because it indeed knows the decommitment for pk in F . Denote theresulting transcript by tpok. (We stress that this proof is not simulated but is properlyexecuted by P ��.)4. Entering the emulation of Stage 2, P �� (internally) obtains a message from P � and forwardsit to Vbasic (this message \should" consist of commitments to n adjacency matrices).5. P �� then receives an n-bit string from Vbasic, denoted q.6. P �� runs the zero-knowledge simulator for the zero-knowledge proof of Step 3 in Stage 2where the veri�er is de�ned by P �(F; hi; Gi; Ri; tpok; q). (I.e., here P � simulates V 's role inStep 3 of Stage 2.) Denote the resulting transcript by tpf .7. Finally, P �� (internally) obtains a message from P � and forwards it to Vbasic (this messageshould consist of answers to the query string q).Set hi+1 = (hi; Gi; Ri; tpok; q; tpf ).We note the following di�erences between P �'s view in a real execution with V and its view in theinterface provide by P �� in its interaction with Vbasic (from here on, we refer to this interface by\the emulation by P ��"):29We note that some of this is redundant as by the de�nition of a sequential attack, P � chooses G on the basis ofF and h. However, we include it explicitly for the sake of clarity.30For simplicity, we assume that the public �le contains a single identity. This is without loss of generality sincethe public-keys are independent of each other. Therefore, if there exists a cheating prover who succeeds when thereare many public-keys, then there also exists a cheating prover who succeeds when there is just one.40



� In the emulation by P ��, the query string in every round is uniformly chosen (by Vbasic), ratherthan being computed by qi = fs(Ri; Ci; i).� In the emulation by P ��, the zero-knowledge proof in Stage 2 is simulated rather than real.Intuitively, despite the above two di�erences, P �'s view in a real execution with V is computation-ally indistinguishable from its view in the simulation by P ��. These views are indistinguishabledue to the pseudorandomness of the function used to compute veri�er queries and due to the in-distinguishability of transcripts of real and simulated proofs. Since P �'s view implicitly includesthe veri�er's accept or reject decision, and the decision to accept depends solely on the messagesfrom the basic proof of Hamiltonicity, we have that Vbasic accepts in its execution with P �� withnegligibly close probability to V in its execution with P �. By the sequential soundness of theparallel proof of Hamiltonicity, we obtain a contradiction. We now formally show that P �'s viewis indeed indistinguishable in the above two scenarios.First consider a hybrid, mental experiment, where the query string is chosen by computingqi = fs(Ri; Ci; i) (as in the real execution), yet the proof of Stage 2 is simulated (as in the emulationby P ��). P �'s view in the mental experiment is indistinguishable from the real execution by theindistinguishability of simulated proofs for auxiliary input zero-knowledge. (Actually, we replacehere polynomial many proofs by simulated ones. Thus, formally we need to consider a hybridargument for this. This argument is, however, standard and is therefore omitted here.)On the other hand, we show that the mental experiment (in which the query string is chosenaccording to the protocol de�nition) is indistinguishable from the emulation by P �� (in whichthe queries are chosen uniformly at random). There are two key points to take note of here.First, the function fs(�) is pseudorandom even to a distinguisher given pk = Commit(s) and azero-knowledge proof of knowledge of the decommitment of pk.31 Second, notice that except withnegligible probability, the pseudorandom function is always applied to distinct values. This is due tothe random session identi�er Ri that is sent in the beginning of every round and the fact that evenif the prover sends the same commitment more than once in the same round, each commitment isassociated with a unique index that is included in the computation of fs(�). Therefore, we have that,except with negligible probability, the honest veri�er never computes fs(�) twice at the same point.Thus, P � cannot distinguish between the case that fs(�) is used and the case that independentqueries are chosen each time (which is equivalent to the case that a random function is used sincethe function is always applied to distinct values). In other words, P � cannot distinguish betweenthe case that it interacts in the mental experiment and the case that it interacts with P �� andVbasic.By combining the above we have that P �'s view in a real execution with V is indistinguishablefrom its view in the interface provided by P �� in the interaction with Vbasic. Thus the probabilitythat P �� succeeds in convincing Vbasic of a false statement in the basic proof of Hamiltonicityis negligibly close to the probability that P � succeeds in convincing V of a false statement inProtocol 6.2. This completes the proof of soundness.Resettable Zero-Knowledge: First, consider a stand alone execution of the above protocol(rather than an execution in a resettable setting). A simulation would proceed as follows. Thesimulator, given access to the veri�er (black box manner would su�ce here), extracts in Stage 131This is shown by �rst simulating the zero-knowledge argument of knowledge. Then it is shown that a distinguisherfor fs(�) can be used to distinguish a commitment to s from a commitment to s0 (where s and s0 are two independentlychosen random seeds). This is because if pk = Commit(s0) then fs(�) is pseudorandom (as the commitment isindependent of fs(�)). Thus, if a distinguisher could distinguish fs(�) from a random function when pk = Commit(s),then we would obtain an algorithm for distinguishing commitments to s from commitments to s0.41



