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A Study of Statisti
al Zero-Knowledge ProofsbySalil Pravin VadhanSubmitted to the Department of Mathemati
son August 6, 1999, in partial ful�llment of therequirements for the degree ofDo
tor of PhilosophyAbstra
tZero-knowledge intera
tive proofs, introdu
ed by Goldwasser, Mi
ali, and Ra
ko�, are fas-
inating 
onstru
ts whi
h enable one party (the \prover") to 
onvin
e another party (the\veri�er") of an assertion, with the property that the veri�er learns nothing other than thefa
t that the assertion being proven is true. In addition to being powerful tools for 
onstru
t-ing se
ure 
ryptographi
 proto
ols, zero-knowledge proofs yield ri
h 
lasses of 
omputationalproblems that are of both 
omplexity-theoreti
 and 
ryptographi
 interest.This thesis is a detailed investigation of statisti
al zero-knowledge proofs, whi
h are zero-knowledge proofs in whi
h the 
ondition that the veri�er \learns nothing" is interpreted ina strong statisti
al sense. We begin by showing that the 
lass SZK of problems possessingsu
h proofs has two natural 
omplete problems. These problems essentially amount toapproximating the statisti
al di�eren
e or the di�eren
e in entropies between two \eÆ
ientlysamplable" distributions. Thus, they give a new 
hara
terization of SZK whi
h makes noreferen
e to intera
tion or zero knowledge. They also simplify the study of statisti
al zeroknowledge, as questions about the entire 
lass SZK 
an be redu
ed to examining these twoparti
ular 
omplete problems.Using these 
omplete problems as tools, we pro
eed to answer a number of fundamentalquestions about zero-knowledge proofs, in
luding:� Transforming any statisti
al zero-knowledge proof against an honest veri�er (i.e., averi�er that follows the spe
i�ed proto
ol) into one whi
h is zero knowledge evenagainst 
heating veri�ers that deviate arbitrarily from the spe
i�ed proto
ol. Thistransformation applies to publi
-
oin 
omputational zero-knowledge proofs as well.� Constru
ting statisti
al zero-knowledge proofs for 
omplex assertions built out of sim-pler assertions already shown to be in SZK. Via the 
omplete problems, these 
losureproperties translate to new methods for manipulating \eÆ
iently samplable" distri-butions, whi
h may be of independent interest.� Obtaining simpler proofs of most previously known results about statisti
al zeroknowledge, su
h as: Okamoto's result that SZK is 
losed under 
omplement; theFortnow and Aiello{H�astad upper bounds on the 
omplexity of SZK; and Okamoto'sresult that every statisti
al zero-knowledge proof 
an be transformed into a publi
-
oinone.Thesis Supervisor: Sha� GoldwasserTitle: RSA Professor of Computer S
ien
e
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Chapter 1Introdu
tion1.1 The magi
 of zero-knowledge proofsThe notion of a proof plays a 
entral role in mathemati
s and 
omputer s
ien
e. Proofsare the main fruits of a mathemati
ian's labor; the goal of modern mathemati
s is not justto determine whi
h mathemati
al statements are true but to prove that they are so. Intheoreti
al 
omputer s
ien
e, the fundamental \P vs. NP" question essentially amounts toasking whether proofs are 
omputationally harder to �nd than they are to verify.Given their importan
e, it is natural to ask \What does one learn from a proof?" Byde�nition, upon verifying a proof, one should be 
onvin
ed that the assertion being proven istrue. But a proof 
an a
tually reveal mu
h more than that. Indeed, proofs in mathemati
sare valued for providing a great deal of insight in addition to validating a parti
ular theorem.And, at a minimum, it seems inherent in the notion of a proof that after verifying a proof,one leaves not just with 
on�den
e that the assertion is true, but also with the ability topresent the same proof to others and 
onvin
e them of the assertion.Zero-knowledge proofs, introdu
ed by Goldwasser, Mi
ali, and Ra
ko� [GMR89℄, arefas
inating 
onstru
ts whi
h somehow es
ape the 
on�nes of this intuition | they areproofs whi
h are 
onvin
ing but reveal nothing other than the validity of the assertionbeing proven. In parti
ular, after verifying a zero-knowledge proof, one does not gain theability to 
onvin
e someone else of the same statement!In order to a
hieve this seemingly impossible goal, Goldwasser, Mi
ali, and Ra
ko�introdu
e two new elements to the notion of a proof | intera
tion and randomization.Whereas 
lassi
ally a proof is a stati
 obje
t that 
an be written down and later veri�ed,now a proof is viewed as intera
tive proto
ol between two 
ommuni
ating parties, a proverand a veri�er. Both parties 
an be randomized (i.e., they 
an \
ip 
oins"), so the veri�er 
anpresent the prover with \random 
hallenges" and the prover 
an give \random responses."At the end, the veri�er should be 
onvin
ed (with high statisti
al 
on�den
e) that theassertion is true. Amazingly, it is possible to guarantee that the veri�er learns essentiallynothing else from the intera
tion.Goldwasser, Mi
ali, and Ra
ko� gave several possible interpretations of the 
onditionthat the veri�er \learns nothing." This thesis is a detailed investigation of statisti
al zero-knowledge proofs, whi
h are zero-knowledge proofs in whi
h \learns nothing" is interpretedin a strong statisti
al sense. In the 
ourse of this investigation, we will address and answer11



12 CHAPTER 1. INTRODUCTIONseveral fundamental questions about statisti
al zero-knowledge proofs and 
ompletely 
har-a
terize the types of \assertions" that possess statisti
al zero-knowledge proofs. Some ofour results also apply to perfe
t and 
omputational zero-knowledge proofs, whi
h are thoseobtained by di�erent interpretations of the 
ondition that the veri�er \learns nothing."1.2 Informal de�nitionsIt is remarkable that zero-knowledge proofs 
an even be de�ned in a meaningful and realiz-able manner. In this se
tion, we give a high-level sket
h of the notions needed to formalizethem, beginning with what we mean by \assertion."In order to fa
ilitate their 
omplexity-theoreti
 study, \assertions" are thought of asstrings written in some �xed alphabet, and their interpretations are given by a languageL identifying the \valid assertions." For example, assertions about 3-
olorability of graphs
an be formalized by interpreting every string x as a graph Gx and taking the language L tobe the set of x for whi
h Gx is 3-
olorable. So, the string x represents the assertion \x 2 L,"whi
h translates to the statement \Gx is 3-
olorable." We also think of the language L asde�ning the following de
ision problem: given a string x, de
ide whether it is in L or not.Therefore, we will use the terms \assertion," \language," and \problem" inter
hangeablyin our informal dis
ussion.The 
omplexity 
lass NP 
onsists of those languages possessing eÆ
iently veri�able\
lassi
al" proofs. That is, a language L is in NP if there is an eÆ
ient proof-veri�
ationalgorithm (
alled a veri�er) satisfying the following two 
onditions:� Completeness: For every valid assertion (i.e., every string in L), there exists a proofthat the veri�er will a

ept.� Soundness: For every invalid assertion (i.e., every string not in L), no \proof" 
anmake the veri�er a

ept.By \eÆ
ient," we mean that the veri�er should run in time polynomial in the length ofthe assertion (written as a string). We 
onsider su
h proofs \
lassi
al" be
ause the proofis a �xed, written string given in its entirety to the veri�
ation algorithm whi
h 
he
ks itdeterministi
ally.Intera
tive proofs, introdu
ed by Goldwasser, Mi
ali, and Ra
ko� [GMR89℄ serve thesame purpose as 
lassi
al proofs | to 
onvin
e a veri�er with limited 
omputational powerthat some assertion is true. However, as mentioned above, this is no longer a

omplished bygiving the veri�er a �xed, written proof, but rather by having the veri�er to intera
t with aprover that has unbounded 
omputational power. After the parties ex
hange messages forsome number of rounds, the veri�er de
ides whether to a

ept or reje
t. We still require thatthe veri�er's 
omputation time be polynomial in the length of the assertion, but now boththe prover and veri�er may be randomized. The following two relaxations of the 
lassi
alnotions of 
ompleteness and soundness guarantee that an intera
tive proof is \
onvin
ing":� Completeness: For every valid assertion, there is a prover strategy that will makethe veri�er a

ept with high probability.



1.2. INFORMAL DEFINITIONS 13� Soundness: For every invalid assertion, the veri�er will reje
t with high probability,no matter what strategy the prover follows.The 
omplexity 
lass IP is the 
lass of languages possessing intera
tive proofs. Clearly,every language that possesses a 
lassi
al proof also possesses an intera
tive proof (in whi
hthe prover simply sends the veri�er the 
lassi
al proof). But the 
onverse is not 
lear; inter-a
tive proofs are potentially mu
h more expressive than 
lassi
al ones. In fa
t, it has beenshown that many more languages possess intera
tive proofs than 
lassi
al ones [LFKN92,Sha92℄. That is, IP is mu
h larger than NP (given widely believed 
omplexity-theoreti
assumptions).A zero-knowledge proof is an intera
tive proof in whi
h the veri�er learns nothing fromthe intera
tion with the prover, other than the fa
t that the assertion being proven istrue. This is guaranteed by requiring that whatever the veri�er sees in the intera
tionwith the prover is something it 
ould have eÆ
iently generated on its own. That is, thereshould be a polynomial-time algorithm, 
alled a simulator, that \simulates" the veri�er'sview of the intera
tion with the prover (e.g., all the messages ex
hanged between the twoparties). Re
all that the intera
tion between the prover and veri�er is probabilisti
. Thus,the simulator is also probabilisti
, and we require that it generates an output distributionthat is \
lose" to what the veri�er sees when intera
ting with the prover (when the assertionbeing proven is true). Intuitively, this means that the veri�er learns nothing be
ause it 
anrun the simulator instead of intera
ting with the prover.Three di�erent interpretations of \
lose" were suggested in [GMR89℄ and these lead tothe three forms of zero knowledge 
ommonly 
onsidered in the literature:� Perfe
t zero knowledge: Requires that the distributions are identi
al.� Statisti
al zero knowledge: Requires that the distributions are statisti
ally 
lose.� Computational zero knowledge: Requires that the distributions 
annot be dis-tinguished by any polynomial-time algorithm.PZK, SZK, and CZK are the 
lasses of languages possessing perfe
t, statisti
al, and
omputational zero-knowledge proofs, respe
tively. Perfe
t and statisti
al zero knowledge
apture mu
h stronger requirements than 
omputational zero-knowledge, in that the zero-knowledge 
ondition is meaningful regardless of the 
omputational power of the veri�er.1Amazingly, every problem having a 
lassi
al proof also has a 
omputational zero-knowledgeproof; that is NP � CZK [GMW87℄. In fa
t, so does every problem with an intera
tiveproof; that is, IP = CZK [IY87, BGG+88℄.2In 
ontrast, it is unlikely that every problem in NP possesses a perfe
t or statisti
alzero-knowledge proof [For89, AH91, BHZ87℄. This is the pri
e paid for the strong se
urityguarantee o�ered by these types of zero-knowledge proofs. Still, as we will see, a numberof important, nontrivial problems possess statisti
al zero-knowledge proofs, and these aresuÆ
ient for some 
ryptographi
 appli
ations.1Although the veri�er need only run in polynomial time to verify an intera
tive proof, a \
heating" veri�ermay be willing to invest additional 
omputation to gain knowledge from the proof. Perfe
t and statisti
alzero-knowledge proofs guarantee that this will not help.2Both of these results require the standard assumption that \one-way fun
tions" exist.



14 CHAPTER 1. INTRODUCTION1.3 Motivation for our study1.3.1 Complexity TheoryStatisti
al zero knowledge, though de�ned with 
ryptography in mind, is a ri
h domainfor 
omplexity-theoreti
 investigations. The �rst indi
ation of this 
omes from the fa
tthat statisti
al zero-knowledge proofs have been given for a number of important 
om-putational problems: Quadrati
 Residuosity and Nonresiduosity [GMR89℄, GraphIsomorphism and Nonisomorphism [GMW91℄, a problem equivalent to Dis
rete Loga-rithm [GK93℄, and approximate versions of the Shortest Ve
tor and Closest Ve
torproblems for latti
es [GG98a℄. These problems have attra
ted a great deal of attention inthe theoreti
al 
omputer s
ien
e and 
ryptography literature, and statisti
al zero knowl-edge 
aptures a nontrivial property shared by all of them. Moreover, no eÆ
ient (i.e.,polynomial-time) algorithms are known for solving these problems and they are widely be-lieved to be 
omputationally hard. On the other hand, it is unlikely that any problempossessing a statisti
al zero-knowledge proof is NP-hard [For89, AH91, BHZ87℄. Thus, the
lass SZK, of problems possessing statisti
al zero-knowledge proofs, holds an intriguingposition in 
omplexity theory, lying somewhere between the tra
table problems and theNP-hard problems.In this thesis, we will show that SZK possesses two natural \
omplete problems," 
alledStatisti
al Differen
e and Entropy Differen
e. Both of these problems involve
omparing probability distributions given by eÆ
ient sampling pro
edures. The fa
t thatthey are \
omplete" means that the 
omputational 
omplexity of these problems is equiv-alent to that of entire 
lass SZK. As a 
onsequen
e, many results about statisti
al zeroknowledge dire
tly translate to methods for manipulating eÆ
iently samplable distributionsand 
onversely. Indeed, in this thesis we will make use of this 
orresponden
e in both di-re
tions. These 
omplete problems are of independent interest, so the fa
t that they are
omplete for SZK gives further eviden
e that statisti
al zero knowledge 
aptures a ri
h andnatural 
lass of 
omputational problems.1.3.2 CryptographyAs one might imagine, zero-knowledge proofs have vast appli
ability in 
ryptography. Oneof the �rst examples of their utility was the 
onstru
tion of Identi�
ation S
hemes by Feige,Fiat, and Shamir [FFS88℄. The premise is that one party, Ali
e, should be able to identifyherself repeatedly to a se
ond party, Bob. For example, Bob 
an be thought of as an internetservi
e provider or a remote 
omputer network on whi
h Ali
e has an a

ount. The most
ommon solution for this problem is for Ali
e to 
hoose a password that Bob keeps storedin a se
ure password �le. When Ali
e wishes to identify herself to Bob, she simply sendsher password to Bob, who 
he
ks it against the �le. The diÆ
ulty with this solution isthat an adversary 
an, by impersonating Bob, obtain Ali
e's password and later use this tomisrepresent himself as Ali
e.Zero-knowledge proofs provide an elegant solution to this problem. Instead of 
hoosinga password, Ali
e generates a true mathemati
al statement S for whi
h only she knows theproof (and su
h that it is diÆ
ult for an adversary to 
ome up with a proof for S). Bob storesthis statement. When Ali
e wishes to identify herself to Bob, she gives Bob a zero-knowledge



1.3. MOTIVATION FOR OUR STUDY 15proof that S is true. This identi�es Ali
e as the one who knows a proof for S, while Bob(or an adversary impersonating Bob) does not learn the proof for S and hen
e 
annot latermisrepresent himself as Ali
e. There are some subtleties in making this approa
h work,but these 
an be handled, and the example illustrates the potential 
ryptographi
 powerof zero-knowledge proofs. The advantage of using statisti
al zero-knowledge proofs in a
ryptographi
 proto
ol is that they provide an extremely strong se
urity guarantee, in thatthey remain 
onvin
ing and reveal nothing even when the parties involved have unlimited
omputational power.More generally, zero-knowledge proofs are a tool for for
ing parties to behave \honestly"in 
ryptographi
 proto
ols. Parti
ipants 
an prove to ea
h other that their a
tions are 
on-sistent with a spe
i�ed proto
ol without revealing any of the se
ret information they possess(su
h as 
ryptographi
 keys). To exploit this idea in its full generality, Goldrei
h, Mi
ali,and Wigderson [GMW91, GMW87℄ and Yao [Yao86℄ use the fa
t that all NP statements
an be proven in 
omputational zero knowledge (i.e., NP � CZK), as shown in [GMW91℄.As mentioned earlier, the strong se
urity guarantee of statisti
al zero-knowledge proofsmakes it unlikely that NP � SZK [For89, AH91, BHZ87℄, but statisti
al zero-knowledgeproofs 
an and have been used in spe
i�
 
ryptographi
 proto
ols, su
h as the identi�
ations
hemes of Feige, Fiat, and Shamir [FFS88℄ mentioned above.This issue of parties deviating from the proto
ol already arises within zero-knowledgeproofs themselves. For the �rst few 
hapters of this thesis, we will fo
us on honest-veri�erzero-knowledge proofs, whi
h are those in whi
h the veri�er is only guaranteed to learnnothing if it follows the spe
i�ed proto
ol. Fo
using on honest-veri�er proofs will greatlyfa
ilitate our investigation and will be essential in our proofs of several results, su
h as the
ompleteness theorems mentioned earlier. But 
learly su
h proofs are unsuitable for most
ryptographi
 appli
ations. One of the main results of this thesis is a method for trans-forming every honest-veri�er statisti
al zero-knowledge proof into one robust even againstveri�ers that deviate arbitrarily from the spe
i�ed proto
ol. By this transformation (givenin Chapter 6), our results about honest-veri�er zero knowledge proofs automati
ally trans-late to general zero-knowledge proofs. Moreover, it suggests a methodology for 
onstru
tinggeneral zero-knowledge proofs: �rst 
onstru
t an honest-veri�er proof (whi
h is often an eas-ier task) and then use our transformation to make it robust against 
heating veri�ers. Ourtransformation also applies to wide 
lass of 
omputational zero-knowledge proofs (namely,\publi
 
oin" proofs).Another important role statisti
al zero knowledge 
an play from the perspe
tive of 
ryp-tography is that it provides the 
leanest model for the study of zero-knowledge proofs. Sta-tisti
al zero-knowledge proofs tend to be easier to analyze and manipulate than other formsof zero-knowledge proofs, and general theorems about them 
an be proven without makingany 
omplexity-theoreti
 assumptions. In 
ontrast, other forms of zero-knowledge proofs,su
h as 
omputational zero-knowledge proofs and zero-knowledge \arguments"3 are usually
onstru
ted based on intra
tability assumptions su
h as the existen
e of \one-way fun
-tions" (e.g., the hardness of fa
toring). Thus, a natural methodology is to �rst understand3Zero-knowledge arguments, introdu
ed by Brassard, Chaum, and Cr�epeau [BCC88℄, are a variant of zero-knowledge proofs in whi
h the soundness requirement is weakened to only require that it is 
omputationallyhard to 
onvin
e the veri�er of a false statement. We will not dis
uss these further in this thesis.
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t to statisti
al zero knowledge and then attempt to translatethe te
hniques and results to other forms of zero knowledge. This approa
h has seen su
-
ess in the past (e.g., [Ost91℄ leading to [OW93℄) and our transformation of honest-veri�erzero-knowledge proofs into general ones is another example.It should be noted that, if one assumes the existen
e of one-way fun
tions, essentially allquestions about 
omputational zero knowledge have been resolved. However, we regard itas important to understand whi
h aspe
ts of 
omputational zero knowledge rely inherentlyon intra
tability assumptions and whi
h do not. Moreover, minimizing the use of hardproblems in 
onstru
ting zero-knowledge proofs tends to lead to more eÆ
ient 
onstru
-tions and higher levels of se
urity. Our approa
h of �rst proving results about statisti
alzero knowledge and then attempting to translate them to 
omputational zero knowledge is
ompelling in these respe
ts.1.4 Results & stru
ture of this thesisChapter 2 | De�nitions. We give an introdu
tion to statisti
al zero knowledge. Afteran informal example, we formally de�ne statisti
al zero-knowledge proofs and identify someof the issues that arise with the de�nitions. In parti
ular, we note that until Chapter 6,we fo
us on honest-veri�er statisti
al zero knowledge. As mentioned above, this restri
tionwill be 
onvenient for the �rst few 
hapters, but will be removed 
ompletely in Chapter 6.Chapter 3 | Complete Problems. We introdu
e the problems Statisti
al Differ-en
e and Entropy Differen
e and prove that they are 
omplete for (honest-veri�er)SZK. These 
omplete problems will be our main tools in obtaining further results aboutstatisti
al zero knowledge. When proving general theorems about statisti
al zero knowledge,we will be able to fo
us on these spe
i�
 
omplete problems, and largely avoid working withthe rather unwieldy general de�nition of statisti
al zero-knowledge proofs. Statisti
alDifferen
e was shown to be 
omplete for statisti
al zero knowledge in joint work withAmit Sahai [SV97℄ and Entropy Differen
e in joint work with Oded Goldrei
h [GV99℄.The material in Chapter 3 is a 
ombination of te
hniques and results from the 
orrespondingtwo papers.Chapter 4 | Appli
ations of the Complete Problems. We present a number ofimmediate appli
ations of the 
omplete problems and the te
hniques used in their proof.For example, we show that every problem possessing an (honest-veri�er) statisti
al zero-knowledge proof also has a very 
ommuni
ation-eÆ
ient one, in whi
h only two messagesare ex
hanged and the error parameters are exponentially small. We also exhibit somestrong 
losure properties of statisti
al zero-knowledge, obtain eÆ
ient algorithms for ma-nipulating the statisti
al properties of samplable distributions, and prove some results about\knowledge 
omplexity." In addition, the 
omplete problems yield simpler proofs of mostpreviously known results about the 
omplexity of statisti
al zero knowledge. For example,in Se
tion 4.2, we show how Okamoto's result from [Oka96℄ that (honest-veri�er) SZK is
losed under 
omplement follows immediately from the 
ompleteness theorems. We alsoapply some of the same te
hniques to obtain results about perfe
t and 
omputational zero-



1.4. RESULTS & STRUCTURE OF THIS THESIS 17knowledge proofs. Most of the material in this 
hapter was obtained in joint work withAmit Sahai [SV97, SV99℄.Chapter 5 | Private Coins vs. Publi
 Coins. We show that every problem pos-sessing an (honest-veri�er) statisti
al zero-knowledge proof also possesses a publi
-
oin one| that is, a statisti
al zero-knowledge proof in whi
h the veri�er's messages 
onsist merelyof random 
oin 
ips. This was originally proven by Okamoto [Oka96℄. However, we give amarkedly simpler proof. The result of this 
hapter is useful be
ause publi
-
oin intera
tiveproofs are mu
h easier to analyze and manipulate than general \private-
oin" intera
tiveproofs. Indeed, this result provides an essential starting point for the following 
hapter.We also give the �rst transformation from private 
oins to publi
 
oins whi
h applies toa wide 
lass of 
omputational zero-knowledge proofs. Namely, we show how to transform3-message (honest-veri�er) 
omputational zero-knowledge proofs into publi
-
oin ones.The transformations from private 
oins to publi
 
oins presented in this 
hapter arebased on joint work with Oded Goldrei
h [GV99℄ and dis
ussions with Amit Sahai.Chapter 6 | Coping with Cheating Veri�ers. We show how to transform anyhonest-veri�er statisti
al zero-knowledge proof into one whi
h remains statisti
al zero-knowledge even against 
heating veri�er strategies. The same transformation applies topubli
-
oin 
omputational zero-knowledge proofs. The transformation is obtained by aug-menting any publi
-
oin honest-veri�er proof with a new proto
ol for two mutually dis-trustful parties to sele
t a random string. This Random Sele
tion Proto
ol may be ofindependent interest. The material in this 
hapter is joint work with Oded Goldrei
h andAmit Sahai [GSV98℄.Chapter 7 | Nonintera
tive SZK. We examine \nonintera
tive" statisti
al zero-knowledge proofs, whi
h are ones in whi
h the need for intera
tion is removed via an aug-mentation to the model. We exhibit two natural 
omplete problems for NISZK, the 
lassof problems possessing nonintera
tive statisti
al zero knowledge proofs. These 
ompleteproblems are 
losely related to those for SZK. We then use these problems to relate the
omplexities of NISZK and SZK, and explore the possibility that every statisti
al zero-knowledge proof 
an be transformed into a nonintera
tive one. This 
hapter 
onsists ofresults obtained with Oded Goldrei
h and Amit Sahai [GSV99℄.Chapter 8 | Con
lusions. We summarize what has been a
hieved in the thesis, anddis
uss possible avenues for further resear
h.Histori
al remark. The results in this thesis are not presented in 
hronologi
al order. Wehave shu�ed the histori
al order to yield what seems to be the most natural presentation,given the bene�ts of hindsight. In reality, Okamoto's transformation from private 
oins topubli
 
oins [Oka96℄ pre
eeded all the results in this thesis, and indeed sparked mu
h ofthis work. The 
ompleteness of Statisti
al Differen
e [SV97℄, its appli
ations givenin Chapter 4 [SV97, SV99℄, and the honest-veri�er to 
heating-veri�er transformation ofChapter 6 [GSV98℄ all originally used Okamoto's theorem as a starting point. We later
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ed Entropy Differen
e in [GV99℄ in order to give a simpler proof of Okamoto'stheorem.



Chapter 2De�nitions2.1 An exampleBefore giving the formal de�nitions, we illustrate the notion of a zero-knowledge proofwith an elegant example: the (honest-veri�er) perfe
t zero-knowledge proof for GraphNonisomorphism. The proof system is due to Goldrei
h, Mi
ali, andWigderson [GMW91℄,and uses ideas from an earlier proof system for Quadrati
 Nonresiduosity, due toGoldwasser, Mi
ali, and Ra
ko� [GMR89℄.De�nition 2.1.1 If G = (V;E) is an undire
ted graph and � is a permutation on V ,then �(G) denotes the graph obtained by permuting the verti
es of G a

ording to �. Thatis, �(G) = (V;E0), where E0 = f(�(u); �(v)): (u; v) 2 Eg. If G and H are graphs onthe same vertex set, and there exists a � su
h that �(G) = H, we say that G and H areisomorphi
 and write G�=H. � is 
alled an isomorphism between G and H, and H is said tobe an isomorphi
 
opy of G. Graph Isomorphism is the language GI = f(G;H):G�=Hg:Graph Nonisomorphism (GNI) is the 
omplement of GI.1It is easy to see that Graph Isomorphism is in NP; an easily veri�able proof that twographs are isomorphi
 is an isomorphism between them. In 
ontrast, no 
lassi
al proofsare known for Graph Nonisomorphism. Nevertheless, Graph Nonisomorphism doespossess a very eÆ
ient intera
tive proof.2 The intera
tive proof is based on two observations.First, if two graphs are nonisomorphi
, then their sets of isomorphi
 
opies are disjoint.Se
ond, if two graphs are isomorphi
, then a uniformly sele
ted isomorphi
 
opy of onegraph is indistinguishable from a uniformly sele
ted isomorphi
 
opy of the other. Thus,the intera
tive proof, given in Proto
ol 2.1.2, tests whether the prover 
an distinguishuniformly sele
ted isomorphi
 
opies of the two graphs.1To formally de�ne GI and GNI as sets of strings, one must spe
ify how graphs are en
oded as strings,but any reasonable en
oding will work for our purposes. Typi
ally, en
oding issues are easily managed andhen
e we will usually ignore them in this thesis. Also note that if two graphs are on di�erent vertex sets ofthe same size, we have impli
itly de�ned them to be nonisomorphi
. This 
onvention is inessential.2There has been some re
ent eviden
e that Graph Nonisomorphism is in NP, in fa
t based on theexisten
e of an eÆ
ient intera
tive proof for Graph Nonisomorphism [KvM99℄.19
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ol 2.1.2: Intera
tive proof (P; V ) for Graph NonisomorphismInput: Graphs G0 = (V0; E0) and G1 = (V1; E1)1. V : Uniformly sele
t b 2 f0; 1g. Uniformly sele
t a permutation � on Vb.Let H = �(Gb). Send H to P .2. P : If G0�=H, let 
 = 0. Else let 
 = 1. Send 
 to V .3. V : If 
 = b, a

ept. Otherwise, reje
t.Proposition 2.1.3 ([GMW91℄) Proto
ol 2.1.2 is an intera
tive proof system for GraphNonisomorphism.Proof Sket
h: If G0 and G1 are nonisomorphi
, then G0�=H if and only if b = 0. Sothe prover strategy spe
i�ed above will make the veri�er a

ept with probability 1. Thus,
ompleteness is satis�ed.On the other hand, if G0 and G1 are isomorphi
, then H has the same distributionwhen b = 0 as it does when b = 1. Thus, b is independent of H and the prover has at mostprobability at most 1=2 of guessing b 
orre
tly no matter what strategy it follows. Thisshows that the proto
ol is sound. 2A few remarks about the proof system are in order. The �rst is that the veri�er's
on�den
e that the graphs are nonisomorphi
 after one exe
ution of the proto
ol is not veryhigh, as the prover 
an su
eed with probability 1/2 even when the graphs are isomorphi
.However, this error probability 
an be made redu
ed to 1=2k by repeating the proto
ol ktimes (sequentially or in parallel) and requiring that the prover su

eeds in all k repetitions.Se
ond, the proof system is very 
ommuni
ation eÆ
ient; only two messages are ex
hangedand the prover sends only one bit to the veri�er (more generally, k bits to a
hieve soundness1=2k). Finally, note that it is 
ru
ial for soundness that the veri�er's random 
oin 
ips arekept \private." If the bit b is made publi
 and revealed to the prover, soundness willno longer hold. Surprisingly, every private-
oin intera
tive proof (like the one above) 
anbe transformed into a publi
-
oin one; that is, one in whi
h the veri�er's 
oin 
ips are
ompletely visible to the prover [GS89℄. We will present an analogous transformation forstatisti
al zero-knowledge proofs in Chapter 5.We now informally argue that, when the graphs are nonisomorphi
, the veri�er learnsnothing else from the above proto
ol. The only message sent from the prover to the veri�eris the guess 
. We have already shown that, when the graphs are nonisomorphi
, the proverguesses 
orre
tly with probability 1. That means that, with probability 1, 
 is simply equalto b, whi
h is a value the veri�er already knows (sin
e it 
hooses b itself)! Note that thisintuition only refers to a veri�er that follows the spe
i�ed proto
ol. There is nothing tofor
e a 
heating veri�er to sele
t H by �rst pi
king one of the two input graphs and thenpermuting its verti
es. So we have no reason to believe that a 
heating veri�er \already



2.1. AN EXAMPLE 21knows" whether H is isomorphi
 to G0 or G1, and thus we will only prove that the proofsystem is honest-veri�er zero knowledge.To formalize this intuition, we must exhibit a simulator, as required by the de�nition ofzero knowledge. The simulator must be an eÆ
ient probabilisti
 algorithm whose output issimilar to the veri�er's view of the intera
tion, when given a pair of nonisomorphi
 graphsas input. The veri�er's view of the intera
tion in
ludes not just the messages ex
hangedbetween the veri�er and prover (H and 
), but also in
ludes the veri�er's random 
ointosses (the permutation � and the bit b). By 
onvention, the output of the simulator isof the form (m1;m2; : : : ;mk; r), where the mi's are the simulated messages, and r is thesimulation for the veri�er's random 
oins. In light of the above dis
ussion, the simulator,given in Algorithm 2.1.4, simply mimi
s the veri�er's proto
ol and assumes that the proverguesses 
orre
tly.Algorithm 2.1.4: Simulator for Graph Nonisomorphism Proof SystemInput: Graphs G0 = (V0; E0) and G1 = (V1; E1)1. Uniformly sele
t b 2 f0; 1g. Uniformly sele
t a permutation � on Vb. LetH = �(Gb).2. Let 
 = b.3. Output (H; 
; b; �)From the fa
t that the prover guesses 
orre
tly with probability 1 in the proto
ol, itfollows immediately that the output distribution of the simulator is identi
al to the veri�er'sview of the intera
tion (when the input graphs are nonisomorphi
 and the veri�er followsthe proto
ol). Thus, we have:Proposition 2.1.5 ([GMW91℄) Proto
ol 2.1.2 is an honest-veri�er perfe
t zero-knowledgeproof system for Graph Nonisomorphism.As mentioned before, the probability that the prover 
an 
onvin
e the veri�er to a

eptwhen the graphs are isomorphi
 
an be redu
ed by repeating the proof system many times.Lu
kily, both forms repetition (parallel and sequential) preserve honest-veri�er perfe
t zeroknowledge; a simulator for the repeated proof system 
an be obtained by running the originalsimulator many times. With 
heating veri�ers, however, things are more subtle. Sequentialrepetition preserves zero knowledge against 
heating veri�ers, but parallel repetition doesnot [GK96b℄.Although we have only exhibited an honest-veri�er zero-knowledge proof system forGraph Nonisomorphism, Goldrei
h, Mi
ali, and Wigderson [GMW91℄ show how to aug-ment this parti
ular proto
ol to make it perfe
t zero-knowledge even against 
heating veri-�ers. Later in this thesis, we will present general method for making zero-knowledge proofs
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heating veri�ers whi
h 
ould be used instead (though the result will bestatisti
al, rather than perfe
t, zero knowledge).Having seen just this one beautiful example of a zero-knowledge proof, one might wonderwhether the same ideas 
an be used to 
onstru
t zero-knowledge proofs for other problems.As mentioned earlier, the Graph Nonisomorphism proof system is based on ideas drawnfrom an earlier proof system for Quadrati
 Nonresiduosity [GMR89℄. Although bothof these proof systems seem to be exploiting algebrai
 properties of permutation groups orquadrati
 residues modulo a 
omposite, a
tually at the heart of 
orre
tness is simply the re-lationship between two probability distributions. In the 
ase of Graph Nonisomorphism,these distributions are those obtained by taking a random isomorphi
 
opy of G0 or G1,respe
tively. In Chapter 3, we use this observation to abstra
t and generalize Proto
ol 2.1.2.We then prove that the resulting proof system is \universal" for statisti
al zero knowledge,in the sense that every statisti
al zero-knowledge proof 
an be transformed into one \of thesame form".2.2 Notation and preliminariesStrings and promise problems. Throughout this thesis, all strings are over the binaryalphabet f0; 1g. Often we will dis
uss non-binary strings or tuples of strings, but it is easyto en
ode su
h obje
ts as binary strings, and we impli
itly assume that su
h an en
odinghas been �xed. A unary string of length k is denoted 1k.We will 
onsider a wider 
lass of de
ision problems than languages. Spe
i�
ally, wewill allow some inputs to be \ex
luded." This is formalized by the notion of a promiseproblem [ESY84℄. A promise problem � is a pair (�Y ;�N ) of disjoint sets of strings,
orresponding to yes instan
es and no instan
es, respe
tively. This naturally yields thefollowing 
omputational problem: Given a string x whi
h is \promised" to be in �Y [�N ,de
ide whether x 2 �Y or x 2 �N . Strings in �Y [�N are 
alled instan
es of �, and stringsnot in �Y [�N are said to violate the promise. The 
omplement of a promise problem � isthe promise problem �, where �Y = �N and �N = �Y . If C is a 
lass of promise problems,then 
o-C def= �� : � 2 C	.Algorithms. As we will only be doing 
omplexity analysis at a fairly 
oarse-grained level,the parti
ular model of 
omputation used is not 
ru
ial. Any standard model, su
h as themultitape Turing ma
hine, will do, and the reader is referred to any standard text on
omplexity theory (e.g., [Sip97, Pap94℄) for a more detailed dis
ussion. We will des
ribealgorithms at a high level, ignoring implementation details su
h as en
odings of inputs.We measure the running time of a deterministi
 algorithm as a fun
tion of input length;algorithm A runs in time t(�), if A takes at most time t(jxj) on every input x. The 
omplexity
lass P is the 
lass of promise problems solvable in polynomial time.Randomized algorithms are obtained by allowing our algorithms the ability to 
ip anunbiased \
oin" upon request. To avoid assuming an a priori bound on the number of 
oin
ips an algorithm will make, we model this by giving the algorithm a

ess to an in�nitestring r 2 f0; 1g� in whi
h every bit is sele
ted uniformly and independently. Sin
e thenumber of bits in this string that are a

essed is bounded by the algorithm's running time,
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ate r to be just a �nite string 
ontaining only the random bits that areused in a parti
ular exe
ution. If A is a randomized algorithm, we write A(x; r) for theoutput of A on input x, using random 
oins r. A is said to have (stri
t) running time t(�)if for every x and r, A takes time at most t(jxj). A is said to have expe
ted running timet(�) if for every x, the number of steps taken by A on input (x; r) has expe
tation at mostt(jxj), taken over the 
hoi
e of r. For a �xed input x, we write either A(x) or Ax for theprobability distribution indu
ed on the output A(x; r) obtained by 
hoosing r uniformly atrandom.We say that a randomized algorithm A solves a promise problem � with 2-sided errorif for every instan
e x of �, A 
orre
tly de
ides whether x is a yes or no instan
e withprobability at least 2=3 over the 
hoi
e of r. BPP is the 
lass of promise problems that
an be solved in (worst-
ase) polynomial time with 2-sided error.We will also 
onsider nonuniform polynomial-time algorithms, whi
h are polynomial-time algorithms that are given an extra \advi
e" string of length polynomial in its input.More formally, a nonuniform polynomial-time algorithm A is spe
i�ed by a polynomial-timealgorithm B together with strings f�ngn2N su
h that A(x) = B(x; �jxj) for all x and j�njis bounded by some polynomial in n. Nonuniform probabilisti
 polynomial-time algorithmsare de�ned analogously, by taking B to be probabilisti
 polynomial time. Nonuniformpolynomial-time algorithms are equivalent to polynomial-sized families of 
ir
uits.Redu
tions and 
ompleteness. Redu
tions are our means for 
omparing the 
omplex-ities of problems. A (Karp) redu
tion from a promise problem � to a promise problem � isa polynomial-time 
omputable fun
tion f su
h thatx 2 �Y ) f(x) 2 �Yx 2 �N ) f(x) 2 �N :If su
h a redu
tion exists, we say that � (Karp-)redu
es to � and write � �Karp � (or just� � �).A Cook redu
tion from � to � is a polynomial-time algorithm that solves � when givena

ess to an ora
le whi
h solves �. That is, on input x, the ora
le returns Y if x 2 �Y , Nif x 2 �N , and 
an respond either Y or N if x violates the promise. The redu
tion shouldwork regardless of how the ora
le responds on inputs that violate the promise. If su
h aredu
tion exists, we say that � Cook redu
es to � and write � �Cook �. Informally, theexisten
e of a (Karp or Cook) redu
tion from � to � means that � is 
omputationally noharder than �.Let C be a 
lass of promise problems. We say that C is 
losed under (Karp) redu
tions(resp., Cook redu
tions) if � � � (resp., � �Cook �) and � 2 C implies that � 2 C. Apromise problem � is C-hard (with respe
t to a given type of redu
tion) if every promiseproblem in C redu
es to � via that type of redu
tion. � is 
omplete for C (or C-
omplete)if (1) � 2 C, and (2) � is C-hard with respe
t to Karp redu
tions.Probability distributions. If X is a probability distribution (or random variable) on auniverse U , then the support of X is Supp(X) def= fx 2 U : Pr [X = x℄ > 0g. We writex  X to denote the pro
ess of randomly 
hoosing x a

ording to the distribution X. If



24 CHAPTER 2. DEFINITIONSS is a set, then the uniform distribution is also written S, so x  S denotes 
hoosing xuniformly in S.The de�nition of statisti
al zero knowledge makes use of a standard measure of similaritybetween probability distributions.De�nition 2.2.1 (statisti
al di�eren
e) If X and Y are probability distributions (orrandom variables) on a dis
rete universe U , then the statisti
al di�eren
e (or variationdistan
e) between X and Y is de�ned to beStatDi� (X;Y ) def= maxS�U jPr [X 2 S℄� Pr [Y 2 S℄j :Various properties of this distan
e measure will play a major role in our investigation,but, for now, we just list some basi
 fa
ts about StatDi� (�; �) that show that it 
onformsto an intuitive notion of the distan
e between probability distribution.Fa
t 2.2.2 Let X, Y , and Z be any three probability distributions (on a 
ommon universeU). Then1. StatDi� (X;Y ) � 0, with equality i� X and Y are identi
ally distributed.2. StatDi� (X;Y ) � 1, with equality i� X and Y have disjoint supports.3. StatDi� (X;Y ) = StatDi� (Y;X).4. StatDi� (X;Z) � StatDi� (X;Y ) + StatDi� (Y;Z).5. For any fun
tion f , StatDi� (f(X); f(Y )) � StatDi� (X;Y ).2.3 Zero-knowledge proofsIn this se
tion, we give formal de�nitions for the notions of 
lassi
al proofs (NP), intera
tiveproofs (IP), and honest-veri�er zero-knowledge proofs.De�nition 2.3.1 (
lassi
al proofs | NP) A 
lassi
al proof system for a promise prob-lem � is given by a veri�
ation algorithm V and a polynomial p(�) su
h that1. (EÆ
ien
y) V runs in (deterministi
) polynomial time.2. (Completeness) If x 2 �Y , then there exists a y of length at most p(jxj) su
h thatV (x; y) a

epts. y is 
alled a proof (or witness) for x.3. (Soundness) If x 2 �N , then for every y, V (x; y) reje
ts.NP is the 
lass of promise problems possessing 
lassi
al proofs.NP was originally de�ned in terms of nondeterministi
 Turing ma
hines, but it is wellknown that the above de�nition is equivalent. The purpose of the polynomial p(�) in theabove de�nition is to guarantee that the time for verifying a proof is polynomial in thelength of the assertion x.
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all that intera
tive proofs are obtained by repla
ing proofs with a \prover" that\intera
ts" with a probabilisti
 \veri�er". In order to make this pre
ise, we must �rstformalize the notion of an intera
tive proto
ol between two parties A and B. We do thisby viewing ea
h party as a fun
tion, taking the history of the proto
ol (all the messagespreviously ex
hanged) and the party's random 
oins, to the party's next message. Eitherparty 
an de
ide to halt the intera
tion (possibly a

epting or reje
ting at the same time),and the other party is given an opportunity to 
ompute one more message at that time.De�nition 2.3.2 (intera
tive proto
ols) An intera
tive proto
ol (A;B) is any pair offun
tions. The intera
tion between A and B on 
ommon input x is the following randompro
ess (denoted (A;B)(x)):1. Uniformly 
hoose random 
oins rA and rB (in�nite binary strings) for A and B,respe
tively.2. Repeat the following for i = 1; 2; : : ::(a) If i is odd, let mi = A(x;m1; : : : ;mi�1; rA).(b) If i is even, let mi = B(x;m1; : : : ;mi�1; rB).(
) If mi�1 2 fa

ept; reje
t; haltg, then exit loop.If the last message 
omputed by A is a

ept (resp., reje
t), we say that A a

epts(resp., reje
ts), and similarly for B. We 
all su
h a proto
ol polynomially bounded if thereis a polynomial p(�) su
h that, on 
ommon input x, at most p(jxj) messages are ex
hanged,and ea
h is of length at most p(jxj) (with probability 1 over the 
hoi
e of rA and rB).In [GMR89℄, intera
tive proto
ols were de�ned in terms \intera
tive Turing ma
hines,"but that approa
h is too tied to a parti
ular model of 
omputation for our tastes. Thisequivalent formulation in terms of fun
tions was noted by Goldwasser and Sipser [GS89℄.Now intera
tive proofs 
an be de�ned as a type of intera
tive proto
ol between a prover(with no 
omputational limitations) and a polynomial-time veri�er. The 
ompleteness andsoundness 
onditions of 
lassi
al proofs are repla
ed with probabilisti
 ones that guaran-tee that the veri�er gains statisti
al 
on�den
e that the assertion being proven is true.The amount of 
on�den
e gained by the veri�er is quanti�ed by two quantities, 
alled the
ompleteness and soundness errors, whi
h in turn are fun
tions of a se
urity parameter k.De�nition 2.3.3 (intera
tive proofs | IP) Let (P; V ) be an intera
tive proto
ol andlet � be a promise problem. (P; V ) is said to be an intera
tive proof system for � with 
om-pleteness error 
 : N ! [0; 1℄ and soundness error s : N ! [0; 1℄ if the following 
onditionshold:1. (EÆ
ien
y) (P; V ) is polynomially bounded and V is polynomial-time 
omputable.2. (Completeness) If x 2 �Y , then V a

epts with probability at least 1 � 
(k) in(P; V )(x; 1k).3. (Soundness) If x =2 �Y , then for any P �, V reje
ts with probability at least 1 � s(k)in (P �; V )(x; 1k).



26 CHAPTER 2. DEFINITIONSWe require that 
(k) and s(k) be 
omputable in time poly(k) and that 1 � 
(k) > s(k) +1=poly(k). If 
 � 0, then we say that the proof system has perfe
t 
ompleteness. IP is 
lassof promise problems possessing intera
tive proofs.Note that the 
ompleteness and soundness errors of an intera
tive proof system 
an bothbe redu
ed to 2�k by repeating the proof system poly(k) times (sequentially or in parallel)and having the new veri�er a

ept a

ording to majority/threshold rule.Re
all that the de�nition of zero knowledge is based on the notion of a simulator, whi
his an algorithm that simulates the veri�er's view of the intera
tion with the prover.De�nition 2.3.4 (view of an intera
tive proto
ol) Let (A;B) be an intera
tive proto-
ol. B's view of (A;B) on 
ommon input x is the random variable hA;Bi(x) = (m1; : : : ;mt; r)
onsisting of all the messages m1; : : : ;mt ex
hanged between A and B together with the sub-string r of rB 
ontaining all the random bits that B has read during the intera
tion.3Statisti
al zero knowledge requires that the statisti
al di�eren
e between the simulator'soutput distribution and the veri�er's view is so small that it does not be
ome noti
eableeven after polynomially many repetitions of the proto
ol. This is a
hieved by requiringthat the statisti
al di�eren
e is negligible. A fun
tion � : N ! [0; 1℄ is negligible if for everypolynomial p : N ! N, �(k) < 1=p(k) for suÆ
iently k.We will allow our simulators to o

asionally fail by outputting a string fail, and weonly measure the quality of the simulation 
onditioned on non-failure. Thus, we 
all aprobabilisti
 algorithm A useful if Pr [A(x) = fail℄ � 1=2 for all x and we de�ne eA(x) tobe the output distribution of A on input x, 
onditioned on A(x) 6= fail.De�nition 2.3.5 (honest-veri�er zero knowledge | HVSZK, HVPZK) An inter-a
tive proof system (P; V ) for a promise problem � is said to be honest-veri�er statisti
alzero knowledge if there is a useful probabilisti
 polynomial-time algorithm S and a negligiblefun
tion �(�) su
h that for all x 2 �Y and all k > 0,StatDi� �eS(x; 1k); hP; V i(x; 1k)� � �(k):The negligible fun
tion � is 
alled the simulator deviation. If � � 0, then (P; V ) is said tobe honest-veri�er perfe
t zero knowledge. HVSZK (resp., HVPZK) denotes the 
lass ofpromise problems possessing honest-veri�er statisti
al (resp., perfe
t) zero-knowledge proofs.Note that the simulation is only required to be a

urate on yes instan
es of the promiseproblem; that is, when the statement being proven is true. We wanted the de�nition to
apture the fa
t that the veri�er should learn nothing from the \proof" (whi
h is nowa
tually the strategy for P ). For no instan
es, there is no \
orre
t" proof (as guaranteedby soundness), so it would be somewhat strange to require that the veri�er learns nothingin this 
ase. From a 
ryptographi
 point of view, this assymetry 
orresponds to the idea3It may seem unnatural that our notation is assymetri
 in that it does not allow for indi
ating A's viewof the proto
ol. However, in this thesis, we will only be interested in B's view (as B 
orresponds to theveri�er in an intera
tive proof), and thus we have opted for a simpler notation at the expense of generality.



2.3. ZERO-KNOWLEDGE PROOFS 27that we only wish to prote
t parties that are behaving honestly; a prover that is trying toprove a false statement is 
ertainly not.Computational zero-knowledge proofs are de�ned by requiring that simulator's out-put and the veri�er's view are merely indistinguishable by any polynomial-time algorithm,rather than being statisti
ally 
lose. This is the natural 
omputationally bounded analogueof the de�nition of statisti
al di�eren
e.De�nition 2.3.6 (
omputational indistinguishability [GM84, Yao82℄)Let X = fXx;kgx2L;k2N and Y = fYx;kgx2L;k2N be ensembles of probability distributionsindexed by strings x in a set L and natural numbers k (the se
urity parameter). X andY are said to be 
omputationally indistinguishable if for every nonuniform probabilisti
polynomial-time algorithm (\distinguisher") D, there is a negligible fun
tion �(�) su
h that���Pr hD(x; 1k;Xx;k) = 1i� Pr hD(x; 1k; Yx;k) = 1i��� � �(k) 8x 2 L:De�nition 2.3.7 (honest-veri�er zero knowledge | HVCZK) An intera
tive proofsystem (P; V ) for a promise problem � is said to be honest-veri�er 
omputational zeroknowledge if there is a useful probabilisti
 polynomial-time algorithm S su
h thatneS(x; 1k)ox2�Y ;k2N and nhP; V i(x; 1k)ox2�Y ;k2Nare 
omputationally indistinguishable. HVCZK denotes the 
lass of promise problems pos-sessing honest-veri�er 
omputational zero-knowledge proofs.A remark on nonuniformity. Note that we have allowed the distinguisher to be nonuni-form in the de�nition of 
omputational indistinguishability. While the de�nitions 
an bemade in the uniform setting, the theory of 
omputational zero knowledge is \
leaner" witha nonuniform de�nition. Already, some sort of nonuniformity is impli
it in the notion ofzero knowledge, be
ause the veri�er and distinguisher are given the input x, whi
h 
an beregarded as nonuniform \advi
e". In addition, several resear
hers [FS89, GMR89, GO94,Ore87, TW87℄ have observed that that allowing some sort of nonuniformity (or \auxiliaryinput") is important in proving some some basi
 results about zero knowledge.For example, suppose we repeat an HVCZK proof several times, either sequentiallyor in parallel. Intuitively, sin
e one run of the simulator is 
omputationally indistinguish-able from one exe
ution of the proof system, t independent runs of the simulator shouldbe 
omputationally indistinguishable from t independent exe
utions of the proof system,and hen
e the repeated proof system should still be HVCZK. Unfortunately, this \fa
t"that 
omputational indistinguishability is preserved under taking many independent sam-ples only is guaranteed when either the distinguishers are permitted to be nonuniform orboth distributions are polynomial-time samplable (see, e.g., [GS98℄). Sin
e the exe
utionsof the proof system are not ne
essarily polynomial-time samplable, we must take nonuni-form distinguishers. Having adopted a nonuniform de�nition, it 
an be proven using thestandard \hybrid" argument of [GM84℄ that honest-veri�er 
omputational zero knowledgeis preserved under both sequential and parallel repetition.



28 CHAPTER 2. DEFINITIONSAs dis
ussed in Chapter 6, nonuniformity be
omes even more important when we dis
uss
heating veri�ers. It is possible to develop the theory of zero knowledge in the uniformsetting, as done by Goldrei
h [Gol93℄; there, the de�nitions are modi�ed to require thatit is infeasible to �nd yes instan
es x on whi
h the prover leaks knowledge (rather thanrequiring this for all yes instan
es x). Most of the results we prove about 
omputationalzero knowledge also hold in that setting, but for simpli
ity, we only dis
uss the nonuniformversions.2.4 Contrast with the GMR de�nitionThe de�nitions we have given above di�er from the original de�nitions given by Goldwasser,Mi
ali, and Ra
ko� [GMR89℄ (hen
eforth 
alled the GMR de�nitions) in several ways, whi
hwe outline below.Honest veri�ers. The most important di�eren
e is that we have only de�ned honest-veri�er zero knowledge, whi
h formalizes the requirement that the veri�er should learnnothing from the intera
tion if it follows the spe
i�ed proto
ol. The general de�nition of zeroknowledge, whi
h is important in 
ryptographi
 appli
ations, requires that even 
heatingveri�ers whi
h deviate from the proto
ol should learn nothing. Roughly speaking, thisis formalized by requiring that, for every (polynomial-time) veri�er strategy, there exists a
orresponding simulator. However, there are a number of subtle issues in the de�nition. Forthis reason, together with the fa
t that we will be fo
using on honest-veri�er zero knowledgefor the �rst few 
hapters of this thesis, we postpone the de�nitions of zero-knowledge proofsfor 
heating verifers to Chapter 6. However, in informal dis
ussions, we still will refer tothe 
lasses of problems possessing proof systems that are zero-knowledge against 
heatingveri�ers, whi
h we denote by SZK, PZK, and CZK. In that Chapter 6, we will showhow to transform any honest-veri�er statisti
al zero-knowledge proof (and any publi
-
oinhonest-veri�er 
omputational zero-knowledge proof) into one whi
h are zero knowledgeeven against 
heating veri�ers. That is, HVSZK = SZK. Fortnow [For89℄ was the �rst toformally de�ne and investigate honest-veri�er zero-knowledge proofs. (His terminology was\trusted veri�er").The se
urity parameter. Another di�eren
e between our de�nition and the GMRde�nition is our use of a se
urity parameter to 
ontrol the error parameters (
ompleteness,soundness, and simulator deviation). The original de�nition measures these as a fun
tionof the input length jxj, and in parti
ular only requires that the simulator deviation benegligible as a fun
tion of jxj. We feel that it is unnatural to tie the error parameters to theinput length in this manner, as one may wish to prove even short statements with very high\se
urity". The use of a separate se
urity parameter to 
ontrol the errors has appeared invarious pla
es in the literature su
h as [BP89, KMO89℄ and has be
ome standard in theliterature on \nonintera
tive" zero-knowledge proofs (e.g., [FLS99, Kil94, KP98℄).With 
ompleteness and soundness errors, this de�nitional 
hoi
e is mainly a philosophi-
al one, as it does not 
hange the 
lass of problems possessing intera
tive proofs (sin
e evena 
onstant error probability 
an be made exponentially small in k by repeating the proof



2.4. CONTRAST WITH THE GMR DEFINITION 29system O(k) times.) With the simulator deviation, it is not a priori 
lear that, given aproof system with simulator deviation that is a fun
tion of jxj, one 
an obtain one whosesimulator deviation is a fun
tion of a se
urity parameter k (though we will prove it later inthis thesis).One ni
e property of our se
urity-parameter based de�nition is that it allows one toprove that HVSZK is 
losed under redu
tions.Proposition 2.4.1 If � has an honest-veri�er statisti
al zero-knowledge proof with sim-ulator deviation �(�), and � (Karp-)redu
es to �, then � has an honest-veri�er statisti
alzero-knowledge proof with simulator deviation �(�). Thus, HVSZK andHVPZK are 
losedunder (Karp) redu
tions.Proof: Let (P; V ) be the statisti
al zero-knowledge proof for � and f be the redu
tionfrom � to �. A statisti
al zero-knowledge proof (P 0; V 0) for � 
an be obtained as follows: On
ommon input (x; 1k), P 0 and V 0 exe
ute the proto
ol (P; V ) on 
ommon input (f(x); 1k).A simulator for (P 0; V 0) with deviation �(�) 
an be obtained by running the simulator for(P; V ) on input (f(x); 1k).The reason su
h a proposition 
annot be proved so easily for the GMR de�nition is thatf(x) might be mu
h shorter than x, whi
h means �(jf(x)j), whi
h is the simulator deviationa
hieved by exe
uting (P; V ) and S on input f(x) (a

ording to the GMR de�nition), mightnot be negligible as a fun
tion of jxj. However, there are o

asions when the se
urityparameter is irrelevant (e.g., perfe
t zero-knowledge proofs with 
onstant 
ompleteness andsoundness errors), and, in those 
ases, we will often omit the se
urity parameter from thenotation for sake of 
larity.Expe
ted polynomial-time simulators. Two more di�eren
es between our de�nitionand GMR's is that they allow expe
ted polynomial-time simulators, but do not allow thesimulator to fail. Following Goldrei
h [Gol95℄, we require stri
t polynomial-time simulators,but do allow the simulator to fail. The reason for this modi�
ation is that stri
t polynomial-time is better behaved and less 
ontroversial as formalization of \eÆ
ient 
omputation" thanexpe
ted polynomial time. Our requirement is more stringent, be
ause a stri
t polynomial-time simulator whi
h may fail 
an be 
onverted into an expe
ted polynomial-time onewhi
h never fails (by running the simulator many times independently until it su

eeds). Infa
t, for statisti
al zero knowledge, one 
an remove the need for failure without passing toexpe
ted polynomial time: running the simulator polynomiallymany times makes the failureprobability exponentially small, and this 
an be absorbed into the simulator deviation. In
ontrast, it is not 
lear how to 
onvert an expe
ted polynomial-time simulator into a stri
tpolynomial-time simulator without in
urring a nonnegligible in
rease in simulator deviation.Weak statisti
al zero knowledge. A notion that 
aptures all the ways in whi
h theGMR de�nition is weaker than ours (and more) is that of weak-HVSZK (analogous toweak-SZK 
onsidered in [DOY97℄):De�nition 2.4.2 (weak statisti
al zero knowledge | weak-HVSZK)An intera
tive proof system (P; V ) for a promise problem � is weak honest-veri�er sta-tisti
al zero knowledge if for every 
 > 0, there is a useful probabilisti
 polynomial-time
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 su
h that, for all but �nitely many x 2 �Y ,StatDi� �S
(x); hP; V i(x; 1jxj)� � 1jxj
 :weak-HVSZK denotes the 
lass of promise problems possessing weak honest-veri�er sta-tisti
al zero-knowledge proofs.Thus, the simulator deviation 
an be made smaller than any inverse polynomial, butthe simulator itself (and, in parti
ular, its running time) 
an depend on the parti
ularpolynomial. Any intera
tive proof with an expe
ted polynomial-time simulator of negligiblesimulator deviation (i.e., meeting the GMR de�nition for honest veri�ers) also satis�es theabove de�nition: trun
ating simulator exe
utions after jxj
 times the expe
ted number ofsteps in
reases the simulator deviation by at most 1=jxj
. In Se
tion 4.3, we will show howto 
onvert weak honest-veri�er statisti
al zero-knowledge proofs into ones meeting the morestringent De�nition 2.3.5; that is, weak-HVSZK = HVSZK.2.5 Complexity aspe
ts of intera
tive proofsThere are a number of 
omplexity issues that arise with intera
tive proofs and statisti
alzero knowledge whi
h we will address in this thesis. One issue that arose in the intera
tiveproof for Graph Nonisomorphism presented in Se
tion 2.1 was that it was essential thatthe veri�er's random 
oins were kept hidden from the prover. Proof systems in whi
h therandom 
oins used by the veri�er at ea
h round are revealed to the prover at the sametime are 
alled publi
-
oin proof systems. Sin
e the veri�er's messages are a deterministi
fun
tion of the input x and the 
oin 
ips, the prover 
an be given just the 
oin 
ipsthemselves at ea
h round without loss of generality.De�nition 2.5.1 (publi
-
oin proto
ols [BM88℄) An intera
tive proto
ol (A;B) ispubli
 
oin for B if in every exe
ution of the proto
ol, the string of random 
oins a

essedby B 
an be written r1r2 � � � rt 2 f0; 1g�, so that B's i'th message m2i equals ri 2 f0; 1g`i ,`i is solely a fun
tion of (x;m1;m2; : : : ;m2i�1), and m2t+2 is the last message 
omputed byB. An intera
tive proof (P; V ) is publi
 
oin if, for every P �, (P �; V ) is publi
 
oin for V .Publi
-
oin proofs are also known as Arthur{Merlin games, so we often denote theprover in su
h proof systems by M (for \Merlin") and the veri�er by A (for \Arthur").Sometimes we will refer to general intera
tive proofs as private-
oin proofs to emphasizethe di�eren
e with publi
-
oin ones. Publi
-
oin proof systems are extremely 
omputationeÆ
ient for the veri�er, as the only 
omputation the veri�er needs to do is to 
ompute itslast message m2t+2 (a

ept or reje
t) and possibly the number of 
oins to send at ea
hround (whi
h is usually a simple fun
tion of jxj). Amazingly, every problem possessing anintera
tive proof also possesses a publi
-
oin intera
tive proof [GS89℄. In Chapter 5, we willprove an analogous theorem for statisti
al zero-knowledge proofs, a result �rst obtained byOkamoto [Oka96℄.



