
Interleaved Zero-Knowledge(A Preliminary Version)Oded Goldreich� Sha� Goldwassery Silvio MicalizJuly 8, 1999AbstractWe introduce the notion of Interleaved Zero-Knowledge (iZK), a new security measure forcryptographic protocols which strengthens the classical notion of zero-knowledge, in a waysuitable for multiple concurrent executions in an asynchronous environment like the internet.We prove that iZK protocols are robust: they are \parallelizable", and preserve security whenrun concurrently in a fully asynchronous network. Furthermore, this holds even if the prover'srandom-pads in all these concurrent invocations are identical. Thus, iZK protocols are ideal forsmart-cards and other devices which cannot reliably toss coins on-line nor keep state betweeninvocations.Under general complexity asumptions (which hold in particular if the Discrete LogarithmProblem is hard), we construct iZK (computationally-sound) interactive proofs for all NP lan-guages which run in constant-rounds. The protocols are in the public key model: the veri�eris assumed to have a public key associated with it. This implies, concurrent constant-roundzero-knowledge computationally-sound proofs for NP in the public key model, without resortingto any timing assumptions.Analogously, we de�ne Interleaved Witness-Indistinguishable (iWI), protocols which are wit-ness indistiguishable even if the prover's random-pads in all concurrent executions are identical.Under general complexity assumptions we construct InterleavedWitness-Indistinguishable (iWI)interactive proofs for all NP languages which run in constant-rounds. These interactive proofs donot require any public keys, and make no assumptions about the prover computational ability.We extend iZK (and iWI) interactive proofs to iZK (and iWI) proofs of identity: These aremethods to prove identity that remain secure even if the prover can be forced to repeatedly runthe identi�cation protocol on the same coins. All previous ZK or WI proofs of identity weretotally breakable in such case. In particular, this case arises whenever the prover is realized bymeans of a device which can be reset to initial conditions, such as a \smart card". Here, ourprotocols call for the veri�er of identity (but not the prover) to have an associated public key.Keywords: Zero-Knowledge, Concurrent Zero-Knowledge, Smart Cards, ID Schemes, commit-ment schemes, DLP�Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel,oded@wisdom.weizmann.ac.ilyLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139,shafi@theory.lcs.mit.eduzLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA02139,silvio@theory.lcs.mit.edu1A subset of this work is included in patent application [21].

1 IntroductionThe notion of zero-knowledge interactive proofs, was put forward and �rst instantiated by Gold-wasser, Micali and Racko� [22] in '85, before the onset of the internet. By now, zero-knowledgeis the accepted way to de�ne and prove security of various cryptographic tasks. Its generality wasdemonstrated by Goldreich, Micali and Wigderson [18], who showed that any NP-statement can beproven in zero-knowledge, provided commitment schemes exist (or, equivalently [26, 24], one-wayfunctions exist). An important application of zero-knowledge proposed by Fiat and Shamir [11]was proving identity.Alongside many applications, the notion of zero knowledge raises a few important questions.Parallel composition. The �rst question is whether zero knowledge is preserved when (zero-knowledge) protocols are composed. For sequential composition of protocols, the question wasanswered in the a�rmative (cf., [19]), provided zero knowledge is augmented in a natural manner(satis�ed by all natural examples).2 The situation with respect to parallel composition, however,turned out to be more complicated: There exist (unnatural) zero-knowledge protocols which yieldknowledge if executed twice in parallel [16]. Furthermore, parallel executions of some natural zero-knowledge interactive proofs (like the abovementioned proof for NP by [18]) cannot be provenzero-knowledge using a black-box simulator (the only way known) unless NP � BPP [16].An alternative avenue toward the parallel composition problem was taken by the work on witnessindistinguishability of [10]. In a sense their conclusion is that the zero-knowledge requirement istoo strict and that one should suggest (as they do) weaker notions which are both preserved underparallel composition and su�ce for (hopefully) many applications.Concurrent execution. With the rise of the internet, the question of concurrent execution ofzero-knowledge protocols emerged. In a concurrent setting, many executions of protocols can berunning at the same time, involving many veri�ers which may be talking with the same (or many)provers simultaneously. This presents the new risk of an overall adversary who controls the veri�ers,interleaving the executions and choosing veri�ers queries based on other partial executions. This riskis made even more challenging by the fact that each prover{veri�er pair should act independently.(It would be unrealistic to require all interactive parties to coordinate their actions such that zero-knowledge is preserved!) Note that maintaining zero-knowledge in the concurrent setting is evenharder than preserving zero-knowledge under parallel composition, as all executions need not startat the same time nor remain totally synchronized.A recent approach towards addressing the concurrent execution problem has been suggested byDwork, Naor and Sahai [8], who assume that a very mild level of synchronization is guaranteed: theso-called timing assumption. Under this assumption, protocols may not start at the same time, butonce an execution starts there are a-priori known bounds on the delays of messages with respectto some ideal global clock. Furthermore, it is assumed that each party uses a local clock whoserate is within a constant factor of the rate of the ideal clock. Under the timing assumption (andsome standard intractability assumption), constant-round zero-knowledge (computationally-sound)proofs for NP were presented in [8]. In a later paper by Dwork and Sahai[9], it was shown how theuse of timing can be pushed up to a pre-processing protocol, to be executed before the concurrentexecutions of protocols (which do not use timing), and still get constant-round zero-knowledgecomputationally-sound proofs for NP.2The augmentation is indeed necessary; see [16]. 1

More recent work by Ransom and Kilian [27] seems to indicate that it may be possible to getrid of the timing assumption, alas their protocols are either not constant-round or only simulatablein quasi-polynomial time.Resettability. It is known that zero-knowledge proof in which the prover is deterministic existonly for BPP languages (cf., [19]). Furthermore, (standard) Zero-Knowledge protocols do notnecessarily remain zero-knowledge if the prover uses the same sequence of coins in many interactions(even if the interactions are with a honest veri�er). In fact, a wide class of ZK protocols (e.g.,Zero-Knowledge proof for 3-Coloring [18] or proofs of identi�cation a la Fiat-Shamir [11]), aretrivially breakable in such setting. Furthermore, by de�nition in any proof of knowledge protocol,if the veri�er can reset the prover to the same initial conditions (i.e., to use the same coins) fora polynomial number of executions, then the veri�er can easily extract the very same secret keywhich the prover is claiming knowledge of. (For the original protocol of [11] it su�ces to repeatthe protocol twice with the same prover coins to be able to extract the prover's secret).This `feature' restricts the physical implementations of the prover to those of essentially fully-reliable hardware, where it is impossible for the veri�er to \reset" the prover. For instance, assumethat the prover is a smart card which has neither a built-in power supply nor a (tamper-proof)non-volatile writable memory. Then, one could (e.g., by disconnecting and reconnecting the powersupply) restore a �xed internal con�guration of the card, thus essentially cloning it any time onepleases. (In the unlikely case that the card generates a random-pad by sampling the environment,one can possibly determine the random-pad.) Thus, being zero-knowledge in the classical sensedoes not provide security against such an attack on the card. An interesting question is whether itis possible to have zero-knowledge protocols even when the prover is realized by a resettable device.1.1 A New Notion: Interleaved Zero KnowledgeThis work puts forward the notion of Interleaved Zero-Knowledge (iZK), a new security measurefor cryptographic protocols which strengthens the classical notion of zero knowledge [22], to �ttodays \internet age".Informally, an interactive proof or a computationally-sound proof is iZK, if a veri�er learnsnothing (except for the verity of a given statement) even when he can make the prover interactwith him polynomially-many times, while the prover uses the same sequence of random moves inall these interactions. In other words, a polynomial-time veri�er learns nothing extra even if it can\clone" the prover (each time with the same initial con�guration, random tape included) as manytimes as it pleases, and then interact with these clones in any order and manner it wants. (Inparticular, it can start a second interaction in the middle of a �rst one, and thus choose to send amessage in the second interaction as a function of messages received in the �rst.) We stress that, ineach of these interleaved interactions, the prover (i.e., each prover clone) is not aware of any otherinteraction, nor of having been cloned.The above de�nition may seem unnatural; however, it is a powerful abstraction which yieldsresults for a variety of realistic settings. This makes our positive results only stronger. In particular,our notion enjoys the following properties:� iZK protocols are closed under parallel composition;� iZK is preserved even when the protocol is executed polynomially-many times in a totallyasynchronous network (and furthermore the number of executions may be a-priori unknown);2

� iZK allows the prover's random-pad to be randomly selected and �xed, once and for all: Theresulting deterministic prover can prove in zero-knowledge polynomial many claims withoutkeeping record of any kind, and again the number of interaction need not be a-priori known.The importance of the �rst two properties has been recognized in the litureature and requiresno further emphasis. We now discuss the importance of the third property, and speci�cally itsrelevance to some realistic settings. Randomly selecting and �xing the prover's random coins isadvantageous in settings where the proving device can be physically tampered with. In particular,when one can e�ect on-line random choices made by the device and reset all its registers to theirinitial state. A iZK prover (with few random bits that can be wired in) maintains zero-knowledgealso under such an attack, since it uses no on-line random choices and resetting it is guaranteed(by de�nition) to cause no harm.In general, iZK enables enlarging the number of physical ways in which ZK proofs may beimplemented while guaranteeing that security is preserved. Previous notions of zero-knowledge (andidentity proving schemes in particular) worked only for a restricted class of physical implementationsof the prover; typically, implementations over fully-reliable hardware. Note that for example asmart-card (playing the role of a prover of identity say in an interactive proof) cannot be consideredsuch a device as we discussed in the previous subsection. In contrast, if a smart card implementsan iZK proof and we hard-wire a (short) random-pad into its program then the card's security ismaintained even under such an attack.The Public Key Model. We will consider protocols which achieve iZK in the public-key model.Namely, we assume that participants are part of a network, where parties can register a public keywhich can be read by all other participants. We stress that we only assume that public-keys can beregistered in the literal sense of the word. Registration does not have to include interaction witha trusted system manager which may verify properties of the registrated public-key (e.g., that itvalid or even that the user registrating it knows a corresponding secret key).For sake of simplicity, we assume throughout the paper that registration occurs before anyinteraction between the users takes place. More exible models allowing registration at all times,seem to require a mild notion of timing (or synchronization), and are deferred to a future versionof this work.We note that in the iZK computationally-sound proofs for NP which we construct only one ofthe participants of the two-party protocol { the veri�er { is required to have an associated public-key. The fact that only the veri�er is required to have a public-key is crucial for using iZK protocolsin the context of identity proving protocols, where the prover does not necessarily have a registeredpublic key but the veri�er which is typically a server governing use of a resource (e.g., a computeror a data base) does have a pubic key.1.2 Interleaved Witness-IndistinguishableThe notion of witness indistinguishability was introduced by [10] as a relaxation of the zero-knowledge requirement which could be still suitable in many applications and may be achievedwith greater ease and e�ciency. For example, witness indistinguishable protocols are closed underparallel composition and concurrent execution.We de�ne (analogously to iZK) Interleaved Witness-Indistinguishable protocols (iWI). Infor-mally, a witness indistinguisable proof is iWI, if it remains witness indistinguishable even if theveri�er can make the prover interact with him polynomially-many times, while the prover uses the3

same sequence of random moves in all these interactions. In other words, a polynomial-time veri�ercan still not distinguish between two di�erent witnesses for an NP statement that the prover isproving even if it can \clone" the prover (each time with the same initial con�guration, randomtape included) as many times as it pleases, and then interact with these clones in any order andmanner it wants.We note that existing WI protocols (e.g., [18]) are not Interleaved Witness-Indistinguishableprotocols. Furthermore, even the honest veri�er can easily extract the entire witness (not to mentiondistinguish between witnesses), when the protocol is executed polynomial many times with a proverusing the same coins.Interestingly, as we shall see in an upcoming subsection, we can achieve iWI interactive proofs(rather than computationally-sound ones) without requiring neither prover or veri�er to have apublic key. This will be under essentially the same complexity assumptions as required for the iZKproofs in the public-key model.1.3 Public Key Model iZKThe advantages of the new notion are clear, but do iZK protocols exist for languages outside BPP?Our main result is answering this question a�rmatively, under reasonable complexity assumptions,in the public key model. We proveMain Theorem 1 (informal statement): Any language in NP has a constant-round iZK computationally-sound interactive proof in the public key model, under the assumption that trapdoor strong claw-freepairs of permutations exist.By strong claw-free pairs of permutations we mean that the clawfree property should hold alsowith respect to subexponential-size circuits (i.e., circuits of size 2n� , where n is the input lengthand � > 0 is �xed), rather than only with respect to polynomial-size circuits. By trapdoor we meanthat these pairs can be generated along with auxiliary information which allows to form (random)claws.The existence of trapdoor strong claw-free pairs of permutations is, in particular, implied by thecomputational intractability of the Discrete-Log Problem (DLP). More generally, our result holdsif constant-round commitment schemes with certain features exist.Recall that zero-knowledge protocols (for NP) are extremely powerful tools with numerousapplications in cryptography. This holds both if these protocols are absolutely sound or justcomputationally-sound (a.k.a arguments). The above says that this powerful tool is available, atmoderate price (i.e., constant-round), in the fully concurrent setting of asynchronous networks (e.g.,the internet) assuming veri�ers have established public keys using the public-keys infrastructure.Moreover, this tool is available even when the prover is realized by a device which can potentiallybe reset to its initial state (coin tosses included).Techniques. We believe some of our technique will prove useful in other applications and inparticular ones related to security in the internet. These techniques include:1. Replacing random choices by application of a pseudorandom function (cf., [14]) on the historyof the interaction. This technique is at the heart of the \cloning-robustness" property of ourzero-knowledge protocols. It enables to move the randomness of a party from the on-lineinteraction to a prior o�-line stage. 4

2. Proving that such \cloning-robustness" (for sequential executions) guarantees security ininterleaved executions, and thus security in an asynchronous concurrent setting.3. Using public-keys as a tool to achieving zero-knowledge protocols. It is customary to usepublic-keys for encryption and digital signatures. However, here the fact that the veri�er usesa registered public key in concurrent executions of the protocol enables achieving ZK in aconcurrent and resettable setting. What is important is that the number of total public-keysever utilized by veri�ers (including multiple veri�ers in multiple executions) is bounded by a�xed polynomial in the security parameter.4. \Telescopic" usage of intractability assumptions. The idea is to use two \secure" schemes,one with security parameter K and one with a smaller security parameter k. Suppose that,for some � > 0, the security of the �rst scheme (with security parameter K) is maintainedaganist adversaries running in time 2K� , and that instances of the second scheme (with securityparameter k) can be broken in time 2k. Then setting k = K�=2 guarantees both security ofthe second scheme as well as \non-mallability" of the �rst scheme in presence of the secondone. The reason for the latter fact is that breaking the second scheme can be incorporatedinto an adversary attacking the �rst scheme without signi�cantly e�ecting its running-time:Such an adversary is allowed running-time 2K� which dominates the time 2k = 2K�=2 requiredfor breaking the second scheme.Resolving the zero-knowledge concurrency question in the public key model. As shouldbe clear from the above discussion, our Main Theorem 1 is directly relevant to the open problemof concurrent zero-knowledge: We provide constant-round concurrent zero-knowledge protocols forNP, based on standard intractability assumptions in the public key model. As the existence of apublic-key may be thought of as a mild form of preprocessing, this directly improves Dwork andSahai's work that required a pre-processing protocol which uses the timing technique and thusmakes timing assumptions to achieve concurrent computationally-sound proofs for NP. In our case,no timing assumptions are necessary, just the plain old public key model. Moreover, the notion ofconcurrent zero-knowledge achieved is a stronger notion than that in previous works as it allowsconcurrent executions with a prover who may use the same coins.1.4 Constructing iWI Protocols for NPWithout resorting to the public key infrastructure, we show how to achieve Interleaved Witness-Indistinguishable interactive proofs for all NP statements. Note that here we can achieve interactiveproofs rather than computationally sound proofs. Namely, no bound need be assumed about thecomputational power of the cheating prover. We proveMain Theorem 2 (informal statement): Under the assumption that claw-free pairs of permutationsexist, every language in NP has a constant-round rewindable witness-indistinguishable interactiveproof system.The assumption in Main Theorem 2 is seemingly weaker than in Main Theorem 1: Ordinaryclawfree pairs will do, rather than strong clawfree pairs with trapdoor. Again, the assumption in thetheorem can be alternatively stated in terms of the existence of constant-round perfect commitmentschemes. 5

