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1 IntroductionApproximation is one of the basic paradigms of modern science. One of its facets in computerscience is approximation algorithms. Yet, it is not always clear what approximation means. Thedominant approach considers a cost function associated with possible solutions of an instance,and seeks algorithms that provide an approximation of the cost of an optimal solution (possi-bly, as well as a solution obtaining such a cost). This approach is most suitable in case there isa natural cost measure for candidate solutions and the optimal solution is preferable due to itslow(est) cost. An alternative approach is to consider the distance of the given instance to theclosest instance that has a desirable property. The property may be having a solution of certaincost (w.r.t some cost measure de�ned as in the �rst approach), but it can also be of a qualita-tive nature; for example, being a connected graph (in case the instances are graphs), or being alinear function (in case the instances are functions). The latter approach underlines all work ontesting low-degree polynomials [BLR93, RS96, GLR+91, BFL91, BFLS91, FGL+96, ALM+98] andcodes [BFLS91, ALM+98, BGS98, H�as96], and its relevance to the construction of probabilisticallycheckable proofs [BFL91, BFLS91, FGL+96, AS98, ALM+98] is well known. In [GGR98] this ap-proach was applied to testing properties of graphs, and its relation to the more standard approachto approximation was demonstrated.We stress that approximation is applicable not only when the optimization problems are in-tractable. Also in case there exists an e�cient algorithm for solving the problem optimally, onemay wish to have an even faster algorithm and be willing to tolerate its approximative nature. Inparticular, in a RAM model of computation, an approximation algorithm may even run in sub-linear time and still provide valuable information. For example, the testing algorithms of [GGR98]run in constant time and provide \constant error approximations" (e.g., one can approximate thevalue of the maximum cut in a dense graph to within a constant factor in constant time).1.1 Testing graph propertiesThe study of testing graph properties was initiated by Goldreich et. al. [GGR98], as part of a generalstudy of property testing [RS96, GGR98]. In the general model the algorithm is given oracle accessto a function and has to decide whether the function has some speci�ed property or is \far" fromhaving that property. Distance between functions is de�ned as the fraction of instances on whichthe functions' values di�er. In their study of testing graph properties, Goldreich et. al. view thegraph as a Boolean function de�ned over the set of all vertex-pairs. Thus, their measure of distancebetween graphs is the fraction of vertex-pairs that are an edge in one graph and a non-edge in theother graph, taken over the total number of vertex-pairs. This model is most appropriate for thestudy of dense graphs, and indeed the graph algorithms in [GGR98] refer mainly to dense graphs.For example, their (constant time) Monte Carlo algorithm for testing whether a graph is Bipartiteor is 0:1-far from Bipartite is meaningful only for N -vertex graphs which have more than 0:1 � �N2 �edges (since any graph having fewer edges is 0.1-close to being Bipartite). Furthermore, testingconnectivity in this model is trivial as long as the distance parameter is bigger than 2N (since everyN -vertex graph is 2N -close to being connected and so the algorithm may as well accept any graph).In this paper we present an alternative model. We view bounded-degree graphs as functionsde�ned over pairs (v; i), where v is a vertex and i is a positive integer within a predetermined(degree) bound, denoted d. The range of the function is the vertex set augmented by a specialsymbol. Thus the value on argument (v; i) speci�es the ith neighbor of v (with the special symbolindicating non-existence of such a neighbor). Our measure of distance between (N -vertex) graphs is1



the fraction of vertex-pairs which are an edge in one graph and a non-edge in the other, taken overthe size of the domain (i.e., over dN). Unless d = �(N), this model does not allow to consider densegraphs, yet it is most appropriate for the study of bounded-degree graphs. In particular, in contrastto the model studied in [GGR98], testing connectivity is no longer trivial in our model.2 The twomodels di�er not only in the type of properties that are non-trivial, but also in the applicabletechniques and the results that can be obtained for speci�c properties. For example, we show thatno (Monte Carlo) algorithm running in o(pN) time can test whether a bounded-degree graph isBipartite or is 0:1-far from Bipartite, where distance is as de�ned in our model. This stands incontrast to the constant-time algorithm for testing bipartiteness in the [GGR98] model.To demonstrate the viability of our model, we present randomized algorithms for testing severalnatural properties of bounded-degree graphs. All algorithms get as input a degree bound d and anapproximation parameter �. The algorithms make queries of the form (v; i) that are answered withthe name of the ith neighbor of v (or with a special symbol in case v has less than i neighbors).With probability at least 2=3, each algorithm accepts any graph having the tested property andrejects any graph which is at distance greater than � from any graph having the property. Actually,except for the cycle-freeness tester, all algorithms have one-sided error (i.e., always accept graphswhich have the property), and furthermore when rejecting they present a short certi�cate vouchingthat the property does not hold in the tested graph. Assuming that vertex names are manipulatedat constant time, all algorithms have poly(d=�) running-time (i.e., independent of the size of thegraph). Actually, most algorithms have poly(1=�) running-time and some have ~O(1=�) running-time, where ~O(`) = poly(log(`)) � `. In particular, we present testing algorithms for the followingproperties:connectivity: Our algorithm runs in time ~O(1=�). Recall that by the above this means that in casethe graph is connected the algorithm always accepts, whereas in case the graph is �-far frombeing connected the algorithm rejects with probability at least 23 . Furthermore, the algorithmsupplies a small counter-example to connectivity (in the form of an induced subgraph whichis disconnected from the rest of the graph).k-edge-connectivity: Our algorithms run in time ~O(k3 � ��3+ 2k ). For k = 2; 3 we have improvedalgorithms whose running-times are ~O(��1) and ~O(��2), respectively. Our techniques extendto testing k-vertex-connectivity, for k = 2; 3, see [GR99a, Sec. 4].Eulerian: Our algorithm runs in time ~O(��1).cycle-freeness: Our algorithm runs in time O(��3). Unlike all other algorithms, this algorithmhas two-sided error probability, which is shown to be unavoidable for testing this property(within o(pN) queries, where N is the size of the graph).In addition, we establish 
(pN) lower bounds on the query complexity of testing algorithms forthe Bipartite and Expander properties. The �rst lower bound stands in sharp contrast to aresult on testing bipartiteness which is described in [GGR98]. Recall that in [GGR98] graphs arerepresented by their N�N adjacency matrices, and the distance between two graphs is de�nedto be the fraction of entries on which their respective adjacency matrices di�er. The Bipartitetester of [GGR98] works in time poly(1=�) and distinguishes Bipartite graphs from graphs in which2 Recall that in the former model, for every � � 2=N , every graph is �-close to being connected, and that typicallywe focus on constant � (or � > N�1=O(1)). Thus typically, testing connectivity is trivial in that model. Indeed, in ourmodel every graph is (2=d)-close to being connected, but this leaves a wide range of �'s (e.g., constant � < 2=d) forwhich the problem of testing connectivity is non-trivial. 2