2.5. COMPLEXITY ASPECTS OF INTERACTIVE PROOFS 31Some other important 
omplexity measures for intera
tive proofs are the amount ofintera
tion, as measured by the number of messages ex
hanged,4 and the number of bits of
ommuni
ation.De�nition 2.5.2 (number of messages & 
ommuni
ation) We say that an intera
-tive proto
ol (A;B) ex
hanges m messages on input x, if for every 
hoi
e of the random
oins for A and B, the number of messages 
omputed before the �rst a

ept/reje
t/haltmessage is at most m (or m+1, if the �rst message m1 of A is always the empty string). The
lass of promise problems possessing intera
tive proofs whi
h ex
hange a 
onstant numberof messages is denoted AM.We say that an intera
tive proto
ol (A;B) has A-to-B (resp., B-to-A) 
ommuni
ation
 on input x, if for every 
hoi
e of the random 
oins for A and B, the sum of the lengthsof the messages 
omputed by A (resp., B) (ex
luding an a

ept/reje
t/halt message) isat most 
. (A;B) has total 
ommuni
ation 
 on input x, if the sum of the lengths of allmessages 
omputed (by both A and B) is at most 
 (again, ex
luding a

ept/reje
t/haltmessages).In Se
tion 4.1, we will show that every problem in HVSZK has an extremely eÆ
ienthonest-veri�er statisti
al zero-knowledge proof, namely, a 2-message proof system with 1bit of prover-to-veri�er 
ommuni
ation.

4In the literature, sometimes the term \rounds" is used to measure the amount of intera
tion. However,its usage is not 
onsistent | some authors 
ount ea
h message as one round, while others refer to a pair ofA/B messages as a round. To avoid ambiguity, we speak only of the number of messages ex
hanged.
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Chapter 3Complete ProblemsA revolution in theoreti
al 
omputer s
ien
e o

urred when it was dis
overed that NP has
omplete problems [Coo71, Lev73, Kar72℄. Most often, this theorem and other 
omplete-ness results are viewed as negative statements, as they provide eviden
e of a problem'sintra
tability. These same results, viewed as positive statements, enable one to study anentire 
lass of problems by fo
using on a single problem. For example, all languages inNP were shown to have 
omputational zero-knowledge proofs when su
h a proof was ex-hibited for Graph 3-
olorability [GMW91℄. Similarly, the result that IP = PSPACEwas shown by giving an intera
tive proof for Quantified Boolean Formula, whi
h is
omplete for PSPACE [LFKN92, Sha92℄. More re
ently, the 
elebrated PCP theorem
hara
terizing NP was proven by designing eÆ
ient probabilisti
ally 
he
kable proofs for aspe
i�
 NP-
omplete language [ALM+98, AS98℄.In this 
hapter, we present two 
omplete problems for HVSZK, the 
lass of problemspossessing statisti
al zero-knowledge proofs against an honest veri�er. For traditional 
om-plexity 
lasses, su
h as NP and PSPACE, the 
onstru
tion of natural 
omplete problemshas be
ome a routine task. However, it may 
ome as a surprise that HVSZK, whi
h isde�ned in terms of two intera
ting ma
hines and a simulator, has 
omplete problems whi
hmakes no referen
e to intera
tion or zero-knowledge. In subsequent 
hapters, we use these
omplete problems problems not as a negative tool, but as a positive tool to derive generalresults about the entire 
lass HVSZK.Organization. Re
all that proving that a problem � is 
omplete for HVSZK involvesboth proving that � 2 HVSZK and that every problem in HVSZK redu
es to �. Inthis 
hapter, we do this for two problems, 
alled Statisti
al Differen
e (SD) andEntropy Differen
e (ED). These two problems will be simultaneously proven 
ompletefor HVSZK via a \
ir
le of redu
tions" 
omposed of the following three results.1. SD 2 HVSZK (Se
tion 3.1).2. Every problem in HVSZK redu
es to ED (Se
tion 3.3).3. ED redu
es to SD (Se
tion 3.4). 33



34 CHAPTER 3. COMPLETE PROBLEMSThe 
ombination of Steps 2 and 3 imply that every problem in HVSZK redu
es to SD,and the 
ombination of Steps 1 and 3 imply that ED 2 HVSZK, so it follows that bothSD and ED are 
omplete for HVSZK.Se
tion 3.2 
ontains a motivating warm-up to Step 2. Namely, we show that everyproblem possessing a publi
-
oin honest-veri�er statististi
al zero-knowledge proof redu
esto SD.3.1 Statisti
al Differen
eThe �rst problem we show to be 
omplete forHVSZK is 
alled Statisti
al Differen
e.Roughly speaking, it is the problem of de
iding whether a pair of \eÆ
iently samplable"distributions are statisti
ally 
lose or statisti
ally far apart, as measured by the statisti
aldi�eren
e metri
. In order to de�ne the problem formally, we must make pre
ise the notionof an eÆ
iently samplable distribution. To do this, we view Boolean 
ir
uits as samplingalgorithms, whose inputs are random bits.De�nition 3.1.1 (distributions en
oded by 
ir
uits) Let X be a Boolean 
ir
uit (withAND, OR, and NOT gates, unbounded fan-in and fan-out) with m input gates and n outputgates. The distribution en
oded by X is the distribution indu
ed on f0; 1gn by evaluatingX on a uniformly sele
ted string from f0; 1gm. By abuse of notation, we also write X forthe distribution de�ned by X.Sin
e 
ir
uits 
an be evaluated in time polynomial in their size, yet are ri
h enough to en-
ode general (e.g., Turing ma
hine) 
omputations, they e�e
tively 
apture the notion of an\eÆ
iently samplable distribution." Now we 
an de�ne the promise problem Statisti
alDifferen
e.De�nition 3.1.2 Statisti
al Differen
e is the promise problem SD = (SDY ;SDN ),where SDY = f(X;Y ) : StatDi� (X;Y ) � 2=3gSDN = f(X;Y ) : StatDi� (X;Y ) � 1=3g :Above, X and Y are 
ir
uits en
oding probability distributions, as in De�nition 3.1.1.In order to show that SD is 
omplete for HVSZK, we need to prove two things: thatSD 2 HVSZK, and that every problem in in HVSZK redu
es to SD. This se
tion isdevoted to the former task. To do this, we generalize the Graph Nonisomorphism proofsystem given in Se
tion 2.1. Re
all that the analysis of that proof system is based on theobservation that two probability distributions (obtained by taking a random isomorphi

opy of one graph or the other) either have disjoint supports or are identi
al, dependingon whether the input is a yes or no instan
es, respe
tively. This motivates 
onsidering arestri
tion of SD in whi
h the distributions are either disjoint or identi
al (as distributions,not as 
ir
uits). We 
all this problem SD1;0 be
ause it 
an obtained by repla
ing thethresholds of 2=3 and 1=3 in the de�nition of SD with 1 and 0, respe
tively. A
tually, we
onsider a number of variants of SD, parametrized by the thresholds.



3.1. STATISTICAL DIFFERENCE 35De�nition 3.1.3 (variants of SD) For any 
onstants 0 � � < � � 1, the promise prob-lem SD�;� = (SD�;�Y ;SD�;�N ) is given bySD�;�Y = f(X;Y ) : StatDi� (X;Y ) � �gSD�;�N = f(X;Y ) : StatDi� (X;Y ) � �g :Above, X and Y are 
ir
uits en
oding probability distributions, as in De�nition 3.1.1.3.1.1 A basi
 proof systemFollowing the intuition from the Graph Nonisomorphism proof system, a natural wayto 
onstru
t a proof system for any of these variants of SD is to test whether the prover
an distinguish random sample from the �rst distribution from a random sample from these
ond distribution. The prover's best strategy is to simply guess that the sample 
amefrom the distribution whi
h assigns it more probability mass. This intuition motivates thebasi
 proof system given in Proto
ol 3.1.4.Proto
ol 3.1.4: Basi
 proof system (P; V ) for variants of SDInput: Cir
uits X0 and X1 (ea
h with m input gates and n output gates)1. V : Sele
t b f0; 1g. Obtain a sample x Xb (by 
hoosing r  f0; 1gmand letting x = Xb(r)). Send x to P .2. P : If Pr [X0 = x℄ > Pr [X1 = x℄, let 
 = 0. Else let 
 = 1. Send 
 to V .3. V : If 
 = b, a

ept. Otherwise, reje
t.We �rst analyze this proto
ol for SD1;0. It is 
lear that if X0 and X1 have disjointsupports, then the prover strategy given in Proto
ol 3.1.4 will su

eed with probability 1.On the other hand, if X0 and X1 are identi
al as distributions, then b is independent of x,so the prover 
an guess b from x with probability at most 1=2, no matter what strategy itfollows. Thus, we haveClaim 3.1.5 Proto
ol 3.1.4 is an intera
tive proof system for SD1;0 with perfe
t 
omplete-ness and soundness error 1=2.When the distributions are disjoint, all the veri�er sees is the prover's (
orre
t) guess 
for b, whi
h is a value the veri�er already \knows." This suggests that the proof system iszero knowledge, and thus we 
onsider a simulator (given in Algorithm 3.1.6), analogous toAlgorithm 2.1.4.It follows readily from the fa
t that the prover guesses 
orre
tly with probability 1that the output distribution of Algorithm 3.1.6 and the veri�er's view of Proto
ol 3.1.4 areidenti
al when X0 and X1 have disjoint supports. Thus, we have:



36 CHAPTER 3. COMPLETE PROBLEMSAlgorithm 3.1.6: Simulator for basi
 SD proof systemInput: Cir
uits X0 and X1 (ea
h with m input gates and n output gates)1. Sele
t b f0; 1g. Choose r f0; 1gm and let x = Xb(r).2. Let 
 = b.3. Output (x; 
; b; r)Proposition 3.1.7 Proto
ol 3.1.4 is an (honest-veri�er) perfe
t zero-knowledge proof sys-tem for SD1;0.Intuitively, it seems that our analysis of this proof system should hold \approximately"when the distributions are either statisti
ally very far apart or statisti
ally very 
lose insteadof being disjoint or identi
al, respe
tively. This is indeed the 
ase, and using statisti
aldi�eren
e as a measure of 
loseness, we get exa
t expressions for the error parameters.Lemma 3.1.8 When X0 and X1 have statisti
al di�eren
e Æ, the prover strategy given inProto
ol 3.1.4 makes the veri�er a

ept with probability exa
tly (1 + Æ)=2, and no proverstrategy su

eeds with greater probability. Moreover, the output of Algorithm 3.1.6 has sta-tisti
al di�eren
e exa
tly (1� Æ)=2 from the veri�er's view of (P; V )(X0;X1).In order to prove Lemma 3.1.8, we �rst need to get a slightly better understanding ofthe statisti
al di�eren
e metri
.Fa
t 3.1.9 Let X and Y be probability distributions (or random variables) on a dis
reteuniverse U , let SX = fx 2 U : Pr [X = x℄ > Pr [Y = y℄g, and de�ne SY analogously. ThenStatDi� (X;Y ) = Pr [X 2 SX ℄� Pr [Y 2 SX ℄ = Pr [Y 2 SY ℄� Pr [X 2 SY ℄ :Proof: For any set S, Pr [X 2 S℄ = Px2S Pr [X = x℄ and similarly for Y . So Æ(S) def=Pr [X 2 S℄ � Pr [Y 2 S℄ is in
reased by adding elements of SX to S, de
reased by addingelements of SY to S, and is un
hanged by adding points on whi
h X and Y have the samemass. Thus, the maximum (positive) value Æ(S) 
an take on is a
hieved by S = SX andthe minimum (negative) value is a
hieved by S = SY . The maximum positive value andthe minimum negative value of Æ(S) must have the same magnitude, sin
e Æ �S� = �Æ(S).Hen
e, StatDi� (X;Y ) = maxS jÆ(S)j= Pr [X 2 SX ℄� Pr [Y 2 SX ℄= Pr [Y 2 SY ℄� Pr [X 2 SY ℄ :
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Figure 3-1: Statisti
al di�eren
e as areaFa
t 3.1.9 gives us another way of viewing statisti
al di�eren
e | as area between
urves. Suppose we graph the mass fun
tions of two distributions X and Y (so the areaunder ea
h of these 
urves is 1). Then, Fa
t 3.1.9 says that the region that is above Y andbelow X has area Æ, the region that is above X and below Y has area Æ, and the regionthat is below both has area 1 � Æ. We 
all these regions the X-above region, the Y -aboveregion and the 
ommon region, respe
tively. See Figure 3-1.Proof of Lemma 3.1.8: From the des
ription of statisti
al di�eren
e as area, we 
an givean alternative pro
ess that indu
es the same distribution on (b; x) as the veri�er's strategyin Proto
ol 3.1.4:1. Flip a biased 
oin d that is 0 with probability 1� Æ and 1 with probability Æ.2. If d = 0:(a) Uniformly sele
t a point in the 
ommon region, and let x be 
orresponding ele-ment of f0; 1gn(b) Uniformly sele
t b 2 f0; 1g.3. If d = 1:(a) Uniformly sele
t b 2 f0; 1g.(b) If b = 0, uniformly sele
t a point from the X0-above region, and let x be the
orresponding element of f0; 1gn.(
) If b = 1, uniformly sele
t a point from the X1-above region, and let x be the
orresponding element of f0; 1gn.



38 CHAPTER 3. COMPLETE PROBLEMS4. Output (b; x).From this des
ription, it is 
lear that, when d = 0, b is independent of x and theprover's su

ess probability is exa
tly 1=2 no matter what strategy is used. In addition,the prover strategy spe
i�ed in Proto
ol 3.1.4 perfe
tly distinguishes the X0-above and X1-above regions and therefore su

eeds with probability 1 when d = 1. Hen
e, the spe
i�edprover strategy is optimal, and its su

ess probability is exa
tly12 � Pr [d = 0℄ + 1 � Pr [d = 1℄ = 12 � (1� Æ) + 1 � Æ = 1 + Æ2 :To analyze the simulator deviation, noti
e that the only trans
ripts that o

ur withgreater probability in the veri�er's view than in the simulator's output are those in whi
hveri�er reje
ts. Sin
e these o

ur with probability zero in the simulator, the statisti
aldi�eren
e is exa
tly the prover's failure probability, whi
h is 1� (1 + Æ)=2 = (1� Æ)=2.From Lemma 3.1.8, we immediately obtain:Proposition 3.1.10 For any 
onstants 0 � � < � � 1, Proto
ol 3.1.4 is an intera
tiveproof for SD�;� with 
ompleteness error (1� �)=2 and soundness error (1 + �)=2.Proposition 3.1.11 For every 
onstant 0 � � < 1, Proto
ol 3.1.4 is an honest-veri�erperfe
t zero-knowledge proof for SD1;� with perfe
t 
ompleteness and soundness error (1 +�)=2.However, Lemma 3.1.8 does not yet give a zero-knowledge proof for SD = SD2=3;1=3 asdesired, be
ause the simulator deviation would be a 
onstant (1=6), rather than a negligiblefun
tion. One way to obtain a negligible simulator deviation would be to give a transfor-mation whi
h maps a pair of 
ir
uits with statisti
al di�eren
e at least 2=3 to a pair withstatisti
al di�eren
e extremely 
lose to 1 (while keeping an initial statisti
al di�eren
e of atmost 1=3 bounded away from 1). In the next se
tion, we show how to a
hieve this.3.1.2 A polarization lemmaLemma 3.1.12 (Polarization Lemma)1 Let �; � 2 [0; 1℄ be any two 
onstants su
h that�2 > � (e.g., � = 2=3, � = 1=3). There is a polynomial-time 
omputable fun
tionPolarize�;� that takes a triple (X0;X1; 1k), where X0 and X1 are distributions en
odedby 
ir
uits, and outputs a pair of 
ir
uits (Y0; Y1) su
h thatStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � 1� 2�kStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � 2�kThe usefulness of the Polarization Lemma 
omes from the fa
t that the two distributionsit produ
es 
an be treated almost as if they were disjoint or identi
ally distributed, respe
-tively (i.e., statisti
al di�eren
e 0 and 1, respe
tively). Indeed, in the next se
tion, we show1The Polarization Lemma stated here is 
alled the Ampli�
ation Lemma in [SV97℄. The name was
hanged in [SV99℄ to stress that the Polarization Lemma does not merely in
rease statisti
al di�eren
e.
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an be used to augment Proto
ol 3.1.4 and obtain a statisti-
al zero-knowledge proof for SD. This se
tion is devoted to the proof of the PolarizationLemma. The 
hallenge in proving the lemma is that we need to in
rease statisti
al di�er-en
e in some 
ases and de
rease statisti
al di�eren
e in other 
ases. We will obtain su
ha transformation by 
ombining two 
omplementary transformations | one whi
h in
reasesstatisti
al di�eren
e and one whi
h de
reases statisti
al di�eren
e. The analysis of both ofthese transformations will make use of yet another formulation of statisti
al di�eren
e, thistime in terms of probability mass ve
tors.If X is a probability distribution on a dis
rete universe U , then we 
an view its massfun
tion as a ve
tor in RU , whi
h we denote by ~X . Fa
t 3.1.9 says that the area betweenthe graphs of the mass fun
tions of distributions X and Y is exa
tly twi
e their statisti
aldi�eren
e (see Figure 3-1). The area between the graphs is exa
tly the `1-distan
e betweenthe ve
tors ~X and ~Y , where the `1-norm of a ve
tor ~v 2 RS is j~vj1 def= Pi2S jvij. Thus, wehave:Fa
t 3.1.13 StatDi� (X;Y ) = 12 ��� ~X � ~Y ���1.We now fo
us on in
reasing statisti
al di�eren
e. Intuitively, taking many independent
opies of two distributions should in
rease their distinguishability and drive the statisti
aldi�eren
e to 1. Thus, we now analyze the behavior of statisti
al di�eren
e with respe
tto independen
e. In order to do so, we express independen
e in terms of probability massve
tors.Re
all that the tensor produ
t of ve
tors ~v 2 RS and ~w 2 RT is the ve
tor ~v 
 ~w 2RS�T with (~v 
 ~w)i;j = vi � wj. Note that, any ve
tors ~v and ~w, j~v 
 ~wj1 = j~vj1 � j~wj1.Now, observe that a pair of jointly distributed random variables (X;Y ) are independent i�����!(X;Y ) = ~X 
 ~Y . For this reason, for any two distributions X and Y , we write X 
 Y forthe distribution obtained by taking a sample of X followed by an independent sample of Y ,and 
kX for the distribution 
onsisting of k independent samples of X.The above observations enable us to bound the e�e
t of independen
e on statisti
aldi�eren
e.Fa
t 3.1.14 Let X = (X0;X1) be a distribution in whi
h X0 and X1 are independent andY = (Y0; Y1) be one in whi
h Y0 and Y1 are independent. ThenStatDi� (X;Y ) � StatDi� (X0;X1) + StatDi� (Y0; Y1) :Proof: StatDi� (X;Y ) = 12 ��� ~X0 
 ~X1 � ~Y0 
 ~Y1���1� 12 ��� ~X0 
 ~X1 � ~Y0 
 ~X1���1 + 12 ��� ~Y0 
 ~X1 � ~Y0 
 ~Y1���1= 12 ���( ~X0 � ~Y0)
 ~X1���1 + 12 ��� ~Y0 
 ( ~X1 � ~Y1)���1= 12 ��� ~X0 � ~Y0���1 � ��� ~X1���1 + 12 ��� ~Y0���1 � ��� ~X1 � ~Y1���1= StatDi� (X0; Y0) + StatDi� (X1; Y1) :



40 CHAPTER 3. COMPLETE PROBLEMSOf 
ourse, Fa
t 3.1.14 does not a

omplish our goal; it only gives an upper bound onthe e�e
t of independent 
opies on statisti
al di�eren
e, whereas want a lower bound. Thefollowing Dire
t Produ
t Lemma shows that statisti
al di�eren
e goes to 1 exponentiallyfast when we take independent 
opies. The lemma is reminis
ent of a Cherno� bound, andindeed, that is how the proof will pro
eed.Lemma 3.1.15 (Dire
t Produ
t Lemma) Let X and Y be distributions su
h thatStatDi� (X;Y ) = Æ. Then for all k 2 N,1� 2e�kÆ2=2 � StatDi� �
kX;
kY � � kÆProof: The upper bound of kÆ follows immediately from Fa
t 3.1.14, so we pro
eed tothe proof of the lower bound. Re
all, from the de�nition of statisti
al di�eren
e, that thereexists a set S su
h that Pr [X 2 S℄� Pr [Y 2 S℄ = Æ:Let p = Pr [Y 2 S℄. Then, Pr [X 2 S℄ = p+ Æ. Hen
e, in k independent samples of X, theexpe
ted number of samples that lie in S is (p+ Æ)k, whereas in k independent samples ofY , the expe
ted number of samples that lie in S is pk.The Cherno� Bound (Theorem A.1) tells us that the probability that at least (p+ Æ2)k
omponents of 
kY lie in S is at most exp(�kÆ2=2), whereas the probability that at most(p + Æ2)k 
omponents of 
kX lie in S is at most exp(�kÆ2=2). Let S0 be the set of allk-tuples that 
ontain more than (p+ Æ2)k 
omponents that lie in S. Then we have,StatDi� �
kX;
kY � � Pr h
kX 2 S0i� Pr h
kY 2 S0i � 1� 2e�kÆ2=2:Given the Dire
t Produ
t Lemma, a �rst attempt at making Proto
ol 3.1.4 statisti
alzero knowledge for SD would be to repla
e ea
h distribution with many independent 
opiesof itself. If the original pair of distributions was yes instan
e (i.e., with statisti
al di�eren
eat least 2=3), their statisti
al di�eren
e will now be exponentially 
lose to 1, and hen
e thesimulation will be statisti
ally 
lose by Lemma 3.1.8. Unfortunately, this will also drive thestatisti
al di�eren
e of some no instan
es (like those with statisti
al di�eren
e 1=3) towards1 and this will destroy the soundness of the proof system.However, the Dire
t Produ
t Lemma does drive larger values of statisti
al di�eren
e to1 more qui
kly than it drives smaller values to 1 (as illustrated by the upper bound of kÆ),so it is a step in the right dire
tion. Thus, we will seek a 
omplementary te
hnique whi
hde
reases the statisti
al di�eren
e to 0, with small values going to 0 faster than large values.By alternating the two pro
edures, we will manage to in
rease the statisti
al di�eren
e foryes instan
es and de
rease it for no instan
es.To �gure out how one might de
rease the statisti
al di�eren
e between two distributionsin a 
ontrolled manner, we 
onsider how one might de
rease the prover's su

ess probabilityin Proto
ol 3.1.4. One natural idea would be to repeat the proto
ol many times indepen-dently and see if the prover guesses the 
orre
tly in all exe
utions. That is, the veri�erwould 
hoose b1; : : : ; bk 2 f0; 1g uniformly and independently at random, obtain samplesz1; : : : ; zk independently from Xb1 ; : : : ;Xbk , respe
tively, send these samples to the prover,and see if the prover 
an guess all the bi's. Alternatively, one might instead ask the prover
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lusive-OR of all the bi's. Looking at the proof of Lemma 3.1.8, one seesthat the prover will have no information about bi if the \
ommon region" is hit in thei'th exe
ution. If the prover has no information about even just one bi, then it also hasno information about the ex
lusive-OR, and hen
e the su

ess probability will be exa
tly1/2. The probability that the 
ommon region is hit in the i'th exe
ution is 1 � Æ, whereÆ = StatDi� (X0;X1), so the probability that it is hit in at least one exe
ution is 1 � Æk.Thus, the prover's su

ess probability goes to 1/2 exponentially fast with k. This suggeststhat the two distributions on k-tuples obtained by 
onditioning on the ex
lusive-OR be-ing 0 and 1, respe
tively, in this repeated proto
ol have statisti
al di�eren
e Æk. This isformalized by the following XOR Lemma.Lemma 3.1.16 (XOR Lemma) There is a polynomial-time 
omputable fun
tion that mapsa triple (X0;X1; 1k), where X0 and X1 are 
ir
uits, to a pair of 
ir
uits (Y0; Y1) su
h thatStatDi� (Y0; Y1) = StatDi� (X0;X1)k. Spe
i�
ally, Y0 and Y1 are de�ned as follows:Y0: Uniformly sele
t (b1; : : : ; bk) 2 f0; 1gk su
h that b1 � � � � � bk = 0, and output a sampleof Xb1 
 � � � 
Xbk .Y1: Uniformly sele
t (b1; : : : ; bk) 2 f0; 1gk su
h that b1 � � � � � bk = 1, and output a sampleof Xb1 
 � � � 
Xbk .The motivation given above a
tually is suÆ
ient to prove the lemma, but instead, wewill do a 
al
ulation using the `1 des
ription of statisti
al di�eren
e to see what happenswhen we 
ombine just two pairs of distributions in this fashion. This 
onstru
tion is ageneralization of the te
hnique used by De Santis et. al. [DDPY94℄ to represent the logi
alAND of statements about Graph Nonisomorphism.Proposition 3.1.17 Let X0;X1; Y0; Y1 be any random variables, and de�ne the followingpair of random variables:Z0: Choose a; b f0; 1g su
h that a� b = 0. Output a sample of Xa 
 Yb.Z1: Choose a; b f0; 1g su
h that a� b = 1. Output a sample of Xa 
 Yb.Then StatDi� (Z0; Z1) = StatDi� (X0;X1) � StatDi� (Y0; Y1).Proof:StatDi� (Z0; Z1) = 12 ��� ~Z0 � ~Z1���1= 12 �����12 ~X0 
 ~Y0 + 12 ~X1 
 ~Y1���12 ~X1 
 ~Y0 + 12 ~X0 
 ~Y1�����1= 14 ���� ~X0 � ~X1�
 � ~Y0 � ~Y1����1= �12 ��� ~X0 � ~X1���1� ��12 ��� ~Y0 � ~Y1���1�= StatDi� (X0;X1) � StatDi� (Y0; Y1) :



42 CHAPTER 3. COMPLETE PROBLEMSProposition 3.1.17 and an indu
tion argument establish Lemma 3.1.16. Yao's XORLemma [Yao82℄ (see also [GNW95℄) 
an be seen as an analogue of Lemma 3.1.16 in the
omputational setting, where the analysis is mu
h more diÆ
ult.The Dire
t Produ
t 
onstru
tion gives a way to in
rease statisti
al di�eren
e with largevalues going to 1 faster than small values. Similarly, the XOR Lemma shows how to de
reasestatisti
al di�eren
e with small values going to 0 faster than large values. Alternating thesepro
edures should \polarize" large and small values of statisti
al di�eren
e, pushing them
loser to 1 and 0, respe
tively, and yield Lemma 3.1.12. This following proof 
on�rms thisintuition.Proof of Lemma 3.1.12: Let � = minf�2=�; 2g > 1, and let ` = dlog� 4ke = O(log k).Apply the XOR Lemma (Lemma 3.1.16) to the triple (X0;X1; 1`) to produ
e (X 00;X 01) su
hthat StatDi� (X0;X1) � � ) StatDi� �X 00;X 01� � �`StatDi� (X0;X1) � � ) StatDi� �X 00;X 01� � �`Let m = �`=(2�2`) � 1=(2�`). Noti
e that m � poly(k), sin
e ` = O(log k), � � 2, and� is a 
onstant. Now apply the Dire
t Produ
t 
onstru
tion, de�ning X 000 = 
mX 00 andX 001 = 
mX 01. Then, by Lemma 3.1.15,StatDi� (X0;X1) � � ) StatDi� �X 000 ;X 001 � � 1� 2 exp�� �`2�2`� � (�`)22 � � 1� 2e�kStatDi� (X0;X1) � � ) StatDi� �X 000 ;X 001 � � (1=2�`) � �` = 1=2Finally, apply the XOR Lemma (Lemma 3.1.16) one more time to (X 000 ;X 001 ; 1k) to pro-du
e (Y0; Y1) su
h thatStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � (1� 2e�k)k � 1� 2ke�k > 1� 2�kStatDi� (X0;X1) � � ) StatDi� (Y0; Y1) � 1=2k(as long as k is suÆ
iently large, whi
h we may assume by arti�
ially in
reasing it at thestart).A similar alternation between pro
edures with 
omplementary e�e
ts was used by Ajtaiand Ben-Or [AB84℄ to amplify the su

ess probability of randomized 
onstant-depth 
ir
uits.Interestingly, we do not know how to remove the 
ondition that �2 > � in Lemma 3.1.12.Perhaps this 
onstraint is inherent for any transformation like ours, in whi
h the newdistributions are obtained by 
on
atenating random samples taken obliviously from theoriginal distributions.Open Problem 3.1.18 Is there a Polarization Lemma for arbitrary 
onstant thresholds0 � � < � � 1? Or even for any spe
i�
 thresholds su
h that �2 � � (e.g., � = 5=9,� = 4=9)? Is the 
onstraint �2 > � inherent for a wide 
lass of transformations?



3.2. ANALYZING PUBLIC-COIN HVSZK PROOFS 433.1.3 Statisti
al Differen
e is in HVSZKWith the Polarization Lemma, it is easy to give a statisti
al zero-knowledge proof for SD.The proof system is given in Proto
ol 3.1.19 and the simulator in Algorithm 3.1.20.Proto
ol 3.1.19: Statisti
al zero-knowledge proof (P; V ) for SDInput: Cir
uits X0 and X1, and se
urity parameter 1k1. P; V : Both parties 
ompute (Y0; Y1) = Polarize2=3;1=3(X0;X1; 1k�1).2. P; V : Both parties exe
ute Proto
ol 3.1.4 on 
ommon input (Y0; Y1). Va

epts or reje
ts as in that proto
ol.
Algorithm 3.1.20: Simulator for SD proof systemInput: Cir
uits X0 and X1 (ea
h with m input gates and n output gates), andse
urity parameter 1k1. Compute (Y0; Y1) = Polarize2=3;1=3(X0;X1; 1k�1).2. Run Algorithm 3.1.6 on input (Y0; Y1) and output whatever it outputs.It follows immediately from Lemma 3.1.8 that the above proto
ol and simulator yield astatisti
al zero-knowledge proof for SD.Theorem 3.1.21 Proto
ol 3.1.19 is an honest-veri�er statisti
al zero-knowledge proof forSD with 
ompleteness error 2�k, soundness error 1=2 + 2�k, and simulator deviation 2�k.In parti
ular, SD 2HVSZK.From Lemma 3.1.12, we see this proto
ol and theorem 
an be generalized to pla
e SD�;�in HVSZK as long as �2 > �.3.2 Analyzing publi
-
oin HVSZK proofsTo 
omplete the proof that Statisti
al Differen
e is 
omplete for HVSZK, it remainsto show that every problem possessing an honest-veri�er statisti
al zero-knowledge proofredu
es to SD. As is typi
al with 
ompleteness theorems, this is the more 
hallengingpart of the proof. In this se
tion, we fo
us on the easier task of showing that every problemwith a publi
-
oin statisti
al zero-knowledge proof redu
es to SD (a
tually its 
omplement).



44 CHAPTER 3. COMPLETE PROBLEMSAlthough this result will be subsumed by the general redu
tion for all of HVSZK givenin subsequent se
tions, it will provide a good motivating warm-up. Both redu
tions arere�nements of the general approa
h to analyzing statisti
al zero-knowledge proofs pioneeredby Fortnow [For89℄.3.2.1 The Fortnow methodologyIn both 
lassi
al and intera
tive proofs, the veri�er is what distinguishes between yes andno instan
es; on yes instan
es, there is a proof (or prover strategy) that makes the veri�era

ept, whereas on no instan
es there is not. The 
ru
ial observation of Fortnow [For89℄ wasthat in zero-knowledge proofs, the simulator also provides information that 
an distinguishbetween yes and no instan
es. Spe
i�
ally, he showed that, for statisti
al zero-knowledgeproofs, yes and no instan
es 
an be (almost) 
ompletely distinguished based on statisti
alproperties of the simulator's output distribution. By then showing that these statisti
alproperties 
an be de
ided in low 
omplexity, he was able to give a strong upper boundon the 
omplexity of statisti
al zero knowledge, namely HVSZK � 
o-AM.2 Aiello andH�astad [AH91℄ subsequently used the same general approa
h to show that HVSZK �AM. These are fairly strong upper bounds on the 
omplexity of HVSZK, as they implythat HVSZK 
annot 
ontain NP-hard problems unless the Polynomial Time Hierar
hy3
ollapses [BHZ87℄. However, in this thesis, we will not be satis�ed with upper boundson the 
omplexity of statisti
al zero knowledge. Rather, we seek a tight 
hara
terizationof statisti
al zero knowledge, in the form of 
omplete problems. In order to obtain su
h
hara
terizations, we will re�ne Fortnow's methodology, and thus we begin by des
ribinghis approa
h at an intuitive level.Re
all that Fortnow's aim was to �nd properties of the simulator's output distributionthat distinguish between yes and no instan
es of the promise problem whose statisti
alzero-knowledge proof we are 
onsidering. Using terminology taken from [AH91℄, we thinkof the simulator as des
ribing an \intera
tion" between a virtual prover and a virtual veri�er.For yes instan
es, the de�nition of statisti
al zero knowledge gives very strong guaranteeson the output distribution of the simulator. Namely, the simulator's output must be very
lose to the intera
tion between the real prover and veri�er. In parti
ular, the followingtwo 
onditions must hold.Conditions for yes instan
es. Both of the following must hold:1. The simulator outputs a

epting 
onversations (i.e., ones in whi
h the virtual veri�era

epts) with high probability.2. The virtual veri�er \behaves like" the real veri�er.2A
tually, there was an error in Fortnow's proof, pointed out in [GOP98℄, but his general approa
h wassound and in
uen
ed many later works. Aiello and H�astad [AH91℄ gave a 
orre
t proof of the result (andwe will see another one in this thesis).3See any standard textbook on 
omplexity theory (e.g., [Sip97, Pap94℄) for a de�nition of the PolynomialTime Hierar
hy, whi
h is widely 
onje
tured to be in�nite.
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es, however, the de�nition of zero knowledge does not expli
itly give anyguarantees on the simulator's behavior. Despite this, one 
an prove something about thesimulator's behavior in this 
ase. Spe
i�
ally, the above two 
onditions 
annot simulta-neously hold for no instan
es. Suppose both 
onditions did hold for a no instan
e. The�rst 
ondition says the virtual prover is 
onvin
ing the virtual veri�er to a

ept with highprobability. The se
ond 
ondition then implies that if we allow the virtual prover to intera
twith the real veri�er instead of the virtual veri�er, it should not 
hange things signi�
antly.Therefore, the virtual prover will 
onvin
e the real veri�er to a

ept with high probability.But this 
annot happen for a no instan
e, by the soundness of the proof system. A
tu-ally, sin
e there is large gap between the veri�er's a

eptan
e probability on yes instan
esand no instan
es, we obtain the following \strong 
omplement" to the 
onditions for yesinstan
es:Conditions for no instan
es. At least one of the following must hold:1. The simulator outputs a

epting 
onversations with low probability.2. The virtual veri�er \behaves very di�erently" from the real veri�er.Now, to distinguish between yes and no instan
es, one need only show how to separatethe 
onditions for yes instan
es from the 
onditions for no instan
es. In [For89, AH91℄, itwas shown that short intera
tive proofs 
an separate the two 
ases, and thereby HVSZKwas pla
ed in AM\ 
o-AM. Here, we will show that the 
onditions 
an be embedded intoinstan
es of Statisti
al Differen
e, and this will show that every problem in HVSZKredu
es to SD.There are a number of aspe
ts of the above intuition that are nontrivial to formalize orquantify. First, one must make pre
ise this idea of allowing the virtual prover to intera
twith the real veri�er. Fortnow gave a natural solution to this, by introdu
ing the notion ofa simulation-based prover PS , whi
h is a (real) prover strategy that determines its messagesa

ording to the same distribution as the virtual prover, when 
onditioned on past messages.Thus, the intera
tion (PS ; V ) exa
tly 
aptures the idea of the virtual prover intera
ting withthe real veri�er.A se
ond important 
hallenge is to quantify what it means for the virtual veri�er to\behave like" the real veri�er. This is the 
ru
ial point whi
h determines the tightness ofthe 
hara
terization obtained at the end, for the other 
ondition is easily determined (byrunning the simulator many times to estimate the probability of an a

epting 
onversation).To summarize, the main steps in analyzing the simulator of a statisti
al zero knowledgeproof are the following:1. Quantify what it means for the virtual veri�er to \behave like" the real veri�er.2. Con�rm that in the 
ase of a yes instan
e, the virtual veri�er does indeed behave likethe real veri�er a

ording to the 
hosen quanti�
ation.3. Show that if the virtual veri�er behaves like the real veri�er, then the intera
tionbetween the simulation-based prover and the real veri�er is \
lose" to the outputdistribution of the simulator.
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lude that if the virtual veri�er behaves like the real veri�er on a no instan
e,then the simulator must output a

epting 
onversations with low probability.In the next se
tion, we will 
arry out this approa
h for publi
-
oin statisti
al zero-knowledge proofs. In this 
ase, it is parti
ularly easy to quantify what it means for thevirtual veri�er to \behave like" the real veri�er, be
ause all the real veri�er's behavior
onsists of is sending uniformly distributed strings that are independent of the 
onversationhistory. Thus, the virtual veri�er behaves like the real veri�er if and only if the virtualveri�er's messages are nearly uniform and nearly independent of the 
onversation history.We will show how to 
apture this 
ondition by the statisti
al di�eren
e between samplabledistributions, thereby obtaining a redu
tion to Statisti
al Differen
e.3.2.2 Simulator analysisNotation and 
onventions. Let (P; V ) be an intera
tive proof system for a promiseproblem �, and let S be a simulator for (P; V ). (At this point, S is an arbitrary algorithm,sin
e we have not yet spe
i�ed the quality of the simulation.) Throughout this se
tion andSe
tion 3.2.3, we will �x the se
urity parameter k = jxj and omit it from the notation.When we apply our simulator analysis, we will only require weak statisti
al zero knowledgeand 
onstant 
ompleteness and soundness errors, settings in whi
h the se
urity parameteris irrelevant. Sin
e the proof system is polynomially bounded, there is a polynomial v(�)su
h that v(jxj) bounds the total number of messages sent from the veri�er to the proveron input x (not in
luding the veri�er's �nal a

ept/reje
t message). By 
onvention (seeDe�nition 2.3.2), the prover's messages are those with odd index, and the veri�er's messagesare those with even index. We are interested in the random variables S(x) and hP; V i(x),des
ribing the simulation and (the veri�er's view of) the real intera
tion, respe
tively. Wealso 
onsider pre�xes of these random variables, where S(x)i and hP; V i(x)i denote thepre�xes 
onsisting of the �rst i messages ex
hanged. At times, we may drop x from thesenotations.For j � 2v(jxj) + 2, we refer to a tuple of strings 
 = (m1;m2; : : : ;mj ; r) as a (partial)
onversation trans
ript if the even-numbered messages in 
 (in
luding an a

ept=reje
tmessage) 
orrespond to what V would have sent given random 
oins r and the odd-numberedprover messages spe
i�ed in 
. Without loss of generality, we may assume that the outputof the simulator always 
onsists of 
onversation trans
ripts that are 
onsistent with V inthis sense. This 
an be a
hieved by having the simulator, before giving its output, alwaysuse the veri�er algorithm to re
al
ulate the veri�er messages based on the simulated provermessages and the simulated veri�er 
oins. This modi�
ation does not a�e
t any of the errorparameters or 
omplexity parameters of the proof system. We say that a trans
ript 
 isa

epting if the veri�er a

epts on it.Simulation-based prover. Re
all that the simulation-based prover PS is the proverstrategy that \mimi
s" the virtual prover des
ribed by S. More formally, given an input (x)and a 
onversation history 
 (
onsisting of 2i previous messages ex
hanged), PS respondsas follows:
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onversations that begin with 
 with probability 0, then PS replieswith a dummy message, say fail.� Otherwise, PS replies a

ording with the same 
onditional probability as the proverin the output of the simulator. That is, it replies � with probabilityp� = Pr[S(x)2i+1 = (
; �)jS(x)2i = 
℄Following our previous notation, we denote the veri�er's view of the intera
tion betweenPS and V by hPS ; V i(x) and its pre�xes by hPS ; V i(x)iPubli
-
oin proofs. For the remainder of this se
tion, we 
onsider only publi
-
oin in-tera
tive proofs (P; V ). Re
all that this means that in every exe
ution of the proto
ol,the string of random 
oins a

essed by V 
an be written r1r2 � � � rv 2 f0; 1g�, so that theveri�er's i'th message m2i equals ri 2 f0; 1g`i , where `i = `i(x; 
) is solely a fun
tion of theinput x and the history 
 = (m1;m2; : : : ;m2i�1). Sin
e V runs in polynomial time, `i ispolynomial-time 
omputable from the input and history. Without loss of generality, we mayassume that the simulated random 
oins output by the simulator do not 
ontain any 
oinsother than those that would a
tually be a

essed by the veri�er in the intera
tion; removingthese \irrelevant" 
oins from the output 
an only de
rease the simulator deviation.The simulator analysis. Now we need to quantify what it means for the virtual veri�erto \behave like" the real veri�er. As noted in the previous se
tion, for publi
-
oin proofs, thisamounts to measuring how 
lose to uniform and independent of history the virtual veri�er'smessages are. Thus, for i = 1; : : : ; v(jxj), we 
ompare the following two distributions Xi =Xi(x) and Yi = Yi(x):Xi(x): Run S(x) to obtain a trans
ript 
 and let 
2i denote the �rst 2i messages ex
hanged.Output 
2i.Yi(x): Run S(x) to obtain a trans
ript 
 and let 
2i�1 denote the �rst 2i � 1 messagesex
hanged. Compute `i = `i(x; 
2i�1). Choose r  f0; 1g`i . Output (
2i�1; r).InXi, the i'th veri�er message is 
omputed a

ording to the virtual veri�er strategy, andin Yi, it is 
hosen uniformly and independently of the history (of the appropriate length).Thus, the statisti
al di�eren
e between these two distributions measures exa
tly how mu
hthe virtual veri�er behaves like the real veri�er in 
omputing its i'th message. So we de�neÆi = Æi(x) by Æi def= StatDi� (Xi; Yi) :The following lemma 
on�rms that, when the simulation is good (e.g., for yes instan
es),the virtual veri�er does indeed behave like the real veri�er a

ording to this measure.Lemma 3.2.1 For every i = 1; : : : ; v(jxj),Æi(x) � 2 � StatDi� (S(x); hP; V i(x)) :



48 CHAPTER 3. COMPLETE PROBLEMSProof: Dropping x from the notation, we have:Æi = StatDi� (Xi; Yi)� StatDi� (Xi; hP; V i2i) + StatDi� (hP; V i2i; Yi)Note that Xi is the same distribution as S2i, soStatDi� (Xi; hP; V i2i) = StatDi� (S2i; hP; V i2i) � StatDi� (S; hP; V i) :On the other hand, Yi is obtained from a sample of S2i�1 by applying a 
ertain randomizedpro
edure: namely 
omputing `i and then 
on
atenating `i random bits to Yi. Applyingthe same randomized pro
edure to hP; V i2i�1 yields hP; V i2i, by the de�nition of V . Thus,sin
e applying the same randomized pro
edure to two distributions 
annot in
rease theirstatisti
al di�eren
e (to be justi�ed after this proof), we haveStatDi� (hP; V i2i; Yi) � StatDi� �hP; V i2i�1; S2i�1� � StatDi� (hP; V i; S) :The 
laim that randomized pro
edures 
annot in
rease statisti
al di�eren
e used in theabove proof 
an be formalized as follows: A randomized pro
edure on a set U is a probabilitydistribution F on fun
tions from a U to some set V. The distribution obtained by applyingthe randomized pro
edure F to a distribution X on U is de�ned to be the probabilitydistribution F (X) on V obtained by independently sampling f  F and x  X andevaluating f(x). The following fa
t follows immediately from and Fa
ts 2.2.2 and 3.1.14.Fa
t 3.2.2 For any two probability distributions X and Y on U , and any randomized pro-
edure F on U , StatDi� (F (X); F (Y )) � StatDi� (X;Y ).The next step in analyzing the simulator is to show that, if the virtual veri�er is behavinglike the real veri�er (i.e., all the Æi's are small), then the intera
tion between the simulation-based prover and the real veri�er is 
lose to the simulator's output distribution.Lemma 3.2.3 StatDi� (hPS ; V i(x); S(x)) � v(jxj)Xi=0 Æi(x)Proof: We will prove by indu
tion on j that for j = 1; : : : ; v(jxj),StatDi� �hPS ; V i2j ; S2j� � jXi=0 Æi:The 
ase j = 0 is trivial. For general j, note that the de�nition of the simulation-basedprover implies that hPS ; V i2j+1 is generated by applying the same randomized pro
edureto hPS ; V i2j as the one used to obtain S2j+1 from S2j . Thus, by Fa
t 3.2.2,StatDi� �hPS ; V i2j+1; S2j+1� = StatDi� �hPS ; V i2j ; S2j� : (3.1)
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alling that Xj+1 = S2j+2, we haveStatDi� �hPS ; V i2j+2; S2j+2� = StatDi� �hPS ; V i2j+2;Xj+1�� StatDi� �hPS ; V i2j+2; Yj+1�+ StatDi� (Yj+1;Xj+1) :Now hPS ; V i2j+2 is obtained from hPS ; V i2j+1 via the same randomized pro
edure used toobtain Yj+1 from S2j+1. Thus,StatDi� �hPS ; V i2j+2; S2j+2� � StatDi� �hPS ; V i2j+1; S2j+1�+ StatDi� (Yj+1;Xj+1) :� StatDi� �hPS ; V i2j ; S2j�+ StatDi� (Yj+1;Xj+1) :�  jXi=0 Æi!+ Æj ;where the last inequality is by indu
tion. This 
ompletes the indu
tion.Taking j = v in Inequality 3.1 almost gives the lemma, ex
ept that the trans
ripts
oming from hPS ; V i and S 
ontain a few additional strings: the prover messages m2v+1and m2v+3, the veri�er's a

ept=reje
t message m2v+2, and the simulated veri�er 
oins.By our assumptions that the simulator's output is 
onsistent with the veri�er algorithmand does not 
ontain any \irrelevant" simulated 
oins, and the de�nition of the simulation-based prover, these strings are determined in both hPS ; V i and S by applying the samerandomized pro
edure to the history (m1;m2; : : : ;m2v). Thus, in
luding these 
omponentsdoes not in
rease the statisti
al di�eren
e.The �nal lemma needed to 
omplete the analysis simply says that if the simulatoroutputs a

epting 
onversations with high probability in the 
ase of a no instan
e, then thesimulator's output and the intera
tion between the simulation-based prover and the realveri�er 
annot be 
lose.Lemma 3.2.4 Let p denote the probability that S(x) outputs an a

epting trans
ript, andlet q be the maximum, taken over all provers P �, that V a

epts in (P �; V )(x). Then,StatDi� (hPS ; V i(x); S(x)) � p� q:Proof: This follows immediately from the de�nition of statisti
al di�eren
e | the set oftrans
ripts in whi
h the veri�er a

epts o

urs with probability p in the simulator and withprobability at most q in hPS ; V i(x).3.2.3 Redu
ing to Statisti
al Differen
eWe now use the simulator analysis given above to show that every problem possessing anpubli
-
oin statisti
al zero-knowledge proof redu
es SD. In fa
t, the redu
tion will evenwork for weak publi
-
oin statisti
al zero-knowledge proofs.Theorem 3.2.5 Every promise problem possessing a weak publi
-
oin honest-veri�er sta-tisti
al zero-knowledge proof redu
es to SD.



50 CHAPTER 3. COMPLETE PROBLEMSProof: Let � be a promise problem with a weak publi
-
oin honest-veri�er statisti
al zero-knowledge proof (P; V ). We maintain the notation and 
onventions from the Se
tion 3.2.2,in parti
ular �xing k = jxj and dropping it from the notation. We also hide the dependen
yof the various parameters and distributions on x from the notation throughout this proof.Without loss of generality, we assume that � has 
ompleteness and soundness errors 
 =s = 1=3. Let S be a simulator for (P; V ) a
hieving simulator deviation � � 1= �4 � (12v)3�The redu
tion should map an input x to a pair of distributions (X;Y ), whi
h are sta-tisti
ally 
lose or far, depending on whether x is yes instan
e or no instan
e, respe
-tively. X (resp., Y ) will essentially 
onsist of the 
on
atentation of all the Xi's (resp., Yi's).Lemma 3.2.1 immediately implies that all the Xi's and Yi's have small statisti
al di�eren
ewhen x is a yes instan
e. Lemmas 3.2.3 and 3.2.4 imply that they 
annot all have smallstatisti
al di�eren
e when x is a no instan
e and the simulator outputs a

epting trans
riptswith too mu
h probability. Thus, we still need to de�ne distributions that will handle the
ase that the simulator outputs a

epting 
onversations with low probability. Therefore,we de�ne distributions X0 and Y0 as follows:X0: Output 1.Y0: Run S for 216 ln 12v independent exe
utions, and output 1 if veri�er a

epts in themajority of the trans
ripts obtained.Now we 
onsider the distributions X 0 = X0
X1
 � � � 
Xv and Y 0 = Y0
Y1
 � � � 
Yv(not yet our �nal distributions).Claim 3.2.6 If x is a yes instan
e, then StatDi� (X 0; Y 0) � 1= �12 � (12v)2�Proof of 
laim: By Fa
t 3.1.14, the statisti
al di�eren
e between X 0 and Y 0is at most the sum of the statisti
al di�eren
es between the Xi's and Yi's. ByLemma 3.2.1, StatDi� (Xi; Yi) � 2� � 12 � (12v)3when x is a yes instan
e.To bound the di�eren
e betwen X0 and Y0, observe that, on yes instan
es x,S must output a

epting 
onversations with probability at least 2=3�� � 7=12.By the Cherno� bound (Theorem A.1), Y0 outputs 1 with probability at least1� exp ��2 � (216 ln 12v) � (1=12)2� � 1� 1(12v)3 :Thus, the statisti
al di�eren
e between X0 and Y0 is at most 1=(12v)3, and thetotal statisti
al di�eren
e between X 0 and Y 0 is at mostv � 12 � (12v)3 + 1(12v)3 � 112 � (12v)2 : 2Claim 3.2.7 If x is a no instan
e, then StatDi� (X 0; Y 0) � 1=12v.
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laim: It suÆ
es to show that for at least one i, the statisti
al dif-feren
e between Xi and Yi is at least 1=12v, as the statisti
al di�eren
e betweenX 0 and Y 0 is only greater.First suppose the simulator outputs a

epting 
onversations with probabilityat most 5=12. Then, by the Cherno� bound (Theorem A.1), Y0 outputs 1 withprobability at most exp ��2 � (216 ln 12v) � (1=12)2� < 12 ;so the statisti
al di�eren
e between X0 and Y0 is at least 1=2 � 1=12v.Now suppose that the simulator outputs a

epting 
onversations with prob-ability at least 5=12. By Lemma 3.2.4, this implies that the statisti
al di�eren
ebetween hPS ; V i and S is at least 5=12 � 1=3 � 1=12. Lemma 3.2.3 in turnimplies that, for some i, Æi � 1=12v. 2So now let s = 4 � (12v)2, 
onsider X = 
sX 0, Y = 
sY 0. By the above two 
laims andLemma 3.1.15, we 
on
lude:x 2 �Y ) StatDi� (X;Y ) � �4 � (12v)2� � 112 � (12v)2 � 13x 2 �N ) StatDi� (X;Y ) � 1� exp��4 � (12v)2 � (1=12v)22 � > 2=3Thus, X and Y are the desired distributions, and the x 7! (X;Y ) is a Karp redu
tionfrom � to SD. Stri
tly speaking, the distributions X and Y , whi
h are de�ned in terms ofthe simulator need to be en
oded by 
ir
uits mapping random 
oins to the output. This 
anbe done by the standard te
hnique of en
oding general (e.g., Turing ma
hine) 
omputationsas 
ir
uits. (See, e.g., the proof of Cook's theorem in [Pap94℄.)Note that the above proof only requires a simulator with deviation O(1=v3), where v isthe number of messages sent from the veri�er to the prover in the proof system. Hen
e, for
onstant-message proof systems, the redu
tion even works when the simulator deviation isa (suÆ
iently small) 
onstant!Theorem 3.2.8 (Thm. 3.2.5, generalized) There is a 
onstant C su
h that the follow-ing holds. Suppose a promise problem � possesses a publi
-
oin intera
tive proof system(P; V ) with 
ompleteness and soundness errors 1=3 whi
h ex
hanges at most m(n) mes-sages on inputs of length n. Suppose further that (P; V ) has a simulator that a
hievesdeviation �(n) � 1=(C �m(n)3). Then, � redu
es to SD. In parti
ular, � 2 HVSZK.In addition, we need not assume 
ompleteness and soundness errors of 1/3, be
auseparallel repetitions 
an be used to the redu
e the error of the proof system. Note, however,that ` parallel repetitions in
reases the simulator deviation by a fa
tor of ` (though it doesnot in
rease the number of messages ex
hanged). Thus the bound on the simulator deviationrequired to generalize Theorem 3.2.8 to arbitrary 
ompleteness and soundness errors willinvolve the 
ompleteness and soundness errors.