SKid. This is possible because Stage 1 is a argument of knowledge of SKid (from veri�er toprover). This gives the simulator the seed s (contained in SKid) for the pseudorandom functionfs to subsequently be used by the veri�er to specify his queries in this session. Once extractionis completed, S proceeds to generate a sequence of commitments that it can open as required bythe veri�er (assuming that the veri�er's queries are as prescribed in the protocol; i.e., are obtainedby applying the pseudorandom function to the corresponding commitments). The simulator Sinitializes empty lists Q and C, and proceeds in n steps: For i = 1 to n, the simulator choosesat random qi 2 f0; 1g. If qi = 0, then S chooses at random a permutation of the vertices �i, andprepares a prefectly binding commitment of an adjecency matrix of the graph permuted accordingto �. Otherwise (i.e., qi = 1), S chooses at random cycle of n vertices and prepares a a perfectlybinding commitment of an n by n matrix in which all entries are 0 except for those entries onthe random cycle chosen. Let us denote the commitment prepared by ci. After this preparation,S computes q0i = fs(R; ci; i). If q0i = qi, then S augments the lists of commitments it can handle(i.e., sets C = C; ci and Q = Q; qi), and goes on to iteration i + 1, else S goes back and choosesanother qi. (The expected number of times each iteration is repeated is � 2.) Next, S sends Cto V , and expects to recieve back a sequence of queries Q0 2 f0; 1gn (which is expected to equalQ). At this point, V is expected to prove in resettably-sound (zero-knowledge) fashion that indeedQ0 was computed correctly by applying the pseudorandom function commited to in the public �lewhich corresponds to SKid. The simulator S, plays here the role of P in the real protocol in thesame way that P would (taking no advantage of his knowledge of s or of Q). Finally, if S acceptsthe proof of V (as P would have), then S needs to reply to the queries about C speci�ed by Q0.However, if Q = Q0 (which happends with high probability, otherwise the proof above would failwith high probability) then S is able to supply the answers V is expecting regarding C.Now, what happends in a resettable setting? Note that the main change in the above argu-ment needed pertains to the simulator's extraction of SKid from the POK32 of Stage 1 (anotherpoint to note is that the fact that the \correct behavior" proof given by the veri�er in Stage 2is resettably-sound and thus remains valid also in case the veri�er can reset P ). Once SKid isextracted successfuly, the rest of the simulation will follow exactly as above.The way we extract SKid from the POK of Stage 1 executed in a resettable setting generalizesthe way an analogous task is performed in the public-key model protocol of [7]. All that is neededis to generalize the description in [7], which refers to a speci�c POK (of Stage 1) to an arbitrary(resettably-sound POK).We now focus on the extraction of SKid in Stage 1, in a resettable setting. What complicatesmatter is that it is not a single key that need be extracted but many secret keys as for each veri�erthere are many possible public-keys (or identity's) id1; id2; :::; idi; ::: (and their corresponding secretkeys SKid1 ; :::; SKidi ,...) from which the veri�er picks one at Stage 0 of a session. Once a particularkey SKid is extracted, all sessions using this key can be simulated with no problem.Let LIST (initialized to be empty) contain all the id's for which the simulator already extractedSKid. De�ne pLISTidi to be the probability (taken over the coin tosses of P and V ) that, among allthe id's not in LIST , the identity to be used in the �rst session for which V gets through a completerun of Stage 1, is idi. Note that for any LIST , the sum of pLISTidi 's is at most 1, but may be muchsmaller (if the probability that no session with identity out of LIST gets through a complete runof Stage 1 is large). If for a �xed value of LIST , for all i such that idi not in LIST , the probabilitypLISTidi is negligible, then it is easy for S to simulate an entire run of the resettable protocol due tothe following observations.32POK is a common shorthand for proof of knowledge, and we slightly abuse it here by referring to Stage 1 that isan argument of knowledge. 42



