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1 IntroductionIn the last decade, the area of property testing has attracted a lot of attention (see the surveysof [F01, R01], which are already out-of-date). Loosely speaking, property testing typically refers tosub-linear time probabilistic algorithms for deciding whether a given object has a predeterminedproperty or is far from any object having this property. Such algorithms, called testers, obtain bitsof the object by making adequate queries, which means that the object is seen as a function andthe testers get oracle access to this function (and thus may be expected to work in time that issub-linear in the length of the description of this object).Much of the aforementioned work (see, e.g., [GGR, AFKS, AFNS]) was devoted to the studyof testing graph properties in the adjacency matrix model, which is also the setting of the currentwork. In this model, introduced in [GGR], graphs are viewed as (symmetric) Boolean functions overa domain consisting of all possible vertex-pairs (i.e., an N -vertex graph G = ([N ]; E) is representedby the function g : [N ]�[N ]! f0; 1g such that fu; vg 2 E if and only if g(u; v) = 1). Consequently,an N -vertex graph represented by the function g : [N ]� [N ]! f0; 1g is said to be �-far from somepredetermined graph property if at least � � N2 entries of g must be modi�ed in order to yield arepresentation of a graph that has this property. We refer to � as the proximity parameter, and thecomplexity of testing is stated in terms of � and the number of vertices in the graph (i.e., N).Interestingly, many natural graph properties can be tested within query complexity that de-pends only on the proximity parameter; see [GGR], which presents testers with query complexitypoly(1=�), and [AFNS], which characterizes the class of properties that are testable within querycomplexity that depends only on the proximity parameter (where this dependence may be an ar-bitrary function of �). However, a common phenomenon in all the aforementioned works is thatthey utilize quite naive algorithms and their focus is on the (often quite sophisticated) analysis ofthese algorithms. This phenomenon is no coincidence: As shown in [AFKS, GT], when ignoring aquadratic blow-up in the query complexity, property testing (in this model) reduces to sheer com-binatorics. Speci�cally, without loss of generality, the tester may just inspect a random inducedsubgraph (of adequate size) of the input graph.In this paper we demonstrate that a more re�ned study of property testing (in this model)reveals the importance of algorithmic design (also in this model). This is demonstrated both bystudying the advantage of adaptive testers over non-adaptive ones as well as by studying the classof properties that can be tested within complexity that is inversely proportional to the proximityparameter.1.1 Two Related StudiesLet us start by reviewing the two related studies conducted in the current work.Adaptivity vs Non-adaptivity. A tester is called non-adaptive if it determines all its queriesindependently of the answers obtained for previous queries, and otherwise it is called adaptive.Indeed, by [AFKS, GT], the bene�t of adaptivity (or, equivalently, the cost of non-adaptivity) israther small: Speci�cally, any (possibly adaptive) tester (for any graph property) of query com-plexity q(N; �) can be transformed into a non-adaptive tester of query complexity O(q(N; �)2). Butis this quadratic gap an artifact of the known proofs (of [AFKS, GT]) or does it re
ect somethinginherent?A recent work by [GnRn] suggests that the latter case may hold: For every � > 0, they showed1



that the set of N -vertex bipartite graphs of maximum degree O(�N) is �-testable (i.e., testable withrespect to proximity parameter �) by eO(��3=2) queries, while (by [BT]) a non-adaptive tester forthis set must use 
(��2) queries. Thus, there exists a case where non-adaptivity requires increasingthe query complexity; speci�cally, for any c < 4=3, the query complexity of the non-adaptive testeris greater than a c-power of the query complexity of the adaptive tester (i.e., eO(��3=2)c = o(��2)).We stress that the result of [GnRn] does not refer to property testing in the \proper" sense; thatis, the complexity is not analyzed with respect to a varying value of the proximity parameter, whilethe property itself is �xed. It is rather the case that, for every value of the proximity parameter,a di�erent property (which depends on this parameter) is considered and the (upper- and lower-)bounds refer to this combination (of a property tailored for a �xed value of the proximity parameter).Thus, the work of [GnRn] leaves open the question of whether there exists a single graph propertysuch that adaptivity is bene�cial for any value of the proximity parameter (as long as � > N�
(1)).That is, the question is whether adaptivity is bene�cial for the standard asymptotic-complexityformulation of property testing.Complexity inversely proportional to the proximity parameter. As shown in [GGR],many natural graph properties can be tested within query complexity that is polynomial in thereciprocal of the proximity parameter (and independent of the size of the graph). We ask whether alinear complexity is possible at all, and if so which properties can be tested within query complexitythat is linear (or almost linear) in the reciprocal of the proximity parameter.1The �rst question is easy to answer. Avoiding trivial properties, we note that the propertyof being a clique (equiv., an independent set) can be tested by O(1=�) queries, even when thesequestions are non-adaptive (e.g., make O(1=�) random queries and accept if and only if all return 1).Still, we ask whether \more interesting"2 graph theoretical properties can also be tested withinsimilar complexity (either only adaptively or also non-adaptively).1.2 Our ResultsWe address the foregoing questions by studying a sequence of natural graph properties (de�nedformally in Section 2.2). The �rst property in the sequence, called clique collection and denotedCC, is the set of graphs such that each graph consists of a collection of isolated cliques. For thisproperty (i.e., CC), we prove a gap between adaptive and non-adaptive query complexity, wherethe adaptive query complexity is almost linear in the reciprocal of the proximity parameter. Thatis:Theorem 1.1 (the query complexity of clique collection):1. There exists an adaptive tester of query complexity eO(��1) for CC. Furthermore, this testerruns in time eO(��1).32. Any non-adaptive tester for CC must have query complexity 
(��4=3).3. There exists a non-adaptive tester of query complexity O(��4=3) for CC. Furthermore, thistester runs in time O(��4=3).1Note that 
(1=�) queries are required for testing any of the graph properties considered in the current work; fora more general statement see the beginning of Section 6.2A more articulated reservation towards the foregoing properties may refer to the fact that these graph propertiescontain a single N -vertex graph (per each N) and are represented by monochromatic functions.3We refer to a model in which elementary operations regarding pairs of vertices are charged at unit cost.2



Note that the complexity gap (between Parts 1 and 2) of Theorem 1.1 matches the gap establishedby [GnRn] (for \non-proper" testing). A larger gap is established for a property of graphs, calledbi-clique collection and denoted BCC, where a graph is in BCC if it consists of a collection of isolatedbi-cliques (i.e., complete bipartite graphs).Theorem 1.2 (the query complexity of bi-clique collection):1. There exists an adaptive tester of query complexity eO(��1) for BCC. Furthermore, this testerruns in time eO(��1).2. Any non-adaptive tester for BCC must have query complexity 
(��3=2). Furthermore, thisholds even if the input graph is promised to be bipartite.We note that bi-cliques may be viewed as the bipartite analogues of cliques (w.r.t general graphs).Indeed, bi-cliques arise naturally in applications that are modeled by bipartite graphs (see, e.g., [AFN]),which is our motivation for stating the furthermore clause of Part 2 (of Theorem 1.2).Theorem 1.2 asserts that the gap between the query complexity of adaptive and non-adaptivetesters may be a power of 1:5 � o(1). Recall that the results of [AFKS, GT] assert that the gapmay not be larger than quadratic. We conjecture that this upper-bound can be matched.Conjecture 1.3 (an almost-quadratic complexity gap): For every positive integer t � 5, thereexists a graph property � such that the following holds:1. There exists an adaptive tester of query complexity eO(��1) for �. Furthermore, this testerruns in time eO(��1).2. Any non-adaptive tester for � must have query complexity 
(��2+(2=t)).Furthermore, � consists of graphs that are each a collection of \super-cycles" of length t, wherea super-cycle is a set of t independent sets arranged on a cycle such that each pair of adjacentindependent sets is connected by a complete bipartite graph.We were able to prove Part 2 of Conjecture 1.3, but failed to provide a full analysis of the algorithmintended for Part 1. We comment that we can prove a promise problem version of Conjecture 1.3;speci�cally, this promise problem (stated in Theorem 5.5) refers to inputs promised to reside in aset �0 � � and the tester is required to distinguish graphs in � from graphs that are �-far from �.In contrast to the foregoing results that aim at identifying properties with a substantial gapbetween the query complexity of adaptive versus non-adaptive testing, we also study cases inwhich no such gap exists. Since query complexity that is linear in the reciprocal of the proximityparameter is minimal for many natural properties (and, in fact, for any property that is \non-trivialfor testing"), we focus on non-adaptive testers that (approximately) meet this bound. Among theresults obtained in this direction, we highlight the following one.Theorem 1.4 (the query complexity of collections of O(1) cliques): For every positive integer c,there exists a non-adaptive tester of query complexity eO(��1) for the set of graphs such that eachgraph consists of a collection of upto c cliques. Furthermore, this tester runs in time eO(��1).3



Discussion. The foregoing results demonstrate that a �ner look at (graph) property testing inthe adjacency matrix model reveals the role of algorithm design. In particular, in some cases (see,e.g., Theorems 1.1 and 1.2), carefully designed adaptive algorithms outperform any non-adaptivealgorithm. Indeed, this conclusion stands in contrast to [GT, Thm. 2], which suggests that a less�ne view (which ignores polynomial blow-ups)4 deems algorithm design irrelevant to the model.We also note that, in some cases (see, e.g., Theorem 1.4 and Part 3 of Theorem 1.1), carefullydesigned non-adaptive algorithms outperform straightforward ones.A di�erent perspective on this work is as a study of the relation between adaptive and non-adaptive queries. Needless to say, this fundamental relation was studied in a variety of models, andthe current work studies it in a speci�c natural model (i.e., of property testing in the adjacencymatrix representation).5 Our results demonstarte that, in this model, the relation between theadaptive and non-adaptive query-complexities is not �xed, but rather varies with the computationalproblem at hand. In some cases (e.g., Theorem 1.4) the complexities are essentially equal (indeed,as in the case of sampling [CEG]). In other cases (e.g., Theorem 1.1), these complexities arerelated by a �xed power (e.g., 4=3) that is strictly between 1 and 2. And, yet, in other cases (e.g.,Theorem 5.5) the non-adaptive complexity is quadratic in the adaptive complexity, which is themaximum gap possible (by [AFKS, GT]). We conjecture that, for any t � 3, there exists a propertyfor which the aforementioned complexities are related by a power of 2� (2=t).1.3 Open ProblemsIn addition to the resolution of Conjecture 1.3, our study raises many other open problems; themost evident ones are listed next.1. What is the non-adaptive query complexity of BCC? Note that Theorem 1.2 only establishesa lower-bound of 
(��3=2). We conjecture that an e�cient non-adaptive algorithm of querycomplexity eO(��3=2) can be devised.2. For which constants c 2 [1; 2] does there exist a property that has adaptive query complexityof q(�) and non-adaptive query complexity of e�(q(�)c)? Note that Theorem 1.1 shows that4=3 is such a constant, and the same holds for the constant 1 (see, e.g., Theorem 1.4). Weconjecture that, for any t � 2, it holds that the constant 2� (2=t) also satis�es the foregoingrequirement. It may be the case that these constants are the only ones that satisfy thisrequirement.3. Characterize the class of graph properties for which the query complexity of non-adaptivetesters is almost linear in the query complexity of adaptive testers.4. Characterize the class of graph properties for which the query complexity of non-adaptivetesters is almost quadratic in the query complexity of adaptive testers.4Recall that [GT, Thm. 2] asserts that canonical testers, which merely select a random subset of vertices and ruleaccording to the induced subgraph, have query-complexity that is at most quadratic in the query-complexity of thebest tester. We note that [GT, Thm. 2] also ignores the time-complexity of the testers.5We mention that this relation has also been studied in the context of property testing (and in a variety of di�erentsettings). Speci�cally, in the setting of testing the satis�ability of linear constraints, it was shown that adaptivityo�ers absolutely no gain [BHR]. A similar result holds for testing monotonicity of Boolean functions [F04]. Incontrast, an exponential gap between the adaptive and non-adaptive complexities may exist in the context of testingother properties of Boolean functions [F04]. Lastly, we mention that an even more dramatic gap exists in the settingof testing graph properties in the bounded-degree model (of [GR02]); see [RaSm].4



5. Characterize the class of graph properties for which the query complexity of adaptive (resp.,non-adaptive) testers is almost linear in the reciprocal of the proximity parameter.Finally, we recall the well-known open problem (partially addressed in [AS]) of providing a char-acterization of the class of graph properties that are testable within query complexity that ispolynomial in the reciprocal of the proximity parameter.1.4 OrganizationSection 2 contains a review of the basic notions underlying this work as well as a formal de�nitionof the graph properties that we study. In Section 3 we present an adaptive tester for Clique-Collection that has almost-linear query complexity. This result stands in contrast to the (tight)lower-bound on the query complexity of non-adaptive testers for Clique-Collection, presented inSection 4. Larger gaps between the query complexity of adaptive versus non-adaptive testers arepresented in Section 5. On the other hand, in Section 6, we present non-adaptive testers of querycomplexity that is almost-linear in the reciprocal of the proximity parameter.2 PreliminariesIn this section we review the de�nition of property testing, when specialized to graph properties inthe adjacency matrix model. We also de�ne several natural graph properties, which will serves asthe pivot of our study.2.1 Basic notionsFor an integer n, we let [n] = f1; :::; ng. A generic N -vertex graph is denoted by G = ([N ]; E),where E � ffu; vg : u; v 2 [N ]g is a set of (unordered) pairs of vertices. Any set of (such) graphsthat is closed under isomorphism is called a graph property. By oracle access to such a graphG = ([N ]; E) we mean oracle access to the Boolean function that answers the query fu; vg (orrather (u; v) 2 [N ]� [N ]) with the bit 1 if and only if fu; vg 2 E.De�nition 2.1 (property testing for graphs in the adjacency matrix model): A tester for a graphproperty � is a probabilistic oracle machine that, on input parameters N and � and access to anN -vertex graph G = ([N ]; E), output a binary verdict that satis�es the following two conditions.1. If G 2 � then the tester accepts with probability at least 2=3.2. If G is �-far from � then the tester accepts with probability at most 1=3, where G is �-farfrom � if for every N -vertex graph G0 = ([N ]; E0) 2 � it holds that the symmetric di�erencebetween E and E0 has cardinality at least �N2.6If the tester accepts every graph in � with probability 1, then we say that it has one-sided error. Atester is called non-adaptive if it determines all its queries based solely on its internal coin tosses(and the parameters N and �); otherwise it is called adaptive.6Indeed, it is more natural to require that this symmetric di�erence should have cardinality at least � � �N2 �. Thecurrent convention is adopted for sake of convenience. 5



The query complexity of a tester is the number of queries it makes to any N -vertex graph oracle,as a function of the parameters N and �. We say that a tester is e�cient if it runs in time that ispolynomial in its query complexity, where basic operations on elements of [N ] are counted at unitcost. We note that all testers presented in this paper are e�cient, whereas the lower-bounds holdalso for non-e�cient testers.We shall focus on properties that can be tested within query complexity that only depends onthe proximity parameter, �. Thus, the query-complexity upper-bounds that we state hold for anyvalues of � and N , but will be meaningful only for � > 1=N2 or so. In contrast, the lower-bounds(e.g., of 
(1=�)) cannot possibly hold for � < 1=N2, but they will indeed hold for any � > N�
(1).Alternatively, one may consider the query-complexity as a function of �, where for each �xed valueof � > 0 the value of N tends to in�nity.Notation and a convention. For a �xed graph G = ([N ]; E), we denote by �(v) = fu :fu; vg2Eg the set of neighbors of vertex v. At times, we look at E as a subset of V � V ; that is, we oftenidentify E with f(u; v) :fu; vg2Eg. If a graph G = ([N ]; E) is not �-far from a property � then wesay that G is �-close to �; this means that less than �N2 edges should be added and/or removedfrom G such to yield a graph in �.2.2 The graph properties to be studiedThe set of graphs that consists of a collection of isolated cliques is called clique collection and isdenoted CC; that is, a graph G = ([N ]; E) is in CC if and only if the vertex set [N ] can be partitionedto (C1; :::; Ct) such that the subgraph induced by each Ci is a clique and there are no edges withendpoints in di�erent Ci's (i.e., for every u < v 2 [N ] it holds that fu; vg 2 E if and only if thereexists an i such that u; v 2 Ci). If t � c then we say that G is in CC�c; that is, CC�c is the subsetof CC that contains graphs that are each a collection of up-to c isolated cliques.A bi-clique is a complete bipartite graph (i.e., a graph G = (V;E) such that V is partitionedinto (S; V n S) such that fu; vg 2 E if and only if u 2 S and v 2 V n S). Note that a graph is abi-clique if and only if its complement is in CC�2. The set of graphs that consists of a collectionof isolated bi-cliques is called bi-clique collection and denoted BCC; that is, a graph G = ([N ]; E)is in BCC if and only if the vertex set [N ] can be partitioned to (V1; :::; Vt) such that the subgraphinduced by each Vi is a bi-clique and there are no edges with endpoints in di�erent Vi's (i.e., eachVi is partitioned into (Si; Vi n Si) such that for every u < v 2 [N ] it holds that fu; vg 2 E if andonly if there exists an i such that (u; v) 2 Si � (V n S)).Generalizations of BCC are obtained by considering collections of \super-paths" and \super-cycles" respectively. A super-path (of length t) is a sequence of disjoint sets of vertices, S1; :::; St,such that vertices u; v 2 Si2[t] Si are connected by an edge if and only if for some i 2 [t�1] it holdsthat u 2 Si and v 2 Si+1. Note that a bi-clique can be viewed as a super-path of length two. Wedenote the set of graphs that consists of a collection of isolated super-paths of length t by SPtC(e.g., SP2C = BCC). Similarly, a super-cycle (of length t) is a sequence of disjoint sets of vertices,S1; :::; St, such that vertices u; v 2 Si2[t] Si are connected by an edge if and only if for some i 2 [t]it holds that u 2 Si and v 2 S(imodt)+1. Note that a bi-clique that has at least two vertices on eachside can be viewed as a super-cycle of length four (by partitioning each of its sides into two parts).We denote the set of graphs that consists of a collection of isolated super-cycles of length t by SCtC(e.g., SC4C � BCC, where the strict containment is due to the pathological case of bi-cliques havingat most one node on one side). 6



2.3 Annoying technicalitiesWe allowed ourselves various immaterial inaccuracies. For example, various quanities (e.g., log2(1=�))are treated as if they are integers, whereas one should actually use some rounding and compansatefor the rounding error. At times, we ignore events that occur with probability that is inverselyproportional to the number of vertices; for example, when we select a random sample of s = O(1)(or s = eO(1=�)) vertices, we often analyze it as if sampling was done with repetitions. In someplaces, we do not specify the \high" (constant) probability with which some events occur; but suchmissing details are easy to �ll-up. In other places, we specify high constants that are not the bestones possible.3 The Adaptive Query Complexity of Clique-CollectionIn this section we study the (adaptive) query complexity of clique collection, presenting an almostoptimal (adaptive) tester for this property. Loosely speaking, the tester starts by �nding a fewrandom neighbors of a few randomly selected start vertices, and then examines the existence ofedges among the neighbors of each start vertex as well as among these neighbors and the non-neighbors of each start vertex.We highlight the fact that adaptivity is used in order to make queries that refer only to pairsof neighbors of the same start vertex. To demonstrate the importance of this fact, consider thecase that the N -vertex graph is partitioned to O(1=�) connected components each having O(�N)vertices. Suppose that we wish to tell whether the connected component that contains the vertexv is indeed a clique. Using adaptive queries we may �rst �nd two neighbors of v, by selectingt def= O(1=�) random vertices and checking whether each such vertex is adjacent to v, and thencheck whether these two neighbors are adjacent. In contrast, intuitively, a non-adaptive procedurecannot avoid making all �t2� possible queries.The foregoing adaptive procedure is tailored to the case that the N -vertex graph is partitionedto O(1=�) (\strongly connected") components, each having O(�N) vertices. In such a case, it su�cesto check that a constant fraction of these components are in fact cliques (or rather close to beingso) and that there are no edges (or rather relatively few edges) from these cliques to the rest of thegraph. However, if the components (and potential cliques) are larger, then we should check moreof them, but (fortunately) due to their larger size �nding neighbors requires less queries, and thetotal number of queries remains invariant. These considerations lead us to the following algorithm.Algorithm 3.1 (adaptive tester for CC): On input N and � and oracle access to a graph G =([N ]; E), the tester sets t1 = O(1) and t2 = O(log(1=�))3, and proceeds in ` def= log2(1=�) + 2iterations as follows: For i = 1; :::; `, the tester selects uniformly t1 � 2i start vertices and for eachselected vertex v 2 [N ] performs the following sub-test, denoted sub-testi(v):1. The sub-test selects at random a sample, S, of t2=(2i�) vertices.2. The sub-test determines Nv = S \ �(v), by making the queries (v; w) for each w 2 S.3. If jNvj � qt2=2i� then the sub-test checks that for every u;w 2 Nv it holds that (u;w) 2 E.Otherwise (i.e., jNvj > qt2=2i�), it selects a sample of t2=(2i�) pairs in Nv � Nv and checksthat each selected pair is in E. 7