52 CHAPTER 3. COMPLETE PROBLEMS3.3 Analyzing general HVSZK proofsIn this se
tion, we generalize the approa
h outlined in the previous se
tion to handle gen-eral, private-
oin proof systems. In doing so, we will a
tually redu
e not to Statisti
alDifferen
e, but to a di�erent promise problem, 
alled Entropy Differen
e. Theredu
tion is based on the simulator analysis of Aiello and H�astad [AH91℄.In Se
tion 3.3.1, we introdu
e the promise problem Entropy Differen
e, and alsomention some basi
 notions from information theory that we will use. Se
tion 3.3.2 
ontainsthe Aiello{H�astad simulator analysis, formulated in terms of entropy, following Petrank andTardos [PT96℄. In Se
tion 3.3.3, we use this simulator analysis to prove that every problemin HVSZK redu
es to Entropy Differen
e.3.3.1 Entropy Differen
eWe re
all Shannon's notion of entropy.De�nition 3.3.1 (entropy) If X is a dis
rete probability distribution, then the entropyof X, denoted H(X), is de�ned asH(X) def= Xx Pr [X = x℄ � log 1Pr [X = x℄ = Ex X �log 1Pr [X = x℄� :The binary entropy fun
tion H2 : [0; 1℄ ! [0; 1℄ is de�ned to be the entropy of a 0{1random variable with expe
tation p, i.e.,H2(p) def= p log 1p + (1� p) log 11� pThe entropy of a distribution is a measure of how many \bits of randomness" thedistribution 
ontains. Some basi
 fa
ts about entropy that illustrate its naturalness as ameasure of randomness are given below. (Proofs 
an be found in any standard text oninformation theory, su
h as [CT91℄.)Fa
t 3.3.2 For any distribution X (or joint distribution (X;Y )) on a universe U ,1. H(X) � 0, with equality i� X is 
onstant.2. H(X) � log jUj, with equality i� X is uniform on U .3. For any fun
tion f , H(f(X)) � H(X).4. H(X;Y ) � H(X) + H(Y ), with equality i� X and Y are independent.The se
ond problem we will prove to be 
omplete forHVSZK is essentially the problemof determining whi
h of two given samplable distributions has signi�
antly higher entropy.
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e is the promise problem ED = (EDY ;EDN ),where EDY = f(X;Y ) : H(X) � H(Y ) + 1gEDN = f(X;Y ) : H(Y ) � H(X) + 1g :Above, X and Y are 
ir
uits en
oding probability distributions, as in De�nition 3.1.1.Requiring a gap of 1 bit of entropy in the de�nition of ED is inessential, as any noti
eablegap 
an be easily ampli�ed by repla
ing ea
h distribution with many independent 
opiesof itself. This 
ontrasts with the de�nition SD, in whi
h the thresholds of 2=3 and 1=3 arenot arbitrary (
f., Open Problem 3.1.18).In the subsequent se
tions, we will show that every problem possessing a (private-
oin)HVSZK proof redu
es to Entropy Differen
e. In doing so, we will make use of a moresophisti
ated (albeit less intuitive) measure of distan
e between probability distributionsthan statisti
al di�eren
e.De�nition 3.3.4 Let X and Y be two dis
rete probability distributions. The relative en-tropy (or Kullba
k{Leibler distan
e) between X and Y is de�ned asRelEnt (X;Y ) def= E� X �log Pr [X = �℄Pr [Y = �℄ � :We also de�ne the binary relative entropy for p; q 2 [0; 1℄ byRelEnt2 (p; q) def= p log pq + (1� p) log 1� p1� q :Note that if X and Y are 0{1 random variables with expe
tions p and q respe
tively, thenRelEnt (X;Y ) = RelEnt2 (p; q).Although RelEnt (�; �) is not symmetri
 and does not satisfy the triangle inequality, it isuseful to think of it as a distan
e between probability distributions. It does have some ofthe other properties we would expe
t su
h a distan
e measure to have.Fa
t 3.3.5 For any two distributions X and Y ,1. RelEnt (X;Y ) � 0, with equality i� X and Y are identi
ally distributed.2. For any fun
tion f , RelEnt (f(X); f(Y )) � RelEnt (X;Y ).3. For any 0 � q0 � q � p � p0 � 1, RelEnt2 (p0; q0) � RelEnt2 (p; q).Proofs for these fa
ts 
an be found in any standard text on information theory, su
h as[CT91℄. Item 2 is equivalent to the Log Sum Inequality [CT91, Thm. 2.7.1℄, and Item 3follows from the 
onvexity of RelEnt (�; �) [CT91, Thm. 2.7.2℄.One other notion from information theory that will prove useful to us is that of 
on-ditional entropy, whi
h, for a joint distribution (X;Y ), measures how mu
h randomness isleft in X after Y is revealed.
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onditional entropy) If (X;Y ) is a joint probability distribution, thenthe 
onditional entropy of X given Y , denoted H(XjY ), is de�ned asH(XjY ) def= Ey Y [H(XjY=y)℄ :Some basi
 fa
ts about 
onditional entropy, whose proofs 
an be found in [CT91℄, follow.Fa
t 3.3.7 For every joint distribution (X;Y ),1. H(XjY ) � H(X).2. H(X;Y ) = H(Y ) + H(XjY ).3.3.2 The Aiello{H�astad simulator analysisIn this se
tion, we present the simulator analysis for private-
oin statisti
al zero-knowledgeproofs, due to Aiello and H�astad [AH91℄. Following, Petrank and Tardos [PT96℄, we formu-late the analysis in terms of entropy and relative entropy, rather than in terms of set sizesas done in [AH91℄. This simulator analysis will be used in Se
tion 3.3.3 to show that everyproblem in HVSZK redu
es to Entropy Differen
e.Notation and 
onventions. Let (P; V ) be an intera
tive proof system for a promiseproblem � and let S be a simulator for (P; V ). We follow the notation and 
onventions givenin Se
tion 3.2.2. In parti
ular, v(jxj) is a polynomial bound on the number of messages sentfrom the veri�er to the prover on input x. In addition, we let t(jxj) and r(jxj) be polynomialbounds on the total 
ommuni
ation in the proof system (as measured in bits) and thenumber of random bits a

essed by the veri�er, respe
tively. We now modify the proofsystem so that the veri�er sends its random 
oins to the prover in an additional messagejust before the end of the proto
ol. S 
an be modi�ed to simulate this without in
reasingthe simulator deviation (sin
e S was supposed to simulate the veri�er's 
oins, too), and thisdoes not in
rease the 
ompleteness or soundness errors. The total 
ommuni
ation and thenumber of messages sent from the veri�er to prover now in
rease to t0(jxj) = t(jxj) + r(jxj)and v0(jxj) = v(jxj) + 1, respe
tively. The purpose of this modi�
ation is so that we maysimultaneously analyze the simulation of the messages ex
hanged and the simulation of theveri�er's random 
oins, rather treating them separately.The simulator analysis. Re
all that, a

ording to the approa
h outlined in Se
-tion 3.2.1, the �rst step in analyzing the simulator is to quantify what it means for thevirtual veri�er to \behave like" the real veri�er. In the 
ase of publi
-
oin proofs, it waseasy to see that this amounts to measuring how 
lose to uniform and independent of historythe virtual veri�er's messages are. For private-
oin proofs, however, the analogous 
onditionis less obvious. Intuitively, it should somehow 
apture the requirement that the veri�er'smessages are distributed almost 
orre
tly, given the history, but it is un
lear how to quan-tify this. For a 
lue, we skip to the se
ond step, and 
ompare the output of the simulatorto the intera
tion hPS ; V i between the simulation-based prover (as de�ned in Se
tion 3.2.2)



3.3. ANALYZING GENERAL HVSZK PROOFS 55and the real veri�er. The only di�eren
e between these distributions is that, in the sim-ulator, the real veri�er is repla
ed with the virtual veri�er, so 
omparing hPS ; V i and Sis tantamount to 
omparing the real veri�er and virtual verifer. Amazingly, the relativeentropy between these distributions 
an be rewritten exa
tly as an expression just involvingentropies of pre�xes of the simulator's output.Lemma 3.3.8 (impli
it in [AH91℄, expli
it in [PT96℄)RelEnt (S(x); hPS ; V i(x)) = r(jxj)� v0(jxj)Xi=1 [H(S(x)2i)�H(S(x)2i�1)℄The term H(S(x)2i) � H(S(x)2i�1) equals the 
onditional entropy H(S(x)2ijS(x)2i�1).Intuitively, this measures how many bits of randomness the i'th virtual veri�er message
ontributes to the output distribution of the simulator. Sin
e, over the 
ourse of the entireintera
tion, the real veri�er exposes all of its r random 
oins, the sum of these terms shouldbe 
lose to r when the simulation is good. The 
onverse is also plausible. If this sum is
lose to r, then it means that the virtual veri�er's randomness has been fully spread outover its messages. Sin
e we have required that the simulator's output is 
onsistent withthe veri�er algorithm, this should mean that the virtual veri�er is indeed behaving like thereal veri�er. Therefore, we use the same quantity to 
ompare how mu
h the virtual veri�erbehaves like the real veri�er and to measure the similarity between the distributions S(x)and hPS ; V i(x), in 
ontrast to the publi
-
oin 
ase, in whi
h we used di�erent measures forthese two purposes and related them via Lemma 3.2.3.Proof: For a trans
ript 
, we we let 
i denote the pre�x of 
 
onsisting of the �rst imessages ex
hanged. Then, by de�nition,RelEnt (S; hPS ; V i) = X
 Pr [S = 
℄ � log Pr [S = 
℄Pr [hPS ; V i = 
℄= X
 Pr [S = 
℄ � log Q2vi=1 Pr [Si = 
ijSi�1 = 
i�1℄Q2vi=1 Pr �hPS ; V ii = 
ijhPS ; V ii�1 = 
i�1�= X
 Pr [S = 
℄ � log Qvj=1 Pr [S2j = 
2j jS2j�1 = 
2j�1℄Qvj=1 Pr hhPS ; V i2j = 
2j jhPS ; V i2j�1 = 
2j�1iwhere the last equality is due to the de�nition of PS , by whi
hPr hhPS ; V i2j�1 = 
2j�1jhPS ; V i2j�2 = 
2j�2i = Pr [S2j�1 = 
2j�1jS2j�2 = 
2j�2℄ :A key observation is that, for any trans
ript 
, the denominator in the above fra
tion equalsthe re
ipro
al of the number of possible out
omes of the veri�er 
oins (i.e., 2�r), sin
e even-indexed messages of hPS ; V i are generated by V exa
tly as in hP; V i. Multiplying both the



56 CHAPTER 3. COMPLETE PROBLEMSnumerator and denominator in the above fra
tion by Qvj=1 Pr [S2j�1 = 
2j�1℄, we obtainRelEnt (S; hPS ; V i) = X
 Pr [S = 
℄ � log Qvj=1 Pr [S2j = 
2j ℄2�r �Qvj=1Pr [S2j�1 = 
2j�1℄= vXj=1X
 Pr [S = 
℄ � log Pr [S2j = 
2j ℄+r + vXj=1X
 Pr [S = 
℄ � log 1Pr [S2j�1 = 
2j�1℄= � vXj=1H(S2j) + r + vXj=1H(S2j�1)The lemma follows.We will now 
on�rm that, when the simulation is good (e.g., for yes instan
es), thevirtual veri�er does indeed behave like the real veri�er, as measured by the expression inLemma 3.3.8. In order to do this, we will observe that the expression is zero if S(x) isrepla
ed by hP; V i(x). When the simulation is good, it follows that H(S(x)i) is approxi-mately equal to H(hP; V i(x)i), so repla
ing former by the latter does not a�e
t the valuesigni�
antly. Sin
e the quality of the simulation is given in terms of statisti
al di�eren
e,we need a bound on entropy di�eren
e in terms of statisti
al di�eren
e.Fa
t 3.3.9 For any two random variables, X and Y , ranging over a universe U it holdsthat jH(X) �H(Y )j � log(jUj � 1) � Æ + H2(Æ)where Æ def= StatDi� (X;Y ).This fa
t 
an be inferred from Fano's Inequality (
f., [CT91, Thm. 2.11.1℄). A more dire
tproof follows.Proof: Assume Æ > 0 or else the 
laim is obvious. Consider the des
ription of statisti
aldi�eren
e in terms of area (Fa
t 3.1.9 and Figure 3-1). Let C, X+, and Y + denote thedistributions on U indu
ed by 
hoosing a point uniformly in the 
ommon region, X-aboveregion, and Y -above region, respe
tively.Think of X (resp., Y ) as being generated by 
ipping a biased 
oin R whi
h is 1 withprobability 1 � Æ, and then outputting a sample of C if R = 1 and a sample of X+ (resp.,Y +) otherwise. Then, by Fa
ts 3.3.2 and 3.3.7,H(X) � H(X;R)= H(R) + H(XjR)= H2(Æ) + (1� Æ) � H(C) + Æ � H(X+);



3.3. ANALYZING GENERAL HVSZK PROOFS 57and H(Y ) � H(Y jR) � (1� Æ) �H(C):Observing that Pr [X+ = x℄ = 0 on at least one x 2 U , it follows that H(X+) � log(jUj�1),and the fa
t follows.Remark 3.3.10 The above bound is tight. Let e 2 U and 
onsider X whi
h is identi
allye, and Y whi
h with probability 1�Æ equals e and otherwise is uniform over Unfeg. Clearly,StatDi� (X;Y ) = Æ and H(Y )�H(X) = Æ log(jUj � 1) + H2(Æ)� 0.Thus, we have the following lemma, analogous to Lemma 3.2.1 in the publi
-
oin 
ase.Lemma 3.3.11 (impli
it in [AH91, PT96℄) Let Æ(x) = StatDi� (S(x); hP; V i(x)). Thenr(jxj)� v0(jxj)Xi=1 [H(S(x)2i)�H(S(x)2i�1)℄ � 2v0(x) � �t0(x) � Æ(x) + H2(Æ(x))� :Proof: Consider a perfe
t simulator (i.e., of zero deviation), denoted S, for hP; V i. Notethat the simulator-based-prover with respe
t to S is P itself. Thus, by Lemma 3.3.8,r + 2v0Xi=1(�1)i+1 � H(hP; V ii) = r + 2v0Xi=1(�1)i+1 � H(Si)= RelEnt �S; hP; V i� = 0Now we haver + 2v0Xi=1(�1)i+1 �H(Si) � r + 2v0Xi=1(�1)i+1 � H(hP; V ii) + 2v0Xi=1 jH(Si)�H(hP; V ii)j= 0 + 2v0Xi=1 jH(Si)�H(hP; V ii)j� 2v0 � (Æ � t0 +H2(Æ));where the last inequality is by Fa
t 3.3.9.Finally, we observe that a lemma analogous to Lemma 3.2.4 holds for the relative entropymeasure.Lemma 3.3.12 (impli
it in [AH91, PT96℄) Let p denote the probability that S(x) out-puts an a

epting trans
ript, let q be the maximum, taken over all provers P �, that V a

eptsin (P �; V )(x), and assume that p � q. Then,RelEnt (S(x); hPS ; V i(x)) � RelEnt2 (p; q):



58 CHAPTER 3. COMPLETE PROBLEMSProof: De�ne a Boolean fun
tion on trans
ripts by f(
) = 1 if 
 is a

epting and f(
) = 0otherwise. By Fa
t 3.3.5, Items 2 and 3, we haveRelEnt (S; hPS ; V i) � RelEnt (f(S); f(hPS ; V i)) = RelEnt2 �p; q0� � RelEnt2 (p; q);where q0 � q equals the probability that hPS ; V i is a

epting.3.3.3 Redu
ing to Entropy Differen
eIn analogy with Se
tion 3.2.3, we now use the simulator analysis of the previous se
tion toredu
e every problem in HVSZK to Entropy Differen
e.Theorem 3.3.13 Every promise problem possessing a weak publi
-
oin honest-veri�er sta-tisti
al zero-knowledge proof redu
es to ED.Proof: Let � be a promise problem with a weak honest-veri�er statisti
al zero-knowledgeproof (P; V ). We maintain the notation and 
onventions from the Se
tion 3.3.2, in parti
ular�xing k = jxj and dropping it from the notation. We also hide the dependen
y of the variousparameters and distributions on x from the notation throughout this proof. Without lossof generality, we assume that � has 
ompleteness and soundness errors 
 = s = 2�40. LetS be a simulator for (P; V ) a
hieving simulator deviation � � min f1=v0t0; �g ; where � is asmall 
onstant to be determined from the proof.The redu
tion should map an input x to a pair of distributions (X;Y ) su
h that X or Yhas larger entropy, depending on whether x is yes instan
e or no instan
e, respe
tively. X isde�ned as X = S2
S4
� � �
S2v0 , and the Y will be 
losely related to the distribution Y1 =S1
S3
� � �
S2v0�1: Note that H(X) =PiH(S2i) and H(Y1) =PiH(S2i�1). Lemma 3.3.11implies that, in the 
ase of yes instan
es, H(X) � H(Y1) + r. Lemmas 3.3.8 and 3.3.12imply that H(X) � H(Y1) + r for no instan
es on whi
h the simulator outputs a

eptingtrans
ripts with too mu
h probability. To 
ompensate for the r in these expressions, wede�ne Y2 to be the uniform distribution on r� 7 bits. We still need to handle the 
ase thatthe simulator outputs a

epting 
onversations with low probability. Therefore, we de�ne adistribution Y3 that we will use to arti�
ially in
rease the entropy of Y in this 
ase.Y3: Run S 8 ln(t0v0 + 2) times independently. If the veri�er reje
ts in the majority of thetrans
ripts obtained, output t0v0+2 random bits. Otherwise, output the empty string.We de�ne Y = Y1 
 Y2 
 Y3.Claim 3.3.14 If x is a yes instan
e, then H(X) � H(Y ) + 1.Proof of 
laim: By Lemma 3.3.11,H(Y1) + r �H(X) � 2v0 � �t0 � �+H2(�)� :Standard Taylor estimates show that H2(Æ) = Æ � log(1=Æ) +O(Æ) for small Æ, sowe may assume that H2(�) � p�. Also noting that t0 � v0, we haveH(Y1) + r �H(X) � 2v0 "t0 � � 1v0t0�+r 1v0t0# � 4:



3.3. ANALYZING GENERAL HVSZK PROOFS 59To bound the entropy of Y3, observe that, on yes instan
es x, S must outputreje
ting 
onversations with probability at most 2�40+� � 1=4. By the Cherno�bound (Theorem A.1), the probability p that the majority of the 
onversationssampled from S are reje
ting satis�esp � exp ��2 � (8 ln(t0v0 + 2)) � (1=4)2� � 1t0v0 + 2 :Thus, H(Y3) � p � �t0v0 + 2�+ (1� p) � 0 + H2(p)� 1 + 0 + 1 = 2:Putting the above together, we haveH(Y ) = H(Y1) + H(Y2) + H(Y3)� (H(X) + 4� r) + (r � 7) + 2� H(X) � 1:Claim 3.3.15 If x is a no instan
e, then H(Y ) � H(X) + 1.Proof of 
laim: It suÆ
es to show that either H(Y1) + H(Y2) � H(X) + 1or H(Y3) � H(X) + 1. First, suppose the simulator outputs a

epting 
onver-sations with probability at most 1=4. By the Cherno� bound (Theorem A.1),the probability p that the majority of the 
onversations independently sampledfrom S are a

epting isp � exp ��2 � (8 ln(t0v0 + 2)) � (1=4)2� � 1t0v0 + 2 :Thus, H(Y3) � (1� p) � (t0v0 + 2) � t0v0 + 1 � H(X) + 1;where the last inequality is be
ause X outputs at most t0v0 bits.Now, suppose that the simulator outputs a

epting 
onversations with prob-ability at least 1=4. By Lemma 3.2.4, the relative entropy between S andhPS ; V i is at least RelEnt2 �1=4; 2�40� > 8. By Lemma 3.3.8, this implies thatr �H(X) +H(Y1) � 8, and thereforeH(Y1) + H(Y2) � (r � 7) + (8 + H(X) � r) = H(X) + 1: 2These 
laims show that the map x 7! (X;Y ) is a Karp redu
tion from � to ED.Note that the above proof only requires a simulator with deviation � = O(1=t0v0) =O(1=[(t+r) �v℄), where t is a bound on the total 
ommuni
ation, r is the number of random
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oins used by the veri�er, and v is the number of messages sent from the veri�er to theprover.Theorem 3.3.16 (Thm. 3.3.13, generalized) There is a 
onstant C su
h that the fol-lowing holds. Suppose a promise problem � possesses an intera
tive proof system (P; V )with 
ompleteness and soundness errors 1=3, in whi
h the number of messages ex
hangedis m(n), the total 
ommuni
ation is t(n), and the veri�er uses r(n) random 
oins oninputs of length n. Suppose further that (P; V ) has a simulator that a
hieves deviation�(n) � 1= [C �m(n) � (t(n) + r(n))℄. Then, � redu
es to ED.As with Theorem 3.2.8, this result also applies to proof systems with 
ompleteness andsoundness errors other than 1=3, as the error 
an be redu
ed using parallel repetitions.(Indeed, this is why we may we state Theorem 3.3.16 for error 1=3, when we assumed error2�40 in the proof.) Note that the parallel repetitions in
rease t and r in addition to �.3.4 Entropy Differen
e redu
es to Statisti
al Differen
eIn this se
tion, we 
omplete the 
ir
le of redu
tions, by showing that Entropy Differen
eredu
es to Statisti
al Differen
e. It will then follow that both problems are 
ompletefor HVSZK. The main te
hni
al tool in the redu
tion is 2-universal hash fun
tions, sowe begin by des
ribing those in Se
tion 3.4.1. Then, in Se
tion 3.4.2, we explain themain ideas in the redu
tion, by treating the spe
ial 
ase of \
at" distributions, whi
hare distributions whi
h are uniform over some subset of their range. In Se
tion 3.4.3, weformalize the notion of a \nearly 
at" distribution and present some standard te
hniques for\
attening" distributions. Finally, we 
ombine all these ideas to give the general redu
tionin Se
tion 3.4.4.3.4.1 Universal hashingUniversal hash fun
tions, introdu
ed by Carter and Wegman [CW79℄, are families of fun
-tions whose values are pairwise independent. They have a wide variety of appli
ations in
omputer s
ien
e, and we will use them many times throughout this thesis.De�nition 3.4.1 (universal hash fun
tions [CW79℄) A family H of fun
tions map-ping a domain D to a range R is 2-universal if for every x 6= y 2 D and a; b 2 R,Prh H [h(x) = a & h(y) = b℄ = 1jRj2 :There exist very eÆ
ient families of 2-universal hash fun
tions. For example, if weidentify the set f0; 1g with GF(2), the set of aÆne-linear fun
tions Hm;n from GF(2)m toGF(2)n is a 2-universal family of hash fun
tions from f0; 1gm to f0; 1gn. Every fun
tionh in this family 
an be uniquely written in the form h(x) = Ax + b, where A is an n �mmatrix over GF(2) and b is a ve
tor in GF(2)n. Throughout this thesis, we write Hm;n forthis parti
ular family of 2-universal hash fun
tions (with this represenation).



3.4. ED REDUCES TO SD 613.4.2 A spe
ial 
ase | 
at distributionsIn order to motivate our redu
tion from Entropy Differen
e to Statisti
al Differ-en
e, we �rst limit ourselves to a simpler 
lass of distributions. A distribution X is 
alled
at if all elements in the support of X have the same probability mass. That is, X is theuniform distribution on Supp(X). The simplifying assumptions we make is that we aregiven an instan
e (X;Y ) of ED su
h that1. X and Y are both 
at.2. jH(X) �H(Y )j � k, where k is \the se
urity parameter".Now we want to 
onstru
t from (X;Y ) a new pair of distributions (A;B) su
h that ifH(X) � H(Y ) + k, then A and B are statisti
ally far apart, and if H(Y ) � H(X) + k, thenA and B are statisti
ally 
lose. Let SX and SY be the supports of X and Y , respe
tively.By the de�nition of entropy, jSX j = 2H(X) and jSY j = 2H(Y ), so the 
ondition H(X)� H(Y )is equivalent to the 
ondition jSX j � jSY j and similarly for H(Y )� H(X).The following spe
ial 
ase of the \Leftover Hash Lemma" shows how to 
onvert 
atdistributions with high entropy into uniform ones.Lemma 3.4.2 (Leftover Hash Lemma for 
at distributions [ILL89℄) Let H be a 2-universal family of hash fun
tions mapping a domain D to a range R. Let Z be a 
atdistribution on D su
h that jRj � " � 2H(Z) Then, the following distribution has statisti
aldi�eren
e at most "
(1) from the uniform distribution on H�R.� Choose h H and x Z. Output (h; h(x)).It is also easy to see that the same pro
ess gives a distribution that is far from uniformif Z has small entropy: For any h, the number of values h(x) 
an take on is at mostjSupp(Z)j = 2H(Z), so if this is mu
h smaller than jRj, (h; h(x)) will be very far fromuniform on H�R.Lemma 3.4.3 Let H be any family of fun
tions mapping a domain D to a range R. LetZ be a 
at distribution on D su
h that 2H(Z) � " � jRj. Then, the following distribution hasstatisti
al di�eren
e at least 1� " from the uniform distribution on H�R.� Choose h H and x Z. Output (h; h(x)).These two lemmas seem to be a step in the right dire
tion, be
ause they 
onvert a
ondition about entropy into a 
ondition about statisti
al di�eren
e: distributions withlarge entropy are transformed into ones having small statisti
al di�eren
e from uniform,whereas distributions with small entropy are transformed into ones with large statisti
aldi�eren
e from uniform. So, one approa
h would be to take Z = Y and 
hoose R su
hthat jRj = 2jH(X)j. Then, the distribution des
ribed in the above lemmas and the uniformdistribution on H � R will have large or small statisti
al di�eren
e a

ording to whetherH(X)� H(Y ) or H(Y )� H(X), as desired. Unfortunately, 
onstru
ting a set R for whi
hjRj = 2H(X) requires that we know the entropy of X. If 
omputing (or even approximating)the entropy of a samplable distribution 
ould be done in polynomial time, then Entropy
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e would be in BPP and there would be nothing to prove! To over
ome thisdiÆ
ulty, we adopt a te
hnique of Okamoto [Oka96℄ (whi
h he 
alls \
omplementary usageof messages").Re
all that we are given a 
ir
uit (whi
h we also denote X) whi
h samples from X, andlet m denote the length of the input to this 
ir
uit. So, for any x, we let 
X(x) � f0; 1gmdenote the set of inputs to the 
ir
uit whi
h yield output x. Then, Pr [X = x℄ = 2�m �j
X(x)j. Sin
e X is 
at, we havej
X(x)j = 2m � Pr [X = x℄ = � 2m � 2�H(X) if x 2 SX .0 otherwise.The key observation is that for any x 2 SX , jSY � 
X(x)j = 2H(Y )+m�H(X). WhetherH(X)� H(Y ) or H(Y )� H(X) now translates to whether jSY �
X(x)j is� 2m or� 2m,where m is a value that we 
an 
ompute just by looking at the 
ir
uit for X! So, insteadof hashing Y down to a set of size 2H(X) bits, we will hash the uniform distribution onSY � 
X(x) down to f0; 1gm (for some x 2 SX). However, we are not expli
itly givena sampling algorithm for 
X(x). This 
an be \simulated" by having ea
h of our newdistributions 
hoose r 2 f0; 1gm and reveal x = X(r). Then, 
onditioned on x, r is uniformlydistributed in 
X(x), as desired. That is, letting H = Hm+n;m, where n is the number ofoutput gates of Y , we de�ne A and B as follows.A: Choose r  f0; 1gm and let x = X(r). Choose h H, y  Y . Output (x; h; h(r; y)).B: Choose x X, h H, z  f0; 1gm. Output (x; h; z).It follows from our dis
ussion above and Lemmas 3.4.2 and 3.4.3 that this redu
tion is
orre
t, under our assumptions about X and Y . That is, for 
at X and Y , we have:1. If H(X) > H(Y ) + k, then StatDi� (A;B) � 1� 2�
(k).2. If H(Y ) > H(X) + k, then StatDi� (A;B) � 2�
(k).To deal with general instan
es of ED, we need to remove both of our simplifying as-sumptions. The assumption that jH(X)�H(Y )j � k is easy to a
hieve. If let X 0 (resp., Y 0)
onsist of k independent 
opies ofX (resp., Y ), then H(X 0) = k �H(X) and H(Y 0) = k �H(Y ).So, the di�eren
e in entropies is multiplied by k. The same 
onstru
tion also helps dealwith the fa
t that X and Y are not 
at. As we shall see in the next se
tion, taking manyindependent 
opies of ea
h distribution yields distributions that are \nearly 
at" (in a senseto be made pre
ise later). Our �nal 
onstru
tion is therefore the same as the 
onstru
tiondes
ribed above, merely augmented by repla
ing X and Y with many independent 
opiesof ea
h at the start.3.4.3 Flattening distributionsAs a preliminary step towards treating general instan
es of Entropy Differen
e, weformulate the pro
ess of \
attening" distributions (i.e., making them \nearly 
at" by takingmany independent 
opies).



3.4. ED REDUCES TO SD 63De�nition 3.4.4 (heavy, light and typi
al elements) Let X be a distribution on a uni-verse U , x an element of U , and � a positive real number. We say that x is �-heavy (resp.,�-light) if Pr [X = x℄ � 2� � 2�H(X) (resp., Pr [X = x℄ � 2�� � 2�H(X)). Otherwise, we saythat x is �-typi
al.A natural relaxed de�nition of 
atness follows. The de�nition links the amount ofsla
kness allowed in \typi
al" elements with the probability mass assigned to non-typi
alelements.De�nition 3.4.5 (nearly 
at distributions) A distribution X is 
alled �-
at if for ev-ery t > 0 the probability that an element 
hosen from X is t ��-typi
al is at least 1�2�t2+1.By straightforward appli
ation of Hoe�ding Inequality, we haveLemma 3.4.6 (Flattening Lemma) Let X be a distribution, k a positive integer, and
kX denote the distribution 
omposed of k independent 
opies of X. Suppose that for allx in the support of X it holds that Pr [X = x℄ � 2�m. Then 
kX is pk �m-
at.Proof: For every x in the support of X, we de�ne the weight of x to be wt(x) =� log Pr [X = x℄. Then wt(�) maps the support of X to [0;m℄. For every x1; : : : ; xk, wehave log 1Pr [
kX = (x1; : : : ; xk)℄ = kXi=1 wt(xi):Thus, if we let X1; : : : ;Xk be independent, identi
ally distributed 
opies of X, we have:Pr �
kX is not t�-typi
al� = Pr"����� kXi=1 wt(Xi)�H(
kX)����� � t�# :For every i, E[wt(Xi)℄ = H(X) and H(
kX) = k �H(X), so we are bounding the probabilitythat the average of k independent, identi
ally distributed random variables taking values in[0;m℄ deviates from its expe
tation by t�=k. By the Hoe�ding Inequality (Theorem A.2),this probability is at most 2 � exp��2 � k � (t�=k)2m2 � :For � = pk �m this bound be
omes 2 exp(�2t2) � 2�t2+1, establishing the lemma.The key point is that the entropy of 
kX grows linearly with k, whereas its deviationfrom 
atness grows signi�
antly more slowly (i.e., linear in pk) as a fun
tion of k. Notethat if X is a distribution de�ned by a 
ir
uit with ` input gates, then Pr [X = x℄ � 2�` forall x in the support of X, so the 
on
lusion of Lemma 3.4.6 holds with m = `. The othermain tool we will use is the following more general form of the Leftover Hash Lemma.:Lemma 3.4.7 (Leftover Hash Lemma [ILL89℄) Let H be a 2-universal family of hashfun
tions mapping a domain D to a range R. Suppose Z is a distribution on D su
h thatwith probability at least 1�Æ over z sele
ted from Z, Pr [Z = z℄ � "=jRj. Then the followingdistribution has statisti
al di�eren
e at most O(Æ + "1=3) from the uniform distribution onH�R.



64 CHAPTER 3. COMPLETE PROBLEMS� Choose h H and z  Z. Output (h; h(z)).In parti
ular, noti
e that if Z is a �-
at distribution, then for any parameters s; t > 0,Z satis�es the hypothesis of the Leftover Hash Lemma with jRj = 2H(X)�t��s, Æ = 2�t2+1,and " = 2�s.3.4.4 The general redu
tionNow, we 
ombine the ideas of Se
tion 3.4.2 with the tools in Se
tion 3.4.3 to prove ourdesired result.Theorem 3.4.8 Entropy Differen
e redu
es to Statisti
al Differen
e.Proof: Given an instan
e (X;Y ) of Entropy Differen
e, we des
ribe how to eÆ
ientlyprodu
e an instan
e (A;B) of Statisti
al Differen
e su
h that the latter is a yes orno instan
e a

ording to whether the former is. By arti�
ially adding gates if ne
essary,we may assume that both X and Y have m input gates and n output gates. Let k be alarge 
onstant (to be determined from the proof). Set q = 9km2 and de�ne X 0 = 
qX,Y 0 = 
qY . X 0 and Y 0 have input (resp., output) length m0 = qm (resp., n0 = qn). LetH = Hm0+n0;m0 . The distributions A and B are de�ned just as in Se
tion 3.4.2, ex
ept thatwe use X 0 and Y 0 instead of X and Y :A: Choose r  f0; 1gm0 and let x = X 0(r). Choose h  H and y  Y 0. Output(x; h; h(r; y)).B: Choose x X 0, h H, and z  f0; 1gm0 . Output (x; h; z).Now we analyze this 
onstru
tion. We denote the 
omponents of the distributionsby A = (A1; A2; A3) and B = (B1; B2; B3). By Lemma 3.4.6, X 0 and Y 0 are �-
at for� = p9km2 �m = 3pk �m2. Noting that q > 2pk�+ k, we have:Claim 3.4.9 (X;Y ) 2 EDY ) H(X 0) > H(Y 0) + 2pk�+ k:(X;Y ) 2 EDN ) H(Y 0) > H(X 0) + 2pk�+ k:Now we show that A and B are statisti
ally far or 
lose a

ording whether X or Y haslarger entropy.Claim 3.4.10 If (X;Y ) 2 EDY , then StatDi� (A;B) � 1�O(2�k):Proof of 
laim: (A1; A2) and (B1; B2) are both distributed a

ording toX 0 
 H. Thus, to show that A and B are statisti
ally far, it suÆ
es to showthat 
onditioned on most values (x; h)  X 0 
 H, the marginal distributionon A3 and B3 are statisti
ally far. Sin
e X 0 is � 
at, x  X 0 is pk�-typi
alwith probability at least 1 � 2�k+1. Fix any su
h pk�-typi
al x and �x anyh 2 H, and we 
ompare the distributions Ax;h = A3jA1=x;A2=h and Bx;h =



3.4. ED REDUCES TO SD 65B3jB1=x;B2=h. Bx;h is simply the uniform distribution on f0; 1gm0 . Ax is thedistribution obtained by sele
ting (r; y)  
X0(x) 
 Y 0 and outputting h(r; y).Sin
e Y 0 is �-
at, y  Y 0 is pk�-typi
al with probability at least 1 � 2�k+1.Let Tx;h = nh(r; y) : r 2 
X0(x) and y is pk�-typi
alo :So, Ax;h lies in Tx;h with high probability. We will argue that jTx;hj is mu
hsmaller than 2m0 . jTx;hj is 
ertainly at most j
X0(x)j times the number of pk�-typi
al y's. j
X0(x)j � 2m0�H(X0)+pk�, be
ause x is pk�-typi
al. The numberof pk�-typi
al y's is at most 2H(Y 0)+pk�, sin
e they ea
h have mass at least2�H(Y 0)�pk�. Thus,jTx;hj � 2m0�H(X0)+pk� � 2H(Y 0)+pk� � 2m0�k;where the se
ond inequality is by Claim 3.4.9. So,StatDi� (Ax;h; Bx;h) � Pr [Ax;h 2 Tx;h℄� Pr [Bx;h 2 Tx;h℄� �1� 12k�1�+ 2m0�k2m0= 1�O(2�k):This holds for any h and any pk�-typi
al x, so to lower-bound the statisti
aldi�eren
e between A and B, we should subtra
t the probability that x is nottypi
al, whi
h is also O(2�k). 2Claim 3.4.11 If (X;Y ) 2 EDN , then StatDi� (A;B) � 2�
(k):Proof of 
laim: As in the proof for yes instan
es, �x any pk�-typi
alx. We 
onsider the distributions Ax = (A2; A3)jA1=x and Bx = (B2; B3)jB1=x.Bx is simply the uniform distribution on H � f0; 1gm0 . Ax is the distributionobtained by sele
ting (r; y)  
X0(x) 
 Y 0, h  H and outputting (h; h(r; y)).Sin
e 
X0(x) is a 
at distribution and Y 0 is �-
at, 
X0(x) 
 Y 0 is also �-
at.The entropy of this distribution 
an also be bounded by Claim 3.4.9 and thepk�-typi
ality of x as follows.H �
X0(x)
 Y 0� = log j
X0(x)j+H(Y 0)� �m0 �H(X 0)�pk��+ (H(X 0) + 2pk�+ k)� m0 + k +pk�:Thus, taking R = f0; 1gm0 , " = 2�k, and Æ = 2�k+1 in the Leftover Hash Lemma(Lemma 3.4.7), it follows that Ax has statisti
al di�eren
e at most 2�
(k) fromBx for any pk�-typi
al x. Sin
e x is pk�-typi
al with probability at least1�O(2k), A and B have statisti
al di�eren
e at most 2�
(k). 2The theorem follows from Claims 3.4.10 and 3.4.11, taking k to be a suÆ
iently large
onstant.



66 CHAPTER 3. COMPLETE PROBLEMS3.5 The Completeness TheoremPutting everything together, we obtain the main theorem of this 
hapter.Theorem 3.5.1 (Completeness Theorem) Statisti
al Differen
e and EntropyDifferen
e are both 
omplete for HVSZK.Proof: SD is in HVSZK by Theorem 3.1.21. Sin
e ED redu
es to SD (Theorem 3.4.8)and HVSZK is 
losed under Karp redu
tions (Proposition 2.4.1), it follows that ED 2HVSZK. Every problem in HVSZK redu
es to ED by Theorem 3.3.13. Composing theseredu
tions with the redu
tion from ED to SD (Theorem 3.4.8), it follows that every problemin HVSZK redu
es to SD.This theorem has a number of immediate 
onsequen
es. The �rst is that it gives us avery 
lear pi
ture of expressiveness of statisti
al zero-knowledge proofs. Spe
i�
ally, Theo-rem 3.5.1 has the following informal interpretation:The assertions that 
an be proven in statisti
al zero knowledge are exa
tlythose that 
an be 
ast as 
omparing two samplable distributions, with respe
t toeither their entropies or their statisti
al di�eren
e.The term \statisti
al zero knowledge" 
oined by Goldwasser, Mi
ali, and Ra
ko� [GMR89℄seems almost propheti
 of this 
hara
terization of statisti
al zero knowledge as the 
lass of(approximate) statisti
al properties.A se
ond 
onsequen
e of this theorem is that questions about HVSZK 
an now betranslated to questions about these two spe
i�
 
omplete problems, and 
onversely. Forexample, if we wish to show that every problem in HVSZK has a proof system witha 
ertain properties (su
h as being 
onstant round, publi
 
oin, zero knowledge against
heating veri�ers, or perfe
t zero knowledge), we need only exhibit su
h a proof system forone of the 
omplete problems. Or a question su
h as whether HVSZK is 
losed under
omplementation now translates to asking if one of the 
omplete problems redu
es to its
omplement (whi
h is easily seen for Entropy Differen
e). Indeed, in the remainder ofthis thesis, these 
omplete problems will be used to prove many new results about HVSZKand also obtain mu
h simpler proofs of previously known results.This 
orresponden
e is also fruitful in the reverse dire
tion; that is, from examiningHVSZK, we obtain new results about eÆ
iently samplable distributions, and how their en-tropies and statisti
al di�eren
es 
an be manipulated. Already, we have seen a few examplesof this. The XOR Lemma (Lemma 3.1.16), the Polarization Lemma (Lemma 3.1.12), andthe redu
tion from Entropy Differen
e to Statisti
al Differen
e (Theorem 3.4.8)are all results solely about manipulating eÆ
iently samplable distributions, whi
h are ofinterest independent of their signi�
an
e for zero-knowledge proofs. Yet, we obtained ea
hof these transformations by extra
ting ideas from works on statisti
al zero knowledge. Wewill see additional examples of this in the next 
hapter.



Chapter 4Appli
ations of the CompleteProblemsIn this 
hapter, we give a number of appli
ations of the Completeness Theorem. We brie
ydes
ribe these results by se
tion:Se
tion 4.1 | EÆ
ient HVSZK proof systems. Using the 
ompleteness of Statis-ti
al Differen
e, we prove that every problem in HVSZK has a very 
ommuni
ation-eÆ
ient honest-veri�er statisti
al zero-knowledge proof | namely, a two-message proofsystem with one bit of prover-to-veri�er 
ommuni
ation (to a
hieve soundness error 1=2).Se
tion 4.2 | The 
omplexity of SZK. We dedu
e some of the important results onthe 
omplexity of HVSZK as immediate 
orollaries of the Completeness Theorem. Spe
if-i
ally, Okamoto's result that HVSZK is 
losed under 
omplement [Oka96℄ and the upperbounds of Fortnow [For89℄ and Aiello and H�astad [AH91℄ on the 
omplexity of HVSZKall follow immdeiately.Se
tion 4.3 | Expe
ted polynomial-time simulators. We show how our proof of theCompleteness Theorem implies that our de�nition ofHVSZK (using stri
t polynomial-timesimulators and a se
urity parameter) is a
tually equivalent to the weaker GMR de�nition,and in fa
t equivalent to weak-HVSZK. That is, we show that every problem possessinga weak-HVSZK proof system also possesses an HVSZK proof system in our sense.Se
tion 4.4 | Reversing statisti
al di�eren
e. From the Completeness Theorem andthe 
losure of HVSZK under 
omplement, we dedu
e a novel result about manipulatingthe statisti
al di�eren
e between eÆ
iently samplable distributions. Spe
i�
ally, we givea polynomial-time 
omputable transformation whi
h maps pairs of distributions that arestatisti
ally 
lose (resp., far apart) to pairs that are statisti
ally far apart (resp., 
lose). Wealso extra
t a more expli
it des
ription of su
h a \Reversal Mapping" (that does not passthrough statisti
al zero-knowledge proofs). 67



68 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSSe
tion 4.5 | Closure properties. We prove strong Boolean 
losure properties ofHVSZK using the 
omplete problem Statisti
al Differen
e together with our resultsabout manipulating eÆ
iently samplable distributions (the XOR Lemma, Dire
t Produ
tLemma, Polarization Lemma, and Reversal Mapping). These 
losure properties 
an beinterpreted as giving honest-veri�er statisti
al zero-knowledge proofs for 
omplex assertionsbuilt out simpler assertions already known to be inHVSZK (e.g., proving that at least halfof (x1; : : : ; xm) are yes instan
es of some problem in � 2 HVSZK). Alternatively, these
losure properties 
an be viewed as asserting the 
losure of HVSZK under nonadaptiveCook redu
tions whose post
omputation is done by a log-depth 
ir
uit.Se
tion 4.6 | Knowledge 
omplexity. We 
onsider the notions of knowledge 
om-plexity de�ned in [GMR89, GP91℄, whi
h aim to measure the amount of knowledge that isleaked in an intera
tive proof. We show how (statisti
al) knowledge 
omplexity in the \hintsense" [GP91℄ 
an be understood in terms of statisti
al zero knowledge, and thereby useour results about HVSZK to obtain new results about this form of knowledge 
omplexity.In parti
ular, we obtain the �rst 
ollapse in any of the knowledge 
omplexity hierar
hiesde�ned by Goldrei
h and Petrank [GP91℄. In addition, we obtain some tighter bounds onthe perfe
t knowledge 
omplexity of HVSZK.Se
tion 4.7 | Perfe
t and 
omputational zero knowledge. We apply the simula-tor analyses of Se
tions 3.2 and 3.3 to perfe
t and 
omputational zero-knowledge proofs.We obtain redu
tions to restri
ted versions of Statisti
al Differen
e and EntropyDifferen
e for HVPZK, and nontrivial results for publi
-
oinHVCZK, though they donot seem to yield 
omplete problems.Se
tion 4.8 | Zero-knowledge proofs for hard problems imply one-way fun
-tions. Using the 
ompleteness of Statisti
al Differen
e, we obtain a simpler proof ofa theorem of Ostrovsky [Ost91℄, whi
h asserts that if HVSZK 
ontains a hard-on-averagelanguage, then one-way fun
tions exist. We also 
onsider the generalization of Ostrovsky'sresult to 
omputational zero knowledge, due to Ostrovsky and Wigderson [OW93℄. Usingthe simulator analysis from Se
tion 4.7, we also obtain a simpler proof of the Ostrovsky{Wigderson theorem in the 
ase of publi
-
oin 
omputational zero-knowledge proofs.4.1 EÆ
ient HVSZK proof systemsOne immediate 
onsequen
e of the Completeness Theorem is that every problem inHVSZKinherits a proof system with the ni
e properties possessed by the one for Statisti
alDifferen
e (Proto
ol 3.1.19).Corollary 4.1.1 Every problem inHVSZK has an honest-veri�er statisti
al zero-knowledgeproof system with the following properties:1. The proof system ex
hanges only 2 messages.2. The prover-to-veri�er 
ommuni
ation is only 1 bit.



4.2. THE COMPLEXITY OF SZK 693. The 
ompleteness error and simulator deviation are both 2�k.4. The soundness error is 1=2 + 2�k.5. The prover is deterministi
.Okamoto [Oka96℄ has previously shown that every problem inHVSZK has a 2-messageHVSZK proof, but the other properties listed in Corollary 4.1.1 are new.The soundness error above 
an a
tually be redu
ed to exa
tly 1=2 using a simpletri
k [Gol99℄. Spe
i�
ally, set p = 1=(1 + 2�k+1) and modify the proof system as fol-lows. At the start the veri�er automati
ally reje
ts with probability 1 � p, and otherwisepro
eeds as in the original proof system. The soundness error be
omes p �(1=2+2�k) = 1=2,the 
ompleteness error and simulator deviation be
ome at most 1� p+2�k = O(2�k), andthe other properties listed remain the same.It is easy to see that soundness error � 1=2 is the best a
hievable in nontrivial proofsystems where the prover sends one bit and the 
ompleteness error is small.Proposition 4.1.2 Suppose promise problem � has an intera
tive proof in whi
h the prover-to-veri�er 
ommuni
ation is one bit and the 
ompleteness error 
 and soundness error s are
onstants satisfying 1� 
 > 2s. Then � 2 BPPProof: The following randomized algorithm de
ides �: Simulate the veri�er algorithmfor both possible prover responses. If either response makes the veri�er a

ept, then a

ept.On yes instan
es, this algorithm will a

ept with probability at least 1� 
, sin
e 
om-pleteness tells us that there is a good response with at least that probability. On noinstan
es, this algorithm will a

ept with probability at most 2s, for otherwise a proverstrategy that 
hooses its response uniformly at random will make the veri�er a

ept withprobability greater than s. Sin
e 1 � 
 > 2s and both quantities are 
onstants, the errorprobability of this algorithm 
an be redu
ed via the usual method.4.2 The 
omplexity of SZKFrom the 
omplete problems, we obtain as immediate 
orollaries some of the most importantresults known about the 
omplexity of HVSZK. First note that the 
omplete problemEntropy Differen
e has a trivial redu
tion to its 
omplement | the map (X;Y ) 7!(Y;X). From this (and the 
losure of HVSZK under redu
tions), we obtain a trivial proofof Okamoto's result that HVSZK is 
losed under 
omplement.Corollary 4.2.1 ([Oka96℄) HVSZK is 
losed under 
omplement.From the eÆ
ient proof systems given by Corollary 4.1.1 and 
losure under 
omplement,the main results of Fortnow [For89℄ and Aiello and H�astad [AH91℄ immediately follow.Corollary 4.2.2 ([For89, AH91℄) HVSZK � AM \ 
o-AM.This is a strong upper bound on the 
omplexity of HVSZK, as demonstrated by thefollowing result of Boppana, H�astad, and Za
hos [BHZ87℄.



70 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSProposition 4.2.3 ([BHZ87℄) If NP � 
o-AM, then the Polynomial Hierar
hy (PH)
ollapses.From these two results, it immediately follows that neitherNP nor 
o-NP are 
ontainedin HVSZK unless the PH 
ollapses. Moreover, HVSZK 
annot 
ontain any problem thatis NP-hard under any type of redu
tion that AM \ 
o-AM is 
losed under. As notedin [ESY84, GG98a℄, some 
are must be taken here, sin
e we are dealing with 
lasses ofpromise problems. As a 
lass of promise problems, AM\ 
o-AM is a
tually unlikely to be
losed under the most general form of Cook redu
tions. It is, however, 
losed under Cookredu
tions whi
h are either nonadaptive (i.e., the ora
le queries are made all at on
e, priorto re
eiving any answers) or smart (i.e., the queries do not violate the promise) [ESY84,GG98a℄.1The 
ompleteness of Statisti
al Differen
e also illustrates a 
loser 
onne
tion be-tween HVSZK and BPP than might be evident from their de�nitions.Proposition 4.2.4 Let 1-SD be the promise problem obtained by restri
ting the 
ir
uits inthe de�nition of SD to have only one bit of output. Then 1-SD is 
omplete for BPP.Proof: To see that 1-SD is in BPP, �rst observe that for any distributions X and Y onf0; 1g, StatDi� (X;Y ) = jPr [X = 1℄� Pr [Y = 1℄j :Thus, an estimate on StatDi� (X;Y ) that is 
orre
t within an additive fa
tor of, say, 1/6,
an be obtained by sampling X and Y a 
onstant number of times and 
ounting the numberof ones that o

ur. This is suÆ
ient to de
ide 1-SD.Now we show that every promise problem � 2 BPP redu
es to 1-SD. Let A be theprobabilisti
 polynomial time ma
hine that de
ides � with two-sided error at most 1=3.Given an input x, it is possible to 
ompute in polynomial time a 
ir
uit Xx des
ribingthe 
omputation of A on input x (see, e.g., the proof of Cook's theorem in [Pap94℄). Theinputs to Xx are the random bits used by A's 
omputation on x and the output is 1(resp., 0) if A a

epts (resp., reje
ts). Let Y be a 
ir
uit whi
h always outputs 0. ThenStatDi� (Xx; Y ) = Pr [A(x) a

epts℄, so x 7! (Xx; Y ) is a redu
tion from � to 1-SD.Proposition 4.2.4 remains true even if we allow the 
ir
uits to have output length log-arithmi
 in their size. Analogously restri
ting SD1;1=2 to have one output bit yields a
omplete problem for 
o-RP, and restri
ting the input length of SD to be one bit or loga-rithmi
ally many bits yields a 
omplete problem for P (under logarithmi
-spa
e redu
tions).4.3 Expe
ted polynomial-time simulatorsRe
all that our de�nition of statisti
al zero knowledge di�ers from the de�nition of Gold-wasser, Mi
ali, and Ra
ko� [GMR89℄ in several ways. The GMR de�nition is a weaker1It should be noted that these problems disappear if one 
onsiders only languages. When restri
ted tolanguages, AM \ 
o-AM is 
losed under general Cook redu
tions, and no language in AM \ 
o-AM 
anbe NP-hard with respe
t to even more general forms of redu
ibility (unless PH 
ollapses) [S
h88℄.



4.4. REVERSING STATISTICAL DIFFERENCE 71requirement in that it allows expe
ted polynomial time simulators whose deviation is afun
tion of the input length rather than a separate se
urity parameter. De�nition 2.4.2introdu
es weak-HVSZK as an even weaker notion, in whi
h, for every polynomial p(�),there 
an be a di�erent simulator to a
hieve simulator deviation 1=p(jxj). From the de�ni-tions, HVSZK � weak-HVSZK, and the 
lass satisfying the GMR de�nition (for honestveri�ers) lies between these two 
lasses. Our proof of the 
ompleteness theorem a
tuallydemonstrates that all three of these 
lasses are equal.Corollary 4.3.1 weak-HVSZK = HVSZK.Proof: Theorem 3.3.13 shows that every problem inweak-HVSZK redu
es to ED. Sin
eED 2 HVSZK and HVSZK is 
losed under redu
tions, weak-HVSZK � HVSZK.From Corollary 4.1.1, this implies that every problem in weak-HVSZK in fa
t hasan honest-veri�er statisti
al zero-knowledge proof with exponentially small simulator devi-ation as a fun
tion of a se
urity parameter. Thus, the relatively weak inverse-polynomialsimulation 
ondition of weak-HVSZK 
an always be bootstrapped into this very strongone.4.4 Reversing statisti
al di�eren
eThe 
ompleteness of Statisti
al Differen
e together with the 
losure of HVSZK un-der 
omplementation imply that SD redu
es to SD. This is equivalent to the followingsurprising result about manipulating statisti
al di�eren
e.Corollary 4.4.1 (Reversal Mapping) There is a polynomial-time 
omputable fun
tionthat maps pairs of 
ir
uits (X;Y ) to pairs of 
ir
uits (X 0; Y 0) su
h thatStatDi� (X;Y ) � 2=3 ) StatDi� �X 0; Y 0� � 1=3StatDi� (X;Y ) � 1=3 ) StatDi� �X 0; Y 0� � 2=3Although the statement of this result does not involve zero-knowledge proofs, the proofof it given above and (and its original dis
overy in [SV97℄) both involve transformationsand analysis of statisti
al zero-knowledge proofs. In this se
tion, we give a more dire
t
onstru
tion of su
h a mapping, that does not use zero-knowledge proofs (though it isbased on ideas extra
ted from works on statisti
al zero knowledge [Oka96, SV97, GV99℄).Re
all that the other 
omplete problem for HVSZK, Entropy Differen
e, has atrivial redu
tion to its 
omplement, namely the map (X;Y ) 7! (Y;X). Also re
all that,in Se
tion 3.4, we gave a dire
t redu
tion from ED to SD. Thus, to redu
e SD to its
omplement, it suÆ
es to give a dire
t redu
tion from SD to ED. That is what we pro
eedto do.Let (X0;X1) be an instan
e of SD and 
onsider the following joint distribution Y =(X;B):Y = (X;B): Choose b f0; 1g. Sample x Xb. Output (x; b).