at least 12�N2 edges must be omitted in order to be bipartite. Recall that in the current paper,graphs are represented by incidence lists of length d and distance is measured as the number ofedge modi�cations divided by dN (rather than by N2).Finally, we observe that the known results on inapproximability of Minimum Vertex Cover (andDominating Set) for bounded-degree graphs [ALM+98, PY91], rule out the possibility of e�cienttesting algorithms for these properties in our model.1.2 What does this type of approximation mean?To make the discussion less abstract, let us consider the k-(edge)-connectivity tester. As evidentfrom above, this algorithm is very fast; its running-time is polynomial in the error parameter, whichone may think of as being a constant. Yet, what does one gain by using it?One possible answer is that since the tester is so fast, it may make sense to run it beforerunning an algorithm for k-connectivity. In case the graph is very far from being k-connected, wewill obtain (w.h.p.) a proof towards this fact and save the time we might have used running theexact algorithm. (In case our tester detects no trace of non-k-connectivity, we may next run ourexact algorithm.) It seems that in some natural setting where typical objects are either good orvery bad, we may gain a lot. Furthermore, if it is guaranteed that objects are either good (i.e.,graphs are k-connected) or very bad (i.e., far from being k-connected) then we may not even needthe exact algorithm at all. The gain in such a setting is enormous.Alternatively, we may be forced to take a decision, without having time to run an exact algo-rithm, while given the option of modifying the graph in the future, at a cost proportional to thenumber of added/omitted edges. For example, suppose you are given a graph which representssome design problem, where k-connectivity corresponds to a good design and changes in the designcorrespond to edge additions/omissions. Using a k-connectivity tester you always accept a gooddesign, and reject with high probability designs which will cost a lot to modify. You may stillaccept bad designs, but then you know that it will not cost you much to modify them later. In thisrespect we mention the existence of e�cient algorithms for determining a minimum set of edges tobe added to a graph in order to make it k-connected [WN87, NGM97, Gab91, Ben95, NI97, ?].1.3 Testing connectivity to the rest of the graphOur algorithm for testing k-edge-connectivity, for k � 2, uses a subroutine which may be of in-dependent interest. To describe it, suppose that you are given as input a vertex that resides in asmall \component" which is disconnected from the rest of the graph by a cut of at most k edges.Your task is to �nd such a component, within complexity which depends only on the size of thecomponent. As above, you are allowed oracle queries of the form \what is the ith neighbor of vertexv". Our algorithm �nds the component containing the input vertex, within time cubic in the size ofthe component (independent of k and of the size of the entire graph). It is based on the underlyingidea of the min-cut algorithm of Karger [Kar93]. For k = 2, we have an alternative algorithm whichworks in time linear in the size of the component, and for k = 3, we present an algorithm whichworks in quadratic time. We suggest the improvement of the complexity of the above task, fork � 3, as an open problem.
3



1.4 Subsequent workAs mentioned above, we show that in our model, any algorithm for testing whether an N -vertexgraph is bipartite requires 
(pN) queries (where d and � are constants). In follow-up work [GR99b],a bipartiteness tester is presented whose query and time complexities are pN � poly(logN=�).In [PR99] an alternative model for testing graph properties is studied, where the graphs arerepresented by incidence lists of varying lengths. In that model a graph is said to be �-far fromhaving a property, if the number of edges that need to be added or removed divided by the numberof edges in the graph is more than �. This model is more appropriate than ours for testing (sparse)graphs in which some vertices have very high degree D (e.g., D = 
(N)), but the average degree iso(D) (e.g., a constant). Treating such graphs in our model will require setting d = D, but this maynot be so meaningful in case there is a huge gap between the maximum degree and the averagedegree in the graph. Some of our algorithms can be extended to the varying-length incident-listmodel; see [PR99].ErrarataIn a preliminary version of this work [GR97], we claimed to have an algorithm for testing planaritythat runs in time ~O(d4 ���1). The speci�c algorithm we had in mind had a fundamental 
aw, whichwas discovered by an anonymous referee, whom we thank.3OrganizationIn Section 2 we present the de�nitions used throughout the paper. Section 3 presents our algorithmsfor testing k-edge-connectivity (for k � 1). Testing algorithms for cycle-free, subgraph-free andEulerian graphs are presented in Sections 4, 5 and 6, respectively. Our hardness results are presentedin Section 7.2 De�nitions and NotationWe consider undirected graphs of bounded degree. We allow multiple edges but no self-loops. Fora graph G, we denote by V(G) its vertex set and by E(G) its edge set. We assume, without loss ofgenerality, that V(G) = [jV(G)j] def= f1; : : : ; jV(G)jg and that for every vertex v 2 V(G), the edgesincident to v have distinct labels in f1; : : : ; dg. This labeling may be arbitrary and need not beconsistent among neighboring vertices. Namely, (u; v) 2 E(G) may be the ith edge incident to uand the jth edge incident to v, where i 6= j. In accordance with the above, we associate with a(bounded degree) graph G, a function fG : V(G) � [d] 7! V(G) [ f0g, where d is a bound on thedegree of G. That is, fG(v; i) = u if (u; v) is the ith edge incident to v, and fG(v; i) = 0 if there isno such edge.We consider property testing algorithms which are allowed queries to the above representationof a graph. That is, when referring to a graph G, the algorithm receives as ordinary inputs jV(G)jand a degree bound d, and is given oracle access to the function fG.Our measure of the (relative) distance between graphs depends on their degree bound. That is,the distance between two graphs G1 and G2 with degree bound d, where V(G1) = V(G2) = [N ], is3Addendum (2008): Furthermore, as pointed out by Benjamini et. al. (STOC 2008), no one-sided error algorithmhave have query complexity o(pN). 4



de�ned as follows:distd(G1;G2) def= jf(v; i) : v 2 [N ]; i 2 [d] and fG1(v; i) 6= fG2(v; i)gjd �N (1)Note that for every two graphs G1 and G2, we have 0 � distd(G1;G2) � 1. This notation of distanceis extended naturally to a set, C, of N -vertex graphs with degree bound d; that is, distd(G; C) def=minG02Cfdistd(G;G0)g. For a graph property �, we let �N;d denote the class of graphs with Nvertices and degree bound d which have property �. In case �N;d is empty (for some �, N , andd), we de�ne dist(G;�N;d) to be 1 for every G.De�nition 2.1 Let A be an algorithm which receives as input a size parameter N 2 N , a degreeparameter d 2 N , and a distance parameter 0 < � � 1. Fixing an arbitrary graph G with N verticesand degree bound d, the algorithm is also given oracle access to fG. We say that A is a propertytesting algorithm (or simply a testing algorithm) for graph-property �, if for every N , d, and � andfor every graph G with N vertices and maximum degree d, the following holds:� if G has property � then with probability at least 23 , algorithm A accepts G;� if distd(G;�N;d) > � then with probability at least 23 , algorithm A rejects G.In both cases, the probability is taken over the coin 
ips of A. The query complexity of A is afunction of N , d, and � bounding the number of queries made by A on input (N; d; �) and oracleaccess to any fG.We shall be interested in bounding both the query complexity and the running time of A as afunction of N , d, and �. In particular we try and achieve bounds which are polynomial in d,and 1=�, and sub-linear in N . Actually, our query complexity will be independent of N and so isthe running-time in a RAM model in which vertex names can be written, read and compared inconstant time.In the above de�nition we deviate from some traditions of having also a con�dence parameter,denoted �, and requiring the testing algorithm to be correct with probability at least 1��. Adoptingthese traditions seems justi�able in case one can derive better results than by merely repeating thebasic procedure for O(log(1=�)) times. Alas, this is not the case in the present work.3 Testing k-Edge-ConnectivityLet k � 1 be an integer. A graph is said to be k{edge-connected if there are k edge-disjoint pathsbetween every pair of vertices in the graph. An equivalent de�nition is that the subgraph resultingby omitting any k � 1 edges from the graph, is connected. A graph that is 1{edge-connected, issimply referred to as connected. In this section we show the following.Theorem 3.1 For every k � 1 there exists a testing algorithm for k-edge-connectivity whose querycomplexity and running time are poly(k� ). Speci�cally,� For k = 1; 2 these complexities are O � log2(1=(�d))� �.� For k = 3 these complexities are O � log(1=(�d))�2�d �.5