4. The sub-test selects a sample of t2=(2i�) pairs in Nv � (S n Nv) and checks that each selectedpair is not in E.The sub-test (i.e., sub-testi(v)) accepts if and only if all checks were positive (i.e., no edges weremissed in Step 3 and no edges were detected in Step 4). The tester itself accepts if and only if allPì=1 t1 � 2i invocations of the sub-test accepted.The query complexity of this algorithm is Pì=1(t1 � 2i) � O(t2=2i�) = O(` � t1t2=�) = eO(1=�), andevidently it is e�cient. Clearly, this algorithm accepts (with probability 1) any graph that is inCC. It remains to analyze its behavior on graphs that are �-far from CC.Lemma 3.2 If G = ([N ]; E) is �-far from CC, then on input N; � and oracle access to G, Algo-rithm 3.1 rejects with probability at least 2=3.Part 1 of Theorem 1.1 follows.Proof: We shall prove the contrapositive; that is, that if Algorithm 3.1 accepts with probabilityat least 1=3 then the graph is �-close to CC. The proof evolves around the following notion of i-goodstart vertices. We shall �rst show that if Algorithm 3.1 accepts with probability at least 1=3 thenthe number of \important" vertices that are not i-good is relatively small, and next show howto use the i-good vertices in order to construct a partition of the vertices that demonstrates thatthe graph is �-close to CC. The following de�nition refers to a parameter 
2, which will be set to�(1=t2).De�nition 3.2.1 A vertex v is i-good if the following two conditions hold.1. The subgraph induced by �(v) misses at most 
2 � 2i� � j�(v)j �N edges.2. For every positive integer j � j0 def= log2(j�(v)j=(
2 � 2i�N)), the number of vertices in �(v)that have at least 
2 � 2i+j� �N edges going out of �(v) is at most 2�j � j�(v)j.Note that Condition 1 holds vacuously whenever j�(v)j < 
2 � 2i� � N . However, when j�(v)j �
2 � 2i� �N , Condition 1 implies that at least 99% of the vertices in �(v) have at least 0:99 � j�(v)jneighbors in �(v). Condition 2 implies that, when ignoring at most 2�j0 � j�(v)j < 
2 �2i� �N vertices(in �(v)), the number of edges going out of �(v) is at most Pj0j=1 2�(j�1)j�(v)j � 
22i+j�N , which isless than 4` � 
22i� � j�(v)j �N , since j0 � log2(1=
22i�) � log2(1=
2�) < 2 log2(1=�).Claim 3.2.2 If v has degree at least 
2�2i��N and is not i-good, then the probability that sub-testi(v)accepts is less than 5%.Proof: Intuitively, the lower-bound on j�(v)j implies that the violation of any of the two conditionsof De�nition 3.2.1 is detected with high probability by sub-testi(v). For example, if 1% of thevertices in �(v) have less than 0:99 � j�(v)j neighbors in �(v), then the residual sample Nv (createdby sub-testi(v)) is likely to contain a constant fraction of vertices that miss a constant fraction ofneighbors in Nv. The actual proof, which refers to the two conditions of i-goodness, follows.Assume that Condition 1 of i-goodness does not hold for v, and let � def= 
2�2i��j�(v)j�Nj�(v)j2 = 
2�2i��Nj�(v)jdenote (the lower bound on) the fraction of missing edges in �(v). (Note that this event mayhappen only if j�(v)j � 
2 � 2i� �N .) Then, with probability at least 0:9, it holds that jNvj > m=2,8



where m def= t2�2i � j�(v)jN � t2 � 
2 � 1. Also note that the members of Nv are distributed uniformly in�(v). Now, consider n = m=2 uniformly distributed vertices in �(v), and let �i;j = 1 if there is noedge between the ith and jth vertices in the sample. Then, Exp(�i;j) � �. Applying Chebyshev'sInequality7 it follows that, with probability at least 0:9, the fraction of edges that are missing inthe subgraph induced by the said sample is at least �=2. It follows that Step 3 of sub-testi(v)rejects with probability at least 0:92 (regardless if it examines all pairs in Nv�Nv or just examinesa random sample of t22i� � t2
2� pairs).Assume that Condition 2 of i-goodness does not hold for v; that is, there exists a j � j0 suchthat more than 2�j � j�(v)j vertices in �(v) have each at least 
2 � 2i+j� � N edges going out of�(v). Using the same setting of m and n as in the previous paragraph (as well as the hypothesisj�(v)j � 
2 �2i� �N), we note (again) that with high probability jNv j > n, and that Nv is expected tocontain n �2�j = t2
2 �2j0�j � t2
2 vertices of \high out-degree" (and it will contain approximatelysuch a number, with high probability). It follows that the number of pairs in Nv� ([N ]n�(v)) thatare edges is at least n2�j � 
2 � 2i+j�N=2, which means an edge density of at least �0 def= 
2 � 2i�=2.Since jSj = t22i� � 1=�0, with high probability, approximately the same edge density is maintainedalso in Nv � (S n Nv). Thus, a sample of t22i� random pairs in Nv � (S n Nv) will hit an edge withhigh probability and cause Step 4 (of sub-testi(v)) to reject. The claim follows. 2Claim 3.2.3 If Algorithm 3.1 accepts with probability at least 1=3 then for every i 2 [`] the numberof vertices of degree at least 
2 �2i� �N that are not i-good is at most 
1 �2�i �N , where 
1 def= �(1=t1).Claim 3.2.3 follows by combining Claim 3.2.2 with the fact that Algorithm 3.1 invokes sub-testi ont1 � 2i random vertices (and using (1 � 
1 � 2�i)t1�2i + 0:05 < 1=3). Next, using the conclusion ofClaim 3.2.3, we turn to construct a partition (C1; :::; Ct) of [N ] such that the graph G misses atmost � � �N2 �=2 edges within the Ci's and has at most � � �N2 �=2 edges between the Ci's. The partitionis constructed in iterations. We start with a motivating discussion.Note that any i-good vertex, v, yields a set of vertices (i.e., �(v)) that is \close" to being aclique, where \closeness" has a stricter meaning when i is smaller. Speci�cally, by Condition 1,this clique misses at most 
2 � 2i� � j�(v)j �N edges. But we should also care about how this clique\interacts" with the rest of the graph, which is where Condition 2 comes into play. Letting Cvcontain only the vertices in �(v) that have less than j�(v)j neighbors outside of �(v), we upper-bound the number of edges going out of Cv as follows: We �rst note that these edges are either edgesbetween Cv and �(v)nCv or edges between Cv and [N ]n�(v). The number of edges of the �rst typeis upper-bounded by jCvj � j�(v)nCv j, which (by using Condition 2 and j0 = log2(j�(v)j=(
2 �2i�N)))is upper-bounded by jCvj � 2�j0 j�(v)j = jCvj � 
22i�N � 
22i� � j�(v)j � N . The number of edges ofthe second type is upper-bounded byj0Xj=1 2�(j�1)j�(v)j � 
2 � 2i+j� �N = 2j0 � 
22i� � j�(v)j �N; (1)by assigning each vertex u 2 Cv the smallest j 2 [j0] such that j�(u) n �(v)j < 
2 � 2i+j� � N ,and using 
22i+j0� � N = j�(v)j. Thus, the total number of these edges is upper-bounded by7Here we have �n2� random variables, which are partially pairwise independent (i.e., �i;j is independent of �i0;j0if jfi; j; i0; j0gj = 4). Furthermore, these random variables assume values in f0; 1g (and so �2i;j = �i;j) and it holdsthat n � � = t2
2=2 � 1 (rather than merely n2 � 1=�). Assume, for simplicity that Exp(�i;j) = �. It follows thatExp(Pi<j �i;j) = �n2� � � > n2�=3 and Var(Pi<j �i;j) < 4 � Exp(Pi<j;k �i;j�i;k) = 4n � Exp(Pi<j �i;j) < 2n3�. Thus,VarExp2 < 18n� = 36t2
2 , which can be made an arbitrary small constant (by an adequate choice of t2 = �(1=
2)).9



(2j0+1)�
22i��j�(v)j�N , which is upper-bounded by 3`�
22i��j�(v)j�N (since j0 � log2(1=(
2 �2i�)) �log2(1=
2�) = (1 + o(1)) � `).The foregoing paragraph identi�es a single (good) clique, while we wish to identify all cliques.Starting with i = 1, the basic idea is identifying new cliques by using i-good vertices that are notcovered by previously identi�ed cliques. If we are lucky and the entire graph is covered this waythen we halt. But it may indeed be the case that some vertices are left uncovered and that they arenot i-good. At this point we invoke Claim 3.2.3 and conclude that these vertices either have lowdegree (i.e., have degree at most 
2 �2i� �N) or are relatively few in number (i.e., their number is atmost 
1 � 2�i �N). Ignoring (for a moment) the vertices of low degree, we deal with the remainingvertices by invoking the same reasoning with respect to an incremented value of i (i.e., i i+ 1).The key observation is that the number of violations, caused by cliques identi�ed in each iterationi, is upper-bounded by the product of the number of vertices covered in that iteration (which islinearly related to 2�i) and the \density" of violations caused by each identi�ed clique (which islinearly related to 2i�). Thus, intuitively, each iteration contributes O(`
2� � N2) violations, andafter the last iteration (i.e., i = `) we are left with at most 
1 � 2�i �N < 
1�N vertices, which wecan a�ord to identify as a single clique (or alternatively as isolated vertices).Two problems, which were ignored by the foregoing description, arise from the fact that verticesthat are identi�ed as belonging to the clique Cv (of some i-good vertex v) may belong either topreviously identi�ed cliques or to the set of vertices cast aside as having low degree. Our solution isusing only i-good vertices for which the majority of neighbors do not belong to these two categories(i.e., vertices v such that most of �(v) belongs neither to previously identi�ed cliques nor have lowdegree). This leads to the following description.The partition reconstruction procedure. The iterative procedure is initiated with C = L0 = ;,R0 = [N ] and i = 1, where C denotes the set of vertices \covered" (by cliques) so far, Ri�1 denotesthe set of \remaining" vertices after iteration i� 1 and Li�1 denotes the set of vertices cast aside(as having \low degree") in iteration i� 1. The procedure refers to a parameter � = �(1=`)� 
2,which determines the \low degree" threshold (for each iteration). The ith iteration proceeds asfollows, where i = 1; :::; ` and Fi is initialized to ;.1. Pick an arbitrary vertex v 2 Ri�1 n C that satis�es the following three conditions(a) v is i-good.(b) v has su�ciently high degree; that is, j�(v)j � � � 2i� �N .(c) v has relatively few neighbors in C; that is, j�(v) \ Cj � j�(v)j=4.If no such vertex exists, de�ne Li = fv 2 Ri�1nC : j�(v)j < � �2i��Ng and Ri = Ri�1n(Li[C).If i < ` then proceed to the next iteration, and otherwise terminate.2. For vertex v as selected in Step 1, let Cv = fu 2 �(v) : j�(u) n �(v)j < j�(v)jg. Form a newclique with the vertex set C 0v  Cv n C, and update Fi  Fi [ fvg and C  C [ C 0v.Note that by Condition 1c, for every v 2 Fi, it holds that jC 0vj � jCvj � (j�(v)j=4), whereas by i-goodness8 (and j0 = log2(j�(v)j=(
2 �2i�N)) � log2(�=
2) = !(1)) we have jCv j > (1�o(1)) � j�(v)j.Thus, quality guarantees that are quanti�ed in terms of j�(v)j translate well to similar guaranteesin terms of jC 0vj. This fact, combined with the fact that Cv cannot contain many low degree vertices8Every v 2 Fi is i-good and thus satis�es jCvj > (1� 2�j0 ) � j�(v)j.10



(i.e., vertices cast aside (in prior iterations) as having low degree), plays an important role in thefollowing analysis.Claim 3.2.4 Referring to the foregoing procedure, for every i 2 [`] the following holds.1. The number of missing edges inside the cliques formed in iteration i is at most 8
2� �N2; thatis, ������ [v2Fif(u;w) 2 C 0v � C 0v : (u;w) 62 Eg������ � 8
2� �N2:2. The number of (\super
uous") edges between cliques formed in iteration i and either Ri orother cliques formed in the same iteration is 24` � 
2� �N2; actually,������ [v2Fif(u;w) 2 C 0v � (Ri�1 n C 0v) : (u;w) 2 Eg������ � 24` � 
2� �N2:3. jRij � 2�i �N and jLij � 2�(i�1) �N .Thus, the total number of violations caused by the cliques that are formed by the foregoing proce-dure is upperbounded by (24+ o(1))`2 �
2� �N2 = o(�N2). (We mention that the setting 
2 = o(`2)is used for establishing Item 3.)Proof: We prove all items simultaneously, by induction from i = 0 to i = `. Needless to say, allitems hold vacuously for i = 0, and thus we focus on the induction step.Starting with Item 1, we note that every v 2 Fi is i-good and thus the number of edges missing inC 0v�C 0v � �(v)��(v) is at most 
22i��j�(v)j�N < 2
22i��jC 0v j�N , where the inequality follows fromjC 0vj > j�(v)j=2 (which follows by combining jC 0vj � jCvj � (�(v)j=4) and jCvj � (1� 2�j0) � j�(v)j,where j0 = log2(j�(v)j=(
2 � 2i�N)) > 2). Recall that the i-goodness of v (combined with j�(v)j �� � 2i� �N) implies that �(v) contains at least 0:99 � j�(v)j vertices of degree exceeding 0:99 � j�(v)j.This implies that j�(v) \ (Sj2[i�1]Lj)j < jCvj=4, because j�(v)j � �2i� �N whereas every vertex inSj2[i�1]Lj has degree at most �2i�1� �N . Observing that C 0v = (C 0v \Ri�1)[ (C 0v \Sj2[i�1]Lj), itfollows that jSv2Fi C 0v \ Ri�1j > jSv2Fi C 0vj=2, and thus Pv2Fi jC 0vj � 2jRi�1j. Combining all theforegoing, we obtain������ [v2Fif(u;w) 2 C 0v � C 0v : (u;w) 62 Eg������ = Xv2Fi jf(u;w) 2 C 0v � C 0v : (u;w) 62 Egj� 2
22i� � Xv2Fi jC 0vj �N� 2
22i� � 2jRi�1j �N:Using the induction hypothesis regarding Ri�1 (i.e., jRi�1j < 2�(i�1) �N), Item 1 follows.Item 2 is proved in a similar fashion. Here we use the fact9 that i-goodness of v (which followsfrom v 2 Fi) implies that the number of edges in C 0v � (Ri�1 n C 0v) � Cv � ([N ] n Cv) is at most9This fact was established in the motivating discussion that precedes the description of the procedure (see Eq. (1)and its vicinity). Speci�cally, recall that the number of edges in Cv � ([N ] n Cv) is upper-bounded by the sum ofjCv � (�(v) n Cv)j and the number of edges in Cv � ([N ] n �(v)). Using Condition 2 of i-goodness, we upper-boundboth j�(v) n Cvj and the number of edges of the second type, and the fact follows.11



3` �
22i� � j�(v)j �N , which is upper-bounded by 6` �
22i� � jC 0v j �N . Using againPv2Fi jC 0vj < 2jRi�1jand jRi�1j < 2�(i�1) �N , we establish Item 2.Turning to Item 3, we �rst note that Li � Ri�1 and thus jLij � jRi�1j � 2�(i�1) � N . As forRi, it may contain only vertices that are neither in Li nor in Sv2Fi C 0v. It follows that for everyv 2 Ri either v is not i-good (although it has degree at least � � 2i� �N) or it has at least j�(v)j=4neighbors in previously identi�ed cliques (which implies j�(v) \ (Sw2Sj2[i] Fj C 0w)j � j�(v)j=4).By Claim 3.2.3, the number of vertices of the �rst type is at most 
12�i � N . As for vertices ofthe second type, each such vertex v (in Ri) requires at least j�(v)j=4 � � � 2i� � N=4 edges fromC 0 def= Sw2Sj2[i] Fj C 0w to it (because C 0 is the set of vertices covered by previously identi�ed cliquesat the time iteration i is completed). By Item 2, the total number of edges going out from C 0 to Riis at most i � 24` � 
2� �N2 � 24`2 � 
2� �N2. On the other hand, as noted above, each vertex of thesecond type has least � � 2i� � N=4 edges incident to vertices in C 0. Hence, the number of verticesof the second type is upper-bounded by24`2 � 
2� �N2� � 2i� �N = 24`2 � 
2� � 2�iN; (2)Thus, jRij � (
1+24`2
2��1) � 2�i �N . By the foregoing setting of 
1; 
2 and � (e.g., 
1 = 1=2 and
2 = �=(48`2)), it follows that jRij � 2�i �N . 2Completing the reconstruction and its analysis. The foregoing construction leaves \unassigned" thevertices in R` as well as some of the vertices in L1; :::; L`. (Note that some vertices in S`�1i=1 Li maybe placed in cliques constructed in later iterations, but there is no guarantee that this actuallyhappens.) We now assign each of these remaining vertices to a singleton clique (i.e., an isolatedvertex). The number of violation caused by this assignment equals the number of edges with bothendpoints in R0 def= R`[Sì=1 Li, because edges with a single endpoint in R0 were already accountedfor in Item 2 of Claim 3.2.4. Nevertheless, we upper-bound the number of violations by the totalnumber of edges adjacent at R0, which in turn is upper-bounded byXv2R`[Si2[`] Li j�(v)j � jR`j �N + X̀i=1 Xv2Li j�(v)j� �N4 �N + X̀i=1 2�(i�1)N � �2i�N= �4 �N2 + 2` � � � �N2:By the foregoing setting of � (i.e., � � 1=8`), it follows that the number of these edges is smallerthan �N2=2. Combining this with the bounds on the number of violating edges (or non-edges) asprovided by Claim 3.2.4, the lemma follows.4 The Non-Adaptive Query Complexity of Clique-CollectionIn this section we study the non-adaptive query complexity of clique collection. We �rst establishthe lower-bound claimed in Part 2 of Theorem 1.1, and next show that this lower-bound is essentiallytight. 12



4.1 The Lower BoundIn this section we establish Part 2 of Theorem 1.1. Speci�cally, for every value of � > 0, we considertwo di�erent sets of graphs, one consisting of graphs in CC and the other consisting of graphs thatare �-far from CC, and show that a non-adaptive algorithm of query complexity o(��4=3) cannotdistinguish between graphs selected at random in these sets.The �rst set, denoted CC�, consists of N -vertex graphs such that each graph consists of (2�)�1cliques, and each clique has size 2� �N . It will be instructive to partition these (2�)�1 cliques into(4�)�1 pairs (each consisting of two cliques). The second set, denoted BCC�, consists of N -vertexgraphs such that each graph consists of (4�)�1 bi-cliques, and each bi-clique has 2� �N vertices oneach side. Indeed, CC� � CC, whereas each graph in BCC� is �-far from CC (because each of thebi-cliques must be turned into a collection of cliques).In order to motivate the claim that a non-adaptive algorithm of query complexity o(��4=3)cannot distinguish between graphs selected at random in these sets, consider the (seemingly bestsuch) algorithm that selects o(��2=3) vertices and inspects the induced subgraph. Consider thepartition of a graph in CC� into (4�)�1 pairs of cliques, and correspondingly the partition of a graphin BCC� into (4�)�1 bi-cliques. Then, the probability that a sample of o(��2=3) vertices containsat least three vertices that reside in the same part (of 4� � N vertices) is o(��2=3)3 � (4�)2 = o(1).On the other hand, if this event does not occur, then the answers obtained from both graphsare indistinguishable (because in each case a random pair of vertices residing in the same part isconnected by an edge with probability 1=2). As will be shown below, this intuition extends to anarbitrary non-adaptive algorithm.Speci�cally, by an averaging argument, it su�ces to consider deterministic algorithms, which arefully speci�ed by the sequence of queries that they make and their decision on each correspondingsequence of answers. Recall that these (�xed) queries are elements of [N ]� [N ]. We shall show that,for every sequence of o(��4=3) queries, the answers provided by a randomly selected element of CC�are statistically close to the answers provided by a randomly selected element of BCC�. We shall usethe following notation: For an N -vertex graph G and a query (u; v), we denote the correspondinganswer by ansG(u; v); that is, ansG(u; v) = 1 if fu; vg is an edge in G and ansG(u; v) = 0 otherwise.Lemma 4.1 Let G1 and G2 be random N -vertex graphs uniformly distributed in CC� and BCC�,respectively. Then, for every sequence (v1; v2); :::; (v2q�1; v2q) 2 [N ] � [N ], where the vi's are notnecessarily distinct, it holds that the statistical di�erence between ansG1(v1; v2); :::; ansG1(v2q�1; v2q)and ansG2(v1; v2); :::; ansG2(v2q�1; v2q) is O(q3=2�2).Part 2 of Theorem 1.1 follows.Proof: We consider a 1-1 correspondence, denoted �, between the vertices of an N -vertex graphin CC� [ BCC� and triples in [(4�)�1]� f1; 2g � [2� �N ]. Speci�cally, �(v) = (i; j; w) indicates thatv resides in the jth \side" of the ith part of the graph, and it is vertex number w in this set. Thatis, for a graph in CC� the pair (i; j) indicates the jth clique in the ith pair of cliques, whereas for agraph in BCC� the pair (i; j) indicates the jth side in the ith bi-cliques. Consequently, the answersprovided by uniformly distributed G1 2 CC� and G2 2 BCC� can be emulated by the following twocorresponding random processes.1. The process A1 selects uniformly a bijection � : [N ]! [(4�)�1]�f1; 2g� [2� �N ] and answerseach query (u; v) 2 [N ] � [N ] by 1 if and only if �(u) and �(v) agree on their �rst twocoordinates (and di�er on the third). That is, for �(u) = (i1; j1; w1) and �(v) = (i2; j2; w2),it holds that A1(u; v) = 1 if and only if both i1 = i2 and j1 = j2 (and w1 6= w2).13



2. The process A2 selects uniformly a bijection � : [N ]! [(4�)�1]�f1; 2g� [2� �N ] and answerseach query (u; v) 2 [N ] � [N ] by 1 if and only if �(u) = (i; j; w1) and �(v) = (i; 3 � j; w2).That is, for �(u) = (i1; j1; w1) and �(v) = (i2; j2; w2), it holds that A2(u; v) = 1 if and onlyif i1 = i2 but j1 6= j2.Let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., second and third) coordinates of�(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both processes answer the query (u; v) with 0 if�0(u) 6= �0(v), and the di�erence between the processes is con�ned to the case that �0(u) = �0(v).Speci�cally, conditioned on �0(u) = �0(v) (and �000(u) 6= �000(v)), it holds that A1(u; v) = 1 if andonly if �00(u) = �00(v), whereas A2(u; v) = 1 if and only if �00(u) 6= �00(v). However, since the(random) value of �00 is not present at the answer, the forgoing di�erence may go unnoticed. Theforegoing considerations apply to a single query, but things may change in case of several queries.For example, if �0(u) = �0(v) = �0(w) then the answers to (u; v); (v; w) and (w; v) will indicatewhether we are getting answers from A1 or from A2 (since A1 will answer positively on an oddnumber of these queries whereas A2 will answer positively on an even number). In general, theevent that allows distinguishing the two processes is an odd cycle of vertices that have the same �0value. Minor di�erences may also be due to equal �000 values, and so we also consider these in our\bad" event. For sake of simplicity, the bad event is de�ned more rigidly as follows, where the �rstcondition represents the essential aspect and the second is a technicality.De�nition 4.1.1 We say that � is bad (w.r.t the sequence (v1; v2); :::; (v2q�1; v2q) 2 [N ]� [N ]), ifone of the following two conditions hold:1. For some i 2 [(4�)�1], the subgraph Qi = (Vi; Ei), where Vi = fvk : k 2 [2q] ^ �0(v) = ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, contains a simple cycle.2. There exists i 6= j 2 [2q] such that �000(vi) = �000(vj).Indeed, the query sequence (v1; v2); :::; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 4.1.2 The probability that a uniformly distributed bijection � is bad is at most2000 � q3=2�2 + q22�NProof: We start by upper-bounding the probability that the second event in De�nition 4.1.1 holds.This event is the union of �2q2 � sub-events, and each sub-event holds with probability 1=(4� � N).Thus, we obtain a probability (upper) bound of q2=2�N . As for the �rst event, for every t � 3, weupper-bound the probability that some Qi contains a simple cycle of length t. We observe that thequery graph Q = (VQ; EQ), where VQ = fvk : k2 [2q]g and EQ = ffv2k�1; v2kg : k2 [q]g), containsat most (2q)t=2 cycles of length t (cf. [A, Thm. 3]), whereas the probability that a speci�c simplet-cycle is contained in some Qi is (4�)t�1. Thus, the probability of the �rst event is upper-boundedby Xt�3(2q)t=2 � (4�)t�1 <Xt�3 �p2q � 4 � �(t�1)=t�t <Xt�3 �6pq � �2=3�t ;which is upper-bounded by 2 � (6pq � �2=3)3 < 500q3=2�2, provided 6pq � �2=3 < 1=2 (and the claimhold trivially otherwise). 2 14