1.5 Other ResultsiZK vs. proofs of knowledge. We show that proofs of knowledge cannot be iZK, except ina useless sense: That is, we show that if, on input x, one can provide an iZK proof of knowledgeof y so that (x; y) is in some polynomial-time recognizable relation, then it is possible given x to�nd such a y in probabilistic polynomial-time. Thus, such a proof of knowledge is useless, sinceby de�nition (of knowledge) anybody who gets input x knows such a y. (This holds even for theweaker model presented in Section 3.)iZK proof of identity. The fact that we cannot have (useful) iZK proofs of knowledge blocksthe applicability { to the \prover cloning" model { of a known paradigm for constructing identi-�cation schemes. We refer to the Fiat-Shamir paradigm [11] by which any zero-knowledge proofof knowledge (for a \hard" NP-language) yields a secure identi�cation scheme. Furthermore, theFiat-Shamir identi�cation scheme [11] (which is based on a zero-knowledge proof of knowledge of asquare root of a given number modulo a given composite [22]), as well as any identi�cation schemebased on the above paradigm, can be totally broken if one can force the identifying user to re-runthe protocol on the same choice of coins several times. As discussed above, such an attack may befeasible whenever the identi�cation is done by a device which uses hard-wired coins and may bereset to its initial state.Instead, we propose an alternative paradigm for constructing identi�cation schemes so that theresulting schemes are secure also when the identi�cation is done by a device which uses hard-wiredcoins and may be reset to its initial state. Furthermore, the scheme remains secure even if theadversary can get hold of several copies of the same device (i.e., \clones") and interact with allcopies while possibly interleaving the executions.The new paradigm consists of viewing the ability to convince the veri�er that a �xed input is ina \hard" NP-language as a proof of identity. The legitimate user holds an NP-witness which allowsit to successfully carry out such proofs, whereas it is infeasible for an adversary which is only givena yes-instance of the hard language to successfully carry out such a proof.3 Using a iZK proofsystem, the identifying user can always convince the veri�er while not yielding any informationwhich may facilitate latter impersonating attempts (by the current veri�er). This holds even if theveri�er can attack the device used by the identifying user as described above.2 Preliminaries2.1 Standard ConventionsThroughout this paper we consider interactive proof systems [22] in which the designated proverstrategy can be implemented in probabilistic polynomial-time given an adequate auxiliary input.Speci�cally, we consider interactive proofs for languages in NP and thus the adequate auxiliaryinput is an NP-witness for the membership of the common input in the language. Also, wheneverwe talk of an interactive proof system, we mean one in which the error probability is a negligiblefunction of the length of the common input (i.e., for every polynomial p and all su�ciently longx's, the error probability on common input x is smaller than 1=p(jxj)). Actually, we may furtherrestrict the meaning of the term `interactive proof system' by requiring that inputs in the languageare accepted with probability 1 (i.e., so-called perfect completeness).3Note that an e�cient strategy to convince the veri�er on yes-instances yields an e�cient decision procedure forthe language (by emulating the interaction). 6

Likewise, when we talk of computationally-sound proof systems (a.k.a arguments) [7] we meanones with perfect completeness in which it is infeasible to cheat with non-negligible probability.Speci�cally, for every polynomial p and all su�cienly large inputs x not in the language, everycircuit of size p(jxj) (representing a cheating prover strategy) may convince the veri�er to acceptonly with probability less than 1=p(jxj).For simplicity, we consider only interactive proof systems in which the total number of message-exchanges (a.k.a. rounds) is a pre-determined (polynomial-time computable) function of the com-mon input. Actually, we are most interested in interactive proof systems in which this number isa constant; these are called constant-round interactive proof systems.We adopt the basic paradigm of the de�nition of zero-knowledge [22]: The output of everyprobabilistic polynomial-time adversary which interacts with the designated prover on a commoninput in the language, ought to simulatable by a probabilistic polynomial-time machine (whichinteracts with nobody). The latter machine is called a simulator. We stress that throughout thispaper, a probabilistic polynomial-time machine means a probabilistic machine running in expectedpolynomial-time (rather than strict polynomial-time). Recall that it is not known whether constant-round zero-knowledge proofs for NP exists, if one insists on strictly polynomial-time simulators(rather than expected polynomial-time ones). See [15, 13].We also refer (or, actually, extend) the de�nition of witness indistinguishable proof systems(cf., [10]). Loosely speaking, these are proof systems in which the prover is a probabilistic polynomial-time machine with auxiliary input (typically, an NP-witness), having the property that interactionsin which the prover uses di�erent \legitimate" auxiliary-inputs are computationally indistinguish-able.2.2 The models consideredIn this paper we consider a variety of models. These models are de�ned by two parameters specifyingthe initial set-up assumptions and the generality of the adversary attack.Initial set-up assumptions: The vanilla case is when no set-up assumptions are made. Thisis indeed the \cleanest" model typically employed in theoretical works regarding secure two-partyand multi-party computation. Whenever we make no mention of set-up assumptions/model, wemean the vanilla model.By the public-key model we mean a model in which all users are assumed to have deposited apublic-key in a �le that is accessible by all users at all times. The only assumption about this �leis that it guarantees that entries in it were deposited before any interaction among the users takesplace. No further assumption is made about this �le, and so in particular an adversary may depositmany (possibly invalid) public-keys in it (and, in particular, without even knowing correspondingsecret keys or whether such exist). Access to the �le may be implementable by either severalidentical servers or by providing users with certi�cates for their deposited public-keys. This (andeven more imposing variants) is a standard model in many applied works.A more imposing model (i.e., assuming stronger set-up assumptions) which is still quite rea-sonable in practice, augments the public-key model by allowing (\validating") interaction betweenusers and system manager at deposit time. In general, the preprocessing model postulates thatbefore any interaction among users takes place, the users have to interact with a system managerwhich issues them certi�cates in case it did not detect cheating at this stage. In particular, one mayuse the preprocessing stage in order to verify that the user knows a secret-key for the public-key itwishes to have certi�ed. 7

We stress that our work actually uses weaker assumptions. Speci�cally, in both the lattermodels, we only need that potential veri�er will deposit public-keys and/or participate in a pre-computation. This is not required of users who are only going to play the role of provers.The attacks: The most basic attack we consider allows the adversary to rewind any of the priorcompleted interactions with the prover to an arbitrary point and carry out a new interaction fromthat point. Once the adversary initiates a new interaction, it must complete it (or abandon it), andso interleaving of interactions is not allowed. The basic model is considered in Section 3, whereasa model allowing arbitrary interleaving of interactions is considered in Section 4. However, in bothsections we consider only a single incarnation of the prover; all interactions with it are on a �xedinput and �xed random-tape. In Section 5 we generalize the treatment to the case the adversary caninteract (i.e., rewind and interleave) with polynomially many di�erent incarnations of the prover.The tasks: Our main focus is on zero-knowledge protocols. However, we also consider othervariants such as witness-indistinguishable protocols and identi�cation protocols.3 Rewindable Zero-KnowledgeGiven a speci�ed prover P , a common input x and an auxiliary input y to P (e.g., y may be an NP-witness for x being in some NP-language), we consider polynomially-many sequential interactionswith the residual deterministic prover strategy Px;y;! determined by uniformly selecting and �xingP 's coins, !. That is, ! is uniformly selected and �xed once and for all, and the adversary maysequentially invoke and interact with Px;y;!. In each such invocation, Px;y;! behaves as P would havebehaved on common input x, auxiliary-input y, and random-tape !. Thus, the adversary and Px;y;!engange in polynomially-many interactions; but whereas Px;y;!'s actions in the current interactionare independent of prior interaction (since Px;y;! mimics the \single interaction strategy" P), theactions of the adversary may depend on prior interactions. In particular, the adversary may repeatthe same messages sent in a prior interaction, resulting in an identical pre�x of an interaction (sincethe prover's randomness is �xed). Furthermore, by deviating in the next message, the adversarymay obtain two di�erent continuations of the same pre�x of an interaction. Viewed in other terms,the adversary may \e�ectively rewind" the prover to any point in a prior interaction, and carry-ona new continuation (of this interaction pre�x) from this point.De�nition 1 (rewindable security { vanilla model): A prover strategy P is said to be rewindablezero-knowledge (on L) if for every probabilistic polynomial-time adversary V � as below there existsa probabilistic polynomial-time simulator M� so that the following distribution ensembles, indexedby a common input x 2 L and a prover auxiliary input y, are computationally indistinguishable(cf., [20, 28]):Distribution 1 is de�ned by the following random process which depends on P and V �.1. Randomly select and �x a random-tape, !, for P , resulting in a deterministic strategyP 0 = Px;y;! de�ned by Px;y;!(history) = P (x; y; !; history).2. Machine V � is allowed to initiate polynomially-many sequential interactions with P 0.The actions of V � in the ith interaction with P 0 may depend on previous interactions,but the ith interaction takes place only after the i� 1st interaction was completed.More formally, V � sends whatever message its pleases, yet this message is answered asindicated above. That is, suppose P 0 expects to get t messages per interaction. Then, for8

every i � 0 and j = 1; :::; t, the it+jth message sent by V � is treated as the jth message inthe ith interaction of P 0, and accordingly the response is P 0(msgit+1; :::;msgit+j), wheremsgk is the kth message sent by V �.3. Once V � decides it is done interacting with P 0, it (i.e., V �) produces an output based onits view of these interactions (which, as usual, includes the internal coin-tosses of V �).Distribution 2: The output of M�(x).In case there exists a universal probabilistic polynomial-time machine, M , so that M� can be imple-mented by letting M have oracle-access to V � (cf., [19]), we say that P is rewindable zero-knowledgevia a black-box simulation.A prover strategy P is said to be rewindable witness-indistinguishable (on L) if every two distri-bution ensembles of Type 1, each indexed by a common input x 2 L and depending on a possiblydi�erent prover auxiliary input y, are computationally indistinguishable.We note that many known zero-knowledge protocols are not rewindable zero-knowledge. Further-more, they are even not rewindable witness-indistinguishable. For example, ability to \rewind"the original zero-knowledge proof for 3-Colorability [18], allows the adversary to fully recover the3-coloring of the input graph used by the prover. Still (as shown below), rewindable witness-indistinguishable interactive proofs for NP exists, provided that the Discrete Logarithm Problem(DLP) is hard modulo primes p of the form 2q + 1 where q is a prime. Actually, a more generalresult holdsTheorem 2 If constant-round perfect commitment schemes exists then every language in NP hasa constant-round rewindable witness-indistinguishable interactive proof system.Analogously to De�nition 1, we may de�ne rewindable zero-knowledge in the public-key model: Theonly modi�cation is that the prover and veri�er (as well as the simulator) have access to a public-�lewhich was generated by the adversary V � before all interactions began.In the public-key model, we may obtain computationally-sound rewindable zero-knowledge proofsystems. Here we use two-round perfect commitment schemes with some additional features (tobe speci�ed below). Such schemes exist assuming that DLP is hard for sub-exponential circuits.Thus, as a special case, we obtain:Theorem 3 Suppose that for some � > 0 and su�ciently large n's, any circuit of size 2n� solvesDLP correctly only on a negligible fraction of the inputs of length n. Then every language in NP hasa constant-round rewindable zero-knowledge computationally-sound proof system in the public-keymodel. Furthermore, the prescribed prover is rewindable zero-knowledge via a black-box simulation.3.1 Proof Sketch of Theorem 2Traditional zero-knowledge interactive proofs rely on the randomized nature of the prover strategy.In a sense, this is essential (cf., [19]). In our context, the prover's randomization occurs only onceand is �xed for all subsequent interactions. So the main idea is to utilize the initial randomization(done in the very �rst invocation of the prover) in order to randomize all subsequent invocations.The natural way of achieving this goal is to use a pseudorandom function, as de�ned and constructed9

in [14].4 However, just \using a pseudorandom function" does not su�ce. The function has to beapplied to \crucial steps" of the veri�er; that is, exactly the steps which the veri�er may want toalter later (by rewinding) in order to extract knowledge. Thus, the zero-knowledge proof systemfor 3-Colorability of [18] is not an adequate starting-point (since there the prover's randomizationtakes place before a crucial step by the veri�er). Instead, we start with the zero-knowledge proofsystem of Goldreich and Kahan [15]: In that proof system, the veri�er �rst commits to a sequenceof edge-queries, then the prover commits to random colorings, and then the veri�er reveals itsqueries and the prover reveals the adequate colors. Starting with this proof system, we replacethe prover's random choices (in its commitment) by the evaluation of a pseudorandom function(selected initially by the prover) on the veri�er commitment. Thus, on an abstract level, the proofsystem is as follows.Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.Prover's auxiliary input: A 3-coloring � : [n] 7! f1; 2; 3g of G.Prover's initial randomization: The prover's random-pad is used to determine a pseudorandomfunction f : f0; 1gpoly(n) 7! f0; 1gpoly(n).The rest is an adaptation of the [15] proof system, where the only modi�cation is at Step (P1).(V1) The veri�er commits to a sequence of t def= n � jEj uniformly and independently chosen edges.The commitment is done using a perfect commitment scheme, so that the prover gets noinformation on the committed values, while it is infeasible for the veri�er to \de-commit" intwo di�erent ways.(P1) As in [18, 15], the prover commits to t random relabeling of colors. The commitment is doneusing an ordinary commitment scheme, providing computational-secrecy and absolute/perfectbinding. The key point is that the prover's random choices (both for the relabelling andrandomization needed for the commitment scheme) are replaced by the value of the functionf applied to the message sent by the veri�er in Step (V1).Actually, to allow smooth extension to the general model discussed in Section 5, we apply fto the pair ((G;�);msg), where msg denotes the message sent by the veri�er in Step (V1).That is, let (�1; r1); :::; (�t; rt) = f(G;�;msg), and use �i : f1; 2; 3g 1�17! f1; 2; 3g as the ithrandomization of � (i.e., �i(v) = �i(�(v))), and ri = (ri;1; :::; ri;n) as randomness to be usedwhen committing to the values of �i on [n]. That is, for i = 1; :::; t and j = 1; :::; n, the provercommits to �i(j) using randomness ri;j.(V2) The veri�er reveals the sequence of t edges to which it has committed to in Step (V1). Italso provides the necessary information required to determine the correctness of the revealedvalues (i.e., \de-commit").(P2) In case the values revealed (plus the \de-commitment") in Step (V2) match the commitmentssent in Step (V1), and in case all queries are edges, the prover reveals the corresponding colorsand provides the corresponding \de-commitment". That is, suppose that the ith edge revealedin Step (V2) is (u; v), then the prover reveals �i(u) and �i(v).4Recall, that by combining [24] and [14] one may construct pseudorandom functions using any one-way function.Furthermore, relying on the intractability of the DLP, a much more e�cient construction is available by combining [5]and [14]. 10