� For k � 4 these complexities are O�k3�log(1=(�d))�3� 2k �d2� 2k �.Furthermore, the algorithms never reject a k{edge-connected graph.We note that the above complexity bounds do not increase with the degree bound d. The reasonis that the distance between graphs is measured as a fraction of d � N ; thus, d e�ects the numberof operations as well as the distance and its e�ect on the latter is typically more substantial.We start by describing and analyzing the algorithm for k = 1, and later show how it can begeneralized to larger k. From now on we assume that d � k, since otherwise we would immediatelyreject the tested graph G simply because a graph with degree less than k cannot be k connected.In the case of k = 1 we may actually assume that d � 2 (since otherwise, except for N � 2, thegraph cannot be connected).3.1 Testing ConnectivityOur algorithm is based on the following simple observation concerning the connected components(i.e., the maximal connected subgraphs) of a graph.Lemma 3.2 Let d � 2. If a graph G is �-far from the class of N -vertex connected graphs withmaximum degree d, then it has more than �4dN connected components.Proof: Assume contrary to the claim that G has at most �4dN connected components. We willshow that by adding and removing less than �2dN edges we can transform G into a connectedgraph G0 which has maximum degree at most d. This contradicts the hypothesis by which G is�-far from the class of connected graphs with degree d. (Recall that according to our distancemeasure (Eq. (1)) every edge in the symmetric di�erence between graphs is counted twice).Let C1; : : : ;C` be the connected components of G. The easy case is when the sum of degreesin each Ci is at most d � jCij � 2. In this case, for every i = 1; :::; `, either Ci contains at least twovertices of degree d � 1 or it contains at least one vertex of degree at most d � 2. For simplicity,assume that the latter sub-case holds and let vi be a vertex of degree at most d�2 in Ci. Then, forevery i = 1; :::; ` � 1, we may add the edge (vi; vi+1) to the graph, resulting in a connected graph.Furthermore, the degree of each vertex in the resulting graph is at most d (as we only increasedthe degrees of the vi's). The argument extends to the other sub-case. That is, if vi; ui 2 Cihave both degree d � 1 then we connect some vertex of Ci�1 to vi and some vertex of Ci+1 to ui.In both sub-cases, we made the graph connected (and maintained the degree bound) by adding`� 1 � �4dN � 1 < �2dN edges.The above analysis used the case hypothesis by which the sum of degrees in each Ci is at mostd � jCij � 2. But in general, this condition may not hold, and we need to do slightly more in orderto make the graph connected while maintaining the degree bound. In particular, we remove edgeswithin components (without disconnecting these components), so that we can add edges betweencomponents without violating the degree bound.Suppose that for some connected component, Ci, the sum of degrees is greater than d � jCij � 2(and hence we cannot add edges between Ci and Ci�1 without violating the degree bound). Clearly,jCij � 2 (or else Ci is an isolated vertex having degree 0 � d� 2). Let Ti be an arbitrary spanningtree of Ci. Since Ti contains at least two vertices, it has at least two leaves. By our assumptionregarding Ci, at most one of its vertices has degree less than d. Thus, the tree Ti has a leaf which6



has degree d � 2 in G, and so this leaf has an incident edge in Ci which is not an edge in Ti.We can remove this edge from G without disconnecting Ci and get two vertices in Ci which havedegree less than d. It follows that by removing at most one edge from each component and addingan edge between every Ci and Ci+1, we obtain a connected graph G0 respecting the degree boundd. Since the symmetric di�erence between E(G) and E(G0) is bounded above by 2`� 1 < �dN2 , wereached a contradiction and the claim follows.As an immediate corollary we get:Corollary 3.3 If a graph G is �-far from the class of N -vertex connected graphs of degree boundd � 2, then G has at least �dN8 connected components each containing less than 8�d vertices.Proof: By Lemma 3.2, G has at least �dN4 connected components. The number of connectedcomponents containing at least 8=�d vertices is at most N8=�d = �dN8 . So the remaining ones are atleast �dN4 � �dN8 in number, and each contains less than 8=�d vertices.An implicit implication of Lemma 3.2 is that for � � 4d , every graph is �-close to the class ofconnected graphs with degree bound d (as otherwise the lemma would imply the existence of anN -vertex graph with more than N connected components). Thus we may assume that � < 4d . Byusing the fact that each connected component contains at least one vertex we conclude that if Gis �-far from the class of connected graphs then the probability that a uniformly selected vertexbelongs to a connected component which contains less than 8�d vertices, is at least �dN=8N = �d8 .Therefore, if we uniformly select m = 16�d vertices, then the probability that no selected vertexbelongs to a component of size less than 8�d is bounded above by�1� �d8 �m < e� �d8 �m = e�2 < 13(since �d8 < 1). On the other hand, once we select such a vertex, we may detect that it belongs to asmall connected component at relatively low complexity (related to the size of the small connectedcomponent). This gives rise to the following testing algorithm, where we assume that N � 8�d (sinceotherwise a connected graph having less than 8�d vertices would be rejected in Step (2)). If N < 8�d ,we can determine if the graph is connected by simply inspecting the whole graph (which takes timeO(Nd) = O(��1)).Algorithm 3.4 (Connectivity Testing Algorithm):1. Uniformly and independently select m = 16�d vertices in the graph;42. For each vertex s selected perform a Breadth First Search (BFS) starting from s until 8�d ver-tices have been reached or no more new vertices can be reached (a small connected componenthas been found);3. If any of the above searches �nds a small connected component then output REJECT, otherwiseoutput ACCEPT.4For sake of the analysis, in this and all other algorithms the vertices are selected independently, and so they arenot necessarily distinct. However, if the number of graph vertices N is signi�cantly larger than the sample size m,then with high probability they will in fact be distinct. 7