Claim 4.1.3 Conditioned on the bijection � not being bad, the sequences (A1(v1; v2); :::; A1(v2q�1; v2q))and (A2(v1; v2); :::; A2(v2q�1; v2q)) are identically distributed.Proof: Noting that De�nition 4.1.1 only refers to �0 and �000, we �xed any choice of �0 and �000 thatyields a good � and consider the residual random choice of �00. Referring to the foregoing subgraphsQi's, recall that pairs with endpoints in di�erent Qi's are answered by 0 in both processes. Notethat (by the second condition in De�nition 4.1.1) the hypothesis implies that �000 assigns di�erentvalues to the di�erent vertices in fvk : k 2 [2q]g, and it follows that �00 assigns these verticesvalues that are uniformly and independently distributed in f1; 2g. Now, using the �rst conditionin De�nition 4.1.1, the hypothesis implies that each Qi is a forest, which implies that (in eachof the two processes) the answer assigned to each edge in Qi is independent of the answer givento other edges of Qi. That is, we assert that (in each of the two processes) the edges of eachforest Qi = (Vi; Ei) are assigned a sequence of answers that is uniformly distributed in f0; 1gjEij.To formally prove this assertion, consider the constraints on the �00-values (of Vi) that arise fromany possible sequence of answers. These constraints form a system of jEij linear equations overGF (2) with variables corresponding to the possible �00-values and constant terms encoding possibleequality and inequality constraints.10 Note that the (coe�cients of the) linear systems are nota�ected by the identity of the process, which does e�ect the free terms. Furthermore, this linearsystem is of full rank; and thus, for each of the two processes and each sequence of answers, thecorresponduing system has 2jVij�jEij = 2 solutions (i.e., possible assignments to �00 restricted toVi). Thus, in each of the two processes, each query is answered by the value 1 with probabilityexactly 1=2, independently of the answers to all other queries. The claim follows. 2Combining Claims 4.1.2 and 4.1.3, it follows that the statistical distance between the sequences(A1(v1; v2); :::; A1(v2q�1; v2q)) and (A2(v1; v2); :::; A2(v2q�1; v2q)) is at most O(q3=2�2 + q2(�N)�1),and the lemma follows for su�ciently large N .4.2 A Matching Upper-BoundIn this section we establish Part 3 of Theorem 1.1. We mention that this improves over the eO(��2)bound of [AS, Thm. 2] (which is based on inspecting the subgraph induced by a random set ofO(��1 log(1=�)) vertices).Algorithm 4.2 (non-adaptive test for CC): On input N and � and oracle access to a graph G =([N ]; E), the tester sets ` = log2(1=�) and proceeds as follows.1. The tester selects a random sample of s def= �(��2=3) vertices, denoted S, and examines allvertex pairs (in S � S).2. For i = 1; :::; (2`=3) + O(1), the tester selects uniformly a subset Si � S of cardinality si def=O(2i) and a sample of eO(��1)=si vertices, denoted Ri, and examines all the vertex pairs inSi �Ri.3. The tester accepts if and only if its view of the graph as obtained in Steps 1-2 is consistentwith some graph in CC. Namely, let g0 : ((S � S) [ S`0i=1(Si � Ri)) ! f0; 1g be the functiondetermined by the answers obtained in Steps 1-2. Then the tester accepts if and only if g0 canbe extended to a function over S0�S0, where S0 = S [S`0i=1Ri, that represents a graph in CC.10The condition A1(u; w) = 1 i� �00(u) = �00(v) is encoded by �00(u)+�00(v) = A1(u; w)+ 1, whereas the conditionA2(u;w) = 1 i� �00(u) 6= �00(v) is encoded by �00(u) + �00(v) = A2(u;w).15



The query complexity of Algorithm 4.2 is dominated by Step 1, which uses O(��2=3)2 = O(��4=3)queries. Clearly, this algorithm accepts (with probability 1) any graph that is in CC. It remains toanalyze its behavior on graphs that are �-far from CC.Lemma 4.3 If G = ([N ]; E) is �-far from CC, then on input N; � and oracle access to G, Algo-rithm 4.2 rejects with probability at least 2=3.Part 3 of Theorem 1.1 follows.Proof: We say that a triple (v; u; w) of vertices (resp., a 3-set fv; u; wg � [N ]) is a witness (forrejection) if the subgraph of G induced by fv; u; wg contains exactly two edges. Indeed, Algorithm 4.2rejects if (and only if), for some witness (v; u; w), the algorithm has made all three relevant queries(i.e., the queries (v; u), (u;w), and (w; v)).11 A su�cient condition for this to happen is that eitherfv; u; wg � S or for some i both jfv; u; wg \ Sij = 2 and jfv; u; wg \ Rij = 1 hold. Thus, we saythat a witness is e�ective with respect to the said samples (i.e., S and the Ri's) if the foregoingsu�cient condition holds. We shall show that, with probability at least 2=3, the samples containan e�ective witness.Let G0 = (V;E0) be a graph in CC that is closest to G = (V;E), and let (V1; :::; Vt) be itspartition into cliques. For the sake of simplicity, we shall refer to the Vi's as cliques, even thoughthey are not (necessarily) cliques in G, and we shall refer to the partition (V1; :::; Vt) as the bestpossible partition for G. Two main observations regarding this partition follow.Observation 1: For every i 2 [t] and every S � Vi, it holds that jE\(S�(VinS))j � jS�(VinS)j=2,since otherwise replacing the clique Vi by two cliques, S and Vi n S yields a better partitionfor G.Observation 2: For every i 6= j 2 [t], it holds that jE \ (Vi � Vj)j � jVi � Vj j=2, since otherwisereplacing the two cliques Vi and Vj by a single clique Vi [ Vj yields a better partition for G.Now, since G is �-far from CC, either G misses �2 � N2 edges within these Vi's or it has �2 � N2super
uous edges between distinct Vi's. We show that in either case, with high constant probability,the samples produced by Algorithm 4.2 contain an e�ective witness.The pivot of the analysis is relating the fraction of bad vertex pairs (i.e., either missing \internal"edges or super
uous \external" edges) to the fraction of witnesses. Speci�cally, we shall show thatthe existence of �2 � N2 missing internal edges (resp., �2 � N2 super
uous \external" edges) impliesthe existence of 
(�2N3) witnesses. Furthermore, using additional features of the structure ofthe set of witnesses, we shall show that with high probability the random sample (as producedby Algorithm 4.2) contains an e�ective witness. Speci�cally, these additional features, which areestablished in the elaborate parts of Claims 4.3.1 and 4.3.2, are instrumental to the detection of awitness (as argued in Claim 4.3.3).To facilitate the exposition, for every two sets A;B � [N ], we let E(A;B) denote the set ofedges with one endpoint in A and another endpoint in B (i.e., E(A;B) def= E \ (A�B)). For eachvertex v and j 2 [t], let �j(v) def= Vj \ �(v) = fu2Vj : (u; v) 2 Egand �j(v) def= Vj n (�(v) [ fvg) = fu2(Vj n fvg) : (u; v) 62 Eg :11We note that only the (easy to establish) su�ciency of the foregoing rejection condition is used in the analysis.16



If v 2 Vi, then we use the shorthand: �(v) = �i(v). Indeed, �(v) corresponds to the set of internaledges that are missed by vertex v.Claim 4.3.1 (using missing internal edges):Basic claim: For every vertex v, the number of witnesses that contain v is 
(j�(v)j2).Elaborate claim: For every (possibly empty)12 set F of \forbidden" (non-adjacent) vertex-pairs, thefollowing holds:1. For every v 2 [N ] there exists a set Wv � �(v) n fu : (v; u) 2 Fg such thatXv2[N ] jWvj > 0@ Xv2[N ] j�(v)j4 1A � 2 � jF jand for every u 2Wv there exists a set Wv;u � (�(v) \ �(u)) such thatXu2Wv jWv;uj � jWvj2=4:Moreover, if F = ; then for every v it holds that jWvj � j�(v)j=4.(Indeed, each triple (u; v; w) such that u 2 Wv and w 2 Wv;u constitutes a witness,because fu; vg 62 E whereas w 2 �(v) \ �(u); see illustration in Figure 1.)2. For the sets Wv and Wv;u as in Part 1 of the claim, letting U (2)w def= f(v; u) : w2Wv;ug itholds that if each set Wv has cardinality at most �2=3N=2 then each U (2)w has cardinalityat most �4=3N2.It follows that the total number of witnesses is 
(Pv2[N ] j�(v)j2). In particular, if the number ofmissing internal edges is at least �2 � N2 (i.e., Pv2[N ] j�(v)j � � � N2), then the total number ofwitnesses is at least N � 
((�N)2) = 
(�2 �N3).
�i(v) [ fvgvVi �(v)uw

Figure 1: An Illustration for the proof of Claim 4.3.1.Proof: Using Observation 1, we note that for any choice of i 2 [t] and for every v 2 Vi it holds thatj�(v)j = jVi n fvgj � jE(fvg; Vi n fvg)j � jVij � 12 � j�i(v)j (3)12Indeed, in �rst reading, the reader is encouraged to think of the case F = ;. In fact, this case is one of the twocases that will be actually used in the sequel. 17



and jE(�(v);�i(v)j = jE(�(v);�i(v) [ fvg)j > 12 j�(v)j � j�i(v)j : (4)Letting Tv = f(v; u; w) : (u;w)2�(v) � �i(v)g, it follows that at least half of the triples (v; u; w)in Tv are witnesses (i.e., (u;w) 2 E, (u; v) 62 E, and (w; v) 2 E), whereas jTvj � j�(v)j2. Thisestablishes the basic claim.Let us �rst establish the elaborate claim for the special case of F = ;. In this case, for every v 2 Vi,we consider the set Wv def= fu2�(v) : jE(fug;�i(v)j � j�i(v)j=4g : (5)By Eq. (4), Pu2�(v) jE(fug;�i(v))j � j�(v)j � j�i(v)j=2. It follows that jWvj � j�(v)j=4. We notethat (by Eq. (5)), for every u 2 Wv, it holds that j�i(v) \ �(u)j � j�i(v)j=4 � jWvj=4. Next, forevery u 2Wv, let Wv;u be an arbitrary subset of jWvj=4 elements in �i(v)\�(u). Note that, indeedWv � �(v) and for every u 2 Wv it holds that Wv;u � �(v) \ �(u). Recalling that jWvj � j�(v)j=4and jWv;uj = jWvj=4, Part 1 follows.To establish Part 2, we �rst note that if we select Wv;u uniformly among all jWvj=4-subsets of�i(v) \ �(u), then, for any w 2 Vi, the expected size of U (2)w is upper-bounded byXv2Vi Xu2Wv jWvj=4j�i(v) \ �(u)j � Xv2Vi Xu2Wv jWvj=4jVij=8 = 2jVij �Xv2Vi jWvj2where the inequality uses j�i(v)\�(u)j � j�i(v)j=4 � jVij=8. Thus, if 2jVij �Pv2Vi jWvj2 � �4=3N2=2then, with overwhelmingly high probability, it holds that jU (2)w j � �4=3N2. Picking the sets (i.e.,the Wv;u's) such that none of the negligible probability events (associated with w 2 Vi) occurs, weinfer that jU (2)w j > �4=3N2 implies that Pv2Vi jWvj2 > �4=3N2jVij=4 (which implies the existence ofv such that jWvj > �2=3N=2). Part 2 follows.Note that so far we have established the (elaborate) claim for the special case of F = ;. We nowestablish the general case by reduction to the former special case. We �rst modify the sets Wv, byomitting from each Wv each vertex u such that fv; ug 2 F . This modi�cation decreasesPv jWvj byat most 2jF j. Next, we modify the sets Wv;u by omitting from each Wv;u a few elements, selectedat random, such that jWv;uj = jWvj=4 holds (for the modi�ed sets). Clearly, Part 1 holds for themodi�ed sets. To see that Part 2 holds too, we note that the foregoing argument only relies on thefact that Wv;u is a random (jWvj=4)-size subset of �i(v) \ �(u). The claim follows. 2Another piece of notation. For every i 2 [t] and every v 2 Vi, let�0(v) def= �(v) n Videnote the set of vertices outside of Vi that have a super
uous edge to v. That is, �0(v) = Sj 6=i �j(v).Claim 4.3.2 (using super
uous external edges):Basic claim: For every vertex v, the number of witnesses that contain v is 
(j�0(v)j2).Elaborate claim: IfPv2[N ] j�0(v)j > 500�Pv2[N ] j�(v)j, then there exist constants c1; : : : ; c4 for whichthe following holds: 18



1. For every v 2 [N ] there exists a set Wv � �0(v) such that letting V 0 = fv : jWvj �j�0(v)j=c1g it holds that Xv2V 0 j�0(v)j � 34 Xv2[N ] j�0(v)j : (6)In addition, for every u 2 Wv there exists a set Wv;u, which is either a subset of �(v) n�(u) or a subset of �(u) n �(v), such that jWv;uj � jWvj=c2.(Indeed, each (v; u; w) such that u 2Wv and w 2Wv;u constitutes a witness.)2. For the sets Wv;u as in Part 1 of the claim, let U (2)w def= f(v; u) : w2Wv;ug. If for everyv it holds that j�0(v)j � �2=3N=2 then each U (2)w has cardinality at most 10�4=3N2.3. Let F be any set of \forbidden" vertex-pairs in Si 6=j E(Vi; Vj), and for a vertex v letF (v) def= fu : (v; u) 2 Fg. Then, for each vertex v, there exist modi�ed subsets Wv andWv;u (for every u 2Wv) that satisfy the following modi�ed versions of Parts 1 and 2:� For Part 1 it holds that Wv � �0(v) n F (v), and Eq. (6) is replaced byXv2[N ] jWvj > 1c3 0@ Xv2[N ] j�0(v)j1A � c4 � jF j : (7)The other features of the subsets Wv and Wv;u hold as stated in Part 1.� For Part 2 we have that if for every v it holds that j�0(v)nF (v)j � �2=3N=2 then eachmodi�ed U (2)w (i.e., U (2)w def= f(v; u) : w2Wv;ug) has cardinality at most 10�4=3N2.It follows that the total number of witnesses is 
(Pv2[N ] j�0(v)j2). In particular, if the number ofsuper
uous external edges is at least �2 �N2 (i.e., Pv2[N ] j�0(v)j � � �N2), then the total number ofwitnesses is at least N � 
((�N)2) = 
(�2 �N3).Proof: We �rst prove Parts 1 and 2, and later present the modi�cations required for Part 3. Theclaim is proved by a (rather tedious) case analysis. In all but one of the cases, the basic claim (i.e.,for every vertex v, the number of witnesses that contain v is 
(j�0(v)j2)) follows from the elaborateclaim, and so in those cases it su�ces to prove the latter. In the exceptional case, the basic claimfollows by invoking Claim 4.3.1.Each case deals with a di�erent subset of vertices of V . With the exception of the aforementionedcase, Part 1 is proved by presenting, for every relevant vertex v (i.e., v that satis�es the casehypothesis), a subset Wv � �0(v) of size at least �0(v)=c1 and adequate sets Wv;u for each u 2Wv.Furthermore, it will be shown that the vertices covered by these (non-exceptional cases) accountfor at least three fourths of the sum Pv j�0(v)j.In order to prove Part 2, for each of the foregoing cases, we consider the restriction of U (2)w topairs (v; u) such that v obeys the case hypothesis. We show that if j�0(v)j � �2=3N=2 for every suchv, then the total contribution to U (2)w of the corresponding pairs (v; u) is at most �4=3N2. Sincethere are less than ten cases, Part 2 follows.In the following analysis we consider possible cases that may apply to a generic vertex v.However, we actually consider the set of all vertices that satisfy the hypothesis of each of thesecases. Hence, when we say that Part 1 (resp., Part 2) is established for the vertices that satisfy aparticular case hypothesis, we mean that the condition is established in the sense described in theforegoing discussion. We now turn to the actual case analysis.19



Case 1: Much of �0(v) is contained in a single Vj; that is, there exists an index j such that j�j(v)j >j�0(v)j=10. Fixing such an index j, we distinguish two subcases regarding the fraction of Vj that isnot covered by �0(v) (i.e., the relative density of �j(v) in Vj).Case 1.1: j�j(v)j � jVjj=10. In this case, we let Wv be a subset of the neighbors that v has in Vj ,that is, a subset of �j(v). For each u 2 Wv we let Wv;u be a subset of the non-neighbors ofv in Vj that are neighbors of w, that is, a subset of �j(v) \ �j(u). Thus, for every u 2 Wvand w 2 Wv;u, the triple (v; u; w) is a witness. For an illustration, see Figure 2. Combiningthis case hypothesis (which asserts that v has many non-neighbors in Vj) with Observation 1(which guarantees many edges between neighbors and non-neighbors of v in Vj), we obtainmany (i.e., 
(j�0(v)j2)) such witnesses, and the basic claim follows.
v

j�j(v)j � jVjj=10
j�j(v)j � j�0(v)j=10Vj u

w
Figure 2: An Illustration for the proof of Claim 4.3.2, Case 1.1.In order to actually prove Parts 1 and 2, we now provide a more detailed description of thechoice of Wv and Wv;u. Let the subset of vertices for which the case (1.1) hypothesis holdsbe denoted by V 1:1. For each vertex v 2 V 1:1, let �(v) def= j if j is the smallest integer suchthat j�j(v)j > j�0(v)j=10. Next, we de�ne the setWv def= fu2��(v)(v) : j�(u) \ (��(v)(v))j � j��(v)(v)j=4g;and note that (by the case hypothesis) for every u 2 Wv it holds that j�(u) \ (��(v)(v))j �jV�(v)j=40. By Observation 1, jE(��(v)(v);��(v)(v))j � j��(v)(v)j � j��(v)(v)j=2. Noting thatjE(��(v)(v);��(v)(v))j =Pu2��(v)(v) j�(u)\ (��(v)(v))j and referring to the de�nition of Wv, itfollows that jWvj � j��(v)(v)j=4 � j�0(v)j=40.Now, for every u 2 Wv, let Wv;u be a random subset of jWvj=40 elements in ��(v)(v) \ �(u),while recalling that the latter set has size at least j��(v)(v)j=4 � jV�(v)j=40. Observe thatindeed, for every u 2 Wv and w 2 Wv;u, it holds that Wv � �0(v) and Wv;u � �(u) n �(v).(We note that for every w 2 Wv;u it holds that w 62 �(v) and w 2 �(u) n �0(u) (since bothu 2 V�(v) and Wv;u � V�(v)).) Part 1 is thus established for this case (for any v 2 V 1:1).

20



To establish Part 2, we �rst note that, for any j 2 [t] and w 2 Vj, the expected size of U (2)wis upper-bounded byXv2V 1:1:�(v)=j Xu2Wv jWvj=40j�j(v) \ �(u)j � 1jVj j � Xv2V 1:1:�(v)=j jWvj2where the inequality uses j�j(v)\�(u)j � jVj j=40. As in the proof of Claim 4.3.1, it is possibleto choose the subsets Wv;u so that the sizes of the sets U (2)w are not much larger than (theupper bounds on the value of) their expected sizes. It follows that if some w 2 Vj satis�esjU (2)w j > �4=3N2, then Pv2V 1:1:�(v)=j jWvj2 > �4=3N2jVj j=2. We now consider two cases. Inthe easy case there exists a vertex v for which �(v) = j and such that jWvj > �2=3N=2, andPart 2 follows (since Wv � �0(v)). Otherwise, letting V 0 = fv 2 V 1:1 : �(v) = jg, we notethat jE(V 0; Vj)j � Xv2V 0 jWvj � Xv2V 0 jWvj2�2=3N=2 > jVj j � �2=3N (8)and it follows that there exists a vertex u 2 Vj such that j�0(u)j � j�(u)\V 0j > �2=3N . Thus,Part 2 follows in this case.Case 1.2: j�j(v)j � jVjj=10 (i.e., j�j(v)j � 0:9jVj j). We �rst note that j�i(v)j � 0:8j�j(v)j, becauseotherwise we would obtain a better partition by moving the vertex v from Vi to Vj (sincethe gain from such a move is at least (j�j(v)j � j�j(v)j)� j�i(v)j, whereas j�j(v)j � j�j(v)j �0:8jVj j � 0:8j�j(v)j). We consider two subcases regarding the cardinality of the set �i(v):1. If j�i(v)j � 0:9 � jVij, then we let Wv be a subset of �j(v), and for each u 2 Wv, we letWv;u be a subset of �i(v) n �(u). Thus each triple (v; u; w) where u 2Wv and w 2Wv;uis a witness. For an illustration, see Figure 3. Combining the case hypotheses (whichasserts that Vj � Vi is essentially covered by �j(v) � �i(v)) with Observation 2 (whichguarantees many non-edges in Vj � Vi), we obtain 
(j�0(v)j2) such witnesses. Detailsfollow.Let the subset of vertices for which the case hypothesis holds be denoted by V 1:2, andfor each v 2 V 1:2 de�ne �(v) as in Case 1.1. LetWv def= fu2�j(v) : j�i(v) n �(u)j � j�i(v)j=10g :Note that for any u 2 Wv it holds that j�i(v) n �(u)j � 0:1j�i(v)j � 0:08j�j(v)j. UsingObservation 2 we have thatjE(�j(v);�i(v))j � jE(Vj ; Vi)j� 12 � jVjj � jVij� 12 � j�j(v)j0:9 � j�i(v)j0:9< 0:7 � j�j(v)j � j�i(v)j :Hence there are at least 0:3 � j�j(v)j � j�i(v)j pairs (u;w) where u 2 �j(v) and w 2 �i(v)such that w =2 �(u). It follows that jWvj > j�j(v)j=5, where by the hypothesis of Case 1this value is greater than j�0(v)j=50. 21
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j�i(v)j � j�0(v)j=20 j�j(v)j � j�0(v)j=10
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Figure 3: An Illustration for the proof of Claim 4.3.2, 1st subcase of Case 1.2.Next, recalling that for any u 2Wv it holds that j�i(v)n�(u)j � 0:08j�j(v)j, we let Wv;ube a 0:08jWv j-size random subset of �i(v) n �(u) � �(v) n �(u), and note that indeedfor every u 2 Wv and w 2 Wv;u it holds that u;w 2 �(v) and (u;w) 62 E. Thus, Part 1follows in this case. (We note that for every w 2 Wv;u it holds that w 62 �(u) andw 2 �(v) n �0(v) (since v; w 2 Vi).)As for Part 2, we �rst note that for every w 2 Vi the expected size of U (2)w (in this case)is upper-bounded byXv2Vi Xu2Wv 0:08jWv jj�i(v) n �(u)j � 0:080:09jVij �Xv2Vi jWvj2where the inequality uses j�i(v) n �(u)j � 0:1j�i(v)j � 0:09jVij. Again, we may selectthe sets Wv;u such that for each w 2 Vi it holds that jU (2)w j < Pv2Vi jWvj2=jVij. Thus,if some w 2 Vi satis�es jU (2)w j > �4=3N2, then Pv2Vi jWvj2 > �4=3N2jVij. It follows thatthere exists a vertex v 2 Vi such that jWvj > �2=3N , and Part 2 follows.2. If j�i(v)j � 0:9 � jVij, then we proceed somewhat di�erently than in the other cases(this is the exceptional case mentioned at the preamble of the proof). Recall that�(v) = �i(v) = Vi n �(v), and so j�(v)j � 0:1 � jVij � 0:008 � j�0(v)j (because jVij �j�i(v)j � 0:8j�j(v)j and j�j(v) � j�0(v)j=10). For the basic claim, we invoke Claim 4.3.1,translating the lower-bound in terms of j�(v)j (provided by Claim 4.3.1) into a lower-bound in terms of j�0(v)j. For the elaborate claim, we set Wv = ; for every v as inthe case hypothesis. Thus we trivially have that jWv;uj � jWvj=c2 for every u 2 Wv,and Part 2 of the claim holds trivially as well. Finally, we use the premise of theclaim that Pv2[N ] j�0(v)j > 500Pv2[N ] j�(v)j to infer that the current subcase (in whichj�0(v)j � 125j�(v)j) may account for less than one fourth of the sum Pv2[N ] j�0(v)j.22