� All the actions of P during the Stage 1 POK are independent of P 's additional knowledge ofthe witness of x 2 L (which P knows but S doesn't) and can be preformed by S exactly asP would do them. Thus, as long as V does not run Stage 1 to completion (say he aborts)and goes on to Stage 2, a session can be simulated profectly by S in the role of P . Thus, aslong as for all i such that idi not in LIST , the probability pLISTidi is negligible, we never getpassed Stage 1 for an SKid that S does not know, and such aborted sessions can be simulatedperfectly.� If we do get passed Stage 1 we are (w.h.p) in a session for which id 2 LIST . Thus thesimulator S already knows SKid and can continue to answer as P would have through Stage 2of this session (as outlined above in the case of standard zero-knowledge).Thus, the interesting case is when for some i such that idi is not in LIST , the probability pLISTidiis non-negligible. For simplicity, think that this probability is noticeable (although standard tech-niques can be applied to remove the dependency of the description on such a false dicotomy [21]).Suppose we are in this case for some intermediate value of LIST . The simulator task is eitherto extract a new SKid for which id not in LIST , or produce a view H of an execution of the entireresettable protocol (either way progress is made). The (partial) view H is initialized to the emptystring. The simulator S starts running acting as the prover would in Stage 1 of any session thatgets invoked by the veri�er. Whenever the protocol calls for the prover to use his pseudorandomfunction, the simulator tosses coins, making sure of course that on the same session pre�x the samecoin are used as would be the case for a true random function. There are a few cases to consider.� If a session for any id halts midway Stage 1, the simulator extends H to include an abortedtranscript of this session.� If a session for which id 2 LIST gets passed Stage 1, then the simulator uses his knowledgeof SKid to answer the veri�er and gets through Stage 2 of this session. The (partial) view His extended to contain the transcript of this session.� If a session for which id is not in LIST gets passed Stage 1, then the simulator tries to obtainthe corresponding SKid by using the knowledge-extractor (guaranteed for the POK used inStage 1). What complicates matters is that the extarctor may get to situations in which itcannot operate (becuase during extraction is may need to proceed in a Stage 2 of a sessionfor which the identity is not yet in LIST ). The solution is to emulate for the extractor, aknowledge-prover that aborts its execution just after completing Stage 1 of the �rst sessionwith identity not in LIST . Note that this imaginary (or residual) knowledge-prover stillsucceeds to convince the knowledge-veri�er to accept Stage 1 of the session with identity idwith probability pLISTid , and thus the extractor will succeed in extracting the correspondingSKid within expected running-time inversly proportional to pLISTid . (Standard tricks, �rstappearing in [21], have to be applied here; details are omitted.)Once the extraction of SKid is completed, the simulator may proceed as in the previous case.Alternatively, it may sets H back to empty and start the entire process again (of course) withthe current LIST (which was just extended by one id). In any case, the partial view H isnot e�ected by the extraction process itself.We stress that the extraction procedure is invoked only for a �xed polynomial number oftimes (corresponding to the size of the public �le).43



� Suppose that all sessions encountered are either using an id 2 LIST , or never get passedStage 1, then when V terminates, we �nally output H as te simulators view. Indeed, eventu-ally either LIST will contain all the identities of V or we shall arrive to the point that pLISTidiis negligible for all idi not in LIST. In either case, we can get through an entire simulation ofthe resettable protocol w.h.p. and output H.It remains to formally analyze the running time of this simulator and show that indeed it works inexpected polynomial-time. We delay this to the �nal paper, but remark that the analysis proceedsagainst the same outline as does the analysis (of the simulator for the public-key rZK protocol)of [7].6.3 Knowledge ExtractionAs we have claimed above, Protocol 6.2 is actually a system of rZK arguments of knowledge. Inthis section, we briey describe the extraction procedure, which turns out to be very similar tothe extraction procedure for Protocol 5.1. That is, in Protocol 5.1 the veri�er is committed to itsqueries before the prover sends the commitments. Then, in order to extract, the extractor cheatsand decommits in more than one way. Likewise here, given the public-key, session-identi�er andprover commitments, the veri�er is essentially committed to its queries. However, as in Protocol 5.1,the extractor can cheat and send di�erent queries, where the cheating is made possible by runningthe zero-knowledge simulator in Step 3 of Stage 2, rather than providing a real proof.Formally, a proper de�nition of \sequential-extraction in the public-key model" should be pro-vided. (This is analogous to the issue of sequential-soundness which is not implied by one-timesoundness in the public-key model.) However, we describe the extractor here in terms of a singleexecution (recall that above we have shown that sequential soundness does hold for Protocol 6.2).We note that one issue that must be resolved is whether or not the extractor has access to asecret-key corresponding to a public-key in the public �le. Since the extractor demonstrates thatthe prover knows the witness and the prover does not know the veri�er's corresponding secret-keywhen proving, we have chosen not to provide the extractor with this information. Furthermore,this also provides a stronger de�nition that implies the alternative.The Extraction Procedure: Recall that it is enough to obtain correct replies to two di�erentqueries (for the same set of prover commitments) in order to successfully extract a Hamiltoniancycle. We denote by P �(F;G; r;m) the next message sent by P � where F is the public-�le, Gthe common input graph, r its random-tape and m the series of incoming messages to P �. Theextractor K (upon input an encoding of P �, a public �le F = f(id; PKid)g and a graph G) worksas follows:1. K chooses a uniform string r for the random tape of P �.2. Emulating Stage 0, K gives a random string R 2R f0; 1gn to P �.3. Emulating Stage 1, K simulates the resettably-sound zero-knowledge argument of knowledgeof the decommitment for PKid, where the veri�er is de�ned by P �(F;G; r;R). Denote thetranscript of the proof by tpok.4. Entering the emulation of Stage 2, K obtains the next message from P �, which is denoted byc1; : : : ; cn. 44