We note that the BFS is implemented in the obvious manner { by making queries of the form (v; i)to fG.Since a connected graph consists of a single component, the algorithm never rejects a connectedgraph. By the discussion preceding the algorithm and Corollary 3.3, if a graph is �-far fromconnected then it is rejected with probability at least 2=3. The query complexity and running timeof the algorithm are m � 8�d � d = O � 1�2d�. We note that the choice to perform a BFS is quitearbitrary, and that any other linear-time searching method (e.g., DFS) will do.The complexity of the Connectivity Tester can be improved by applying Corollary 3.3 morecarefully. Above, when analyzing the probability that the algorithm selects a vertex in a smallcomponent, we considered the extreme case in which the component consists of a single vertex.On the other hand, when analyzing the complexity of scanning the component, we consideredthe extreme case in which the component consists of �(1=�d) vertices. Instead, suppose that allcomponents in the conclusion of Corollary 3.3 were of the same size, denoted s. Then the probabilitythat a vertex in such a component is selected is at least s � �dN=8N = s�d8 , which means that it su�cesto set m = O(1=(s�d)) in Step (1) of the algorithm above, and that in Step (2) it su�ces to lookfor s+1 vertices. Thus, the overall complexity would be O(1=�), provided that such s exists and isgiven to the algorithm. Since the latter assumption does not hold, we use a relaxed generalizationof the above idea: That is, suppose that G has at least L def= �dN8 connected components each ofsize at most 8�d � 1. Then, (as we show in Lemma 3.6), there exists an i � ` def= log(8=�d) (wherethroughout the paper log(�) = log2(�)), so that G has at least L̀ connected components of sizeranging between 2i�1 and 2i � 1. We do not know this i, but we may try them all. This suggeststhe following improved algorithm, where here we assume that N > 16�log(8=(�d))��d (and for smaller Nwe simply inspect the whole graph).Algorithm 3.5 (Connectivity Testing Algorithm { Improved Version):1. For i = 1 to log(8=(�d)) do:(a) Uniformly and independently select mi = 32�log(8=(�d))2i���d vertices in G;(b) For each vertex s selected, perform a BFS starting from s until 2i vertices have beenreached or no new vertices can be reached.2. If any of the above searches �nds a small connected component then output REJECT, otherwiseoutput ACCEPT.Lemma 3.6 If G is �-far from the class of connected graphs with maximum degree d then Al-gorithm 3.5 rejects it with probability at least 23 . The query complexity and running time of thealgorithm are O � log2(1=(�d))� �.Proof: Let Bi be the set of connected components in G which contain at most 2i � 1 verticesand at least 2i�1 vertices. Let ` def= blog(8=�d)c. By Corollary 3.3 we know that Pì=1 jBij � �dN8 .Hence, there exists an i 2 f1; 2; :::; `g so that jBij � �dN8�` . Thus, the number of vertices residing incomponents belonging to Bi is at least 2i�1 � jBij. It follows that the probability that a uniformlyselected vertex resides in one of these components is at least2i�1 � jBijN � � � d � 2i16 � ` = 2mi8



(where mi is as de�ned in Step (1a) of Algorithm 3.5). Thus, with probability at least 1 � (1 �2mi )mi > 1�e�2 > 23 , a vertex s belonging to a component in Bi is selected in iteration i of Step (2),and the BFS starting from s will discover a small connected component leading to the rejectionof G. The query complexity and running-time of the algorithm are bounded by Pì=1mi � 2i � d =O � log2(1=(�d))� �.The �rst part (i.e., k = 1) of Item 1 in Theorem 3.1 follows from Lemma 3.6 and the fact thatAlgorithm 3.5 never rejects a connected graph (having more than 16�log(8=(�d))��d vertices).3.2 Testing k-Connectivity for k > 1The structure of the testing algorithm for k-Connectivity where k > 1 is similar to the structure ofthe Connectivity Tester (i.e., case k = 1): We uniformly select a set of vertices and for each of thesevertices we test if it belongs to a small component of the graph which has a certain property (i.e.,is separated from the rest of the graph by an edge-cut of size less than k). Similarly to the k = 1case, we show that if a graph is �-far from being k{connected then it has many such components. Inaddition, we present an e�cient procedure for recognizing such a component given a vertex whichresides in it.3.2.1 The CombinatoricsA subset of vertices S � V is said to be k{edge-connected if there are k edge-disjoint paths betweeneach pair of vertices in S. We stress that, in case k � 3, these paths may go through vertices not in Sand that any singleton (a subset containing a single vertex) is de�ned to be k{edge-connected. Thek{edge-connected classes of a graph G are maximal subsets of V(G) which are k{edge-connected,and each vertex in V(G) resides in exactly one such class. In the remainder of this subsection,whenever we say k{connected we mean k{edge-connected, and a k-class is a k{connected class.We start by assuming that the graphs we test for k-connectivity are (k�1){connected. We later(in Sec. 3.2.6) remove this assumption. In Appendix A we describe in more detail the structure of(k� 1){connected graphs in terms of their k-classes. Here we only state the facts necessary for ouralgorithms. Let G be a (k�1){connected graph. Then we can de�ne an auxiliary graph TG [DW98](based on the cactus structure of [DKL76]), which is a tree, such that for every k-class in G thereis a corresponding (unique) node in TG. The tree TG might include additional auxiliary nodes,but they are not leaves and we shall not be interested in them here. If G is k{connected, then TGconsists of a single node, corresponding to the vertex set of G. Otherwise, TG has at least twoleaves. The leaves of TG play a central role in our algorithm. Each leaf corresponds to a k-class Cof G which is separated from the rest of the graph by a cut of size k� 1. (Recall that G is assumedto be (k � 1){connected.) As we show below, for every leaf class C, given a vertex v 2 C, we cane�ciently identify that v belongs to a leaf class. For k = 2 this can be done deterministically withinquery and time complexity O(jCj � d). For k = 3 this can be done deterministically within queryand time complexity O(jCj2 � d). For k � 4, we present a randomized algorithm with query andtime complexity O(jCj3 � d). The analysis of our algorithm relies on the following lemma whichdirectly follows from Lemma A.4 (see Appendix A).Lemma 3.7 Let G be a (k� 1){connected graph that is �-far from the class of k{connected graphswith maximum degree d � k. Suppose that either d � k + 1 or k � jV(G)j is even.5 Then, TG has5 The reason for this technical requirement is to rule out the pathological case in which d(= k) and jV(G)j are both9



at least �8djV(G)j leaves.Proof: Note that by the technical condition (in the lemma), either d > k or dN = kN is even,where N def= jV(G)j. Assume towards contradiction that TG has L < �8dN leaves. Then byLemma A.4, G can be transformed into a k-connected graph G0 by removing and adding at most4L < �2dN edges. Furthermore, the maximum degree of G0 is max(k; d) = d. This contradicts thehypothesis that G is �-far from the class of k{connected graphs with maximum degree d.Corollary 3.8 Let G be a (k�1){connected graph that is �-far from the class of k{connected graphswith maximum degree d � k. Suppose that either d � k + 1 or k � jV(G)j is even. Then TG has atleast �16djV(G)j leaves each containing at most 16�d vertices.3.2.2 The Basic AlgorithmCorollary 3.8 suggests the following algorithm, where the implementation of Step (2) is discussedsubsequently. As was shown for the k = 1 case, the algorithm below can be modi�ed to save afactor of ~�(1=�d) in its query complexity and running time, but for sake of simplicity we describethe less e�cient algorithm. We also assume that the number of vertices N in G is greater than 16�d ,(since otherwise a k-connected graph having less than 16�d vertices would be rejected in Step (2)). IfN < 16�d , we can decide if the graph is k{connected by observing the whole graph and running analgorithm for �nding a minimum cut (in deterministic time ~O(Ndk) [Gab95] or probabilistically intime O(Nd log3N) [Kar96], which here means O(��1 log3(1=�d))).Algorithm 3.9 (k-Connectivity Testing Algorithm { Basic version): Recall, here we assume thatthe input graph is (k � 1)-connected.1. Uniformly and independently select m = 32�d vertices;2. For each vertex s selected, check whether s belongs to a k-class leaf which has at most 16�dvertices.3. If any leaf class is discovered then output REJECT, otherwise output ACCEPT.Our procedures for checking whether a given vertex belongs to a small k-class leaf always returnthe correct answer in case the vertex does not belong to such a leaf. Hence, a k-connected graphis always accepted. For k = 2; 3 the procedures also return a correct answer whenever the givenvertex belongs to a small k-class leaf, and for k � 4 a correct answer is returned with probabilityat least 5=6. Hence, if the graph is �-far from being k-connected, there may be two sources forthe probability that it is erroneously accepted: By Corollary 3.8, the probability that no vertex sbelonging to a small k-class leaf is selected in Step 1 is at most (1 � (�d)=16)m < e�2 < 1=6. Fork � 4 we need to add the probability that the procedure for identifying a k-class leaf fails givensuch a vertex, obtaining the total of at most 1=3 error probability.As said above, this algorithm can be modi�ed analogously to the improved version of theconnectivity tester, yieldingodd in which case it is not possible to transform G into a k{connected graph with maximum degree d by performingedge modi�cations. In other words, the class of k{connected graphs with max-degree k where k and jV(G)j are oddis empty. Clearly, this pathological case is easily detected by the algorithm.10