This completes the treatment of the current case (i.e., Case 1.2), which in turn completes thetreatment of Case 1. (We thus proceed to the following complementary Case 2.)Case 2: No single Vj contains much of �0(v); that is, for every j it holds that j�j(v)j �j�0(v)j=10. As in Case 1, we consider two subcases regarding the relative part of each Vjcovered by �0(v), but in the current case we consider a partition of the set J def= fj : j�j(v)j �1g and distinguish cases regarding the intersection of �0(v) with the sets Vj in each part.13Speci�cally, we let J 0 def= fj : j�j(v)j > 0:9jVj jg, and consider the following two subcases.Case 2.1: Pj2J 0 j�j(v)j � 0:5 � j�0(v)j. In this case J 0 has cardinality at least �ve (sincePj2J 0 j�j(v)j � 0:5 � j�0(v)j and j�j(v)j � 0:1 � j�0(v)j for every j). Let Cv = Sj2J 0 �j(v)(note that the vertices in Cv belong to several cliques Vj). In this case we let Wv bea subset of Cv, and for each u 2 Cv we let Wv;u be a subset of Cv n �(u). We shallshow that the case hypothesis implies that there are many missing edges between pairsof vertices in Cv. Intuitively, this holds because Cv essentially covers Sj2J 0 Vj, whereas(by Observation 2) for any j1 6= j2 there are many non-edges in Vj1 � Vj2 . This ensuresthat we have many witnesses of the form (v; u; w), where u 2Wv and w 2Wv;u. Detailsfollow.
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j�j(v)j > 0:9jVj juseveral sets Vj such that j�j(v)j < j�0(v)j=10

Figure 4: An Illustration for the proof of Claim 4.3.2, Case 2.1.For every j1 6= j2 2 J 0, by Observation 2 (and since j�j(v)j > 0:9jVj j for every j 2 J 0),it holds that jE(�j1(v);�j2(v))j � 12 � jVj1 j � jVj2 j < 0:7 � j�j1(v)j � j�j2(v)j :13We note that the threshold for relative density is also di�erent in the current case.23



Letting M def= Pj1 6=j22J 0 j(�j1(v)� �j2(v)) nEj, we �rst observe thatM = Xj1 6=j22J 0 (j�j1(v)j � j�j2(v)j � jE(�j1(v);�j2(v))j)� Xj1 6=j22J 0(1� 0:7) � j�j1(v)j � j�j2(v)j= 0:3 �0B@0@Xj2J 0 j�j(v)j1A2 �Xj2J 0 j�j(v)j21CA� 0:3 � �(0:5 � j�0(v)j)2 � 0:1 � j�0(v)j2� ;where the last inequality uses the hypotheses of Cases 2 and 2.1. Therefore, j(Cv�Cv)nEj �M > 0:04 � j�0(v)j2.De�ning Wv def= fu2Cv : jCv n �(u)j � 0:02 � j�0(v)jg ;we note that jWvj � 0:02 � j�0(v)j. Next, we let Wv;u be a 0:02 � jWvj-size random subsetof Cv n �(u) � �0(v) n �(u). As in the previous cases, Part 1 follows by the de�nitionof these sets. (However, unlike in the other cases, here we have w 2 �0(v) (and it alsoholds that w 62 �(u)).)To establish Part 2, we �rst note that, for any �xed w, the expected size of U (2)w isupper-bounded byXv2[N ]:Cv3w Xu2Wv 0:02 � jWvjjCv n �(u)j � Xv2[N ]:�0(v)3w Xu2Wv 0:02 � jCvj0:02 � jCvj (9)= Xv2�0(w) jWvjwhere the inequality uses jCv n �(u)j � 0:02 � j�0(v)j and Wv � Cv � �0(v). Analo-gously to the previous cases, it follows that if some w satis�es jU (2)w j > �4=3N2, thenPv2�0(w) jWvj > �4=3N2=2. This implies that either j�0(w)j > �2=3N=2 or there existsv 2 �0(w) such that jWvj > �2=3N . Thus, Part 2 holds in Case 2.1.Case 2.2: Pj2JnJ 0 j�j(v)j � 0:5 � j�0(v)j. Let J 00 def= J n J 0 = fj : 1 � j�j(v)j � 0:9jVj jg, andnote that for j 2 J 00 (as considered in this case) it may be that j�j(v)j � jVjj andconsequently for j1 6= j2 2 J 00 it may hold that E(�j1(v);�j2(v)) � j�j1(v)j � j�j2(v)j.More generally, rede�ning Cv def= Sj2J 00 �j(v), it may be that jE(Cv ; Cv)j � �jCvj2 �, andso the approach of Case 2.1 may not work in general (although it will work in the �rstsubcase). Letting J 000 def= fj 2 J 00 : jVj j � j�0(v)j=10g, we consider two subcases:1. If Pj2J 000 j�j(v)j � 0:4 � j�0(v)j then we rede�ne Cv def= Sj2J 000 �j(v) and show thatjE(Cv ; Cv)j � 0:99�jCv j2 �. Once the latter fact is established, we reach a situationas in Case 2.1 and proceed exactly as in that case. To show that jE(Cv ; Cv)j �0:99�jCv j2 �, we note that otherwise one obtains a contradiction to the optimality ofthe partition (by replacing the sub-partition (Vj)j2J 000 with (Cv; (VjnCv)j2J 000), whereVj n Cv = �j(v)). Details follow. 24



Assuming, towards the contradiction that jE(Cv; Cv)j > 0:99�jCv j2 �, we lowerboundthe gain from the aforementioned replacement as follows. The gain from edges insideCv that do not connect vertices in the same Vj is lower-bounded by 0:99 � �jCv j2 � �jCvj0:1j�0(v)j � �0:1j�0(v)j2 �, which is lower-bounded by 0:36 � jCvj2 (when using j�0(v)j �2:5 � jCvj). On the other hand, we upper-bound the loss from missing edges insideCv and from super
uous edges introduced between Cv and the various sets Vj by0:01 � �jCvj2 � + jCv j � maxj2J 000fjVj jg, which is upper-bounded by 0:26 � jCvj2 (whenusing jVj j � 0:1 � j�0(v)j � 0:25 � jCvj).2. IfPj2J 00nJ 000 j�j(v)j � 0:1 � j�0(v)j then we proceed similarly to Case 1.1. Speci�cally,we de�ne Wv def= [j2J 00nJ 000(u 2 �j(v) : j�j(u) \ �j(v)j � j�j(v)j4 )and note that Wv � �0(v) and that for every j 2 J 00 n J 000 it holds that jWv \ Vj j �j�j(v)j=4 (since E(�j(v); Vj n �j(v)) � j�j(v)j � jVj n �j(v)j=2). Using the subcasehypothesis, it follows that jWvj � Pj2J 00nJ 000 j�j(v)j=4 � j�0(v)j=40, and using j 2J 00 n J 000 every u 2 Wv satis�es j�j(u) \ �j(v)j � j�j(v)j=4 � jVj j=40 � j�0(v)j=400.Next, for every j 2 J 00 n J 000 and every u 2Wv \ Vj , we de�ne Wv;u to be a randomsubset of size j�0(v)j=400 of �j(u)\�j(v). Indeed, for every u 2Wv and w 2Wv;u itholds that w 62 �0(v) and w 2 �(u) n �0(u). For an illustration, see Figure 5. Giventhe lower bounds on the sizes of the sets Wv and Wv;u, Part 1 follows.

...

C(v)v u w j�j(v)j � jVjj=10
(jVj j > j�0(v)j=10)several sets Vj

Figure 5: An Illustration for the proof of Claim 4.3.2, 2nd subcase of Case 2.2.
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To establish Part 2, we �rst note that, for any �xed w 2 Vj , the expected size ofU (2)w is upper-bounded byXv2[N ]nVj Xu2Wv\Vj j�0(v)j=400j�j(u) \ �j(v)j � Xv2[N ]nVj Xu2�j(v) j�0(v)j10jVj j= Xv2[N ]nVj j�j(v)j � j�0(v)j10jVj jwhere the inequality uses j�j(u) n �j(v)j � jVj n �j(v)j=4 � jVj j=40. Analogouslyto the previous cases, it follows that if some w 2 Vj satis�es jU (2)w j > �4=3N2,then Pv2[N ]nVj j�0(v)j � j�j(v)j > 5�4=3N2jVj j, which implies that either for somev 2 [N ] n Vj it holds that j�0(v)j > �2=3N or that Pv2[N ]nVj j�j(v)j > �2=3N jVj j. Inthe latter case, there must be a vertex u 2 Vj such that j�0(u)j > �2=3N . Thus,Part 2 holds in this subcase of Case 2.2.Thus, we have established the claim for all subcases of Case 2.2.Having completed the treatment of the two complementary cases of Case 2 (i.e., Cases 2.1and 2.2), we complete the treatment of Case 2.This completes the proof of Parts 1 and Part 2. Note that in each of the various cases we hadjWv;uj � jWvj=400 (with the minimum lowerbound established in the second subcase of Case 2.2,where we used jWv;uj � j�0(v)j=400).We now turn to proving Part 3. Except for Case 2.1, the modi�cations of the sets Wv and Wv;uare analogous to those performed in the proof of Claim 4.3.1. Speci�cally, we �rst modify the setsWv, by omitting from each Wv all vertices in F (v) (recall that F (v) = fu : (v; u) 2 Fg). Note thatwe have decreased Pv jWvj by at most 2jF j. The only case in which we make further modi�cationsto the sets Wv is in Case 2.1. As we show subsequently, this causes a further decrease inPv jWvj ofat most 98jF j. Hence, Eq. (7) follows by using the fact that Eq. (6) holds for the original sets Wv.Next, we modify the sets Wv;u, by omitting from each Wv;u a few elements, selected at random,such that jWv;uj = jWvj=400 holds (for the modi�ed sets). (This modi�cation is done in order toallow the extension of the argument used in Part 2.)To see that the generalized Part 2 holds too, we note that in all cases (including Case 2.1) theargument relies on the fact that Wv;u is a random 
(jWvj)-size subset of some (case-speci�c) subsetof �0(v) and on identifying a vertex v0 for which �0(v0) is large (if some U (2)w is large). The sameapplies to the modi�ed sets (i.e., Wv's andWv;u's), however here we need to show that �0(v0)nF (v0)is large. Inspecting the various cases, we note that in all cases (except for Case 2.1) the originalargument goes through. Speci�cally:In Case 1.1 we showed that the existence of w 2 Vj such that jU (2)w j > �4=3N2 implies either theexistence of v 2 V 0 (i.e., v satisfying �(v) = j) such that jWvj > �2=3N=2 or the existence ofu 2 Vj such that j�0(u)j > �2=3N . The same argument can be applied to the modi�ed setsWv and Wv;u, when replacing E(V 0; Vj) by E(V 0; Vj) n F in Eq. (8). Thus, the �rst subcaseimplies that jWvj > �2=3N=2 (for some v 2 V 0 (and we are done since j�0(v) n F (v)j � jWvj)),whereas the second subcase implies the existence of u 2 Vj such that j�0(u) n F (u)j > �2=3N(by using jE(V 0; Vj) n F j > jVjj � �2=3N , which implies the existence of u 2 Vj such thatj(�0(u) n F (u)) \ V 0j > �2=3N). 26



In Case 1.2 we showed that the existence of w 2 Vi such that jU (2)w j > �4=3N2 implies the existenceof v 2 Vi such that jWvj > �2=3N . The same argument applies to the modi�ed sets Wv andWv;u.In Case 2.2 we reduced the �rst subcase to Case 2.1, whereas the second subcase was similar toCase 1.1. The adaptation is accordingly.Indeed, this leaves us with Case 2.1, which is di�erent from the other cases in the sense that itrefers to sets �0(w) such that the vertex w is not necessarily in some set Wv. Speci�cally, recallthat in Case 2.1 we showed that the existence of w 2 Vj such that jU (2)w j > �4=3N2 implies thatPv2�0(w) jWvj > �4=3N2=2, which in turn implies that either j�0(w)j > �2=3N=2 or jWvj > �2=3N forsome v 2 �0(w). However, unlike in Case 1.1,14 we cannot replace �0(w) by �0(w) n F (w), because(v; u) 2 U (2)w does not imply that v 2 �0(w) n F (w). The source of trouble is that Wv;u is selectedwith no reference to F .The problem is resolved by modifying the selection of Wv;u as follows. If jF (v)j > jWvj=98 thenWv is reset to an empty set, and otherwise Wv;u is selected as a random (jWvj=100)-size subset of(Cv n�(u))nF (v) � �0(v)nF (v) (rather than as a random (jWvj=50)-size subset of Cv n�(u)). Thisallows for replacing �0(v) 3 w by (�0(v) n F (v)) 3 w in Eq. (9), and so we getXv2[N ]:Cv3w Xu2Wv 0:01 � jWvjj(Cv n �(u)) n F (v)j � Xv2[N ]:(�0(v)nF (v))3w Xu2Wv 0:01 � jCvj0:01 � jCvj= Xv2�0(w)nF (w) jWvjwhere the inequality uses j(Cv n �(u)) n F (v)j � 0:01 � j�0(v)j and Wv � Cv � �0(v) n F (v). Weconclude that the existence of w 2 Vj such that jU (2)w j > �4=3N2 implies that Pv2�0(w)nF (w) jWvj >�4=3N2=2, which in turn implies that either j�0(w) n F (w)j > �2=3N=2 or jWvj > �2=3N for somev 2 �0(w)nF (w). Thus, Part 2 follows. We need, however, to examine the e�ect of this modi�cation(of the sets Wv;u) on Part 1. The key observation is that the sum of the sizes of the Wv's decreasesat most by 98jF j, because the case of jF (v)j > jWvj=98 (where Wv is reset to empty) causes a lossof at most jWvj < 98jF (v)j, whereas the case of jF (v)j � jWvj=98 (in which we avoid F (v)) causes(as usual) a loss of at most jF (v)j). This completes the treatment of general F , and the claimfollows. 2On the existence of e�ective witnesses. Combining the lemma's hypothesis with (the basic partsof) Claims 4.3.1 and 4.3.2, we infer the existence of 
(�2N3) witnesses. Moreover, the elaborateparts of these claims provide us with some structure that will be useful towards proving that (withhigh probability) the sample taken by Algorithm 4.2 contains at least one e�ective witness (i.e.,a witness whose three vertex-pairs are inspected by the algorithm). Speci�cally, by the lemma'shypothesis, either Pv2[N ] j�(v)j � 0:001 � � �N2 or Pv2[N ] j�0(v)j � 0:999 � � � N2. We �rst analyzethe former case (i.e., Pv2[N ] j�(v)j � 0:001 � � � N2) and the treatment of the latter case (i.e.,Pv2[N ] j�0(v)j � 0:999 � � �N2) will follow (and be analogous). We consider two subcases:14The crucial di�erence is that in Case 1.1 we considered �0(u) for (v; u) 2 U (2)w , which means that the modi�cationof Wv allows replacing �0(u) by �0(u) n F (u) (because (v; u) 2 U (2)w for the modi�ed sets Wv implies that v 2�0(u) n F (u)). 27



1. If Pv2[N ]:j�(v)j��2=3N=2 j�(v)j � 0:0001 � � �N2 then applying Claim 4.3.1 with F = ; we obtainsets Wv's and Wv;u's such that Part 1 of Claim 4.3.1 holds. In particular, it follows thatXv2[N ]:jWvj��2=3N=8 jWvj � Xv2[N ]:j�(v)j��2=3N=2 j�(v)j4� 0:0001 � � �N24 = 
(� �N2):Recall that ` = log2(1=�). Thus, there exists k 2 f1; :::; (2`=3) + 3g such that for V 0 def= fv 2[N ] : 2�kN � jWvj < 2�k+1Ng it holds that Pv2V 0 jWvj = 
(� �N2=`). Fixing this k, we notethat jV 0j = 
(2k� �N=`) and thus Pr[Rk \ V 0 6= ;] > 8=9, where Rk is as selected in Step 2 ofAlgorithm 4.2 (i.e., Rk is a random set of size 
((2k�=`)�1)). Fixing any v 2 Rk\V 0, we havejWvj � 2�kN and so Pr[Sk\Wv 6= ;] > 8=9, where Sk is also as selected in Step 2 (i.e., Sk is arandom set of size 
(2k)). Finally, �xing any u 2 Sk \Wv, we have Pr[Sk \Wv;u 6= ;] > 8=9.Noting that all pairs (Rk �Sk)[ (Sk�Sk) are inspected by Algorithm 4.2, the claim follows.2. If Pv2[N ]:j�(v)j��2=3N=2 j�(v)j < 0:0001 � � � N2 then applying Claim 4.3.1 with F = ffu; vg :j�(v)j � �2=3N=2g we obtain sets Wv's and Wv;u's such that Claim 4.3.1 holds. In particular(by Part 1), it follows thatXv2[N ] jWvj � Xv2[N ]:j�(v)j<�2=3N=2 jWvj� Xv2[N ]:j�(v)j��2=3N=2 j�(v)j4 � 2jF j� �0:001 � 0:00014 � 2 � 0:0001� � � �N2 = 
(� �N2);whereas jWvj � j�(v) n F (v)j < �2=3N=2 holds for every v 2 [N ]. Note that we may assume,without loss of generality, that jWv;uj � jWvj holds for every u 2 Wv. (Actually, jWv;uj =jWvj=4 holds for the sets constructed in the proof of Claim 4.3.1.)Letting U (1)w def= fv : w 2Wvg, for every w it holds that jU (1)w j < �2=3N=2 (because v 2 U (1)wimplies w 2 �(v) and (v; w) 62 F ). Also, by Part 2, we get jU (2)w j < �4=3N for every w. Usingthe following Claim 4.3.3, we shall show that in such a case (with high probability) the sampleS selected in Step 1 (of Algorithm 4.2) contains a witness (i.e., a triple (v; u; w) such thatu 2 Wv and w 2 Wv;u). Loosely speaking, the expected number of witnesses exceeds anyconstant, whereas the upper-bounds on the sets jWvj, jU (1)v j and jU (2)v j guarantees su�cientconcentration around the expected value.The treatment of the case in which Pv2[N ] j�0(v)j � 0:999 � � � N2 is analogous. Speci�cally, weconsider analogous subcases (with di�erent constants in the di�erentiating thresholds) and invokeClaim 4.3.2. Either way, the analysis of the second subcase (above) relies on the following claim.Claim 4.3.3 (sampling triples via a 3-way Cartesian product of samples): Suppose that the fol-lowing conditions hold:1. Pv2[N ]Pu2Wv jWv;uj = 
(�2 �N3) 28



2. For every v 2 [N ], it holds that max(jWvj; jU (1)v j; jU (2)v j) < �2=3N , where U (1)v def= fx : v 2Wxgand U (2)v def= f(x; y) : v 2Wx;yg.3. For every v 2 [N ] and u 2Wv, it holds that jWv;uj < �2=3N .Then, for a su�ciently large constant c that depends only on the constant in the O-notation, withprobability at least 2=3, a uniformly selected sample of c � ��2=3 vertices contains a triple (v; u; w)such that u 2Wv and w 2Wv;u.Recall that we only invoke Claim 4.3.3 in the second forgoing case, and whenever we do so all theconditions in the hypothesis hold. Speci�cally, we have Pv2[N ]Pu2Wv jWv;uj =Pv2[N ]
(jWvj2) =
(�2 � N3) (since Pv2[N ] jWvj = 
(� � N2)) as well as jWvj; jWv;uj; jU (1)v j < ��2=3N (since Wv ��(v) n F (v) (or Wv � �0(v) n F (v)) and the same holds for U (1)v ). Furthermore, Claim 4.3.1 (resp.,Claim 4.3.2) implies that in this case (where j�(v) n F (v)j < ��2=3N=2 (resp., j�0(v) n F (v)j <��2=3N=2), it holds that jU (2)v j � 10��4=3N2. By replacing � with �=10, the hypothesis holds.Proof: We may assume, without loss of generality, that for any v and u 2 Wv it holds thatjWv;uj � jWvj. (Note that this is the case anyhow in the proofs of Claims 4.3.1 and 4.3.2.) Wedenote the vertices of the sample S by v1; : : : ; vs; u1; : : : ; us; w1; : : : ; ws. We shall prove that, withprobability at least 1 � O(s�1��2=3), there exists a triple (i; j; k) 2 [s]3 such that uj 2 Wvi andwk 2 Wvi;wj . The proof boils down to applying Chebyshev's Inequality to Pi;j;k2[s] �i;j;k, where�i;j;k = 1 if uj 2Wvi and wk 2Wvi;uj , and �i;j;k = 0 otherwise. We �rst note that� def= ExpS 24 Xi;j;k2[s]�i;j;k35= s3 � Prv;u;w2[N ][u 2Wv ^ w 2Wv;u]= s3 � 1N3 � Xv2[N ] Xu2Wv jWv;uj= 
(s3 � �2)where the last line follows by the �rst condition in the hypothesis. By Chebyshev's Inequality itfollows thatPr24 Xi;j;k2[s] �i;j;k = 035 � Var[Pi;j;k2[s] �i;j;k]Exp[Pi;j;k2[s] �i;j;k]2= ��2 �0B@Exp2640@ Xi;j;k2[s] �i;j;k1A2375 � Exp24 Xi;j;k2[s] �i;j;k3521CA= ��2 �0B@0B@ X`2[s]6 Exp[�i1;j1;k1 � �i2;j2;k2 ]1CA � �21CA (10)where ` = (i1; i2; j1; j2; k1; k2). The upperbounds on jWvj; jWv;uj; jU (1)w j and jU (2)w j will be used inupper-bounding the large sum (i.e., P`2[s]6 Exp[�i1;j1;k1 � �i2;j2;k2 ]). We decompose the latter suminto partial sums that correspond to the following cases (regarding the relations between i1-vs-i2,j1-vs-j2, and k1-vs-k2). 29