(V3) In case the values revealed (plus the \de-commitment") in Step (P2) match the commitmentssent in Step (P1), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects.There is one problem, however, with the above presentation. In Step (V1) we have assumed theexistence of a 1-round (i.e., uni-directional communication) perfect commitment scheme. However,any commitment scheme with perfect secrecy which is computational-binding require at least tworounds of communication (i.e., a message sent from the commitment-receiver to the commitment-sender followed by a message from the sender to the receiver).5 Thus, we need to integrate such(two-round) commitment schemes in the above protocol.It appears as if the above protocol is rewindable zero-knowledge; however, we were not able toprove this. The subtle problem is that the veri�er may fail to de-commit in Step (V2). Speci�cally,it may fail to decommit in one interaction and decommit properly in a later interaction in which ithas sent the same message in Step (V1). Doing so will harm the straightforward simulation attempt,which proceeds interaction-by-interaction so that in each interaction one �rst tries to obtain theveri�er's commitment values via a dummy (P1)-message so that one can later simulate Step (P1)(and the subsequent steps of the same interaction) properly. The problem is that we cannot answerthe same Step (V1) message, sent in two interactions, in two di�erent ways (in the two interactions),since the prover would answer identically in the real execution.6 (We comment that if the veri�eralways decommits in Step (V2) then we can simulate polynomially many interactions with theabove prover. That is, the above protocol is rewindable zero-knowledge with respect to veri�erswhich always decommit properly in Step (V2). For details see Appendix B.)Fortunately, the subtle problem mentioned above has much milder e�ect on the proof that theabove protocol is witness-indistinguishable. Speci�cally, as a mental experiment, we �rst consideran ideal prover that uses a truely random function rather than a pseudorandom one. The keyobservation is that whenever a di�erent Step (V1) message is sent, the corresponding Step (P1) is anindependently selected random commitment to an independently selected random relabelling of thespeci�c coloring �. Our goal is to show that the dependence of the interaction on the speci�c witnesscoloring � is computationally unnoticeable. That is, we show that multiple interactions (with anadversary V �) in which one possible witness coloring � is used are computationally indistinguishablefrom such interactions in which another witness coloring �0 is used. This is proved using a hybridargument, where the ith hybrid is de�ned as follows: In each of the i �rst iterations, the prover uses� when executing Step (P1), and this determines also its action in Step (P2). For j > i, if in the jthiteration the message sent in Step (V1) is identical to one sent in iteration j0 (for some j0 < j) thenthe prover repeats the corresponding Step (P1) message. (In particular, this happens in case j0 � i,5Here, as in all work on zero-knowledge, with the exception of a fully-uniform treatment (cf. [12]), the computa-tional condition refers to non-uniform adversaries. The reason being that the standard zero-knowledge condition isitself somewhat non-uniform (as it refers to any input). Inspecting De�nition 14 (in Appendix A), it is evident thatno 1-round scheme may satisfy it.6Speci�cally, suppose that the simulator always tries �rst to send a dummy messsage in Step (P1), and considertwo consequetive interactions with a cheating veri�er. In the �rst interaction, the veri�ers commits to some edgesequence in Step (V1) but refuses to decommit in Step (V2). The simulator will thus produce a truncated interaction(which, by itself, is �ne). Now suppose the veri�er repeats the same Step (V1) message in the second interaction,but does decommit properly in Step (V2). The simulator would like now to send a corresponding commitment to apseudo-coloring, but the problem is that this message is di�erent from the dummy commitment sent in Step (P1)of the �rst interaction. Note that the real prover will always send the same (P1)-message in response to the same(V1)-message, and so if the simulator behaves di�erently this is easily detectable. This problem is further discussedand resolved in the next subsection. 11

which means that in this case the Step (P1) message will also be a commitment to �.) Otherwise,Step (P1) message is computed as a commitment to �0. Using another standard trick (cf., [18,pp. 719{721]), we prove Theorem 2. We stress that the argument uses in an essential way thekey observation above: If the ith iteration utilizes a new Step (V1) message then the commitmentgenerated in response is independent of the prior iterations.3.2 Proof Sketch of Theorem 3We �rst present a rewindable zero-knowledge protocol for a model allowing preprocessing (i.e., amodel which has stronger set-up assumptions). The preprocessing will be used in order to guaranteethat veri�ers know \trapdoors" corresponding to \records" deposited by them in the public �le.The protocol uses two types of perfect commitment schemes; that is, secrecy of commitmentholds in an information theoretic sense, whereas the binding property holds only in a computationalsense. The two commitment schemes used has some extra features informally stated below. For aprecise de�nition see Appendix A.1. A two-round perfect commitment scheme, denoted PC1, with two extra features:� The trapdoor feature: It is possible to e�ciently generate a receiver message (called theindex) together with a trapdoor, so that knowledge of the trapdoor allows to decommitin any way.Note that the �rst message in a two-round commitment scheme is from the commitment-receiver to the commitment-sender. The trapdoor feature says that the receiver will beable to decommit to the sender's message in any way it wants (but as usual the sender,not knowing the trapdoor, will not be able to do so).In our solution we will \decouple the execution" of the two-round commitment schemeso that the �rst message (i.e., the index) will be sent in a preliminary stage (i.e., willbe deposited in a public-�le), and only the second message will be send in the actualprotocol. We stress that the same index can and will be used for polynomially manycommitments, and that the number of such commitments need not be a-priori known.(Note that both perfect secrecy and computational-binding continue to hold also undersuch \recycling" of the index.)� The strong computational-binding feature: The computational-binding property holdsalso with respect to subexponential circuits. That is, there exists a constant � > 0 sothat for su�ciently large security parameterK no sender strategy which is implementableby a circuit of size 2K� can decommit in two di�erent ways with probability greater than2�K� .2. A constant-round perfect commitment scheme, denoted PC2. (This scheme corresponds tothe one used in the actual implementation of Step (V1) above.) Without loss of generality,we may assume that the binding property can be violated in exponential time. That is, whenthe commitment protocol is run on security parameter k, the sender may in time 2k decommitany way it wants.Indeed, any PC1 scheme yields a PC2 scheme. However, for sake of modularity we prefer the currentpresentation. We also note that for our application it is possible to further relax the requirementfrom PC2 so that secrecy may be demonstrated to hold at a latter stage (i.e., \a posteriori"); see [13,Sec. 4.8.2]. We comment that a PC1 scheme can be constructed under the assumption the DLP12

is hard for subexponential circuits; see details in Appendix A. More generally, one may use anypair of trapdoor claw-free permutations, provided the clawfree property holds w.r.t subexponentialcircuits.7The protocol in the preprocessing model: The inputs to the protocol are as follows.Security parameter: K. All objects (resp., actions taken) in the protocol have size poly(K)(resp., are implementable in poly(K)-time).Common input: A graph G = (V;E), where V = [n] def= f1; :::; ng, claimed to be 3-colorable.In addition, a public �le containing a list of indices (i.e., receiver's message for PC1), generatedby veri�ers on security parameter K. Each veri�er need only deposit a single index in thepublic �le, which may be stored under its name. We consider also cheating veri�ers who maydeposit polynomially many such indices. We stress however that the number of entries in thepublic-�le should be bounded by some �xed polynomial.At this point we assume that the veri�er knows a trapdoor to any index it has deposited.This can be enforced by a preprocessing stage, say, via a zero-knowledge proof of knowledge.Veri�er's auxiliary input: A trapdoor, denoted trap(i), for some index i in the public �le.Prover's auxiliary input: A 3-coloring � : [n] 7! f1; 2; 3g of G.Prover's initial randomization: The prover's random-pad is used to determine a pseudorandomfunction f : f0; 1gpoly(n) 7! f0; 1gpoly(n).The protocol itself is an adaptation of the proof system of the previous subsection, with Step (V1)being replaced (or rather implemented) by current Steps (1) and (3). Another important changeis the replacement of former Step (P1) by current Step (2); the di�erence being that commitmentvia a standard commitment scheme (with perfect binding) is replaced by a commitment relative toa (perfect secrecy) scheme which is only computationally-binding.(1) The veri�er sends an index i to prover, who checks that it appears in the public-�le. (Otherwisethe prover aborts.)Note that this step may be viewed as transcendental to the protocol, since it amount to theveri�er telling the prover its identity. [Indeed, a cheating veri�er may lie about its indentity;we merely rely on the fact that somebody knows the trapdoor to the index i if indeed it isin the public �le. Since we view the adversary as controlling the entire \world outside theprover" it really does not matter who knows the trapdoor.](2) This step is analogous to Step (V1) in the protocol of the previous subsection: The veri�ercommits to a sequence of t def= n � jEj uniformly and independently chosen edges. The commit-ment is done using the constant-round perfect commitment scheme PC2, in which the veri�erplays the role of the sender and the prover plays the role of the receiver. The scheme PC2is invoked while setting the security parameter to k = K�=2, where � > 0 is as speci�ed inthe strong binding feature of PC1. The randomization required for the actions of the receiver7In fact, it su�ces to have collision-intractable family of hashing function, provided it carries trapdoors and isstrong wrt subexponential circuits. 13

in PC2 are determined by applying the pseudorandom function f to (G;�; history), wherehistory is the transcript of all messages received by the prover so far.Thus, the prover gets no information on the committed edges, while it is infeasible for theveri�er to \de-commit" in two di�erent ways.[The analysis makes heavy use of the setting of the security parameter k = K�=2. On onehand, this setting guarantees that a quantity that is polynomial in K is also polynomial ink. On the other hand, time 2k which su�ces to violate the computational-binding propertyof PC2 when run on security paramter k, is insu�cient to violate the strong computational-binding property of PC1 when run on security paramter K (since 2k = 2K�=2 � 2K�).](3) This step is analogous to Step (P1) in the protocol of the previous subsection: The prover usesPC1 with index i in order to commit to a sequence of t random colorings. That is, the proverinvokes t instances of protocol PC1 playing the sender in all, and acts as if it has received i(the index) in all these instances.Recall that the prover wishes to commit to t � n values, the (jn + v)th value being the colorassigned to vertex v by the jth random coloring (i.e., the jth random relabelling of �, selectedamong the six permutations of the colors f1; 2; 3g). All randomizations (i.e., the choice of therandom coloring as well as randomization required by PC1) are determined by applying thepseudorandom function f to (G;�; history), where history is the transcript of all messagesreceived by the prover so far.(4) The veri�er decommits to the edge-sequence it has committed to in Step (2). That is, itreveals the sequence of t edges, as well as the necessary information required to determinethe correctness of the revealed values. [This step is analogous to Step (V2).](5) In case the values revealed (plus the \de-commitment" information) in Step (4) match thecommitments sent in Step (2), and in case all queries are edges, the prover reveals the corre-sponding colors and provides the corresponding de-commitment. [This step is analogous toStep (P2).](6) In case the values revealed (plus the \de-commitment") in Step (5) match the commitmentssent in Step (3), and in case they look as part of legal 3-colorings (i.e., each correspondingpair is a pair of di�erent elements from the set f1; 2; 3g), the veri�er accepts. Otherwise itrejects. [This step is analogous to Step (V3).]We note that, in the above description of the protocol, the veri�er does not use the trapdoor (i.e.,trap(i)). The fact that the veri�er (or rather an adversary controlling all possible veri�ers) knowsthe trapdoor will be used by the simulator which is rather straightforward: In contrast to standardconstructions of simulators (cf., [22, 18]), the current simulator does not \rewind" the veri�er.Instead, it simulates an execution of the protocol by emulating the actions of the prover in Steps (1){(4) using some dummy sequence, rather than a sequence of colorings, in Step (3). However, whengetting to Step (5), and in case the veri�er has decommitted properly, the simulator uses trap(i)in order to decommit to the corresponding edge queries in a random legal-looking way (i.e., itdecommits to a uniformly and independently chosen pair of distinct colors, for each such edge).This uses the trapdoor feature of PC1 and the hypothesis that the veri�er (and so the simulator)knows this trapdoor. The above description corresponds to simulation of the �rst interaction withthe prover. Subsequent interactions are simulated in the same way assuming that the executionof Steps (1){(2) of the current interation is di�erent than in all previous interactions. Otherwise,14

we simulate Steps (3) and (5) by copying the values used in the previous interaction. A last issueto be addressed is the possibility that in two executions of the protocol the veri�er may send thesame messages in Step (2) but latter decommit in two di�erent ways in Step (5), in which case theoutput of the simulator may be noticeablly di�erent from the output in real executions. Using thecomputational-binding property of the scheme PC2 (as done in Appendix B), we argue that thisevent may only occur with negligible probability. This establishes the rewindable zero-knowledgeproperty of the above protocol (in the preprocessing model).Observe that the computational-binding property of PC1 allows computationally-unboundedprovers to successfully fool the veri�er, and hence the above protocol does not constitute an inter-active proof. However, one can show that computationally-bounded provers can fool the veri�eronly with negligible probability, and so that the protocol is computationally-sound.Intuitively, one would like to argue that the computational-binding property of PC1 does notallow to decommit to two di�erent values in Step (5). The problem is that the prover commits tocolors in Step (3) after obtaining the veri�er's commitment to queries, and that the prover decom-mits only after the veri�er decommits. How can we rule out the (intuitively unlikely) possibility thatthe veri�er's decommitment allows the prover to decommit accordingly (in a way it could not havedone before getting the veri�er's decommitment)? Here we use the strong computational-bindingproperty of PC1 (relative to security paramter K); that is, the fact that it holds also with respectto circuits of size 2K� = 22k. We also use the fact that commitments with PC2 were done whilesetting the security parameter to k, and so we can decommit any way we want while using time 2k.Thus, the binding property of PC1 has to be maintained in Step (5); i.e., it should be infeasible todecommit \at will" in Step (5) also after obtaining the decommitment of the veri�er at Step (4). Inthe actual proof we consider what happens in Step (5) when the prover interacts with an imaginaryveri�er which at Step (4) uniformly selects new queries and decommits according to these values.Observe that such an imaginary veri�er can be implemented within time poly(n) � 2k. Thus, if weconsider the mental experiment in which Steps (4)-(5) are repeated T = 2k=3 times, after a singleexecution of Steps (1)-(3), then all proper decommits by the prover must be for the same value(or else the binding property of PC1 is violated in time T � poly(n) � 2k � 22k). Furthermore, theabove should hold for at least 1 � T�1 fraction of random executions of Steps (1)-(3). Thus, ifwe consider a computationally-bounded prover which fools the veri�er, only a term of O(2�k=3)in its success probability may be attributed to \ambigious decommitment". The computational-soundness of the protocol follows by noting that (1 � jEj�1)t) � e�n is an upper bound on theprobability of fooling the veri�er in case commitments are non-ambigious. This establishes thecomputationally-soundness of the above protocol.Back to the bare public-key model (i.e., without preprocessing): Given the above, all thatis needed in order to adapt the protocol to the public-key model is to replace the assumption that theveri�er knows the trapdoor by a (zero-knowledge) proof-of-knowledge of this claim. We stress thatthe veri�er in the above protocol will play the role of knowledge-prover, whereas the main proverwill play the role of a knowledge-veri�er. This protocol has to maintain its soundness also whenthe knowledge-veri�er undergoes \rewinding". Furthermore, it should be constant-round. (Wecomment that we are not aware of a known protocol satisfying these strong requirements.) On theother hand, we don't need \full-edged" zero-knowledge property; simulatability in subexponentialtime will su�ce (as it is merely used for the computational-soundness property which is establishedbased on the strong computational-binding property of PC1, which in turn accounts for suchrunning times too). Thus, Step (1) in the above protocol is augmented by a constant-round proof-of-knowledge (POK) which proceeds as follows: 15