Lemma 3.10 Algorithm 3.9 runs in timeO� log(1=(�d))�d � � log(16=(�d))Xi=1 Tk(d; 2i)2iwhere Tk(d; n) is the time needed to implement the identi�cation of a k-class leaf of size at most non a graph with degree at most d (i.e., Step (2)). It always accept a k{connected graph and rejectswith probability at least 23 any graph that is (k�1){connected but �-far from the class of k{connectedwith maximum degree d.In the following three subsection, we present such (k-class leaf) identi�cation algorithms for thethree cases k = 2, k = 3 and k � 4. The running-time bounds are T2(d; n) = O(nd), T3(d; n) =O(n2d), and Tk(d; n) = O(n3� 2k d), respectively, where d is the degree bound (or actually themaximum degree of vertices in the class).3.2.3 Identifying a 2-class LeafGiven a vertex s and an integer n, the following Identi�cation Procedure can be used to determinewhether s belongs to a 2{connected class of size at most n which is a leaf in TG. Note that theupper bound, n, on the size of the class is determined by our higher level algorithm (for testing2-connectivity) when calling the identi�cation procedure. We use the following notation: for asubset S � V, we let S def= V n S.Algorithm 3.11 (2-Class Leaf Identi�cation Procedure): On input a vertex s, and a bound n.1. Starting from s, perform a Depth First Search (DFS) until n+ 1 vertices have been reached.Let T be the directed tree de�ned by the search, and let E(T) be its tree edges.2. Starting once again from s, perform another search (using either DFS or BFS) until n verticesare reached or no new vertices can be reached. This search is restricted as follows: If (u; v)is an edge in T, where u is the parent of v, then (u; v) cannot be used to get from u to v inthe second search (but can be used to get from v to u). Let S2 be the set of vertices reached.3. If there is a single edge with one end-point in S2 and the other outside of S2 (i.e. (S2;S2) is acut of size 1), then declare S2 as the 2-class leaf (to which s belongs). Else announce failureto detect a small 2-class leaf containing s.Clearly, the query complexity and running time of the procedure are O(nd). Since the procedurealways checks if it has found a cut of size 1, it will never identify a 2-class leaf when given a vertexs belonging to a 2-connected graph (of size greater than n). Thus, we only need to prove that if sresides in a a 2-class leaf of size at most n then the above procedure will indeed detect this.Lemma 3.12 Let G be a connected graph, C a 2-class in G of size at most n which is a leaf inTG, and s a vertex in C. Then the above procedure terminates with S2 = C.Proof: Since C is a 2-class, there exists a single edge (u; v) so that u 2 C and v 2 C. The �rstDFS terminates after seeing n+1 vertices, which means it must reach vertices of C, which in turnis possible only by traversing the single edge (u; v) from u 2 C to v 2 C. Thus, (u; v) must be a11



edge in T (with u being the parent). This ensures that the second search will never exit C. Inother words, S2 � C. What needs to be shown is that the second search reaches every vertex in C(i.e., S2 = C), and hence the cut (C;C) is discovered.Assume contrary to this claim, that X def= C n S2 is non-empty. Let (u1; v1); : : : ; (u`; v`) be theset of edges crossing the cut (S2;X), where (8i) ui 2 S2 and vi 2 X. Since C is 2{connected, theremust be at least two edges in the cut (S2;X). By our assumption that no vertex in X is reached inthe second search, it follows that for every i, (ui; vi) is an edge in the DFS-tree T, and furthermore,ui is the parent of vi. Without loss of generality, let v1 be the �rst vertex in X reached in the DSFde�ning T. Since C is 2{connected there must be a path between v1 and v2 which does not use theedge (u1; v1). There are two cases.1. In case the path does not contain vertices in S2, we reach a contradiction to T being a DFS-tree (since v2 must be reached before the DFS backtracks from v1 and hence u2 ! v2 cannotbe a tree edge).2. Otherwise, there must be a cut edge between some vertex, v 2 X, in the DFS-subtree rootedat v1 and a vertex, u, in S2. By the structure of the DFS-tree, this cannot be a DFS-treeedge from u to v (as v must be reached before the DFS backtracks from v1), contradictingour hypothesis about the cut edges.3.2.4 Identifying a 3-class LeafGiven a vertex s and a size bound n, we �rst perform a DFS until n + 1 vertices are discovered.Next, for each edge e in this DFS-tree (which contains n edges), we \omit" e from the graph andinvoke the 2-class leaf identi�cation (of the previous subsection) on the residual graph.Algorithm 3.13 (3-Class Leaf Identi�cation Procedure): On input a vertex s, and a bound n.1. Starting from s, perform a Depth First Search (DFS) on G until n + 1 vertices have beenreached. Let T be the corresponding DFS-tree.2. For each e 2 E(T), invoke the 2-Class Leaf Identi�cation Procedure on the graph obtained byomitting e from G (that is, the edge e is not traversed at any step of the procedure.) In allthese invocations, the input pair is (s; n) as above.3. If a 2-class is identi�ed in any of these invocations, output it as the desired 3-class. Otherwiseannounce failure to detect a small 3-class leaf containing s.Clearly, the above works in time O(n � nd), and never identi�es a 3-class leaf when the graph Gis 3-connected (and has more than n vertices). Identi�cation of small 3-class leaves follows fromLemma 3.12.Lemma 3.14 Let G be a 2{connected graph, C a 3-class leaf of TG with at most n vertices, and san arbitrary vertex in C. Then the above search process terminates in �nding the cut (C;C).Proof: Clearly the initial DFS must cross an edge of the cut (C;C), and so its DFS-tree hasat least one cut edge. When this cut edge is omitted from the graph, the cut (C;C) contains asingle edge in the resulting graph, denoted G0. While the removal of this edge might decrease theconnectivity of the vertices in C (which was 3 in G), they are at least 2{connected in G0. InvokingLemma 3.12, we are done. 12