Case of i def= i1 = i2, j def= j1 = j2, and k def= k1 = k2. There are s3 such terms, each having valueExp[�2i;j;k] = Exp[�i;j;k], which equals Prv;u;w2[N ][u 2Wv ^ w 2Wv;u] = �=s3. Thus, the totalcontribution of this case is �.Case of i def= i1 = i2, j def= j1 = j2, and k1 6= k2. There are less than s4 such terms, each havingvalue Exp[�i;j;k1 � �i;j;k2], which equalsPrv;u;w1;w22[N ][u 2Wv ^ w1; w2 2Wv;u]� Prv;u;w12[N ][u 2Wv ^ w1 2Wv;u] � maxv;u;w12[N ]nPrw22[N ][w2 2Wv;u]o< �s3 � �2=3where the inequality is due to jWv;uj < �2=3N . Thus, the total contribution of this case issmaller than (s�2=3) � �.Case of i def= i1 = i2, j1 6= j2, and k def= k1 = k2. There are less than s4 such terms, each havingvalue Exp[�i;j1;k � �i;j2;k], which equalsPrv;u1;u2;w2[N ][u1; u2 2Wv ^ w 2Wv;u1 \Wv;u2 ]� Prv;u1;w2[N ][u1 2Wv ^ w 2Wv;u1 ] � maxv;u1;w2[N ]nPru22[N ][u2 2Wv]o< �s3 � �2=3where the inequality is due to jWvj < �2=3N . Thus, the total contribution of this case issmaller than (s�2=3) � �.Case of i def= i1 = i2, j1 6= j2, and k1 6= k2. There are less than s5 such terms, each having valueExp[�i;j1;k1 � �i;j2;k2 ], which equalsPrv;u1;u2;w1;w22[N ][u1; u2 2Wv ^ w1 2Wv;u1 ^ w2 2Wv;u2 ]� Prv;u1;w12[N ][u1 2Wv ^ w1 2Wv;u1 ] � maxv;u1;w12[N ]nPru2;w22[N ][u2 2Wv ^ w2 2Wv;u2 ]o< �s3 � (�2=3)2where the inequality is due to jWvj < �2=3N and jWv;u2 j < �2=3N . Thus, the total contributionof this case is smaller than (s�2=3)2 � �.Case of i1 6= i2, j def= j1 = j2, and k def= k1 = k2. There are less than s4 such terms, each havingvalue Exp[�i1;j;k � �i2;j;k], which equalsPrv1;v2;u;w2[N ][u 2Wv1 \Wv2 ^ w 2Wv1;u \Wv2;u]� Prv1;u;w2[N ][u 2Wv1 ^ w 2Wv1;u] � maxv1;u;w2[N ]nPrv22[N ][u 2Wv2 ]o< �s3 � �2=3where the inequality is due to jU (1)u j < �2=3N (and u 2 Wv2 i� v2 2 U (1)u ). Thus, the totalcontribution of this case is smaller than (s�2=3) � �.30



Case of i1 6= i2, j1 6= j2, and k def= k1 = k2. There are less than s5 such terms, each having valueExp[�i1;j1;k � �i2;j2;k], which equalsPrv1;v2;u1;u2;w2[N ][u1 2Wv1 ^ u2 2Wv2 ^ w 2Wv1;u1 \Wv2;u2 ]� Prv1;u1;w2[N ][u1 2Wv1 ^ w 2Wv1;u1 ] � maxv1;u1;w2[N ]nPru2;v22[N ][w 2Wv2;u2 ]o< �s3 � �4=3where the inequality is due to jU (2)w j < �4=3N2 (and w 2Wv2;u2 i� (v2; u2) 2 U (2)w ). Thus, thetotal contribution of this case is smaller than s2�4=3 � �.Case of i1 6= i2, j def= j1 = j2, and k1 6= k2. There are less than s5 such terms, each having valueExp[�i1;j;k1 � �i2;j;k2 ], which equalsPrv1;v2;u;w1;w22[N ][u 2Wv1 \Wv2 ^ w1; w2 2Wv1;u \Wv2;u]� Prv1;u;w12[N ][u 2Wv1 ^ w1 2Wv1;u] � maxv1;u;w12[N ]nPrv2;w22[N ][u 2Wv2 ^ w2 2Wv2;u]o< �s3 � �2=3where the inequality is due to jU (1)u j < �2=3N and jWv2;uj < �2=3N . Thus, the total contribu-tion of this case is smaller than (s�2=3)2 � �.Case of i1 6= i2, j1 6= j2, and k1 6= k2. There are less than s6 such terms, each having valueExp[�i1;j1;k1 � �i2;jj;k2 ] = Exp[�i;j;k]2, which equals (�=s3)2. Thus, the total contribution ofthis case is smaller than �2.Thus, we have one case (i.e., the �rst one) contributing �, three cases (each) contributing s�2=3 � �,three cases (each) contributing (s�2=3)2 � �, and one case (i.e., the last one) contributing �2. Usingthese upperbounds in Eq. (10), we obtainPr24 Xi;j;k2[s] �i;j;k = 035 < ��2 � ���+ 3 � s�2=3 � �+ 3 � (s�2=3)2 � �+ �2�� �2�= ��1 � �1 + 3s�2=3 + 3(s�2=3)2�:Using � = 
(s3�2) and a su�ciently large s = O(��2=3), we obtain an error bound of O((s�2=3)2=(s3�2)) =O(s�1��2=3) < 1=3, and the claim follows. 2This completes the proof of Lemma 4.3.5 Larger Adaptive vs Non-adaptive Complexity GapsWe start by establishing Theorem 1.2, which refers to the adaptive vs non-adaptive complexity gapof testing Bi-Clique Collections. We believe that the ideas underlying the adaptive algorithm andthe non-adaptive lower-bound (presented in Sections 5.1 and 5.2) can serve as a basis for establishingthe larger gap stated in Conjecture 1.3. Indeed, as shown in Section 5.3, this is the case with respectto the non-adaptive lower-bound (which indeed establishes Part 2 of Conjecture 1.3). In Section 5.4we outline an adaptive algorithm that we believe to be suitable for Part 1 of Conjecture 1.3.31



5.1 The Adaptive Query Complexity of Bi-Clique CollectionThe tester for BCC is obtained by extending the ideas that underly the tester for CC (i.e., Al-gorithm 3.1). The extension is relatively straightforward, but the analysis will have to addressadditional di�culties (i.e., beyond those encountered in the analysis of Algorithm 3.1).Algorithm 5.1 (adaptive tester for BCC): On input N and � and oracle access to a graph G =([N ]; E), the tester sets ` = log2(1=�)+2, t1 = O(`) and t2 = O(`4), and proceeds in ` iterations asfollows: For i = 1; :::; `, the tester selects uniformly t1 � 2i start vertices and for each selected vertexv 2 [N ] performs the following sub-test, denoted sub-testi(v):1. The sub-text selects at random a sample, S, of t2=(2i�) vertices, and determines Nv = S\�(v),by making the queries (v; w) for each w 2 S. If Nv 6= ; then it selects u at random in Nv andcontinue to the following steps. (Otherwise, the sub-test halts and accepts v.)2. The sub-text determines Nu = S \ �(u), by making the queries (u;w) for each w 2 S.3. If jNv �Nuj � t2=2i� then the sub-test checks that for every (w1; w2) 2 Nv �Nu it holds that(w1; w2) 2 E. Otherwise (i.e., jNv � Nuj > t2=2i�), it selects a sample of t2=(2i�) pairs inNv �Nu and checks that each selected pair is in E.4. Let B = (Nv � Nv) [ (Nu � Nu). If jBj � t2=2i� then the sub-test checks that for every(w1; w2) 2 B it holds that (w1; w2) 62 E. Otherwise (i.e., jBj > t2=2i�), it selects a sample oft2=(2i�) pairs in B and checks that each selected pair is in not E.5. The sub-text selects a sample of t2=(2i�) pairs in (Nv [Nu)� (S n (Nv [Nu)) and check thateach selected pair is not in E.The sub-test (i.e., sub-testi(v)) accepts if and only if all checks were positive (i.e., no edges weremissed in Step 3 and no edges were detected in Steps 4 and 5). The tester itself accepts if and onlyif all Pì=1 t1 � 2i invocations of the sub-test accepted.The query complexity of this algorithm is Pì=1(t1 �2i) �O(t2=2i�) = O(` � t1t2=�) = eO(1=�). Clearly,this algorithm accepts (with probability 1) any graph that is in BCC. It remains to analyze itsbehavior on graphs that are �-far from BCC.Lemma 5.2 If G = ([N ]; E) is �-far from BCC, then on input N; � and oracle access to G, Algo-rithm 5.1 rejects with probability at least 2=3.Part 1 of Theorem 1.2 follows.Proof: We proceed as in the proof of Lemma 3.2; that is, we will show that if Algorithm 5.1accepts with probability at least 1=3 then the graph is �-close to BCC. The proof evolves around arevised notion of i-good start vertices, which is de�ned on top of the notion of i-good edges. Thede�nition refers to the parameters 
2 and 
3, which will be determined such that 
2 = �(1=t2) and
1 � 
3 = �(1=t1).De�nition 5.2.1 An edge (v; u) is i-good if the following three conditions hold.1. The number of missing edges in �(v) � �(u) is at most 
2 � 2i� � j�(v; u)j � N edges, where�(v; u) def= �(v) [ �(u); that is, j(�(v)� �(u)) n Ej � 
2 � 2i� � j�(v; u)j �N .32



2. The number of edges in (�(v)� �(v)) [ (�(u)� �(u)) is at most 
2 � 2i� � j�(v; u)j �N .3. For every positive integer j � j0 def= log2(j�(v; u)j=(
2 � 2i�N)), the number of vertices in�(v; u) that have at least 
2 � 2i+j� �N edges going out of �(v; u) is at most 2�j � j�(v; u)j.A vertex v is i-good if at least (1 � 
3) � j�(v)j of its neighbors yield a edge that is i-good; that is,if jfu 2 �(v) : (v; u) is i-goodgj � (1� 
3) � j�(v)j.Claim 5.2.2 If v has degree at least 
2�2i��N and is not i-good, then the probability that sub-testi(v)rejects is at least 
3=2.Proof: By the hypothesis j�(v)j � 
2 � 2i� � N , with probability at least 0:9, Step 1 of sub-testi(v)generates a non-empty sample of vertices in �(v). Conditioned on this event (and using the hy-pothesis that v is not i-good), with probability at least 
3, the vertex u 2 �(v) selected in thissample is such that (v; u) is not i-good. We �x such an edge (v; u) for the rest of this proof.Assume that Condition 1 of i-goodness does not hold for (v; u), and let � def= 
2�2i��j�(v;u)j�Nj�(v)j�j�(u)j �
2�2i��Nmin(j�(v)j;j�(u)j) denote (the lower bound on) the fraction of missing edges in �(v)��(u). (Note thatthis event may happen only if min(j�(v)j; j�(u)j) � 
2 �2i� �N .) Then, with probability at least 0:9,it holds that min(jNv j; jNuj) > m=2, where m def= t2�2i � min(j�(v)j;j�(u)j)N � t2 � 
2 � 1. Also note thatthe members of Nv and Nu are distributed uniformly in �(v) and �(u), respectively. Consideringn = m=2 uniformly distributed vertices in �(v) and n uniformly distributed vertices in �(u), itfollows (as in the proof of Claim 3.2.2) that, with probability at least 0:9, the fraction of edgesthat are missing in the subgraph induced by the said sample is at least �=2. It follows that Step 3rejects with probability at least 0:92 > 0:8 (regardless if it examines all pairs in Nv � Nu or justexamines a random sample of t22i� � t2
2� pairs).The treatment of Condition 2 is similar, except that here we refer to the number of edges (in(�(v) � �(v)) [ (�(u) � �(u))) over j�(v)j2 + j�(u)j2 = �(j�(v; u)j2). Indeed, treating �(v; u) as awhole facilitates the streamlining of the proof with the treatment of Condition 1 in Claim 3.2.2.We conclude that if Condition 2 (of i-goodness of (v; u)) is violated, then Step 4 of the test rejectswith probability at least 0:8.Finally, we turn to Condition 3 of i-goodness. Assuming that this condition does not hold for(v; u), we show that Step 5 of the test rejects with probability at least 0:8. The proof is analogousto the analysis of Condition 2 in Claim 3.2.2, except that �(v; u) replaces �(v). Thus, sub-testi(v)rejects with probability at least 0:9 � 
2 � 0:8, and the current claim follows. 2Claim 5.2.3 If Algorithm 5.1 accepts with probability at least 1=3 then for every i 2 [`] the numberof vertices of degree at least 
2 �2i��N that are not i-good is at most 
1 �2�i �N , where 
1
3 = �(1=t1).Proof: Assuming to the contrary that the number of these vertices exceeds 
1 � 2�i �N , Claim 5.2.2implies that a single invocation of sub-testi rejects with probability at least 
12�i � 
3=2. Recallingthat Algorithm 5.1 invokes sub-testi on t1 � 2i random vertices (and using t1 � 2 � (
1
3)�1), theclaim follows. 2Additional di�culties. As stated up-front, the current proof faces additional di�culties that werenot encountered in the proof of Lemma 3.2. These di�culties refer to the partition reconstructionprocedure, which is supposed to provide an approximately good partition of the graph to bi-cliques.The �rst problem refers to the case that (v; u) is i-good, but most of �(v; u) belongs to previously33



identi�ed bi-cliques and furthermore these vertices reside in �(u) (rather than in �(v)). Thus, wecannot \charge" these vertices to edges that are adjacent to v, but rather develop a charging rulethat allows us to charge v indirectly via its typical neighbors u. The second problem refers tothe treatment of low-degree vertices, and it arises from the fact that vertices in �(v; u) may havevastly di�erent degrees (which, indeed, occurs in the case that �(v) has a signi�cantly di�erentcardinality than �(u)). Our solution is based on using two di�erent degree thresholds (dependingon the relation between the degree of a vertex and the degree of most of its neighbors). With thismotivation in mind, we turn to the actual description of the (iterative) partition-reconstructionprocedure.The partition reconstruction procedure. The iterative procedure is initiated with C = L0 = L(1)0 =L(2)0 = L(I)0 = ;, R0 = [N ] and i = 1, where C denotes the set of vertices \covered" (by bi-cliques)so far, Ri�1 denotes the set of \remaining" vertices after iteration i � 1 and Li�1 denotes the setof vertices cast aside (as having \low degree") in iteration i� 1. The set Li�1 is the union of threesets, L(1)i�1, L(2)i�1, and L(I)i�1, where the �rst two sets correspond to two degree thresholds, denoted �1and �2, and the third set consists of many subsets that use intermediate thresholds (for avoidinga non-smooth transition). (We shall set �1 = �(1=`) and �2 = �(�1=`) � 
2.) The ith iterationproceeds as follows, where i = 1; :::; ` and Fi is initialized to ;.1. Pick an arbitrary vertex v 2 Ri�1 n C that satis�es the following three conditions(a) v is i-good.(b) v has su�ciently high degree in the following sense: either j�(v)j � �1 �2i� �N or for somek 2 [`0], where `0 = log0:9(�2=�1) = O(log `), both j�(v)j � 0:9k � �1 � 2i� � N and �k(v)hold, where �k(v) represents the condition that a signi�cant fraction of v's neighborshave a signi�cantly higher degree than v itself; speci�cally, �k(v) holds if�����w2�(v) : j�(w)j > �1:1 + k10`0� � j�(v)j����� > j�(v)j100` : (11)Note that �`0(v) holds if jfw 2 �(v) : j�(w)j > 1:2 � j�(v)jgj is greater than j�(v)j=100`,and the corresponding degree bound is �2 � 2i� �N (because 0:9`0 = �2=�1).(c) There exists u 2 �(v) n C such that the edge (v; u) is i-good and������(�(v; u) n C) n0@ [j�i�1Lj1A������ � j�(v; u)j5(i.e., relatively few vertices of �(v; u) are covered by C or cast aside in previous iterationsdue to having low degree).If no such vertex v exists, then de�neL(1)i = fv 2 Ri�1 n C : :�1(v) ^ (j�(v)j<�1 � 2i� �N)g;L(I)i = [k2[`0�1]fv 2 Ri�1 n C : �k(v) ^ :�k+1(v) ^ (j�(v)j<0:9k�1 � 2i� �N)g;L(2)i = fv 2 Ri�1 n C : �`0(v) ^ (j�(v)j<�2 � 2i� �N)g;Li = L(1)i [ L(I)i [ L(2)i , and Ri = Ri�1 n (Li [ C).If i < ` then proceed to the next iteration, and otherwise terminate.34



2. For vertex v as selected in Step 1, pick an arbitrary u 2 �(v) nC satisfying Condition 1c. LetCv;u = fw 2 �(v; u) : j�(w) n �(v; u)j < j�(v; u)jg. Form a new bi-clique with the vertex setC 0v;u  Cv;u n C, and update Fi  Fi [ f(v; u)g and C  C [ C 0v;u. This bi-clique will have�0(v) def= �(v) \ C 0v;u on one side and �0(u) def= �(u) \ C 0v;u on the other side.Note that by Condition 1c (and the de�nition of i-goodness), for every (v; u) 2 Fi, it holds thatjCv;uj > (1� o(1)) � j�(v; u)j and j�(v; u) n Cj � j�(v; u)j=5. Thus, jC 0v;uj � jCv;uj � j�(v; u) \ Cj �j�(v; u)j=6, which allows translating quality guarantees that are quanti�ed in terms of j�(v; u)jto similar guarantees in terms of jC 0v;uj. In fact, jC 0v;u n (Sj�i�1 Lj)j � j�(v; u)j=6, which enablesfurther translation of these guarantees to quanti�cation in terms of jC 0v;u \Ri�1j.Claim 5.2.4 Referring to the foregoing procedure, for every i 2 [`] the following holds.1. The number of missing edges inside the bi-cliques formed in iteration i is at most 12
2� �N2;that is, ������ [(v;u)2Fif(w1; w2) 2 �0(v) � �0(u) : (w1; w2) 62 Eg������ � 12
2� �N2:2. The number of (\super
uous") edges inside the bi-cliques formed in iteration i is at most12
2� �N2; that is,������ [(v;u)2Fif(w1; w2) 2 (�0(v) � �0(v)) [ (�0(u)� �0(u)) : (w1; w2) 2 Eg������ � 12
2� �N2:3. The number of (\super
uous") edges between bi-cliques formed in iteration i and either Rior other bi-cliques formed in the same iteration is at most 36` � 
2� �N2; actually,������ [(v;u)2Fif(w1; w2) 2 C 0v;u � (Ri�1 n C 0v;u) : (u;w) 2 Eg������ � 36` � 
2� �N2:4. jRij � 2�i �N and jLij � 2�(i�1) �N .Thus, the total number of violations caused by the bi-cliques that are formed by the foregoingprocedure is upperbounded by (36 + o(1))`2 � 
2� �N2 = o(�N2).Proof: We prove all items simultaneously, by induction from i = 0 to i = `. Needless to say, allitems hold vacuously for i = 0, and thus we focus on the induction step.Starting with Item 1, we note that every (v; u) 2 Fi is i-good and thus the number of edgesmissing in �0(v)��0(u) � �(v)��(u) is at most 
22i� � j�(v; u)j �N . As in the proof of Claim 3.2.4,we need to relate j�(v; u)j to jC 0v;u \ Ri�1j (in order to upper-bound the contribution of all pairsin Fi). We recall that C 0v;u = Cv;u n C, where C is the set of vertices that are already coveredwhen this bi-clique �(v; u) is identi�ed. Also recall that j�(v; u) n Cv;uj = o(1) � j�(v; u)j andj(�(v; u) nC) nLj � j�(v; u)j=5, where L def= Sj2[i�1]Lj . Using C 0v;u = (C 0v;u \Ri�1)[ (C 0v;u \L), we
35



get that C 0v;u\Ri�1 = (Cv;unC)nL and it follows that jC 0v;u\Ri�1j � j(�(v; u)nC)nLj�o(j�(v; u)j) >j�(v; u)j=6. Combining all the above (and recalling that the sets C 0v;u are disjoint), we obtain������ [(v;u)2Fif(w1; w2) 2 �0(v) � �0(u) : (w1; w2) 62 Eg������ � 
22i� � X(v;u)2Fi j�(v; u)j �N� 
22i� � 6jRi�1j �N:Using the induction hypothesis regarding Ri�1 (i.e., jRi�1j < 2�(i�1) �N), Item 1 follows.Item 2 is proved in a similar fashion. As for Item 3, we adapt the proof of Item 2 of Claim 3.2.4.Speci�cally, the number of edges in Cv;u � ([N ] n Cv;u) is upper-bounded by the sum of jCv;u �(�(v; u) nCv;u)j and the number of edges in Cv;u� ([N ] n �(v; u)). Using Condition 3 of i-goodness(of (v; u)), we upper-bound both j�(v; u)nCv;uj and the number of edges of the second type. Hence,the number of edges in C 0v;u � (Ri�1 nC 0v;u) � Cv;u � ([N ] nCv;u) is at most 3` � 
22i� � j�(v; u)j �N .Using again P(v;u)2Fi j�(v; u)j < 6jRi�1j and jRi�1j < 2�(i�1) �N , we establish Item 3.Turning to Item 4, we �rst note that Li � Ri�1 and thus jLij � jRi�1j � 2�(i�1) � N . As forRi, let us consider all the cases that might lead to placing a vertex v in Ri; that is, the variousviolations of the three conditions in Step 1.Violation of Condition (b): not having su�ciently high degree. We observe that vertices that violateCondition (b) do not contribute to Ri, because each such vertex is either covered in iterationi or ends-up in Li. Speci�cally, let v be an arbitrary vertex that violates Condition (b), andlet k(v) 2 f0; 1; :::; `0g be the largest index k such that �k(v) holds (where �0 is �ctitiouslyde�ned such that it always holds). Then, Condition (b) is equivalent to requiring that j�(v)j �0:9k(v) � �1 � 2i� �N holds. Indeed, if the latter condition does not hold, then v is placed in Li(and the converse holds as well).In the subsequent cases, we shall assume that Condition (b) does hold with respect to thevertex v.Violation of Condition (a): not being i-good. Here we refer to vertices that are not i-good althoughthey have degree at least �2 � 2i� �N > 
2 � 2i� �N . By Claim 5.2.3, the number of vertices ofthis type is at most 
12�i �N .Violation of Condition (c). Here we refer to vertices that satisfy both Conditions (a) and (b) butviolate Condition (c), which refers to the existence of a good edge that yields a bi-cliquewith su�ciently many new vertices. The rest of the proof is devoted to upper-bounding thenumber of such vertices. Loosely speaking, this is done by using the upperbound establishedin Item 3, while relying on the hypothesis that these vertices satisfy both Conditions (a)and (b).Recalling that we refer to vertices taht satisfy both Conditions (a) and (b), we �rst upper-boundthe number of vertices that have relatively many neighbors in the current C (i.e., vertices v suchthat j�(v) \ Cj � j�(v)j=8). As in the proof of Claim 3.2.4, each such vertex v requires at leastj�(v)j=8 � �2 � 2i� �N=8 edges from C 0 def= S(v0 ;u0)2Sj2[i] Fj C 0v0;u0 to it, whereas by Item 3 the totalnumber of edges going out from C 0 to Ri is at most i � 36` � 
2� �N2. Hence, the number of verticesof this type is upper-bounded by36`2 � 
2� �N2�2 � 2i� �N = 36`2 � 
2�2 � 2�iN < 0:1 � 2�iN; (12)36