72 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSIntuitively, if X0 and X1 are statisti
ally very far apart, then b is essentially determined byx, and therefore H(Y ) � H(X). On the other hand, if X0 and X1 are statisti
ally very 
lose,then b is essentially independent of x and therefore H(Y ) � H(X) + 1. Thus, the statisti
al
loseness of X0 and X1 is 
onverted into entropy; this same 
onstru
tion was used byGoldrei
h [Gol90℄ in the 
omputational setting to 
onvert 
omputational indistinguishabilityinto \false entropy."We now make this intuition quantitative by estimating H(Y ) as a fun
tion of H(X) andthe statisti
al di�eren
e between X0 and X1.Claim 4.4.2 Let Æ = StatDi� (X0;X1). Then 1� Æ � H(Y )�H(X) � H2((1 + Æ)=2).Proof of 
laim: By Fa
t 3.3.7, H(Y ) = H(X) + H(BjX), so our task is tobound H(BjX) above and below. For the lower bound, 
onsider the des
riptionof statisti
al di�eren
e in terms of area (Fa
t 3.1.9 and Figure 3-1). Withoutloss of generality, assume that both X0 and X1 have n output gates and therebyde�ne distributions on universe U = f0; 1gn. Let C, X+0 , and X+1 denote thedistributions on U indu
ed by 
hoosing a point uniformly in the 
ommon region,X0-above region, and X1-above region, respe
tively. We 
an think of Y as beinggenerated as in the proof of Lemma 3.1.8: A biased 
oin D is 
ipped su
h thatD is 0 with probability 1� Æ. If D = 0, then X is 
hosen a

ording to C and Bis sele
ted uniformly in f0; 1g. If D = 1, then B is sele
ted uniformly in f0; 1gand X is 
hosen a

ording to X+B . Now, 
onditioned on D = 0, B is uniform inf0; 1g and independent of X, soH(BjX) � H(BjX;D) � 1� Æ;whi
h gives the lower bound in the 
laim.For the upper bound, note that the distribution of (X;B) is the same as thedistribution of (x; b) in Proto
ol 3.1.4. Let P (x) denote the spe
i�ed prover'sguess for b when given x in the proto
ol (i.e., P (x) = 0 i� Pr [X0 = x℄ >Pr [X1 = x℄). In Lemma 3.1.8, we showed that P (X) = B with probability(1 + Æ)=2. Let E be the indi
ator for the event that P (X) = B. Then,H(BjX) � H(E) + H(BjX;E) = H2�1 + Æ2 �+ 0;sin
e B is determined by X and E. 2Plugging in Æ = 1=3; 2=3 into this 
laim, we see:(X0;X1) 2 SDY ) H(Y )�H(X) � H2(5=6) < :651(X0;X1) 2 SDN ) H(Y )�H(X) � 1� 1=3 > :666If we let X 0 = 
200X 
 U132, where U132 is the uniform distribution on 132 bits, andY 0 = 
200Y , then(X0;X1) 2 SDY ) H(Y 0)�H(X 0) < :651 � 200� 132 < �1(X0;X1) 2 SDN ) H(Y 0)�H(X 0) > :666 � 200� 132 > 1:



4.5. CLOSURE PROPERTIES 73Thus, (X0;X1) 7! (X 0; Y 0) is a redu
tion from SD to ED, as desired.Remark 4.4.3 Clearly, the above te
hnique 
an be used to redu
e SD�;� to ED for any
onstants � and � su
h that H2((1 + �)=2) < 1 � �. After redu
ing to ED, one 
anapply the redu
tion from ED to SD (Theorem 3.4.8) and the Polarization Lemma for SD(Lemma 3.1.12), to obtain a Polarization Lemma for SD�;� . Unfortunately, it turns out thatH2((1 +�)=2) � 1��2 for all � 2 [0; 1℄, so we must have �2 > � for this to work, in whi
h
ase Lemma 3.1.12 applies dire
tly. Hen
e, this does not answer Open Problem 3.1.18.In addition, both the upper and lower bounds in Claim 4.4.2 are tight. To mat
hthe lower bound, 
onsider a universe of three points U = f0; 1; 2g, de�ne X0 to be 0 withprobability Æ and 2 otherwise, and de�neX1 to be 1 with probability Æ and 2 otherwise. ThenStatDi� (X0;X1) = Æ and H(BjX) = 1� Æ. To mat
h the upper bound, 
onsider a universeof two points U = f0; 1g, de�ne X0 to be 0 with probability (1 + Æ)=2 and 1 otherwise, andX1 to be 1 with probability (1 + Æ)=2 and 0 otherwise. Then StatDi� (X0;X1) = Æ andH(BjX) = H2((1 + Æ)=2).4.5 Closure propertiesWe have already shown that HVSZK has two 
losure properties. Closure under Karpredu
tions (Proposition 2.4.1), whi
h is a 
omputational 
losure property, follows immedi-ately from our se
urity-parameter based de�nition. Closure under 
omplementation (Corol-lary 4.2.1), whi
h is a Boolean 
losure property, follows from the symmetry of the 
ompleteproblem Entropy Differen
e. In this se
tion, we will prove that HVSZK satis�es astronger 
losure property that is both 
omputational and Boolean in nature.In order to motivate the 
losure property, we �rst des
ribe the 
onsequen
e it will havefor statisti
al zero-knowledge proofs. Suppose � is a problem in HVSZK and a proverwishes to 
onvin
e a veri�er not just that a string is a yes instan
e of �, but also that some
omplex expressions built out of � are true. For example, they might be given m instan
esx1; : : : ; xm of �, and the prover wishes to 
onvin
e the veri�er that exa
tly half of these areyes instan
es. Or more generally, they are given m instan
es of � together with an m-aryBoolean formula �(v1; : : : ; vm), and the prover wants to 
onvin
e the veri�er that � is truewhen v1; : : : ; vm are set to 0 or 1 a

ording to whether xi is a yes or no instan
e of �. Inthis se
tion, we demonstrate that su
h Boolean expressions over � 
an be proven in (honest-veri�er) statisti
al zero knowledge as long as � 2 HVSZK. Moreover, the intera
tion ispolynomially-bounded not just in jx1j; : : : ; jxmj and the se
urity parameter, but also in mand j�j.In order to deal with instan
es of promise problems that violate the promise, we willwork with an extension of Boolean algebra that in
ludes an additional \ambiguous" value?.De�nition 4.5.1 A partial assignment to variables v1; : : : ; vk is a k-tuple a = (a1; : : : ; ak) 2f0; 1; ?gk. For a propositional formula (or 
ir
uit) � on variables v1; : : : ; vk, the evaluation



74 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMS�(a) is re
ursively de�ned as follows:vi(a) = ai (� ^  )(a) = ( 1 if �(a) = 1 and  (a) = 10 if �(a) = 0 or  (a) = 0? otherwise(:�)(a) = 8<: 1 if �(a) = 00 if �(a) = 1? if �(a) = ? (� _  )(a) = ( 1 if �(a) = 1 or  (a) = 10 if �(a) = 0 and  (a) = 0? otherwiseNote that �(a) equals 1 (resp., 0) for some partial assignment a, then �(a0) also equals1 (resp., 0) for every Boolean a0 obtained by repla
ing every ? in a with either a 0 or1. The 
onverse, however, is not true: The formula � = v _ :v evaluates to 1 on everyBoolean assignment, yet is not 1 when evaluated at ?. Thus, the \law of ex
luded middle"� _ :� � 1 no longer holds in this setting. However, other identities in boolean algebrasu
h as De Morgan's laws (e.g. :(� _  ) � :� ^ : ) do remain true.De�nition 4.5.2 For a promise problem �, the 
hara
teristi
 fun
tion of � is the map�� : f0; 1g� ! f0; 1; ?g given by ��(x) = ( 1 if x 2 �Y0 if x 2 �N? otherwiseThe following de�nition des
ribes pre
isely what kind of Boolean 
losure properties wewill a
hieve. (Later, we will see how it 
an also be interpreted as 
losure under a 
ertain
lass of polynomial-time redu
tions.)De�nition 4.5.3 For any promise problem �, we de�ne a new promise problem �(�) asfollows: �(�)Y = f(�; x1; : : : ; xm) : �(��(x1); : : : ; ��(xm)) = 1g�(�)N = f(�; x1; : : : ; xk) : �(��(x1); : : : ; ��(xm)) = 0g;where � is a m-ary propositional formula. Mon(�) is de�ned analogously, ex
ept that onlymonotone � (i.e., without negations) are 
onsidered.De Santis et. al. [DDPY94℄ show that Mon(L) 2 PZK for any language L whi
h is\random self-redu
ible" or whose 
omplement is self-redu
ible. They also show Mon(L) 2HVSZK for any language whose 
omplement has a \nonintera
tive" statisti
al zero-knowledgeproof. In addition, they give statisti
al zero-knowledge proofs for some simple statementsinvolving a random-self-redu
ible language and its 
omplement and for threshold formulaeover random-self-redu
ible languages. Damg�ard and Cramer [DC96℄ extend some of theseresults by showing that for any language L whi
h has a 3-message honest-veri�er publi
-
oinstatisti
al (resp., perfe
t) zero-knowledge proof, Mon(L) 2 SZK (resp., Mon(L) 2 PZK)and Mon(L) 2 HVSZK. The results of [DC96℄ a
tually apply to all monotone fun
tionswhi
h have an \eÆ
ient se
ret-sharing s
heme with 
ompletion," not just monotone formu-lae. In this se
tion, we prove a result whi
h holds for all of HVSZK and for all Booleanformulae, not just monotone ones:



4.5. CLOSURE PROPERTIES 75Theorem 4.5.4 For any promise problem � 2 HVSZK, �(�) 2 HVSZK.Although some of the results of [DDPY94, DC96℄ yield proof systems that are zeroknowledge even for 
heating veri�ers, this theorem only yields honest-veri�er proof systems.However, this weakness will be removed in Chapter 6, when we prove thatHVSZK = SZK.First, let us see how strong a result follows dire
tly from what we have already shown.Note that it is trivial to give a proof system when we restri
t to formulae whi
h are 
on-jun
tions, i.e., �(v1; : : : ; vm) = Vmi=1 vi. The prover and veri�er exe
ute the HVSZK proofsystem for � (with error redu
ed to� 1=m) on ea
h of the inputs xi and the veri�er a

eptsi� it would a

ept in all m exe
utions. This 
an be simulated by running the simulator for�'s proof system m times, on ea
h of the inputs. If all the xi's are yes instan
es (i.e., theformula is true when all the vi's are set appropriately), then this simulation will be good,with deviation in
reased just by a fa
tor of m.Combining this observation with the fa
t that HVSZK is 
losed under 
omplementa-tion, it follows that we 
an also handle disjun
tions. By an indu
tive argument, one 
anthen 
onstru
t proof systems for arbitrary formulae. This, however, does not yield ourdesired result, be
ause the proof system may not be polynomially bounded in the size ofthe formula. Suppose, for example, that transforming the proof system for a problem �into one for its 
omplement or one for disjun
tions over � squares the running time of theproof system. Then one 
an only a�ord to apply the indu
tive step a 
onstant numberof times while keeping the time polynomial. Therefore, one obtains a 
losure result for
onstant-depth formulae (with unbounded fan-in), whi
h are provably weaker than generalformulae and do not 
ontain simple fun
tions like parity and majority [FSS84℄.To obtain a more eÆ
ient 
onstru
tion, we �rst observe that it suÆ
es to fo
us on the
omplete problem Statisti
al Differen
e. We then note that the te
hniques developedby De Santis et. al. to show that Mon(L) 2 HVSZK for any random self-redu
ible languageL dire
tly generalize to SD. Spe
i�
ally, our Dire
t Produ
t Lemma (Lemma 3.1.15) andXOR Lemma (Lemma 3.1.16) are generalizations of the methods they use to represent ANDand OR over random self-redu
ible languages. Combining these with our Reversal Mapping(Corollary 4.4.1) and Polarization Lemma (Lemma 3.1.12), we are able to eÆ
iently handleany Boolean formula over SD. The resulting 
onstru
tion 
an be viewed as purely an eÆ-
ient pro
edure for manipulating statisti
al di�eren
e, whi
h may be of interest independentof statisti
al zero knowledge:Lemma 4.5.5 �(SD) redu
es to SD.Proof: For intuition, 
onsider two instan
es of statisti
al di�eren
e (X0;X1) and (Y0; Y1),both of whi
h have statisti
al di�eren
e very 
lose to 1 or very 
lose to 0 (whi
h 
an bea
hieved by the Polarization Lemma). Then (X0
Y0;X1
Y1) will have statisti
al di�eren
every 
lose to 1 if either of the original statisti
al di�eren
es is very 
lose to 1 and will havestatisti
al di�eren
e very 
lose to 0 otherwise. Thus, this operation represents OR. Similarly,the XOR operation in Proposition 3.1.17 represents AND. To obtain Lemma 4.5.5, we willre
ursively apply these 
onstru
tions, taking 
are to keep the running time polynomial.Let w = (�; (X10 ;X11 ); : : : ; (Xm0 ;Xm1 )) be an instan
e of �(SD). By applying De Mor-gan's Laws, we may assume that the only negations in � are applied dire
tly to the vari-ables. By the Polarization Lemma (Lemma 3.1.12) and the Reversal Mapping (Corol-



76 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSlary 4.4.1), we 
an 
onstru
t in polynomial time pairs of 
ir
uits (Y 10 ; Y 11 ); : : : ; (Y m0 ; Y m1 )and (Z10 ; Z11 ); : : : ; (Zm0 ; Zm1 ) su
h that(Xi0;Xi1) 2 SDY ) StatDi� �Y i0 ; Y i1 � � 1� 13j�j and StatDi� �Zi0; Zi1� � 13j�j(Xi0;Xi1) 2 SDN ) StatDi� �Y i0 ; Y i1 � � 13j�j and StatDi� �Zi0; Zi1� � 1� 13j�j :Consider the randomized re
ursive pro
edure Samplew( ; b), given in Algorithm 4.5.6,whi
h takes a subformula  of � and a bit b as input.Algorithm 4.5.6: Samplew( ; b)Input: A subformula  of � and a bit b 2 f0; 1g1. If  = vi, sample z  Y ib .2. If  = :vi, sample z  Zib.3. If  = � _ �,(a) Sample z1  Samplew(�; b);(b) Sample z2  Samplew(�; b);(
) Let z = (z1; z2).4. If  = � ^ �,(a) Choose 
; d f0; 1g subje
t to 
� d = b;(b) Sample z1  Samplew(�; 
);(
) Sample z2  Samplew(�; d);(d) Let z = (z1; z2).5. Output z.Exe
uting Samplew(�; b) for b 2 f0; 1g takes time polynomial in jwj, be
ause the numberof re
ursive 
alls is equal to the number of subformulae of �. For a subformula � of �, let�(�) = StatDi� (Samplew(�; 0);Samplew(�; 1)). Then we 
an prove the following about �:Claim 4.5.7 Let a = (�SD(X10 ;X11 ); : : : ; �SD(Xm0 ;Xm1 )). For every subformula  of �, wehave:  (a) = 1 ) �( ) � 1� j j3j�j



4.5. CLOSURE PROPERTIES 77 (a) = 0 ) �( ) � j j3j�j :Note that nothing is 
laimed when  (a) = ?.Proof of 
laim: By indu
tion on subformulae of �. It holds for atomi
subformulae (i.e., the variables vi and their negations :vi) by the properties ofthe Y ib 's and Zib's.Consider the 
ase when  = � _ �. By 
onstru
tion, Samplew( ; b) =Samplew(�; b) 
 Samplew(�; b). If  (a) = 1, then either �(a) = 1 or �(a) = 1.Without loss of generality, say �(a) = 1. Then, by Fa
t 2.2.2 (Item 5) andindu
tion, �( ) � �(�) � 1� j� j3j�j � 1� j j3j�j :If  (a) = 0, then both �(a) = �(a) = 0. By Fa
t 3.1.14 and indu
tion,�( ) � �(�) + �(�) � j� j3j�j + j�j3j�j � j j3j�j :Now 
onsider the 
ase when  = � ^ �. By 
onstru
tion, the distributionsfor  are those obtained by applying the XOR 
onstru
tion (Proposition 3.1.17)to the distributions for � and �. Hen
e, �( ) = �(�) ��(�). If  (a) = 1, then,by indu
tion,�( ) � �1� j� j3j�j� ��1� j�j3j�j� > 1� j� j+ j�j3j�j � 1� j j3j�j :If  (a) = 0, then, without loss of generality, say �(a) = 0. By indu
tion,�( ) � �(�) � j� j3j�j � j j3j�j : 2Let A andB be 
ir
uits des
ribing the 
omputations of Samplew(�; 0) and Samplew(�; 1),respe
tively, (whi
h take the random bits ea
h pro
edure uses as input). By the above 
laim,StatDi� (A;B) � 2=3 if w 2 �(SD)Y and StatDi� (A;B) � 1=3 if w 2 �(SD)N . In otherwords, the 
onstru
tion of A and B from w des
ribes a Karp redu
tion from �(SD) to SD.This redu
tion 
an be 
omputed in polynomial time be
ause Sample runs in polynomialtime.Theorem 4.5.4 follows readily from Lemma 4.5.5:Proof of Theorem 4.5.4: Let � be any promise problem in HVSZK. By the 
om-pleteness of SD, there is a redu
tion from � to SD. This indu
es a redu
tion from �(�) to�(SD). Composing this with the redu
tion in Lemma 4.5.5, we see that �(�) redu
es toSD 2 HVSZK. Sin
e HVSZK is 
losed under redu
tions, �(�) 2HVSZK.



78 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSExamining the proof of Lemma 4.5.5 more 
losely, it is easy to see that all parts of the
onstru
tion, ex
ept for the Reversal Mapping, preserve the extreme 
ases of SD (i.e., sta-tisti
al di�eren
e 0 or 1, respe
tively). Thus, we obtain the following additional redu
tions.Proposition 4.5.8 Mon(�) redu
es to � for � 2 nSD1;0;SD1;1=2;SD1=2;0o. In parti
ular,Mon(SD1;1=2) 2 HVPZK.Theorem 4.5.4, though stated as a sort of Boolean 
losure property, 
an also be viewedfrom a more 
omputational point of view, as asserting the 
losure of HVSZK under a
ertain 
lass of redu
tions.De�nition 4.5.9 (truth-table redu
tion [LLS75℄) We say a promise problem � truth-table redu
es to a promise problem �, written � �tt �, if there exists a (deterministi
)polynomial-time 
omputable fun
tion f , whi
h on input x produ
es a tuple (y1; y2; : : : ; ym)and a 
ir
uit C (with m input gates), su
h thatx 2 �Y ) C(��(y1); : : : ; ��(ym)) = 1x 2 �N ) C(��(y1); : : : ; ��(ym)) = 0Truth-table redu
tions are easily seen to be equivalent to nonadaptive Cook redu
tions.We further 
onsider the 
ase where we restri
t the 
omplexity of 
omputing the output ofthe redu
tion from the answers to the queries:De�nition 4.5.10 (NC1 truth-table redu
tions) A truth-table redu
tion f between promiseproblems is an NC1 truth-table redu
tion2 if the 
ir
uit C produ
ed by the redu
tion oninput x has fan-in 2 and depth bounded by 
f log jxj, where 
f is a 
onstant independent ofx. If there is an NC1 truth-table redu
tion from � to �, we write � �NC1�tt �.It is easy to see that 
losure under NC1 truth-table redu
tions is equivalent to 
losureunder the �(�) operator (together with 
losure under Karp redu
tions).Proposition 4.5.11 A 
lass C of promise problems is 
losed under NC1 truth-table re-du
tions i� the following two 
onditions hold:1. � 2 C) �(�) 2 C.2. C is 
losed under Karp redu
tions.Proof: ). Suppose C is 
losed under NC1 truth-table redu
tions. It is well-knownthat every formula � 
an be transformed (in polynomial time) to an equivalent \balan
ed"formula �0 of depth O(log j�j) [Spi71℄. Thus the map (�; x1; : : : ; xm) 7! (�0; x1; : : : ; xm)is an NC1 truth-table redu
tion from �(�) to � for any promise problem �. Thus, if� 2 C, then �(�) 2 C. For 
losure under Karp redu
tions, we simply note that every2This terminology is inherited from the NC hierar
hy of languages, where NCi denotes the 
lass oflanguages de
ided by (uniform) families of 
ir
uits of depth O(logi n). See, e.g., [Sip97, Pap94℄.



4.6. KNOWLEDGE COMPLEXITY 79Karp redu
tion is also an NC1 truth-table redu
tion (take C to be the identity fun
tion onone variable).(. Suppose that C is 
losed under �(�) and Karp redu
tions. Any 
ir
uit C of depth d
an be transformed in time poly(jCj; 2d) into a formula �C . Let f be an NC1 truth-tableredu
tion from a promise problem � to a promise problem � 2 C. Composing f with themap (C; x1; : : : ; xm) 7! (�C ; x1; : : : ; xm) gives a Karp redu
tion from � to �(�) (
omputablein time poly(jxj; 2
f log jxj) = poly(jxj)). By 
losure under �(�) and Karp redu
tions, it followthat � 2 C.Thus, we have:Corollary 4.5.12 HVSZK is 
losed under NC1 truth-table redu
tions.This shows that HVSZK has a substantial amount of robustness and ri
hness as a 
lassof 
omputational problems. It would be very interesting to strengthen this result to moregeneral forms of Cook or truth-table redu
tions, or give eviden
e that it is not possible todo so.Open Problem 4.5.13 IsHVSZK 
losed under general truth-table redu
tions? or (adap-tive) Cook redu
tions?4.6 Knowledge 
omplexityThe various de�nitions of zero-knowledge proofs beautifully 
apture what it means to learn\nothing" from an intera
tive proof. For intera
tive proofs whi
h are not zero knowledge,it is natural to try to measure how mu
h the veri�er learns from the proof. Indeed, the
onferen
e version of the paper of Goldwasser, Mi
ali, and Ra
ko� [GMR89℄ whi
h intro-du
ed zero-knowledge proofs also suggested a more general notion of knowledge 
omplexityto a

omplish this task. However, the formalization of (non-zero) knowledge 
omplexitysuggested there does not seem to 
oin
ide with an intuitive notion of how mu
h knowledgeis leaked in a proto
ol (
f., [GP91℄). Goldrei
h and Petrank [GP91℄ presented a number ofalternative de�nitions of knowledge 
omplexity, whi
h have been studied further by a num-ber of resear
hers [GP91, GOP98, ABV95, PT96℄. In this se
tion, we use the results we haveobtained on statisti
al zero knowledge to obtain new results about (non-zero) knowledge
omplexity.4.6.1 De�nitionsRe
all that zero-knowledge proofs are de�ned by requiring that there is an eÆ
ient simulatorwhose output is \
lose" to the veri�er's view of the intera
tion with the prover. Most of thede�nitions given by Goldrei
h and Petrank measure knowledge 
omplexity by how mu
h\help" a simulator needs to produ
e a good simulation. The various formulations arise fromallowing the help to be given in di�erent forms (e.g., as a string or from an ora
le) and fromdi�erent methods of measuring the amount of help (e.g., averaging over the simulator's 
ointosses or taking the maximum).



80 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSThere is one subtlety in our versions of the de�nitions that does not arise in the literature.In our de�nitions of intera
tive proofs and zero-knowledge proofs, the error parameters are
ontrolled by a se
urity parameter independent of the input length. It is not 
lear whetherthe knowledge 
omplexity should be measured as a fun
tion of the se
urity parameter inaddition to the input length. It is not even 
lear whether for \natural" problems, the knowl-edge 
omplexity would be in
reasing or de
reasing as a fun
tion of the se
urity parameter.On one hand, the prover may have to reveal more knowledge in order to redu
e the errorparameters. On the other hand, an in
reased se
urity parameter gives the simulator morerunning time and hen
e the simulator may need less help.Be
ause of this un
lear situation, we allow the knowledge 
omplexity of proof systems tobe a fun
tion of both the input length and the se
urity parameter, but, in order to maintain
onsisten
y with the literature, we set the se
urity parameter equal to the input length whende�ning the knowledge 
omplexity of promise problems and the asso
iated hierar
hies.3 Inall our de�nitions, the knowledge 
omplexity of a proof system (resp., promise problem) willbe a fun
tion � : N � N ! R (resp., � : N ! R). Throughout our dis
ussion on knowledge
omplexity, we require that �(n; k) (resp., �(n)) is 
omputable in time poly(n; k) (resp.,poly(n)).We now give de�nitions for several forms of knowledge 
omplexity. Modulo some minormodi�
ations for 
onsisten
y with the rest of this thesis, all of these de�nitions are due toto Goldrei
h and Petrank [GP91℄, ex
ept for knowledge 
omplexity in the \entropy sense"whi
h is due to Aiello, Bellare, and Venkatesan [ABV95℄. We only give de�nitions for perfe
tand statisti
al knowledge 
omplexity, as all languages in IP have 
omputational knowledge
omplexity zero (i.e., are in CZK) if (nonuniformly) one-way fun
tions exist [GMW91,IY87, BGG+88℄. We also only give de�nitions for honest veri�ers, sin
e we have not yeteven given the de�nition of zero knowledge for 
heating veri�ers.The �rst de�nition of knowledge 
omplexity provides \help" to the simulator in themost dire
t manner | as a \hint" string given as an additional input.De�nition 4.6.1 (hint sense) Let (P; V ) be an intera
tive proof system for a promiseproblem �. The statisti
al knowledge 
omplexity of (P; V ) in the hint sense is said to be� : N�N ! N if there is a fun
tion h : �Y �N ! f0; 1g�, a useful4 probabilisti
 polynomial-time algorithm S, and a negligible fun
tion � : N ! [0; 1℄ su
h that for all x 2 �Y and allk 2 N,1. jh(x; k)j = �(jxj; k).2. StatDi� �eS(x; 1k; h(x; k)); hP; V i(x; 1k)� � �(k):3This is an admittedly ad-ho
 solution to the problem, and will hopefully be remedied as our understand-ing of knowledge 
omplexity improves. We still would prefer to have the error parameters (
ompleteness,soundness, simulator deviation) 
ontrolled by a se
urity parameter independent of the input length, whereasit seems that knowledge 
omplexity should be primarily a fun
tion of the input length. But, as shown byseveral resear
hers [GOP98, PT96℄, the knowledge 
omplexity and error parameters are not free to varyindependently for 
ertain languages.4Re
all that a probabilisti
 algorithm A is 
alled useful if Pr [A(x) = fail℄ � 1=2 for all x and eA(x)denotes the output distribution of A on input x, 
onditioned on A(x) 6= fail.
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alled the hint, S is 
alled a simulator, and � is 
alled the simulator deviation. If� � 0, then (P; V ) is said to have perfe
t knowledge 
omplexity � in the hint sense.As with zero knowledge, allowing the simulator to fail with probability 1=2 is inessentialfor statisti
al knowledge 
omplexity in the hint sense, as the failure probability 
an be madeexponentially small and absorbed into the simulator deviation.In the remaining de�nitions, help is provided to the simulator by means of an ora
lewhi
h it 
an query. If O : f0; 1g� ! f0; 1g� is any fun
tion and M is an algorithm, thenwe write MO to indi
ate that M is being given ora
le a

ess to M . The �rst ora
le-basedde�nition measures the amount of help provided by the ora
le by the maximum number ofbits it sends to the simulator and does not allow the simulator any failure probability.De�nition 4.6.2 (stri
t ora
le sense) Let (P; V ) be an intera
tive proof system for apromise problem �. The statisti
al knowledge 
omplexity of (P; V ) in the stri
t ora
lesense is said to be � : N � N ! R if there is a fun
tion O : f0; 1g� ! f0; 1g, a probabilisti
polynomial-time algorithm S, and a negligible fun
tion � : N ! [0; 1℄ su
h that for allx 2 �Y and all k 2 N,1. SO(x; 1k) re
eives at most �(jxj; k) bits from O, with probability 1 over the 
oins ofS.2. StatDi� �SO(x; 1k); hP; V i(x; 1k)� � �(k):S is 
alled a simulator and � is 
alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfe
t knowledge 
omplexity � in the stri
t ora
le sense.The next de�nition allows the simulator to fail with probability 1=2.De�nition 4.6.3 (ora
le sense) Let (P; V ) be an intera
tive proof system for a promiseproblem �. The statisti
al knowledge 
omplexity of (P; V ) in the ora
le sense is said to be� : N � N ! R if there is a fun
tion O : f0; 1g� ! f0; 1g, a useful probabilisti
 polynomial-time algorithm S, and a negligible fun
tion � : N ! [0; 1℄ su
h that for all x 2 �Y and allk 2 N,1. SO(x; 1k) re
eives at most �(jxj; k) bits from O, with probability 1 over the 
oins ofS.2. StatDi� �eSO(x; 1k); hP; V i(x; 1k)� � �(k):S is 
alled a simulator and � is 
alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfe
t knowledge 
omplexity � in the ora
le sense.In 
ontrast to statisti
al knowledge 
omplexity in the hint sense, it is not apparentthat allowing the simulator to fail in the ora
le sense is inessential, as redu
ing the failureprobability of the simulator to negligible may involve making more ora
le queries. However,Goldrei
h and Petrank [GP91℄ show that the statisti
al knowledge 
omplexities of anyproof system in the stri
t ora
le and ora
le senses di�er by at most log log k + g(k) for anyunbounded fun
tion g(�) (and this 
annot be improved).The next de�nition measures the average number of bits of help the simulator gets fromthe ora
le.
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le sense) Let (P; V ) be an intera
tive proof system for apromise problem �. The statisti
al knowledge 
omplexity of (P; V ) in the average ora
lesense is said to be � : N � N ! R if there is a fun
tion O : f0; 1g� ! f0; 1g, a usefulprobabilisti
 polynomial-time algorithm S, and a negligible fun
tion � : N ! [0; 1℄ su
h thatfor all x 2 �Y and all k 2 N,1. The expe
ted number of bits that SO(x; 1k) re
eives from O is at most �(jxj; k), withthe expe
tation being taken over the 
oins of S.2. StatDi� �eSO(x; 1k); hP; V i(x; 1k)� � �(k):S is 
alled a simulator and � is 
alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfe
t knowledge 
omplexity � in the average ora
le sense.In 
ontrast to Goldrei
h and Petrank [GP91℄, we allow the simulator fail in de�ning theaverage ora
le sense (as in [ABV95℄). This a�e
ts the knowledge 
omplexity by at most anadditive 
onstant, as the simulator 
an use the ora
le to \hone in" on a non-failing set ofrandom 
oins in an expe
ted 
onstant number of queries, analogous to the proof of [GP91,Prop. 4.6℄. Goldrei
h and Petrank [GP91℄ have shown that the knowledge 
omplexity of aproof system in the average ora
le sense 
an be mu
h smaller than its knowledge 
omplexityin the ora
le sense.To address a feeling that the above measures slightly \over
ount" the knowledge 
om-plexity, parti
ularly for knowledge 
omplexities 
lose to 0, Aiello, Bellare, and Venkate-san [ABV95℄ introdu
ed yet another measure of knowledge 
omplexity. Essentially, thismeasure avoids 
ounting the bits sent from the ora
le to the simulator S to the extent thatthose bits 
an be guessed without a

ess to the ora
le O. That is, another ma
hine S0, 
alledan ora
le simulator, is 
onsidered. S0 is given the input x, the se
urity parameter k, and therandom 
oins R of the simulator, and attempts to guess the output of the simulator withouthaving a

ess to the ora
le O. The unpredi
tability of this output by S0, as measured in anentropy-like fashion, is taken to be an upper bound on the amount of \useful information"obtained from the ora
le.De�nition 4.6.5 (entropy sense) Let (P; V ) be an intera
tive proof system for a promiseproblem �. The statisti
al knowledge 
omplexity of (P; V ) in the entropy sense is said to be� : N � N ! R if there is a fun
tion O : f0; 1g� ! f0; 1g, a useful probabilisti
 polynomial-time algorithm S, a probabilisti
 polynomial-time algorithm S0, and a negligible fun
tion� : N ! [0; 1℄ su
h that for all x 2 �Y and all k 2 N,1. ER [log (1=Px;k(R))℄ � �(jxj; k), where Px;k(R) = Pr� �S0(x; 1k; R; �) = SO(x; 1k;R)�.2. StatDi� �eSO(x; 1k); hP; V i(x; 1k)� � �(k):S is 
alled a simulator and � is 
alled the simulator deviation. If � � 0, then (P; V ) is saidto have perfe
t knowledge 
omplexity � in the entropy sense.Aiello, Bellare, and Venkatesan [ABV95℄ have shown that knowledge 
omplexity in theentropy sense is always at most the knowledge 
omplexity in the average ora
le sense, and
an be smaller by at most an additive 
onstant.
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lear that the prover-to-veri�er 
ommuni
ation of any intera
tive proof upper-bounds its perfe
t knowledge 
omplexity in ea
h of the above senses, ex
ept the hint sense.For this reason, the hint sense is viewed as an inadequate measure of knowledge 
omplex-ity [GP91℄.Ea
h of the above forms of knowledge 
omplexity gives rise to a hierar
hy of promiseproblems.De�nition 4.6.6 (knowledge 
omplexity hierar
hies) A promise problem � has knowl-edge 
omplexity � : N ! R in one of the above senses if there exists an intera
tiveproof for � with negligible 
ompleteness and soundness errors whose knowledge 
omplexity�0 : N � N ! R (in the given sense) satis�es �0(n; n) � �(n) for all n.The 
lasses of promise problems with statisti
al knowledge 
omplexity �(n) in the hint,stri
t ora
le, ora
le, average ora
le, and entropy senses are denoted by SKChint(�(n)),SKCstri
t(�(n)) SKCora
le(�(n)), SKCavg(�(n)), and SKCent(�(n)), respe
tively. The
lasses of promise problems with perfe
t knowledge 
omplexity are similarly denoted by PKCwith the appropriate subs
ript.Sin
e the above de�nition only refers to 
ase when the se
urity parameter is equal to theinput length, we will often omit the se
urity parameter from the notation in what follows.It is 
lear that the bottom level (i.e., �(n) � 0) of ea
h of the statisti
al (resp., perfe
t)knowledge 
omplexity hierar
hies is exa
tly HVSZK (resp., HVPZK). An importantquestion about these hierar
hies is whether they are stri
t or not, and previously no 
ollapseswere known for any of them.4.6.2 A Collapse for the Hint Hierar
hyThe �rst thing we will prove in this se
tion is a lemma showing that statisti
al knowledge
omplexity in the hint sense 
an be expressed in terms of statisti
al zero knowledge. Thislemma will enable us to immediately dedu
e a number of results about the SKChint hier-ar
hy from our results on HVSZK. Most signi�
antly, the Boolean 
losure properties ofHVSZK demonstrated in the previous se
tion will easily imply that the statisti
al knowl-edge 
omplexity hierar
hy for the hint sense 
ollapses by logarithmi
 additive terms at alllevels. As mentioned earlier, the hint sense has some de�
ien
ies as a measure of knowledge
omplexity, so it would be of greater interest to obtain su
h results for the other forms ofknowledge 
omplexity. Our results are best viewed as a �rst step in this dire
tion.Lemma 4.6.7 Let � : N ! N be any polynomially bounded fun
tion. Then � 2 SKChint(�(n))(resp., PKChint(�(n))) i� there exists a promise problem � 2 HVSZK (resp., HVPZK)su
h that1. x 2 �Y ) there exists a 2 f0; 1g�(jxj) su
h that (x; a) 2 �Y , and2. x 2 �N ) for all a, (x; a) 2 �N .Proof: We only give the proof for statisti
al knowledge 
omplexity and zero knowledge;the perfe
t 
ase is similar.



84 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMS) Let � be a promise problem in SKChint(�(n)) and let h : �Y ! f0; 1g�. be a hintfun
tion 
orresponding to an appropriate intera
tive proof system and simulator for �.Consider the following promise problem �:�Y = f(x; h(x)) : x 2 �Y g�N = f(x; a) : x 2 �NgThe proto
ol and simulator for � almost immediately yield an honest-veri�er statisti
al zero-knowledge proof for � (the veri�er and prover for � should ignore the se
ond 
omponentof the input and the simulator should use it as a hint). There is one small te
hni
ality,however. Sin
e our de�nition of SKChint(�(n)) only refers to the knowledge 
omplexitywhen the se
urity parameter is set equal to the input length, the simulator deviation of theresulting proof system for � is only negligible as a fun
tion of the input length, not these
urity parameter. So, we only obtain � 2 weak-HVSZK. But now we 
an apply ourresult that weak-HVSZK = HVSZK (Corollary 4.3.1). It is 
lear that � satis�es theother 
onditions of Lemma 4.6.7.( Let � 2 HVSZK be the promise problem satisfying the stated 
onditions. Let h :�Y ! f0; 1g� be any fun
tion satisfying1. For all x, jh(x)j = �(jxj),2. x 2 �Y ) (x; h(x)) 2 �Y .(Su
h a fun
tion is guaranteed by Condition 1.) We now give a proof system for � ofknowledge 
omplexity �(n). On input x, the prover gives the veri�er h(x) in the �rst step,and then they exe
ute the proto
ol for � on (x; h(x)). The 
ompleteness and soundness ofthis proto
ol follow from the properties of �'s proof system. This proof system is easilyseen to have knowledge 
omplexity �(n) in the hint sense, using h as the hint fun
tion andthe same simulator as for �'s proof system.From this lemma and its proof, we 
an immediately apply some of our results aboutHVSZK to SKChint. First, looking at the proof of the \if" (() dire
tion of Lemma 4.6.7,we see that any problem in SKChint(�(n)) has a proof system whi
h is simply an HVSZKproof system augmented by the prover sending �(n) bits in the �rst message. Combining thiswith the eÆ
ient HVSZK proof systems of Corollary 4.1.1 (possibly repeated in parallel),we obtain the following:Corollary 4.6.8 Let �; t : N ! N be any two polynomially bounded fun
tions whi
h areboth 
omputable in time polynomial in their arguments. Every problem in SKChint(�(n))has an intera
tive proof system with the following properties (on input (x; 1k)):1. The statisti
al knowledge 
omplexity is �(jxj).2. The proof system ex
hanges only 3 messages.3. The prover-to-veri�er 
ommuni
ation is �(jxj) + t(k) bits.
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ompleteness error and simulator deviation are both 2�k.5. The soundness error is 1=2t(k).6. The prover is deterministi
.In parti
ular, we have:Corollary 4.6.9 ([GP91℄) For any polynomially bounded fun
tion � : N ! N,SKChint(�(n)) � AM:A
tually, this 
orollary does not neeed the full power of Corollary 4.1.1. The result of Aielloand H�astad [AH91℄ that HVSZK � AM (
f., Corollary 4.2.2) together with Lemma 4.6.7suÆ
es.By Proposition 4.2.3, 
o-NP does not have polynomial statisti
al knowledge 
omplexityin the hint sense unless the Polynomial Hierar
hy 
ollapses. On the other hand, 
o-NPdoes possess intera
tive proofs in whi
h the prover sends only polynomially many bits tothe veri�er (by de�nition) [LFKN92℄; this intuitively should imply that the veri�er is onlygaining polynomially many bits of knowledge. This dis
repan
y is one of the de�
ien
iesof the hint sense as a measure of knowledge 
omplexity pointed out by Goldrei
h andPetrank [GP91℄.Another result of ours aboutHVSZK that 
an be dire
tly applied to SKChint is Corol-lary 4.3.1, whi
h states that weak-HVSZK = HVSZK. In analogy with weak-HVSZK,on
e 
an de�ne weak forms of the SKC hierar
hies, in whi
h for every polynomial p : N ! Nthere should be a simulator that a
hieves simulator deviation 1=p(jxj) on input x using �(jxj)bits of help.Corollary 4.6.10 For any polynomially bounded fun
tion � : N ! Nweak-SKChint(�(n)) = SKChint(�(n)):Proof: Note that the proof of the \only if" ()) dire
tion of Lemma 4.6.7 yields � 2weak-HVSZK = HVSZK satisfying the properties listed in lemma even if � is only inweak-SKChint(�(n)). Now, applying the \if" (() dire
tion of the lemma to �, we see that� is a
tually in (non-weak) SKChint(�(n)).Finally, we use the Boolean 
losure properties we have proven about HVSZK to showa 
ollapse in the SKChint hierar
hy.Theorem 4.6.11 For any polynomially bounded fun
tion � : N ! R,SKChint(�(n) + log n) = SKChint(�(n)):Proof: For intuition, 
onsider the 
ase � � 0, and let � be any promise problem inSKChint(log n). By Lemma 4.6.7, there is a promise problem � 2 HVSZK su
h thatproving that x is a yes instan
e of � amounts to proving that for at least one stringa of length log jxj, (x; a) is a yes instan
e of �. This is an OR of polynomially many



86 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSstatements about membership in �. In Se
tion 4.5, we showed that any su
h Booleanformula over a problem in HVSZK 
an also be proven in HVSZK, so it follows that� 2 HVSZK = SKChint(0), as desired. To deal with �(n) > 0, we only take the OR overthe last log n bits of the hint, and use the \if" dire
tion of Lemma 4.6.7 to pass ba
k toSKChint.We now pro
eed with the formal proof. Let � be a language in SKChint(�(n) + logn)and let � be the related promise problem guaranteed by the \only if" ()) dire
tion ofLemma 4.6.7. Now 
onsider a di�erent promise problem �0, de�ned by�0Y = f(x; a)) : there exists b su
h that jbj = log jxj and (x; ab) 2 �Y g�0N = f(x; a) : for all b, (x; ab) 2 �Ng = f(x; a) : x 2 �Ng:For any string x, let m = log jxj, let b1; : : : ; bn be all strings of length m, and let � bethe formula �(v1; : : : ; vn) = Wi vi. The de�nition of �0 implies that(x; a) 7! (�; (x; ab1); : : : ; (x; abn))is anNC1 truth-table redu
tion from �0 to �. Sin
eHVSZK is 
losed under su
h redu
tions(Corollary 4.5.12), �0 2 HVSZK.Now, if x 2 �Y , then there exists an a of length �(jxj) + log(jxj) su
h that (x; a) 2 �Y .Taking a0 to be the �rst �(jxj) bits of a, we see that there exists an a0 of length �(jxj) su
hthat (x; a0) 2 �0Y . On the other hand, if x 2 �N , then for all a, (x; a) 2 �0N . Thus, by the\if" (() dire
tion of Lemma 4.6.7, we 
on
lude that � 2 SKChint(�(n)).It would be unexpe
ted to strengthen Theorem 4.6.11 by in
reasing the logn to anyfun
tion f(n) = !(log n), be
ause SKChint(f(n)) 
ontains every problem solvable in non-deterministi
 time f(n) (a
tually even polynomial time with f(n) bits of nondeterminism),and it seems unlikely that all su
h problems would be 
ontained in HVSZK � 
o-AM.As stated above, it would be more signi�
ant to obtain a similar 
ollapse for one ofthe other forms of knowledge 
omplexity, or give eviden
e that su
h a 
ollapse does noto

ur. Perhaps our work on statisti
al zero knowledge 
an also help in su
h a task. Inparti
ular, in Se
tion 3.3, we used the Aiello{H�astad simulator analysis to show that everyproblem in HVSZK redu
es to Entropy Differen
e. Petrank and Tardos [PT96℄ haveused ideas from the the Aiello{H�astad simulator analysis to study intera
tive proofs withlogarithmi
 statisti
al knowledge 
omplexity in the ora
le sense, and thereby showed thatSKCora
le(log n) � AM \ 
o-AM. Perhaps all these ideas 
an be 
ombined to obtainstronger results about knowledge 
omplexity in the ora
le sense. Spe
i�
ally, showing thatevery problem in SKCora
le(log n) redu
es to Entropy Differen
e would imply thatSKCora
le(log n) = HVSZK.Open Problem 4.6.12 Do any of the other knowledge 
omplexity hierar
hies de�ned byGoldrei
h and Petrank [GP91℄ 
ollapse?Our results about HVSZK in the next two 
hapters will also immediately imply similarresults about SKChint via Lemma 4.6.7. Spe
i�
ally, they will imply that, for any poly-nomially bounded fun
tion � : N ! N, SKChint(�(n)) proofs 
an always be transformed
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h use publi
 
oins, and into ones that have knowledge 
omplexity �(n) evenagainst 
heating veri�ers.4.6.3 The Relationship between Perfe
t and Statisti
al Knowledge Com-plexityOne of the major questions about zero-knowledge proofs that has been open sin
e thede�ning paper of Goldwasser, Mi
ali, and Ra
ko� [GMR89℄ is whether perfe
t and statisti
alzero knowledge 
oin
ide. That is, does PZK = SZK (or even HVPZK = HVSZK)? Thisquestion motivates a more general study of the relationship between perfe
t and statisti
alknowledge 
omplexity. Goldrei
h, Ostrovsky, and Petrank [GOP98℄ have shown that, inthe ora
le sense, the perfe
t and statisti
al knowledge 
omplexity are not too far apart.Spe
i�
ally, they have shown that SKCora
le(�(n)) � PKCora
le(�(n) + O(log n)) forevery fun
tion � : N ! R. In parti
ular, HVSZK � PKCora
le(O(log n)).Aiello, Bellare, and Venkatesan [ABV95℄ have shown that the relationship is even tighterfor the average ora
le and entropy senses. Spe
i�
ally, they proved that, for every poly-nomially bounded fun
tion � : N ! R, SKCavg(�(n)) � PKCavg(�(n) + 1 + n�!(1)) andSKCent(�(n)) � PKCent(�(n) + n�!(1)), and the latter in
lusion be
omes an equality for� � 0. In addition, they give analogous results for the 
heating-veri�er versions of these
lasses.Our 
ompleteness theorems give another way to obtain su
h results when � � 0, i.e.,when we want bounds on the perfe
t knowledge 
omplexity of HVSZK. Namely, thesetheorems redu
e the question to measuring the perfe
t knowledge 
omplexity of spe
i�
proof systems for the 
omplete problems. By a straightforward analysis of (variants of)Proto
ol 3.1.19, we obtain:Theorem 4.6.131. For any fun
tion �(n) = !(log n), HVSZK � PKCstri
t(�(n)).2. For any 
 > 0, HVSZK � PKCavg(1 + 2�n
).3. For any 
 > 0, HVSZK = PKCent(2�n
).The last two items improve on the bounds of [ABV95℄ for knowledge 
omplexity 0(though their results also apply to the 
heating-veri�er 
lasses). These two items 
ould alsobe obtained by applying their proofs to our result that every problem in HVSZK has aproof with simulator deviation 2�k.Proof:1. Let � be any problem in HVSZK and let �(n) = !(log n). By Corollary 4.1.1, thereis a proof system for � with negligible 
ompleteness error, 
onstant soundness error,and 1 bit of prover-to-veri�er 
ommuni
ation. Exe
uting this proto
ol �(n) timesin parallel results in a proof system with negligible error probabilities and prover-to-veri�er 
ommuni
ation �(n). The prover-to-veri�er 
ommuni
ation is an upper boundon the perfe
t knowledge 
omplexity in the stri
t ora
le sense.



88 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMS2. Let � be any promise problem in HVSZK. Consider the proof system for � in whi
hpro
eeds as follows on an input x of length n: Both parties apply the redu
tion to SDto obtain an instan
e (X;Y ) of SD. They exe
ute Proto
ol 3.1.19 n times (sequentiallyor in parallel) on input (X;Y ) with the se
urity parameter set to k = 4n
, and theveri�er a

epts if the prover is 
orre
t in all subproto
ols. This proof system hasnegligible 
ompleteness and soundness errors.A perfe
t simulator for the proof system 
an be obtained as follows: The simulatorsimulates the veri�er strategy and queries the ora
le on
e to �nd out if the proverwould give an in
orre
t response in any of the exe
utions of Proto
ol 3.1.19. Of theora
le replies yes, then the simulator queries the ora
le n more times to �nd out whi
hprover answers would be in
orre
t. The simulator then outputs the random 
oins usedfor running the veri�er strategy together with the appropriate prover responses.In ea
h subproto
ol, the prover gives an in
orre
t response with probability at most2�4n
 . Thus, the simulator has to query the ora
le for more than one bit with proba-bility at most n �2�4n
 . Thus, on average, the simulator queries the ora
le for at most1 + n2 � 2�4n
 < 1 + 2�n
 bits, for suÆ
iently large n.3. We 
onsider the same proto
ol used in the proof of Part 2 above and show that ithas perfe
t knowledge 
omplexity 2�n
 in the entropy sense. Let S be the simulatorwhi
h simply simulates the veri�er and queries the ora
le for all prover responses. Onepossible ora
le simulator would assume that the prover is 
orre
t in all subproto
ols.Unfortunately, this gives 1=Px(R) = 1 for any R whi
h 
orresponds to a trans
riptin whi
h the prover would make an error. Thus, we instead have our ora
le simulatorS0 assume that the prover is right in ea
h subproto
ol independently with probability1� Æ, where Æ = 2�2n
 . Thus, Px(R) = (1� Æ)kÆn�k, if R is a set of random 
oins forthe veri�er (equivalently S, sin
e S mimi
s the veri�er) whi
h would eli
it a 
orre
tprover response in exa
tly k of the subproto
ols. Let � be the probability that theprover is in
orre
t in an individual subproto
ol. Then, � � Æ2, and we haveER �log 1Px(R)�= nXk=0�nk��n�k(1� �)k log� 1(1� Æ)kÆn�k�= �log 1Æn� � " nXk=0�nk��n�k(1� �)k#+�log Æ1� Æ� � " nXk=0�nk��n�k(1� �)kk#= �log 1Æn� � 1 +�log Æ1� Æ� � n � (1� �) � " nXk=1�n� 1k � 1��n�k(1� �)k�1#= log 1Æn + n � (1� �) � �log Æ1� Æ� � 1= n�log 11� Æ + � log 1� ÆÆ �
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for suÆ
iently large n.The opposite in
lusion follows from the result of [ABV95℄ that PKCent(�(n)) �HVSZK for any negligible fun
tion �.Despite these slightly improved bounds, the basi
 question about the relationship be-tween perfe
t and statisti
al zero knowledge remains open.Open Problem 4.6.14 Does HVSZK = HVPZK? Does SZK = PZK?The Completeness Theorem may help in addressing this question, for now it be
omesequivalent to asking whether Statisti
al Differen
e or Entropy Differen
e has aperfe
t zero-knowledge proof.4.7 Perfe
t and 
omputational zero knowledgeThe simulator analyses we used to prove the Completeness Theorems 
an also be applied toperfe
t and 
omputational zero-knowledge proofs. Although we do not know how to obtain
omplete problems for HVPZK and HVCZK using these te
hniques, they do yield someadditional insight into these 
lasses.We begin with the simulator analysis for publi
-
oin proofs from Se
tion 3.3. For perfe
tzero knowledge, we obtain a redu
tion to a variant of SD. Sin
e the se
urity parameterplays a less 
entral role in perfe
t zero-knowledge proofs (there is no simulator deviation to
ontrol), we omit it in the statement and proof of this proposition.Proposition 4.7.1 Suppose a promise problem � has an honest-veri�er publi
-
oin perfe
tzero-knowledge proof with perfe
t 
ompleteness. Then � redu
es to SD1=2;0.More generally, the 
ondition that the proof system has perfe
t 
ompleteness 
an berelaxed to requiring that the probability that veri�er a

epts an input x 2 �Y be 
omputablein polynomial time from x.5Proof: Let (P; V ) be a perfe
t zero-knowledge proof for with perfe
t 
ompleteness andsoundness error s = 1=3, with simulator S. The redu
tion 
onstru
ts an instan
e (X;Y ) ofSD1=2;0 from an instan
e x of �. The distributions X and Y are 
onstru
ted based on S(and V ) exa
tly as in the proof of Theorem 3.2.5. The only 
hange needed in the analysisis that Claim 3.2.6 should be repla
ed with one that states that StatDi� (X 0; Y 0) = 0when x is a yes instan
e. To see that this is the 
ase, �rst note that Lemma 3.2.1 gives5That is, we require that there is a (deterministi
) polynomial-time algorithm A su
h that when givenx 2 �Y , A outputs the probability that V a

epts on input x. A's behavior on no instan
es or inputs thatviolate the promise 
an be arbitrary.