3.2.5 Identifying a k-class LeafThe following applies to any k � 2, but for k = 2; 3 we have described more e�cient procedures(above). Our algorithm for �nding leaf k-classes (k � 2) is based on Karger's Contraction Algo-rithm [Kar93] which is a randomized algorithm for �nding a minimum cut in a graph.Algorithm 3.15 (k-Class Leaf Identi�cation Procedure): Given a vertex s and a size bound n,the following randomized search process is performed �(n2� 2k ) times, or until a cut (S;S) of sizeless than k is found:Random search process: Starting from the singleton set fsg, the algorithm maintains the set,denoted S, of vertices it has visited. In each step, as long as jSj < n and the cut (S;S) hassize at least k, the algorithm selects at random (as speci�ed below) an edge to traverse amongthe cut edges in (S;S) and adds the new vertex reached to S. In case the cut (S;S) has sizeless than k, we declare S to be a k-class leaf. If jSj = n the we complete the current search.Otherwise, we proceed to the next step.In case none of the �(n2� 2k ) invocations of the above process has detected a k-class leaf, we announcefailure to detect such a k-class.Clearly, the query complexity and running time of Algorithm 3.15 are O(n2� 2k � nd). If thegraph is k-connected (and has size greater than n), then for every possible starting vertex s, thealgorithm will announce failure to detect a k class of size at most n. Below we show that if sbelongs to a k-class leaf of size at most n, then the probability that any (independent) invocationof the random search process succeeds is ��n�(2� 2k )�. Since the random search process is invokedc � n2� 2k times (for some constant c), for a su�ciently large constant c, the algorithm detects thats belongs to a k-class leaf with probability at least 5=6. But before actually lower bounding thesuccess probability of the random search process, we have to fully specify the process (i.e., therandom selection of cut edges in the current (S;S)). Let C be the k-class leaf that s belongs to(where jCj � n). Then we are interested in a random process for which the probability that anedge in (C;C) is selected before all edges within C are selected is as small as possible.A natural idea is to select, in each step, an edge uniformly in the current (S;S); but this doesnot work well.6 Instead, we think of uniformly and independently assigning each edge in the grapha cost in [0; 1]. Then, at each step of the algorithm, we select the edge with lowest cost in thecurrent (S;S). This is implemented as follows: Whenever a new vertex is added to S, its incidentedges that were not yet assigned costs are each assigned a random cost uniformly in [0; 1]. Thus,whenever we need to select an edge from the current cut (S;S), all edges in the cut have costs, andwe select the edge with lowest cost (just as in the mental experiment in which all graph edges areassigned uniform costs at the beginning).Lemma 3.16 Let G be a (k � 1){connected graph, C a k-class leaf of TG with at most n vertices,and s an arbitrary vertex in C. Then, with probability ��n�(2� 2k )�, the random search processsucceeds in �nding the cut (C;C).6 Consider the case k = 2 and a graph containing a cycle of n-vertices connected to the rest of the graph by asingle edge, denoted e = (v; u). Thus, the cycle is separated from the rest of the graph by a single cut edge e. Supposewe start the random search at the cycle-node, denoted v, incident to e. Then, at each step until e is selected (i.e., ujoins S), the current cut (S; S) has 3 edges and e is one of them. Thus, the probability that e is selected in each stepis 1=3. It follows that the probability that all edges on the cycle are selected before e is selected (so that the randomsearch process detects the cycle as a k-class leaf), equals (2=3)n.13



Proof: Assume �rst that instead of assigning the edges costs in an online manner as describedabove, all edges in the graph are assigned random costs o�-line (as in the motivating \mentalexperiment"). We may think of our algorithm as simply revealing these costs as it proceeds.Consider any assignment of costs to all edges in the graph. A spanning tree, T, of the subgraphinduced by C is said to be cheaper than the cut if the cost of every edge in T is smaller than thecost of any of the cut edges between C and C.Claim 3.16.1: Suppose that C contains a spanning tree that is cheaper than the cut (C;C). Thenthe search process succeeds in �nding (C;C).Comment: The above claim presents a su�cient but not necessary condition for the success ofthe search process. For example, the search may expand S by an edge with cost greater than anycut-edge in case S is not incident to any cut-edge.Proof of Claim 3.16.1: We prove, by induction on the size of the current S, that S � C. Speci�cally,at each step there is a tree-edge in the current cut (S;S). Since this edge has lower cost than anyedge in (C;C), it follows that in this step the search cannot traverse an edge of (C;C). Using thefact that jCj � n, it follows that the search terminates with S = C. 2Thus, all we need is to lower bound the probability that C contains a cheaper-than-the-cut spanningtree. This is done by using Karger's analysis of his contraction algorithm (for �nding a minimumcut) [Kar93]. Details follow.Claim 3.16.2: Suppose that each edge is independently assigned a uniformly distributed cost in[0; 1]. Then, with probability at least � �n�(2� 2k )�, C contains a spanning tree which is cheaperthan the cut.Proof of Claim 3.16.2: We start by considering an auxiliary graph G0, in which all of C is representedby an auxiliary vertex, denoted x. That is, V(G0) = C [ fxg and E(G0) contains all edges internalto C and an edge (u; x) for every edge (u; v) such that u 2 C and v 2 C. Since C is a k{connectedclass in G, the graph G0 has a single minimum cut of size k � 1; that is, the cut (C; fxg).We now turn to Karger's analysis of his Contraction Algorithm. Contraction is an operationperformed on a pair of vertices connected by an edge. When two vertices u and v are contracted,they are merged into a single vertex, w, where for each edge (u; z) such that z 6= v, we havean edge (w; z), and similarly for each edge (v; z0) (such that z0 6= u). Thus, multiple edges areallowed, but there are no self-loops. Given a graph as input, the Contraction Algorithm performsthe following process until two vertices remain: It selects an edge at random from the current graph(which is initially the original graph), and contracts its endpoints (resulting in a new graph whichis smaller).7 An alternative presentation is to assign all edges uniformly chosen costs in [0; 1] andto contract the cheapest edge at each step. Karger shows that the probability that the algorithmnever contracts a min-cut edge is at least 2n�2. In our case, this means that with probability atleast 2n�2, Karger's algorithm does not contract an edge incident to x, which implies that C has aspanning tree cheaper than the cut (C; fxg).To obtain the better bound (i.e., ��n�(2� 2k )�) claimed above, we reproduce Karger's analy-sis [Kar93]. We consider an (n + 1)-vertex graph with min-cut of size c = k � 1 and such that,except for one vertex (i.e., x), the degree of every vertex in the residual graph at any step of the7Note that this is not the same as randomly selecting an edge between the set of vertices previously merged (S)and the rest of the graph S, as here we allow the selection of any edge in the graph at each step.14