The parties: A knowledge-veri�er, denoted KV, played by the main prover, and a knowledge-prover, denoted KP, played by the main veri�er.Inputs: Common input i 2 f0; 1gK .Furthermore, KP gets auxiliary input the randomness used to generate i (equiv., to generate(i; trap(i))).Goal: KP wants to prove that it knows trap(i).High level: We present a proof of knowledge (POK) of the relevant NP-witness; that is, POK ofthe randomness used to generate i. (Such knowledge yields knowledge of trap(i).) The POKis via the standard reduction of this NP-relation to the NP-relation corresponding to Hamil-tonicity (which is NP-Complete). We stress that the standard reduction comes with e�cienttransformation of NP-witnesses from the original relation to the target Hamiltonicity relationand vice versa. Thus, the auxiliary-input of KP allows to e�ciently compute a Hamiltoniancycle in the target graph, and from any such Hamiltonian cycle one may e�ciently retreivetrap(i).The proof of knowledge (POK) of Hamiltonicity is based on Blum's proof system for thislanguage, which is reproduced in Appendix C. An important property of Blum's basic proto-col is that it is a \challenge{response" game in which the challenge consists of a single bit.Furthermore, responding correctly to both possible challenges allows to extract a Hamilto-nian cycle (i.e., the knowledge claimed).8 This property simpli�es the knowledge extractionargument in case many copies are played in parallel: Ability to respond to any two di�erentsequences of challenges yields a Hamiltonian cycle. Below we run the protocol k times inparallel, where k = K�=3. The resulting protocol will have negligible knowledge-error9 (i.e.,error of 2�k), and will be simulatable in time poly(K) � 2k. Furthermore, the simulation willbe indistinguishable from the real interaction by any 2K�-size circuits. As stated above, weare not concerned of the fact that the protocol may not be zero-knowledge (i.e., simulatablein poly(K)-time).The protocol uses a perfectly-binding commitment scheme with strong computational-secrecy;that is, circuits of size 2K� cannot distinguish commitments to two di�erent known values(with distinguishing gap better than 2�K�). Such a scheme can be constructed based on theDLP assumption utilized above.(pok1) Using the perfectly-binding commitment scheme, KP commits to each of the entries ofk = K�=3 matrices, each generated as in Blum's basic protocol. (That is, each matrix is theadjacency matrix of a random isomorphic copy of the graph obtained from the reduction.In case the output of the reduction is a graph with N vertices, the commitment scheme isapplied k �N2 times.) The commitment scheme is run with security parameter K.(pok2) KV \randomly" selects a sequence c = c1 � � � ck 2 f0; 1gk of k challenges. Actually, thesequence c is determined by applying the pseudorandom function f to the input (i.e., theindex i) and the history so far (of the POK protocol).8This property holds also for other protocols for NP, but not for the 3-Colorability protocol of [18]. Any protocolhaving the property will do.9Loosely speaking, the knowledge-error is the probability that the veri�er may get convinced by a cheating proverwho does not know a Hamiltonian cycle. For a precise de�nition, see Appendix C.16

(pok3) KP answers each of the k bit queries as in Blum's basic protocol. (That is, if cj = 0 thenKP decommits to all entries of the jth matrix and also reveals the isomorphism; otherwise, KPdecommits only to the entries corresponding to the Hamiltonian cycle. Note that the locationof the latter entries is determined by applying the isomorphism to the original cycle.)(pok4) KV accepts if and only if all answers are valid. Speci�cally, in case cj = 0, KV checksthat the revealed matrix is indeed isomorphic (via the provided isomorphism) to the matrixrepresenting the reduced graph. In case cj = 1, KV checks that all revealed entries are indeed1's. (In both cases, for each revealed value, KV checks that the decommitment is valid.)Again, the weak zero-knowledge property is easy to establish. That is, we need and do show thatthe interaction with any (possibly dishonest but computationally-bounded) knowledge-veri�er canbe simulated in time poly(k) � 2k. This follows by merely using the standard simulator procedure(cf., [22, 18]), which merely selects a random string c 2 f0; 1gk and \simulates" Step (pok1) so thatit can answer the challenge c (but not any other challenge). The strong computational-secrecy ofthe commitment scheme (used with security parameter K) guarantees that the knowledge-veri�ercannot guess c better than with probability approximately 2�k, and so we will succeed with over-whelming probability after at most k �2k tries. Standard arguments will also show that the output ofthe simulator cannot be distinguish from the real interaction by circuits of size 2K��1 > 22k. Thus,this simulator can be plugged into the argument given above for computational-soundness in thecase of preprocessing, and yield that the augmented protocol maintains computational-soundness:The potentially cheating prover in the main protocol induces a cheating knowledge-veri�er, andwhat the simulation says is that in case the veri�er (playing the knowledge-prover) follows theprotocol then whatever the knowledge-veri�er can compute after interacting with it, can also becomputed with overhead of at most poly(k) � 2k on input the index i.We now turn to establish the rewindable zero-knowledge property of the entire protocol. Asa �rst step towards this goal, we establish that the above subprotocol is indeed a POK withknowledge-error 2�k (see Def. 17 in Appendix C). In other words, we analyze a single execution ofthe subprotocol, and thus we may assume that Step (pok2) is replaced by sending a truely randomstring c. This assumption is not valid when the subprotocol is run many times, and this is why thesimpli�ed analysis provided here does not su�ce. However, it does provide a good warm-up.Without loss of generality, consider a deterministic cheating knowledge-prover, and let C bethe message sent by it in Step (pok1). Consider the probability space of all 2k possible challengesc 2 f0; 1gk that KV may send in Step (pok2). Say that a challenge c 2 f0; 1gk is successful forthis knowledge-prover if its answer in Step (pok3) is accepted by KV in Step (pok4). The keyobservation is that given the knowledge-prover's answer to any two di�erent successful challangeswe can easily reconstruct the Hamiltonian cycle (and from it the trapdoor).10 To extract theHamiltonian cycle we just invoke the knowledge-prover many times, each time it answers with thesame Step (pok1) message but then we challenge it with a new randomly chosen c (i.e., chosenindependently of all prior attempts). If we ever obtain its answer to two successful challengesthen we are done. Denoting by p the probability that a uniformly chosen challenge is succesful, weconclude that if p > 2�k then given oracle access to the knowledge-prover (played by the adversary)we can (with overwhelmingly high probability) �nd the trapdoor in time poly(k)=(p � 2�k). Bya trivial modi�cation, we obtain a knowledge extractor which for any p > 0 with overwhelming10This is the case since each such pair of challenges di�ers in some location and from the two answers to thislocation we may reconstract the Hamiltonian cycle. 17

probability runs for time poly(k)=p, and in case p > 2�k also retreives the trapdoor.11The above argument would have su�ces if we were guaranteed that the adversary, when playingthe role of KP, never repeats the same Step (pok1) message (in two di�erent invocations of theentire protocol). Assuming that this is indeed the case avoids the subtle problem discussed in theprevious subsection. Still let use assume so and see how, under this unjusti�ed assumption (whichwill be removed later), the rewindable zero-knowledge property follows.Consider a sequence of invocations of the main protocol. The simulator will proceed by sim-ulating one interaction after the other, where a single interaction is simulated as follows. Thesimulator starts by playing the role of KV in Step (1). In case KV rejects then the simulatorcomplete the simulation of the current interaction by annoncing that the prover aborts it. Notethat this is exactly what would have happened in the real interaction. In case KV accepts, thesimulator will use the knowledge-extractor described above in order to extract the trapdoor of theindex i sent in Step (1). Here is where we use the assumption that the adversary does not repeatthe same Step (pok1) message. The point is that the knowledge-extractor described above willtry many di�erent challenges for Step (pok2). Since the challenge is determined as a \random"function evaluated at a new point (here is where we use the \no repeat" clause), we may view thischallenge as random. Thus, the above analysis applies. The conclusion is as follows. Suppose thatthe cheating veri�er convinces KV with probability p, We distinguish three cases. In case p = 0,the simulator will always construct an aborting execution (just as in the real interaction). In casep > 2�k, with probability 1 � p the simulator will construct an aborting execution (just as in thereal interaction), and otherwise using time poly(k)=p it �nds the trapdoor of the index i sent inStep (1), which allows it to complete the simulation of Steps (2){(6) just as done above (in the caseof preprocessing). Note that the expected number of steps required for the simulation in this caseis (1� p) �poly(k) + p � (poly(k)=p) = poly(k). The only case left is the one where p = 2�k. In thiscase, the simulator fails with probability p, which is negligible, and so its output is computationallyindistingushiable from a real interaction. We stress that in all cases the simulator runs in expectedtime poly(k).Having concluded all these warm-ups, we are now ready to deal with reality. The di�culty occurswhen the adversary uses the same index and same Step (pok1) message in two di�erent interactionswith the prover. Furthermore, suppose that in the �rst interaction it fails to convince KV played bythe prover, but in the second it succeeeds. The problem (avoided by the assumptions above) is thatwe cannot use a di�erent challenge (i.e., message for Step (pok2)) in the second interaction, sincethe challenge is determined already by the �rst interaction. Thus, the simulator cannot completethe simulation of the second interaction, unless it \rewinds" upto the �rst interaction in whichthe same Step (pok1) message is used.12 This need to \rewind" interactions which were alreadycompleted may lead to exponential blow-ups as discussed by Dwork, Naor and Sahai [8]. Whatsaves us here is that the number of times we possibly need to \rewind" is a-priori bounded bythe total number of indices in the public �le. (This is the key and only place where we use theassumption underlying the public-key model.)Resolving the problem { a sketch: Let us reproduce and further abstract the problem weneed to analyze. We are dealing a game consisting of multiple (history dependent) iterations of thefollowing steps, which depends on a random function f �xed once and for all.11This can be done by using a time-out mechanism invoked when poly(k) � 2k steps are completed, and observingthat if p > 2�k then in fact p � 2 � 2�k and so (p� 2�k)�1 � 2=p.12We comment that in general, a simulator for rewindable zero-knowledge may not proceed by generating theinteractions one after the other without \rewinding" between di�erent interactions.18

(a) The veri�er sends a pair (i; C), where i belongs to some �xed set I and C is arbitrary. This pairis determined by applying the veri�er's strategy, V �, to the history of all previous iterations(of these steps).[Indeed, i corresponds to the index sent in Step (1), I to the public �le, and C to theStep (pok1) message.](b) The prover determines a k-bit string, c = f(i; C), by applying f to the pair (i; C).[This corresponds to Step (pok2) of KV played by the prover.](c) The veri�er either succeeds in which case some additional steps (of both prover and veri�er)take place or it fails in which case the current execution is completed.[This corresponds to whether the veri�er, playing KP, has provided a valid decommitment inStep (pok3), and to the continuation of the main protocol which takes place only in case theveri�er has done so.]We want to simulate an execution of this game, while having oracle access to the veri�er's strategy(but without having access to the prover's strategy, which enables the further steps referred to inStep (c) above). Towards this goal we are allowed to consider corresponding executions with otherrandom functions, f 0; f 00; :::, and the rule is that whenever we have two di�erent successes (i.e.,with two di�erent challenges c) for the same pair (i; C) we can complete the extra steps referred toin Step (c). [This corresponds to extracting the trapdoor of i, which allows the simulation of therest of the steps in the current interaction of the main protocol.]Thus, problems in simulating the above game occur only when we reach a successful Step (c).In such a case, in order to continue, we need a di�erent success with respect to the same pair (i; C).In order to obtain such a di�erent success, we will try to run related simulations of the game. Oncewe �nd two successes for the same pair (i; C), we say that i is covered, and we may proceed in thesimulation temporarily suspended above. That is, a natural attempt at a simulation procedure isas follows. We simulate the iterations of the game one after the other, using a random functionf selected by us. Actually, the random function f is de�ned iteratively { each time we need toevaluate f at a point in which it is unde�ned (i.e., on a new pair (i; C)) we randomly de�ne fat this point. As long as the current iteration we simulate fails, we complete it with no problem.Similarly, if the current iteration is successful relative to the current pair (i; C) and i is alreadycovered, then we can complete the execution. We only get into trouble if the current iterationis successful relative to (i; C) but i is not covered yet. One natural thing to do is to try to get icovered and then proceed. (Actually, as we shall see, covering any new element of I, not neccesarilyi, will do.)Starting with all I uncovered, let us denote by p the probability that when we try to simulatethe game a success occurs. Conditioned on such a success occuring, our goal is to cover someelement of I within expected time poly(k)=p. Suppose we can do this. So in expected time(1 � p) � poly(k) + p � (poly(k)=p) = poly(k) we either completed a simulation of the entire gameor got some i 2 I covered. In the �rst case, we are done. In the second case, we start again in anattempt to simulate the game, but this time we have already i covered. Thus, we get into troubleonly if we reach a success relative to (i0; C) with i0 2 I 0 def= I n fig. Again, we may denote by p0 theprobability that when we try to simulate the game a success occurs with respect to some i0 2 I 0. Insuch a case, we try to cover some element of I 0, and again the same analysis holds. We may proceedthis way, in upto jIj + 1 phases, where in each phase we either complete a random simulation ofthe game or we get a new element of I covered in each iteration. Eventually, we do complete a19

random simulation of the game (since there are more phases than new elements to cover). So,pending on our ability to cover new elements within time inversely proportional to the probabilitythat we encounter a success relative to a yet uncovered element, each phase requires poly(k) stepson the average. Thus, pending on the above, we can simulate the game within expected timepoly(k) � jIj = poly(k) (by the hypothesis regarding I).We now consider the task of covering a new element. Let us denote the set of currently uncoveredelements by U . Let H denote the pre�x of completed executions of the simulated game and let(i; C) = V �(H) be the current pair which is related to the current success, where i 2 U . To get icovered we do the following:1. Let H 0 be the maximal sequence of executions which does not contain (i; C) as a Step (a)message. Note that H 0 = H in case the current pair (i; C) does not appear as a Step (a)message in some (prior) execution in H.2. Rede�ne f 0(i; C) uniformly at random, and try to extend H 0 (wrt to the function f 0) just aswe do in the main simulation (where we currently try to extend H wrt to the function f).If during an attempt to extend H 0 we encounter a new (i.e., di�erent than above) successwith respect to the same pair (i; C) then i itself gets covered, and we have ful�lled our goal.Otherwise, we repeat the attempt to extend H 0 (with a new random choice for f 0(i; C)) aslong as we did not try more than k � 2k times. In case all attempts fail, we abort the entiresimulation.We will show that, for p > 2�k, we will get a new element covered while making (p� 2�k)�1tries, on the average.3. If during the current attempt to extend H 0 we encounter a success relative to some other pair(i0; C 0) 6= (i; C), where i0 (possibly equals i) is also currently uncovered, then we abort thecurrent extension of H 0 (and try a new one { again as long as k � 2k tries are made).A more precise description is provided in Figures 1 and 2, and the actual analysis presented belowrefers to this formal description. The main procedure (of Figure 1) attempts jIj+1 times to generatea full transcript, while constructing the random function, f , on the y. Typically, each attemptwhich fails to generate a full transcript provides \progress" in the form of a new element beingcovered. The non-typicaly case, which (as we will show) occurs with negligible probability, is thatneither happens. Another thing to be proven is that the expected number of times that the mainprocedure repeats (M8){(M10) is inversely proportion to the probability that for uniformly chosenr 2 f0; 1gk it holds that V �(H 0; (i; C); r) succeeds, where H 0 and (i; C) are as de�ned in (M6). Theextension of transcripts, either initial ones as in (M4) or partial ones as in (M9), is performed (in astraightforward manner) by the Extend procedure depicted in Figure 2. In particular, once Extend\gets into trouble" (reaches a success w.r.t (i0; C 0) where i0 is uncovered) it returns control to themain procedure. In case Extend is invoked in (M4), we next try to get i covered. In case Extend isinvoked in (M9), if (i0; C 0) = (i; C) then we obtain a di�erent success to the one obtained already,and consequently i gets covered.Proposition 4 (Analysis of the main procedure): We consider a single execution of the outer loopin the main procedure.1. The total expected time spent in such an execution is poly(k).2. The probability that the the execution aborts with an error message is at most poly(k) � 2�k.20