90 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSStatDi� (Xi; Yi) = 2 � 0 = 0 for i > 0 when S is a perfe
t simulator. In addition, byperfe
t 
ompleteness and perfe
t simulation, Y0 will always output 1 in the 
ase of a yesinstan
e, so StatDi� (X0; Y0) = 0. Therefore, StatDi� (X 0; Y 0) = 0. Sin
e X and Y 
onsistjust of many independent 
opies of X 0 and Y 0, respe
tively, it follows that their statisti
aldi�eren
e is also 0 in the 
ase of a yes instan
e.Now we treat the more general version in whi
h the a

eptan
e probability on yesinstan
es is only assumed to be eÆ
iently 
omputable from the input. By repeating theproof system sequentially or in parallel and ruling by majority/threshold, we may assumethat the 
ompleteness error is at most 1=3 (as is assumed in the proof of Theorem 3.2.5);note that majority/threshold rule preserves the property that the a

eptan
e probability iseÆ
iently 
omputable. Now we 
onstru
t X and Y just as before, with one small 
hange. Itis no longer the 
ase that Y0 always outputs 1, so we rede�ne X0 as follows to 
ompensate:X0: Cal
ulate the probability p that the veri�er a

epts on input x (as if x were a yesinstan
e). If p < 2=3, output 1. Otherwise let t = 216 ln 12v and 
al
ulateq = Xt=2<j�t�tj�pj(1� p)t�j :Output 1 with probability q, and 0 otherwise.Note that q is exa
tly the probability that Y0 outputs 1 on a yes instan
e, so we haveStatDi� (X0; Y0) = 0 for yes instan
es as desired. Now we must also 
he
k that thismodi�
ation in X0 does not hurt the analysis for no instan
es. The only time X0 plays arole is in the 
ase that the simulator outputs a

epting 
onversations with probability atmost 5=12. There, a Cherno� bound is used to show that Y0 outputs 1 with probabilityat most 1=2 in this 
ase. A Cherno� bound similarly implies the modi�ed X0 given abovealways outputs 1 with high probability, 
ertainly at least 3=4. This gives StatDi� (X0; Y0) �1=4 > 1=12v, so Claim 3.2.7 still holds.If we 
ompletely remove the 
onditions on the a

eptan
e probability, we 
an 
ompensateby allowing the distributions to be samplable in expe
ted polynomial time.Proposition 4.7.2 Suppose a promise problem � has an honest-veri�er publi
-
oin perfe
tzero-knowledge proof. Then, there exist expe
ted polynomial-time algorithms X and Y su
hthat:1. x 2 �Y ) StatDi� (X(x); Y (x)) = 0.2. x 2 �N ) StatDi� (X(x); Y (x)) � 1=2.Proof Sket
h: Again, the only diÆ
ulty is 
onstru
ting the distributionsX0 and Y0. Letr be the number of random 
oins used by the simulator S. Y0 is modi�ed so that it runsthe simulator t = �(r + ln v) times rather than just �(ln v) times; this guarantees that Y0will output 1 with probability at least 1� 2�r in the 
ase of a yes instan
e. X0 is modi�edas follows:



4.7. PERFECT AND COMPUTATIONAL ZERO KNOWLEDGE 91X0: With probability 1� 2�r, just output 1. Otherwise, 
al
ulate the probability p that Soutputs an a

epting 
onversation (by exhaustive sear
h over the random 
oins) anduse that to 
al
ulate the probability q that Y0 outputs 1 (a simple sum involving somebinomial 
oeÆ
ients and p). If q � 1� 2�r, output 1 or 0 with exa
tly the right biasto guarantee that the overall probability of outputting 1 is q.This de�nition of X0 guarantees that StatDi� (X0; Y0) = 0 for yes instan
es. Note thatX0 runs in expe
ted polynomial time; with probability 2�r, it does a 
al
ulation that takestime 2r (times a polynomial fa
tor). The tedious details are omitted. 2If we 
ould show that SD1=2;0 (or its 
omplement) has an (honest-veri�er) publi
-
oinperfe
t zero-knowledge proof, we would essentially have a 
ompleteness theorem for publi
-
oin perfe
t zero knowledge. Interestingly, it is the \opposite" extreme 
ase of SD |namely, SD1;1=2 | that we pla
ed in (private-
oin) HVPZK with Proposition 3.1.11. InChapter 6, we shall see that SD1;0 a
tually has a publi
-
oin perfe
t zero-knowledge proof.Adapting the simulator analysis of Se
tion 3.2 to 
omputational zero-knowledge proofs,we obtain the following.Proposition 4.7.3 Suppose a promise problem � has an honest-veri�er publi
-
oin 
om-putational zero-knowledge proof system. Then there exist probabilisti
 polynomial-time al-gorithms X and Y su
h that1. fX(x; 1k)gx2�Y ;k2N and fY (x; 1k)gx2�Y ;k2N are 
omputationally indistinguishable.2. x 2 �N ) StatDi� �X(x; 1k); Y (x; 1k)� � 1=2.Proof Sket
h: Again, the 
onstru
tion of X(x; 1k) and Y (x; 1k) from x are just as in theproof of Theorem 3.2.5. The proof that they are statisti
ally far for no instan
es remainsun
hanged. To see that they are 
omputationally indistinguishable for yes instan
es, oneneed only repla
e the arguments about statisti
al 
loseness with analogous ones referringto 
omputationally indistinguishability (e.g., Claim 3.2.6, Lemma 3.2.1). 2Clearly, an analogous proposition also holds for the traditional de�nition of HVCZK inwhi
h the indistinguishability in the zero-knowledge property is with respe
t to the inputlength and not a separate se
urity parameter. (The indistinguishability of the resultingdistributions X(x) and Y (x) will then hold with respe
t to the jxj and not a separatese
urity parameter.)Note that the properties of the distributions produ
ed by Proposition 4.7.3 
annot beused to distinguish between yes and no instan
es in general, be
ause there 
an be distri-butions whi
h are both 
omputationally indistinguishable and statisti
ally far apart. Nev-ertheless, Proposition 4.7.3 will enable us to prove a nontrivial result about HVCZK inthe next se
tion.Our simulator analysis for private-
oin proofs in Se
tion 3.3 
an also be applied toperfe
t zero-knowledge proofs, and yields a redu
tion to the following variant of EntropyDifferen
e, denoted ED0:ED0Y = f(X;Y ) : H(X) = H(Y )gED0N = f(X;Y ) : H(Y ) � H(X) + 1g



92 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSProposition 4.7.4 Suppose a promise problem � has an honest-veri�er perfe
t zero-knowledgeproof with perfe
t 
ompleteness. Then � redu
es to ED0.More generally, the 
ondition that the proof system has perfe
t 
ompleteness 
an berelaxed to requiring that the probability that veri�er a

epts an input x 2 �Y be 
omputablein polynomial time from x.The proof of Proposition 4.7.4 
onsists of similar modi�
ations to the proof of Theo-rem 3.3.13 as was needed to obtain Proposition 4.7.1 from the proof of Theorem 3.2.5. Thedetails are omitted. As in Proposition 4.7.2, the 
omputability 
ondition on the a

ep-tan
e probability 
an be removed, at the 
ost of yielding distributions that are samplablein expe
ted polynomial time.The simulator analysis of private-
oin proofs 
an also be applied to 
omputational zeroknowledge, but unfortunately, it appears to yield something trivial. Spe
i�
ally, it yieldstwo probabilisti
 polynomial time algorithms X and Y su
h that (omitting the se
urityparameter):1. If x 2 �N , H(Y (x)) � H(X(x)) + 1.2. If x 2 �Y , then there exist distributions X 0(x) and Y 0(x) su
h that H(X 0(x)) �H(Y 0(x)) + 1, X 0(x) is 
omputationally indistinguishable from X(x), and Y 0(x) is
omputationally indistinguishable from Y (x).These 
onditions are trivial in the sense that su
h algorithms X and Y 
an be shown toexist for any promise problem �, regardless of whether it possesses a zero-knowledge proof:Fix X(x) to be the uniform distribution on jxj bits and Y (x) the uniform distribution onjxj+1 bits, so the 
ondition for no instan
es 
ertainly holds. To meet the 
ondition for yesinstan
es, take X 0(x) to equal X(x) and Y 0(x) to be the uniform distribution on a subsetof f0; 1gjxj+1 of size 2jxj�1. (Note that X 0 and Y 0 are not required to be samplable.)The main question remaining here is whether a tighter 
hara
terization of HVPZK orHVCZK 
an be given.Open Problem 4.7.5 Exhibit natural 
omplete problems for HVPZK or HVCZK.The question for HVCZK is only interesting if one does not assume that one-way fun
-tions exist, for under that assumption, HVCZK = PSPACE [GMW91, IY87, BGG+88,LFKN92, Sha92℄, so any PSPACE-
omplete problem would do.4.8 Zero-knowledge proofs for hard problems imply one-wayfun
tionsLooking at the array problems known to be in HVSZK| su
h as Quadrati
 Residuos-ity andNonresiduosity [GMR89℄, a problem equivalent toDis
rete Logarithm [GK93℄,and approximate versions of the Shortest Ve
tor and Closest Ve
tor problems forlatti
es [GG98a℄ | it strikes one that many of them are related to problems underlying var-ious 
ryptosystems [DH76, GM84, ElG84, GGH97, AD97℄. Ostrovsky [Ost91℄ showed thatthis is not a 
oin
iden
e. Informally, he proved that ifHVSZK 
ontains any hard problem,
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tions exist and hen
e many 
ryptographi
 tasks 
an be a

omplished.This may be surprising at �rst, be
ause typi
ally one-way fun
tions are not expli
itly usedin 
onstru
ting statisti
al zero-knowledge proofs. Rather, Ostrovsky's result should be un-derstood as saying that the types of problems possessing statisti
al zero-knowledge proofsare the kind that would yield one-way fun
tions if they were hard. Subsequently, Ostro-vsky and Wigderson [OW93℄ generalized this result to 
omputational zero knowledge | ifHVCZK 
ontains any hard problem, then one-way fun
tions exist. From a very high level,their analysis of 
omputational zero-knowledge proofs 
an be separated into two 
ases: if ahard language possesses an honest-veri�er 
omputational zero-knowledge proof, then one ofthe following two 
ases must hold: (a) the proof is really a statisti
al zero-knowledge proof,in whi
h 
ase Ostrovsky's result applies, or (b) one-way fun
tions are impli
itly being usedin 
onstru
ting a proof and simulation whi
h are 
omputationally indistinguishable but notstatisti
ally 
lose.In this se
tion, we show how Ostrovsky's theorem follows readily from our CompletenessTheorem and a result of Goldrei
h [Gol90℄ on 
omputational indistinguishability. Using ouranalysis of publi
-
oin 
omputational zero-knowledge proofs (Proposition 4.7.3), we alsoobtain a simpler proof of the Ostrovsky{Wigderson theorem for the spe
ial 
ase of publi
-
oin proofs.In order to state these theorems pre
isely, we need to de�ne what we mean for a problem� to be \hard." Informally, we require that membership in � is (very) hard to de
ide undersome samplable distribution of instan
es.De�nition 4.8.1 (samplable distributions) An ensemble of distributions fDngn2N issaid to be samplable if there is a probabilisti
 polynomial-time algorithm that, on input 1noutputs a string distributed a

ording to Dn.De�nition 4.8.2 (hard-on-average problems) A promise problem � is hard-on-averageif there exists a samplable ensemble of distributions fDngn2N su
h that the following holds:For every nonuniform probabilisti
 polynomial-time algorithm A, there exists a negligiblefun
tion � : N ! [0; 1℄ su
h thatPr [A(x) 
orre
tly de
ides whether x is a yes or no instan
e of �℄ � 12 +�(n) 8n 2 N;where the probability is taken over x Dn and the 
oins of A. (If x violates the promise,then A is 
onsidered to be 
orre
t no matter what it outputs.)For 
ompleteness, we also de�ne one-way fun
tions.De�nition 4.8.3 (one-way fun
tions) A fun
tion f : f0; 1g� ! f0; 1g� is one way if1. f 
an be evaluated in polynomial time.2. For every nonuniform probabilisti
 polynomial-time algorithm A, there is a negligiblefun
tion � : N ! [0; 1℄ su
h thatPrx f0;1gn �A(f(x)) 2 f�1(f(x))� � �(n) 8n 2 N;



94 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSwhere the probability is taken over x f0; 1gn and the 
oins of A.One-way fun
tions are known to be ne
essary and suÆ
ient for many 
ryptographi
tasks, su
h as private-key en
ryption, digital signatures, pseudorandom generation, and bit
ommitment [GGM86, HILL99, IL89, Nao91, Rom90℄.A formal statement of the result of Ostrovsky that we will prove in this se
tion follows.Theorem 4.8.4 ([Ost91℄) If there is a hard-on-average promise problem in HVSZK,then one-way fun
tions exist.Our proof will make use of the following result of Goldrei
h [Gol90℄:Proposition 4.8.5 ([Gol90℄) Suppose there exist two samplable ensembles of distribu-tions, fXngn2N and fYngn2N, su
h that1. fXng and fYng are 
omputationally indistinguishable.2. There is a polynomial p : N ! N su
h that for all n, StatDi� (Xn; Yn) � 1=p(n).Then one-way fun
tions exist.Proof of Theorem 4.8.4: Suppose � is a hard-on-average problem in HVSZK, and letfDng be the ensemble of distributions under whi
h � is hard. By the Completeness Theorem(Theorem 3.5.1) and the Polarization Lemma (Lemma 3.1.12), there is a polynomial-time
omputable fun
tion that maps instan
es x of � to pairs (X(x); Y (x)) of distributions su
hthat1. x 2 �Y ) StatDi� (X(x); Y (x)) � 1=2.2. x 2 �N ) StatDi� (X(x); Y (x)) � neg(jxj),where here and throughout this proof, we write neg(n) to denote negligible fun
tions.We will show that the following ensembles fXng and fYng meet the requirements ofProposition 4.8.5:Xn: Sample x a

ording to Dn. Sample z from X(x). Output (x; z).Yn: Sample x a

ording to Dn. Sample z from Y (x). Output (x; z).The statisti
al farness of these ensembles will follow from the farness of X(x) and Y (x)on yes instan
es. The 
omputational indistinguishability will follow from the statisti
al
loseness of X(x) and Y (x) on no instan
es, together with the fa
t that it is hard todistinguish yes instan
es of � from no instan
es.To formalize this intuition, we make some observations whi
h follow from the hypothesisthat � is hard-on-average:1. Pr [Dn =2 �Y [�N ℄ = neg(n).2. ��Pr [Dn 2 �Y ℄� 12 �� = neg(n) and ��Pr [Dn 2 �Y ℄� 12 �� = neg(n).



4.8. HARD PROBLEMS AND ONE-WAY FUNCTIONS 953. The ensembles fDYn gn2N and fDNn gn2N obtained by 
onditioning Dn on being a yesor no instan
e, respe
tively, are 
omputationally indistinguishable.Items 1 and 2 hold be
ause otherwise the trivial algorithm that always outputs yes or theone that always outputs no would de
ide � 
orre
tly with nonnegligible advantage. Item 3holds be
ause a distinguisher between fDYn g and fDNn g 
ould be used to de
ide � withnonnegligible advantage.Claim 4.8.6 StatDi� (Xn; Yn) � 1=4� neg(n).Proof of 
laim: Sin
e Dn must produ
e a yes instan
e of � with probabilityat least 1=2�neg(n), StatDi� (Xn; Yn) � (1=2�neg(n)) � (1=2) = 1=4�neg(n).2Claim 4.8.7 fXngn2N and fYngn2N are 
omputationally indistinguishable.Proof of 
laim: Let A be any probabilisti
 polynomial-time algorithm. Fromthe fa
t that X(x) and Y (x) are statisti
ally 
lose for no instan
es, it followsthatjPr [A(x;X(x)) = 1jx 2 �N ℄� Pr [A(x; Y (x)) = 1jx 2 �N ℄j = neg(n); (4.1)where these probabilities (and all those to follow) are taken over x Dn and the
oins of all algorithms (A, X, and Y ). By the 
omputational indistinguishabilityof fDYn g and fDNn g, we also havejPr [A(x;X(x)) = 1jx 2 �Y ℄� Pr [A(x;X(x)) = 1jx 2 �N ℄j = neg(n)jPr [A(x; Y (x)) = 1jx 2 �Y ℄� Pr [A(x; Y (x)) = 1jx 2 �N ℄j = neg(n):Combining these with Equation 4.1, we see that all four 
onditional probabilitiesdi�er only by negligible amounts. Therefore,Pr [A(x;X(x)) = 1℄� Pr [A(x; Y (x)) = 1℄� jPr [A(x;X(x)) = 1jx 2 �Y ℄� Pr [A(x; Y (x)) = 1jx 2 �Y ℄j+ jPr [A(x;X(x)) = 1jx 2 �N ℄� Pr [A(x; Y (x)) = 1jx 2 �N ℄j+2Pr [x =2 �Y [�N ℄= neg(n):This establishes the 
omputational indistinguishability of fXng and fYng. 2Given these 
laims, the result now follows from Proposition 4.8.5.Essentially the same proof applies to publi
-
oin 
omputational zero-knowledge proofsvia Proposition 4.7.3.Theorem 4.8.8 ([OW93℄ for publi
-
oin proofs) If a hard-on-average promise prob-lem possesses a publi
-
oin HVCZK proof system, then one-way fun
tions exist.



96 CHAPTER 4. APPLICATIONS OF THE COMPLETE PROBLEMSProof: The one point in the proof of Theorem 4.8.4 where we used the statisti
al 
losenessof X(x) and Y (x) for x 2 �Y instan
es was Equation 4.1; it is 
lear that 
omputationalindistinguishability would a
tually suÆ
e. Thus, if we repla
e the ensembles fX(x)g andfY (x)g with the ones given by Proposition 4.7.3 (setting k = jxj), the proof will still work.(yes and no instan
es play the opposite role, but that is okay.)In both the theorems of Ostrovsky and Ostrovsky{Wigderson, one 
an relax the average-
ase assumption to a worst-
ase assumption at the pri
e of a weaker 
on
lusion. Spe
i�
ally,if one only assumes that HVSZK or HVCZK 
ontains a problem outside of BPP, thenone 
an show the existen
e of a weak form of one-way fun
tions, whi
h are given an extraauxiliary input and are hard to invert only for in�nitely many values of the auxiliary input.Su
h versions of Theorems 4.8.4 and 4.8.8 
an also be proven using our te
hniques. Inaddition, these theorems also have uniform versions, in whi
h the hard-on-average prob-lems, one-way fun
tions, and 
omputational zero-knowledge are all with respe
t to uniformadversaries. Our proofs work essentially un
hanged in that setting.It would be interesting to obtain a simpler proof of the full version of the Ostrovsky{Wigderson theorem (i.e., with no restri
tion to publi
 
oins) using our te
hniques. Oneapproa
h would be to make use of the simulator analysis for private-
oin proofs given inSe
tion 3.3. Indeed, one 
an use that simulator analysis to show that ifHVSZK 
ontains ahard-on-average problem, then a \false entropy generator" (in the sense of [HILL99℄) exists,whi
h in turn implies the existen
e of one-way fun
tions by [HILL99℄. This gives yet anotherproof of Ostrovsky's theorem for statisti
al zero knowledge. Unfortunately, as dis
ussed inSe
tion 4.7, that simulator analysis appears to yield something trivial for 
omputationalzero knowledge.Open Problem 4.8.9 Can one re�ne the private-
oin simulator analysis of Se
tion 3.3and use it to give a simpler proof of the full Ostrovsky{Wigderson [OW93℄ theorem?The Ostrovsky{Wigderson theorem also has a 
onverse. If (nonuniformly) one-wayfun
tions exist, then it is known that HVCZK = PSPACE [GMW91, IY87, BGG+88,LFKN92, Sha92℄ and it 
an be shown that PSPACE 
ontains hard-on-average promiseproblems. However, no su
h 
onverse is known for Ostrovsky's theorem.Open Problem 4.8.10 Does the existen
e of one-way fun
tions (or some other generalintra
tability assumption) imply that HVSZK 
ontains a hard-on-average problem? oreven just that HVSZK 6= BPP?A positive answer to this question would show that the 
omplexity of statisti
al zeroknowledge is intimately tied with the feasibility of 
omplexity-based 
ryptography [IL89℄.



Chapter 5Private Coins vs. Publi
 Coins5.1 Motivation and resultsIn the two intera
tive proofs we have seen so far | the ones for Statisti
al Differen
eandGraph Nonisomorphism (Proto
ols 2.1.2 and 3.1.19) | it is essential that the veri�erkeeps its random 
oins hidden from the prover. From su
h examples, one might guess thatallowing su
h de
eptiveness on the veri�er's part makes intera
tive proofs stri
tly morepowerful. Surprisingly, this 
onje
ture is false. Goldwasser and Sipser [GS89℄ showed thatevery intera
tive proof 
an be transformed into a publi
-
oin one.1 In this 
hapter, we willprove an analogous result for statisti
al zero-knowledge, originally due to Okamoto [Oka96℄:Theorem 5.1.1 ([Oka96℄) Every problem in HVSZK possesses a publi
-
oin honest-veri�er statisti
al zero-knowledge proof.Although Theorem 5.1.1 played a 
entral role in later work, Okamoto's proof of it in [Oka96℄was very 
ompli
ated and understood by very few resear
hers. The proof we give hereis mu
h simpler. This simpli�
ation stems from the Completeness Theorem and Corol-lary 4.1.1 in parti
ular, whi
h says that every problem inHVSZK has a 2-messageHVSZKproof. Thus, to obtain our result, we need only give a transformation that applies to 2-message proof systems. This is a mu
h simpler spe
ial 
ase of Okamoto's transformation,and enables us to use Okamoto's innovative te
hniques in a 
lean form, unhampered by the
ompli
ations arising from many rounds of intera
tion.Transformations from private 
oins to publi
 
oins, like the one given by Theorem 5.1.1,are very useful as publi
-
oin proofs are mu
h easier to analyze and manipulate than gen-eral private-
oin proofs. Indeed, the result of Goldwasser and Sipser for intera
tive proofsfound many appli
ations (e.g., [BHZ87, FGM+89, BGG+88℄), and the same is true forstatisti
al zero knowledge. For example, we have already seen that the simulator analysisfor publi
-
oin proofs, given in Se
tion 3.2, is mu
h simpler than the simulator analysisfor general private-
oin proofs, given in Se
tion 3.3. We will see another example in thefollowing 
hapter: our transformation from honest-veri�er zero-knowledge proofs to ones1Re
all that publi
-
oin (a.k.a. Arthur{Merlin) proofs [BM88℄ are intera
tive proofs in whi
h the veri�er'smessages 
onsist solely of random 
oin 
ips, and the only 
omputation the veri�er does is to de
ide whetherto a

ept or reje
t at the end of the intera
tion. 97



98 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSrobust against 
heating veri�ers will only be given for publi
-
oin proofs, and hen
e we willrely on Theorem 5.1.1 to dedu
e that HVSZK = SZK. Moreover, the 
losure of HVSZKunder 
omplement and the 
ompleteness of Statisti
al Differen
e (together with allits 
onsequen
es) were both originally proven in [Oka96, SV97℄ using Theorem 5.1.1 as astarting point.We make one additional modi�
ation to Okamoto's transformation (des
ribed later),whi
h enables us to prove that the transformation also works for 
ertain 
omputationalzero-knowledge proofs.Theorem 5.1.2 Every promise problem possessing a 3-message honest-veri�er 
omputa-tional zero-knowledge proof also possesses a publi
-
oin honest-veri�er 
omputational zero-knowledge proof.We view this as a �rst step towards exhibiting a general (i.e., with no restri
tion on themessage 
omplexity) transformation from private 
oins to publi
 
oins for 
omputationalzero knowledge.2An alternative approa
h to proving Theorem 5.1.1 would be to exhibit a publi
-
oinstatisti
al zero-knowledge proof for one of the 
omplete problems. That is the approa
h wetook in [GV99℄ and it gives the most dire
t proof of Okamoto's theorem, sin
e all one needsis the redu
tion from HVSZK to Entropy Differen
e from Se
tion 3.3 and a publi
-
oin proof system for ED. However, given that we have already proven the CompletenessTheorem, the transformation given in this 
hapter is not mu
h more 
omplex than the proofsystem for ED, and has the advantage of also applying to 
omputational zero knowledge.Organization. We begin by giving an overview of the transformation from 2-messagezero-knowledge proofs to publi
-
oin zero-knowledge proofs in Se
tion 5.2. Like we didwhen redu
ing Entropy Differen
e to Statisti
al Differen
e in Se
tion 3.4, formotivation we start by treating a spe
ial 
ase of 2-message proof systems in whi
h theveri�er's message distribution is 
at.3 For this spe
ial 
ase, we des
ribe why the Goldwasser{Sipser transformation fails to be preserve zero knowledge and des
ribe Okamoto's methodfor over
oming this problem. We 
on
lude the overview by dis
ussion of the ideas underlyingthe extension of this spe
ial 
ase to the general one. In parti
ular, two subproto
ols dueto Okamoto [Oka96℄ are 
ru
ial in treating the general 
ase. In Se
tion 5.3, we state theproperties of these subproto
ols that we need in the transformation. In Se
tion 5.4, we givethe transformation from private 
oins to publi
 
oins systems and prove Theorems 5.1.1and 5.1.2, assuming the existen
e of Okamoto's subproto
ols. Se
tion 5.5 
ontains a self-
ontained presentation of the two subproto
ols and their proofs of 
orre
tness.2As usual, it is only interesting to exhibit su
h a transformation for 
omputational zero knowledge un
on-ditionally, for if one assumes that (nonuniformly) one-way fun
tions exist, publi
-
oin 
omputational zero-knowledge proofs 
an be 
onstru
ted for all of IP = PSPACE \from s
rat
h" [GMW91, IY87, BGG+88,LFKN92, Sha92℄.3Re
all that a 
at distribution is one that is uniform over a subset of its range.



5.2. OVERVIEW 995.2 OverviewWe begin with an exposition of the standard proto
ol for proving lower bounds on set sizes,whi
h is the starting point for the Goldwasser{Sipser proof system. We stress that allproto
ols des
ribed in this se
tion are publi
-
oin proto
ols.5.2.1 The standard lower bound proto
olSuppose T is some subset of f0; 1gn and a prover M (\Merlin") wants to 
onvin
e a veri�erA (\Arthur") that jT j � 2m. Assuming A has ora
le a

ess to a pro
edure whi
h testsmembership in T , Proto
ol 5.2.1 gives a way to a

omplish this task using 2-universal hashfun
tions.4 This publi
-
oin proto
ol was �rst des
ribed in [Bab85, GS89℄ and orginateswith a lemma of Sipser [Sip83℄.Proto
ol 5.2.1: Lower bound proto
ol (M;A)Input: Integers m and n (in unary) and a membership ora
le for T � f0; 1gn1. A: Sele
t h uniformly from Hn;m and send h to M .2. M : Sele
t y uniformly from T \ h�1(0) (if this interse
tion is nonempty)and send y to A.a If the interse
tion is empty, send fail to A.3. A: If both h(y) = 0 and y 2 T , a

ept. Otherwise, reje
t.aHere 0 is a 
anoni
ally �xed element of f0; 1gm.The best analysis of the Proto
ol 5.2.1 was provided in [AH91℄:Lemma 5.2.2 Proto
ol 5.2.1 has the following properties:1. (Completeness) If jT j � 2k � 2m, then A a

epts with probability at least 1� 2�k.2. (Soundness) If jT j � 2�k � 2m, then no matter what strategy M uses, A a

epts withprobability at most 2�k.In fa
t, this proto
ol also has a sort of statisti
al zero-knowledge property. The propertyholds with respe
t to the inputs n and m, provided that jT j � 2m and that one is given auniformly sele
ted element of T .Lemma 5.2.3 (impli
it in [Oka96℄) Let H be a 2-universal family of hash fun
tionsmapping a domain D to a range R, and let 0 be any �xed element of R. Let T be asubset of D su
h that jRj � " � jT j. Then the following two distributions have statisti
aldi�eren
e "
(1):4Re
all that for every pair of integers k and `, Hk;` denotes a family of 2-universal hash fun
tions mappingf0; 1gk to f0; 1g` (aÆne-linear fun
tions over GF(2)).



100 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINS(A) Choose h uniformly in H, and y uniformly in T \ h�1(0). Output (h; y).5(B) Choose y uniformly in T , and h uniformly in fh0 2 H : h0(y) = 0g.6 Output (h; y).Think of D = f0; 1gn, R = f0; 1gm, and � = 2m=jT j. Then, Distribution (A) 
orresponds toA's view of the exe
ution of the proto
ol and Distribution (B) provides a simulation withdeviation (at most) (2m=jT j)
(1) for it.5.2.2 The simplifying assumptions | 
at distributionsLet (P; V ) be a 2-message intera
tive proof system for a promise problem � whi
h is sta-tisti
al zero knowledge for the honest veri�er. We aim to 
onstru
t a publi
-
oin proofsystem (M;A) for �. Without loss of generality, we may assume that, in (P; V ), V sendsits message �rst, sin
e any veri�er messages after the last prover message are irrelevant inan intera
tive proof. We write Vx;k to denote the distribution of V 's message on input xand se
urity parameter k. The two simplifying assumptions we make about (P; V ) are1. The proto
ol has perfe
t 
ompleteness and soundness error 2�4k.2. Vx;k is a 
at distribution.5.2.3 The Goldwasser{Sipser transformation for 
at distributionsWith these assumptions, we now des
ribe the Goldwasser{Sipser transformation from 2-message proof systems to publi
-
oin proof systems. Let v = H(Vx;k), so that, by 
atness,jSupp(Vx;k)j = 2v. On yes instan
es x, the perfe
t 
ompleteness guarantees that for allveri�er messages y 2 Supp(Vx;k), the spe
i�ed prover response P ((x; 1k); y) makes V a

eptwith probability 1 over V 's random 
oins (
onditioned on y). The soundness error 2�4kprovides a strong negation of this for no instan
es | for all but a 2�2k fra
tion of the y'sin Supp(Vx;k), V a

epts with probability at most 2�2k 
onditioned on y, no matter whatthe prover response is. Thus, an idea for 
onverting su
h a proof system into a publi
-
oinone would be to use a lower bound proto
ol to show that there are \many" (i.e., 2v) y'sfor whi
h V 's marginal a

eptan
e probability is high. But the last step of the lower boundproto
ol requires A to test membership in the set; that is, A must test that for the y given,V 's marginal a

eptan
e probability is high. It does not seem possible for A to a

omplishthis on his own.To see how Goldwasser and Sipser over
ome this obsta
le, note that 
onditioned on y,V 's random 
oins r are distributed uniformly in the set
(y) def= fr : Vx;k(r) = yg:Thus, V 's marginal a

eptan
e probability given y and a prover response z is exa
tly thefra
tion of r 2 
(y) for whi
h V (x; y; z; r) = a

ept. This fra
tion 
an be proven to be5 In 
ase T \ h�1(0) = ; the output is de�ned to be a spe
ial failure symbol.6Note that this task | 
hoosing a hash fun
tion uniformly among those that map a given point to 0 |
an be easily done in polynomial time for our parti
ular hash families Hn;m.



5.2. OVERVIEW 101large via another lower bound proto
ol! Thus, the Goldwasser{Sipser transformation (fortwo-message proof systems) 
onsists of two lower bound proto
ols; together, these showthat there are \many" y's for whi
h there are \many" r's making the veri�er a

ept. Forthe formal des
ription of the proto
ol, let m be the number of random 
oins used by V andlet n be the length of V 's messages. By 
atness, j
(y)j = 2m�v for any y 2 Supp(Vx;k),so 2m�v is the set size for whi
h the se
ond lower bound should be proven. A
tually, toguarantee a small 
ompleteness error via Lemma 5.2.1, we need some sla
kness in the setsizes for whi
h the lower bound proto
ol is exe
uted, so we use set sizes 2v�k and 2m�v�krather than 2v and 2m�v. The resulting proof system is Proto
ol 5.2.4.Proto
ol 5.2.4: Goldwasser{Sipser [GS89℄ transformed proto
ol(M;A) for 
at distributionsInput: Instan
e x of � and a se
urity parameter k (in unary)1. M : Cal
ulate v = H(Vx;k). Send v to A.2. A: Choose h1 uniformly from Hn;v�k. Send h1 to M .3. M : Choose y uniformly in Supp(Vx;k) \ h�11 (0). Send y to A.4. A: Che
k that h1(y) = 0. If not, reje
t immediately.5. M : Let z  P (x; 1k; y). Send z to A.6. A: Choose h2 uniformly from Hm;m�v�k. Send h2 to M .7. M : Choose r uniformly in 
(y) \ h�12 (0). Send r to A.8. A: Che
k that Vx;k(r) = y, h2(r) = 0, and V (x; 1k; y; z; r) = a

ept.A

ept if all three 
onditions hold and reje
t otherwise.We now show that Proto
ol 5.2.4 is 
omplete. Fix a yes instan
e x and a se
urityparameter k. By the 
ompleteness of the lower bound proto
ol, M will su

eed to �nda y 2 Supp(Vx;k) (respe
tively, an r 2 
(y)) satisfying the appropriate hashing 
onditionwith probability at least 1� 2�k in ea
h of the two lower bound proto
ols. By the perfe
t
ompleteness of (P; V ), the 
ondition that V (x; 1k; y; z; r) will always be satis�ed as long asr 2 
(y). Thus, (M;A) has 
ompleteness error at most 2 � 2�k.The soundness of this proof system 
an be dedu
ed from the soundness of both (P; V )and the lower bound proto
ol as follows: Fix a no instan
e x and a se
urity parameter k.Consider the optimal prover strategy M�, whi
h we may assume is deterministi
 withoutloss of generality. Let v� be M�'s �rst message. For any y and z, de�neRy;z def= fr 2 
(y) : V (x; 1k; y; z; r) = a

eptg:



102 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSAlso set T = fy : 9 z jRy;zj > 2m�v��2kg:From the soundness of (P; V ), it follows that jT j � 2v��2k (for otherwise, there would exist aP � whi
h makes V a

ept with probability greater than (2v��2k �2m�v��2k)=2m = 2�4k). Bythe soundness of the lower bound proto
ol, M� will be able to sele
t a y 2 T in Step 3 withprobability at most jT j=2v��k � 2�k. Also by the soundness of the lower bound proto
ol,given any y =2 T and any z, the probability that M� will be able to sele
t an r (in Step 7)that will make A a

ept is at most jRy;zj=2m�v��k � 2�k. Thus, the total soundness erroris at most 2 � 2�k.5.2.4 Preserving zero knowledge for 
at distributionsSin
e (M;A) 
onsists essentially of two lower bound proto
ols, Lemma 5.2.3 suggests that(M;A) might satisfy some sort of zero-knowledge property. That lemma implies that whenboth parties follow the proto
ol, y is distributed almost uniformly in Supp(Vx;k), and giveny and z, r is distributed almost uniformly in 
(y). Thus the distribution of (y; z; r) in(M;A) is statisti
ally 
lose to the intera
tion between P and V (the statisti
al di�eren
eis 2�
(k)). This suggests a way to simulate the (M;A) proof system: Run the simulatorfor (P; V ) to obtain a trans
ript (y; z; r) and then uniformly 
hoose hash fun
tions h1 andh2 subje
t to the 
onditions that h1(y) = 0 and h2(r) = 0. However, to sele
t these hashfun
tions, one needs to know v, the entropy of Vx;k. This appears diÆ
ult to 
ompute inpolynomial time; indeed, that is why we have the prover 
al
ulate it and send it to theveri�er in the �rst message. This is essentially the only reason that (M;A) 
an fail to bezero-knowledge even when (P; V ) is.To get around this diÆ
ulty, Okamoto [Oka96℄ uses a te
hnique whi
h he 
alls \
om-plementary usage of messages" (whi
h we also used in the redu
tion from ED to SD). InProto
ol 5.2.4, M proves two lower bound; one for set size 2v�k (for the set of \good" y's),the other for set size 2m�v�k (for the set of \good" r's). We aim to give a method by whi
hM 
an prove su
h lower bounds without revealing v. We begin with the se
ond lower bound(for set size 2m�v�k). Re
all that jSupp(Vx;k)j = 2v. So, proving that some set T is of sizeat least 2m�v�k is equivalent to proving that T � Supp(Vx;k) is of size at least 2m�k. Notethat v has disappeared, and all that is left is m (the number of 
oins that V uses) and k(the se
urity parameter), whi
h are trivial to 
ompute! Thus, in the se
ond lower bound inProto
ol 5.2.4, we 
an repla
e 
(y) with 
(y)� Supp(Vx;k) and have h2 map to m� k bitsinstead of m� v � k.The �rst lower bound (for set size 2v�k) is only slightly tri
kier. Re
all that for anyy0 2 T , 
(y0) = 2m�v . Thus, proving a lower bound of 2v�k on the size of a set T is equivalentto proving a lower bound of 2m�k on the size of T �
(y0) , for some y0 2 Supp(Vx;k). Notethat in order to implement this idea, some y0 must be �xed in advan
e; we 
an simply haveM 
hoose one at random and send it to A prior to the lower bound proto
ol. In
orporatingthese ideas into Proto
ol 5.2.4, we obtain Proto
ol 5.2.5, whi
h gives a publi
-
oin zero-knowledge proof system, assuming that Vx;k is 
at.The last two steps of Proto
ol 5.2.5 are for M to prove that y00 is in fa
t in the supportof Vx;k. The 
ompleteness and soundness errors of this proto
ol 
an be shown to be 2 �2�k inthe same manner done for Proto
ol 5.2.4, together with our observations above. In addition,
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Proto
ol 5.2.5: Zero-knowledge transformed proto
ol (M;A) for 
atdistributionsInput: Instan
e x of � and a se
urity parameter k (in unary)1. M : Sele
t y0  Vx;k. Send y0 to A.2. A: Choose h1 uniformly from Hn+m;m�k. Send h1 to M .3. M : Choose (y; r0) uniformly in (Supp(Vx;k)�
(y0))\h�11 (0). Send (y; r0)to A.4. A: Che
k that h1(y; r0) = 0 and Vx;k(r0) = y0. If either does not hold,reje
t immediately.5. M : Let z  P (x; 1k; y). Send z to A.6. A: Choose h2 uniformly from Hm+n;m�k. Send h2 to M .7. M : Choose (r; y00) uniformly in (
(y)�Supp(Vx;k))\h�1(0). Send (r; y00)to A.8. A: Che
k that Vx;k(r) = y, h2(r; y00) = 0, and V (x; 1k; y; z; r) = a

ept.If any of these 
onditions does not hold, reje
t immediately.9. M : Choose r00 uniformly in 
(y00). Send r00 to A.10. A: Che
k that Vx;k(r00) = y00 and a

ept if this holds and reje
t otherwise.



104 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINShaving eliminated the use of v = H(Vx;k) in the proto
ol, we 
an now argue that the proofsystem is statisti
al zero-knowledge, assuming that (P; V ) is. Consider the simulator givenin Algorithm 5.2.6.Algorithm 5.2.6: Simulator for Proto
ol 5.2.5Input: Instan
e x of � and a se
urity parameter k (in unary)1. Run the simulator for (P; V ) on x to obtain a trans
ript (y; z; r).2. Choose r0 and r00 uniformly from f0; 1gm. Let y0 = Vx;k(r0) and y00 =Vx;k(r00).3. Choose h1 uniformly from fh 2 Hn+m;m�k : h(y; r0) = 0g.4. Choose h2 uniformly from fh 2 Hm+n;m�k : h(r; y00) = 0g.5. Output (y0; h1; (y; r0); z; h2; (r; y00); r00).aaIn an honest-veri�er publi
-
oin proof, the veri�er's 
oins need not be separately simulatedsin
e they are the same as the veri�er's messages.The deviation of this simulator 
an be analyzed as follows: First assume that the simu-lator for (P; V ) is a
tually a perfe
t simulator, i.e., has deviation 0; using a statisti
al zero-knowledge simulator would only in
reases the deviation by a negligible amount. Now, thedistribution of y0 is the same (uniform in Supp(Vx;k)) in both (M;A) and the simulator, sowe analyze both distributions 
onditioned on any �xed y0. In (M;A), h1 is 
hosen uniformlyfrom Hn+m;m�k, and then (y; r0) is 
hosen uniformly from (Supp(Vx;k)�
(y0))\h�1(0). Inthe simulator, (y; r0) is distributed uniformly in Supp(Vx;k)�
(y0) and h1 is 
hosen uniformlysubje
t to h1(y; r0) = 0. These 
orrespond to distributions (A) and (B) in Lemma 5.2.3,respe
tively. By that lemma, these two distributions have statisti
al di�eren
e at most�2m�k=jSupp(Vx;k)� 
(y0)j�
(1) = (2�k)
(1). So, now �x any (y0; h1; (y; r0)) (su
h thath1(y; r0) = 0 and Vx;k(r0) = y0) and let us analyze the remaining 
omponents 
onditionedon those. In both (M;A) and the simulator, z is 
hosen a

ording to P 's strategy, so it doesnot in
rease the statisti
al di�eren
e. Another appli
ation of Lemma 5.2.3, with respe
t tothe set 
(y) � Supp(Vx;k), shows that the 
omponents (h2; (r; y00)) in
rease the statisti
aldi�eren
e by at most 2�
(k). Finally, r00 is distributed uniformly in 
(y00) in both (M;A)and the simulator. Thus, the total simulator deviation is at most 2�
(k) plus the deviationof the simulator for (P; V ).Remark 5.2.7 Okamoto [Oka96℄ also treats the spe
ial 
ase of 2-message proof systems inwhi
h the veri�er message distribution is 
at for motivation. Proto
ol 5.2.5 (and its gen-eralization to non-
at distributions below) di�er from Okamoto's proto
ols in one respe
t.Okamoto uses the simulated verifer (as de�ned by the simulator for (P; V )) instead of the



5.2. OVERVIEW 105real veri�er V in 
onstru
ting the proof system (M;A). Be
ause of this, in Okamoto's trans-formation, the fa
t that the simulated veri�er is statisti
ally 
lose to the real veri�er is usedin proving the 
ompleteness of (M;A); hen
e, the transformation is restri
ted to statisti
alzero knowledge proofs. In our 
ase, the simulator for (P; V ) is only used in 
onstru
ting thesimulator for (M;A); this enables us to prove that the transformation also works for 
om-putational zero knowledge. On the other hand, the fa
t that Okamoto uses the simulator Srather than the veri�er V in 
onstru
ting (M;A) appears to be 
ru
ial in his transformationfor many-message proof systems (whi
h we have avoided via Corollary 4.1.1). To extendthe result to 3-message 
omputational zero-knowledge proofs, we simply note that an extraprover message at the start does not harm the analysis.5.2.5 Removing the assumptions | general distributionsThere are several problems in generalizing the transformation of Proto
ol 5.2.5 to arbitrarytwo-message zero-knowledge proofs (P; V ). The assumption about the 
ompleteness andsoundness errors is not very problemati
. Essentially the same analysis as given aboveworks even when the proof system does not have perfe
t 
ompleteness, but 
ompletenesserror, say, 2�k. And exponentially small 
ompleteness and soundness errors 
an be a
hievedby straightforward parallel repetitions.The assumption that the veri�er message distribution Vx;k is 
at presents more seriousdiÆ
ulties. Re
all the Flattening Lemma (Lemma 3.4.6), whi
h says that if we take manyindependent 
opies of a distribution, the distribution gets \
attened" in the sense that,with high probability, a random sample from the distribution X will have probability masswithin a fa
tor of 2O(�) of 2�H(X), where � grows sublinearly with the number of 
opiestaken. Note that taking parallel repetitions of the proof system has exa
tly the e�e
t ofrepla
ing the message distribution Vx;k with many independent 
opies of itself. A key pointis that the soundness error de
reases like a true exponential 2�
(t) with the number t ofparallel repetitions. Thus, with suÆ
iently many parallel repetitions, we 
an make thedeviation � from 
atness small relative to the soundness error, in the sense that the extrasla
kness fa
tors of 2O(�) needed in the lower bound proto
ols to deal with the deviationfrom 
atness will not a�e
t the soundness of the resulting proof system (M;A).Unfortunately, the proto
ol still needs further modi�
ations to work with \nearly 
at"rather than truly 
at distributions. The problems arise from the fa
t that, although �-
atness guarantees that, with high probability, a random sample will have a nearly typi
alprobability mass, some very heavy and very light samples 
an still exist. So, M may sele
ty0 to be \too heavy", allowing him many 
hoi
es for r0 and leading to a violation of thesoundness requirement. Similarly, although there are only about 2H(Vx;k) 
hoi
es for y00 thathave probability mass near 2�H(Vx;k), if Vx;k is only nearly 
at there may be many more
hoi
es for y00 (alas, these are \too light" | i.e., have probability mass mu
h smaller than2�H(Vx;k)). This gives M too mu
h freedom (in the 
hoi
e of y00) and may also lead toviolation of the soundness requirement.In order to solve these problems, Okamoto [Oka96℄ introdu
es two subproto
ols: The�rst is a \sample generation" proto
ol, whi
h is a proto
ol for M and A to sele
t a samplefrom a nearly 
at distribution su
h that no matter what strategy M uses, the sample willnot be too heavy. This will repla
e Step 1 in Proto
ol 5.2.5, and guarantee that M does
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h freedom in its 
hoi
e of r0 (in Step 3). The se
ond proto
ol is a \sampletest" proto
ol, whi
h is a way for M to prove that a sample y00 taken from a nearly 
atdistribution is not too light. This will repla
e Steps 9 and 10 in Proto
ol 5.2.5 and guaranteethat M does not have too mu
h freedom in its 
hoi
e of y00 (in Step 7).We stress that both of these subproto
ols will be publi
-
oin and will possess appropriatesimulability properties to ensure that the resulting proto
ol for � is a publi
-
oin HVSZKproof system. Below, we will spe
ify the properties of these subproto
ols, and formulate andanalyze the transformed proof system assuming that these subproto
ols exist. In Se
tion 5.5,we present these subproto
ols and prove that they have the asserted properties.5.3 Subproto
ol spe
i�
ationsBelow, all distributions are given in the form of a 
ir
uit whi
h generate them. The inputto these proto
ols will 
onsist of a distribution, denoted X. We will denote by m (resp.,n) the length of the input to (resp., output of) the 
ir
uit generating the distribution X.In order to de�ne the notion of a sample generation proto
ol, we must formalize what itmeans for an intera
tive proto
ol to have output.De�nition 5.3.1 Let f be any (deterministi
) polynomial-time 
omputable fun
tion andlet (A;B) be an intera
tive proto
ol. The f -output of (A;B) on input x is the randomvariable obtained by applying f to x and all the messages ex
hanged between A and B (butnot to the random 
oins of A and B).Usually, for any given proto
ol, we will only be interested in one parti
ular outputfun
tion f (given at the same time as the proto
ol), so we will usually omit f from thenotation when referring to the proto
ol.De�nition 5.3.2 (sample generation proto
ol) A proto
ol (M;A) is 
alled a samplegeneration proto
ol if on 
ommon input a distribution X and parameters �; t, su
h that Xis �-
at and t � �,7 the following holds:1. (EÆ
ien
y) (M;A) is polynomially bounded and A is polynomial-time 
omputable.2. (\Completeness") If both parties are honest, then the output of the proto
ol will bet ��-typi
al with probability at least 1�m � 2�
(t2).3. (\Soundness") If A is honest then, no matter howM plays, the output will be 2pt���-heavy with probability at most m � 2�
(t2).4. (Strong \Zero Knowledge") There exists a probabilisti
 polynomial-time simulator Sso that for every (X;�; t) as above, the following two distributions have statisti
aldi�eren
e at most m � 2�
(t2):7The 
ondition t � � is to simplify the error expressions and will always be satis�ed in our appli
ations.Moreover, the parti
ular error expressions we give are artifa
ts of our 
onstru
tion and a proto
ol a
hievingslightly di�erent expressions might suÆ
e. What is important is that the error probabilities (m � 2�
(t2))are negligible as a fun
tion of t and that the heaviness expression 2pt� �� is subquadrati
 in �.
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ute (M;A) on 
ommon input (X;�; t) and output the view of A, appendedby the output.(B) Choose x X and output (S(X;�; t; x); x).A sample generation proto
ol is said to be publi
 
oin if it is publi
 
oin for A.The above zero-knowledge property is referred to as strong sin
e the simulator 
annotprodu
e a view-output pair by �rst generating the view and then 
omputing the 
orrespond-ing output. Instead, the simulator is for
ed (by the expli
it in
lusion of x in Distribution(B)) to generate a 
onsistent random view for a given random output (of the proto
ol). We
omment that the trivial proto
ol in whi
h A uniformly sele
ts an input r to the 
ir
uitX and reveals both r and the output x = X(r) 
annot be used sin
e the simulator is onlygiven x and it may be diÆ
ult to �nd an r yielding x in general. Still, a sample generationproto
ol is impli
it in Okamoto's work [Oka96℄ (where it is 
alled a \pre-test").Theorem 5.3.3 (impli
it in [Oka96℄) There exists a publi
-
oin sample generation pro-to
ol. Furthermore, the number of messages ex
hanged in the proto
ol is linear in m.A proof of Theorem 5.3.3 is presented in Se
tion 5.5.De�nition 5.3.4 (sample test proto
ol) A proto
ol (M;A) is 
alled a sample test pro-to
ol if on 
ommon input a distribution X, a string x 2 f0; 1gn and parameters �; t, su
hthat X is �-
at and t � �, the following holds:1. (EÆ
ien
y) (M;A) is polynomially bounded and A is polynomial-time 
omputable.2. (\Completeness") If both parties are honest and x is t ��-typi
al then A a

epts withprobability at least 1�m � 2�
(t2).3. (\Soundness") If x is 6pt� ��-light and A is honest then, no matter how M plays,A a

epts with probability at most m � 2�
(t2).4. (Weak \Zero Knowledge") There exists a probabilisti
 polynomial-time simulator Sso that for every (X;�; t) as above and for every t � �-typi
al x, the following twodistributions have statisti
al di�eren
e at most m � 2�
(t2):(A) Exe
ute (M;A) on 
ommon input (X;x;�; t) and output the view of A, prependedby x.(B) Choose r uniformly in 
X(x)def= fr0 : X(r0) = xg, and output (x; S(X;x;�; t; r)).A sample test proto
ol is said to be publi
 
oin if it is publi
 
oin for A.The above zero-knowledge property is referred to as weak sin
e the simulator gets a randomr giving rise to x (i.e., x = X(r)) as an auxiliary input (whereas A is only given x). We
omment that a simple publi
-
oin testing proto
ol exists in 
ase one 
an approximate thesize of 
X(x) and uniformly sample from it. However, this may not be the 
ase in general.Still, a sample test proto
ol is impli
it in Okamoto's work [Oka96℄ (where it is 
alled a\post-test").
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it in [Oka96℄) There exists a publi
-
oin sample testing proto
ol.Furthermore, the number of messages ex
hanged in the proto
ol is linear in m.A proof of Theorem 5.3.5 is presented in Se
tion 5.5.5.4 The transformed proof systemWe now present the transformation from 2-message zero-knowledge proofs to publi
-
oinzero-knowledge proofs. (The 
ase of 3-message 
omputational zero-knowledge proofs issimilar, but 
ompli
ates the notation, so we just sket
h the 
hanges ne
essary at the end.)Let (P0; V0) be a 2-message intera
tive proof system whi
h is honest-veri�er zero-knowledge(either 
omputational or statisti
al). Without loss of generality, we assume that on se
urityparameter k, the 
ompleteness error is at most 2�k and the soundness error is at most1=2. Throughout what follows, we will always assume that the se
urity parameter k isat least the input length jxj; this 
an be a
hieved by arti�
ally in
reasing k if ne
essary.Let m0(k) = poly(k) be a bound on the number of random 
oins used by V0 on inputs(x; 1k), when k � jxj. Let (P; V ) denote the intera
tive proof system for �, whi
h doesthe following on input x and se
urity parameter k � jxj: Both parties set m0 = m0(k),and ` = 216 �m60 � k; and exe
ute (P0; V0)(x; 1k) ` times in parallel, with V a

epting i� V0a

epts in all ` exe
utions.Let Vx;k denote the message distribution of V on input (x; 1k). Let n be the length ofmessages produ
ed by this distribution, and m = ` �m0 the number of random 
oins usedto generate the distribution. We 
an immediately make the following observations about(P; V ):Claim 5.4.11. The 
ompleteness error is at most ` � 2�k = 2�
(k).2. The soundness error is at most 2�`.3. Vx;k is �-
at, for � = p` �m0 = 28m40pk:The last item follows from the Flattening Lemma (Lemma 3.4.6), as Vx;k 
onsist of ` inde-pendent 
opies of V0's message distribution.Proto
ol 5.4.2 gives the transformed proof system (M;A) obtained by generalizing Pro-to
ol 5.2.5 to \nearly 
at" distributions and augmenting it with sample generation andsample test proto
ols. In the proto
ol, the parameters m0, m, n, `, and � have the samevalues as above (as fun
tions of k), and, for any y, 
(y) def= fr 2 f0; 1gm : Vx;k(r) = yg.We now prove that (M;A) is the proto
ol we want. Clearly, (M;A) is publi
-
oin,assuming that the sample generation and test proto
ols are (as we may by Theorems 5.3.3and 5.3.5). The 
ompleteness property will follow from the zero knowledge one, so we startby establishing soundness.Lemma 5.4.3 (soundness) Suppose that x 2 �N . Then, for any M�, A a

epts in(M�; A)(x; 1k) with probability at most exp(�
(k)).
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Proto
ol 5.4.2: Zero-knowledge transformed proto
ol (M;A)Input: Instan
e x of � and a se
urity parameter k � jxj (in unary)1. M;A: Exe
ute a sample generation proto
ol, with inputs (Vx;k;�;pk), toobtain an output y0.2. A: Choose h1 uniformly from Hn+m;m�3pk�. Send h1 to M .3. M : Choose (y; r0) a

ording to Vx;k

(y0),a 
onditioned on h1(y; r0) = 0.Send (y; r0) to A.4. A: Che
k that h1(y; r0) = 0 and Vx;k(r0) = y0. If either does not hold,reje
t immediately.5. M : Let z  P (x; 1k; y). Send z to A.6. A: Choose h2 uniformly from Hm+n;m�3pk�. Send h2 to M .7. M : Choose (r; y00) a

ording to 
(y)
 Vx;k, 
onditioned on h2(r; y00) = 0.Send (r; y00) to A.8. A: Che
k that Vx;k(r) = y, h2(r; y00) = 0, and V (x; 1k; y; z; r) = a

ept.If any of these 
onditions does not hold, reje
t immediately.9. M;A: Exe
ute a sample test proto
ol, with input (Vx;k; y00;�;pk), and Aa

epts i� the test is 
on
luded satisfa
torily.aRe
all that we use the same notation for a set (e:g :; 
(y0)) and the uniform distributionon that set.



110 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSProof: Observe that the sample generation and test proto
ols are invoking with parame-ters t = pk and � = 28m40pk, and Vx;k is in fa
t �-
at. Thus, the soundness of the samplegeneration proto
ol implies that with probability at most m � exp(�
(t2)) = exp(�
(k)),the out
ome y0 is 2pt� ��-heavy. Thus, we have:Claim 5.4.4 y0 is 2pt� ��-heavy with probability at most exp(�
(k)).Suppose that y0 is not 2pt� ��-heavy. We will show that M� will be for
ed to sele
t ay whi
h has very few a

epting r's. As in the analysis of Proto
ol 5.2.4, for any y and z, letRy;z def= fr 2 
(y) : V (x; 1k; y; z; r) = a

eptg;and de�ne T def= fy : 9 z jRy;zj > 2m�H(Vx;k)�7pt���g:Claim 5.4.5 jT j � 2H(Vx;k)�3pt���.Proof of 
laim: Suppose not. Then there would be a prover strategy P �whi
h 
onvin
es V to a

ept with probability at leastjT j � 2m�H(Vx;k)�7pt���2m > 2�10pt���:However, by our setting of parameters,10pt� �� = 10 � 212 �m60 � k < `;so we have 
ontradi
ted the fa
t that the soundness error of (P; V ) is 2�`. 2Claim 5.4.6 If y0 is not 2pt� � �-heavy, then, with probability at least 1 � 2�k (overSteps 2{4), y =2 T (or A reje
ts).Proof of 
laim: By the soundness of the standard lower bound proto
ol(Lemma 5.2.2), it suÆ
es to show that the number of pairs (y; r0) su
h thatVx;k(r0) = y0 and y 2 T is at most 2�k � 2m�3pk�. Sin
e y0 is not 2pt� � �-heavy, there are at most 2m�H(Vx;k)+2pt��� values of r0 su
h that Vx;k(r0) = y0.Thus the total number of pairs (y; r0) su
h that Vx;k(r0) = y0 and y 2 T is atmost 2m�H(Vx;k)+2pt��� � 2H(Vx;k)�3pt��� = 2m�pt���:So we need to show that pt� �� > 3pk�+ k. This follows from our 
hoi
e ofparameters: pt� �� = 24m20pk �� > 3pk ��+ k: 2Claim 5.4.7 If y =2 T , then with probability at least 1�2�k (over Steps 6{8), y00 is 6pt���-light (or A reje
ts).



5.4. THE TRANSFORMED PROOF SYSTEM 111Proof of 
laim: In Step 7, M� must 
hoose r from Ry;z, or else A will reje
t.Thus, by the soundness of the lower bound proto
ol, it suÆ
es to show that thenumber of pairs (r; y00) su
h that r 2 Ry;z and y00 is not 6pt� � �-light is atmost 2�k � 2m�3pk�. jRy;zj � 2m�H(Vx;k)�7pt���, be
ause y =2 T . The numbernon-6pt� ��-light 
hoi
es for y00 is at most 2H(Vx;k)+6pt��� (as ea
h su
h y00 hasprobability mass at least 2�H(Vx;k)�6pt��� under Vx;k). Thus, the total numberof pairs (r; y00) su
h that r 2 Ry;z and y00 is not 6pt� ��-light is at most2m�H(Vx;k)�7pt��� � 2H(Vx;k)+6pt��� = 2m�pt���;whi
h is smaller than 2�k � 2m�3pk�, as shown in the proof of Claim 5.4.6. 2By the soundness of the sample test proto
ol, we have:Claim 5.4.8 If y00 is 6pt���-light, A will reje
t in the sample test proto
ol with probabilityat least 1� 2�
(k).Putting together all these 
laims, it follows that A will reje
t on a no instan
e withprobability at least 1� 2�
(k).We now show that (M;A) retains the zero-knowledge properties of (P; V ). Let S bea (HVSZK or HVCZK) simulator for (P; V ). The simulator for (M;A), given in Algo-rithm 5.4.9, is similar to Algorithm 5.2.6, but is augmented by the simulators for the samplegeneration and test proto
ols.The 
orre
tness of this simulator will rely on the following generalization of Lemma 5.2.3to non-
at distributions, proved in Appendix B.Lemma 5.4.10 (impli
it in [Oka96℄) Let H be a 2-universal family of hash fun
tionsmapping a domain D to a range R and let 0 be any �xed element of R. Let Z be adistribution on D su
h that with probability 1�Æ over z sele
ted a

ording to Z, Pr [Z = z℄ �"=jRj. Then the following two distributions have statisti
al di�eren
e at most 3(Æ + "1=3):(A) Choose h uniformly in H. Sele
t z a

ording to Z 
onditioned on h(z) = 0. Output(h; z).(B) Choose z a

ording to Z. Sele
t h uniformly in fh0 2 H : h0(z) = 0g. Output (h; z).We �rst analyze the simulator when trans
ript obtained from S is repla
ed with a truesample of hP; V i.Lemma 5.4.11 Let S denote the output distribution of Algorithm 5.4.9, when the tran-s
ript (y; z; r) obtained from S(x; 1k) is repla
ed with a sample of hP; V i(x; 1k). Then, Shas statisti
al di�eren
e at most exp(�
(k)) from hM;Ai(x; 1k).Proof: By the strong zero-knowledge property of the sample generation proto
ol, thepair (�; y0) in an exe
ution of S has statisti
al di�eren
e at most m � 2�
(k) = 2�
(k)
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ol 5.4.2Input: Instan
e x of � and a se
urity parameter k (in unary)1. Run the simulator S for (P; V ) on input (x; 1k) to obtain a trans
ript(y; z; r).2. Choose r0 and r00 uniformly from f0; 1gm. Let y0 = Vx;k(r0) and y00 =Vx;k(r00).3. Run the simulator for the sample generation proto
ol on input(Vx;k;�;pk; y0) to obtain a trans
ript � 
orresponding to output y0.4. Choose h1 uniformly from fh 2 Hn+m;m�k : h(y; r0) = 0g.5. Choose h2 uniformly from fh 2 Hm+n;m�k : h(r; y00) = 0g.6. Simulate an exe
ution of the sample test proto
ol on input (Vx;k; y00;�;pk)and auxiliary input r00, obtaining a trans
ript, denoted �.7. Output (�; h1; (y; r0); z; h2; (r; y00); �).from a real exe
ution of that proto
ol.8 Sin
e Vx;k is �-
at, the string y0 is pk�-lightwith probability at most 2�k+1 in the simulator. Thus, we 
onsider the distributions on(h1; (y; r0)) 
onditioned on any pair (�; y0) su
h that y0 is not pk�-light. To analyze this,we apply Lemma 5.4.10 with Z = Vx;k 
 
(y0), D = f0; 1gn+m, and R = f0; 1gm�3pk�.Distribution (A) (resp., (B)) in Lemma 5.4.10 
orresponds to the distribution of (h1; (y; r0))in the proof system (resp., S). Sin
e Vx;k is �-
at and y0 is not pk�-light, the followingholds with probability � 1� 2�k+1 over (y; r0) sele
ted a

ording to Vx;k 
 
(y0):Pr �Vx;k 
 
(y0) = (y; r0)� = Pr [Vx;k = y℄ � 1j
(y0)j� 2�H(Vx;k)+pk� � 12m�H(Vx;k)�pk�= 2�pk�jRj< 2�kjRj8y0 is not a
tually part of the trans
ripts, sin
e it is not a message ex
hanged. Rather, it is 
omputed byapplying a polynomial-time 
omputable fun
tion to � (see De�nition 5.3.1). But, for the purposes of thisproof, it is 
onvenient to treat it on its own.
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an take Æ = 2�k+1 and " = 2�k in Lemma 5.4.10, and see that the two distribu-tions on (h1; (y; r0)) have statisti
al di�eren
e 2�
(k) (
onditioned on history �).In both S and hM;Ai, z is generated by applying the same randomized pro
edure tothe history (�; h1; (y; r0)) (namely, the strategy for P ), so in
luding z does not in
rease thestatisti
al di�eren
e. Another appli
ation of Lemma 5.4.10, similar to the one above, showsthat the distributions on (h2; (r; y00)) have statisti
al di�eren
e at most 2�
(k), 
onditionedon any history (�; h1; (y; r0); z) in whi
h y is not pk�-light. Sin
e y is distributed a

ordingto the �-
at distribution Vx;k in the simulator, it is pk�-light with probability at most2�k+1.Finally, in
luding � only in
reases the statisti
al di�eren
e by 2�
(k) by the weak zero-knowledge property of the sample test proto
ol (noting that in the simulator, y00 ispk�-lightwith probability at most 2�k+1 and r00 is distributed uniformly in 
(y00)).Lemma 5.4.11 immediately implies the 
ompleteness of (M;A):Lemma 5.4.12 (
ompleteness) (M;A) has 
ompleteness error 2�
(k).Proof: The trans
ript generated by S is a

epting whenever the trans
ript (y; z; r)it re
eives from hP; V i(x; 1k) is a

epting. Sin
e (P; V ) has 
ompleteness error at mostexp(�
(k)) and the statisti
al di�eren
e between S and hM;Ai(x; 1k) is at most exp(�
(k)),it follows that (M;A) has 
ompleteness error exp(�
(k)).Statisti
al zero knowledge also follows readily from Lemma 5.4.11; using a simulator ofdeviation � instead of sample of hP; V i 
an only a�e
t the statisti
al di�eren
e by �.Lemma 5.4.13 (statisti
al zero knowledge) If S simulates (P; V ) with deviation devi-ation �(k), then Algorithm 5.4.9 simulates (M;A) with deviation �(k) + 2�
(k). Thus, if(P; V ) is honest-veri�er statisti
al zero knowledge, then so is (M;A).Computational zero knowledge follows from the additional observation that Algorithm 5.4.9performs an eÆ
ient 
omputation on the trans
ript of (P; V ) re
eived.Lemma 5.4.14 (
omputational zero knowledge) If (P; V ) is honest-veri�er 
omputa-tional zero knowledge, then so is (P; V ).Proof: If hP; V i(x; 1k) and S(x; 1k) are 
omputationally indistinguishable, then so areS and the output of Algorithm 5.4.9, be
ause they are obtained by applying the samepolynomial-time pro
edures to hP; V i(x; 1k) and S(x; 1k), respe
tively. Sin
e hM;Ai(x; 1k)has negligible statisti
al di�eren
e from S, it follows that it too is 
omputationally indis-tinguishable from the output of Algorithm 5.4.9.This 
ompletes the proof of Theorems 5.1.1, and the proof of Theorem 5.1.2 for 2-message proof systems. To extend the result to 3-message HVCZK, we simply note thatin
luding an extra prover message w at the start of the proof system does not 
ause anyproblems. Throughout the 
onstru
tion and analysis, the veri�er message distribution Vx;kshould be repla
ed with Vx;k;w, whi
h is the veri�er's message distribution when the inputis x, the se
urity parameter is k, and the prover's �rst message is w.