Contraction Algorithm is at least D � k. The degree of x remains k � 1, provided none of itsedges was contracted. Hence, for i = 1; :::; n � 1, at the ith step of the algorithm, the probabilityof choosing to contract a cut edge is at most c(c+(n�(i�1))�D)=2 (i.e., the size of the cut divided bya lower bound on the number of current edges). The probability no cut edge is contracted in anystep of the algorithm is at leastn�1Yi=1 �1� 2cc+ (n� (i� 1))D� = n�2Yi=0 (n� i)D � c(n� i)D + c = nYj=2 j � (c=D)j + (c=D) > �(n)�2c=D (2)where the strict inequality is due to elementary algebraic manipulations (see Appendix B). In ourcase, since all cuts in G0 other than the minimum cut (C; fxg) have size at least k, we can setc = k � 1, D = k, and the claim follows. 2Combining Claims 3.16.1 and 3.16.2, Lemma 3.16 follows.3.2.6 Testing k-Connectivity of Graphs that are not (k � 1){connectedSo far we have assumed that the graph being tested (for k-connectivity) is (k � 1)-connected. Inthis section we remove this assumption and show that (a slight modi�cation of) Algorithm 3.9,with distance parameter set to �=O(k), rejects with probability at least 2=3 any graph that is �-farfrom being k-connected. This yields the general tester for k-connectivity asserted in Theorem 3.1.Let us consider �rst what happens when we run Algorithm 3.9 on an (i � 1){connected graphwhich is �-far from being i{connected, where i � k. In this case, by Corollary 3.8 the auxiliary graphTG (corresponding to the i-classes of the graph) has at least �16dN i-class leaves each containing atmost 16�d vertices. Hence, with probability at least 1� (1� �d16 ) 32�d > 1� ��2 > 5=6 a vertex belongingto such a class is selected. We next observe that the Identi�cation Procedure for k-class leaves issuch that when invoked inside a small i-class leaf it detects a cut of size i� 1 < k (with probabilityat least 5=6). (We stress that this holds also for i = 1 (with probability 1), in which case thismeans that the algorithm detects a small connected component.) Furthermore, the more e�cientIdenti�cation procedures for 2-class leaves (resp., 3-class leaves) can be easily modi�ed so that theydetect small connected component (resp., small 2-class leaf), when the start vertex resides in sucha component (resp., class). Speci�cally, in Step (1) of the 2-Class procedure, one should declaredetection in case less than n + 1 vertices are found in the initial DFS. The 3-Class procedure ismodi�ed analogously. Hence, with probability at least 23 , the algorithm will detect a small i-classleaf and will reject.However, in general the situation may be more complex: Although the graph may be �-farfrom being k{connected, it may be the case that there exists no i so that the graph is an (i� 1){connected graph and �-far from being i{connected. Intuitively, the k-connectivity tester shouldreject such graphs also with probability at least 2=3; but the question is how to prove this intuition.Let G0 def= G be a graph that is �-far from being k{connected, and for i = 1; : : : ; k, let Gi be ani{connected graph (with maximum degree d) that is closest to Gi�1. By de�nition of the Gi's thereexists an i such that Gi�1 (which is (i � 1){connected), is �=k-far from being i{connected (sinceotherwise we would reach contradiction to G being �-far from k-connected). Now, if the algorithmwere to run on this Gi�1 (with distance parameter �=k) then it would reject with probability atleast 2=3. The problem, however, is that the algorithm runs on G. It is tempting to think thatnothing can go wrong, but there are two issues to take care to: Firstly, even if Gi�1 can be obtainedfrom G = G0 only by adding edges (so that G is a subgraph of Gi�1), it has to be shown that if15



the algorithm rejects a graph it will also reject any subgraph of it. Secondly, it may not be thecase that Gi�1 can be obtained from G by just adding edges (since maintaining the degree boundmay cause us to omit edges as well { see proof of Lemma A.4). We start by addressing the secondproblem. The following lemma allows us to simplify the analysis by considering the distance of thegraph to the class of i{connected graphs rather than to the class of i{connected graphs with degreebound d. We stress that the minimum distance to the former class (which has no degree bound) isobtained by only adding edges.Lemma 3.17 Let G be a graph that is �-far from the class of k-connected graphs with maximumdegree d, where either kN is even or d � k + 1.8 Then the minimum number of edges which mustbe added to G in order to transform it into a k-connected graph (without any bound on its degree),is at least 126�dN .Proof: Assume, contrary to the claim that in order to transform G into a k-connected graph itsu�ces to augment it with m < 126�dN edges. We next show that by adding and removing at most13m < 12�dN edges we can transform G into a k-connected graph which has maximum degree d, incontradiction to the hypothesis.Let Gk be a k-connected graph which results from augmenting G with m edges. Some of thevertices in Gk might have degree larger than d. Hence we de�ne the excess of Gk (with respectto the degree bound d) as Pv; deg(v)>d(deg(v) � d). Since G has maximum degree d, and Gk wasobtained by augmenting G with m edges, the excess of Gk is at most 2m. We now show how byperforming at most 12m edge modi�cations to Gk, we can obtain a k-connected graph with excess0 (i.e., maximum degree at most d). Thus, we transform G (via Gk) into a k-connected graph withdegree bound d by modifying at most m + 12m edges. At each step of the following process wedecrease the excess of the graph while retaining its k-connectivity.While the excess of the graph is non-zero, do:Case 1: There is an edge (u; v) such that deg(u) > d and deg(v) > k. In this case we start byremoving the edge (u; v) from the graph. If the graph remains k-connected, no additionalmodi�cation is needed. Otherwise (the graph becomes (k� 1)-connected), by Lemma A.2 (inAppendix A), the auxiliary tree of the graph consists of a simple path, with u belonging toone k-class leaf, and v to the other. Since v now has degree at least k, it cannot be a singletonleaf (because leaves have exactly k� 1 edges going out of them). The same holds for u whichnow has degree at least d � k. We can thus apply Lemma A.3 on the two leaf k-classes, andobtain a k-connected graph at the cost of 4 edge modi�cations. Thus, we have decreased theexcess by at least 1, at the cost of 1 + 4 = 5 edge modi�cations.Case 2: For every vertex u such that deg(u) > d, all of u's neighbors have degree k. (Recall thatno vertex may have degree lower than k since the graph is k-connected.) We consider twosubcases.Case 2.a: There exist two vertices, u1 and u2, so that deg(ui) > d and all neighbors of uihave degree k. Then there must exist two vertices v1 6= v2 such that v1 is a neighbor ofu1 and v2 is a neighbor of u2. (If u1 and u2 only had a single (common) neighbor, orhad edges between themselves, this would contradict the hypothesis that they both onlyhave degree k neighbors.) We add an edge between v1 and v2, increasing their degree to8 Recall that the technical condition (i.e., either kN is even or d � k + 1) is required as otherwise the class ofk-connected graph with maximum degree d is empty. 16