where the last inequality uses 
2 < �2=(360`2).In the rest of the proof we consider only vertices that have have relatively few neighbors in thecurrent C (i.e., j�(v) \ Cj � j�(v)j=8). In particular, by the case hypothesis (i.e., v is i-good),there exist u 62 C such that (v; u) is i-good (because the fraction of \non-good" pairs is at most
3 < 1=2). Thus, we focus on the condition j(�(v; u) n C) n Lj > j�(v; u)j=5, where L def= Sj�i�1 Ljand C denotes the current set of covered vertices. We distinguish three cases with respect to therelation between j�(v)j and j�(u)j.Case of j�(v)j � j�(u)j (i.e., j�(v)j > 1:3j�(u)j). Using the case hypothesis (which implies j�(v)j >j�(v; u)j=2), it su�ces to show that j(�(v) n C) n Lj > j�(v)j=2. Since j�(v) \ Cj � j�(v)j=8,we focus on upper-bounding j�(v)\Lj for typical v. The intuition is that in the current case:�1(v) holds and so (v 62 Li implies) j�(v)j � �1 � 2i�N , whereas each vertex in �(v) \ Ljhas at most �2 � 2j�N neighbors of degree at least �1 � 2i�N (which yields a total count of2�2�N2 edges in Lj � (Ri�1 n Li)). Thus, the number of vertices v 2 Ri�1 n Li for whichj�(v) \ Lj > j�(v)j=8 holds is su�ciently small. Details follow.Using the hypothesis that (v; u) is i-good (and referring to Condition 2 of De�nition 5.2.1),we note that the number of edges with both endpoints in �(v) is at most 
2 �2i� � j�(v; u)j �N �
2 � 2i+1� � j�(v)j �N . Thus, less than (200`)�1 fraction of the vertices in �(v) have more that200` � 
2 � 2i+1� �N < �2 � 2i� �N=100 � j�(v)j=100 such edges, where the inequalities are dueto 
2 � �2=40000` and j�(v)j � �2 � 2i� �N (since v 62 Li). By Condition 3 of De�nition 5.2.1,at most (200`)�1 fraction of the vertices in �(v) have at least 200` � 
2 � 2i� �N < j�(v)j=100edges going out of �(v; u). We conclude that less than a (100`)�1 fraction of the vertices in�(v) have degree exceeding j�(u)j+ 0:02j�(v)j < j�(v)j, and so :�1(v) holds. The latter factallows us to increase our lower-bound on j�(v)j (from j�(v)j � �2 � 2i�N) to j�(v)j � �1 � 2i�N(using again v 62 Li). Thus, if j�(v)\Lj > j�(v)j=8 then there exist at least �1 � 2i�N=8 edgesfrom L = Sj�i�1 Lj to v.We upper-bound the number of such vertices v (i.e., for which j�(v) \ Lj > j�(v)j=8), byupper-bounding the number of edges that may go from L to any vertex of degree at least�1 � 2i�N . The contribution of each vertex in L(2)j to this number is at most �2 � 2j�N ,because vertices in L(2)j have degree at most �2 � 2j�N . As for the vertices in Lj n L(2)j ,each such vertex u0 violates �`0 and thus can contribute at most j�(u0)j=100` to this number,because at most a 1=100` fraction of its neighbors have degree exceeding 1:2j�(u0)j < �1 �2i�N(since j�(u0)j < �1 � 2j�N and j � i � 1), whereas we count edges to vertices of degree atleast �1 � 2i�N . Thus, the contribution of each vertex in u0 2 Lj to the count is at mostmax(�2 � 2j�N; j�(u0)j=100`) � �1 � 2j�N=100` (since �2 � �1=100` and j�(u0)j < �1 � 2j�N).Recalling that jLjj � jRj�1j � 2�(j�1)N , it follows that the number of bad vertices (i.e.,vertices v of degree at least �1 � 2i�N with at least j�(v)j=8 neighbors in L) is at mostPj�i�1 jLjj � �1 � 2j� �N=100`�1 � 2i�N=8 � (i� 1) � �1 � 2� �N2=100`�1 � 2i�N=8< 0:16 � 2�iN;whereas the rest of the vertices v 2 Ri�1 n Li satisfy j�(v) \ Lj � j�(v)j=8. Recalling thatj�(v) \ Cj � j�(v)j=8, we conclude that j(�(v) n C) n Lj > j�(v)j=2, and the claim follows;that is, the current case is only responsible for 0:16 � 2�iN vertices violating Condition (c).Case of j�(v)j � j�(u)j (i.e., j�(v)j < 0:7j�(u)j). In this case we shall show that j(�(u) nC) n Lj >j�(u)j=2 (and use j�(u)j > j�(v; u)j=2). We �rst show that j�(u) \ Lj � j�(u)j=8, and later37



turn to show that typically j�(u) \ Cj � j�(u)j=8 holds as well. The proof of the �rst claimis supported by the intuition that almost all vertices in �(u) have the approximately thesame degree as v and satisfy �`0 (since most of their neighbors have degree approximatelyj�(u)j � j�(v)j), which implies that they cannot be in L (because vertices in L that satisfy�`0 have degree at most �2 � 2i�1�N , whereas v 2 Ri�1 n Li has degree at least �2 � 2i�N).Details follow.We start by showing that almost all vertices in �(u) satisfy �`0 . Analogously to the previouscase, at most 1% of the vertices in �(u) have more than 0:02 � j�(v)j neighbors not in �(v).On the other hand, by using Condition 1 of De�nition 5.2.1, at least 99% of the vertices in�(u) have at least 0:99 � j�(v)j neighbors in �(v), whereas at least 99% of the vertices in �(v)have degree at least 0:99 � j�(u)j. Let us denote by V the subset of �(u) containing vertices v0such that j�(v0)j � 1:02 � j�(v)j and �(v0)\�(v) contains at least 0:98 � j�(v)j vertices of degreeat least 0:99 � j�(u)j. Then, jV j > 0:98j�(u)j, because 98% of the vertices in �(u) have bothdegree at most 1:02 � j�(v)j and at least 0:99 � j�(v)j neighbors in �(v) (whereas at most 1% ofthe vertices in �(v) have degree smaller than 0:99 � j�(u)j). We note that each vertex in V hasdegree at most 1:02 � j�(v)j < 0:72 � j�(u)j, whereas at least a 0:98=1:02 � (100`)�1 fractionof its neighbors have degree at least 0:99 � j�(u)j > 1:2 � 0:72 � j�(u)j, which implies that eachvertex in V satis�es �`0 . Using the latter fact and recalling that each vertex in V has degreeat least 0:99 � j�(v)j � 0:99 ��2 �2i�N (since v 62 Li), we show that V \L = ;. The latter claimfollows by noting that for every v0 2 L that satis�es �`0 it holds that j�(v0)j < �2 � 2i�1�N ,whereas every v0 2 V satis�es both �`0 and j�(v0)j > 0:99 � �2 � 2i�N . Finally, using V \L = ;and jV j � 0:98j�(u)j, we get j�(u) \ Lj � j�(u) n V j � 0:02j�(u)j.Having established j�(u) \ Lj � j�(u)j=8, we now turn to provide a similar upper-bound forj�(u) \ Cj. Unlike in the previous case (or rather in the preliminary proof that �(v) \ C issmall), here we cannot directly charge the vertices in �(u) \ C to edges going out from C tov. Still an indirect charging rule will work; that is, we �rst charge such vertices to u, andthen distribute the charge to u's neighbors.Speci�cally, suppose that j�(u) \ Cj > j�(u)j=8. This means that there are at least j�(u)j=8edges going out from C to u. Wishing to charge these edges to the initial vertex v (whileconsidering all initial v 2 Ri�1nLi), we charge each neighbor of u by one eighth of an edge (i.e.,1=8 unit) as its share in the edges going from C to u. (This guarantees that, when consideringdi�erent initial vertices, it still holds that each edge going out of C is charged at most 1 unit.)Indeed, an important observation is that we are not concerned with the existence of a speci�cu 2 �(v) that violates j�(u) \ Cj � j�(u)j=8, but should be concerned only if this violationoccurs for all u 2 �(v)nC such that (v; u) is i-good (and j�(u)j > j�(v)j=0:7), since otherwisewe may just pick some u 2 �(v) n C such that (v; u) is i-good and j�(u) \ Cj � j�(u)j=8.Thus, we get into trouble with v only if, for every u 2 �(v) n C that (v; u) is i-good, bothj�(u)j > j�(v)j=0:7 and j�(u)\Cj > j�(u)j=8 hold.15 Let us denote the set of such bad verticesby B, and note that each vertex v 2 B is charged with at least (j�(v)j=2) �(1=8) > �2 �2i�N=16edges going from C to �(v), where �(v)j=2 is a lower-bound on the number of vertices u 2 �(v)such that u 62 C and (v; u) is i-good.16 Since the total number of edges going out from C is atmost 36`2 �
2� �N2, we upper-bound jBj by 0:1 �2�iN (as in Eq. (12), except that here we use
2 < �2=(6000`2)). To re-cap, note that we showed that the current case is only responsible15If j�(u)j > j�(v)j=0:7 does not hold then this u is handled in the other two cases.16Recall that the fraction of vertices u 2 �(v) such that u 2 C is at most 1=8, whereas the fraction of verticesu 2 �(v) such that (v; u) is not i-good is 
3 < 3=8. 38



for 0:1 � 2�iN vertices that violating Condition (c).Case of j�(v)j � j�(u)j (i.e., 0:7j�(u)j � j�(v)j � 1:3j�(u)j. We �rst note that the analysis of j�(u)\Cj for a typical (v; u), as presented in the previous case (of j�(v)j � j�(u)j), still applies.Thus, for all but 0:1 � 2�iN vertices v, there exists a vertex u such that either the �rst caseholds (i.e., j�(v)j > 1:3j�(u)j) or j�(u) \ Cj � j�(u)j=8. (If the �rst case holds then weproceeds as in the �rst case, and otherwise we proceed as follows.) We shall show, below,that j�(u) \ Lj � j�(u)j=8, and conclude that j(�(u) n C) n Lj � j�(u)j=2, which in turn islower-bounded by j�(v; u)j=5 (since j�(u)j � j�(v; u)j=2:3).The claim j�(u)\Lj � j�(u)j=8 is supported by the intuition that almost all vertices in �(u)have approximately the same degree as v. However, in the current case these vertices donot necessarily satisfy �`0 and so their being in L does not necessarily mean their havingdegree below �2 � 2i�1�N , which is signi�cantly smaller than j�(v)j � �2 � 2i�N . So we need adi�erent method to argue that being in L is inconsistent with having degree approximatelyj�(v)j. Indeed, the source of trouble is that for two di�erent thresholds �0 > �00 it maybe the case that v 62 Li holds because j�(v)j � �00 � 2i�N , whereas v0 2 Lj holds becausej�(v0)j < �0 �2j�N . Here is where the intermediate thresholds (and the di�erent �k) come intoplay: we shall show that whenever the foregoing happens it holds that �0 � �00 (rather than�0 > 2�00, which would have not given anything). Speci�cally, we shall show that if �k(v) holdsthen �k�1(v0) must hold for almost all v0 2 �(u). Thus, if v 62 Li due to j�(v)j � 0:9k�1 �2i�N(and �k(v) holds), then v0 2 Lj implies that j�(v0)j < 0:9k�1�1 �2j�N , which yields the desiredcontradiction. Details follow.Using arguments as in the previous two cases, we �rst establish that at least 99% of the verticesin �(u) have degree at most (1+`�2)�j�(v)j and have at least (1�`�2)�j�(v)j neighbors in �(v).(Here the argument relies on 
2 � �2=(500`2) and j�(u)j � j�(v)j=1:3 � �2 �2i�N=1:3.) Let usdenote this (large) subset of �(u) by V , and note that v 2 V . Similarly, one can show that atleast 1� (200`)�1 of the vertices in �(v) have degrees in the interval [(1� (300`0)�1) � j�(u)j].Hence, for every v0 2 V , it holds that j�(v0)j is in the interval (1� (300`0)�1) � j�(v)j, whereasat least 1�(200`)�11+`�2 > 1� (100`)�1 of its neighbors (i.e., the vertices in �(v0)) have degrees inthe interval [(1 � (300`0)�1) � j�(u)j]. Denoting (for every v0 2 V ),�(v0) def= maxS��(v0) s.t. jSj=j�(v0)j=100`�minu02S � j�(u0)jj�(v0)j�� (13)we infer that for every v0 2 V (including v) it holds that �(v0) = (1�(300`0)�1)�j�(u)j(1�(300`0)�1)�j�(v)j = (1 �(100`0)�1) � j�(u)jj�(v)j . It follows that �(v0) � 1�(100`0)�11+(100`0)�1 � �(v) > (1� (30`0)�1) � �(v).Recall that k(v0) 2 f0; 1; :::; `0g is the largest index k such that �k(v0) holds (where �0 alwaysholds). Indeed, �(v) > 1:1+ k(v)10`0 and j�(v)j � 0:9k(v) ��1 �2i� �N (because v 62 Li). Combining�(v0) > (1� (30`0)�1) ��(v) and �(v) > 1:1+ k(v)10`0 , it follows that for every v0 2 V it holds that�(v0) > 1:1+k(v)�110`0 , which implies k(v0) � k(v)�1. It follows that V \L = ;, because otherwisewe obtain, for some j � i� 1, a vertex v0 2 V \ Lj such that j�(v0)j < 0:9k(v0) � �1 � 2j� �N �0:9k(v)�1 � �1 � 2i�1� � N � j�(v)j=1:8, which contradicts j�(v0)j � (1 � (300`0)�1) � j�(v)j >�(v)j=1:8. Recalling that jV j � 0:99 � j�(u)j, we conclude that j�(u) \ Lj � 0:01j�(u)j.Combining the preliminary bound (of Eq. (12)) and the bounds of the foregoing three cases, weconclude that at most (0:1 + 0:16 + 0:1 + 0:1) � 2�iN < 0:5 � 2�iN vertices satisfy conditions (a)and (b) but violate Condition (c). 39



Recall that Ri only contains vertices that satisfy Condition (b) but violate either Condition (a)or Condition (c). The number of the former was upper-bounded by 
1 � 2�iN , whereas the numberof the latter was just upper-bounded by 0:5 � 2�iN . Thus, jRij � (
1 + 0:5) � 2�i � N , and Item 4follows by the foregoing setting of 
1 � 1=2. This completes the proof of the current claim. 2Completing the reconstruction and its analysis. The foregoing construction leaves \unassigned" thevertices in R` as well as some of the vertices in L1; :::; L`. (Note that some vertices in S`�1i=1 Li maybe placed in bi-cliques constructed in later iterations, but there is no guarantee that this actuallyhappens.) For sake of elegance, we assign each of these remaining vertices to a two-vertex bi-clique(i.e., an isolated pair of vertices connected by an edge). Ignoring the number of edges used inthese bi-cliques (which is negligible), the number of violation caused by this assignment equals thenumber of edges with both endpoints in R0 def= R` [ (Sì=1 Li), because edges with a single endpointin R0 were already accounted for in Item 3 of Claim 5.2.4. Nevertheless, we upper-bound thenumber of violations by the total number of edges incident to R0, which in turn is upper-boundedby Xv2R`[(Si2[`]Li) j�(v)j � jR`j �N + X̀i=1 Xv2Li j�(v)j� �N4 �N + X̀i=1 2�(i�1)N � �12i�N= �4 �N2 + 2` � �1 � �N2:By the foregoing setting of �1 (i.e., �1 � 1=4`), it follows that the number of these edges is smallerthan �N2=2. Combining this with the bounds on the number of violating edges (or non-edges) asprovided by Claim 5.2.4, the lemma follows.5.2 Non-Adaptive Lower-Bound for Bi-Clique CollectionIn this section we establish Part 2 of Theorem 1.2 by adapting the proof presented in Section 4.1.Speci�cally, for every value of � > 0, we consider two di�erent classes of graphs, one consistingof graphs in BCC and the other consisting of graphs that are �-far from BCC, and show that anon-adaptive algorithm of query complexity o(��3=2) cannot distinguish between graphs selectedat random in these classes.The �rst class, denoted BCC�, consists of N -vertex graphs such that each graph consists of(16�)�1 bi-cliques, and each bi-clique has 8� � N vertices on each side. It will be instructive topartition these (16�)�1 bi-cliques into (32�)�1 pairs (each consisting of two bi-cliques), and vieweach of these bi-cliques as a super-cycle of length four with 4� � N vertices in each of its fourindependent sets. The second class, denoted SC8C�, consists of N -vertex graphs such that eachgraph consists of (32�)�1 super-cycles of length 8, and each of these super-cycles has 4� �N verticesin each of its eight independent sets. Indeed, BCC� � BCC, whereas each graph in SC8C� is �-far fromBCC (because each of the super-cycles of length 8 must be turned into a collection of bi-cliques).We note that both classes contain only bipartite graphs.In order to motivate the claim that a non-adaptive algorithm of query complexity o(��3=2)cannot distinguish between graphs selected at random in these classes, consider the algorithm that40



selects o(��3=4) vertices and inspects the induced subgraph. Consider the partition of a graph inSC8C� into (32�)�1 pairs of bi-cliques (equiv., super-cycles of length 4), and correspondingly thepartition of a graph in SC8C� into (32�)�1 super-cycles of length 8. Then, the probability that asample of o(��3=4) vertices contains at least four vertices that reside in the same part (of 32� � Nvertices) is o(��3=4)4 � (32�)3 = o(1). On the other hand, one may show that if this event does notoccur, then the answers obtained from both graphs are indistinguishable. As will be shown below,this intuition extends to an arbitrary non-adaptive algorithm.As in Section 4.1, it su�ces to consider deterministic algorithms. We shall show that, for everyset of o(��3=2) queries, the answers provided by a randomly selected element of BCC� are statisticallyclose to the answers provided by a randomly selected element of SC8C�. As in Section 4.1, for anN -vertex graph G and a query (u; v), we denote the corresponding answer by ansG(u; v).Lemma 5.3 Let G1 and G2 be random N -vertex graphs uniformly distributed in BCC� and SC8C�,respectively. Then, for every sequence (v1; v2); :::; (v2q�1; v2q) 2 [N ] � [N ], where the vi's are notnecessarily distinct, it holds that the statistical di�erence between ansG1(v1; v2); :::; ansG1(v2q�1; v2q)and ansG2(v1; v2); :::; ansG2(v2q�1; v2q) is O(q2�3).Part 2 of Theorem 1.2 follows.
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Figure 6: A single part, consisting of eight independent sets, in BCC� and SC8C�.Proof: We adapt the proof of Lemma 4.1. Here, we consider a 1-1 correspondence, denoted �,between the vertices of an N -vertex graph in BCC� [ SC8C� and triples in [(32�)�1]� f0; 1; :::; 7g �[4� �N ]. Speci�cally, �(v) = (i; j; w) indicates that v resides in the (j + 1)st independent set of theith part of the graph, and it is vertex number w in this set. Recall that in the case of a graphin BCC� the eight independent sets are arranged in two super-paths (each of length 4), whereasin the case of a graph in SC8C� the eight independent sets are arranged in a single super-path oflength 8. (See Figure 6.) Consequently, the answers provided by uniformly distributed G1 2 BCC�and G2 2 SC8C� can be emulated by the following two corresponding random processes.1. The process A1 selects uniformly a bijection � : [N ] ! [(32�)�1] � f0; 1; :::; 7g � [4� � N ]and answers each query (u; v) 2 [N ] � [N ] by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = (j2 � 1 mod 4) + bj2=4c � 4.2. The process A2 selects uniformly a bijection � : [N ] ! [(32�)�1] � f0; 1; :::; 7g � [4� � N ]and answers each query (u; v) 2 [N ] � [N ] by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = j2 � 1 mod 8.Let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., second and third) coordinates of�(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both processes answer the query (u; v) with 0 if41