114 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSWe 
an strengthen the statements of the theorems somewhat. First, re
all that weshowed that every problem in HVSZK has a 2-message statisti
al zero-knowledge proofwith simulator deviation 2�k (Corollary 4.1.1). Using su
h a proof system as the startingpoint for the 
onstru
tion, Lemma 5.4.13 says that the resulting simulator deviation willbe 2�
(k). (A
tually, we did poly(k) parallel repetitions to obtain the (P; V ) used in thetransformation, whi
h in
reases the simulator deviation by a poly(k) fa
tor, but poly(k) �2�
(k) = 2�
(k).) Renaming k, the simulator deviation be
omes simply 2�k. Se
ond, F�ureret. al. [FGM+89℄ have shown how to transform publi
-
oin proofs into ones with perfe
t
ompleteness; their transformation preserves honest-veri�er statisti
al and 
omputationalzero-knowledge, and in fa
t preserves an exponentially small simulator deviation.9 Thus,we obtain:Theorem 5.4.15 (Thm. 5.1.1, strengthened) Every problem in HVSZK has a publi
-
oin honest-veri�er statisti
al zero-knowledge proof with perfe
t 
ompleteness and simulatordeviation 2�k.Theorem 5.4.16 (Thm. 5.1.2, strengthened) Every problem possessing a 3-messagehonest-veri�er 
omputational zero-knowledge proof also possesses a publi
-
oin honest-veri�er
omputational zero-knowledge proof with perfe
t 
ompleteness.By Lemma 4.6.7, we 
an immediately dedu
e an analogous result for knowledge 
om-plexity in the hint sense.Corollary 5.4.17 Let � : N ! N be any polynomially bounded fun
tion. Then every prob-lem � 2 SKChint(�(n)) has a publi
-
oin proof system of statisti
al knowledge 
omplexity�(n).A 
orollary of the result for 
omputational zero knowledge, is that we 
an now alsoprove the Ostrovsky{Wigderson for 3-message 
omputational zero-knowledge proofs. Thatis, 
ombining Theorems 4.8.8 and 5.1.2, we get:Theorem 5.4.18 ([OW93℄ for 3-message proofs) If a hard-on-average promise prob-lem possesses a 3-message 
omputational zero-knowledge proof, then one-way fun
tions ex-ist.The most important open problem left by these results is to remove the 3-messagerestri
tion for 
omputational zero knowledge (without making any 
omputational assump-tions).Open Problem 5.4.19 Does every problem in HVCZK possess a publi
-
oin HVCZKproof system?9F�urer et. al. [FGM+89℄ a
tually 
laim to 
onvert any honest-veri�er statisti
al zero-knowledge proof(even a private-
oin one) into one with perfe
t 
ompleteness, but a
tually, their transformation only preserveszero knowledge when starting with a publi
-
oin proof system.



5.5. OKAMOTO'S SUBPROTOCOLS 115Another interesting problem is to improve the message 
omplexity of the transformation.Neither of these theorems give any guarantee on the message 
omplexity of the publi
-
oinproof systems produ
ed, despite the fa
t that they are obtained by starting with 
onstant-message proof systems. This is a sharp 
ontrast with the Goldwasser{Sipser transformationwhi
h only in
reases the message 
omplexity by 2 (and this 
an be a
tually redu
ed to zerousing the 
ollapse theorems of [BM88℄). Thus, the following question is still unanswered:Open Problem 5.4.20 Does every problem in HVSZK have a publi
-
oin HVSZK proofsystem whi
h ex
hanges a 
onstant number of messages?For a positive answer to this question, it would suÆ
e to exhibit 
onstant-message(publi
-
oin) sample generation and sample test proto
ols, as the rest of Proto
ol 5.4.2only uses a 
onstant number of messages. (The proof system for Entropy Differen
ein [GV99℄ uses even fewer messages beyond the sample generation and test proto
ols.)5.5 Okamoto's subproto
olsIn this se
tion, we present Okamoto's proto
ols for generating and testing samples from anearly 
at distribution. Re
all that these proto
ols must be publi
 
oin and furthermoremust satisfy 
ertain \zero-knowledge" properties.5.5.1 OverviewSample generation. Here the input to the proto
ol (M;A) is a �-
at distribution X(en
oded by a 
ir
uit) and the output should be a sample x from this distribution. Werequire that, no matter what strategy M follows, x will not be too heavy. If, however, bothparties play honestly, then x should be nearly typi
al with high probability, and should besimulatable for an externally spe
i�ed x. In parti
ular, the proto
ol should not reveal aninput to the 
ir
uit X that yields x, as the simulator is only given x and it may be diÆ
ultto �nd an input yielding x in general. If we remove this 
ondition, the problem be
omestrivial: A 
ould just sample x a

ording to X and reveal both x and the input used toprodu
e it. Sin
e X is nearly 
at, x will be nearly typi
al with high probability.Okamoto's solution to this problem has the following general stru
ture: M proposesa sample x (whi
h is supposed to be distributed a

ording to X) and sends it to A. (Of
ourse, if M is dishonest, he 
an 
hoose x to be too heavy.) Then M and A engage in ashort \game" whi
h ends by M proposing another sample x0. Roughly speaking, this gamehas the following properties:1. If x is too heavy, then no matter what strategy M follows, he will be for
ed to sele
tx0 whi
h is noti
eably lighter than x.2. If x is not too heavy, then no matter what strategy M follows, he will be for
ed to
hoose x0 that is also not too heavy.3. If x is nearly typi
al and M plays honestly, then x0 will also be nearly typi
al.



116 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINS4. IfM plays honestly, then A's view of the game is simulatable for an externally spe
i�edx0.Clearly, repeating this game many times to obtain a sequen
e of samples x0; : : : ; xm(where x0 is proposed by M and xi+1 = x0i) will have the e�e
t of pushing a heavy proposalfor x0 
loser and 
loser to the nearly typi
al set. Taking m suÆ
iently large (but stillpolynomial in the appropriate parameters), xm will be guaranteed to be not too heavy, nomatter howM plays. On the other hand, ifM plays honestly, all the samples will be nearlytypi
al. Finally, the simulability property of the game enables the entire sample generationproto
ol to be simulated \ba
kwards" for an externally spe
i�ed xm.Sample test. Here the input to the prot
ol (M;A) is a �-
at distribution X (en
odedby a 
ir
uit) together with a string x from the domain of X. At the end of the proto
ol, Aa

epts or reje
ts. We require that if x is too light, A should reje
t with high probabability.If, however, x is nearly typi
al and both parties play honestly, then A should a

ept withhigh probability, and, moreover, A's view of the intera
tion should be simulatable (givenadditionally a random input for X whi
h yields x).The general stru
ture of this proto
ol is very similar to that of the sample generationproto
ol. Given x, M and A engage in a short game whi
h ends by M proposing anothersample x0. Roughly speaking, this game has the following properties:1. If x is too light, then no matter what strategy M follows, he will be for
ed to sele
tx0 whi
h is noti
eably lighter than x.2. If x is nearly typi
al and M plays honestly, then x0 will also be nearly typi
al.3. If x is nearly typi
al and M plays honestly, then A's view of the game is simulatable(given a random input to X whi
h yields x).Clearly, repeating this game many times to obtain a sequen
e x0; : : : ; xm (where x0 = xand xi+1 = x0i) will have the e�e
t of making a light input sample lighter and lighter. Takingm suÆ
iently large, xm�1 will be so light that it has zero probability, so there is no xmlighter than xm�1 and A will reje
t! Noti
e that we do not 
are what happens in the gameif xi is not too light and M plays dishonestly; if the original input is too light (whi
h is thethe only time we worry about a dishonest M), all the subsequent xi's will also be too lightwith high probability. On the other hand, if the original input x is nearly typi
al and Mplays honestly, all the samples will be nearly typi
al. Finally, the simulability property ofthe game enables the entire sample test proto
ol to be simulated \forwards" given 
oins forx. Amazingly, the game used for the sample test proto
ol is identi
al to the game used forthe sample generation proto
ol. We des
ribe this \pushing" game in the next se
tion, andsubsequently give formal des
riptions of the two proto
ols.5.5.2 The pushing gameThroughout the remainder of Se
tion 5.5, X is a �-
at distribution en
oded by a 
ir
uitand m (resp., n) denotes the length of the input (resp., output) of the 
ir
uit generating X.
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all that for positive integers k and `, Hk;` denotes a 2-universal family of hash fun
tionsmapping f0; 1gk to f0; 1g`.The basi
 game underlying the sample generation and sample test proto
ols is the 2-message proto
ol given in Proto
ol 5.5.1 (
alled \sequentially re
ursive hashing" in [Oka96℄).Proto
ol 5.5.1: Pushing game (M;A)Input: (X;x;�; t), where x 2 f0; 1gn and t � �1. A: Choose h uniformly from Hm+n;m�3t� and send h to M .2. M : Choose (r; x0) from the distribution 
X(x) � X, 
onditioned onh(r; x0) = 0, and send (r; x0) to A. (If there is no su
h pair (r; x0), then Msends fail to A.)3. A: Che
k that X(r) = x and h(r; x0) = 0. If either 
ondition fails, reje
t.Output: x0Observe that if j
X(x)j = ;, then A reje
ts with probability 1. In order to des
riberemaining the properties of the pushing game, we de�ne the weight of a string x relative toa 
ir
uit X by wtX(x) = log(Pr [X = x℄ � 2H(X)). So, x is 
-heavy i� wtX(x) � 
 and x is
-light i� wtX(x) � �
. Also note that for x in the support of X, jwtX(x)j � m. When thedistribution X is 
lear from the 
ontext, we will often write wt(x) instead of wtX(x). Thefollowing lemma asserts that no matter how M plays, if the input to the game is atypi
al,then the output is noti
eably lighter. (The behavior on typi
al inputs is analyzed later |in Lemma 5.5.3.)Lemma 5.5.2 If A follows the pres
ribed strategy in the pushing game, then no matterwhat strategy M uses, the following hold:1. (\heavy gets lighter") With probability � 1 � 2�
(t2), either wt(x0) < max(wt(x) �1; 2pt� ��) or A reje
ts.2. (\light gets lighter") If wt(x) � �6pt� ��, then with probability � 1� 2�
(t2), eitherwt(x0) < wt(x)� 1 or A reje
ts.Proof: 1. Let S be the set of x0 su
h that wt(x0) � max(wt(x)� 1; 2pt� ��). We needto show that with probability at most 2�
(t2) over the 
hoi
e of h from Hm+n;m�3t�, thereexists a pair (r; x0) 2 
X(x) � S su
h that h(x; r0) = 0. By the soundness of the standardlower-bound proto
ol (Lemma 5.2.3), it suÆ
es to prove thatj
X(x)� Sj � 2�
(t2) � 2m�3t�:



118 CHAPTER 5. PRIVATE COINS VS. PUBLIC COINSThe intuition is that the number of x0 that are heavier than max(wt(x)� 1; 2pt� ��) is sosmall that not even the size of 
X(x) 
an 
ompensate.By de�nition of wt(x), j
X(x)j = 2m�H(X)+wt(x). We now bound jSj. First, sin
e X is�-
at, we have 2�4t�+1 � Prx0 X hwt(x0) � 2pt� ��i� Pr [X 2 S℄= Xx02S Pr �X = x0�On the other hand, every x0 2 S is (wt(x) � 1)-heavy, whi
h means that Pr [X = x0℄ �2�H(X)+wt(x)�1. Thus, 2�4t�+1 � jSj � 2�H(X)+wt(x)�1:Putting everything together, we havej
X(x)� Sj � 2m�H(X)+wt(x) �� 2�4t�+12�H(X)+wt(x)�1�= 2m�4t�+2� 2�t2+2 � 2m�3t�;as desired. (In the last inequality, we used the fa
t that t � �.)2. Let S = fx0 : wt(x0) � wt(x) � 1g. Again, it suÆ
es to show that j
X(x) � Sj �2�
(t2) � 2m�3t�. Here the intuition is that j
X(x)j is so small (sin
e x is so light) that theonly way for M to su

eed is to 
hoose x0 even lighter than x (sin
e there 
annot be toomany strings of noti
eable probability mass). This time we bound jSj by dividing S intotwo parts. De�ne S1 = fx0 : wt(x)� 1 � wt(x0) � �2pt� ��gS2 = fx0 : �2pt� �� < wt(x0)g;so that S = S1 [ S2. Sin
e every x0 2 S2 has probability mass greater than 2�H(X)�2pt���,we must have jS2j < 2H(X)+2pt���� 2H(X)�wt(x)�4t�;where the last inequality follows from wt(x) � �6pt� �� and � � t. We now bound jS1j.Sin
e X is �-
at, we have 2�4t�+1 � Pr �X 0 2 S1�� jS1j � 2�H(X)+wt(x)�1:



5.5. OKAMOTO'S SUBPROTOCOLS 119Thus, jS1j � 2H(X)�wt(x)�4t�+2, and sojSj = jS1j+ jS2j < 2H(X)�wt(x)�4t�+3;and j
X(x)� Sj < 2m�H(X)+wt(x) � 2H(X)�wt(x)�4t�+3= 2m�4t�+3� 2�t2+3 � 2m�3t�;as desired.The pushing game has the following simulability and \
ompleteness" properties whenboth parties are honest:Lemma 5.5.3 If both parties follow the proto
ol in the pushing game and x is t�-typi
al,then the following two distributions have statisti
al di�eren
e at most 2�
(t2):(A) Exe
ute the pushing game on input (X;x;�; t) to obtain (h; r; x0). Output (h; r; x0).(B) Let x0 be distributed a

ording to X and let r be sele
ted uniformly from 
X(x). Chooseh uniformly in Hm+n;m�3t� subje
t to h(r; x0) = 0. Output (h; r; x0).Proof: We apply Lemma 5.4.10 with Z = 
X(x) � X, D = f0; 1gm+n and R =f0; 1gm�3t�. Distribution (A) (resp., (B)) in Lemma 5.4.10 
orresponds to Distribution(A) (resp., (B)) above. Sin
e X is �-
at, the following holds with probability � 1� 2�t2+1over (r; x0) sele
ted a

ording to 
X(x)�X:Pr �
X(x) = (r; x0)� = Pr �X = x0� � 1j
X(x)j< 2�H(X)+t� � 12m�H(X)�t�= 2�t�jRjThus, we 
an take Æ = 2�t2+1 and " = 2�t� � 2�t2 in Lemma 5.4.10, and see that the twodistributions have statisti
al di�eren
e 2�
(t2).5.5.3 The proto
olsThe sample generation and test proto
ols are given in Proto
ols 5.5.4 and 5.5.5, respe
tively,They simply 
onsist of many repetitions of the basi
 pushing game.5.5.4 Corre
tness of sample generation proto
olUsing the properties of the pushing game, we now prove that the sample generation proto
olsatis�es De�nition 5.3.2 and thus Theorem 5.3.3 holds.
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Proto
ol 5.5.4: Sample generation proto
ol (M;A)Input: (X;�; t), where t � �1. M : Sele
t x0 2 f0; 1gn a

ording to X and send x0 to A.2. M;A: Repeat for i from 1 to m: Exe
ute the pushing game on input(X;xi�1;�; t) and let xi be the output.Output: xm, unless A reje
ts in one of the pushing games, in whi
h 
ase outputany 
anoni
al string outside the range of X (e.g., 0n+1).

Proto
ol 5.5.5: Sample test proto
ol (M;A)Input: (X;x;�; t), where x 2 f0; 1gn and t � �1. M;A: Let x0 = x.2. M;A: Repeat for i from 1 to m+ 1: Exe
ute the pushing game on input(X;xi�1;�; t) and let xi be the output.3. A: Reje
t if A reje
ted in any of the pushing games, else a

ept.
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tion, we see that for every 0 � i � m,with probability at least 1 � i � 2�
(t2), either wt(xi) < max(wt(x0) � i; 2pt� � �) or Areje
ts. In parti
ular, sin
e wt(x0) � m, with probability at least 1�m � 2�
(t2), we havewt(xm) < max(wt(x0)�m; 2pt� ��) = 2pt� ��unless A reje
ts. In addition, if A reje
ts in any of the pushing games, then the outputhas weight 0 (sin
e it is 
hosen to be outside the support of X). Therefore, soundness issatis�ed.Completeness and zero knowledge. First we observe that the 
ompleteness 
onditionfollows from the strong zero-knowledge 
ondition: In Distribution (B) of De�nition 5.3.2, xis distributed a

ording to X, and hen
e is t�-typi
al with probability � 1� 2�t2+1 by the�-
atness of X. Sin
e x 
orresponds to the output of the sample generation proto
ol inDistribution (A) and Distributions (A) and (B) have statisti
al di�eren
e at most 2�
(t2),the output of the sample generation proto
ol must be t�-typi
al with probability at least1� 2�t2+1 � 2�
(t2) = 1� 2�
(t2).Now we prove the zero-knowledge 
ondition. Consider the probabilisti
 polynomial-timesimulator given in Algorithm 5.5.6.Algorithm 5.5.6: Simulator for sample generation proto
olInput: (X;�; t; x)1. Let xm = x.2. For i from m down to 1 repeat:(a) Choose ri�1 uniformly from f0; 1gm and let xi�1 = X(ri�1).(b) Choose hi uniformly from Hm+n;m�3t� subje
t to hi(ri�1; xi) = 0.3. Output (x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm; (rm�1; xm)):We prove by indu
tion on i that the distribution on 
i = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi))in the output of the simulator (when x is 
hosen a

ording to X) has statisti
al di�eren
eat most i � 2�
(t2) from the veri�er's view of the sample generation proto
ol up to the endof the i'th exe
ution of the pushing game. Clearly this is true for i = 0, as in both 
asesx0 is distributed a

ording to X. Now suppose it is true for i; we will prove it for i + 1.From the following two observations it follows that the statisti
al di�eren
e only in
reasesby 2�t2+1 + 2�
(t2) = 2�
(t2) when going from i to i+ 1:1. In the simulator, xi is t�-typi
al with probability at least 1� 2�t2+1.2. For any history 
i = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi)) in whi
h xi is t�-typi
al, the
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al di�eren
e 2�
(t2):(A) A's view of the (i+ 1)'st pushing game 
onditioned on history 
i.(B) The distribution of (hi+1; (ri; xi+1)) 
onditioned on history 
i in the output ofthe simulator.Observation 1 is immediate from the fa
t that xi is distributed a

ording to X in thesimulator and X is �-
at. Observation 2 follows from Lemma 5.5.3, observing that 
ondi-tioned on history 
i, the triple (hi+1; (ri; xi+1)) in the output of the simulator is sele
tedexa
tly a

ording to the Distribution (B) in Lemma 5.5.3. That is, 
onditioned on history
i, ri is sele
ted uniformly from 
X(xi), xi+1 is distributed a

ording to X, and hi+1 issele
ted uniformly in Hm+n;m�3t� subje
t to hi+1(ri; xi+1) = 0.5.5.5 Corre
tness of sample test proto
olFinally, we prove that the sample test proto
ol satis�es De�nition 5.3.4 and thus Theo-rem 5.3.5 holds.Soundness. By Lemma 5.5.2 (Part 2) and indu
tion, we see that if wt(x) � �6pt� ��,then with probability at least 1� i �2�
(t2), for every 0 � i � m+1, wt(xi) < wt(x0)� i (orA reje
ts). In parti
ular, sin
e wt(x0) < H(X), with probability at least 1�m � 2�
(t2), wehave wt(xm) < H(X)�m unless A reje
ts at some iteration. Sin
e m�H(X) + wt(xm) =log j
X(xm)j 
annot be negative unless j
X(xm)j = ;, it follows that with probability atleast 1�m � 2�
(t2), A must reje
t in one of the iterations.Completeness and zero knowledge. First we prove the zero-knowledge 
ondition.Consider the probabilisti
 polynomial-time simulator given in Algorithm 5.5.7.Algorithm 5.5.7: Simulator for sample test proto
olInput: (X;x;�; t; r)1. Let x0 = x and r0 = r.2. For i from 1 to m repeat:(a) Choose ri uniformly from f0; 1gm and let xi = X(ri).(b) Choose hi uniformly from Hm+n;m�3t� subje
t to hi(ri�1; xi) = 0.3. Output (x0; h1; (r0; x1); h2; (r1; x2); : : : ; hm+1; (rm; xm+1)):We prove by indu
tion on i that the distribution on 
i = (x0; h1; (r0; x1); : : : ; hi; (ri�1; xi))in the output of the simulator (when r is sele
ted uniformly from 
X(x) and x is t�-typi
al)
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al di�eren
e at most i � 2�
(t2) from the veri�er's view of the sample test proto-
ol up to the end of the i'th exe
ution of the pushing game. Clearly this is true for i = 0.The indu
tion step is proved analogously to the argument used for the sample generationproto
ol, using the same two observations and noting that, although the simulator worksin reverse order, the sele
tion of ri and hi is as before.Now we observe that the 
ompleteness 
ondition follows from the weak zero-knowledge
ondition and the parti
ular simulator we have given above. Spe
i�
ally, the above simulatoralways outputs trans
ripts whi
h would make A a

ept. Sin
e it has statisti
al di�eren
e atmost m � 2�
(t2) from the sample test proto
ol, A must a

ept in the sample test proto
olwith probability at least 1�m � 2�
(t2).
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Chapter 6Coping with Cheating Veri�ersUp to this point, the fo
us of our investigation has been honest-veri�er zero-knowledgeproofs, whi
h only guarantee that the veri�er learns nothing if it follows the spe
i�edproto
ol. The existen
e of su
h honest-veri�er proofs is already interesting from both amathemati
al and philosophi
al point of view, and, as we have seen, one 
an develop a ri
htheory about their 
omplexity. However, from a 
ryptographi
 point of view, the appli
a-bility of honest-veri�er proofs is quite limited, sin
e it is usually unreasonable to assumethat mutually distrustful parties will follow a given proto
ol. Indeed, one of the most dra-mati
 appli
ations of zero-knowledge proofs is as a general tool for limiting the amount of\
heating" in 
ryptographi
 proto
ols [GMW91, Yao86, GMW87℄. Clearly, honest-veriferproofs are unsuitable for su
h purposes.The main 
ontribution of this 
hapter is a general method for 
onverting honest-veri�erzero-knowledge proofs into proofs whi
h remain zero knowledge even against 
heating ver-i�ers. The transformation applies to all honest-veri�er statisti
al zero-knowledge proofs,ansd thus we 
on
lude that HVSZK = SZK. It also applies to all publi
-
oin honest-veri�er 
omputational zero-knowledge proofs. Su
h a result is useful in several ways. First,the transformation allows us to immediately translate the results we have obtained abouthonest-veri�er zero knowledge (su
h as the 
omplete problems and 
losure properties) to the
heating-veri�er zero knowledge. Se
ond, the transformation suggests a useful methodologyfor 
onstru
ting zero-knowledge proofs: First 
onstru
t an honest-veri�er zero-knowledgeproof for the problem at hand (whi
h is often an easier task), and then use our generaltransformation to 
onvert it into one robust against 
heating veri�ers.Our transformation relies on a new \random sele
tion proto
ol," whi
h may be usefulin other settings. It is a proto
ol for two mutually distrustful parties to sele
t a \random"string of a given length, with 
ertain (assymmetri
) guarantees on how mu
h ea
h party
an a�e
t the output distributions and an additional simulability property for one of theparties. The random sele
tion proto
ol in turn relies on a new lemma about 2-universalhash fun
tions.We begin, in Se
tion 6.1, by de�ning the various forms of zero-knowledge proofs against
heating veri�ers, and dis
ussing some issues that arise in the de�nitions. In order toillustrate the de�nitions, in Se
tion 6.2 we present su
h a (
heating-veri�er) statisti
al125



126 CHAPTER 6. COPING WITH CHEATING VERIFIERSzero-knowledge proof for a variant of Statisti
al Differen
e (namely, SD1;1=2).1 InSe
tion 6.3, we give our transformation from honest-veri�er proofs to 
heating-veri�er onesand prove its 
orre
tness, assuming the existen
e of a random sele
tion proto
ol with 
er-tain properties. We exhibit su
h a random sele
tion proto
ol in Se
tion 6.4, 
ompletingthe proof of the main results of this 
hapter. We 
on
lude, in Se
tion 6.5, by listing some
orollaries and open problems. In parti
ular, we des
ribe the results about SZK obtainedby translating things we have proven about HVSZK.6.1 De�nitionsThe basi
 approa
h of Goldwasser, Mi
ali, and Ra
ko� [GMR89℄ in de�ning zero-knowledgeproofs against 
heating veri�ers, is to require that, for every polynomial-time veri�er strat-egy V �, there exists a simulator whose output distribution is 
lose to V �'s view of the in-tera
tion. As with honest-veri�er zero knowledge, di�erent interpretations of \
lose" yieldperfe
t, statisti
al, and 
omputational variants of the de�nition. Also like the honest-veri�erversions, our de�nitions di�er from the original de�nitions of Goldwasser, Mi
ali, and Ra
k-o� [GMR89℄ in that we use a se
urity parameter to 
ontrol the error parameters and werequire the simulator to run in stri
t polynomial time (but allow a failure probability). Asdis
ussed in more detail later, we allow the veri�er to be nonuniform in these de�nitions,and hen
e provide the simulator with the same \advi
e" as is given to the veri�er. For apolynomial-time algorithm V and a string a, let V[a℄ denote V with \advi
e" string a. (Weadopt the 
onventation that the running time of V is is independent of a, so if a is too long,V will not be able to a

ess it in its entirety.)De�nition 6.1.1 (
heating-veri�er zero knowledge | PZK;SZK)An intera
tive proof system (P; V ) for a promise problem � is said to be statisti
al zeroknowledge if for every probabilisti
 polynomial-time V �, there exists a useful2 probabilisti
polynomial-time S and a negligible fun
tion �(�) su
h thatStatDi� �eS[a℄(x; 1k); hP; V �[a℄i(x; 1k)� � �(k) 8x 2 �Y ; k 2 N; a 2 f0; 1g�:The negligible fun
tion � is 
alled the simulator deviation for V �. If, for every V �, � � 0,then (P; V ) is said to be perfe
t zero knowledge. SZK (resp., PZK) denotes the 
lass ofpromise problems possessing statisti
al (resp., perfe
t) zero-knowledge proofs.De�nition 6.1.2 (
heating-veri�er zero knowledge | CZK)An intera
tive proof system (P; V ) for a promise problem � is said to be 
omputational zeroknowledge if for every probabilisti
 polynomial-time V �, there exists a useful probabilisti
polynomial-time S su
h thatneS[a℄(x; 1k)ox2�Y ;k2N and nhP; V �[a℄i(x; 1k)ox2�Y ;k2N;a2f0;1g�1We have not shown this variant of SD to be 
omplete forHVSZK, so this does not prove thatHVSZK =SZK.2Re
all that a probabilisti
 algorithm A is 
alled useful if Pr [A(x) = fail℄ � 1=2 for all x and eA(x)denotes the output distribution of A on input x, 
onditioned on A(x) 6= fail.



6.1. DEFINITIONS 127are 
omputationally indistinguishable. CZK denotes the 
lass of promise problems possess-ing 
omputational zero-knowledge proofs.Note that we have allowed the veri�er strategy V � to be nonuniform even in the 
ase ofSZK and PZK. As it did with HVCZK, allowing nonuniformity allows us to prove thatzero knowledge is preserved under sequential repetition, and this augmentation be
omeseven more important in the setting of 
heating veri�ers. In fa
t, it has been proven that
heating-veri�er 
omputational zero knowledge fails to be preserved under the uniformversions of the de�nitions [GK96b℄. Allowing nonuniformity is also important when zero-knowledge proofs are used as 
omponents of larger 
ryptographi
 proto
ols, as in [Yao86,GMW87℄. Intuitively, in these settings, the veri�er 
an use information it has obtainedprior to the start of the zero-knowledge proof (e.g., from an earlier exe
ution of the zero-knowledge proof, in the 
ase of sequential 
omposition) in trying to extra
t knowledge fromthe prover. A de�nition that is robust against nonuniform veri�ers implies that su
h extrainformation does not help, as it 
an be regarded as \nonuniform advi
e". Even with anonuniform de�nition, however, 
heating-veri�er zero knowledge fails to be 
losed underparallel 
omposition [GK96b, FS90℄, so the only dire
t method for doing error redu
tion issequential 
omposition.At �rst, De�nitions 6.1.1 and 6.1.2 seem very hard to meet. How 
an one 
onstru
ta simulator for ea
h of the in�nitely many possible veri�er strategies? The way this taskis handled in all known 
onstru
tions of zero-knowledge proofs is that a
tually only one\universal" simulator is 
onstru
ted. The way this one algorithm simulates the in�nitelymany possible veri�ers is that, in order to simulate the intera
tion between P and someparti
ular veri�er V �, the simulator is given ora
le a

ess to V �. By observing the veri�er'sbehavior when it is fed various partial trans
ripts, the simulator is able to 
onstru
t a\good" simulation for that parti
ular veri�er. This sort of \universal" simulation in whi
hthe veri�er is used as a \bla
k box" was formalized by Goldrei
h and Oren [GO94℄. Oneadvantage of adopting su
h a de�nition is that it allows one to make sense of a proof beingzero knowledge not just against polynomial-time veri�ers, but all veri�er strategies (evenun
omputable ones).De�nition 6.1.3 (bla
k-box simulation SZK) An intera
tive proof system (P; V ) for apromise problem � is said to be bla
k-box simulation statisti
al zero knowledge if there is auseful probabilisti
 polynomial-time algorithm S su
h that for every nonuniform probabilisti
polynomial-time V �,StatDi� �gSV �(x; 1k); hP; V �i(x; 1k)� � �(k) 8x 2 �Y ; k 2 N; 3 (6.1)for some negligible fun
tion � (whi
h may depend on V �). The negligible fun
tion � is
alled the simulator deviation for V �. If, for every V �, � � 0, then (P; V ) is said to bebla
k-box simulation perfe
t zero knowledge. If (6.1) holds for all veri�er strategies V �(not just polynomial-time ones), then the proof system is said to bla
k-box simulation zeroknowledge against all veri�ers3Re
all the notation MO is used to indi
ate algorithm M being given ora
le a

ess to fun
tion O.
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k-box simulation CZK) An intera
tive proof system (P; V ) fora promise problem � is said to be bla
k-box simulation 
omputational zero knowledge ifthere is a useful probabilisti
 polynomial-time algorithm S su
h that for every nonuniformprobabilisti
 polynomial-time V �,ngSV �(x; 1k)ox2�Y ;k2N and nhP; V �i(x; 1k)ox2�Y ;k2Nare 
omputationally indistinguishable.There is one subtlety in these de�nitions of bla
k-box simulation, pointed out in [BMO90b℄.S is required to run in time that is a �xed polynomial in its input length, yet it is requiredto simulate veri�ers V � whose running time 
an be an arbitrary polynomial in the inputlength, and hen
e even the messages and random 
oins of V � 
an be too long for S to read.To deal with this, we give S some additional power:1. S has random a

ess to its 
ommuni
ations with the ora
le V �, and may 
opy stringsre
eived from the ora
le dire
tly to the output (in one time step).2. S 
an uniformly sele
t and �x the random 
oins of V � in one time step. It may alsoautomati
ally 
opy them to the output in a single time step.6.2 A 
heating-veri�er SZK proof system for SD1;1=2In this se
tion, we illustrate the above de�nitions by giving a 
heating-veri�er zero-knowledgeproof system for SD1;1=2. The proof system is based on the perfe
t zero-knowledge proofsfor Quadrati
 Residuosity [GMR89℄ and Graph Isomorphism [GMW91℄. For moti-vation, we �rst observe that NP proofs 
an be given for membership in SD1;1=2. A \proof"that two distributions X0 and X1 are not disjoint is simply a triple (x; r0; r1) su
h thatX0(r0) = x = X1(r1). In order to obtain a zero-knowledge proof, the prover sends just x(randomly sampled from one of the distributions) and the veri�er asks for either a proofr0 that x 2 Supp(X0) or a proof r1 that x 2 Supp(X1). A formal des
ription of this proofsystem is given in Proto
ol 6.2.1 (whi
h is not yet our �nal proof system).The 
ompleteness and soundness of this proto
ol are easy to 
he
k.Lemma 6.2.2 For any � < 1, Proto
ol 6.2.1 is an intera
tive proof for SD1;� with 
om-pleteness error �=2 and soundness error 1=2.Proof: (Completeness) When both parties follow the proto
ol, A reje
ts i� b = 1 andx is not in the support of X1. By the de�nition of statisti
al di�eren
e, a random samplefrom X0 will fail to be in the support of X1 with probability at most StatDi� (X0;X1) � �.Sin
e b = 1 with probability 1=2, A reje
ts with probability at most �=2.(Soundness) If X0 and X1 have disjoint supports, then no string x 
an be in the supportof both distributions. So, with probability at least 1=2, A will 
hoose b so that x =2 Supp(Xb)and the prover will fail.
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Proto
ol 6.2.1: Basi
 proof system (M;A) for SD1;�Input: Cir
uits X0 and X1 (ea
h with m input gates and n output gates)1. M : Sample x X0. Send x to A.2. A: Choose b f0; 1g. Send b to M .3. M : Choose r uniformly from 
b(x) def= fr0 : Xb(r0) = xg. Send r to A. (If
b(x) = ;, then send fail to A.)4. A: If Xb(r) = x, then a

ept. Otherwise, reje
t.For zero-knowledgeness, we �rst 
onsider the spe
ial 
ase when X0 and X1 have statis-ti
al di�eren
e 0 and the veri�er is honest. Note that the veri�er's view 
onsists of triples(x; b; r) where x is distributed a

ording to X0 (equivalently, X1), b is uniform in f0; 1g,and r is a random input to Xb yielding x. It is easy to generate su
h triples: 
hoose b andr uniformly and let x = Xb(r). The diÆ
ulty when extending this approa
h to 
heatingveri�ers is that a 
heating veri�er may sele
t b as a fun
tion of x. This 
an be handled byhaving the simulator \guess" b in advan
e and use its ora
le a

ess to A� to 
he
k the guessat the end. Thus we 
onsider the simulator given in Algorithm 6.2.3.Algorithm 6.2.3: Bla
k-box simulator for Proto
ol 6.2.1Input: Cir
uits X0 and X1 (ea
h with m input gates and n output gates) andora
le a

ess to veri�er A�.1. Sele
t and �x the random 
oins R of A�.2. Choose b f0; 1g and r  f0; 1gm.3. Let x = Xb(r).4. Let b0 = A�(x).a5. If b0 = b, output (x; b; r;R). Otherwise, output fail.aHere, and often in this 
hapter, we omit the input (X0; X1) and the random 
oins R of A�to simplify the notation.
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ir
uits X0, X1 with statisti
al di�eren
e � and any veri�erstrategy A� (even 
omputationally unbounded), Algorithm 6.2.3 outputs fail with probabil-ity at most (1 + �)=2 and, 
onditioned on non-failure, has statisti
al di�eren
e at most �from hM;A�i.Proof: To 
ompare the simulator distribution SA� to the real intera
tion hM;A�i, we
onsider the following intermediate distribution D:D: Sele
t and �x the random 
oins R of A�. Choose b  f0; 1g. Sample x  X0. Letb0 = A�(x). Choose r  
b0(x). Output (x; b; r;R) if b = b0 and fail otherwise.Note that, sin
e b is independent of (x; b0; r), D outputs fail with probability exa
tly1/2, and 
onditioned on non-failure, is distributed identi
ally to hM;A�i. In addition, ifthe x  X0 in D is repla
ed with x  Xb, we obtain exa
tly the output distribution ofSA� . Sin
e b = 1 with probability 1=2 in D, the statisti
al di�eren
e between D and SA� isat most (1=2) � StatDi� (X0;X1) = �=2. If we now 
ondition both of these distributions onnon-failure, the statisti
al di�eren
e in
reases by a fa
tor of at most 1=Pr [D = fail℄ = 2(as justi�ed below).The fa
t about the behavior of statisti
al di�eren
e with respe
t to 
onditioning usedin the above proof is the following:Lemma 6.2.5 Let X and Y be any two distributions on a universe U and let T � U beany set. Let X 0 (respe
tively, Y 0) denote the distribution of X (resp., Y ) 
onditioned onX 2 T (resp., Y 2 T ). Then, StatDi� (X 0; Y 0) � StatDi� (X;Y ) =Pr [X 2 T ℄.Proof: We may assume that Pr [X 2 T ℄ � Pr [Y 2 T ℄, for otherwise swapping the twodistributions gives a stronger bound. Let T 0 be any subset of T . Then,Pr �X 0 2 T 0�� Pr �Y 0 2 T 0� = Pr [X 2 T 0℄Pr [X 2 T ℄ � Pr [Y 2 T 0℄Pr [Y 2 T ℄= Pr [X 2 T 0℄ � Pr [Y 2 T ℄� Pr [Y 2 T 0℄ � Pr [X 2 T ℄Pr [X 2 T ℄ � Pr [Y 2 T ℄� Pr [X 2 T 0℄ � Pr [Y 2 T ℄� Pr [Y 2 T 0℄ � Pr [Y 2 T ℄Pr [X 2 T ℄ � Pr [Y 2 T ℄= Pr [X 2 T 0℄� Pr [Y 2 T 0℄Pr [X 2 T ℄ � StatDi� (X;Y )Pr [X 2 T ℄ :Maximizing over T 0 � T 
ompletes the proof.Setting � = 0 in Lemmas 6.2.2 and 6.2.4, we have:Proposition 6.2.6 SD1;0 2 PZK: Moreover, it has a perfe
t zero-knowledge proof withthe following properties:1. The proof system is publi
 
oin.
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t 
ompleteness and soundness error 1=2.3. 1 bit of veri�er-to-prover 
ommuni
ation.4. Ex
hanges only three messages.5. Bla
k-box simulation perfe
t zero knowledge against all veri�ers.In order to redu
e the error, one 
annot do an arbitrary number of parallel repetitions,sin
e PZK is not 
losed under parallel repetition [FS90℄. However, up to O(log k) parallelrepetitions of this parti
ular proof system 
an be shown to remain perfe
t zero knowledge,by generalizing the simulator in the natural way. Thus, the error 
an be redu
ed to 1=kwithout in
reasing the number of rounds. It is unlikely that this 
an be improved further, asonly problems inBPP have 
onstant-round zero-knowledge proofs with negligible soundnesserror [GK96b℄.Sin
e Graph Isomorphism redu
es to SD1;0, the proof system for it from [GMW91℄ isa spe
ial 
ase.Corollary 6.2.7 ([GMW91℄) Graph Isomorphism is in PZK. Moreover, it has a proofsystem with all the properties listed in Proposition 6.2.6.As dis
ussed above, this proof system has nonnegligible soundness error. However,Graph Isomorphism does have a 
onstant-message (private-
oin) perfe
t zero-knowledgeproof system with negligible soundness error, as shown by Bellare, Mi
ali, and Ostro-vsky [BMO90a℄.In order to get a zero-knowledge proof for SD1;� for � < 1, we need to redu
e thestatisti
al di�eren
e for yes instan
es. The XOR Lemma (Lemma 3.1.16) a

omplishesexa
tly this. If we augment Proto
ol 6.2.1 by having both parties (and the simulator) applythe XOR Lemma to the two distributions, then Lemmas 6.2.2 and 6.2.4 imply that theresulting proof system is statisti
al zero knowledge:Proposition 6.2.8 For every 
onstant � < 1, SD1;� 2 SZK. Moreover, it has a statisti
alzero-knowledge proof with the following properties:1. The proof system is publi
 
oin.2. Completeness error 2�k and soundness error 1=23. 1 bit of veri�er-to-prover 
ommuni
ation.4. Ex
hanges only three messages.5. Bla
k-box simulation zero knowledge against all veri�ers with simulator deviation 2�k.This suggests one way to prove thatHVSZK = SZK| show that SD (Karp) redu
es toSD1;1=2.4 Even a randomized Karp redu
tion would suÆ
e (as long as the error probability is4Sin
e HVSZK is 
losed under 
omplement, it does not matter whether we 
omplement these problemsor not.
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an get absorbed in the simulator deviation). Unfortunately, we do not knowhow to do that. In the next se
tion, we will prove that HVSZK = SZK in a 
ompletelydi�erent way. Nonetheless, the question of whether SD redu
es to SD1;1=2 remains aninteresting one, as it would show that every problem in HVSZK has a 
onstant-messagepubli
-
oin HVSZK proof (resolving Open Problem 5.4.20). Obtaining a deterministi
redu
tion seems more diÆ
ult, as it would have the dramati
 
onsequen
es thatHVSZK =HVPZK (by Proposition 3.1.11) and HVSZK � NP \ 
o-NP (sin
e SD1;1=2 2 
o-NPand HVSZK is 
losed under 
omplement).6.3 Transforming honest-veri�er proofs to 
heating-veri�eronesWe now state the main results of this 
hapter.Theorem 6.3.1 HVSZK = SZK. Moreover, every promise problem in HVSZK pos-sesses a statisti
al zero-knowledge proof with the following properties:1. Bla
k-box simulation with simulator deviation 2�k for all veri�ers.2. The proof system is publi
 
oin.3. Perfe
t 
ompleteness.Theorem 6.3.2 Every problem possessing a publi
-
oin HVCZK proof system also has apubli
-
oin CZK proof system. Moreover, the CZK proof system has a bla
k-box simulatorand perfe
t 
ompleteness.We stress that both of these theorems are un
onditional. Similar results have beenpreviously a
hieved under intra
tability assumptions; we dis
uss these in more detail below.Somewhat surprisingly, Theorem 6.3.2 indi
ates that the intra
tability assumptions used in
onstru
ting (publi
-
oin) 
omputational zero-knowledge proofs do not play an essential rolein dealing with 
heating veri�ers, but rather their importan
e lies solely in the 
onstru
tionof the honest-veri�er proofs.We prove both Theorems 6.3.1 and 6.3.2 by exhibiting a transformation from publi
-
oin honest-veri�er zero-knowledge proofs to publi
-
oin (
heating-veri�er) zero-knowledgeproofs; we then use Theorem 5.1.1 to obtain a result that applies to all of (private-
oin)HVSZK. The transformation is very eÆ
ient, in that it preserves the 
omplexity of originalproof system in many respe
ts; this is des
ribed in detail in Se
tion 6.3.6.3.1 Previous resultsConditional results. For 
omputational zero knowledge, the question is 
ompletelyresolved if one assumes that (nonuniformly) one-way fun
tions exist. This is be
ause, underthat assumption, it is known that HVCZK = CZK = IP [GMW91, IY87, BGG+88℄. Inaddition, the 
omputational zero-knowledge proofs produ
ed by these 
onstru
tions alreadyhave the extra properties given in Theorem 6.3.2 (publi
 
oins, perfe
t 
ompleteness, bla
k-box simulation).



6.3. THE TRANSFORMATION 133The problem of giving a general transformation from honest-veri�er zero-knowledgeproofs to 
heating-veri�er ones was �rst studied by Bellare, Mi
ali, and Ostrovsky [BMO90b℄,who showed that HVSZK = SZK under the assumption that the Dis
rete Logarithmproblem is hard. Already there, they observe the potential bene�ts of su
h a transformationthat we dis
ussed at the beginning of the 
hapter, and indeed, use theirs to dedu
e severalnew results about SZK under the same intra
tability assumption. At �rst, it seems puzzlingthat 
omputational assumptions 
an be used in the supposedly \information-theoreti
" set-ting of statisti
al zero knowledge. However, a 
areful examination of the de�nitions revealsthat the standard 
lass SZK doers refer to 
omputational limitations: It requires a simula-tor only for all polynomial-time veri�ers. The 
omputational assumption is therefore usedto limit the behavior of 
heating veri�ers. Later work gradually weakened the assumptionused to prove HVSZK = SZK. Ostrovsky, Venkatesan, and Yung [OVY93℄ a
hieved it un-der the assumption that one-way permutations exist, and �nally, Okamoto [Oka96℄ provedit using any bit-
ommitment s
heme (and hen
e any one-way fun
tion [HILL99, Nao91℄).However, there is something dissatisfying about using intra
tability assumptions to provethat HVSZK = SZK. One of the appealing features of statisti
al zero knowledge is thatit 
an often be exhibited un
onditionally and maintains its zero-knowledge properties evenagainst 
omputationally unbounded veri�ers (as formalized in De�nition 6.1.3). Needless tosay, the results proving HVSZK = SZK under intra
tability assumptions only yield SZKproofs that are zero-knowledge against polynomial-time veri�ers.Un
onditional results. Previously, the only un
onditional transformations of honest-veri�er zero knowledge to 
heating-veri�er zero knowledge were restri
ted to 
onstant-message publi
-
oin proof systems. The �rst su
h transformation was due to Damg�ard [Dam93℄,and another (with improved message 
omplexity) was given by Damg�ard, Goldrei
h, andWigderson [DGW94℄. Both of these results apply to all three forms of zero knowledge |perfe
t, statisti
al, and 
omputational.Di Cres
enzo, Okamoto, and Yung [DOY97℄ also 
laim to prove that HVSZK �weak-SZK, where weak-SZK is de�ned analogously to weak-HVSZK (De�nition 2.4.2).6.3.2 OverviewWe prove Theorems 6.3.1 and 6.3.2 by transforming publi
-
oin honest-veri�er zero-knowledgeproofs to 
heating-veri�er ones. This fo
us on publi
 
oins simpli�es the task 
onsiderably,and on
e again illustrates the usefulness of private-to-publi
 
oin transformations as givenby Theorem 5.1.1. In a publi
-
oin proof system, the honest veri�er's behavior is verystru
tured; it simply sends random 
oins 
ips at ea
h round of intera
tion. So \
heating"amounts to sending messages that are not sele
ted uniformly at random. Thus, a naturalapproa
h to making su
h a proof system zero knowledge for 
heating veri�ers is to repla
ethe veri�er's messages with strings jointly 
hosen by the prover and veri�er in a \randomsele
tion proto
ol." If the veri�er's ability to bias the out
ome of this proto
ol is suÆ
ientlylimited, then we have essentially for
ed its behavior to be \honest." However, we must alsotake 
are that we do not give the prover too mu
h 
ontrol over the out
ome of the proto
ol,lest the resulting proof system will not be sound. Finally, it order to 
on
lude that the �nalproof system is zero knowledge, it is not enough that a 
heating veri�er 
annot bias the
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ome too mu
h; it is also important that the veri�er does not learn anything from therandom sele
tion proto
ol itself. Thus, some sort of simulability property is also needed.Various random sele
tion proto
ols were 
onstru
ted for this purpose in [Dam93, DGW94,Oka96℄, but all of these either rely on 
omputational assumptions or are restri
ted to
onstant-round proof systems. We will 
onstru
t a random sele
tion proto
ol without ei-ther of these limitations. Our random sele
tion proto
ol builds on the one of Damg�ard,Goldrei
h, Wigderson [DGW94℄, so we begin by des
ribing the properties of their 
onstru
-tion. For every positive polynomial p, they give a proto
ol (the \DGW random sele
tionproto
ol") for two parties (\Arthur" and \Merlin") for sele
ting a string in f0; 1g` with thefollowing properties:1. As long as Arthur plays a

ording to the proto
ol, Merlin may 
ause the out
ometo deviate from uniform distribution over f0; 1g` by at most 1=p(`). (That is, thevariation distan
e is at most 1=p(`).)2. As long as Merlin plays a

ording to the proto
ol, Arthur may not 
ause any `-bitstring to appear as the out
ome with probability greater than p(`)4 �2�`. In parti
ular,when Arthur applies a deterministi
 
heating strategy, the out
ome of the proto
ol isuniformly distributed over some set of 2`p(`)4 strings.When this proto
ol is used to transform honest-veri�er proof systems into 
heating-veri�er ones, the veri�er plays the role of Arthur and the prover that of Merlin. Theresulting proof system is simulated in [DGW94℄ by running the honest-veri�er simulator,and hoping that all veri�er messages in
luded in the trans
ript fall in the sets mentionedin Item 2 above. This strategy su

eeds with probability 1=p(`)4i, where i is the number ofveri�er messages in the original proof system. If the original proof system ex
hanges onlya 
onstant number of messages, then the su

ess probability is nonnegligible and the abovesuÆ
es for produ
ing a bla
k-box simulation with respe
t to any 
heating veri�er strategy.But this approa
h fails when we have a non
onstant number of messages.In this paper we modify the above transformation as follows. Rather than sele
ting amessage, we use the DGW random sele
tion proto
ol to spe
ify (in a su

in
t manner) aset of 2k messages (where k is the se
urity parameter). Merlin is then supposed to sele
ta message for Arthur, uniformly from this set. An immediate 
on
ern is that this allowsMerlin to sele
t a string whi
h is advantageous for 
heating. However, this only in
reasesMerlin's 
heating probability by a fa
tor of 2k per ea
h round. (We 
an �rst make theoriginal proof system have an even smaller soundness error, so this should not s
are us.) Sothe question is what we gained by doing so. Intuitively, we gained not having to simulatethe DGW random sele
tion proto
ol for any possible out
ome. Rather than having tosimulate an exe
ution whi
h results in any spe
i�
 `-bit output �, we only need to simulatean exe
ution whi
h results in a random set of strings 
ontaining �. The distin
tion isimportant sin
e exe
utions of the former type may exist only for a 1=poly(`) fra
tion ofthe possible �'s, whereas | as we show | exe
utions of the latter type exist and 
an beeÆ
iently generated for all but a 2�
(k) fra
tion of the �'s. Proving the last statement isthe major te
hni
al task needed to justify our 
onstru
tion.A pre
ise statement of the properties of our random sele
tion proto
ol is given in thefollowing lemma:



6.3. THE TRANSFORMATION 135Proposition 6.3.3 There is an intera
tive proto
ol RS = (MRS ;ARS ) with the followingproperties on input (1`; 1q; 1k).1. (EÆ
ien
y) The proto
ol is polynomially bounded, publi
 
oin for both MRS and ARS ,and both parties 
an be implemented in polynomial time. In addition, the proto
olex
hanges only four messages (starting with ARS ).2. (Soundness) For all Merlin strategies M�RS and all sets T � f0; 1g`, the probabilitythat the output of (M�RS ; ARS )(1`; 1q; 1k) lies in T is at most2k � jT j2` + 1q :3. (Strong Simulability) There exists a polynomial-time bla
k-box simulator SRS su
hthat for all deterministi
5 Arthur strategies A�RS , the statisti
al di�eren
e between thefollowing distributions is poly(q; `) � 2�
(k):(I) Exe
ute (A�RS ;MRS )(1`; 1q; 1k), let � 2 f0; 1g` be the output of the proto
ol, andlet v be A�RS 's view of the intera
tion. Output (v; �).(II) Choose � uniformly from f0; 1g`. Output (SA�RSRS (1`; 1q; 1k; �); �).The �'s are in
luded in the outputs of Distributions (I) and (II) above to for
e the simulatorto produ
e a trans
ript for an externally spe
i�ed � (rather than an � whi
h it generateson its own while produ
ing the trans
ript). Observe that the strong simulability 
onditionalso implies that for any Arthur strategy A�RS , the output of the random sele
tion proto
olwill have statisti
al di�eren
e at most 2�
(k) from uniform.Proposition 6.3.3 will be proven in Se
tion 6.4, after we show how it 
an be used totransform honest-veri�er zero-knowledge proof systems into 
heating-veri�er ones. It is re-du
ed to proving the following generalization of Lemma 5.4.10 whi
h may be of independentinterest:Lemma 6.3.4 There exists a universal 
onstant, 
 > 0, so that the following holds, forevery "; Æ > 0. Let D and R be �nite sets, H be a 2-universal family of hash fun
tionsfrom D to R, and let 0 be any �xed element of R. Let S � H su
h that jSj � ÆjHj, andX be a random variable ranging over a �nite set D having 
ollision probability at most "jRj(i.e., Px2D Pr [X = x℄2 � "jRj). Then the statisti
al di�eren
e between the following twodistributions is at most 
 � "1=
Æ�
.(A) Choose h S, and sele
t x a

ording to X 
onditioned on h(x) = 0. Output (h; x).(B) Choose x X, and sele
t h fh0 2 S : h0(x) = 0g Output (h; x).5The restri
tion to deterministi
 Arthur strategies is only for ease of presentation, as a simulator forrandomized Arthur strategies 
an uniformly sele
t and �x Arthur's 
oins and then use the simulator fordeterministi
 strategies. When we use the Random Sele
tion simulator as a subroutine in the simulator forthe transformed proto
ol in the subsequent se
tion, the 
oins of Arthur will have already been �xed by theouter simulator.
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tually, a spe
ial 
ase of this lemma, where X is uniform over D (and jRj = " � jDj) suÆ
esfor the 
urrent proof of Theorems 6.3.1 and 6.3.2. The stronger version was developed foran alternative proof, dis
overed �rst, whi
h is totally superseded by the 
urrent proof.6.3.3 The transformationNow we present our transformation of proof systems. The properties of the transformationare given in the following theorem:Theorem 6.3.5 Any honest-veri�er publi
-
oin statisti
al (resp., 
omputational)zero-knowledge proof system 
an be transformed into a (
heating-veri�er) publi
-
oin statis-ti
al (resp., 
omputational) zero-knowledge proof system. Furthermore,1. The resulting proof system ex
hanges twi
e as many messages as the original one.2. The resulting prover strategy 
an be implemented in probabilisti
 polynomial time givenora
le a

ess to the original prover strategy.63. The resulting proof system has 
ompleteness error 2�
(k) and soundness error 1=k,where k is the se
urity parameter. In 
ase the original proof system has perfe
t 
om-pleteness, so does the resulting one.4. The resulting proof system has a bla
k-box simulator.5. In 
ase of statisti
al zero-knowledge, the bla
k-box simulator works for all veri�ers andhas simulator deviation poly(k) � �(k) + 2�
(k), where �(k) is the original simulatordeviation.Theorem 6.3.1 follows from 
ombining Theorem 6.3.5 with Theorem 5.4.15 (and re-naming k). Theorem 6.3.2 follows by 
ombining Theorem 6.3.5 with the result of F�ureret. al. [FGM+89℄ that transforms publi
-
oin honest-veri�er zero-knowledge proofs intoones with perfe
t 
ompleteness. One important feature of the transformation given in The-orem 6.3.5 is that it preserves the 
omputational 
omplexity of the prover strategy. Hen
e,for 
ryptographi
 appli
ations, Theorem 6.3.5 is probably most useful on its own, with-out 
ombining it with the other transformations of Theorem 5.4.15 or [FGM+89℄, as thosetransformations do not have this feature. We also note that Theorem 6.3.5 yields a proofsystem with nonnegliglible soundness error 1=k, whi
h 
an be redu
ed further by doingsequential repetitions. This 
annot be improved (while preserving the message-
omplexityof the transformation) unless NP � BPP. This is be
ause only problems in BPP have
onstant-message publi
-
oin CZK proof systems with negligible soundness error [GK96b℄,whereas all ofNP has 
onstant-message publi
-
oinHVCZK proof systems (with negligiblesoundness error) [GMW91℄.6Again, we use the 
onventions given after De�nition 6.1.4 regarding how a polynomial-time algorithm
an make use of a more powerful ora
le whi
h may use a superpolynomial number of random 
oins. In this
ase, we need not worry about the messages being too long sin
e the spe
i�ed prover strategy always sendspolynomial-length messages.
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eed to give the transformation. Let (M0; A0) be any publi
-
oin honest-veri�er zero-knowledge proof system for a promise problem �. In what follows, we alwaysassume that the se
urity parameter k is at least the input length jxj; this 
an be a
hievedby arti�
ially in
reasing k if ne
essary. Let m = m(k) denote the number of messagesex
hanged by (M0; A0) on se
urity parameter k and, in the 
ase of statisti
al zero knowledge,let � = �(k) denote the simulator deviation. By taking poly(k) parallel repetitions of(M0; A0), we obtain a zero-knowledge proof system (M;A) with the following properties onse
urity parameter k:1. m(k) messages are ex
hanged.2. The soundness error is 2�k�m and the 
ompleteness error is 2�k.3. In the 
ase of statisti
al zero knowledge, simulator deviation is poly(k) � �(k).4. M 
an be implemented in probabilisti
 polynomial time with ora
le a

ess to M0.We now des
ribe how to obtain a 
heating-veri�er proof system (fM; eA) by repla
ingA's messages in (M;A) with our random sele
tion proto
ol. For notational 
onvenien
e, weassume that (M;A) ex
hanges m = 2r messages, with A sending the �rst message.7 Wealso assume (wlog) that all the A-messages are of the same length ` = `(k). We denotethe i'th A-message by �i and the i'th M -message by �i. Throughout what follows, we willoften drop the input x and se
urity parameter k from the notation. Having �xed these
onventions, we give the transformed proof system (fM; eA) in Proto
ol 6.3.6.Proto
ol 6.3.6: Transformed proof system (fM; eA)Input: Instan
e x of � and se
urity parameter k1. Repeat for i = 1; : : : ; r:(a) fM; eA: Exe
ute the random sele
tion proto
ol RS on input(1`; 12kr; 1k) to obtain an output �i 2 f0; 1g`.(b) fM : Sele
t �i  M(�1; �1; �2; �2; : : : ; �i) and send �i to eA.2. eA: A

ept or reje
t as A would on trans
ript (�1; �1; : : : ; �r; �r).We now prove that Proto
ol 6.3.6 satis�es the requirements of Theorem 6.3.5.7This assumption that the number of messages in (M;A) is even only a�e
ts the 
laim about message
omplexity in Theorem 6.3.5. The 
ase when (M;A) ex
hanges an odd number m of messages is similar,and a
tually yields message 
omplexity better than 
laimed (2m� 1 rather than 2m).
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ien
y. Sin
e the random sele
tion proto
ol RS 
onsists of 4 messages, withM sendingthe last message (whi
h 
an be sent together with �i), (fM; eA) ex
hanges 4r = 2m messages.This proves Property 1. Property 2, the prover's 
omplexity, is 
lear, given thatM 's strategyin the Random Sele
tion Proto
ol 
an be exe
uted in probabilisti
 polynomial time.Completeness and Soundness. The 
laim about the 
ompleteness error in Property 3follows from the fa
t that (M;A) has 
ompleteness error 2�k and the fa
t that, when Mbehaves honestly in the random sele
tion proto
ol RS, the output has statisti
al di�eren
eat most poly(`; 2kr; r) � 2�
(k) = 2�
(k) from uniform (by the strong simulability). It is alsoimmediate that if (M;A) has perfe
t 
ompleteness, then so does (fM; eA).For soundness, 
onsider any 
heating strategy fM� in Proto
ol 6.3.6 and �x a no instan
ex of � (whi
h we hide from the notation). We write hfM�; eAi2i to denote the distribution of(�1; �1; : : : ; �i; �i) in hfM�; eAi, and hfM�; eAi2i�1 for the same distribution without �i. FromfM�, we 
onstru
t a 
heating strategy M� for the original proto
ol (M;A) as follows: Onpartial 
onversation trans
ript 
 = (�1; �1; : : : ; �i), M� gives response �i with probabilityPr hhfM�; eAi2i = (
; �i)jhfM�; eAi2i�1 = 
i :We de�ne random variables hM�; Aij analogously to hfM�; eAij .The main 
laim needed to establish soundness states that, with ea
h exe
ution of therandom sele
tion proto
ol, the advantage fM� has over M� in
reases by a multipli
ativefa
tor of at most 2k (plus an additive term of 12kr ).Claim 6.3.7 Let S be any set of partial 
onversation trans
ripts 
onsisting of j messages.Then, Pr hhfM�; eAij 2 Si � 2dj=2e�k � Pr [hM�; Aij 2 S℄ + dj=2e2kr :Now, setting j = 2r and S to be the setting of a

epting 
onversations and re
alling that(M;A) has soundness error smaller than 2�2kr, the 
laim says that eA a

epts in (fM�; eA)with probability at most 2kr � 2�2kr + r=(2kr) � 1=k. We now give the somewhat tediousproof of the 
laim.Proof: We prove the 
laim by indu
tion on j. For j = 0, the statement is trivial. Assumeit is true for j and we will prove it for j + 1. For any partial 
onversation 
 
onsisting of jmessages, let Æ
 def= maxn0;Pr hhfM�; eAij = 
i� 2dj=2e�k � Pr [hM�; Aij = 
℄o :Then, applying the indu
tive hypothesis to the set T of 
 for whi
h Æ
 > 0, we see thatX
 Æ
 = Pr h(fM�; eA�) 2 T i� 2dj=2e�k � Pr [hM�; Aij 2 T ℄ � dj=2e2kr :



6.3. THE TRANSFORMATION 139Now, let S denote any set of j + 1-message 
onversation trans
ripts. Then,Pr hhfM�; eAij+1 2 Si =X
 Pr hhfM�; eAij = 
i �Pr hhfM�; eAij+1 2 S j hfM�; eAij = 
i : (6.2)Consider the 
ase when j is even. Then, in hM�; Ai, the (j + 1)'st message is 
hosenuniformly in f0; 1g` by A, and in hfM�; eAi, it is generated via the random sele
tion proto
ol.Thus, by the soundness property of the random sele
tion proto
ol, the following holds forany partial trans
ript 
:Pr hhfM�; eAij+1 2 S j hfM�; eAij = 
i � 2k � Pr [hM�; Aij+1 2 S j hM�; Aij = 
℄ + 12kr :Plugging this into Expression 6.2, we get:Pr hhfM�; eAij+1 2 Si� X
 �Pr hhfM�; eAij = 
i� Æ
� ��Pr hhfM�; eAij+1 2 S j hfM�; eAij = 
i� 12kr�+X
 Æ
 � Pr hhfM�; eAij+1 2 S j hfM�; eAij = 
i+X
 12kr � Pr hhfM�; eAij = 
i� X
 �2dj=2e�k � Pr [hM�; Aij = 
℄� � �2k � Pr [hM�; Aij+1 2 S j hM�; Aij = 
℄�+dj=2e2kr + 12kr= 2d(j+1)=2ek � Pr [hM�; Aij+1 2 S℄ + d(j + 1)=2e2kr :The 
ase when j is odd is similar, but simpler. Instead of using the soundness of the randomsele
tion proto
ol, we use the fa
t that M� generates message j + 1 a

ording to the samemarginal distribution as fM�.Zero knowledge. Let S be the honest-veri�er simulator for the original proto
ol (M;A).In Algorithm 6.3.8, we give a universal simulator eS for (fM; eA) whi
h uses any veri�erstrategy eA� as a bla
k-box.To prove that the simulator has the desired properties, we �rst 
onsider its outputdistribution in the 
ase that the original honest-veri�er simulator S is perfe
t: Let S eA� bethe output distribution of eS eA� if the output of S in Step 2 is repla
ed with a true sample(�1; �1; : : : ; �r; �r) of hM; eA�i.Claim 6.3.9 S eA�(x) and hfM; eA�i(x) have statisti
al di�eren
e at most 2�
(k).Proof: Let us 
onsider what happens in both the intera
tion between fM and eA� and in thesimulator S eA� 
onditioned on a partial trans
ript 
i = (t1; �1; �1; : : : ; ti; �i; �i). Let A(i+1)be eA� with history 
i. The pro
ess by whi
h ti+1 and �i+1 are obtained in the intera
tion



140 CHAPTER 6. COPING WITH CHEATING VERIFIERS
Algorithm 6.3.8: The simulator eS eA� for Proto
ol 6.3.6Input: An instan
e x of �, a se
urity parameter k, and ora
le a

ess to a
heating veri�er strategy eA�.1. Uniformly 
hoose and �x random 
oins R for eA� to obtain a deterministi
strategy A(1).2. Run the original honest-veri�er simulator to obtain a trans
ript(�1; �1; : : : ; �r; �r) S(x; 1k).3. For i = 1 to r, do the following:(a) Run the strong simulator for the random sele
tion proto
ol RS, oninput �i with Arthur strategy A(i), to obtain a simulated trans
riptti of the random sele
tion proto
ol (i.e., ti  SA(i)RS (1`; 12kr; 1k; �i)).(b) Let A(i+1) be the state of A(i) after additional history ti; �i; �i.4. Output (t1; �1; �1; : : : ; tr; �r; �r;R).between fM and eA� is exa
tly Distribution (I) in the strong simulability 
ondition of therandom sele
tion proto
ol (Proposition 6.3.3), taking A�RS to be A(i+1). Now, in S eA� , ea
h�i+1 is uniform and independent of (�1; �1; : : : ; �i; �i) (and thus also of 
i). Therefore, thepro
ess by whi
h ti+1 and �i+1 are obtained in S eA� is exa
tly Distribution (II) in the strongsimulability 
ondition of the random sele
tion proto
ol. The strong simulability 
onditiontells us that Distributions (I) and (II) have statisti
al di�eren
e poly(`; 2kr)�2�
(k) = 2�
(k).Moreover, �i+1 is 
hosen a

ording to the same distribution (
onditioned on 
i, ti+1 and�i+1) in both hfM; eA�i and S eA� | that is, a

ording to the original M strategy. So �i+1does not in
rease the statisti
al di�eren
e. Thus for every triple (ti; �i; �i), the statisti
aldi�eren
e a

umulates by at most 2�
(k), for a total of r � 2�
(k) = 2�
(k).Now we dedu
e Theorem 6.3.5, Items 4 and 5, from Claim 6.3.9.Statisti
al zero knowledge. Using the output of S instead of a true sample from (M;A)
an in
rease the simulator deviation by at most StatDi� (S; hM;Ai), whi
h is exa
tly thesimulator deviation for the proto
ol (M;A), whi
h in turn is at most poly(k) times thesimulator deviation for the original proof system (M0; A0).Computational zero knowledge. We need to show that the probability ensemblesX1 def= fhfM; eA�i(x; 1k)gx2�Y ;k2N and X2 def= feS eA�(x; 1k)gx2�Y ;k2N are 
omputationally in-distinguishable for any probabilisti
 polynomial-time eA�. Consider a third ensemble X3 def=



6.4. RANDOM SELECTION 141fS eA�(x; 1k)gx2�Y ;k2N. By Claim 6.3.9, X1 and X3 are statisti
ally 
lose and therefore
omputationally indistinguishable. We 
laim that X2 and X3 are 
omputationally indis-tinguishable, for any probabilisti
 polynomial-time eA�. This holds be
ause X2 and X3 areobtained by performing the same probabilisti
 polynomial-time 
omputation on the 
om-putationally indistinguishable ensembles fS(x; 1k)gx2�Y ;k2N and f(M;A)(x; 1k)gx2�Y ;k2N ,respe
tively.6.4 Random sele
tionIn this se
tion, we des
ribe our random sele
tion proto
ol and prove Proposition 6.3.3. Ourproto
ol builds on an earlier proto
ol of Damg�ard, Goldrei
h, and Wigderson [DGW94℄,whi
h we des
ribe now. Their proto
ol takes two parameters s and q and produ
es anelement of f0; 1gs as output. Informally, the proto
ol works as follows: First, A 
hooses a(su

in
tly des
ribed) partition of f0; 1gs into 
ells of size poly(s; q). Then, M 
hooses a
ell uniformly from the partition. Lastly, A uniformly sele
ts an element of that 
ell, whi
his the output. These \partitions" are implemented using a family Fs;q of hash fun
tionsmapping f0; 1gs to f0; 1gt, for t = s�4 log2(3qs). The properties of this family of fun
tionsare given in the following lemma.Lemma 6.4.1 For every pair of integers s; q 2 N, there is a family of fun
tions Fs;q map-ping f0; 1gs to f0; 1gt, for t = s� 4 log2(3qs), with the following properties:1. Ea
h f 2 Fs;q has a des
ription of size poly(s; q).2. There is a poly(s; q)-time algorithm that, on input f 2 Fs;q and x 2 f0; 1gs, outputsf(x).3. There is a poly(s; q)-time algorithm that, on input f 2 Fs;q, y 2 f0; 1gt, lists all theelements of f�1(y). In parti
ular, jf�1(y)j � p(s; q) for some polynomial p.4. For every y 2 f0; 1gt and f 2 Fs;q, f�1(y) is nonempty.5. Fs;q is a family of almost s-wise independent hashing fun
tions in the following sense:For every s distin
t points x1; : : : ; xs 2 (f0; 1gs n f0; 1gt0s�t), for a uniformly 
ho-sen f 2 Fs;q, the random variables f(x1); : : : ; f(xs) are independently and uniformlydistributed in f0; 1gt.Su
h a family 
an essentially be obtained by asso
iating f0; 1gs with GF(2s) and takingall polynomials of degree s � 1 over this �eld, with the output of the polynomials beingtrun
ated to t bits. The details of the 
onstru
tion 
an be found in [DGW94℄. We 
anview ea
h f 2 Fs;q as de�ning a partition of f0; 1gs into 2t 
ells of the form f�1(y), ea
hof size poly(s; q). For notational 
onvenien
e, we will sometimes write 
ell y to refer tothe 
ell f�1(y). A formal des
ription of the DGW random sele
tion proto
ol is given inProto
ol 6.4.2.In [DGW94℄, it was shown that Proto
ol 6.4.2 has the following properties (roughlyspeaking):



142 CHAPTER 6. COPING WITH CHEATING VERIFIERSProto
ol 6.4.2: DGW random sele
tion proto
olDGW = (MDGW ; ADGW ) [DGW94℄Input: Parameters s and q (in unary)1. ADGW : Sele
t f  Fs;q and send it to MDGW (i.e., sele
t a randompartition).a2. MDGW : Sele
t y  f0; 1gt, and send it to ADGW (i.e., uniformly sele
t a
ell).3. ADGW : Sele
t x f�1(y) (i.e., uniformly sele
t an element of the 
ell).Output: xaIf, at any step, ADGW orMDGW do not sele
t an obje
t from the appropriate set, whatevermessage they send is interpreted as a 
anoni
al element of that set.
1. (Soundness) For any Merlin strategy M�DGW , the output distribution on f0; 1gs of(M�DGW ; ADGW ) deviates from uniform by at most 1=q (in statisti
al di�eren
e).2. (Simulability) Let A�DGW be any strategy for Arthur. At least a 1=poly(s; q) fra
tion ofthe elements x 2 f0; 1gs o

ur as possible outputs of the intera
tion (MDGW ; A�DGW )and given su
h an x, one 
an simulate in poly(s; q)-time A�DGW 's view of an intera
tionresulting in x.The main hindran
e in applying the proto
ol as used by [DGW94℄ is that the simulatoris only guaranteed to work for a 1=poly(s; q) fra
tion of the x's. The new te
hnique of thispaper is to interpret the output x of the DGW proto
ol as a set of 2k strings, from whi
ha single string � is randomly sele
ted by Merlin. It is this �, rather than x, that is theoutput of the random sele
tion proto
ol. The family of sets of size 2k that we use has the
ru
ial property that every subset of them of density at least 1=poly(s; q) will still 
over allbut an exponentially vanishing fra
tion of �'s. Be
ause of this, we will be able to simulatethe proto
ol for all but an exponentially vanishing fra
tion of the �'s.In order to de�ne our sets of 2k strings, we use 2-universal hash fun
tions. Re
all thatfor every pair of integers ` and m, we de�ned H`;m to be the 2-universal family of all aÆne-linear (over GF(2)) fun
tions from f0; 1g` to f0; 1gm. Ea
h su
h fun
tion is of the formh(x) = Ax+ b, where A is an m � ` matrix over GF(2) and b is an element of f0; 1gm, soelements of H`;m 
an be uniquely represented by strings of length m � (`+ 1).Our proto
ol takes three parameters `, q, and k as input and produ
es an elementof f0; 1g` as output. The two parties use the DGW proto
ol to sele
t an element h ofH = H`;`�k, and then Merlin sele
ts the output uniformly from h�1(0). That is, the DGWrandom sele
tion proto
ol is 
alled with parameters s and q, where s = (`� k) � (`+ 1), so
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an be interpreted as an element of H`;`�k. A full des
ription of theproto
ol is given in Proto
ol 6.4.3.Proto
ol 6.4.3: Our random sele
tion proto
ol RS = (MRS ;ARS )Input: parameters `, q, and k (in unary)1. MRS ; ARS : Set s = (`� k) � (`+ 1), t = s� 4 log2(3qs), and H = H`;`�k.2. ARS : Sele
t f  Fs;q and send it to MRS .3. MRS : Sele
t y  f0; 1gt, and send it to ARS .4. ARS : Sele
t h f�1(y) and sent it to MRS .5. MRS : Sele
t �  h�1(0), viewing h as an element of H. (If h�1(0) = ;then � is de�ned to be 0`.)Output: �We now prove that Proto
ol 6.4.3 satis�es Proposition 6.3.3. EÆ
ien
y is immediatefrom the des
ription of the proto
ol.Soundness. Let M�RS be any 
heating Merlin strategy and 
onsider an exe
ution of theproto
ol (M�RS ; ARS ). Noti
e that that the probability that the output � lies in some setT is bounded above by the probability that h�1(0) 
ontains an element of T . Now, for h
hosen uniformly from H (instead of by the proto
ol), the probability that h�1(0) 
ontainsan element of T is at most X�2T Prh H[h(�) = 0℄ = jT j2`�k :In our proto
ol, h is 
hosen using the DGW proto
ol. It shown in [DGW94, Prop. 1℄ that a
heating Merlin 
an 
ause at most a 1=q statisti
al di�eren
e from the uniform distributionon H, and so the soundness property follows.Strong simulability. Re
all that p = p(s; q) is polynomial bound on the size of f�1(y)for any f 2 Fs;q, s is the des
ription length for elements of H = H`;`�k, and fun
tions inFs;q map f0; 1gs to f0; 1gt, where t = s� 4 log2(3qs). For � 2 f0; 1g`, we write H� def= fh 2H : h(�) = 0g. With these notations, the simulator is given in Algorithm 6.4.4.From the various properties of the families Fs;q and H, su
h as the fa
t that f�1(y) 
anbe enumerated in time poly(s; q), and the fa
t that s and p are poly(`; q; k), we see that therunning time of SA�RSRS is poly(`; q; k).Let us now show that Distributions (I) and (II) in Proposition 6.3.3 have statisti
al
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Algorithm 6.4.4: The random sele
tion proto
ol simulator SA�RSRSInput: Parameters `, q, and k (in unary), � 2 f0; 1g`, and ora
le a

ess to A�RSS1. Let f 2 Fs;q be the �rst message sent by A�RS .S2. Repeat the following up to k � 2(3sq)4 � p times:(a) Choose h0 uniformly from H�.(b) Let y = f(h0) (i.e., y is the 
ell 
ontaining h0). Compute i def=jf�1(y)\H�j. With probability 1� 1i , pro
eed to next iterationof Step S2. (Otherwise 
ontinue.)(
) Let h = A�RS (y), that is, the element (hereafter 
alled the 
ellrepresentative) of 
ell y that A�RS gives in Step 6.4.3 after beingsent y in Step 6.4.3.(d) If h(�) = 0, output ((f; y; h; �); �) and terminate the simula-tion. Otherwise, pro
eed to next iteration of Step S2.S3. If the simulator failed to produ
e output so far, output fail.
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e poly(s; q) � 2�
(k). Ea
h produ
es output of the form ((f; y; h; �); �). In both
ases, f is the (deterministi
ally 
hosen) �rst message of A�RS and y = f(h), so it suÆ
es toshow that the distributions restri
ted to their (h; �) 
omponents are statisti
ally 
lose. Wetherefore de�ne the Distributions (I0) and (II0) to be the Distributions (I) and (II) restri
tedto their (h; �) 
omponents. To analyze these distributions, we make use of the followinglemma, the proof of whi
h is in Appendix B.Lemma 6.4.5 There exists a universal 
onstant 
 > 0, so that the following holds: LetH = H`;m be the family of aÆne-linear maps from D = f0; 1g` to R = f0; 1gm. Let S � Hbe su
h that jSj � ÆjHj. Let " = jRjjDj . ThenPart 1: The statisti
al di�eren
e between the following two distributions is at most (
 �"1=
Æ�
):(A) Choose h S. Sele
t x h�1(0). Output (h; x).(B) Choose x D. Sele
t h S \Hx. Output (h; x).Part 2: For at least a 1� (
 � "1=
Æ�
) fra
tion of x 2 D,jS \HxjjHxj � Æ=2:When we apply the lemma, we take m = `�k, " = 2�k, and S = fA�RS (y) : y 2 f0; 1gtg.In other words, S is the set all possible 
ell representatives that A�RS 
an send in Step 6.4.3of the proto
ol (MRS ; A�RS ). Noti
e thatÆ def= jSjjHj = 2t2s = 2�4 log2(3sq) = 1(3sq)4 :and so, 
 � "1=
Æ�
 = poly(`; q; k) � 2�
(k). Now, observe that the proto
ol (MRS ; A�RS )sele
ts h uniformly from S. (Re
all that A�RS is deterministi
.) Thus, Distribution (I0) isexa
tly Distribution (A) of Lemma 6.4.5. Now we will show that the Distribution (II0) isstatisti
ally 
lose to Distribution (B).Let us 
onsider a single iteration of Step S2 in SA�RSRS . In su
h an iteration, h0 is 
hosenuniformly from H�, and y = f(h0). We write f(H�) to denote the set of images of elementsof H� under f (i.e., f(H�) = ff(h) : h 2 H�g). In other words, f(H�) is the set of 
ellsinterse
tingH�. We want to establish that the distribution of h's produ
ed by the simulatorwill be uniform in S \H�. In order for this to happen, y must be uniformly sele
ted fromf(H�). If f was 
hosen honestly by A�RS , we would expe
t it to be nearly one-to-one onthe set H�, sin
e H� is a vanishingly small fra
tion of the domain. However, f is 
hosenadversarially, so we must do some work to ensure uniformity.Noti
e that for any y0 2 f(H�), the probability that f(h0) = y0 when uniformly sele
tingh0  H� is exa
tly jf�1(y0) \H�jjH�j :



146 CHAPTER 6. COPING WITH CHEATING VERIFIERSIn Step 5b, any su
h 
hoi
e is maintained with probability 1=jf�1(y0) \ H�j. Thus theprobability that y = y0 after Steps 5a and 5b in SRS is exa
tly1jH�j :This is independent of y0, and therefore y is a uniformly 
hosen element of f(H�) | thatis, a uniformly 
hosen 
ell interse
ting H�. (These probabilities sum up to jf(H�)j=jH�j,whi
h may be less than 1; this is due to the possibility that the iteration ends prematurelyin Step 5b.)Now, sin
e, in Step 5
, h = A�RS (y) is taken to be the representative of 
ell y, thefun
tion h is uniformly distributed over the representatives of 
ells whi
h interse
t H�. InStep 5d, we abandon any h not in H�, so the resulting distribution on h is uniform over
ell representatives in H�, that is, uniform over S \H�. Thus a single iteration of the loopprodu
es an h uniformly 
hosen from S \H�, if it manages to produ
e output at all. Thisis identi
al to how h is 
hosen in Distribution (B) of Lemma 6.4.5. So, to show that theDistribution (II0) is statisti
ally 
lose to Distribution (B), we need only to show that theprobability that the repeat loop fails to produ
e output in all its iterations is 2�
(k) for atleast a 1 � 2�
(k) fra
tion of the �'s in f0; 1g`. We do this by showing that ea
h iterationprodu
es output with probability at least k times the re
ipro
al of the number of iterations.There are two pla
es in whi
h an iteration 
an be exited, 
ausing it to fail to produ
eoutput | Steps 5b and 5d. Observe that the simulator never exits in Step 5d if h0 
hosenin Step 5a lies in S, be
ause then h will equal h0. This o

urs with probabilityjS \H�jjH�j :By Lemma 6.4.5, for at least a 1 � 2�
(k) fra
tion of � 2 f0; 1g`, this quantity is at leastÆ=2 = 1=2(3sq)4.Now suppose that h0 has been 
hosen in S. The probability of not exiting in Step 5b isat least 1=jf�1(y)j, whi
h is at least 1=p by the properties of the family Fs;q. Thus, for a1 � 2�
(k) fra
tion of the �'s, a single iteration produ
es output with probability at least1=(2(3sq)4 �p). Sin
e there are (2(3sq)4 �p) �k iterations, output is produ
ed with probability1� 2�
(k).We have shown that Distribution (I0) is identi
al to Distribution (A) in Lemma 6.4.5and Distribution (II0) has a statisti
al di�eren
e of 2�
(k) from Distribution (B). So, byLemma 6.4.5, we 
on
lude that Distributions (I) and (II) have statisti
al di�eren
e 2�
(k)and strong simulability is established.6.5 Corollaries and open problemsWe 
an use our transformation to translate many of the results about HVSZK to SZK.Some of the results about HVSZK were already impli
itly translated when we used Theo-rem 5.4.15 as the starting point for the proof of Theorem 6.3.1. The ni
e properties of theproof system given by Theorem 5.4.15, su
h as publi
 
oins, perfe
t 
ompleteness, and ex-ponentially small simulator deviation, are all preserved by our transformation and therefore



6.5. COROLLARIES AND OPEN PROBLEMS 147appear in the statement of Theorem 6.3.1.A number of additional results that 
an be immediately translated are those that justrefer to properties of HVSZK as a 
lass of promise problems; these now apply to SZKsimply by the equality HVSZK = SZK:Corollary 6.5.1 Properties of SZK:1. Entropy Differen
e and Statisti
al Differen
e are 
omplete for SZK.2. SZK is 
losed under 
omplement.3. For every promise problem �, �(�) 2 SZK.84. SZK is 
losed under NC1 truth-table redu
tions.5. weak-SZK = SZK.For Item 5, we de�ne weak-SZK via the obvious analogy to weak-HVSZK, and applythe 
hain of in
lusionsweak-SZK � weak-HVSZK = HVSZK = SZK � weak-SZK:We have omitted analogues of some of the results that only refer to the 
lassHVSZK simplybe
ause the honest-veri�er version of the result is the stronger one. This is the 
ase withupper bounds on the 
omplexity of HVSZK, su
h as Corollary 4.2.2 and Theorem 4.8.4,sin
e the in
lusion SZK � HVSZK is obvious even without Theorem 6.3.1.The equality HVSZK = SZK also has impli
ations for knowledge 
omplexity in thehint sense via Lemma 4.6.7. Spe
i�
ally, if we de�ne SKC�hint(�(n)) to be the 
heating-veri�er version of the 
lass SKChint(�(n)), then Theorem 6.3.1 and Lemma 4.6.7 have thefollowing 
onsequen
e:Corollary 6.5.2 For every polynomially bounded fun
tion � : N ! N, SKChint(�(n)) =SKC�hint(�(n)). Moreover, every problem in these 
lasses has an intera
tive proof of statis-ti
al knowledge 
omplexity �(n) in the hint sense against 
heating veri�ers with the followingproperties:1. Bla
k-box simulation with simulator deviation 2�k for all veri�ers.2. The same hint fun
tion 
an be used for all veri�ers.3. Perfe
t 
ompleteness.4. The proof system is publi
 
oin.By this equality of the SKChint and SKC�hint hierar
hies, it follows that the SKC�hint(�(n))hierar
hy must also 
ollapse by logarithmi
 terms, as in Theorem 4.6.11.For 
omputational zero knowledge, we 
an 
ombine Theorems 5.4.16 and 6.3.2 to obtain:8For a de�nition of �(�) and NC1 truth-table redu
tions, see Se
tion 4.5



148 CHAPTER 6. COPING WITH CHEATING VERIFIERSCorollary 6.5.3 Every problem that has a 3-message honest-veri�er 
omputational zero-knowledge proof also has 
heating-veri�er 
omputational zero-knowledge proof (whi
h is pub-li
 
oin, has a bla
k-box simulator, and has perfe
t 
ompleteness).Clearly, the main outstanding question about 
omputational zero knowledge in this regardis whether a transformation 
an be given for all of HVCZK (un
onditionally, of 
ourse).Open Problem 6.5.4 Does HVCZK = CZK?A positive answer to Open Problem 5.4.19 would imply a positive answer to this problem.It is important to note that several of our results about honest-veri�er statisti
al zero-knowledge proofs do not translate to 
heating-veri�er proofs. For one, we do not obtain true
heating-veri�er analogues of the results on the perfe
t knowledge 
omplexity ofHVSZK inTheorem 4.6.13, sin
e we do not know how to relate the honest-veri�er and 
heating-veri�erversions of the PKC 
lasses.A more signi�
ant result that does not translate is Corollary 4.1.1, whi
h says thatevery problem in HVSZK has a 
onstant-message HVSZK proof system (with additionalni
e properties). Even though the main transformation presented in this 
hapter preservesmessage 
omplexity upto a 
onstant fa
tor (Theorem 6.3.5), to obtain a result for all ofHVSZK we �rst had to apply the private-to-publi
 
oin transformation of Theorem 5.4.15,whi
h does not preserve message 
omplexity. The HVSZK-to-SZK transformation ofBellare, Mi
ali, and Ostrovsky [BMO90b℄ does preserve message 
omplexity (and appliesdire
tly to private-
oin proofs), but it relies on an intra
tability assumption. Applying theirtransformation to the proof systems of Corollary 4.1.1, one obtains:Proposition 6.5.5 If the Dis
rete Logarithm problem is hard, then every problem inHVSZK has a (
heating-veri�er) statisti
al zero-knowledge proof system with the followingproperties:1. The proof system ex
hanges a 
onstant number of messages.2. Bla
k-box simulation (for polynomial-time veri�ers).3. Completeness error and soundness error 2�k.However, to obtain 
onstant-message SZK proof systems un
onditionally is still open.Open Problem 6.5.6 Does every problem in HVSZK have a 
onstant-message SZKproof system?A positive answer to Open Problem 5.4.20 would also imply a positive answer to thisproblem, using even just the transformation of [DGW94℄.Another property given by Corollary 4.1.1 that does not translate to the 
heating-veri�er proofs is the fa
t that the prover is deterministi
. This is inevitable, as only BPPhas 
heating-veri�er zero-knowledge proofs with a deterministi
 prover [GO94℄.



Chapter 7Nonintera
tive SZKItera
tion is at on
e a blessing and a 
urse for zero-knowledge proofs. On one hand, in-tera
tion is one of the ingredients that makes the seemingly paradoxi
al notion of zeroknowledge feasible. On the other hand, in many 
ryptographi
 appli
ations where onewould like to use zero-knowledge proofs, intera
tion is either too expensive or 
ompletelyunavailable. While 
onsiderable resear
h has been devoted to redu
ing the amount of inter-a
tion in zero-knowledge proofs (
f., Corollary 4.1.1, [FS89, BMO90a, GK96a, Oka96℄), it
annot be 
ompletely removed in the GMR paradigm of a proof system. Indeed, Goldrei
hand Oren [GO94℄ have shown that GMR zero knowledge be
omes trivial (i.e., exists onlyfor problems in BPP) if one requires that the proofs are nonintera
tive (i.e., with onlyunidire
tional 
ommuni
ation).Suprisingly, however, Blum, Feldman, and Mi
ali [BFM88℄ showed that by augmentingthe model slightly, it is possible to a
hieve zero knowledge in a nonintera
tive setting.Spe
i�
ally, they assume that the prover and veri�er have a

ess to a shared truly randomstring, 
alled the referen
e string. Aside from this assumption, all 
ommuni
ation 
onsistsof one message, the proof, whi
h is generated by the prover (based on the assertion beingproven and the referen
e string) and sent from the prover to the veri�er.As in the intera
tive 
ase, the zero-knowledge property is formalized by requiring thatthere is a probabilisti
 polynomial-time simulator whose output distribution is \
lose" tothe veri�er's view of the proof system (whi
h now 
onsists of the shared referen
e string andthe proof sent by the prover). Various interpretations of \
lose" give rise to three variants ofnonintera
tive zero knowledge proofs | perfe
t, statisti
al, and 
omputational | de�nedanalogously the intera
tive 
ase. (Formal de�nitions will be given in Se
tion 7.1.)Nonintera
tive zero-knowledge proofs, on top of being more 
ommuni
ation eÆ
ientby de�nition, have several appli
ations not o�ered by ordinary intera
tive zero-knowledgeproofs. They have been used, among other things, to build digital signature s
hemes se
ureagainst adaptive 
hosen message atta
k [BG89℄, and publi
-key 
ryptosystems se
ure against
hosen-
iphertext atta
k [BFM88, NY90, DDN91℄.Until re
ently, most of the work on nonintera
tive zero knowledge has fo
used on the
omputational type (
f., [BFM88, DMP87, DMP88, BDMP91, FLS99, KP98℄). This isprobably due to the early results whi
h showed that all of NP has nonintera
tive 
om-putational zero knowledge proofs (under various assumptions [BFM88, DMP87, FLS99℄),and the ensuing 
ryptographi
 appli
ations [BFM88, NY90, BG89℄. In 
ontrast, for a long149



150 CHAPTER 7. NONINTERACTIVE SZKtime the only (nontrivial) nonintera
tive statisti
al zero-knowledge proofs known were theone for Quadrati
 Nonresiduosity [BDMP91℄ and variants of it [DDP94, DDP97℄, andhen
e the study of su
h proofs was rather limited.1In this 
hapter, we shall see that nonintera
tive statisti
al zero knowledge is ri
her thanmight have been expe
ted. Our �rst step towards demonstrating this is to exhibit twonatural 
omplete problems for NISZK, the 
lass of problems possessing nonintera
tivestatisti
al zero-knowledge proofs. This builds on earlier work of De Santis, Di Cres
enzo,Persiano, and Yung [DDPY98℄, who exhibited the �rst 
omplete problem for NISZK. Thekey feature of these 
omplete problems is that they are natural restri
tions of our 
ompleteproblems for SZK, Statisti
al Differen
e and Entropy Differen
e. Thus, we
an use these problems to relate SZK and NISZK. Spe
i�
ally, we show that if SZK isnontrivial, then so isNISZK, where by nontrivial we mean that the 
lass 
ontains problemsoutside of BPP. Re
all that the hypothesis holds under various assumptions, su
h as theintra
tability of the Dis
rete Logarithm [GK93℄ problem or approximate versions of theShortest Ve
tor and Closest Ve
tor problems for latti
es [GG98a℄. By our result,under any of these assumptions, NISZK is also nontrivial, even though no versions ofthese problems were known to be in NISZK. Furthermore, we shed light on the questionof whether SZK = NISZK, i.e., whether all statisti
al zero-knowledge proofs 
an be madenonintera
tive. Namely, we show that SZK = NISZK if (and only if) NISZK is 
losedunder 
omplement. We note that [DDPY98℄ have 
laimed that NISZK is 
losed under
omplement, but this 
laim has been retra
ted [DDPY99℄.Organization. In Se
tion 7.1, we give the formal de�nitions of nonintera
tive zero-knowledge proofs and dis
uss some of the issues that arise in the de�nitions. In Se
-tion 7.2, we introdu
e the problems Entropy Approximation and Statisti
al Differ-en
e from Uniform, and state our Completeness Theorem for NISZK, whi
h assertsthat these two problems are 
omplete for NISZK. The proof of the Completeness Theo-rem 
omes in Se
tions 7.3 and 7.4. In Se
tion 7.5, we use the 
omplete problems to study therelationship between SZK and NISZK. Se
tion 7.6 
ontains some additional appli
ationsof the Completeness Theorem for NISZK.7.1 The nonintera
tive modelWe begin by de�ning nonintera
tive proof systems in the shared random string model.De�nition 7.1.1 (shared random string model) A nonintera
tive proto
ol in the sharedrandom string model os a pair of probabilisti
 algorithms (A;B) together with a polynomial-time 
omputable fun
tion ` : f0; 1g� ! N. The 
ommuni
ation from A to B on 
ommoninput x, denoted (A;B)(x);2 is the following probabilisti
 experiment:1An ex
eption is an unpublished manus
ript of Bellare and Rogaway [BR90℄, whi
h 
ontains a noninter-a
tive perfe
t zero-knowledge proof for the language of graphs with trivial automorphism group, along withsome basi
 results about nonintera
tive perfe
t zero knowledge.2We use the same notation as for intera
tive proto
ols, but it will always be 
lear from 
ontext whi
h weare referring to. Stri
tly speaking, ` should also be in
luded in the notation, but it too will always be 
learfrom 
ontext.



7.1. THE NONINTERACTIVE MODEL 1511. Sele
t the shared random string �  f0; 1g`(x).2. Let m A(x; �).3. Let answer  B(x; �;m).If answer = a

ept (resp., answer = reje
t), we say that B a

epts (resp., reje
ts).We say that (A;B) is polynomially bounded if `(x) and jmj are both bounded above by apolynomial in jxj. B's view of (A;B)(x) is the random variable (�;m).The key features of the above de�nition are that both parties A and B have a

ess to therandom string �, and B does not send any messages to A. Given this 
ommuni
ation model,proofs and zero-knowledgeness are 
ompletely analogous to the intera
tive 
ase.De�nition 7.1.2 (nonintera
tive proofs) Let P and V be probabilisti
 algorithms andlet � be a promise problem. (P; V ) is said to be an nonintera
tive proof system (in theshared random string model) for � with 
ompleteness error 
 : N ! [0; 1℄, and soundnesserror s : N ! [0; 1℄ if the following 
onditions hold:1. (EÆ
ien
y) (P; V ) is polynomially bounded and V is polynomial-time 
omputable.2. (Completeness) If x 2 �Y , then V a

epts with probability at least 1 � 
(k) in(P; V )(x; 1k).3. (Soundness) If x =2 �Y , then V reje
ts with probability at least 1�s(k) in (P; V )(x; 1k).We require that 
(k) and s(k) be 
omputable in time poly(k) and that 1 � 
(k) > s(k) +1=poly(k). If 
 � 0, then we say that the proof system has perfe
t 
ompleteness.De�nition 7.1.3 (nonintera
tive zero knowledge | NISZK, NIPZK) A noninter-a
tive proof system (P; V ) for a promise problem � is said to be statisti
al zero knowledgeif there is a useful3 probabilisti
 polynomial-time algorithm S and a negligible fun
tion �(�)su
h that for all x 2 �Y and all k > 0, eS(x; 1k) has statisti
al di�eren
e at most �(k)from V 's view of (P; V )(x; 1k). The negligible fun
tion � is 
alled the simulator deviation.If � � 0, then (P; V ) is said to be perfe
t zero knowledge. NISZK (resp., NIPZK)denotes the 
lass of promise problems possessing nonintera
tive statisti
al (resp., perfe
t)zero-knowledge proofs.Nonintera
tive 
omputational zero knowledge (NICZK) is de�ned analogously, repla
-ing statisti
al 
loseness with 
omputational indistinguishability, as in De�nition 2.3.7.Note that nonintera
tive zero knowledge is 
losed under parallel repetition, so the 
om-pleteness and soundness errors 
an always be made exponentially small. (The problems thatarise with parallel repetition in intera
tive zero knowledge 
ome from 
heating veri�ers, butthere is no way for a veri�er to 
heat when there is no intera
tion.) In fa
t, it is shown in[BDMP91, BR90℄ that every nonintera
tive zero knowledge proof 
an be transformed intoone with perfe
t 
ompleteness.3Re
all that a probabilisti
 algorithm A is 
alled useful if Pr [A(x) = fail℄ � 1=2 for all x and eA(x)denotes the output distribution of A on input x, 
onditioned on A(x) 6= fail.



152 CHAPTER 7. NONINTERACTIVE SZK7.1.1 Relationship with the intera
tive proofsIt is easy to see that that nonintera
tive proofs are equivalent to 2-message publi
-
oin in-tera
tive proofs, as the shared random string 
an play the role of the veri�er's single randommessage (and 
onversely). Similarly, we see that ea
h of the three types of nonintera
tivezero-knowledge proofs (perfe
t, statisti
al, and 
omputational) are equivalent to the analo-gous types of 2-message publi
-
oin honest-veri�er zero-knowledge proofs. Hen
e, we haveNICZK � HVCZK, NIPZK � HVPZK, and NISZK � HVSZK = SZK.Without a zero knowledge 
onstraint, the expressive power of nonintera
tive proof sys-tems a
tually extends to all of AM; that is, the 
lass of problems possessing 
onstant-message private-
oin intera
tive proofs (rather than just 2-message publi
-
oin proofs).This follows from the transformation from private 
oins to publi
 
oins of Goldwasser andSipser [GS89℄ (whi
h preserves the number of messages ex
hanged up to an additive 
on-stant) and the Collapse Theorem of Babai and Moran [BM88℄ (whi
h redu
es the numberof messages in any 
onstant-message publi
-
oin proof system to two).Like its intera
tive 
ounterpart, nonintera
tive 
omputational zero knowledge \hits theroof" under an intra
tability assumption. Namely, it has been shown that NICZK =AM under su

essively weaker intra
tability assumptions and ultimately one-way permu-tations [BFM88, BDMP91, FLS99℄.7.1.2 Contrast with the original de�nitionsOur de�nitions of nonintera
tive zero knowledge are stri
ter than those of Blum et. al. [BFM88,BDMP91℄ in the same way that our de�nitions of intera
tive zero knowledge are stri
terthan the GMR de�nition. First, we require the simulators to run in stri
t (rather than ex-pe
ted) polynomial time, but allow a failure probability. Se
ond, we use a separate se
urityparameter, rather than the input length, to 
ontrol the error parameters; this has also beendone in a number of previous works on nonintera
tive zero knowledge [FLS99, Kil94, KP98℄.As in the intera
tive 
ase, the use of a se
urity parameter has the ni
e 
onsequen
e thatnonintera
tive zero knowledge is 
losed under Karp redu
tions.Proposition 7.1.4 If � has a nonintera
tive statisti
al zero-knowledge proof with simu-lator deviation �(�), and � (Karp-)redu
es to �, then � has a nonintera
tive statisti
alzero-knowledge proof with simulator deviation �(�). Thus, NISZK and NIPZK are 
losedunder (Karp) redu
tions.Analogous to De�nition 2.4.2, we de�ne weak-NISZK to 
apture the ways in whi
hthe original de�nitions are weaker than ours.De�nition 7.1.5 (weak-NISZK)A nonintera
tive proof system (P; V ) for a promise problem � is said to be weak statisti
alzero knowledge if for every 
 > 0, there is probabilisti
 polynomial-time algorithm S
 su
hthat for all but �nitely many x 2 �Y , S
(x) has statisti
al di�eren
e at most 1=jxj
 fromV 's view of (P; V )(x; 1jxj). weak-NISZK denotes the 
lass of promise problems possessingweak nonintera
tive statisti
al zero-knowledge proofs.



7.1. THE NONINTERACTIVE MODEL 153Later in this 
hapter, we will prove that weak-NISZK = NISZK, so our results aboutNISZK (as we've de�ned it) also apply to NISZK as de�ned by [BFM88, BDMP91℄. Oneother minor di�eren
e between our de�nition and that of Blum et. al. is that we allow theveri�er to be probabilisti
, whereas they require it to be deterministi
. We feel that allowinga probabilisti
 veri�er maintains the spirit of nonintera
tive zero knowledge. In any 
ase,a probabilisti
 veri�er 
an always be made deterministi
 by having the veri�er use part ofthe shared random string in pla
e of its random 
oin 
ips (in 
ombination with standarderror redu
tion via parallel repetition and majority/threshold rule).7.1.3 Augmentations to the de�nitionsIn appli
ations, one often needs nonintera
tive zero-knowledge proofs that have additionalproperties beyond those guaranteed by De�nition 7.1.3. For 
ompleteness, we brie
y men-tion some of these properties below, though we will be working with De�nition 7.1.3. Var-ious formulations of these properties and methods for a
hieving them 
an be found in[BFM88, BDMP91, BG89, NY90, DY90, FLS99℄.Proving many statements. In many appli
ations of nonintera
tive zero knowledge,one needs to prove many statements nonintera
tively using the same shared random string,whereas our de�nition only refers to proving one statement. One way of proving t statementsis to use t independent exe
utions of the proof system, but this multiplies the length of theshared random string by a fa
tor of t, and hen
e requires an a priori bound on the numberof statements to be proven. Ideally, the shared random string would be a �xed length(polynomial in the input length and the se
urity parameter) and 
an be used to prove anarbitrary (polynomial) number of statements. De�nition 7.1.3 is sometimes referred to asbounded or single-theorem nonintera
tive zero knowledge in the literature.Adaptive nonintera
tive zero knowledge. Another issue is whether the statementsto be proven 
an be sele
ted \adaptively" after the shared random string is published.Our de�nition only guarantees soundness and zero-knowledgeness if the statement to beproven is �xed before the shared random string is sele
ted. Preserving soundness in theadaptive setting is not diÆ
ult | if one uses parallel repetitions to make the soundnesserror of a nonadaptive proof system suÆ
iently smaller than 2�n, then with high probabilitythe shared random string will be \good" (with respe
t to soundness) for all statements oflength n, and thus it does not matter if the statement is sele
ted after the proof. Preservingzero-knowledgeness in the adaptive setting, however, is mu
h less straightforward.EÆ
ient provers. In order to a
tually implement a nonintera
tive zero-knowledge proofsystem, it is 
learly ne
essary that the prover strategy 
an be implemented in polynomialtime given, say, some auxiliary information. This only makes sense for problems in NP, asthe auxiliary information 
an be viewed as an NP-proof.44Stri
tly speaking, it also makes sense for problems in MA [BM88℄, as the veri�
ation might beprobabilisti
.



154 CHAPTER 7. NONINTERACTIVE SZKSolutions for NICZK. Feige, Lapidot, and Shamir [FLS99℄ show how to a
hieve allof these properties for NICZK under intra
tability assumptions. Spe
i�
ally, they showthat every problem in NP has a many-theorem adaptive NICZK proof with an eÆ
ientprover, if trapdoor permutations exist. For NISZK andNIPZK, however, the relationshipbetween De�nition 7.1.3 and the many-theorem and adaptive variants is still open.7.2 The Completeness TheoremWe 
onsider the following restri
ted versions of Statisti
al Differen
e and EntropyDifferen
e.De�nition 7.2.1 Statisti
al Differen
e from Uniform is the promise problem SDU =(SDUY ;SDUN ), whereSDUY = fX : StatDi� (X;Un) � 1=ngSDN = fX : StatDi� (X;Un) � 1� 1=ng :Above, X is a 
ir
uit en
oding a probability distribution on f0; 1gn (where n is the numberof output gates of X), as in De�nition 3.1.1, and Un is the uniform distribution on f0; 1gn.De�nition 7.2.2 Entropy Approximation is the promise problem EA = (EAY ;EAN ),where EAY = f(X; t) : H(X) � t+ 1gEAN = f(X; t) : H(X) � t� 1g :Above, X is 
ir
uit en
oding a probability distribution, as in De�nition 3.1.1, t is an integer,and H(�) denotes the entropy fun
tion (De�nition 3.3.1).In Se
tions 7.3 and 7.4, we will prove the following 
ompleteness theorem for NISZK.Theorem 7.2.3 (Completeness Theorem for NISZK) Entropy Approximation andStatisti
al Differen
e from Uniform are 
omplete for NISZK.It is interesting to informally 
ompare this with the Completeness Theorem forHVSZK(= SZK) (Theorem 3.5.1):Whereas (intera
tive) statisti
al zero knowledge 
aptures those assertions that
an be 
ast as 
omparing two eÆ
iently samplable distributions to ea
h other (ei-ther with respe
t to their statisti
al di�eren
e or their entropies), nonintera
tivestatisti
al zero knowledge 
onsists exa
tly of those assertions whi
h 
an be 
astas 
omparing a single distribution to the uniform distribution.As was the 
ase with HVSZK, the 
omplete problems for NISZK are useful tools forproving general theorems about the entire 
lass. Our most dramati
 appli
ation of these
omplete problems 
omes from the fa
t that they are natural restri
tions of the 
ompleteproblems for SZK. In Se
tion 7.5, we exploit this relationship to get a better understanding
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ompares to SZK. Other 
orollaries of the 
ompleteness theorem are givenin Se
tions 7.4 and 7.6.Prior to this work, De Santis, Di Cres
enzo, Persiano, and Yung [DDPY98℄ showed thata di�erent promise problem, 
alled Image Density (ID) is 
omplete for NISZK. Roughlyspeaking, the yes instan
es of ID are distributions on strings of some length n (en
odedby 
ir
uits) whi
h are statisti
ally 
lose to the uniform distribution on f0; 1gn, and theno instan
es of ID are distributions whose support is a small fra
tion of f0; 1gn. Thus,for an appropriate quanti�
ation of \
lose" and \small fra
tion," ID is a restri
ted versionof SDU. The main interesting feature of our 
omplete problems (as 
ompared to ID) isthat they are more 
losely related to the 
omplete problems for SZK. Spe
i�
ally, we willexploit the 
onne
tion between Entropy Approximation and Entropy Differen
e in
omparing SZK and NISZK.We prove the Completeness Theorem via a \
ir
le of redu
tions" analogous to (butsimpler than) the one used to prove the Completeness Theorem for HVSZK. First, inSe
tion 7.3, we prove that EA is in NISZK. Next, in Se
tion 7.4, we show that SDUredu
es to EA. Finally, also in Se
tion 7.4, we 
omplete the 
ir
le by showing that everyproblem in NISZK redu
es to EA.7.3 Entropy Approximation is in NISZK7.3.1 The proof systemIn this se
tion, we exhibit a nonintera
tive statisti
al zero-knowledge proof system for En-tropy Approximation. We begin by 
onsidering Proto
ol 7.3.1, whi
h is a simple nonin-tera
tive proto
ol for proving that the support of a distribution X on f0; 1gn is nearly allof f0; 1gn.Proto
ol 7.3.1: Basi
 nonintera
tive proof system (P; V ) for showinga distribution has large supportInput: Cir
uit X (with m input gates and n output gates), and shared randomstring x 2 f0; 1gn1. P : Sele
t r uniformly from 
X(x) def= fr0 : X(r0) = xg and send r to V .(If 
X(x) = ;, then send fail to V .)2. V : A

ept if X(r) = x, otherwise reje
t.The prover's su

ess probability in Proto
ol 7.3.1 is evident by inspe
tion:Claim 7.3.2 The prover strategy given in Proto
ol 7.3.1 makes the veri�er a

ept withprobability exa
tly jSupp(X)j=2n, and no prover strategy 
an make the veri�er a

ept withhigher probability.
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ol is 
omplete and sound: if the support of X is nearly all of f0; 1gn, theveri�er will a

ept with high probability; and if the support is a small fra
tion of f0; 1gn, theveri�er will reje
t with high probability no matter what strategy the prover uses. In fa
t,if X has not just large support, but is 
lose to uniform, the proto
ol also 
an be simulatedwell, as done by Algorithm 7.3.3.Algorithm 7.3.3: Simulator for Proto
ol 7.3.1Input: Cir
uit X (with m input gates and n output gates)1. Sele
t r 2 f0; 1gm. Let x = X(r).2. Output (x; r)
Claim 7.3.4 The statisti
al di�eren
e between the output of Algorithm 7.3.3 and the veri-�er's view of Proto
ol 7.3.1 is exa
tly StatDi� (X;Un).Proof: The statisti
al di�eren
e between the x-
omponents of the two distributions isexa
tly StatDi� (X;Un). Conditioned on x, r is sele
ted uniformly from 
X(x) in bothdistributions, so it does not in
rease the statisti
al di�eren
e.Thus, to give an NISZK proof system for EA, it suÆ
es to give a transformationmapping yes instan
es to distributions that are 
lose to uniform and no instan
es to dis-tributions with small support. This is given by the following lemma, whi
h we prove inSe
tion 7.3.2.Lemma 7.3.5 There is a polynomial-time 
omputable fun
tion that takes an instan
e (X; t)of EA and a parameter k (in unary) and produ
es a distribution Z (en
oded by a 
ir
uitwhi
h samples from it) su
h that, letting N be the number of output gates of Z, we have:1. If H(X) � t + 1, then Z has statisti
al di�eren
e at most 2�k from the uniformdistribution on f0; 1gN , and2. If H(X) � t� 1, then the support of Z is at most a 2�k fra
tion of f0; 1gN .Lemma 7.3.5 essentially redu
es to Entropy Approximation to Image Density, the
omplete problem of De Santis et. al. [DDPY98℄. Combining Lemma 7.3.5 with Claims 7.3.2and 7.3.4, we obtain:Theorem 7.3.6 Entropy Approximation is in NISZK. Moreover, it has a nonintera
-tive statisti
al zero-knowledge proof system with simulator deviation 2�k and a deterministi
veri�er.
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ol 7.3.1 (together with Lemma 7.3.5) gives a proof system with nonzero, thoughexponentially small, 
ompleteness error. However, this 
ompleteness error 
an be removedusing a transformation given in [BDMP91, BR90℄, whi
h 
onverts nonintera
tive zero knowl-edge proofs into ones with perfe
t 
ompleteness. (That transformation preserves both sta-tisti
al and 
omputational zero knowledge, maintains an exponentially small simulator de-viation in the 
ase of statisti
al zero knowledge, and keeps the veri�er deterministi
.)7.3.2 Proof of Lemma 7.3.5We now prove Lemma 7.3.5. The transformation is based on te
hniques we have used manytimes | 2-universal hashing, the Leftover Hash Lemma, and 
attening distributions (
f.,Se
tions 3.4.1 and 3.4.3 for the de�nitions). Let (X; t) be an instan
e of EA. Re
all thatthe Leftover Hash Lemma 
onverts nearly 
at distributions with large entropy into nearlyuniform ones. This suggests the following �rst attempt at 
onstru
ting the distribution Z:1. Let X 0 
onsists of many, say s, independent 
opies of X so that the entropy of X 0 isgreater s � (t+1) for yes instan
es and less than s � (t� 1) for for no instan
es, whileX 0 is �-
at, for �� s.2. De�ne Z to be the distribution (h; h(x)), where h is 
hosen uniformly from a 2-universal family of hash fun
tions with range f0; 1gst and x is sampled a

ording toX 0.For a suÆ
iently large (but still polynomial) 
hoi
e of the parameter s, this does indeedmap yes instan
es (X; t) of EA to distributions Z that are 
lose to uniform. Unfortunately,Z does not ne
essarily have small support when (X; t) is a no instan
e. However, it almostworks: The fa
t that the entropy of X 0 is mu
h smaller than st implies that if we removethe very \light" strings from Supp(X 0) (i.e., the strings assigned probability mass mu
hsmaller than 2�H(X0)), what remains is a set T of size mu
h smaller than 2st. The near-
atness of X 0 implies that Pr [X 0 2 T ℄ is very 
lose to 1. For any hash fun
tion h mappingto st bits, h(T ) will be a very small fra
tion of f0; 1gst. So, the reason that Z might stillhave large support is the rare event that we obtain a very light sample from X 0. To dealwith su
h light samples, note that a sample x being light means that fr : X 0(r) = xg isatypi
ally small. So, we add to Z another two 
omponents (h0; h0(r)), where h0 is anotherhash fun
tion (mapping to a di�erent number of bits) and r is is the input to X 0 used toprodu
e the sample x used in the se
ond 
omponent of Z. Thus, when x is one of theserare points outside T , h0(r) will only hit a small fra
tion of its range, and Z will have smallsupport.To formalize this intuition, let (X; t) and k be given as in the lemma. Note that itsuÆ
es for the transformation to a
hieve error parameters 2�
(k) rather than 2�k, as we
an 
ompensate for this by �rst in
reasing k by a 
onstant fa
tor. Let m be the number ofinput gates to X and n the number of output gates. De�ne X 0 = 
sX, for s = 4k �m2.Thus, X 0 has sm input gates, sn output gates, and, by Lemma 3.4.6, is �-
at for � =p(4km2) �m = 2pk �m2. Consider the following distribution Z:Z: Choose r  f0; 1gsm. Let x = X 0(r). Sele
t h1  Hsn;st and h2  Hsm;sm�st�k.Output (h1; h1(x); h2; h2(r)).