5. K uniformly chooses q 2R f0; 1gn and sends q to P �. Furthermore, K runs the zero-knowledge simulator for the proof of Step 3 of Stage 2 where the veri�er is de�ned byP �(F;G; r;R; tpok; q). (We note that the ability of K to provide a simulated proof ratherthan a real proof here, is central to the extraction procedure. Furthermore, recall that forlanguages outside of BPP , the simulator for a resettably-sound zero-knowledge argumentcannot be black-box. Thus, the fact that K is given non black-box access to P � is essential.)6. K then obtains the next message from P � (which should be decommitments).7. K veri�es the proof according to V 's instructions.(a) If the veri�cation fails, then K halts with output ?.(b) If the veri�cation succeeds, thenK continues by repeating Steps 5{7 until another successoccurs, where in each repetition, the string q is chosen independently and uniformly.Denote the string for which the success occurs by q0. (In each of these repetitions,K uses the same randomness for the zero-knowledge simulation; this technical pointsimpli�es the analysis.)If q0 6= q, then extraction succeeds and K outputs the cycle C. On the other hand, ifq0 = q, then extraction fails and K outputs failure.Claim 6.3.1 Let K be the extractor described above. Then, for every probabilistic polynomial-timemachine P �, every public-�le F , every polynomial p(�) and all su�ciently large graphs G,Pr[K(desc(P �); F;G) 2 HAM(G)] > Pr[hP �; V i(F;G) = accept]� 1p(jGj)where HAM(G) denotes the set of Hamiltonian cycles in G.Proof Sketch: We �rst claim that the probability that K halts with output ? is negligibly closeto the probability that V rejects a proof upon interaction with P �. Notice the following di�erencesbetween a transcript resulting from a real interaction between P � and V and a transcript resultingfrom Steps 1{6 of K's program above:� The zero-knowledge proofs are simulated and not real.� The query string is independent of the public-key and its corresponding pseudorandom function.In the proof of soundness of Protocol 6.2 above, we have shown almost the same claim (the onlydi�erence being that there the �rst zero-knowledge proof was real and not simulated { this di�erenceis not, however, signi�cant). Thus, indistinguishability holds. Since whether or not V should rejectis easily derived from a transcript, we have that the probability that K halts with output ? isnegligibly close to the probability that V rejects a proof upon interaction with P �.Next, we claim that K outputs failure with probability 2�n exactly. This follows using anidentical argument as in the proof of Lemma 5.1.1. The same argument follows since Steps 5{7 ofthe extraction procedure here are essentially the same as Steps 3{5 of the extractor described inLemma 5.1.1.Now, notice that if K does not output ? and does not output failure, then it outputs a Hamil-tonian cycle. Thus, combining the above together, we have that the probability that K outputs aHamiltonian cycle is negligibly close to the probability that V accepts in an interaction with P �.It remains to show that K is expected polynomial-time. Once again, the same analysis as inLemma 5.1.1 is correct here and we therefore refer the reader there.45
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Appendix: Blum's ProtocolIn the main text, we consider n parallel repetitions of the following basic proof system for the Hamil-tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language inNP). We consider directed graphs (and the existence of directed Hamiltonian cycles).Construction A.1 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices V ,and commits (using a perfectly-binding commitment scheme) to the entries of the adjacencymatrix of the resulting permuted graph. That is, it sends an n-by-n matrix of commitmentsso that the (�(i); �(j))th entry is a commitment to 1 if (i; j) 2 E, and is a commitment to 0otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with therevealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the veri�eronly the commitments to entries (�(i); �(j)) with (i; j) 2 C. In both cases the prover alsosupplies the corresponding decommitments.� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeedisomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 andthat the corresponding entries form a simple n-cycle. In both cases the veri�er checks that thedecommitments are proper (i.e., that they �ts the corresponding commitments). The veri�eraccepts if and only if the corresponding condition holds.Proposition A.2 The protocol which results by n parallel repetitions of Construction A.1 is aproof of knowledge of Hamiltonicity with knowledge error 2�n.
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