�0(u) 6= �0(v), and the di�erence between the processes is con�ned to the case that �0(u) = �0(v).Speci�cally, conditioned on �0(u) = �0(v), it holds that A1(u; v) = 1 if and only if �00(u) = (�00(v)�1 mod 4)+b�00(v)=4c�4, whereas A2(u; v) = 1 if and only if �00(u) = �00(v)�1 mod 8. However, sincethe (random) value of �00 is not present at the answer, the foregoing di�erence may go unnoticed.These considerations apply to a single query, but things may change in case of several queries. Ingeneral, the event that allows distinguishing the two processes is a simple cycle of at least fourvertices that have the same �0 value. Minor di�erences may also be due to equal �000 values, and sowe also consider these in our \bad" event.De�nition 5.3.1 We say that � is bad (w.r.t the sequence (v1; v2); :::; (v2q�1; v2q) 2 [N ]� [N ]), ifone of the following two conditions hold:1. For some i 2 [(32�)�1], the subgraph Qi = (Vi; Ei), where Vi = fvk : k2 [2q] ^ �0(v)= ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, contains a simple cycle of length at least four.2. There exists i 6= j 2 [2q] such that �000(vi) = �000(vj).Indeed, the query sequence (v1; v2); :::; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 5.3.2 The probability that a uniformly distributed bijection � is bad is at mostO(q2�3) + q216�NProof: We start by upper-bounding the probability that the second event in De�nition 5.3.1 holds.We have �2q2 � sub-events, and each holds with probability 1=(32� � N). As for the �rst event, forevery t � 4, we upper-bound the probability that some Qi contains a simple cycle of length t. As inthe proof of Claim 4.1.2, we observe that the query graph contains at most (2q)t=2 cycles of lengtht, whereas the probability that a speci�c simple t-cycle is contained in some Qi is (32�)t�1. Thus,the probability of the �rst event is upper-bounded byXt�4(2q)t=2 � (32�)t�1 <Xt�4 �p2q � 32 � �(t�1)=t�t <Xt�4 �50pq � �3=4�t ;which is upper-bounded by 2 � (50pq � �3=4)4 = O(q2�3), provided that 50pq � �3=4 < 1=2 (and theclaim hold trivially otherwise). 2Claim 5.3.3 Conditioned on the bijection � not being bad, the sequences (A1(v1; v2); :::; A1(v2q�1; v2q))and (A2(v1; v2); :::; A2(v2q�1; v2q)) are identically distributed.Proof: Noting that De�nition 5.3.1 only refers to �0 and �000, we �xed any choice of �0 and �000 thatyields a good � and consider the residual random choice of �00. Referring to the foregoing subgraphsQi's, recall that pairs with endpoints in di�erent Qi's are answered by 0 in both processes. Notethat (by the second condition in De�nition 5.3.1) the hypothesis implies that �000 assigns di�erentvalues to the di�erent vertices in fvk : k 2 [2q]g, and it follows that �00 assigns these vertices valuesthat are uniformly and independently distributed in f0; 1; :::; 7g. Now, using the �rst conditionin De�nition 5.3.1, the hypothesis implies that the only simple cycles appearing in Qi = (Vi; Ei)42



have length three. We shall show that this implies that (in each of the two processes) the answerassigned to each edge in Qi is independent of the answer given to other edges of Qi.We �rst note that, in each of the two processes, every query (v2k�1; v2k) such that �00(v2k�1) ��00(v2k�1) (mod 2) is answered negatively (i.e., in such a case, A1(v2k�1; v2k) = A2(v2k�1; v2k) =0). Thus, �xing any (random) values of (�00(vk) mod 2 : k2 [2q]), we may omit from Qi = (Vi; Ei)all edges that connect vertices that have the same value of �00 (mod 2), because the answers tothese queries are already determined (as 0, in each of the two processes). This omission eliminates(from Qi) all cycles of length three, which are the only simple cycles in the original Qi, and thuseach modi�ed Qi is a forest. We can now proceed analogously to the proof of Claim 4.1.3, althoughthings are slightly more complex here. Speci�cally, we consider the residual random values of �00(conditioned on �00 mod 2); that is, we augments the �xed values of �00 mod 2 with the randomvalues of b�00=2c, which are uniformly distributed in f0; 1; 2; 3g. We view these random selectionsas taking place in an order determined by some �xed traversal of each tree (of the aforementionedforest), and note that at each step (and in each of the processes) the new random value (uniformlydistributed in f0; 1; 2; 3g) yields answer 1 (to the corresponding query) with probability 1=2.1. In the case of A1, the query/edge (u; v) 2 Ei (which satis�es �0(u) = i = �0(v) and �00(u) ��00(v) + 1 (mod 2)) is answered 1 if and only if �00(u) = (�00(v) � 1 mod 4) + b�00(v)=4c � 4holds (which means that b�00(u)=4c = b�00(v)=4c). Thus, A1(u; v) = 1 with probability 1=2.2. In the case of A2, the query/edge (u; v) 2 Ei (which satis�es �0(u) = i = �0(v) and �00(u) ��00(v) + 1 (mod 2)) is answered 1 if and only if �00(u) = �00(v) � 1 mod 8 holds. Thus,A2(u; v) = 1 with probability 2=4.Thus, in each of the two processes, each query is answered by the value 1 with probability ex-actly 1=2, independently of the answers to all other queries. The claim follows. 2Combining Claims 5.3.2 and 5.3.3, it follows that the statistical distance between the sequences(A1(v1; v2); :::; A1(v2q�1; v2q)) and (A2(v1; v2); :::; A2(v2q�1; v2q)) is at most O(q2�3+q2(�N)�1), andthe lemma follows for su�ciently large N .5.3 Non-Adaptive Lower-Bound for Super-Cycle CollectionIn this section we establish a lower-bound on the non-adaptive query complexity of testing Super-Cycle Collections. We do so by generalizing the ideas presented in Section 5.2.Speci�cally, �xing any t � 4, for every value of � > 0, we consider two di�erent classes of graphs,one consisting of graphs in SCtC and the other consisting of graphs that are �-far from SCtC, andshow that a non-adaptive algorithm of query complexity o(��(2t�2)=t) cannot distinguish betweengraphs selected at random in these classes.The �rst class, denoted SCtC�, consists of N -vertex graphs such that each graph consists of(t2�)�1 super-cycles of length t, and each super-cycle has t� �N vertices in each of its t independentsets. It will be instructive to partition these (t2�)�1 super-cycles into (2t2�)�1 pairs. The secondclass, denoted SC2tC�, consists of N -vertex graphs such that each graph consists of (2t2�)�1 super-cycles of length 2t, and each super-cycle has t��N vertices in each of its 2t independent sets. Indeed,SCtC� � SCtC, whereas each graph in SC2tC� is �-far from SCtC (because each of the super-cyclesof length 2t must be turned into a pair of super-cycles of length t).As in Section 5.2, we motivate the claim that a non-adaptive algorithm of query complexityo(��(2t�2)=t) cannot distinguish between graphs selected at random in these classes by considering43



a speci�c algorithm that inspects the subgraph induced by a random set of o(��(t�1)=t) vertices.The probability that a sample of o(��(t�1)=t) vertices contains at least t vertices that reside in thesame part (of (2t2�) � N vertices) is �o(��(t�1)=t)t � � (2t2�)t�1 = o(1), where the o-notation refers toa �xed value of t and a varying value of � > 0. On the other hand, one may show that if thisevent does not occur, then the answers obtained from both graphs are indistinguishable. As willbe shown below, this intuition extends to an arbitrary non-adaptive algorithm. Following the sameconventions as in Section 5.2, it su�ces to prove the followingLemma 5.4 (Lemma 5.3, generalized): For every �xed t � 4, let G1 and G2 be random N -vertex graphs uniformly distributed in SCtC� and SC2tC�, respectively. Then, for every sequence(v1; v2); :::; (v2q�1; v2q) 2 [N ]� [N ], where the vi's are not necessarily distinct, it holds that the sta-tistical di�erence between ansG1(v1; v2); :::; ansG1(v2q�1; v2q) and ansG2(v1; v2); :::; ansG2(v2q�1; v2q)is O(qt=2�t�1).Part 2 of Conjecture 1.3 follows. Indeed, Lemma 5.3 is obtained as a special case (of Lemma 5.4)by setting t = 4. The following proof is slightly di�erent from the proof provided in Section 5.2.Proof: We generalize the proof of Lemma 5.3. We consider a bijection, denoted �, between thevertices of an N -vertex graph in SCtC�[SC2tC� and triples in [(2t2�)�1]�f0; 1; :::; 2t� 1g� [t� �N ].Speci�cally, �(v) = (i; j; w) indicates that v resides in the (j+1)st independent set of the ith part ofthe graph, and that it is vertex number w in this set. Recall that in the case of a graph in SCtC� the2t independent sets in each part are arranged in two super-paths (each of length t), whereas in thecase of a graph in SC2tC� the 2t independent sets are arranged in a single super-path of length 2t.Consequently, the answers provided by uniformly distributed G1 2 SCtC� and G2 2 SC2tC� can beemulated by the following two corresponding random processes.1. The process A1 selects uniformly a bijection � : [N ]! [(2t2�)�1]� f0; 1; :::; 2t � 1g � [t� �N ]and answers each query (u; v) 2 [N ] � [N ] by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = (j2 � 1 mod t) + bj2=tc � t.2. The process A2 selects uniformly a bijection � : [N ]! [(2t2�)�1]� f0; 1; :::; 2t � 1g � [t� �N ]and answers each query (u; v) 2 [N ] � [N ] by 1 if and only if for �(u) = (i1; j1; w1) and�(v) = (i2; j2; w2) it holds that both i1 = i2 and j1 = j2 � 1 mod 2t.Again, let us denote by �0(v) (resp., �00(v) and �000(v)) the �rst (resp., second and third) coordinatesof �(v); that is, �(v) = (�0(v); �00(v); �000(v)). Then, both processes answer the query (u; v) with 0if �0(u) 6= �0(v), and the di�erence between the processes is con�ned to the case that �0(u) = �0(v).Speci�cally, conditioned on �0(u) = �0(v), it holds that A1(u; v) = 1 if and only if �00(u) = (�00(v)�1 mod t) + b�00(v)=tc � t, whereas A2(u; v) = 1 if and only if �00(u) = �00(v) � 1 mod 2t. In general,the event that allows distinguishing the two processes is a simple cycle of at least t vertices thathave the same �0 value. Minor di�erences may also be due to equal �000 values, and so we alsoconsider these in our \bad" event.De�nition 5.4.1 (De�nition 5.3.1, generalized): We say that � is bad (w.r.t the sequence ofqueries (v1; v2); :::; (v2q�1; v2q) 2 [N ]� [N ]), if one of the following two conditions hold:1. For some i 2 [(2t2�)�1], the subgraph Qi = (Vi; Ei), where Vi = fvk : k2 [2q] ^ �0(v)= ig andEi = ffv2k�1; v2kg : v2k�1; v2k 2 Vig, contains a simple cycle of length at least t.44



2. There exists i 6= j 2 [2q] such that �000(vi) = �000(vj).Indeed, the query sequence (v1; v2); :::; (v2q�1; v2q) will be �xed throughout the rest of the proof,and so we shall omit it from our terminology.Claim 5.4.2 (Claim 5.3.2, generalized): The probability that a uniformly distributed bijection � isbad is at most O(t)2t � qt=2�t�1 + q2t2�NProof: We start by upper-bounding the probability that the second event in De�nition 5.4.1 holds.We have �2q2 � sub-events, and each holds with probability 1=(2t2� � N). As for the �rst event, forevery ` � t, we upper-bound the probability that some Qi contains a simple cycle of length ` by(2q)`=2 � (2t2�)`�1. Thus, the probability of the �rst event is upper-bounded byX̀�t(2q)`=2 � (2t2�)`�1 < X̀�t �3t2pq � �(t�1)=t�` ;which is upper-bounded by 2�(3t2pq��(t�1)=t)t = O(t)2t �qt=2�t�1, provided that 3t2pq��(t�1)=t < 1=2(and the claim hold trivially otherwise). 2Claim 5.4.3 (Claim 5.3.3, generalized): Conditioned on the bijection � not being bad, the sequences(A1(v1; v2); :::; A1(v2q�1; v2q)) and (A2(v1; v2); :::; A2(v2q�1; v2q)) are identically distributed.Proving this claim is the only di�culty in extending the proof of Lemma 5.3 to the current setting.Indeed, the following proof yields a slightly di�erent proof of Claim 5.3.3.Proof: Again, we �x any choice of �0 and �000 that yields a good �, and consider the residual randomchoice of �00(v1); :::; �00(v2q), which (by the second hypothesis in De�nition 5.4.1) are uniformlyand independently distributed in f0; 1; :::; 2t � 1g. Considering any of the aforementioned graphsQi = (Vi; Ei), we note that this graph does not contain simple cycles of length greater than t� 1.
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Figure 7: A single part, consisting of 2t independent sets, in SCtC� and SC2tC�. The ellipses indicatethe values of  00.We now consider �00 : Vi ! f0; 1; :::; 2t � 1g as being selected at random in two stages. In the�rst stage we assign each vertex a random value mod t, and in the second stage we assign eachvertex a random bit representing its most signi�cant bit; that is, for each vertex v 2 Vi, we �rst45



determine (at random) the value �00(v) mod t, which we denote by  00(v), and next determine (atrandom) the bit b�00(v)=tc, which we denote by �00(v). Thus, �00(v) =  00(v) + �00(v) � t, and it willbe instructive to depict the graphs as in Figure 7. Fixing an arbitrary setting of values for the �rststage, we shall consider what may happen in the second stage.For every �xed setting of  00, we consider the residual graph Q0i = (Vi; E0i), where E0i containsonly the queries in Ei that are still undetermined (given  00); that is, (u; v) 2 Ei is placed in E0i if andonly if  00(u) �  00(v)� 1 (mod t), whereas all the other queries (or rather the answers to them)are already determined (as being answered by 0). We shall consider the connected components ofQ0i, and show that (conditioned on the foregoing setting of  00) the answers provided to the queriesin E0i under A1 are distributed identically to the answers provided under A2. Speci�cally, for eachpossible sequence of answers, we shall show a 1-1 correspondence between the assignments of �00that yield these answers under A1 and the assignments of �00 that yield these answers under A2.(Recall that �00(v) =  00(v) + �00(v) � t.) That is, for each possible sequence of answers and eachconnected component of Q0i, we shall show that the number of assignments of �00 that yield theseanswers under Aj is independent of j 2 f1; 2g.Let C = (V 00i ; E00i ) be an arbitrary connected component of Q0i = (Vi; E0), and let A00 : E00i !f0; 1g describe an arbitrary sequence of answers to the queries E00i . Our aim is proving that thenumber of assignments of �00 that yield these answers under Aj (i.e., satisfy Aj(u;w) = A00(u;w)for every (u;w) 2 E00i ) is independent of j 2 f1; 2g. Furthermore, we shall show that this number iseither two or zero (when considering only the assignment of �00 to V 00i ). Consider any spanning treeT of C, rooted at an arbitrary vertex v 2 V 00i . For each choice of � 2 f0; 1g, we shall prove thatthere exists a unique assignment �00 : V 00i ! f0; 1g such that �00(v) = � and �00 is consistent with A00and A1 (resp., A2) on the edges of T . That is, the resulting �00 is such that the answers as mandatedby A00 for the edges of T �t the answers that A1 (resp., A2) provides with respect to �00 =  00+t ��00.As we shall see, these assignments might be inconsistent with the value of A00 on edges that do notbelong to the spanning tree. However, we shall show that there is an inconsistency when �tting A1if and only if there is an inconsistency when �tting A2. Details follow.Fitting the process A1: Recall that the value of �00 on the root of T was set to �. The value of�00 on all other vertices is set, by traversing the tree T , in the following manner. Whentraversing the tree edge (u;w) from a vertex u for which �00(u) was already determined to anew w (for which �00(w) is still undetermined), we set �00(w)  �00(u) if A00(u;w) = 1 and�00(w) 1� �00(u) otherwise (i.e., if A00(u;w) = 0).Note that this process determines the values of the bits �00(w) for all w 2 V 00i such that thetree-neighbors u and w are assigned the same bit if and only if A00(u;w) = 1. This is indeedconsistent with the de�nition of A1. Furthermore, the setting of the values of �00 is uniquelydetermined by the requirement to be consistent with A1.Fitting the process A2: We assign values exactly as in the case of �tting A1, with a single exceptionthat refers to the case that the tree-edge (u;w) 2 E00i satis�es f 00(u);  00(w)g = f0; t � 1g.In this case (where vertex u has already been assigned a value), we set �00(w) 1� �00(u) ifA00(u;w) = 1 and �00(w) �00(u) otherwise (i.e., if A00(u;w) = 0).That is, in this case (i.e., f 00(u);  00(w)g = f0; t � 1g), the process determines the valueof �00(w) such that the tree-neighbors u and w are assigned the opposite bits if and only ifA00(u;w) = 1.As noted in the foregoing discussion, while each of the two assignments is consistent with A00 (andthe corresponding Aj) on the edges of the spanning tree T , there may be inconsistencies with the46



edges of E00i that are not tree edges. It remains to show that there is an inconsistency with respectto the process A1 if and only if there is an inconsistency with respect to the process A2.We shall say that an edge (u;w) 2 E00i (e.g., an edge of the spanning tree T ) is a crossing edgeif f 00(u);  00(w)g = f0; t � 1g. By de�nition of the two assignments, the only di�erence betweenthem is caused when traversing a tree edge that is a crossing edge. For such an edge, the value of�00 is 
ipped when �tting the process A2 if and only if it is not 
ipped when �tting the processA1. Thus, for each u 2 V 00i , the value assigned to �00(u) when �tting A2 is the XOR of the valueassigned to �00(u) when �tting A1 and the parity of the number of crossing edges that belong tothe tree path from (the root) v to u.Now, consider an edge (u;w) 2 E00i that is not an edge in the spanning tree T . Consider thesimple tree paths from the root v to vertices u and w, respectively, and let us denote their branchingpoint by v0. Let pu (resp., pw) be the path on the spanning tree T leading from v0 to u (resp., w),and p0u be the path from v0 to u obtained by augmenting pw with the (non-tree) edge (w; u). Then,the union of pu and p0u constitutes a simple cycle, which by the hypothesis has length smaller thant. As we shall show in the next paragraph, it follows that the parity of the number of crossingedges on pu equals the parity of the number of crossing edges on p0u. In other words, the parity ofthe number of crossing edges on pu equals the parity of the number of crossing edges on pw if andonly if (u;w) is not a crossing edge. Assuming that (u;w) is not a crossing edge, consider the valueassigned to �00(u) and �00(w) when �tting A1 (by following the paths from the root to u and w,respectively). Then, A00(u;w) is inconsistent with �00(u) and �00(w) as determined when �tting theprocess A1 if and only if A00(u;w) is inconsistent with �00(u) and �00(w) as determined when �ttingthe process A2, because in both cases �00(u) � �00(w) is the same value (since the total numberof crossing edges on pv and pw is even). A similar argument holds when (u;w) is a crossing edge(since then �00(u)� �00(w) 
ips from A1 to A2), and the claim follows.To verify the assertion regarding the parity of the number of crossing edges on pu and on p0u,consider the values assigned by  00 to the vertices in the union of pu and p0u. Since the unionof pu and p0u is a cycle of length less than t, these values must belong to a proper subset, S, off0; :::; t � 1g. If this set does not contain f0; t � 1g, then we are done (since neither of the pathsmay contain a crossing edge). Otherwise, for some j, it holds that S is a subset of the union ofS1 = fj + 1; :::; t� 1g and S2 = f0; :::; j � 1g. If  00(v0) and  00(u) belong to the same Sk, then theparity of the number of crossing edges on both pu and p0u is even (since these paths can only movefrom one subset to the other via a crossing edge).17 Similarly, if  00(v0) and  00(u) do not belongto the same subset then the parity on each of these paths must be odd. 2Combining Claims 5.4.2 and 5.4.3, the lemma follows.5.4 A candidate adaptive tester for Super-Cycle CollectionIn this section we outline an adaptive eO(��1)-query algorithm what we conjecture to be a testerfor SCtC, where t � 5 is �xed. The algorithm is a signi�cant generalization of Algorithm 5.1, andwe focus on outlining the corresponding sub-test, denoted sub-testi(v).Recall that in Algorithm 5.1 this sub-test consists, essentially, of �nding an edge (v; u) andchecking the potential bi-clique induced by it (i.e., �(u) � �(v)). In the current context we tryto �nd a t-cycle (v0; v1; :::; vt�1) such that v0 = v and for every j 2 f0; :::; t � 1g it holds thatvj 2 �(vj�1modt) \ �(vj+1modt) 6= �(vj�1modt) [ �(vj+1modt). Given such a candidate t-cycle17Note that the  00-values of intermediate vertices along any path must be \adjacent" modulo t, and so movingbetween fj + 1; :::; t� 1g and f0; :::; j � 1g is only possible via (t� 1; 0).47



v, letting Ij(v) def= (�(vj�1modt) \ �(vj+1modt), we check that Ij(v) � Ij+1modt(v) is a bi-clique,and that �(vj) = Ij�1modt(v) [ Ij+1modt(v). Each of these activities is is to be performed bymaking poly(log(1=�))=(2i�) queries. The implementation of the various checks is similar to theimplementation of similar checks performed in Algorithm 5.1, and so we focus on �nding theaforementioned t-cycle.Starting with v0 def= v, we obtain v1 2 �(v) just as (u was obtained) in Algorithm 5.1. Infact, we may obtain vt�1 2 �(v) in the same way, except that we need to verify that the lattervertex is actually in a di�erent independent set than v1. This is done by checking that �(vt�1) isdi�erent from �(v1), where any w in the symmetric di�erence of �(v1) and �(vt�1) can serve as awitness. (Indeed, w 2 �(v1) n �(vt�1 can be used as v2.) Similarly, when holding a partial path(vt�j ; :::; v0; :::; vk), we seek a vertex vk+1 (resp., vt�(j+1)) such that �(vk+1) and �(vk�1) (resp.,�(vt�(j+1)) and �(vt�(j�1))) are di�erent. When the path reaches length t�1 (i.e., holds t vertices),we treat it as a candidate t-cycle.We note that, as in the case of Algorithm 5.1, it may happen that the foregoing algorithmfails to �nd a t-cycle, (v0; :::; vt�1. In this case, the algorithm performs only a subset of thechecks outlined above. Speci�cally, suppose that the algorithm failed to extend the partial pathv def= (vt�j ; :::; v0; :::; vk) any further. Then, for intermediate vertices the checks are as before, butfor the extremes we should proceed with more care. For example, assuming the path contains atleast four vertices, we let It�j(v) def= (�(vt�j+1modt) n It�j+2modt(v).Clearly, the foregoing algorithm always accepts any graph in SCtC. One can also verify that,for every i � ` def= log2(1=�) + 2, this algorithm rejects with high probability any graph in SC2tC2�i ,where SC2tC2�i is as in Lemma 5.4. Since graphs in SC2tC�=4 are �-close to SCtC, we conclude thatthe aforementioned algorithm distinguishes graphs in SCtC from graphs in SC2tC0 def= Si�5 SC2tC2�ithat are �-far from SCtC. This yields an algorithm for testing a promise problem, denoted �t, whichrefers to inputs in SCtC [SC2tC0 such that the tester is required to accept inputs in SCtC and rejectinputs (in SC2tC0) that are �-far from SCtC.Theorem 5.5 (an almost-quadratic complexity gap for promise problems): For every positiveinteger t � 5, the promise problem �t satis�es the following:1. There exists an adaptive tester of query complexity eO(��1) for �t. Furthermore, this testerruns in time eO(��1).2. Any non-adaptive tester for �t must have query complexity 
(��2+(2=t)).Indeed, Part 1 follows by the foregoing algorithm, whereas Part 2 follows from Lemma 5.4. We alsonote that there exists an e�cient non-adaptive tester of query complexity O(��2+(2=t)) for �t. Thistester merely inspects the subgraph induced by a uniformly selected set of O(��1+(1=t)) vertices,and rejects if and only if this set contains t vertices such that the subgraph induced by these tvertices is a simple t-vertex path.6 Non-Adaptive Testing with fO(1=�) ComplexityWe �rst note that 
(1=�) (adaptive) queries are required for testing any graph property that isnon-trivial for testing, where a graph property � is non-trivial for testing if there exists �0 > 0 suchthat for in�nitely many N 2 N there exist N -vertex graphs G1 and G2 such that G1 2 � and G248