The procedure has oracle access to the adversary V �, and calls the procedure Extend.(M1) Initialization: U ;.(M2) Repeat up to jIj+ 1 times(M3) Initialization: H x and f is totally unde�ned.(M4) Let answer ExtendfV �(U;H).(M5) If answer constitute a full simulation transcript then halt with output answer.[Comment: Otherwise answer = (H; (i; C); f(i; C)), with i =2 U ,and V �(H; (i; C); f(i; C)) is successful. Our aim now is to cover i](M6) Let H 0 be the maximal pre�x of H satisfying V �(H 0) = V �(H), and let r = f(i; C).(M7) Repeat up to k � 2k times(M8) Rede�ne f(i; C) at random di�erent than r:That is, select r0 uniformly in f0; 1gk n frg and let f(i; C) r0.(M9) Let answer ExtendfV �(U;H 0).[Comment: answer is an extension of H 0.](M10) If answer contains a success with respect to (i; C) then U U [fig and goto (M2).[Comment: In this case we have two di�erent successes w.r.t (i; C),since f(i; C) = r0 6= r. Thus, i got covered.][Comment: Otherwise we proceed to the next iteration of (M7).](M11) End [of inner repeat loop](M12) In case all attempts have failed, the procedure aborts with an error message.(M13) End [of outer repeat loop]Figure 1: The main simulation procedureRecall that, unless the execution aborts with an error message, it either completes a simulation ofthe game or provides a new covered element. Incorporating the abort event into the deviation ofthe simulator, we obtain a simulation of the game within expected time jIj � poly(k) = poly(k) anddeviation poly(k) � 2�k.Proof Sketch: The running-time of Extract is bounded by the running time of an execution ofthe real game, which in turn is polynomial in k. Thus, we may charge each invocation of Extractas unit cost. Our aim is to show that the expected charge accomulated in a single execution of theouter loop in the main procedure is poly(k).For every partial transcript H (and every U � I), denote by pH the probability that H appearsas a pre�x of a transcript generated by ExtendV �(U; x). By disjointness of the events correspondingto pre�ces of equal length we have PH pH = poly(k).Let us call H 0 interesting if the following two conditions hold: (1) V �(H 0) = (i; C) with i 2 U ,and (2) for every pre�x H 00 of H 0, it holds that V �(H 00) 6= V �(H 0). For every interesting H 0,denote by qH0 the probability that ExtendV �(U;H 0) contains a success with respect to V �(H 0) andfurthermore that this is the �rst success in the extension of H 0. Note that qH0 equals the probabilitythat a single execution of the outer loop of the main procedure determines H 0 as a maximal pre�xin (M6), conditioned on H 0 being a pre�x of ExtendV �(U; x). Thus, conditioned on the latter event,the inner loop is executed with probability qH0 . In case qH0 > 2�k (i.e., qH0 � 2 �2�k), each iterationof the inner loop covers i with probability2k � qH0 � 12k � 1 > qH0 � 2�k21

The procedure is invoked with some set U � I, partial transcript H and partially de�nedfunction f . Speci�cally, it is either invoked with a trivial partial transcript (i.e., H = x) orwith H so that (i; C) def= V �(H) and i =2 U . In the latter case, f is de�ned on (i; C), andV �(H; (i; C); f(i; C)) succeeds.ExtendfV �(U;H)(E1) Repeat till V �(H) halts(E2) (i0; C 0) V �(H) (assuming V �(H) does not halt).(E3) If f is not de�ned on (i0; C 0) then select r0 uniformly in f0; 1gk and let f(i0; C 0) r0.(E4) If V �(H; (i0; C 0); f(i0; C 0)) fails then H (H; (i0; C 0); f(i0; C 0);?) and goto (E1).[Comment: Otherwise V �(H; (i0; C 0); f(i0; C 0)) succeeds.](E5) If i0 is covered (i.e., i0 2 I n U) then complete H as in Step (c) and goto (E1).[Comment: Otherwise i0 is not covered, and we return a partial transcript.](E6) return(H; (i0; C 0); f 0(i0; C 0)).[Comment: If (i0; C 0) = (i; C) we retrun a transcript contating a success w.r.t (i; C).](E7) End [of repeat loop][Comment: Reaching this point means completion of simulation.](E8) return(H). Figure 2: The Extend procedureThus, the expected number of iteration of the inner loop is less than (qH0 � 2�k)�1 � 2=qH0 .Furthermore, with probability at least 1 � 2�k, the inner loop is not repeated more than 2k=qH0times. In case qH0 = 2�k, the number of iteration of the inner loop equals k � 2k = k=qH0 . Weconclude that the expected running time of a single iteration of the outer loop is at mostXH0:qH0=0 pH0 � 1 + XH0:qH0>0 pH0 � �qH0 � O(k)qH0 + (1� qH0) � 1� = poly(k)and Part 1 of the proposition follows.Part 2 follows easily by observing that the execution (of the outer loop) may be aborted onlyin two cases (relative to the current H 0 determined in (M6)). The �rst case is when qH0 > 2�k, but(as mentioned above) in this case abort happens with probability at most (1� (qH0=2))k2k < 2�k,since k � 2k � 2k=qH0 . The second case is when qH0 = 2�k, but in this case we reach (M6) withprobability pH0 � qH0 . Summing over all H 0's, the probability of abort is bounded above byXH0:qH0=2�k pH0 � qH0 + XH0:qH0>2�k pH0 � qH0 � 2�k � XH0 pH0 � 2�k = poly(k) � 2�kand Part 2 of the proposition follows.3.3 CommentsUsing a perfect commitment scheme which enjoys the trapdoor feature (but not necessarily thestrong computational-binding feature), one may obtain rewindable zero-knowledge computationally-sound proof system for NP in the public-key model. These protocols, however, have an unboundednumber of rounds. The idea is to use sequential repetitions of the basic protocols (both for Steps (2){(6) of the main protocol as well as for the POK subprotocol) rather that parallel repetitions. That22

is, both Steps (2){(6) of the main protocol and the POK subprotocol consists of parallel executionsof a basic protocol, and what we suggest here is to use sequential repetitions instead. The numberof (sequential) repetitions can be decreased by using Blum's protocol (rather than the one of [18])also as a basis for the main proof system (i.e., in Steps (2){(6)). To minimize round complexity, onemay use a parallel-sequential hybrid in which one performs s(n) sequential repetitions of a protocolcomposed of parallel execution of p(n) = O(log n) copies of the basic protocol (of Blum). Thisyields a O(s(n))-round rewindable zero-knowledge computationally-sound proof system for NP inthe public-key model, for any unbounded function s : N 7!N. In particular, we obtainTheorem 5 Let r : N 7! N be any unbounded function which is computable in polynomial-time,and suppose that for every polynomial p and all su�ciently large n's, any circuit of size p(n) solvesDLP correctly only on a negligible fraction of the inputs of length n. Then every language in NPhas a r(�)-round rewindable zero-knowledge computationally-sound proof system in the public-keymodel.Alternatively, we note that by using the perfect commitment scheme PC1 also in role of the(\weaker") scheme PC2, we obtain rewindable zero-knowledge property also against subexponentialadversaries. Speci�cally, even adversaries of running-time bounded by 2k� = 2K�2 gain nothingfrom the interaction, where K (the primary security parameter), k = K� (the secondary securityparameter) and � (the exponent in the strong computational-binding feature) are as above.We mention that the idea of applying a pseudorandom function to the veri�er's message maybe used to derive alternative schemes secure in the rewindable sense. For example, starting with anon-interactive zero-knowledge proof system (cf., [4])13, we may obtain an alternative rewindablewitness-indistinguishable proof system for NP (establishing Theorem 2) as follows. The idea is toemploy \coin tossing into the well" (cf., [2]), but with a small twist: We let the veri�er commit to asequence of random bits using a perfect (two-round) commitment scheme. Next, the prover sendsa corresponding sequence of bits which are determined by applying a pseudorandom function tothe veri�er's message. Then, the veri�er de-commits and a reference-string for the non-interactivezero-knowledge proof is de�ned (as usual in \coin tossing into the well"), and �nally the proversends such a (non-interactive) proof (relative to that reference-string).3.4 An alternative presentation of rewindable zero-knowledge systemsIn the last section of the paper we present the above protocol in a di�erent way. Rather thanrelying on general proofs of knowledge we introduce an additional requirement from the PC1 com-mitment scheme. The new feature referred to as One-Or-All asserts that obtaining two di�erentdecommitments to the same commitment allows to (feasiblly) decommit any way one wants. Inour application, the veri�er is supposed to know the trapdoor to an instance of the PC1 scheme,allowing it to decommit any way it wants. Thus, if the veri�er demonstrates ability to decommitat will then this e�ectively yields a proof of knowledge of the trapdoor. Put in other words, if thesimulator may obtain from the veri�er (by rewinding, whic is not possible for the actual prover) twodi�erent decommitments to the same commitment then it can later decommit at will. Of course, theveri�er's demonstration of ability to decommit at will should be performed in a \zero-knowledge"manner. The natural protocol is to have the veri�er commit to a k-bit string, and later decommitany way as required by the prover. The natural way to (weakly) simulate this is to select at randoma single k-bit string, commit to it and hope that the prover will require to decommit to this value.13The basic version (of non-interactive zero-knowledge) allowing for a proof of a single assertion relative to onereference-string su�ces for our application. 23

4 Interleaved Zero-KnowledgeWe now show that the restriction on the interaction of V � with copies of the prover made inDe�nition 1 is inessential. That is, allowing the adversary to interleave these interactions (ratherthan conduct them in a sequential manner) does not add to its power. This result is very importantsince it places rewindable (or interleaved) zero-knowledge quite close to concurrent zero-knowledge.The extra step is taken in the next section, but �rst we formally de�ne the interleaving model andprove the above stated result.In the actual de�nition we introduce a small technicality, which we motivate now. In the modelof De�nition 1, the adversary does not need to specify which interaction with the prover it wishesto continue next, since at any point in time only one interaction is active. In the model below,several interactions may be active (i.e., not completed) concurrently, and hence such an indicationis necessary. The simplest way of addressing this technicality is to modify the original interactiveproof so that each party prepends its message by the full transcript of all messages exchanged sofar. That is, we adopt the following convention.Convention: Given an interactive pair of (deterministic) machines, (A;B), we construct a mod-i�ed pair, (A0; B0), so that for t = 1; 2; :::A0(�1; �1; :::; �t�1; �t�1) = (�1; �1; :::; �t�1; �t�1; A(�1; :::; �t�1))provided that �i = A(�1; :::; �i�1), for i = 1; :::; t � 1B0(�1; �1; :::; �t�1; �t�1; �t) = (�1; �1; :::; �t�1; �t�1; �t; B(�1; :::; �t�1))provided that �i = B(�1; :::; �i�1), for i = 1; :::; t � 1In case the corresponding condition does not hold, the modi�ed machine outputs a special symbolindicating detection of cheating. Probabilistic machine are handled similarly (just view the random-pad of the machine as part of it). Same for initial (common and auxiliary) inputs. We stress thatthe modi�ed machines are memoryless (they respond to each message based solely on the messageand their initial inputs), whereas the original machines respond to each message based on theirinitial inputs and the sequence of all messages they have received so far.In the traditional context of zero-knowledge, the above transformation adds power to the ad-versary, since each machine just checks partial properness of the history presented to it { its ownprevious messages.14 That is, A0 checks that �i = A(�1; :::; �i�1), but it does not (and in generalcannot) check that �i = B(�1; :::; �i�1) as it does not know B (which by the convention regard-ing probabilistic machines and inputs may depend also on \hidden variables" { the random-tapeand/or input to B). However, in the context of interleaved zero-knowledge (or even in rewind-able zero-knowledge) this does not add power: Indeed, the transformation allows an adversary topick a di�erent (possible) continuation to an interaction, but this is allowed anyhow in the inter-leaved (resp., rewindable) zero-knowledge model. In the following de�nition, we assume that P isa machine resulting from the modi�cation above. We start again with the vanilla version.De�nition 6 (interleaved zero-knowledge { vanilla model): A prover strategy P is said to be inter-leaved zero-knowledge (on L) if for every probabilistic polynomial-time adversary V � as below thereexists a probabilistic polynomial-time simulator M� so that the following distribution ensembles,indexed by common input x 2 L and prover's auxiliary input y, are computationally indistinguish-able:14Actually, this part of the history may be omitted from these messages, as it can be re-computed by the receiveritself. Furthermore, it is actually not needed at all. We chose the current convention for greater explicitness.24

Distribution 1 is de�ned by the following random process which depends on P and V �.1. As in De�nition 1: Randomly select and �x a random-tape, !, for P , resulting in adeterministic strategy P 0 = Px;y;! de�ned by Px;y;!(�) = P (x; y; !; �).2. Machine V � is allowed to initiate polynomially-many interleaved interactions with P 0.Formally speaking, we may allow V � to send arbitrary messages to P 0 and obtain theresponse of P 0 to any such message.153. As in De�nition 1: Once V � decides it is done interacting with P 0, it (i.e., V �) producesan output based on its view of these interactions.Distribution 2: The output of M�(x).In case there exists a universal probabilistic polynomial-time machine, M , so that M� can be im-plemented by letting M have oracle-access to V �, we say that P is interleaved zero-knowledge via ablack-box simulation.Note that once one adopts the above convention, the de�nition of the interleaving model is sim-pler than the de�nition of the rewindable model (i.e., De�nition 1). Analogously, we may de�neinterleaved zero-knowledge in the public-key model as well interleaved witness-indistinguishable inboth models.By the above convention, we may assume without loss of generality that V � only sends messageswhich result by augmenting some message (i.e., a sequence of strings) received before by a stringof its choice. That is, V � is allowed to send the message (e1; :::; ei; ei+1) only if it has received themessage (e1; :::; ei) before. This claim is justi�ed by the following modi�cation. Assume, withoutloss of generality, that the veri�er V � moves in odd rounds, and that it currently wishes to send themessage msg def= (e1; :::; e2i; e2i+1). Then, the modi�ed veri�er, denoted V ��, proceeds in iterationsas follows: For j = 1; :::; i, in the jth iteration V �� sends the message (e1; :::; e2j�1), and continuesto the next iteration only if the response equals (e1; :::; e2j). In case all i iteration were completedsuccessfully, V �� sends the message msg = (e1; :::; e2i; e2i+1); otherwise, (e1; :::; e2i) is not a validhistory w.r.t the prover, and V �� refrains from sending msg and behaves as V � does after sendingmsg and receiving a prover's response equal to a special symbol (indicating detection of cheatingby the veri�er).The main result of this section is that security (e.g., zero-knowledge) in the rewindable modelimplies security in the seemingly stronger interleaving model. For simplicity we state and provethis result for zero-knowledge in the vanilla model. It is straightfoward to modify the proof to thepublic-key model as well as other variants.Theorem 7 Suppose that P is rewindable zero-knowledge. Then P is interleaved zero-knowledge.Furthermore, simulation via black-box simulators is preserved.Proof Sketch: This argument too is by a transformation of one veri�er strategy into anotherso that a more general adversay is transformed into a milder one, which nevertheless producesexactly the same output. Here we transform an adversary of the interleaving model into a more(syntaxically) restricted adversary of the rewindable model. Thus, simulability of the latter ad-versary implies simulability of the former, which means that the syntaxical restriction is actuallyimmaterial.15That is, V � is given full oracle access to P 0. 25