158 CHAPTER 7. NONINTERACTIVE SZKWe denote the (jointly distributed) random variables 
orresponding to the 
omponentsof Z by (H1; Y1;H2; Y2). We also use X 0 to denote the distribution of x and R to denotethe distribution of r, so Y1 = H1(X 0), Y2 = H2(R) and X 0 = X 0(R).Claim 7.3.7 If H(X) � t + 1, then Z has statisti
al di�eren
e at most 2�
(k) from theuniform distribution on Hsn;st � f0; 1gst �Hsm;sm�st�k � f0; 1gsm�st�k.Proof: First we analyze the distribution on the �rst two 
omponents (H1;H1(X 0)). Notethat X 0 has entropy at least s�(t+1) = st+2pk�. By the �-
atness ofX 0, we 
an apply theLeftover Hash Lemma (Lemma 3.4.7) with parameters Æ = 2�k+1 and " = 2�pk� < 2�k tosee that (H1;H1(X 0)) = (H1; Y1) has statisti
al di�eren
e at most 2�
(k) from the uniformdistribution on Hsn;st � f0; 1gst. It follows that with probability at least 1 � 2�
(k) over(h1; y1) (H1; Y1), Pr [(H1; Y1) = (h1; y1)℄ � 12 � 1jHsn;st � f0; 1gstj :Fix any pair (h1; y1) su
h that this holds. Then the 
onditional distribution Rj(H1;Y1)=(h1;y1)is uniform over the set fr : h1(X 0(r)) = y1g, whi
h is of size2sm � Pr [Y1 = y1jH1 = h1℄ = 2sm � Pr [(H1; Y1) = (h1; y1)℄Pr [H1 = h1℄� 2sm � 1= �2 � jHsn;stj � 2st�1=jHsn;stj= 2sm�st�1:Thus, by the Leftover Hash Lemma, (H2;H2(R))j(H1;Y1)=(h1;y1) has statisti
al di�eren
e2�
(k) from the uniform distribution on Hsm;sm�st�k � f0; 1gsm�st�k . Re
alling that thisholds with probability 1� 2�
(k) over (h1; y1) (H1; Y1) and that (H1; Y1) has statisti
aldi�eren
e at most 2�
(k) from uniform, we 
on
lude that (H1; Y1;H2; Y2) has statisti
aldi�eren
e at most 2�
(k) from uniform.Claim 7.3.8 If H(X) � t � 1, then the support of Z is at most an O(2�k) fra
tion ofHsn;st � f0; 1gst �Hsm;sm�st�k � f0; 1gsm�st�k.Proof: Note that the entropy of X 0 is at most s � (t� 1) � st�p3k ���k. We will showthat, for every �xed h1 2 Hsm;st, the support S = Sh1 of (h1(X 0);H2;H2(R)) is at mostan O(2�k) fra
tion of D = f0; 1gst �Hsm;sm�st�k � f0; 1gsm�st�k . Clearly this suÆ
es toprove the lemma.Fix h1 2 Hsm;st. To bound the size of S = Sh1 , we divide it into three subsets, dependingon the probability mass of the �rst 
omponent h1(X 0) (as 
ompared to a \typi
al," unhashedsample from X 0). Re
all that a \typi
al" sample from X 0 has probability mass � 2�H(X0) �



7.4. PROOF OF THE COMPLETENESS THEOREM 1592�st+p3k��+k.S1 = f(y1; h2; y2) 2 S : 2�st+k < Pr [h1(X 0) = y1℄g (\not too light")S2 = f(y1; h2; y2) 2 S : 2�st�2k < Pr [h1(X 0) = y1℄ � 2�st+kg(\too light, but not mu
h too light")S3 = f(y1; h2; y2) 2 S : Pr [h1(X 0) = y1℄ � 2�st�2kg (\mu
h too light")Clearly, S = S1 [ S2 [ S3. We will show that jSij=jDj � O(2�k) for i = 1; 2; 3, and sojSj=jDj � 3 � O(2�k) = O(2�k).First, we bound jS1j. Clearly, there 
an be at most 2st�k values of y1 su
h thatPr [h1(X 0) = y1℄ > 2�st+k, so the �rst 
omponents of elements of S1 
over at most a 2�kfra
tion of f0; 1gst. Hen
e S1 is at most a 2�k fra
tion of D.Now we bound jS2j. Consider the setA = fy1 : 2�st�2k < Pr �h1(X 0) = y1� � 2�st+kg:We will show that A is of size at most 2st�k+1; like the previous 
ase, it then follows thatjS2j=jDj � 2�k+1. Note that if h1(x) 2 A, then Pr [X 0 = x℄ � Pr [h1(X 0) = h1(x)℄ � 2�st+k.Thus, if h1(x) 2 A, then x isp3k ��-light (sin
e X 0 has entropy at most st�k�p3k ��). Bythe �-
atness of X 0, Pr [h1(X 0) 2 A℄ is at most 2�3k+1. Sin
e every y1 2 A has probabilitymass at least 2�st�2k under h1(X 0), it follows that jAj is at most 2�3k+1=2�st�2k = 2st�k+1.Finally, we bound jS3j. Note that, for any y1,Pr �h1(X 0) = y1� = 2�sm � ��fr : h1(X 0(r)) = y1g�� :Thus, for any y1 su
h that Pr [h1(X 0) = y1℄ � 2�st�2k, there are at most 2�st�2k � 2smvalues of r 
onsistent with h1(X 0(r)) = y1. Hen
e, for any su
h y1 and any h2, the setof y2 su
h that (y1; h2; y2) 2 S is of size at most 2sm�st�2k (be
ause ea
h su
h y2 is ofthe form h2(r) for some r su
h that h1(X 0(r)) = y1). This implies that S3 is at most a2sm�st�2k=2sm�st�k = 2�k fra
tion of D.We 
omment that the proto
ol obtained by 
ombining the above transformation withProto
ol 7.3.1 yields a proto
ol that is 
losely related to the standard lower bound proto
ol(Proto
ol 5.2.1). Indeed, proving an approximate lower bound on the entropy of a nearly
at distribution X is almost equivalent to proving an approximate lower bound on the sizeof Supp(X), ex
ept for diÆ
ulties 
aused by \light" samples. Our method for handling thisdiÆ
ulty 
an be viewed as using another lower bound proto
ol on the inputs to X.7.4 Proof of the Completeness TheoremIn this se
tion, we 
omplete the proof of the 
ompleteness theorem for NISZK. First, weshow that Statisti
al Differen
e from Uniform redu
es to Entropy Approxima-tion.



160 CHAPTER 7. NONINTERACTIVE SZKLemma 7.4.1 SDU �Karp EA. In parti
ular, SDU 2 NISZK.Proof: Let X be an instan
e of SDU. First, we treat the 
ase that log n > 4, wheren is the output length of the 
ir
uit X. In this 
ase, we 
laim X 7! (X;n � 3) is a validredu
tion to EA. The 
orre
tness of this redu
tion follows from the following 
laim relatingthe entropy of a distribution to its distan
e from the uniform distribution.Claim 7.4.2 Let X be any distribution on a universe U and let U denote the uniformdistribution on U . Then1. If StatDi� (X;U) � �, then H(X) � log jUj � ��+ 1jUj� � log jUj.2. If StatDi� (X;U) � �, then H(X) � log jUj � log � 11���.Applying this 
laim with U = f0; 1gn, � = 1=n, and � = 1�1=n shows that yes instan
esof SDU have entropy at least n�2 and no instan
es have entropy at most n� logn � n�4.This establishes the validity of the redu
tion.Now we treat the 
ase that log n < 4. In this 
ase, the statisti
al di�eren
e between Xand Un 
an be approximated in probabilisti
 polynomial time by sampling X suÆ
ientlymany times and 
ounting the number of times ea
h output o

urs. So let A(X) be theprobabilisti
 algorithm whi
h outputs 1 with probability at least 2=3 when X 2 SDUYand outputs 1 with probability at most 1=3 when X 2 SDUN . Now 
onsider the 
ir
uit Yde�ned as follows:Y : Run A(X) to obtain output b. If b = 1 output 9 random bits, and if b = 0 output 09.Now, if X 2 SDUY , then H(Y ) � (2=3) � 9 = 6. If instead X 2 SDUN , then H(Y ) �H2(1=3) + (1=3) � 9 � 4. Thus X 7! (Y; 5) is a valid redu
tion from SDU to EA in this
ase.Now we 
omplete the 
ir
le of redu
tions by showing that every problem inweak-NISZKredu
es to SDU.Lemma 7.4.3 Every promise problem in weak-NISZK redu
es to SDU.By the 
orresponden
e between nonintera
tive proofs and 2-message publi
-
oin intera
-tive proofs, we 
ould apply the simulator analysis for publi
-
oin statisti
al zero-knowledgeproofs given in Se
tion 3.2. However, sin
e the 
ase of nonintera
tive proof systems is mu
hsimpler, we give the redu
tion dire
tly. Our redu
tion is essentially the same as the redu
-tion of De Santiset. al. [DDPY98℄ to their 
omplete problem Image Density, with a small
ompli
ation 
aused by the fa
t that we allow the veri�er to be probabilisti
.Proof: Let � be any promise problem in weak-NISZK. Let (P; V ) be a weak-NISZKproof system for � and let ` = `(n) be a polynomial bound on the length of the sharedrandom string on inputs of length n. We assume that (P; V ) has 
ompleteness and soundnesserror at most 1=9` (a
tually these 
an be assumed to be exponentially small by repeatingthe proof system suÆ
iently many times in parallel). By the weak-NISZK property, thereis a simulator S for (P; V ) whi
h a
hieves simulator deviation 1=3`.For an instan
e x of �, 
onsider the following distribution Xx:



7.5. COMPARING SZK AND NISZK 161Xx: Run S(x) to obtain a simulated trans
ript (�; proof ). Run V (x; �; proof ) ` times. If Va

epts in the majority of the exe
utions, output �. Otherwise, output 0`.We 
laim that x 7! Xx is the redu
tion we are seeking. Suppose x 2 �Y . Considerthe distribution Xx whi
h is the same as Xx, ex
ept that (�; proof ) is taken from (P; V )(x)instead of from S(x). Xx and Xx have statisti
al di�eren
e at most the simulator deviation(1=3`), so it suÆ
es to show that Xx has statisti
al di�eren
e at most 2=3` from uniform.For (�; proof ) taken from (P; V )(x), � is distributed uniformly, so we need only analyzethe probability that it is dis
arded and repla
ed with 0` in Xx. Let B be the set of\bad" pairs (�; proof )'s for whi
h Pr [V (x; �; proof ) = a

ept℄ � 2=3. The probabilitythat (�; proof ) 2 B is at most 1=3`, for otherwise V would reje
t with probability greaterthan (1=3`) � (1=3) = 1=9`, violating 
ompleteness. By the Cherno� Bound, for any pair(�; proof ) =2 B, the probability that V (x; �; proof ) a

epts in the majority of ` independentexe
utions is at least 1 � exp(�
(`)). Thus, in Xx, � is repla
ed with 0` with probabilityat most 1=3` + exp(�
(`)) < 2=3`, and hen
e Xx has statisti
al di�eren
e at most 2=3`from uniform.Now suppose that x 2 �N . Consider the set B of \bad" �'s for whi
h there exists a proofsu
h that Pr [V (x; �; proof ) = a

ept℄ � 1=3. The probability that a uniformly distributed� is in B is at most 1=3`, for otherwise there would be a prover strategy whi
h makes Va

ept with probability greater than (1=3`) � (1=3) = 1=9`, violating soundness. However,whenever � =2 B, Xx outputs 0` with probability at least 1� exp(�
(`)) (by the Cherno�Bound). Hen
e, Xx is in B [ f0`g with probability at least 1 � exp(�
(`)) � 1 � 1=3`,whereas the uniform distribution is in B [f0`g with probability at most 1=3`+2�` � 2=3`,for a statisti
al di�eren
e at least [1� 1=3`℄ � 2=3` = 1� 1=`.The Completeness Theorem (Theorem 7.2.3) follows by 
ombining Theorem 7.3.6 andLemmas 7.4.1 and 7.4.3. We 
an draw a 
ouple of immediate 
orollaries from our proof ofthe Completeness Theorem. By the fa
t that the redu
tion from NISZK to SDU a
tuallyworks for all of weak-NISZK, we obtain:Corollary 7.4.4 weak-NISZK = NISZK.Sin
e the 
omplete problem EA possesses an NISZK proof system with exponentiallyvanishing simulator deviation (Theorem 7.3.6), so must all other problems in NISZK.Corollary 7.4.5 Every problem inNISZK possesses a nonintera
tive statisti
al zero knowl-edge proof system with simulator deviation 2�k and a deterministi
 veri�er.7.5 Comparing SZK and NISZK7.5.1 Nontriviality of NISZKIn this se
tion, we use the 
omplete problems to relate SZK and NISZK. The �rst resultis that if NISZK = BPP then SZK = BPP. This is done by giving a Cook redu
tionfrom Entropy Differen
e (ED) to Entropy Approximation (EA).



162 CHAPTER 7. NONINTERACTIVE SZKLemma 7.5.1 Suppose (X;Y ) is an instan
e of ED. Let X 0 = 
3X (resp., Y 0 = 
3Y )
onsist of 4 independent 
opies of X (resp., Y ), and let n denote the output length of X 0.Then, (X;Y ) 2 EDY =) n_t=1 ��(X 0; t) 2 EAY � ^ �(Y 0; t) 2 EAN��(X;Y ) 2 EDN =) n̂t=1 ��(X 0; t) 2 EAN� _ �(Y 0; t) 2 EAY ��Proof: Suppose (X;Y ) 2 EDY , so that H(X 0) � H(Y 0) + 3. Sin
e (H(X 0) � 1) �(H(Y 0) + 1) � 1, there must be some integer t in the interval [H(X 0)� 1;H(Y 0) + 1℄, whi
himplies that (X 0; t) 2 EAY and (Y 0; t) 2 EAN . Suppose instead (X;Y ) 2 EDN , so thatH(Y 0) � H(X 0) + 3. Sin
e H(X 0) + 1 < H(Y 0)� 1, every t is either greater than H(X 0) + 1or less than H(Y 0)� 1. That is, for every t, (X 0; t) 2 EAN or (Y 0; t) 2 EAY .Thus, we 
on
lude:Theorem 7.5.2 NISZK 6= BPP i� SZK 6= BPP.Proof: By de�nition, BPP � NISZK � HVSZK, and HVSZK = SZK by Theo-rem 6.3.1. Thus, if SZK = BPP, then NISZK = BPP.Now suppose that NISZK = BPP. In parti
ular, there is a probabilisti
 polynomialtime algorithm A whi
h de
ides EA with exponentially small error probability. To provethat SZK = BPP, it suÆ
es to exhibit a BPP algorithm for ED, sin
e ED is SZK-
omplete. The algorithm is given as follows: Given an instan
e (X;Y ) of ED, let X 0, Y 0,and n be as stated in Lemma 7.5.1. Run A(X 0; t) and A(Y 0; t) for t = 1; : : : ; n. If, forsome t, A(X 0; t) = yes and A(Y 0; t) = no, then output yes. Otherwise, output no. ByLemma 7.5.1, this is a 
orre
t BPP algorithm for de
iding ED.7.5.2 Conditions under whi
h NISZK = SZKIn this se
tion, we use spe
ial properties of the redu
tion from ED to EA given in theprevious se
tion to shed additional light on the relationship between NISZK and SZK.Spe
i�
ally, we will show that ifNISZK is 
losed under 
omplement, then in fa
tNISZK =SZK.The key observation is that the redu
tion from ED to EA is nonadaptive (i.e., all thequeries to EA 
an be asked at on
e) and the �nal answer is 
omputed by applying thesimple Boolean formula of Lemma 7.5.1 to the responses. That is, it is an NC1 truth-tableredu
tion, in the sense of De�nition 4.5.10. In fa
t, the Boolean formula has 
onstant depth;this property is 
aptured by the following de�nition.De�nition 7.5.3 (AC0 truth-table redu
tions) A truth-table redu
tion f between promiseproblems is an AC0 truth-table redu
tion5 if the 
ir
uit C produ
ed by the redu
tion on input5This terminology is inherited from the AC hierar
hy of languages, where ACi denotes the 
lass oflanguages de
ided by (uniform) families of 
ir
uits of unbounded fan-in and depth O(logi n). See, e.g.,[Pap94℄.



7.5. COMPARING SZK AND NISZK 163x has depth bounded by 
f , where 
f is a 
onstant independent of x. (C may have unboundedfan-in.) If there is an AC0 truth-table redu
tion from � to �, we write � �AC0�tt �.From Lemma 7.5.1, we have:Proposition 7.5.4 ED �AC0�tt EA.By this proposition, if NISZK were 
losed under AC0 truth-table redu
tions, thenED would be in NISZK and hen
e NISZK = SZK. Thus, we would like to 
apture theminimal 
onditions for a 
omplexity 
lass to be 
losed under AC0 truth-table redu
tions.We de�ne the following operator on promise problems to 
apture the notion of an unboundedfan-in AND gate.De�nition 7.5.5 (unbounded AND) For any promise problem �, we de�ne AND(�)to be the following promise problem:AND(�)Y = f(x1; x2; : : : ; xk) : k � 0; 8i 2 [1; k℄ xi 2 �Y gAND(�)N = f(x1; x2; : : : ; xk) : k � 0; 9i 2 [1; k℄ xi 2 �NgWe say a 
lass C of promise problems is 
losed under unbounded AND if � 2 C impliesthat AND(�) 2 C.We have de�ned AND(�) so that it has the weakest promise 
ondition possible to remainwell-de�ned. In parti
ular, AND(�)N is de�ned to in
lude xi's that violate �'s promise, aslong as just one of them is in �N .We also need a way of 
ombining two promise problems:De�nition 7.5.6 (disjoint union) For any pair of promise problems � and �, we de�nethe disjoint union of � and � to be the promise problem DisjUn(�;�) de�ned as follows:DisjUn(�;�)Y = f0g ��Y [ f1g � �YDisjUn(�;�)N = f0g ��N [ f1g � �NWe say a 
lass C of promise problems is 
losed under disjoint union if �;� 2 C impliesthat DisjUn(�;�) 2 C.With these de�nitions, we 
an give some 
onditions that imply 
losure under AC0truth-table redu
tions.Lemma 7.5.7 A promise 
lass C is 
losed underAC0 truth-table redu
tions if the following
onditions hold:1. C is 
losed under Karp redu
tions.2. C is 
losed under unbounded AND.3. C is 
losed under disjoint union.4. C is 
losed under 
omplementation.



164 CHAPTER 7. NONINTERACTIVE SZKProof: As a �rst step, we observe that C is 
losed under unbounded OR (de�nedanalogously to unbounded AND): DeMorgan's Laws say that OR(�) = AND(�), whi
his in C, by 
losure under unbounded AND and 
omplementation. To generalize this to
onstant-depth 
ir
uits, we de�ne for ea
h d 2 N, a promise problem Depthd(�) whi
h isde�ned exa
tly as �(�) (De�nition 4.5.3), ex
ept formulae � are repla
ed with 
ir
uits Cof depth at most d (using unbounded fan-in AND and OR gates).By de�nition, � �AC0�tt � means that there exists some d su
h that � �Karp Depthd(�).Hen
e if we 
an show that for all d � 0 and promise problems � 2 C, Depthd(�) 2 C, thelemma will be established. We will prove this by indu
tion on d.First, observe that a depth 0 
ir
uit is simply a variable or its negation. Hen
e,Depth0(�) �Karp DisjUn(�;�) 2 C. (The redu
tion maps (vi; (x1; : : : ; xm)) 7! (0; xi)and (:vi; (x1; : : : ; xm)) 7! (1; xi)). Now assume that Depthd(�) 2 C. By de�nition, adepth d+ 1 
ir
uit is an AND or an OR of some number of depth d 
ir
uits. (By applyingDeMorgan's Laws, we may assume that all negations are applied dire
tly to the variables.)Using this fa
t, we will argue that thatDepthd+1(�) �Karp DisjUn(AND(Depthd(�));OR(Depthd(�))):By the hypothesized 
losure properties ofC, this implies that Depthd+1(�) 2 C. The redu
-tion works as follows. The input to the redu
tion is a pair (C; x) where x = (x1; x2; : : : xm).First, the redu
tion extra
ts from C the 
ir
uits C1; C2; : : : ; Cs that provide input to thetopmost AND/OR gate, and sets � = 0 (resp., � = 1) if that gate is an AND (resp., OR)gate. Then the redu
tion outputs (�; ((C1; x); (C2; x); : : : ; (Cs; x))). It is 
lear that this mapgives a Karp redu
tion from Depthd+1(�) to DisjUn(AND(Depthd(�));OR(Depthd(�)));
ompleting the indu
tion step and the proof.Whi
h of the 
onditions of Lemma 7.5.7 does NISZK satisfy? We have already shownthat Condition 1 is satis�ed byNISZK (Proposition 2.4.1). We now argue that Conditions 2and 3 are also satis�ed:Lemma 7.5.8 NISZK is 
losed under unbounded AND.Proof: Let � be any problem in NISZK. Let (P; V ) be a nonintera
tive statisti
alzero-knowledge proof system for � with 
ompleteness and soundness errors at most 1=kand simulator devation �(k) (where k is the se
urity parameter). We now des
ribe anNISZK proof system (P 0; V 0) for AND(�): Given an instan
e (x1; : : : ; xm) of AND(�) anda se
urity parameter k0, P 0 and V 0 exe
ute the (P; V ) on ea
h xi, using se
urity parameterk = 2k0m, and V 0 a

epts if V a

epts in ea
h of these exe
utions.(P 0; V 0) is a nonintera
tive proof system for AND(�) with 
ompleteness error at mostm � 1=k � 1=k0 and soundness error at most 1=k � 1=k0. Moreover, it 
an be simulated byrunning the simulator for (P; V ) on ea
h of the inputs xi. This gives simulator deviationm � �(k), whi
h is (bounded by) a negligible fun
tion of k0.Lemma 7.5.9 NISZK is 
losed under disjoint union.Proof: If �0;�1 2 NISZK, an NISZK proof system for DisjUn(�0;�1) 
an be obtainedas follows: On input (�; x) and se
urity parameter k, the prover and veri�er exe
ute theNISZK proof system for �� on input x and se
urity parameter k.



7.5. COMPARING SZK AND NISZK 165Combining everything, we 
an give a 
ondition under whi
h SZK = NISZK.Proposition 7.5.10 If NISZK is 
losed under 
omplementation, then SZK = NISZK.Proof: Suppose NISZK is 
losed under 
omplementation. By Lemmas 7.5.7, 7.5.8,and 7.5.9 and Proposition 7.1.4, it follows that NISZK is 
losed under AC0 truth-tableredu
tions. Combining Proposition 7.5.4 (ED �AC0�tt EA) and Theorem 3.5.1 (ED is
omplete for SZK), we see that every problem in SZK AC0 truth-table redu
es to EA.Thus, SZK � NISZK. As NISZK � SZK is true from the de�nition of NISZK, we
on
lude that NISZK = SZK.Finally, we give a number of other 
onditions equivalent to NISZK = SZK.Theorem 7.5.11 (
onditions for SZK = NISZK) The following are equivalent:1. SZK = NISZK.2. NISZK is 
losed under 
omplement.3. NISZK is 
losed under NC1 truth-table redu
tions.4. ED (resp., SD) Karp-redu
es to EA (resp., SDU). (\general versions redu
e toone-sided ones")5. EA (resp., SDU) Karp-redu
es to its 
omplement. (\one-sided versions redu
e totheir 
omplements")Proof: 1 ) 3. This follows from Corollary 4.5.12, whi
h states that SZK is 
losed underNC1 truth-table redu
tions.3 ) 2 ) 1. The �rst impli
ation is trivial and the se
ond is Proposition 7.5.10.1 , 4. This follows from the Completeness Theorems (Theorem 3.5.1 and 7.2.3), whi
hassert that EA and SDU are 
omplete for NISZK, and that ED and SD are 
omplete forSZK, and Proposition 7.1.4 (that NISZK is 
losed under Karp redu
tions).2, 5. This follows from Theorem 7.2.3 (that EA and SDU are 
omplete for NISZK) andProposition 7.1.4 (that NISZK is 
losed under Karp redu
tions).Theorem 7.5.11 
an be interpreted as saying that ifNISZK has a relatively weak 
losureproperty (
losure under 
omplement), then the 
lass is surprisingly ri
h (equals SZK) andhas a mu
h stronger 
losure property (
losure under NC1 truth-table redu
tions.) At �rst,it might seem implausible that a 
lass like NISZK with su
h an assymetri
 de�nitionwould be 
losed under 
omplement. But SZK, whi
h has a similarly assymetri
 de�nition,is known to be 
losed under 
omplement [Oka96℄ (
f., Corollary 4.2.1). In light of this, the
losure ofNISZK under 
omplement would not be quite as unexpe
ted, and Theorem 7.5.11illustrates that proving it would have wider 
onsequen
es.The last two 
onditions in Theorem 7.5.11 show that these questions about noninter-a
tive versus intera
tive statisti
al zero-knowledge proofs are a
tually equivalent to basi
questions about relationships between natural 
omputational problems whose de�nitionshave no a priori relationship to zero-knowledge proofs.



166 CHAPTER 7. NONINTERACTIVE SZKThe equality of SZK and NISZK would have interesting 
onsequen
es not just forNISZK, but also for SZK. Note that NISZK = SZK would imply that every problemin SZK = HVSZK has a 2-message publi
-
oin HVSZK proof, giving a positive an-swer to Open Problem 5.4.20. By the transformation of Damg�ard, Goldrei
h and Wigder-son [DGW94℄, this in turn would imply that every problem in SZK has a 4-message publi
-
oin SZK proof system (against 
heating veri�ers, with inverse polynomial soundness error),giving a positive answer to Open Problem 6.5.6.In summary, it would be very interesting to answer the following question.Open Problem 7.5.12 Does SZK = NISZK?7.6 Other appli
ations of the Completeness Theorem7.6.1 Problems in NISZKWe 
an also use the 
omplete problems to pla
e other problems in NISZK. To do so, weneed only exhibit a redu
tion from the given problem to one of the 
omplete problems. Thefollowing observation will make exhibiting redu
tions to Entropy Approximation some-what more 
onvenient: While the de�nition of EA amounts to the problem approximatingentropy up to �1, a
tually it is equivalent to approximating entropy up to any additive
onstant. More pre
isely, we have:Proposition 7.6.1 There is an eÆ
ient transformation that takes a triple (X; t1; t2), whereX is a distribution en
oded by a 
ir
uit and t1 > t2 are rational numbers, and produ
es anew distribution X 0 and an integer t su
h thatH(X) � t1 ) (X 0; t) 2 EAYH(X) � t2 ) (X 0; t) 2 EAYThe transformation is 
omputable in time polynomial in the input length and 1=(t1 � t2).Proof: Let m = d 3t1�t2 e, X 0 = 
mX, and t = dmt2e+ 1. ThenH(X) � t1 ) H(X 0) � mt1 � mt2 + 3 � t+ 1and H(X) � t2 ) H(X 0) � mt2 � t� 1:Expli
it proof systems for the problems we 
onsider below 
an be obtained by 
ombiningthe redu
tions to EA given below with the proto
ol for Entropy Approximation givenin Se
tion 7.3. However, for these problems, the 
onstru
tion and analysis of the trans-formation given by Lemma 7.3.2 
an be somewhat simpli�ed, sin
e the distributions arealready 
at. In parti
ular, there are no \light" samples and hen
e the se
ond hash fun
tionis unne
essary.



7.6. OTHER APPLICATIONS OF THE COMPLETENESS THEOREM 167The �rst problem we show to be in NISZK is the following promise problem Numberof Prime Fa
tors (NPF):NPFY = f(n; k) 2 N � N : n has at most k distin
t prime fa
torsgNPFN = f(n; k) 2 N � N : n has more than k distin
t prime fa
torsgNote that, sin
e NPFN is exa
tly the 
omplement of NPFY , NPF is a
tually a language.Proposition 7.6.2 Number of Prime Fa
tors is in NISZK.Proof: We redu
e NPF to EA. The redu
tion is based on the following well-known fa
t.Fa
t 7.6.3 If an odd integer n has exa
tly k distin
t prime fa
tors, then the map from Z�nto Z�n given by x 7! x2 mod n is 2k-to-1.Now, we redu
e a pair (n; k) to EA as follows: By exhaustive sear
h, �nd all the primefa
tors of n less than 4 log n. Let t be the number of su
h prime fa
tors, and let m beobtained by dividing all su
h prime fa
tors out of n. Thus if n has at most (resp., morethan) k prime fa
tors, m has at most (resp., more than) k � t prime fa
tors. Now 
onsiderthe following distribution:Xn;k: Choose x uniformly in Z�m and output x2 (mod m).By Fa
t 7.6.3, Xn;k is uniform on a set of size jZ�mj=2` = �(m)=2`, where ` is the number ofprime fa
tors of m, and hen
e H(Xn;k) = (log �(m))� `. Now, sin
e m has no prime fa
torssmaller than (log n)=4,m � �(m) = mYpjm�1� 1p� � m ��1� 14 log n�logm � m ��1� logm4 log n� � 3m=4:Therefore,(n; k) 2 NPFY ) H(Xn;k) � log(3m=4) � (k � t) > logm� k + t� :5:(n; k) 2 NPFN ) H(Xn;k) � logm� (k � t+ 1) = logm� k + t� 1Thus, taking X = Xn;k, t1 = logm�k+t�:5, and t2 = logm�k+t�1 in Proposition 7.6.1,we see that NPF redu
es to EA.Now we 
onsider a version Quadrati
 Nonresiduosity, whi
h was the �rst problemshown to be in NISZK.QNRY = f(n; x) 2 N � N : x is a quadrati
 nonresidue modulo n, n is odd,and n has exa
tly two distin
t prime fa
torsg;QNRN = N � N nQNRYProposition 7.6.4 ([BDMP91℄) Quadrati
 Nonresiduosity is in NISZK.
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t that n is odd and has exa
tly two distin
t prime fa
tors 
an be proven inNISZK by Proposition 7.6.2. (Polynomial-time primality testing algorithms, as in [SS77,Mil76, Rab80℄ 
an be used to rule out n with exa
tly one distin
t prime fa
tor.) Thus,we may assume that n is of the 
orre
t form, and need only give a redu
tion to EA thatworks in this 
ase. We also may assume that both of the prime divisors of n are larger than(log n)=4, for otherwise one 
an fa
tor n and de
ide if x is a quadrati
 residue in polynomialtime. Finally, we may assume that g
d(x; n) = 1, as (n; x) 2 QNRN if this is not the 
ase,and this 
an be 
he
ked in polynomial time. Consider the following distribution:Xn;x: Choose y uniformly in Z�n. With probability 1=2, output y2 mod n, and with proba-bility 1=2, output x � y2 mod n.First, suppose that x is a quadrati
 residue modulo n. ThenXn;x is distributed uniformlyon the quadrati
 residues modulo n, whi
h, by Fa
t 7.6.3, is a set of size �(n)=4 � n=4.Thus, H(Xn;x) � log n� 2.On the other hand, if x is a quadrati
 nonresidue modulo n, then the elements of Z�n ofthe form x � y2 are disjoint from those of the form y2, so Xn;x is uniformly distributed on aset of size �(n)=2. As in the proof of Proposition 7.6.2, the assumption that n has no smallprime fa
tors implies that �(n) � 3n=4, so H(Xn;x) � log((3n=4)=2) � log n� 1:5.Taking X = Xn;k, t1 = log n� 1:5, and t2 = log n� 2 in Proposition 7.6.1, we see thatQNR redu
es to EA.Blum et. al. [BDMP91℄ a
tually 
onsider a slightly di�erent version of QNR, in whi
h theyes instan
es (n; x) also have the 
onstraint that n is not a perfe
t square and that x hasJa
obi symbol 1. They show that their version of QNR is a
tually in NIPZK.The �nal example we 
onsider is a variant of Graph Isomorphism, observed to be inNISZK by Bellare and Rogaway [BR90℄. If G is a graph, then Aut(G) denotes the group ofisomorphisms from G to itself, also known as automorphisms. G is said to be rigid if Aut(G)
onsists of only the identity map. The problem we 
onsider is Rigid Graphs (RG), givenby: RGY = fG : G is rigidgRGN = fG : G is not rigidgProposition 7.6.5 ([BR90℄) Rigid Graphs is in NISZK.Proof: Consider the following distribution for any graph G:XG: Uniformly sele
t a permutation � on the verti
es of G and output �(G).Standard group theory implies that XG is distributed uniformly on a set of size n!=jAut(G)j.So if G is rigid, H(XG) = logn!, whereas if G is not rigid, H(XG) � log(n!=2) = log n!� 1.Thus, taking X = XG, t1 = log n!, and t2 = log n!� 1 in Proposition 7.6.1, we see that RGredu
es to EA.



7.6. OTHER APPLICATIONS OF THE COMPLETENESS THEOREM 1697.6.2 A Polarization Lemma for SDUCombining Lemmas 7.3.5 and 7.4.1, we obtain an SDU-analogue of the Polarization Lemma(Lemma 3.1.12).Lemma 7.6.6 There is a polynomial-time 
omputable fun
tion that takes a distributionX on f0; 1gn (en
oded by a 
ir
uit) and a parameter k (in unary) and outputs a newdistribution X 0 on f0; 1gn0 su
h thatStatDi� (X;Un) � 1n ) StatDi� �X 0; Un0� � 2�kStatDi� (X;Un) � 1� 1=n ) StatDi� �X 0; Un0� � 1� 2�kMoreover, in the latter 
ase, the support of X 0 is at most a 2�k fra
tion of f0; 1gn0 .This 
an be generalized somewhat, observing that the redu
tion from SDU to EA givenin Lemma 7.4.1 a
tually works for more general thresholds:Lemma 7.6.7 (Polarization Lemma for SDU) Let �; � : N ! N be any two fun
tionssu
h that �(n) and �(n) are 
omputable in time poly(n) and, for some 
onstant 
,log� 11� �(n)� � �(n) � n+ 1n
 :Then, there is a polynomial-time 
omputable fun
tion that takes a distribution X on f0; 1gn(en
oded by a 
ir
uit) and a parameter k (in unary) and outputs a new distribution X 0 onf0; 1gn0 su
h thatStatDi� (X;Un) � �(n) ) StatDi� �X 0; Un0� � 2�kStatDi� (X;Un) � �(n) ) StatDi� �X 0; Un0� � 1� 2�kMoreover, in the latter 
ase, the support of X 0 is at most a 2�k fra
tion of f0; 1gn0 .Lemma 7.6.7 is proven using Claim 7.4.2 together with Proposition 7.6.1. We do notknow whether an analogous lemma 
an be proven for any pair of 
onstant thresholds0 < � < � < 1. One might hope to obtain su
h a result using the approa
h used in thePolarization Lemma for statisti
al di�eren
e | alternating pro
edures whi
h in
rease andde
rease statisti
al di�eren
e. However, while the Dire
t Produ
t 
onstru
tion for in
reas-ing statisti
al di�eren
e also applies to SDU, the XOR 
onstru
tion does not, as neitherdistribution it produ
es is uniform even if one of the original distributions is uniform. Thus,the following problem remains open:Open Problem 7.6.8 Can the Polarization Lemma for SDU be extended to any pair of
onstant thresholds 0 < � < � < 1?
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Chapter 8Con
lusionIn this thesis, we have addressed a number of fundamental questions about statisti
al zero-knowledge proofs. Our main tools in this investigation were the two 
omplete problemsEntropy Differen
e and Statisti
al Differen
e. The 
entral role played by theseproblems in our study is a dramati
 illustration of the power of 
ompleteness as a positivetool.First, these 
omplete problems gave us a tight 
hara
terization of the problems thatpossess statisti
al zero-knowledge proofs. Namely, we saw that the 
lass SZK 
an beidenti�ed with \approximate statisti
al properties of samplable distributions." Then these
omplete problems provided a starting point for understanding a number of importantaspe
ts of statisti
al zero-knowledge proofs. Among the issues we addressed were eÆ
ien
y,
losure properties, private 
oins vs. publi
 
oins, honest veri�ers vs. 
heating veri�ers, andintera
tive vs. nonintera
tive proofs. Although we managed to answer some of the basi
questions in these areas, a number of intriguing problems remain. We have des
ribed manyof these open problems in the relevant 
hapters, but there are a few worth highlighting here.EÆ
ient SZK proof systems. In the 
ourse of this thesis, we have shown how to trans-form an arbitrary HVSZK proof system into one with various desirable additional prop-erties, su
h as being zero knowledge versus 
heating veri�ers (Theorem 6.3.1), ex
hanginga 
onstant number of messages (Corollary 4.1.1), and using publi
 
oins (Theorem 5.1.1).However, we do not know how to a
hieve the 
onstant-message property together with ei-ther of the other two properties. In parti
ular, the following questions remain open (OpenProblems 6.5.6, 5.4.20, and 7.5.12):� Does every problem in HVSZK possess a 
onstant-message SZK proof system?� Does every problem in HVSZK possess a 
onstant-message publi
-
oin HVSZKproof system?� Does HVSZK = NISZK?Re
all that a positive answer to the se
ond or third questions implies a positive answer tothe previous ones. 171



172 CHAPTER 8. CONCLUSIONExtending more te
hniques to CZK. One broad resear
h proje
t is to extend moreof the te
hniques developed here to other forms of zero-knowledge proofs, su
h as 
om-putational zero-knowledge proofs and zero-knowledge \arguments" [BCC88℄ (whi
h we didnot dis
uss). In parti
ular, three questions about 
omputational zero knowledge stand out(Open Problems 4.7.5, 5.4.19, 6.5.4).� Can one exhibit a natural 
omplete problem for (honest-veri�er) 
omputational zeroknowledge? or at least give a nontrivial result su
h as Proposition 4.7.3 withoutrestri
ting to publi
 
oins?� Can private-
oin (honest-veri�er) 
omputational zero-knowledge proofs be transformedinto publi
-
oin ones? (We showed how to do this for 3-message private-
oin proofs.)� Does honest-veri�er 
omputational zero knowledge equal 
heating-veri�er 
omputa-tional zero knowledge? (We answered this question in the positive for the 
ase ofpubli
-
oin proofs.)Re
all that it is only of interest to answer these questions un
onditionally, as essentiallyeverything about 
omputational zero knowledge has been resolved under the assumptionthat one-way fun
tions exist.More 
omplete problems. Another general resear
h avenue is to exhibit additionalnatural 
omplete problems for SZK. In parti
ular, it would be very interesting to exhibit a
ombinatorial or number-theoreti
 
omplete problem, su
h as one of the problems of 
rypto-graphi
 interest known to be in SZK. While we have primarily used SZK-
ompleteness asa positive tool, it also 
ould provide strong eviden
e of intra
tability, as SZK 
ontains manyproblems believed to be hard. Indeed, we are in need of alternatives toNP-
ompleteness forhardness results, as there are important 
ases in whi
h it seems out of rea
h. For example,for most of the problems on whi
h modern 
ryptography is based, we would like to provehardness results, but NP-hardness is unlikely due to these problems lying in AM\
o-AM(
f., [Bra79, BHZ87, GG98a, GG98b℄). In 
ontrast, this does not rule out the possibility ofSZK-hardness, as SZK � AM \ 
o-AM.SZK vs. PZK. A �nal open problem is the relationship between statisti
al zero knowl-edge and perfe
t zero knowledge (Open Problem 4.6.14). In fa
t, it was this question, askedto us by Sha� Goldwasser, that started the resear
h in this thesis, and unfortunately the an-swer remains a mystery. For a number of years after zero-knowledge proofs were introdu
ed,there were no natural examples of problems known to be in SZK but not known to be inPZK; now the 
omplete problems Statisti
al Differen
e and Entropy Differen
eare examples of su
h problems. On one hand, this may be regarded as eviden
e that the
lasses are di�erent. On the other hand, the problem of proving that SZK = PZK is nowredu
ed to giving a perfe
t zero-knowledge proof for either of the 
omplete problems.



Appendix ACherno� BoundsThe following useful bound shows that if one has n independent events, ea
h whi
h o

urwith probability p, then roughly np of the events o

ur with high probability.Theorem A.1 (Cherno� Bound [Che52℄) Suppose X1; : : : ;Xn are independent randomvariables su
h that for all i, Pr [Xi = 1℄ = p and Pr [Xi = 0℄ = 1 � p. Let X = 1nPni=1Xi.Then for any Æ > 0, Pr [X � p+ Æ℄ � exp ��2nÆ2� ; andPr [X � p� Æ℄ � exp ��2nÆ2� :The following generalization of the Cherno� Bound to non-Boolean random variableswill also be useful to us.Theorem A.2 (Hoe�ding Inequality [Hoe63℄) Suppose X1; : : : ;Xn are independent ran-dom variables with mean �, taking values in the real interval [a; b℄, and X = 1nPni=1Xi.Then for any � > 0, Pr [X � �+�℄ � exp��2n�2(b� a)2� ; andPr [X � ���℄ � exp��2n�2(b� a)2� :A proof of this version of the Hoe�ding Inequality 
an be found in [Hof95, Se
. 7.2℄,and the Cherno� Bound above 
an be obtained by setting a = 0, b = 1, � = Æ, and � = p.
173
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Appendix BHashing LemmasIn this appendix, we prove the two lemmas about 2-universal hash fun
tions that we used| Lemmas 5.4.10 and 6.4.5.B.1 Proof of Lemma 5.4.10In this se
tion, we prove the hashing lemma used to analyze the transformation from private-
oin zero-knowledge proofs to publi
-
oin ones in Chapter 5. We restate the lemma here:Lemma B.1.1 (impli
it in [Oka96℄) Let H be a 2-universal family of hash fun
tionsmapping a domain D to a range R and let 0 be any �xed element of R. Let Z be adistribution on D su
h that with probability 1�Æ over z sele
ted a

ording to Z, Pr [Z = z℄ �"=jRj. Then the following two distributions have statisti
al di�eren
e at most 3(Æ + "1=3):(A) Choose h uniformly in H. Sele
t z a

ording to Z 
onditioned on h(z) = 0. Output(h; z).(B) Choose z a

ording to Z. Sele
t h uniformly in fh0 2 H : h(z) = 0g. Output (h; z).We denote the two distributions on pairs (h; z) in Lemma B.1.1 by A = (AH; AZ) andB = (BH; BZ). By the de�nition of statisti
al di�eren
e, it suÆ
es to show that for everyset S � H�D, Pr [A 2 S℄�Pr [B 2 S℄ � 3(Æ+ "1=3). In order to do this, we �rst will arguethat for \most" pairs (h; z), Pr [A = (h; z)℄ is not too mu
h greater than Pr [B = (h; z)℄.Observe that both distributions A and B only output pairs (h; z) su
h that h(z) = 0. Now,for any (h; z) 2 H �D su
h that h(z) = 0, we havePr [A = (h; z)℄ = Pr [AH = h℄ � Pr [AZ = zjAH = h℄= 1jHj � Pr [Z = z℄Pw2h�1(0) Pr [Z = w℄ ;and Pr [B = (h; z)℄ = Pr [BZ = z℄ � Pr [BH = hjBZ = z℄175



176 APPENDIX B. HASHING LEMMAS= Pr [Z = z℄ � 1jfh0 : h0(z) = 0gj= Pr [Z = z℄ � jRjjHj ;where the last equality follows from 2-universality.Thus, showing that Pr [A = (h; z)℄ is not too mu
h greater than Pr [B = (h; z)℄ for mostpairs (h; z) amounts to showing that for most h, Pw2h�1(0) Pr [Z = w℄ is not too mu
hsmaller than 1=jRj. In order to prove a lower bound on this sum (for most h), we restri
tthe sum to a slightly smaller set of w's. Let L = fw 2 D : Pr [Z = w℄ � "=jRjg, so byhypothesis, Pr [Z 2 L℄ = 1� Æ. For w 2 D and h 2 H, de�ne indi
ator fun
tions�w(h) = n 1 if h(w) = 00 otherwiseDe�ne f(h) =Pw2L Pr [Z = w℄ � �w(h). Thus,Xw2h�1(0)Pr [Z = w℄ = Xw2DPr [Z = w℄ � �w(h) � f(h)By 2-universality, for h sele
ted uniformly in H, the random variables f�w(h)gw2D ea
hhave mean 1=jRj and are pairwise independent. Thus,Eh [f(h)℄ = Xw2L Pr [Z = w℄jRj = 1� ÆjRjand Varh [f(h)℄ � Xw2L Pr [Z = w℄2jRj� Xw2L Pr [Z = w℄ � "jRj2� "jRj2By Chebyshev's Inequality,Prh "f(h)� 1� ÆjRj < �"1=3jRj # � Varh(f(h))("1=3=jRj)2 � "1=3:Let G = fh 2 H : f(h) � (1 � Æ � "1=3)=jRjg be the set \good" h's for whi
h f(h) isnot too mu
h smaller than 1=jRj. Then for every z 2 D and h 2 G,Pr [A = (h; z)℄ � Pr [Z = z℄jHj � jRj1� Æ � "1=3 = Pr [B = (h; z)℄1� Æ � "1=3 :



B.2. PROOF OF LEMMA 6.4.5 177Thus, for any S � H�D,Pr [A 2 S℄ � Pr [A 2 S and AH 2 G℄ + Pr [AH =2 G℄� Pr [B 2 S and BH 2 G℄1� Æ � "1=3 + "1=3� Pr [B 2 S℄ + Æ + "1=31� Æ � "1=3! � Pr [B 2 S℄ + "1=3� Pr [B 2 S℄ + 3(Æ + "1=3);(as long as Æ+"1=3 � 1=2, whi
h we may assume as otherwise the lemma is trivially satis�ed).This 
ompletes the proof.B.2 Proof of Lemma 6.4.5Here we provide a proof of the hashing lemma used to analyze the transformation fromhonest-veri�er zero-knowledge proofs to 
heating-veri�er zero-knowledge proofs. We restatethe lemma here:Lemma B.2.1 There exists a universal 
onstant 
 > 0, so that the following holds: LetH = H`;m be the family of aÆne-linear maps from D = f0; 1g` to R = f0; 1gm. Let S � Hbe su
h that jSj � ÆjHj. Let " = jRj=jDj. ThenPart 1: The statisti
al di�eren
e between the following two distributions is at most (
 �"1=
Æ�
):A = (AH; AX): Choose h S. Sele
t x h�1(0). Output (h; x).B = (BH; BX): Choose x D. Sele
t h S \Hx.1 Output (h; x).Part 2: For at least a 1� (
 � "1=
Æ�
) fra
tion of x 2 D,jS \HxjjHxj � 12 � jSjjHj � Æ2 :Proof: We de�ne a perfe
t hash fun
tion h 2 H to be one of the form h(x) = Ax + b,where the matrix A is full rank (and hen
e h is surje
tive). Note that a straightforward
al
ulation shows that at most an " fra
tion of the fun
tions in H are not perfe
t. We �rstestablish Part 1 of Lemma B.2.1 for the spe
ial 
ase of perfe
t hash fun
tions.Sublemma B.2.2 Part 1 of Lemma B.2.1 holds when S 
ontains only perfe
t hash fun
-tions.Proof: First, we 
onsider the relationship between distributions AX and BX .Claim B.2.3 StatDi� (AX ; BX) � 3"1=3=Æ.1Re
all that Hx denotes fh 2 H : h(x) = 0g.



178 APPENDIX B. HASHING LEMMASProof of 
laim: Note BX is uniform over D. To establish the 
laim, it suÆ
esto show that for all C � D,����Pr [AX 2 C℄� jCjjDj ���� � 3"1=3Æ :Note ���Pr [AX 2 C℄� jCjjDj ��� = ���Pr [AX 2 (D n C)℄� jDnCjjDj ���, so it suÆ
es to 
onsidersets C su
h that jCjjDj � 12 . From the de�nition of A, we observe:Pr [AX 2C℄ = 1jSjXh2S jh�1(0) \ Cjjh�1(0)j = 1jSjXh2S " � jh�1(0) \ Cjwhere the last equality is due to our assumption that every h 2 S is perfe
t,and hen
e jh�1(0)j = 1=".To analyze the expression above, whi
h refers to a sum over h 2 S, we �rst
onsider the behaviour of the sum over all h 2 H. This will enable us to use the2-universality of H and Chebyshev's Inequality. Consider the probability spa
euniform over H, and de�ne, for every x 2 C, an indi
ator random variable:�x(h) = � 1 if h(x) = 00 otherwiseLet WC(h) = " � jh�1(0) \ Cj = " � Px2C �x(h). Sin
e H is a 2-universal familyof hash fun
tions, the �x's are pairwise independent with Prh2H[�x(h) = 1℄ =1=jRj = 1=(" � jDj). Thus,Eh2H[WC(h)℄ = " �Xx2C Eh2H[�x(h)℄ = " �Xx2C 1jRj = jCjjDj :Varh2H[WC(h)℄ = "2 �Xx2C Varh2H[�x(h)℄ = "2 �Xx2C 1jRj �1� 1jRj� < " � jCjjDj :By Chebyshev's Inequality,Prh2H �����WC(h)� jCjjDj ���� > "1=3 � jCjjDj� < Var[WC ℄�"1=3 � jCjjDj�2< "1=3jDjjCj � 2"1=3;where the last inequality is be
ause jCj � jDj=2. Sin
e jSj=jHj � Æ, we 
anapply the above to the probability spa
e uniform over S and 
on
lude thatPrh2S �����WC(h)� jCjjDj ���� > "1=3 jCjjDj� < 2"1=3Æ :
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all that Pr [AX 2 C℄ = 1jSjXh2SWC(h):Hen
e, for all but at most 2"1=3Æ � jSj terms in the sum, ���WC(h)� jCjjDj ��� � "1=3 jCjjDj .Sin
e for every h it is true that 0 �WC(h) � 1, we have,����Pr [AX 2 C℄� jCjjDj ���� � "1=3 jCjjDj + 2"1=3Æ � 3"1=3Æ :And the 
laim is proved. 2We are now ready to 
omplete the proof of the sublemma. For all x 2 D and all h 2 Ssu
h that h(x) = 0, we have, by Bayes' Law:Pr [AH = hjAX = x℄ = Pr [AX = xjAH = h℄ � Pr [AH = h℄Pr [AX = x℄= jh�1(0)j�1 � jSj�1Pr [AX = x℄ = " � jSj�1Pr [AX = x℄where the last step is be
ause for all perfe
t h, jh�1(0)j = 1=". Note that this value has nodependen
e on h. Hen
e, for every x, given AX = x, the distribution AH is uniform overfh 2 S : h(x) = 0g. Note that for all x, given BX = x, BH is also uniform over the sameset. Thus, 
onditioned on the value of x, the distributions AH and BH are identi
al.Hen
e StatDi� (A;B) = StatDi� (AX ; BX) � 3"1=3=Æ, and the sublemma is established.Before we argue Part 1 of Lemma B.2.1 in general, we will show how Part 2 follows fromSublemma B.2.2. In the sequel, it will be 
onvenient to introdu
e the following notation:For any subset I � H and x 2 D, we will write Ix to denote the set fh 2 I : h(x) = 0g.In order to apply Sublemma B.2.2, we will 
onsider the subset S0 � S of all perfe
t hashfun
tions in S. Sin
e less than an " fra
tion of all hash fun
tions are not perfe
t,jS0j � jSj � " � jHj � (1� "Æ )jSj � (Æ � ") � jHj:We de�ne the following two modi�
ations of the distributions A and B, using S0 instead ofS:A0 = (A0H; A0X): Choose h S0. Sele
t x h�1(0). Output (h; x).B0 = (B0H; B0X): Choose x D. Sele
t h S0 \Hx. Output (h; x).The following 
laim establishes Part 2 of the Hashing Lemma:Claim B.2.4 Let �1 def= 3"1=3Æ�" . For at least a (1�p�1) fra
tion of x 2 D; jSxjjHxj � Æ=2:Proof of 
laim: By the de�nition of A0X ,



180 APPENDIX B. HASHING LEMMASPr �A0X = x� = 1jS0j Xh2S0x 1jh�1(0)j = " � jS0xjjS0jwhere the last equality follows be
ause jh�1(0)j = 1=" for all h 2 S0. However,by the sublemma, StatDi� (A0X ; B0X) � �1. Note that B0X is uniform over D, sofor a (1�p�1) fra
tion of x 2 D, it must be that" jS0xjjS0j = Pr �A0X = x� � (1�p�1) � 1jDj :Thus, jSxjjHxj � jS0xjjHxj � (1�p�1) � jS0j"jDj � jHxj = (1�p�1) � jS0jjHjwhere the last equality follows from " � jDj = jRj and jRj � jHxj = jHj. Using thefa
t that jS0jjHj � (1� "Æ ) � jSjjHj , we have, for a (1�p�1) fra
tion of x 2 D,jSxjjHxj � (1�p�1) � (1� "Æ ) � Æ � Æ2 :Note that the �nal inequality follows be
ause we 
an safely assume that p�1 +"Æ < 12 . This is be
ause we 
an freely assume that 
 � "1=
Æ�
 < 1, sin
e otherwisethe statement of the Hashing Lemma be
omes trivially satis�ed. Sin
e p�1 + "Æis upper bounded by k � "1=kÆ�k for some 
onstant k, our assumption 
an bemade to imply that p�1 + "Æ < 12 by 
hoosing 
 > 2k. 2Finally, we establish Part 1 of the Hashing Lemma in general by showing that thepresen
e of imperfe
t hash fun
tions will not disturb our 
omputations. First, sin
e jS0j �(1 � "Æ ) � jSj, the statisti
al di�eren
e between A and A0 
an be at most "=Æ. To see thatthe statisti
al di�eren
e between B0 and B is suÆ
iently small, it suÆ
es to show thatfor almost all x, the probability that BH outputs an imperfe
t hash fun
tion, given thatBX = x, is small. First we argue:Claim B.2.5 For every x 2 D; Prh2Hx[h is imperfe
t℄ � ".Proof of 
laim: Observe that for any x 2 D, Hx 
onsists exa
tly of thosefun
tions h(y) = Ay + b where b = �Ax. Thus, there is exa
tly one fun
tionin Hx for every matrix A. Hen
e, the fra
tion of imperfe
t fun
tions in Hx ispre
isely the fra
tion of matri
es A that do not have full rank, whi
h is at most". 2For any x 2 D, the probability that BH outputs an imperfe
t hash fun
tion given thatBX = x is Prh2Sx[h is imperfe
t℄ � Prh2Hx[h is imperfe
t℄ � jHxjjSxj :Using Claim B.2.4 and Claim B.2.5 above, we have that for at least a (1�p�1) fra
tion ofx 2 D, this probability is at most �2def= "�(2=Æ). Thus, StatDi� (B;B0) � (1�p�1)��2+p�1 �



B.2. PROOF OF LEMMA 6.4.5 181�2+p�1. We have already observed that StatDi� (A0; A) � "Æ , and Sublemma B.2.2 showedthat StatDi� (B0; A0) � �1. Hen
e StatDi� (A;B) � �1 + "Æ + �2 + p�1, and the HashingLemma is established.
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