is �0-far from �. We note that all properties considered in this work are non-trivial for testing.On the other hand, the negation of this (non-triviality) condition means that for every � > 0 andall su�ciently large N 2 N either � contains no N -vertex graph or all N -vertex graphs are �-closeto �. In such a case (for every such � and N), the tester may decide without even looking at thegraph.18 Turning back to properties that are non-trivial for testing, we prove that any tester forsuch a property must have query complexity 
(1=�).Proposition 6.1 Let � be a property that is non-trivial for testing. Then, any tester for � hasquery complexity 
(1=�).Note that the claim holds also for general properties (i.e., arbitrary sets of functions).Proof: Let �0 > 0 be as in the de�nition, and consider any N 2 N such that � contains someN -vertex graphs as well as some N -vertex graphs that are �-far from �. Let G0 be any N -vertexgraph that is �-far from �, let G1 2 � be an N -vertex graph closest to G0, and let � > � denotethe relative distance between G0 and G1. Let D denote the set of vertex pairs on which G0 and G1di�er; indeed, jDj = � �N2. Now, for every � � �0, consider a graph, G, obtained at random fromG0 and G1 by uniformly selecting a random R � D of cardinality � �N2 and letting G agree with G0on all pairs in R and agree with G1 otherwise. Clearly, any tester that makes o(�0=�) queries cannotdistinguish G from G1 (becuase regardless of is query selection strategy, its next query resides inR with probability at most jRj=jDj � �=�0). Thus, such a tester cannot decide correctly on bothG and G1 (because G is �-far from � whereas G1 2 �). Recalling that �0 is a �xed constant, theproposition follows.6.1 Clique and Bi-CliqueWe start with the problem of testing whether the given graph is a clique (or, equivalently, anindependent set). The algorithm consists of selecting uniformly O(1=�) vertex-pairs and checkingwhether each of these pairs is connected by an edge. Clearly, if the graph is �-far from being aclique, then a randomly selected pair of vertices is connected with probability at most 1 � �. Theforegoing algorithm and analysis seem to provide the simplest example of a graph property thatcan be tested by O(1=�) non-adaptive queries. A somewhat less simple example is provided bytesting the property of being a bi-clique.Algorithm 6.2 (non-adaptive test of bi-cliqueness): On input N and � and oracle access to agraph G = ([N ]; E), the tester sets t = O(1=�) and selects arbitrarily a start vertex s (e.g., s = 1).For i = 1; :::; t, the tester selects uniformly a pair of vertices (ui; vi), and makes the queries (s; ui),(s; vi), and (ui; vi). The tester accepts if and only if for every i an even number of answers arepositive (i.e., indicate the existence of an edge).Clearly, if G is a bi-clique then for every i either all vertices reside on the same side (and so(s; ui), (s; vi), and (ui; vi) are all non-edges) or a single vertex is in solitude (and is thus adjacentto the other two vertices). To analyze what happens when G is �-far from being a bi-clique weobserve that s induces a partition of the graph to neighbors and non-neighbors (i.e., the 2-partition(�(s); [N ] n �(s))). That is, if G were a bi-clique then every vertex v 2 �(s) (resp., v 2 [N ] n �(s))would have satis�ed �(v) = [N ] n �(s) (resp., �(v) = �(s)).19 However, since G is �-far from being18Indeed, there exists natural graph properties that are trivial for testing (e.g., connectivity, non-planarity, havingno vertex of odd degree); see [GGR, Sec. 10.2.1].19Indeed, this is a simple application of the \induced partition" idea, which underlies the analysis of many of thetesters of [GGR]. 49



a bi-clique, it follows that either there are �2 �N2 edges in (�(s)��(s))[ (([N ]n�(s))� ([N ]n�(s)))or �2 � N2 edges are missing from �(s) � ([N ] n �(s)). Thus, the sample of t pairs will hit such anedge with probability at least 2=3.6.2 Collection of a constant number of cliquesFor any constant c, we consider the set of graphs that consists of a collection of (up to) c cliques;that is, the property CC�c. Note that the special case of CC�2 is analogous to bi-clique, becausea graph G = ([N ]; E) is in CC�2 if and only if its complement graph ([N ]; ([N ] � [N ]) n E) is abi-clique. The general case (i.e., c � 3) seems less easy (for non-adaptive testers).Algorithm 6.3 (non-adaptive test for CC�c): On input N and � and oracle access to a graphG = ([N ]; E), set ` = log2(1=�) and proceed as follows.1. Select a uniform sample of �(��1=2) vertices, denoted S, and examine all vertex pairs in S.2. For i = 1; :::; ` select, uniformly at random, samples of �(log(1=�)=(2i�)) and �(2i) verticesin [N ] denoted T 1i and T 2i , respectively, and a sample of �(minf2i; 1=(2i�)g) vertices in S,denoted Si. Examines all the vertex pairs in Si � (T 1i [ T 2i ) and in T 1i � T 2i .3. Accept if and only if the view of the subgraph as obtained in Steps 1-2 is consistent with somegraph in CC�c. Namely, let g0 : �(S � S) [ �Sì=1 �(Si � (T 1i [ T 2i )) [ (T 1i � T 2i )��� ! f0; 1gbe the function determined by the answers obtained in Steps 1-2. Then, the test accepts if andonly if g0 can be extended to a function over S0 � S0 that represents a graph in CC�c, whereS0 def= S [ �Sì=1(T 1i [ T 2i )�.It is instructive to spell-out the meaning of the acceptance criterion that underlies Step 3. Indeed,this criterion is equivalent to the conjunction of the following four conditions:(i) The subgraph induced by S is in CC�c.In such a case, we denote the corresponding cliques by C1; :::; Cc0 , where c0 � c.(ii) For every i 2 [`] and every v 2 T 1i [ T 2i , either �(v) \ Si = ; or, for some j 2 [c0], it holds that�(v) \ Si = Cj \ Si.(iii) For every i 2 [`], if jfj : Cj \ Si 6= ;gj = c then every v 2 T 1i [ T 2i has neighbors in Si.(iv) For every i 2 [`] and for every v 2 T 1i and u 2 T 2i such that �(v) \ Si 6= ; and �(u) \ Si 6= ;the following holds. If �(v) \ Si = �(u) \ Si then (v; u) 2 E, while if �(v) \ Si 6= �(u) \ Si,then (v; u) =2 E.Algorithm 6.3 has query complexityjSj2 + X̀i=1 �jSij � (jT 1i j+ jT 2i j) + jT 1i j � jT 2i j� = O(1=�) + log(1=�) � O(log(1=�)=�) = eO(1=�)and accepts every graph in CC�c with probability 1. We thus turn to analyze the case that theinput graph G = ([N ]; E) is �-far from CC�c. Namely, we show:50



Lemma 6.4 If G is �-far from CC�c then Algorithm 6.3 rejects with probability at least 2=3.Theorem 1.4 follows.Proof: Consider �rst the choice of S. We think of S as being selected in c + 1 phases, wherein phase t, a new uniform sample St, of �(��1=2) vertices, is selected (recall that c is a constant).Intuitively, the objective of the �rst c phases is to ensure, with high (constant) probability, that aslong as the number of vertices that do not have any neighbor among the vertices selected so far isrelatively big, we obtain such a vertex in the next phase. After c phases we use the selected verticesto de�ne a partition of the graph vertices into at most c subsets with some exceptional vertices(which either do not have any neighbor among the vertices selected in the previous phases or aresomehow inconsistent with these vertices). The objective of phase c+1 is to ensure that (with highprobability) the number of exceptional vertices is relatively small (or else, cause rejection). Theanalysis relies on the fact that CC�c is a hereditary property (i.e., any induced subgraph of anygraph in CC�c is also in CC�c).For each 1 � t � c+ 1, let S�t = Stk=1 Sk. Recall that the algorithm queries all vertex pairs inS�S. Hence, if for any 1 � t � c+1, the subgraph induced by S�t is not a collection of at most ccliques, then the algorithm rejects, and we are done. Otherwise, let Ct1; :::; Ctc(t) denote the c(t) � ccliques in the subgraph induced by S�t. For each 1 � t � c, we de�ne the following partition ofthe set [N ] of all graph vertices:V tj def= fv : �(v) \ S�t = Ctjg for 1 � j � c(t) ;Rt0 def= fv : �(v) \ S�t = ;gRt1 def= [N ] n �Rt0 [ � [1�j�c(t) Vj�� :That is, for 1 � j � c(t), the subset V tj consists of the vertices that neighbor all vertices in Ctj andno other vertex in S�t, the subset Rt0 consists of all vertices that have no neighbor in S�t, and Rt1consists of all vertices that either neighbor only some of the vertices in one of the cliques Ctj (butnot all) or have neighbors in more than one of the cliques. Observe that V t+1j � V tj and Rt+10 � Rt0while Rt+11 � Rt1.Given the above notation, we make two observations. The �rst observation is that for any1 � t � c, if St+1 contains some vertex in Rt1, then the subgraph induced by S�(t+1) is not acollection of at most c cliques, and so the algorithm rejects. It follows that if jRt1j > 14�1=2N forsome t � c, then the algorithm rejects with high probability. The second observation is that ifSt+1 contains some vertex in Rt0, then c(t+1) � c(t) + 1. Note that, as long as jRt0j > 14�1=2N , theprobability that St+1 does not contain any vertex in Rt0 is at a small constant. Therefore, eitherjRc0j � 14�1=2N , or the algorithm rejects with high probability, because the subgraph induced byS�(c+1) consists of more than c connected components. From this point on, we assume that thesubgraph induced by S�(c+1) is a collection of at most c cliques, that jRc1j � 14�1=2N and thatjRc0j � 14�1=2N . (We later take into account the small constant probability that this is not the case(but that the algorithm did not reject).)To simplify the notation, we use the shorthand R0 for Rc0, and R1 for Rc1, the shorthand c0 forc(t), and the shorthand Vj for V cj . We also denote R0[R1 by R. We start by making the simplifyingassumption that for each su�ciently large Vj , the corresponding Cj contains a number of verticesthat is proportional to the size of Vj . To be precise, jCjj=jSj � 12(jVj j=N) holds for every 1 � j � c0that satis�es jVj j � ��1=22c N . We justify this assumption at the end of the proof.51



Recall that G is �-far from CC�c. This means that for every partition of the graph vertices intoat most c subsets, the total number of vertex pairs that either belong to the same subset but donot have an edge between them, or belong to di�erent subsets but do have an edge between them,is greater than �N2. In particular, this holds for the partition of [N ], denoted ( eVj)j2f0;1;:::;c0g, thatwe de�ne as follows:� For every j 2 [c0], it holds that Vj � eVj.� The vertices in R are partitioned among the eVj 's as follows. For every vertex v 2 R andj 2 [c0], let ej(v) = j�(v) \ Vjj (resp., �ej = jVj n �(v)j) be the number of neighbors (resp.,non-neighbors) that v has in Vj . If c0 = c then each vertex v 2 R is placed in the subset eVjfor which �ej(v) +Pk2[c0]nfjg ek(v) is minimized. If c0 < c then we do the same, except thatevery vertex v 2 R that satis�es Pc0k=1 ek(v) < minj2[c0]f�ej(v) +Pk2[c0]nfjg ek(vg is placed ineV0; that is, v is placed in eV0 if for every j 2 [c0] it holds that ej(v) < �ej(v).We note that it may be the case that eV0 = ;; indeed, this always happens when c0 = c.Recall that jRj � 12�1=2N . Therefore, the total number of vertex pairs in R � R is at most 14�N2.It follows that if G is �-far from CC�c then (at least) one of the following three events must occur:1. There are at least 14�N2 missing edges between pairs of vertices that belong to the same subsetVj ; that is, Pc0j=1 j(Vj � Vj) n Ej � �4N2.2. There are at least 14�N2 super
uous edges between pairs of vertices that belong to di�erentsubsets Vj and Vk; that is, Pc0�1j=1 Pc0k=j+1 j(Vj � Vk) \Ej � �4N2.3. The total number of missing and super
uous edges contributed by pairs of vertices in R �(Sc0j=1 Vj) is at least 14�N2. That is, if for each j 2 [c0] and v 2 R \ eVj we letx(v) = �ej(v) + Xk2[c0]nfjg ek(v) ; (14)and for v 2 R \ eV0 we let x(v) = X1�k�c0 ek(v) ; (15)then Pc0j=0Pv2R\eVj x(v) � �4N2. (Recall that eV0 = ; whenever c0 = c.)It remains to prove that in each of the three foregoing cases the algorithm rejects with probability atleast 5=6. Speci�cally, we shall show that, with probability at least 5=6, there exists an i 2 [`] suchthat the sample Si [ T 1i [ T 2i contains a set of vertices that induce a subgraph not in CC�c that isinspected by the algorithm. More speci�cally, this set will contain at most one vertex from each T bi ,and we shall use the fact that the algorithm inspects all pairs in (Si�(T 1i [T 2i ))[(T 1i �T 2i )[(Si�Si).In what follows let �0 = �8`c2 .Case 1: Pc0j=1 j(Vj � Vj) nEj � �4N2. In this case there must be an index 1 � j� � c0 such that thenumber of missing edges with both endpoints in Vj� is at least �4cN2; that is,Xv2Vj� jVj� n (fvg [ �(v))j � �4cN2 : (16)52



In particular this implies that jVj� j � �1=22c1=2N . For each i 2 [`], we de�ne a subset Bj�;i of Vj� asfollows. Bj�;i = �v 2 Vj� : jVj� n (fvg [ �(v))j � N2i �; (17)where Bj�;0 = ;. By Eq. (16), we haveX̀i=1 jBj�;i n Bj�;i�1j � N2i � �4cN2 (18)and thus there exists i� 2 [`] (i.e., a set Bj�;i�) such thatjBj�;i� j � 2i��4c` N � 2i��0N : (19)By the de�nition of Bj�;i if Bj�;i 6= ;, then jVj�j � N=2i� . Since Bj�;i� 6= ;, it holds that jVj� j � �Nwhere � = maxf1=2i� ; �1=22c1=2 g. We shall show that, with high probability, the following three eventsoccur: (1) Si� contains at least one vertex w from Cj�; (2) T 1i� contains at least one vertex v fromBj�;i� � Vj�; and (3) T 2i� contains at least one vertex u from Vj� n �(v). If the three event occurthen the algorithm rejects since it obtains evidence that the graph is not in CC�c (in the form of(w; v); (w; u) 2 E and (v; u) =2 E). (Indeed, v 2 �(w) since w 2 Cj� and v 2 Vj�, and u 2 �(w)n�(v)since u 2 Vj� n�(v). Also note that the algorithm queries all pairs in (Si��(T 1i�[T 2i�))[(T 1i��T 2i�).)Let � be as de�ned in the foregoing discussion. Since jVj�j � �N and we assume thatjCj� j=jSj � 12 jVj� j=N , the probability that the �rst event does not occur is at most (1 � �=2)jSi� jwhich is a small constant (due to our choice of jSi� j = �(1=�)). Similarly (by our choice ofjT 1i� j = �(log(1=�)=(�2i� )) = �(`=(�2i�)) = 
(1=(�02i�))), the probability that T 1i� does not containany vertex from Bj�;i� is a small constant (due to the density of Bj�;i� as lowerbounded in Eq. (19)).Finally, assuming that T 1i� contains a vertex v 2 Bj�;i� , the probability that T 2i� (which has size�(2i�)) does not contain any vertex from Vj� n�(v) is a small constant as well (since, by de�nitionof Bj�;i� , the set Vj� n �(v) has density at least 2�i�).Case 2: Pc0�1j=1 Pc0k=j+1 j(Vj � Vk)\Ej � �4N2. In this case there exists at least one pair of subsets,Vj� and Vk� (where j� 6= k�), such that j(Vj��Vk�)\Ej � �4c2N2. Assume, without loss of generality,that jVj� j � jVk� j, so that in particular jVj� j � �1=22c N . Similarly to Case 1, it follows that thereexists a index i� 2 f1; : : : ; `g and a subset Bj�;i� � Vj� such that jBj�;i�j � �02i�N and for everyv 2 Bj�;i� it holds that jVk� \ �(v)j � N=2i� . Analogously to Case 1, here we can show that, withhigh probability, the following three events occur: (1) Si� contains at least one vertex w from Cj� ,(2) T 1i� contains at least one vertex v from Bj�;i�, and (3) T 2i� contains at least one vertex u fromVk� \�(v). If these three events occur then the algorithm rejects since it obtains evidence that thegraph is not in CC�c (in the form of (w; v) 2 E, (w; u) =2 E and (v; u) 2 E). The probability thatthese three events occur is lower-bounded as in Case 1.Case 3: Pc0j=0Pv2R\eVj x(v) � �4N2. For each v 2 R, let x(v) be as de�ned in Eq. (14) & (15), andlet R0 def= nv 2 R : x(v) � �1=24 No. Since jRj � 12�1=2N , we have that Pcj=0Pv2(RnR0)\Vj x(v) <jRj� �1=24 N � �8N2. Therefore,Pcj=0Pv2R0\Vj x(v) � �8N2. By the de�nition of R0, for every v 2 R0,we have that x(v) � N=2i for some i � `=2+2. Therefore, if we de�ne Bi = fv : x(v) � N=2ig fori = 1; : : : ; `=2+2, then there is an index i� 2 [`=2+2] such that jBi� j � �8`2i�N > �02i�N . Similarlyto the previous cases, with high probability, the sample T 1i� contains at least one vertex v in Bi� .53



We next show that for each �xed choice of such a vertex v 2 Bi� , with high probability over thechoice of the samples Si� and T 2i� , we obtain evidence containing v that G is not in CC�c (i.e., a setof vertices that induce a subgraph not in CC�c, while having at most one vertex in each T bi�).Let j� 2 f0; 1; :::; c0g be such that v 2 eVj� , and de�ne �e0(v) = e0(v) = 0. Observe that sincev 2 eVj� we must have that �ej�(v)� ej�(v) � �ek(v)� ek(v) (8k 6= j�) ; (20)where if c0 = c then 1 � k � c0, while if c0 < c then 0 � k � c0. (Note that Eq. (20) holds sinceotherwise v would be placed in eVk.) Eq. (20) will be useful when we consider the following subcases(which refer to v 2 eVj�).� We �rst consider the subcase in which j� = 0 (which may occur only when c0 < c). In thissubcase, since �ej�(v)�ej�(v) = 0�0 = 0, for every k 2 [c0] we have that �ek(v) � ek(v). On theother hand, since x(v) =Pc0k=1 ek(v) � N=2i� , there exists at least one index k� 2 [c0] such thatek�(v) � N=(c2i�). Since �ek�(v) � ek�(v), we have that �ek�(v) � N=(c2i� ) as well. This alsoimplies that jVk� j=N � (c2i�)�1, and since we assume that jCk� j=jSj � 12 jVk� j=N , we have thatjCk� j=jSj � (2c2i�)�1. Recall that jT 2i� j = �(2i�), and that jSi� j = �(minf2i� ; 1=(�2i�)g) =�(2i�), since i� � `=2 + 2 (where ` = log(1=�)).Now, if jCk� \ �(v)j � jCk� j=2, then, with high probability, the sample Si� contains a vertexw in Ck� \ �(v) (since jCk� j = 
(jSj=2i�)), and T 2i� contains a vertex u in Vk� n �(v) (since�ek�(v) = 
(N=2i�)). Otherwise (i.e., jCk� n �(v)j � jCk�j=2), with high probability, Si�contains a vertex w in Ck� n �(v), and T 2i� contains a vertex u in Vk� \ �(v) (since ek�(v) =
(N=2i�)). In either cases, w 2 Ck� and u 2 Vk�, which implies (u;w) 2 E, and w 2 �(v) i�u 62 �(v), which implies that jf(u;w); (w; v); (u; v)g \Ej = 2.In the subsequent subcases we assume that j� > 0.� We next consider the subcase in which both �ej�(v) � N=2i�+1 and ej�(v) � N=2i�+2 hold.Setting k�  j�, we reach a situation as in the �rst subcase (since �ek�(v) = 
(N=2i�) andek�(v) = 
(N=2i�)), and we are done as in the �rst subcase (while noting that �rst subcasedoes not rely on j� 6= k�).� The next subcase refers to �ej�(v) � N=2i�+1 and ej�(v) < N=2i�+2. In this subcase �ej�(v) �ej�(v) > 0 and so it can occur only when c0 = c (since otherwise v would be placed ineV0, whereas here j� 6= 0)). The fact that �ej�(v) � ej�(v) � N=2i+2 implies that, for everyk 2 [c0] n fj�g, it holds that �ek(v) � ek(v) + �ej�(v) � ej�(v) � N=2i�+2. Similarly to theprevious subcase, we know that jCkj=jSj � 1=2i�+3 for all k, and we have that jSi� j = �(2i�)(as well as jT 2i� j = �(2i�)).If there exists k� 2 [c0] such that jCk� \ �(v)j � jCk� j=2, then with high probability, Si�contains a vertex in Ck� \ �(v), and T 2i� contains a vertex in Vk� n �(v). Otherwise (i.e.,jCk n �(v)j � jCkj=2 for every k 2 [c0]), with high probability, for every k 2 [c0], the sampleSi� contains a vertex in Ck n �(v), and recalling that c0 = c we obtain evidence (in the formof an independent set of size c+ 1) that G is not in CC�c.� Lastly, we consider the subcase in which �ej�(v) � N=2i�+1. Since �ej�(v)+Pk2[c0]nfj�g ek(v) =x(v) > N=2i� , we obtain Pk2[c0]nfj�g ek(v) � N=2i�+1. In such a case, there exists a k� 2[c0] n fj�g for which ek�(v) � N=(c2i�+1). If ej�(v) � N=(c2i�+2), then with high probability,T 2i� contains one vertex u in Vk� \ �(v) and one vertex u0 in Vj� \ �(v), while Si� contains54



one vertex w in Ck� and one vertex w0 in Cj�, and we have evidence that G is not a union ofcliques (since (v; u); (v; u0); (u;w); (u0; w0) 2 E whereas (w;w0) 62 E, and all �ve vertex pairsare inspected by the algorithm).20 Otherwise (i.e., ej�(v) < N=(c2i�+2)), by Eq. (20), wehave that �ek�(v) � ek�(v) + �ej�(v) � ej�(v) � N=(c2i�+2), and we are in essentially the samesituation as the �rst subcase (since we have ek�(v) = 
(N=2i�) and �ek�(v) = 
(N=2i�)).It remains to deal with the assumption that jCj j=jSj � 12 jVjj=N holds for every j that satis�esjVj j � �1=22c N . To this end, we add one more phase in the choice of S (where we think of this phaseas taking place before phase c+ 1 that was used in the foregoing discussion to bound jRj). Let S0denote the vertices selected in the �rst c phases and let S00 be the vertices selected in the additionalphase, where jS00j = 4jS0j. Let C 01; : : : ; C 0c0 be the cliques in the subgraph induced by S0, and foreach 1 � j � c0 let V 0j be the vertices that neighbor all vertices in C 0j and no other vertices in S0. Inthe sample S00, let C 00j = S00\V 0j . By a multiplicative Cherno� bound, with high probability over thechoice of S00, it holds that jC 00j j=jS00j � (3=4)jV 0j j=N for every j that satis�es jV 0j j � �1=22c N . Assumethat this is, in fact, the case. Then, we de�ne Cj = C 0j [C 00j and Vj = fv : �(v) \ (S0 [ S00) = Cjg.If there is any new clique in S00 then it corresponds to a small set of vertices (since the setof vertices that do not belong to any V 0j is small).21 Using the fact that S is the union of S0,S00 and the sample selected in phase c + 1, we have jSj < (3=2)jS00j (since jS00j = 4jS0j andjS0j = c � (jSj � jS0j � jS00j)) and jCj j=jSj � (3=4)jC 00j j=jS00j � (3=4) � (3=4)jV 0j j=N . Using Vj � V 0j ,we get that jCj j=jSj > 12 jVjj=N for every jVjj � �1=22c N .

20Actually, note that it also holds that (u0; w) 62 E, and thus we obtain evidence in the form of the four vertexpairs (v; u); (v; u0); (u;w); (u0; w). Note that we can obtain evidence in the form of three vertex pairs by consideringeither (v; u); (u0; w); (v; w) or (v; u); (u;w); (v;w).21Indeed, the sizes of the sets V 0j behave as the sizes of the sets Vj , which were analyzed in the beginning of thisproof. Also note that this additional clique may causes the algorithm to reject (whenever it causes the total numberof cliques to exceed c). 55
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