Let V � be an adversary for the interleaving model, and suppose that it invokes P 0 (to obtain asingle message) at most t times. We construct an adversary, W �, for the sequential (rewindable)model which has output distribution identical to V �. The adversaryW � will use V � as a black-box.Thus, combining the black-box simulator provided for the sequential model with the operationof W � (and providing it with black-box access to V �), we obtain a black-box simulator for theinterleaving model (which works given black-box access to V �).Machine W � will run t copies of P 0, sequentially. (Thus, if P expect to get r messages perinteraction, then W � will send a total of r � t messages, where t was de�ned as the number ofmessages sent by V �.) Firstly,W � selects and �xes a random-pad for V � and so make the interactionof V � with copies of P 0 totally determined (as both V � and P 0 are now deterministic). We nextemploy exactly the same transformation used above (when arguing that w.l.o.g each message ofV � is obtained by appending a string to a message it has received below), stressing the relevantfact that it yields an adversary in the rewindable model. Speci�cally, we assume without loss ofgenerality, that whenever V � sends a message to a copy of P 0, the response arrives immediately.Thus, all that we need to do is embed each message sent by V � in a new interaction of W � with afresh copy of P 0. Machine W � sequentially reconstructs the messages exchanged between V � andthe (interleaved) copies of P 0 as follows.Assuming, w.l.o.g., that the veri�er takes odd moves in interaction with P 0. For k = 1; :::; t,suppose that the kth message sent by V � is msg def= (e1; :::; e2i; e2i+1). Then, W � initiates a newinteraction (i.e., the kth one) with P 0 and proceeds in it as follows: For j = 1; :::; i, in the jth step,W � sends the message (e1; :::; e2j�1) to P 0, and continues to the next step only if the response of P 0equals (e1; :::; e2j). (The condition is violated only when V � does not satisfy the second convention.By the above transformation we may assume that V � always satis�es the latter.) In case all isteps were completed successfully, W � sends the message msg = (e1; :::; e2i; e2i+1), and obtains theresponse of P 0. (Again, we may ignore the case in which these steps were not completed successfully,which occurs when (e1; :::; e2i) is not a valid history w.r.t the prover. In such a case W � refrainsfrom sending msg and behaves as V � does after sending msg and receiving a \cheating detected"response from P 0.) Machine W � records this response of P 0 to the message msg. (We stress thatthis response of P 0 equals its kth response in the interaction with V �.) Finally, W � aborts thecurrent (i.e., kth) interaction (or, actually, to �t the exact de�nition of the sequential model, runsthis copy to termination arbitrarily). (We stress that the current copy of P 0 may detect that W �is \cheating" in the subsequent steps in the current interaction, but this information does not passto and e�ect future copies of P 0.)To summarize,W � is able to conduct sequential interactions with P 0 as allowed in the rewindablemodel, and still obtain a transcript of the corresponding execution of V � in the interleaved model.Thus, upon termination, W � may output exactly the same value as output by V �.Comment: We note that various properties of V � are not necessarily inherited by W �. Forexample, even in case V � is honest (i.e., merely runs a single copy of P 0 while behaving as theprescribed veri�er), the resulting W � is not. In general, as noted at the end of the above proof,the interaction of W � with each copy may be terminated in a \bad" way. Speci�cally, applying thetransformation to the construction of the previous section, we obtain an adversary W � which doesnot always decommit properly (even in case the underlying V � always decommits properly).Comment: The ideas underlying the above proof can be employed also when the above conven-tion is not adopted. In such a case we need an alternative convention for regulating simultaneously26

interactions with several copies of P 0. Suppose that we adopt a convention by which each messageof V � is prepanded with an index of a copy of P 0, and that responses are accordingly. Suppose thatthe kth message that V � wishes to send has the form (i;msg); that is, it is a message to the ith copyof P 0. Then W � invokes a new (i.e., kth) copy of P 0, and interacts with it as follows. Firtst W �sends to the kth copy each of the previous messages sent by V � to the ith copy (i.e., all messages ofthe form (i; �)), next W � sends to the kth copy the current message msg, and records the answer.Finally, W � dismisses the kth copy of P 0 (or, actually, run this copy to termination arbitrarily).Note that, again, each message of the interleaved adversary is embeded in a new interaction witha fresh copy of P 0 so that there is no interleaving among these copies (and so the requirements ofthe rewindable model are satis�ed).5 Generalization to multiple inputsIn order to relate interleaved zero-knowledge to concurrent zero-knowledge we need to somewhatextend the former model. Speci�cally, we need to allow the adversary to invoke polynomially-manyrandom indepedently selected incarnations of P , rather than only one. Similarly, we need to allowthe adversary to invoke incarnations of P on several inputs, rather than on a single one. We stressthat in all cases, the adversary may invoke each incarnation polynomially-many times, the issueis whether there are many incarnations of P or only one. Intuitively, having many (independent!)incarnations should not add power to the adversary since communicating with the same incarnationon the very same common input seems most advantageous for the adversary (and most dangerousfor the prover). Currently, we do not know if this intuition is correct (in general). Fortunately, itcan be easily veri�ed that the results of the previous two sections extend to the more general setting.We start by extending the models of the two previous sections. Again, we provide de�nitions andstate most results only for zero-knowledge in the vanilla model, and trust the reader to infer othervaraints (such as interleaved zero-knowledge in the public-key model as well interleaved witness-indistinguishable in both models).De�nition 8 (generalization to multiple inputs { vanilla model): A prover strategy P is said to beinterleaved zero-knowledge (resp., rewindable zero-knowledge) on L (in the general model) if for everyprobabilistic polynomial-time adversary V � as below there exists a probabilistic polynomial-timesimulator M� so that the following distribution ensembles, indexed by a sequence of common inputsx1; :::; xpoly(n) 2 L\f0; 1gn and a corresponding sequence of prover's auxiliary-inputs y1; :::; ypoly(n),are computational indistinguishable:Distribution 1 is de�ned by the following random process which depends on P and V �.1. Randomly select and �x t = poly(n) random-tape, !1; :::; !t, for P , resulting in deter-ministic strategies P (i;j) = Pxi;yi;!j de�ned by Pxi;yi;omegaj (�) = P (xi; yi; !j; �).2. Machine V � is allowed to initiate polynomially-many interactions with the P (i;j)'s.� In the interleaving version we allow V � to send arbitrary messages to each of theP (i;j) and obtain the response of P (i;j) to such message.� In the sequential (or rewindable) version V � is required to complete its current inter-action with the current copy of P (i;j) before starting an interaction with any P (i0;j0),regardless if (i; j) = (i0; j0) or not. Thus, the activity of V � proceeds in rounds. Ineach round it selects one of the P (i;j)'s and conducts a complete interaction with it.27

3. Once V � decides it is done interacting with the P (i;j)'s, it (i.e., V �) produces an outputbased on its view of these interactions.Distribution 2: The output of M�(x).We let iZK denote an interactive proof which is interleaved zero-knowledge in the general model.Zero-knowledge via black-box simulation is de�ned as in the previous cases.Several previously investigated aspects of zero-knowledge can be casted as special cases of the abovegeneral model. For example, sequential composition of zero-knowledge protocols coincides with aspecial case of the sequential model where one is allowed to run each P (j;j) once (and may not runany other P (i;j)). More importantly, concurrent zero-knowledge coincides with a special case ofthe interleaving model where one is allowed to run each P (j;j) once (and may not run any otherP (i;j)).16 Thus, we immediately haveTheorem 9 Suppose that P is interleaved zero-knowledge in the general model (i.e., iZK). ThenP is concurrent zero-knowledge. Furthermore, simulation via black-box simulators is preserved.By a straightforward adaptation of the proof of Theorem 7, it follows that rewindable zero-knowledge in the general model implies interleaved zero-knowledge in the general model.17 Thatis,Theorem 10 Suppose that P is rewindable zero-knowledge in the general model. Then P is in-terleaved zero-knowledge in the general model (i.e., iZK). Furthermore, simulation via black-boxsimulators is preserved.Finally, as stated above, the (constant-round) protocols presented in Section 3 are in fact securein a setting allowing multiple inputs. Speci�cally, both Theorems 2 and 3 hold with respect tomultiple inputs. Combining the above, we obtain the main result of this paper:Theorem 11 Suppose DLP is hard for subexponential circuits. Then every language in NP hasa constant-round interleaved zero-knowledge computationally-sound proof system in the public-keymodel, even when multiple inputs are allowed (i.e., iZK). Furthermore, the prescribed prover isinterleaved zero-knowledge via a black-box simulation.Thus, as a special case we get results for concurrent execution. For example,Corollary 12 Suppose DLP is hard for subexponential circuits. Then every language in NP hasa constant-round concurrent zero-knowledge computationally-sound proof system in the public-keymodel.The above actually holds under more general conditions (see discussion and proof of Theorem 3).Likewise, note that under more general assumptions, every language in NP has a �ve-round inter-leaved witness-indistinguishable interactive proof system (in the vanilla) model, again even whenmultiple inputs are allowed (i.e., iWI).16Indeed, the possibility to run various P (i;j)'s (i.e., same j and varying j's) was never considered before. Thisrefers to running the prover on the same random-tape but on di�erent input, and is a natural extention of our notionof rewindable zero-knowledge.17Note that even in case the adversary V � of the general interleaving model only runs each P (i;j) once, the adversaryW � derived for the general sequential (rewindable) model may run the same P (i;j) several times.28

6 Alternative Rewindable Zero Knowledge ProtocolIn this section we give an alternative version of the Rewindable Zero Knowledge (RZK) Proof forNP. This presentation does not use Blum's (or any other version) of the general proof that NPstatement has Zero-Knowledge proofs. Rather, we de�ne two types of commitment schemes Type-1 and Type-2 and show how to use them directly to give RZK protocol for NP statements in thepublic key model where the veri�er has a public key assigned to it. As before these commitmentschemes exist if for example the DLP is hard.6.1 PreliminariesProbability spaces.18 If A(�) is an algorithm, then for any input x, the notation \A(x)" refersto the probability space that assigns to the string � the probability that A, on input x, outputs �.The set of strings having a positive probability in A(x) will be denoted by \fA(x)g".If S is a probability space, then \x R S" denotes the algorithm which assigns to x an elementrandomly selected according to S, and \x1; : : : ; xn R S" denotes the algorithm that respectivelyassigns to, x1; : : : ; xn, n elements randomly and independently selected according to S. If F is a�nite set, then the notation \x R F" denotes the algorithm that chooses x uniformly from F .If p is a predicate, the notation PROB [x R S; y R T ; � � � : p(x; y; � � �)] denotes the probabilitythat p(x; y; � � �) will be true after the ordered execution of the algorithms x R S; y R T ; � � �.The notation [x R S; y R T ; � � � : (x; y; � � �)] denotes the probability space over f(x; y; � � �)g gener-ated by the ordered execution of the algorithms x R S; y R T; � � �.6.2 Two Types of CommitmentsIn this section we introduce two types of commitment schemes which will be useful for our result.6.2.1 Type-1 CommitmentsInformal Description. A type-1 commitment consists of a quintuple of algorithms. AlgorithmGEN1 generates a pair of matching public and secret keys. Algorithm COM1 takes two inputs,a value v to be committed to and a public key, and outputs a pair, (c; d), of commitment anddecommitment values. Without knowledge of the secret key, it is computationally hard |given c,v and d| to decommit to any value other than v (computational soundness). On the other hand,having seen c yields no information about the value v (perfect secrecy).The knowledge of the secret key enables decommiting the same value c in arbitrary ways (trap-doorness). This arbitrary decommitment ability is achieved by by running the FAKE1 algorithm.Finally, succeeding in decommitting any single value into more than one way is essentiallyequivalent to knowing the secret key (one-or-all). This property is achieved by algorithm FAKE0.Put together, the properties of type-1 commitment yield (using standard terminology) a perfect-secrecy computationally- binding commitment scheme for which there exists auxilary information(the secret key) whose knowledge enables decommitment in more than one way. Moreover, it ispossible to give a secure "proof-of-knowledge" of the secret key. This commitment scheme will beused in the iZK protocol for graph 3-colorability in the following way: the veri�er will publish thepublic key of the commitment scheme ahead of the protocol and keep to himself the secret key. Atthe onset of the iZK protocol itself, the veri�er will essentially proves to the prover that he knows18Verbatim from [3] and [23]. 29

the matching secret key. This proof will be secure to the extent that the prover cannot learn anyknowledge which will allow him to cheat. Next, the prover will use commitment scheme speci�edby the veri�ers public key to encode the coloring of the input graph.The Formal Notion.De�nition 1: A Type-1 Commitment Scheme is a tuple of probabilistic polynomial-time algorithmsGEN1(�), COM1(�; �), V ER1(�; �), KEY V ER1, FAKE1(�; �), and FAKE10 such that1. Completeness. 8k, 8v,PROB[(PK;SK) R GEN1(1k); (c; d) R COM1(PK; v) : KEY V ER1(PK; 1k) = V ER1(1k; PK; c; v; d) = Y ES] = 12. Computational Soundness. 9� > 0 such that 8 su�ciently large k and 8 2k� -gate adversaryADVPROB[(PK;SK) R GEN1(1k) ; (c; v1; v2; d1; d2) R ADV (1k; PK) :v1 6= v2 and V ER1(1k; PK; c; v1; d1) = Y ES = V ER1(1k; PK; c; v2; d2)] < 2�k�(We call � the soundness constant.)3. Trapdoorness. 8 (PK;SK) 2 fGEN1(1k)g, 8v1; v2 such that v1 6= v2 the following twoprobability distributions are identical:[(c; d1) R COM1(PK; v1) ; d02 R FAKE1(PK;SK; c; v1 ; d1; v2) : (c; d02)]and[(c; d2) R COM1(PK; v2) : (c; d2)](Comment: d02 R FAKE1(PK;SK; c; v1 ; d1; v2) implies V ER1(1k; PK; c; v2; d02) = Y ES)4. Perfect Secrecy. 8 PK such that KEY V ER1(PK; 1k) = 1 and 8v1; v2:[(c1; d1) R COM1(PK; v1) : c1] = [(c2; d2) R COM1(PK; v2) : c2]5. One-Or-All. 8 (PK;SK) 2 fGEN1(1k)g, and 8c; v1; v2; d1; d2; C; V1;D1; V such that v1 6= v2,V ER1(1k; PK; c; v1; d1) = Y ES = V ER1(1k; PK; c; v2; d2), (C;D1) 2 fCOM1(V1; PK), andV1 6= V2,:PROB[D2 R FAKE10(PK; c; v1; v2; d1; d2; C; V1;D1; V2) : V ER1(1k; PK;C; V2;D2) = Y ES] =16.2.2 Type-2 CommitmentInformal Description. In type-1 commitment schemes, one commits to a value by means of apublic key, and can de-commit at will if he knows the matching secret key.In a type-2 commitment scheme, there is a single key used to commit to values, but this keycan be easily inspected (by algorithm KEYVER2) to determine that a corresponding trap-doorinformation exists (and thus can be used by algorithm FAKE2 to decommit at will). Because suchtrapdoor information exists, it can be found by an exhaustive search. It is not required, however,that there is a easy way to generate type-1 commitment keys and their trapdoor informationtogether.Type-1 and type-2 requirement appear to be incomparable.The use we make of type-2 commitment in the iZKprotocol for graph 3-colorability is for theveri�er to commit to his questions about colors of end points of edges in the graph before he seesan encoding of the graph. 30

The Formal Notion.De�nition 2: A type-2 commitment scheme is a quintuple of probabilistic polynomial-time algo-rithms GEN2(�), COM2(�; �), V ER2(�; �; �; �), FAKE2(�; �) and KEY V ER2(�),1. Completeness. 8k, 8v,PROB[key R GEN2(1k) ; (c; d) R COM2(key; v) : V ER2(key; c; v; d) = Y ES] = 12. Computational Soundness. 9�;> 0 such that 8 su�ciently large k and 8 2k�-gate adversaryADVPROB[key R GEN2(1k) ; (c; v1; v2; d1; d2) R ADV (key) :v1 6= v2 and V ER2(key; c; v1; d1) = Y ES = V ER2(key; c; v2; d2)] < 2k�(� is referred to as the soundness constant.)3. Veri�able Trapdoorness. 8 key such that KEY V ER2(key; 1k) = Y ES 9 trap 2 f0; 1gk suchthat, 8v1; v2 such that v1 6= v2:PROB[c R COM2(key; v1) ; d R FAKE2(key; trap; c; v1; d1; v2) : V ER2(key; c; v2; d) =Y ES] = 14. Veri�able Perfect Secrecy. 8key such that KEY V ER2(key)=YES and 8v1; v2[(c1; d1) R COM2(key; v1) : c1] = [(c2; d2) R COM(key; v2) : c2]6.2.3 Remarks on Type-1 and Type-2 CommitmentsThe above commitment schemes can be implemented under a variety of assumptions. For example,the assumption that family of claw-free trapdoor permutation pairs de�ned by [GoMiRi] su�ces forType-1 commitment. Moreover, this same assumption su�ces for implementing type-2 commitmentif KEYVER2 is relaxed to be an interactive procedure (or if it has access to a random string asrequired for noninteractive zero-knowledge proofs).Alternatively, based on the assumption that the discrete logarithm problem is hard, both Type-1 and Type-2 commitment can be achieved as we show below. Even though the two commit-ment schemes implementations follow from the same complexity assumption, our rewindable zero-knowledge protocol uses commitments in two fundamentally di�erent ways. Thus, having twodi�erent types of commitmentments enhances the understanding of the protocol, and may possiblylead to minimizing the complexity assumptions necessary in future implementations.Finally, as shown within our RZK protocol (i.e., in its �rst 4 steps), the producer of a public-secret key pair for a type-1 commitment scheme, can prove in constant round that he knows thesecret key corresponding to the public key without enabling the veri�er of this proof of knowledgeto \decommit at will".6.3 Discrete-Log Implementations of Type-1 and Type-2 CommitmentDe�nition: We de�ne the language DLP0 to consist of the quadruplets (p; g; x; p � 1), wherep is a prime, g a generator of Z�p , x an element of Z�P , and p� 1 is an encoding of the primefactorization of p� 1. We denote by DLP 0k the set of quadruplets in DLP 0 whose prime has lengthk: DLP 0k def= f(p; g; x; p � 1) 2 DLP 0 : jpj = kg. 31

The DLP0 Assumption: 9c; d > 0 8k > d 8 2k-gate circuits C:PROB[(p; g; y; p� 1) R DLP 0kc ; C(p; g; y; p� 1) = x : gxmod p) = y] < 2�kRemark: We include the factorization of p� 1 in the Discrete-Logarithm Problem to enable oneto check easily that g is a generator for Z�p . We may avoid this \di�culty" in varius ways. Forinstance, by (1) rede�ning DLP 0 to consist of triplets (p; g; x), where p is a prime of the form2q + 1, and q is itself prime, and (2) assuming that one may easily randomly select a member ofthe corresponding sublanguage DLP 0k on input 1k. The Discrete-Logarithm Problem appears toremain hard to solve for primes of this special form.Lemma 1: Under the DLP0 assumption, there exist a type-1 commitment scheme.Proof: De�ne algorithms GEN1, COM1, V ER1, FAKE1, and FAKE10 as follows:GEN1 is a probabilistic, polynomial-time algorithm that, on input 1k, randomly selects a k-bitprime p, a generator g for Z�p , and x 2 [1; p�1] and outputs PK = (p; g; y; p� 1) and SK = x.(Note: GEN1 makes use of the fact that one can generate k-bit composite numbers in factoredform as shown by Bach.)COM1 is a probabilistic polynomial-time algorithm that, on inputs (p; g; y; p � 1) 2 DLP 0k and abit b, randomly selects d 2 f1; :::; p � 1g, computes c = gdyb mod p, and outputs (c; d).(Note: Longer binary strings are committed in a \bit-by-bit fashion")V ER1 takes as input (p; g; y; p� 1) and c; v; d. If (p; g; y; p � 1) 2 DLP 0k and c = gdyv mod p itoutputs YES, else it outputs NO.KEY V ER1 is a probabilistic polynomial time algoritm that takes as input (p; g; y; p � 1) andoutputs YES if p is prime, g is generator for Z�p , and y 2 Z�p , and NO otherwise.FAKE1 takes as input (p; g; y; p � 1) 2 DLP 0k and (x; c; v1; d1; v2) where gx = y mod p, v1 6= v2mod p� 1, and c = gd1yv1 mod p, and outputs d2 = d1 + x(v1 � v2) mod p� 1.FAKE10 takes as input PK 2 DLP 0k and c; v1; v2; d1; d2; C; V1;D1; V such that v1 6= v2 mod p� 1,V1 6= V mod p � 1, and V ER1(PK; c; v1; d1) = Y ES = V ER1(PK; c; v2 ; d2). It computesx = (d1 � d2)(v1 � v2)�1 mod p� 1 and outputs D = D1 + x(V1 � V) mod p� 1.Lemma 2: Under the DLP0 assumption, there is a type-2 commitment scheme.Proof: De�ne algorithms GEN2, COM2, V ER2, FAKE2, and KEY V ER2 as follows:GEN2 is a probabilistic, polynomial-time algorithm that, on input 1k, randomly selects a k-bit prime q together with q � 1, a generator h for Z�q , and z 2 Z�q and outputs PK =(q; h; z; q � 1).COM2 is a probabilistic polynomial-time algorithm that, on input (q; h; z; q � 1) 2 DLP 0k and abit b, randomly selects d 2 f1; :::; q � 1g, computes c = hdzb mod q, and outputs (c; d).(Note: Longer binary strings are committed in a \bit-by-bit fashion")32

V ER2 takes as input (q; h; z; q � 1) 2 DLP 0k and c; v; d. If c = hdhv mod q it outputs YES, else itoutputs NO.KEY V ER2 takes as input (q; h; z; q � 1) 2 DLP 0k and 1k. If q is prime, h is a generator for Z�qand z 2 Z�q it outputs YES, else it outputs NO.FAKE2 takes as input key = (q; h; z; q � 1) such that KEY V ER(key; 1k) = Y ES, trap 2 f0; 1gkand c; v2; v1; d1 such that v1 6= v2 mod p�1 and V ER2((q; h; z); c; v1 ; d1) = Y ES. If htrap = zmod q, then output d2 = d1 + trap(v1 � v2) mod q � 1.Note that for every key = (q; h; z) where KEY V ER(key; 1k) = Y ES, there exists trap suchthat htrap = z mod q (as required above).6.4 An iZK Protocol For 3-Coloring Using Public Keys6.4.1 Initial RemarksThe protocol utilizes a type-1 commitment scheme, (GEN1; COM1; V ER1;KEY V ER1; FAKE1; FAKE10),with soundness constant �1. Before the protocol starts, the veri�er runs GEN1 with security pa-rameter K to obtain a public key, PK, and its matching secret key, SK. This public key will be acommon input of prover and veri�er. The second common input will be G, a graph that the proverclaims to be 3-colorable. The private input of the veri�er consist of SK, while the private input tothe prover consist of a seed s for a pseudo-random function �a la [GGM], fs.The protocol also uses a type-2 commitment scheme, (GEN2; COM2; V ER2; FAKE2;KEY V ER2),with soundness constant �2. The prover generates a (single) key for this commitment scheme byusing GEN2, with security parameter k, during run time.Note that the security parameters K and k are not chosen equal, nor independently. Rather,the protocol requires that K be suitably bigger than k: more precisely, K = k 12�1 . 19 The lengthof the seed s, may however, be chosen quite independently of K and k: it is only for simplicity thatwe chose it to be K-bit long.At a very high level, the protocol consists of two phases. First, the veri�er convinces the proverthat he \knows" SK(steps 1-4). Second, the prover convinces the verifer that the input graph G is3-colorable (steps 5-10). The prover is de-facto deterministic: at each step of the protocol, all his\random" choices are made by applying fs to the history of the communication so far.6.4.2 The Protocol Protocol RZK� Security Parameter(s): k and K where K = k 12�1 .� Veri�er's public and secret key: (PK;SK) R GEN1(1K).� Prover's secret seed: s 2R f0; 1gK� Common input to protocol: A 3-colorable graph G with vertex set VERTICES and edgeset EDGES, where VERTICES has cardinality n and EDGES has cardinality m.19As a result, \cheating" will be hard in both schemes, but it will be much harder for the type-1 scheme than forthe type-2 scheme. In particular, as it will become clear later on, �nding two di�erent decommitments for the sametype-2 commitment cannot signi�cantly help in �nding SK, the type-1 secret key.33

� Secret input to prover : a 3-coloring of G, COL : V ERS ! f1; 2; 3g, where COL(v) isthe color of vertex v.Comment: The following 10 steps are executable in 7 rounds of communication.1. (Instructions for V)For i = 1; : : : ; k, let (Xi; Ri) R COM1(PK; 0), send Xi to P.2. (Instructions for P) If KEY V ER1(Pk; 1k) = NO, then halt. Else,Compute a1; : : : ; ak = fs(X1j : : : jXk) where fs is a GGM random function with seed s andsend them to V.3. (Instructions for V)For i = 1; : : : ; k, compute R0i R FAKE1(PK;SK;Xi ; 0; Ri; 1).If ai = 0, then set Di= Ri, else set Di = R0I . Send Di to P .4. (Instructions for P)For i = 1 : : : ; k, if V ER1(PK;Xi; ai;Di) = NO, then reject.5. (Instructions for P)Select key R GEN2(1k) and send it to V.6. (Instructions for V) If KEY V ER2(key; 1k) = NO, then reject. Else,For j = 1 : : : ; n3, randomly select edge ej = (uj ; vj) in G, compute (cej ; dej) R COM2(key; ej),and send P the commitment values cej .7. (Instructions for P) For j = 1; : : : ; n3, choose �j , a random permutation of f1; 2; 3g, and:for all u 2 V ERTICES do: (cuj ; duj) R COM1(PK; �j(COL(u))) and send cuj to V.8. (Instructions for V) For j = 1; : : : ; n3, decommit ej = (uj ; vj) by sending ej and dej to P.9. (Instructions for P) For j = 1 : : : ; n3, if V ER2(key; cej ; ej ; dej) = NO, then reject. Else,decommit the colors of the endpoints of ej by sending �j(COL(uj)), duj , �j(COL(vj)) anddvj to P.10. (Instructions for V)(a) For j = 1; : : : ; n3, if V ER1(PK; cvj ; �j(COL(vj)); dvj) = NO or V ER1(PK; cuj ; �j(COL(uj)); duj) =NO, then reject.(b) For j = 1; : : : ; n3, if �j(COL(uj)) = �j(COL(vj)) (where ej = (uj; vj)), then reject.(c) Else, accept.AcknowledgementsWe are indebted to Ran Canetti for discussion on the notion of rewindability and its possibility inearlier stages of this work. We are indebted to Amit Sahai for his invaluable help in �nding a awin an earlier version of this paper. 34

References[1] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rogaway.Everything Provable is Probable in Zero-Knowledge. In CRYPTO88, Springer-VerlagLNCS403, pages 37{56, 1990[2] M. Blum. Coin Flipping by Phone. IEEE Spring COMPCOM, pages 133{137, February1982. See also SIGACT News, Vol. 15, No. 1, 1983.[3] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge ProofSystems. SIAM J. Computing, Vol. 20, No. 6, pages 1084{1118, 1991. (Considered thejournal version of [4].)[4] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications.In 20th STOC, pp. 103{112, 1988.[5] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM J. Computing, Vol. 13, pages 850{864, 1984.[6] J. Boyar, M. Krentel and S. Kurtz. A Discrete Logarithm Implementation of PerfectZero-Knowledge Blobs. Jour. of Cryptology, Vol. 2, pp. 63{76, 1990.[7] G. Brassard, D. Chaum and C. Cr�epeau. MinimumDisclosure Proofs of Knowledge. JCSS,Vol. 37, No. 2, pages 156{189, 1988.[8] C. Dwork, M. Naor, and A. Sahai. Concurrent Zero-Knowledge. In 30th STOC, pages409{418, 1998.[9] C. Dwork, and A. Sahai. Concurrent Zero-Knowledge: Reducing the Need for TimingConstraints. In Crypto98.[10] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In22nd STOC, pages 416{426, 1990.[11] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solution to Identi�cation andSignature Problems. In CRYPTO86, Springer-Verlag LNCS263, pages 186{189, 1987.[12] O. Goldreich. A Uniform Complexity Treatment of Encryption and Zero-Knowledge. Jour.of Cryptology, Vol. 6, No. 1, pages 21{53, 1993.[13] O. Goldreich. Foundation of Cryptography { Fragments of a Book. Febru-ary 1995. Revised version, January 1998. Both versions are available fromhttp://theory.lcs.mit.edu/�oded/frag.html.[14] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. JACM,Vol. 33, No. 4, pages 792{807, 1986.[15] O. Goldreich and A. Kahan. How to Construct Constant-Round Zero-Knowledge ProofSystems for NP. Jour. of Cryptology, Vol. 9, No. 2, pages 167{189, 1996.[16] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.SIAM J. Computing, Vol. 25, No. 1, pages 169{192, 1996.35

[17] O. Goldreich and L.A. Levin. Hard-core Predicates for any One-Way Function. In 21stSTOC, pages 25{32, 1989.[18] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing But Their Validityor All Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pp.691{729, 1991.[19] O. Goldreich and Y. Oren. De�nitions and Properties of Zero-Knowledge Proof Systems.Jour. of Cryptology, Vol. 7, No. 1, pages 1{32, 1994.[20] S. Goldwasser and S. Micali. Probabilistic Encryption. JCSS, Vol. 28, No. 2, pages270{299, 1984.[21] S. Goldwasser and S. Micali. Patent applications on Internet Zero-knowledge Protocolsand Application (3/3/99) and Internet Zero-Knowledge and Low-Knowledge Proofs andProtocols (6/11/99).[22] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SIAM J. Comput., Vol. 18, No. 1, pp. 186{208, 1989.[23] S. Goldwasser, S. Micali, and R.L. Rivest. A Digital Signature Scheme Secure AgainstAdaptive Chosen-Message Attacks. SIAM J. Comput., April 1988, pages 281{308.[24] J. H�astad, R. Impagliazzo, L.A. Levin and M. Luby. Construction of Pseudorandom Gen-erator from any One-Way Function. To appear in SIAM Jour. on Computing. Preliminaryversions by Impagliazzo et. al. in 21st STOC (1989) and H�astad in 22nd STOC (1990).[25] J. Kilian, E. Petrank, and C. Racko�. Lower Bounds for Zero-Knowledge on the Internet.In 39 FOCS, pages 484{492, 1998.[26] M. Naor. Bit Commitment using Pseudorandom Generators. Jour. of Cryptology, Vol. 4,pages 151{158, 1991.[27] R. Ransom and J. Kilian. Non-Synchronized Composition of Zero-Knowledge Proofs.Manuscript, 1998.[28] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd FOCS, pages 80{91,1982.

36

Appendix A: Commitment SchemesWe formally de�ne the various types of commitment schemes used by our main protocol. We startwith the more standard notion of a commitment scheme in which secrecy is preserved only w.r.tcomputationally bounded adversaries, and later pass to the dual notion of a perfect commitmentscheme (in which secrecy is preserved in an information theoretic sense). Recall that the bindingproperty in standard schemes is absolute (i.e., information theoretical), whereas in perfect commit-ment schemes it holds only w.r.t computationally bounded adversaries. But before de�ning anyof these, let use de�ne a su�cient condition for the existence of all these schemes { a strong DLPassumption.A.1 The Strong DLP Intractability AssumptionThe Discrete Logarithm Problem (DLP) is de�ned as follows. On input p; g; y, where p is a prime, gis a primitive element in the multiplicative group modulo p, and y 2 Z�p, one has to �nd x suct thatgx � y (mod p). We assume that this task is intractable also in the special case where p = 2q+1and q is a prime too. Such p's are often called safe primes, and the above assumption is quitestandard. It follows that the same would hold when g is of order q and so is y. Finally, we assumethat intractability refers to sub-exponential size circuits rather merely to super-polynomial ones.Thus we assume the following:The Strong DLP Assumption: For some � > 0, for every su�ciently large n, andevery circuit C of size at most 2n�Pr[C(p; g; gx mod p) = x] < 2�n�where the probability is taken uniformly over all n-bit long safe primes p, elements g oforder q def= (p� 1)=2, and x 2 Z�q.We comment that, although stronger than the standard assumption, the above Strong DLP As-sumption seems very reasonable.A.2 Standard Commitment SchemesBy a standard commitment scheme we refer to one providing computational-secrecy and absolute(or perfect) binding. For simplicity, we consider here only one-round commitment schemes.De�nition 13 (standard commitment scheme): A standard commitment scheme is a probabilisticpolynomial-time algorithm, denoted C satisfying:(Computational) Secrecy: For every v; u of equal poly(n)-length, the random variables C(1n; v)and C(1n; u) are computationally indistinguishable by circuits. That is, for every two polyno-mials p; q, all su�ciently large n's and all v; u 2 f0; 1gp(n) and every distinguishing circuit Dof size q(n), jPr[D(C(1n; v)) = 1] � Pr[D(C(1n; u)) = 1]j < 1q(n)(Perfect) Binding: For every v; u of equal poly(n)-length, the random variables C(1n; v) andC(1n; u) have disjoint support. That is, for every v; u and �, if Pr[C(1n; v) = �] andPr[C(1n; u) = �] are both positive then u = v.37

The way such a commitment scheme is used should be clear: To commit to a string v, under securityparameter n, the sender invokes C(1n; v) and sends the result as its commitment. The randomnessused by C during this computation, is to be recorded and can latter be used as a decommitment.A commitment scheme as above can be constructed based on any one-way permutation: Looselyspeaking, given a permutation f : D 7! D with a hard-core predicate b (cf., [17]), one commits toa bit � by uniformly selecting x 2 D, and sending (f(x); b(x)� �) as a commitment.A strong version of the standard commitment scheme requires computational-secrecy to holdalso with respect to subexponential-size circuits (i.e., replace the polynomial q above by a functionf of the form f(n) = 2n� , for some �xed � > 0). This is analogous to the strong computational-binding feature discussed below. The Strong DLP Assumption implies the existence of such strongcomputational-secrecy commitment schemes.A.3 Perfect Commitment SchemesWe start by de�ning two-round perfect commitment schemes. In such schemes the party's strategiesmay be represented by two algorithms, denoted (S;R), for sender and receiver. The sender has asecret input v 2 f0; 1g� and both parties share a security parameter n. Thus, the �rst message sent(by an honest receiver) is R(1n), and the response by a sender wishing to commit to a value v (oflength bounded by a polynomial in n) is S(1n; v;msg), where msg is the message received in the�rst round. To \de-commit" to a value v, the sender may provide the coin tosses used by S whencommitting to this value, and the receiver may easily verify the correctness of the de-committedvalue.De�nition 14 (perfect two-round commitment scheme): A perfect two-round commitment schemeis a pair of probabilistic polynomial-time algorithms, denoted (S;R) satisfying:(Perfect) Secrecy: For every mapping R� (representing a computationally-unbounded cheatingreceiver), and for every v; u of equal poly(n)-length, the random variables S(1n; v; R�(1n)) andS(1n; u;R�(1n)) are statistically close. That is, for every two polynomials p; q, all su�cientlylarge n's and all v; u 2 f0; 1gp(n)X� jPr[S(1n; v; R�(1n)) = �]� Pr[S(1n; u;R�(1n)) = �] j < 1q(n)(Computational) Binding: Loosely speaking, it should be infeasible for the sender, given themessage sent by the honest receiver, to answer in a way allowing it to later de-commit in twodi�erent ways.In order to formulate the above, we rewrite the honest sender move, S(1n; v;msg), as con-sisting of uniformly selecting s 2 f0; 1gpoly(n;jvj), and computing a polynomial-time functionS0(1n; v; s;msg), where msg is the receiver's message. A cheating sender tries, given a receivermessage msg, to �nd two pairs (v; s) and (v0; s0) so that v 6= v0 and yet S0(1n; v; s;msg) =S0(1n; v0; s0;msg). This should be infeasible; that is, we require that for every polynomial-sizecircuit S� (representing a cheating sender invoked as part of a larger protocol), for everypolynomial p, all su�ciently large n'sPr[Vn 6= V 0n & S0(1n; Vn; Sn; R(1n)) = S0(1n; V 0n; S0n; R(1n))] < 1q(n)where (Vn; Sn; V 0n; S0n) = S�(1n; R(1n)). 38

A perfect two-round commitment scheme can be constructed using any claw-free collection (cf., [15]).In particular, it can be constructed based on the standard assumption regarding the intractabilityof DLP (as the latter yields a claw-free collection). Combing the two constructions, we get thefollowing perfect two-round commitment scheme: On input a security parameter n, the receiverselects uniformly an n-bit prime p so that q def= (p� 1)=2 is prime, a element g of order q in Z�p, andz in the multiplicative subgroup of Z�p formed by g, and sends the triple (p; g; z) over. To committo a bit �, the sender �rst checks that (p; g; z) is of the right form (otherwise it halts announcingthat the receiver is cheating20), uniformly selects s 2 Zq, and sends gsz� mod p as its commitment.Additional features: The additional requirements assumed of the perfect commitment schemesin subsection 3.2 can be easily formulated. The strong computational binding feature is formulatedby extending the Computational Binding Property (of Def. 14) to hold for subexponential circuitsS�. Again, the Strong DLP Assumption yields such a stronger binding feature. The trapdoor featurerequires the existence of a probabilistic polynomial-time algorithm R that outputs pairs of stringsso that the �rst string is distributed as in R (above), whereas the second string allows arbitrarydecommiting. That is, there exists a polynomial-time algorithm A so that for every (msg; aux) inthe range of R(1n), every v; u 2 f0; 1gpoly(n), and every s 2 f0; 1gpoly(n;jvj), satis�esS0(1n; v; s;msg) = S0(1n; u; A(aux; (v; s); u);msg)That is, a = A(aux; (v; s); u) is a valid decommit of the value u to the sender's commitment tothe value v (i.e., the message S0(1n; v; s;msg)). Thus, one may generate random commitments c(by uniformly selecting s and computing S0(1n; 0poly(n); s;msg)) so that later, with knowledge ofaux, one can decommit to any value u of its choice (by computing a = A(aux; (0poly(n); s); u)).The DLP construction (of above) can be easily modi�ed to satisfy the trapdoor feature: Actually,the known implementation for the random selection of z (in the subgroup generated by g) is toselect r uniformly in Z�q and set z = gr mod p. But in this case r is the trapdoor we need, sincegszv � gs+(v�u)rzu (mod p), and so we may decommit to u by presending s+ (v � u)r mod q.Appendix B: the subtle problem or rewindable zero-knowledgewrt limited veri�ersClearly, the protocol described in Subsection 3.1 is constant-round (speci�cally 5-round). It is alsoeasy to see that it constitutes an interactive proof for Graph 3-Colorability: Perfect completeness isobvious (by just following the speci�ed strategies). Soundness follows by noting that the protocoldi�ers from the one in [15] only in Step (P1), but this is irrelevant since the analysis of soundnessis with respect to an arbitrary cheating prover. Thus, soundness follows from [15]. We thereforefocus on the zero-knowledge aspect of the protocol:Proposition 15 The protocol described in Subsection 3.1 is rewindable zero-knowledge with re-spect to veri�ers which decommit properly.Proof Sketch: Here we use some extra properties of the simulator presented in [15] for therelated protocol. We �rst consider, as a mental experiment, a prover which uses a truly randomfunction rather than a pseudorandom one. Let V � a probabilistic polynomial-time adversary which20Actually, to �t the de�nition, the sender should commit via a special symbol which allows arbitrary decommit.Surely, such a commitment-decommit pair will be rejected by the honest receiver, which never cheats.39

interacts with this prover as in (Distribution 1 of) De�nition 1. We �rst claim that in case V �sends the same �rst message (i.e., the Step (V1) commitment) in two invocations of the prover then,except with negligible probability, it cannot reveal two di�erent edge-sequences in the correspondingStep (V2). This follows from the computational-binding property of the commitment scheme usedfor the veri�er's commitments, and from the fact that the simulator presented in [15] starts by�xing the coins of V � (once and for all). That is, for the ith iteration, the claim follows by thecomputational-binding property and the fact that a simulation of the previous i � 1 interactionscan be incorporated into a cheating sender (played by the veri�er).Thus, ignoring these negligible probability events, whenever the veri�er repeats a Step (V1)message it has to reveal the same values in the decommitment Step (V2). The reason being thatfailure to decommit is disallowed by the hypothesis, whereas decommitment to a di�erent value mayonly occur with negligible probability (by the above). But whenever the Step (V1) commitmentmessage as well as the decommitment Step (V2) are the same as in a previous interaction, so arethe values revealed in Step (P2). Thus, in such a case, we can simulate the current interactionby copying values from the previous interaction. It follows that, without loss of generality (andignoring negligible probability events), we may assume that V � never repeats the same Step (V1)message in two di�erent interactions.But in such a case, the interaction amounts to polynomially-many sequential composition ofthe [15] protocol (since an application of a totally random function f : f0; 1gm 7! f0; 1gm to qdi�erent values is equivalent to uniform and independent selection of q elements in f0; 1gm). Sincethe [15] protocol has a black-box zero-knowledge simulator it follows that the above ideal prover(which uses a truly random function) is rewindable zero-knowledge via a black-box simulation.Turning back to the actual prover (which uses a pseudorandom function rather than a totallyrandom one), we claim that the simulator provided for the ideal prover also simulates the ac-tual prover. Otherwise, one can combine the prover and adversary interactive programs into a(non-uniform) algorithm which distinguishes pseudorandom functions from truly random ones, incontradiction to the de�nition of pseudorandom functions. Here we use the fact that the prover'sstrategy can be implemented in polynomial-time given the input graph and a 3-coloring of it. Thelatter are incorporated into the distinguishing algorithm (and constitute { as usual in the area {its only non-uniform aspect).21Appendix C: Blum's Proof of KnowledgeFor sake of self-containment, we �rst recall the de�nition of a proof of knowledge. The followingtext is reproduced from [13].C.1 Proofs of KnowledgeC.1.1 PreliminariesLet R � f0; 1g� � f0; 1g� be a binary relation. Then R(x) def= fs : (x; s) 2 Rg and LR def= fx :9s s.t. (x; s) 2 Rg. If (x; s) 2 R then we call s a solution for x. We say that R is polynomiallybounded if there exists a polynomial p such that jsj � p(jxj) for all (x; s) 2 R. We say that Ris an NP relation if R is polynomially bounded and, in addition, there exists a polynomial-timealgorithm for deciding membership in R (i.e., LR 2 NP). In the sequel, we con�ne ourselves topolynomially bounded relations.21A fully-uniform treatment is applicable here too; see [12].40

We wish to be able to consider in a uniform manner all potential (knowledge) provers, withoutmaking distinction based on their running-time, internal structure, etc. Yet, we observe that theseinteractive machine can be given an auxiliary-input which enables them to \know" and to provemore. Likewise, they may be lucky to select a random-input which enables more than another.Hence, statements concerning the knowledge of the prover refer not only to the prover's programbut also to the speci�c auxiliary and random inputs it has. Hence, we �x an interactive machineand all inputs (i.e., the common-input, the auxiliary-input, and the random-input) to this machine,and consider both the corresponding accepting probability (of the veri�er) and the usage of this(prover+inputs) template as an oracle to a \knowledge extractor". This motivates the followingde�nition.De�nition 16 (message speci�cation function): Denote by Px;y;r(m) the message sent by machineP on common-input x, auxiliary-input y, and random input r, after receiving messages m. Thefunction Px;y;r is called the message speci�cation function of machine P with common-input x,auxiliary-input y, and random input r.An oracle machine with access to the function Px;y;r will represent the knowledge of machine P oncommon-input x, auxiliary-input y, and random input r. This oracle machine, called the knowledgeextractor, will try to �nd a solution to x (i.e., an s 2 R(x)). (As postulated below, the running timeof the extractor is inversely related to the corresponding accepting probability (of the veri�er).)C.1.2 Knowledge veri�ersNow that all the machinery is ready, we present the de�nition of a system for proofs of knowledge.At �rst reading, the reader may set the function � to be identically zero.De�nition 17 (System of proofs of knowledge): Let R be a binary relation, and � : N ! [0; 1].We say that an interactive machine V is a knowledge veri�er for the relation R with knowledge error� if the following two conditions hold.� Non-triviality: There exists an interactive machine P so that for every (x; y) 2 R all possibleinteractions of V with P on common-input x and auxiliary-input y are accepting.� Validity (with error �): There exists a probabilistic oracle machine K such that for everyinteractive machine P , every x 2 LR and every y; r 2 f0; 1g�, on input x and access to Px;y;rmachine K �nds a solution s 2 R(x) within expected time inversely proportional to p��(jxj),where p is the probability that V accepts x when interacting with Px;y;r. More precisely:Denote by p(x; y; r) the probability that the interactive machine V accepts, on input x, wheninteracting with the prover speci�ed by Px;y;r. Then if p(x; y; r) > �(jxj) then, on input x andaccess to oracle Px;y;r, machine K outputs a solution s2R(x) within an expected number ofsteps bounded above by poly(jxj)p(x; y; r)� �(jxj)The oracle machine K is called a universal knowledge extractor.When �(�) is identically zero, we just say that V is a knowledge veri�er for the relation R. Aninteractive pair (P; V) so that V is a knowledge veri�er for a relation R and P is a machinesatisfying the non-triviality condition (with respect to V and R) is called a system for proofs ofknowledge for the relation R. 41

C.2 Blum's ProtocolIn the main text, we consider k parallel repetitions of the following basic proof system for the Hamil-tonian Cycle (HC) problem which is NP-complete (and thus get proof systems for any language inNP). We consider directed graphs (and the existence of directed Hamiltonian cycles).Construction 18 (Basic proof system for HC):� Common Input: a directed graph G = (V;E) with n def= jV j.� Auxiliary Input to Prover: a directed Hamiltonian Cycle, C � E, in G.� Prover's �rst step (P1): The prover selects a random permutation, �, of the vertices V , andcommits to the entries of the adjacency matrix of the resulting permuted graph. That is, itsends an n-by-n matrix of commitments so that the (�(i); �(j))th entry is a commitment to1 if (i; j) 2 E, and is a commitment to 0 otherwise.� Veri�er's �rst step (V1): The veri�er uniformly selects � 2 f0; 1g and sends it to the prover.� Prover's second step (P2): If � = 0 then the prover sends � to the veri�er along with therevealing (i.e., preimages) of all commitments. Otherwise, the prover reveals to the veri�eronly the commitments to entries (�(i); �(j)) with (i; j) 2 C. In both cases the prover alsosupplies the corresponding decomitments.� Veri�er's second step (V2): If � = 0 then the veri�er checks that the revealed graph is indeedisomorphic, via �, to G. Otherwise, the veri�er just checks that all revealed values are 1 andthat the corresponding entries form a simple n-cycle. In both cases the veri�er checks that thedecommitments are proper (i.e., that they �ts the corresponding commitments). The veri�eraccepts if and only if the corresponding condition holds.We stress that the above protocol uses a standard commitment scheme.Proposition 19 The protocol which results by k parallel repeations of Construction 18 is a proof ofknowledge of Hamiltonicity with knowledge error 2�k. Furthermore if, for every positive polynomialp, the commitment scheme used in Step (P1) maintain secrecy with respect to circuits of size p(n)�23kand distinguishing gap of 2�3k=p(n) then, for every positive polynomial q, the interaction can besimulated in time poly(n) �2k so that no circuit of size q(n) �22k can distinguish the simulation fromthe real interaction with gap of 2�2k=q(n) or more.

42