k + 1, and then apply Case 1 twice; that is, to the edges (ui; vi), for i = 1; 2. We havedecreased the excess of the graph by 2, at a cost of 1 + 2 � 5 = 11 edge modi�cations.Case 2.b: There exist a single vertex, u, with degree greater than d (and all its neighbors havedegree k � d). Here we further consider two subcases.(i) deg(u) > d + 1. In such a case, we must remove at least two edges adjacent to u.Let v1 6= v2 be any two neighbors of u (once again, the existence of two such distinctvertices follows from the hypothesis that all of u's neighbors have degree k). Wenow proceed as in Case 2.a, by adding an edge between v1 and v2 and then applyingCase 1 to (u; v1) and then to (u; v2). We have decreased the excess of the graph by2, at a cost of 1 + 2 � 5 = 11 edge modi�cations.(ii) deg(u) = d+ 1. Let v be any neighbor of u (which, recall, must has degree k � d).Claim: There exists a vertex (other than v), denoted w, with degree smaller than d.Before proving the claim, let us see how we complete the process in this case. First,we add an edge between v and w, raising the degree of v to k+1 (where the degreeof w is now at most d). Applying Case 1 to the edge (u; v) we are done (at a costof 1 + 5 = 6 edge modi�cations).Proof of Claim: Assume the claim does not hold. Then, except for u and v, allvertices in the graph have degree d. We show that this is not possible by usingthe lemma's technical assumptions by which either d > k or dN = kN is even. Incase d > k, all neighbors of u other than v have degree d > k, contradicting thehypothesis that all of u's neighbors have degree k (and again, u must have suchneighbors since deg(v) = k < d + 1 = deg(u)). In case d = k we have that u hasdegree d+1 and all other vertices in the graph have degree k = d, yielding a degreesum of kN + 1 which is odd (and hence impossible). The claim follows. 2Thus in all cases, a decrease of 1 unit in the excess of the graph is obtained at a cost of at most 6edge modi�cations. Since the initial excess (of Gk) is at most 2m, we obtain the desired graph viaat most 2m � 6 = 12m edge modi�cations (to Gk). The lemma follows.Following the discussion above, we slightly modify Algorithm 3.9 so that in Step (2) (rather thanlooking for a k-class leaf) one looks for a small set of vertices which is separated from the rest ofthe graph by a cut of size j < k. Such a set will be called j-separated, and is called j-extremeif it contains no subset which is j0-separated for any j0 � j. We also incorporate the change inparameters (i.e., replacing � by �=O(k)). For sake of clarity, we reproduce the resulting algorithmbelow.Algorithm 3.18 (k-Connectivity Testing Algorithm { General version):1. Uniformly and independently select m = O(k)�d vertices;2. For each vertex s selected, check whether for some j � k, vertex s belongs to a j-extreme setcontaining at most 200k�d vertices.3. If any such separated set is discovered then output REJECT, otherwise output ACCEPT.Our procedures for Identifying k-class leaves are easily adapted to detect that a give vertex belongsto a j-extreme set for some j < k (see details below). But �rst let us verify that Algorithm 3.18constitutes a tester for k-connectivity. Clearly, Algorithm 3.18 always accept a k{connected graph17



(having more than 200k�d vertices). On the other hand, using Lemma 3.17 and observing that therejecting probability of Algorithm 3.18 can only increase when we remove edges from the graph,we proveLemma 3.19 Algorithm 3.18 rejects with probability at least 23 any graph that is �-far from theclass of k{connected graphs with maximum degree d.Proof: Let G be �-far from the class of k{connected graphs with maximum degree d. ByLemma 3.17, at least m � �dN26 edges must be added to G in order to make it k{connected.For every i � 1, let us denote by mi the minimum number of edges that should be added to G inorder to make it i{connected, and let Gi denote an i{connected graph which results when addingsuch mi edges to G. (We stress that Gi does not necessarily maintain the degree bound d.) Letm0 def= 0 and G0 def= G. Then, there must exist an i 2 f1; :::; kg so that mi �mi�1 � m=k. Let usconsider any such i and let �0 def= �=(26k).It follows that in order to transform Gi�1 into an i{connected graph, we must augment it withat least (m=k) = �0dN edges. By applying Lemma A.2, it follows that the auxiliary tree of Gi�1has a least 12�0dN leaves (or else Gi�1 can be transformed into a k-connected graph by adding atmost �0dN � 1 edges).9 Following the argument in Corollary 3.3, at least 14�0dN of these leaveshave each at most 4�0d = 104k�d vertices. Thus, with probability at least 14�0d = �d=O(k), a uniformlyselected vertex resides in such a component. Thus, if we were to run Algorithm 3.18 on Gi�1 thenthe algorithm would reject with probability at least 2=3. What is left to show is that the rejectionprobability of the algorithm on input graph G, which is a subgraph of Gi�1, is not smaller. Thekey observation is that if a vertex, s, belongs to some i-class leaf, C, of Gi�1 then for j � i vertexs must belong to some j-extreme set C0 � C of G (which is a subgraph of Gi�1). It follows thatthe number of small (disjoint) extreme sets in G is lower bounded by the number of i-class leavesin Gi�1, and the lemma follows.Detecting extreme sets: Algorithm 3.15 (for detecting k-class leaves) actually detect j-extremesets, for any j � k. This can be veri�ed by going over the proof of Lemma 3.16 and noting that itrelies only on the hypothesis that the relevant set (in that case the k-class leaf) is in fact j-extreme(there for j = k). It follows that a single iteration of the random search process started in aj-extreme set of size j will detect the set with probability at least O(n2� 2j ) if j � 2 and probability1 otherwise (for j = 1 which means that the set is a connected component). Algorithm 3.11(resp., Algorithm 3.13) for detecting 2-class (resp., 3-class) leaves actually detects 2-extreme (resp.,3-extreme) sets. But we need to modify it a little so that it may detect j-extreme sets, for anyj � 2 (resp., j � 3). These modi�cations were already discussed in the beginning of the currentsubsection.Finally, to derive Theorem 3.1, we modify Algorithm 3.18 analogously to the way Algorithm 3.4was modi�ed to obtain Algorithm 3.5. Observe that our analysis of the execution of the algorithmon graphs which are far from being k-connected only refers to a collection of disjoint extreme sets.For any such set S (which is j-extreme for some j � k), the probability that a uniformly selectedvertex resides in it equals jSjN . Moreover, on input a vertex in S and a size bound n � jSj thecut (S; S) is detected with high probability (say with probability at least 0.9) within time Tk(d; n),9 Note that since we don't require the resulting graph to maintain the degree bound, this simpler lemma su�ces(and we don't need the more sophisticated Lemma 3.7, which in turn relies on Lemma A.4).18



where Tk(d; n) denotes the running time of our procedures for identifying j-extreme sets for j � k(analogously to the de�nition in Lemma 3.10). Using an analysis as in the proof of Lemma 3.6 thecomplexities asserted in Theorem 3.1 follow.4 Testing if a Graph is Cycle-Free (a Forest)The testing algorithm described in this section is based on the following observation. Let G be thetested graph and C1;C2; : : : ;Ck its connected components. By de�nition, if G is cycle-free theneach of its components is a tree. In such a case, each Ci has jCij � 1 edges, and the total numberof edges in G is N � k. On the other hand, if G is far from being cycle-free then it has many moreedges within its components, where these edges create cycles inside the components. Each such\super
uous" edge resides either in a small component or in a big component (where the notionsof small and big are made precise in the formal analysis of the algorithm). If there are many extraedges residing in small components, then (due to the degree bound) there must be many verticesthat belong to such small components. In this case, if we uniformly select a large enough number ofvertices, with high probability we obtain such a vertex, and we can detect that its component hasextra edges (i.e., contains cycles), by performing a search. Otherwise, there are many extra edgesresiding in big components (whom we cannot exhaustively search). In this case we consider thesubgraph of G that consists of all big components and detect a discrepancy between its edge countand its vertex count. Since here the number of components is relatively small it cannot account forthis discrepancy.The above discussion suggest the following algorithm.Algorithm 4.1 (Cycle-Freeness Testing Algorithm):1. Uniformly and independently select ` = �� 1�2� vertices;2. For each vertex s selected, perform a BFS starting from s until 8�d vertices are reached or nomore new vertices can be reached (s belongs to a small connected component);3. If any of the above searches found a cycle then output REJECT (otherwise continue);4. Let n̂ be the number of vertices in the sample which belong to connected components of sizegreater than 8�d , and let m̂ be half the sum of their degrees. If m̂�n̂` � �d16 then output REJECT,otherwise output ACCEPT.Theorem 4.2 Algorithm 4.1 is a testing algorithm for the Cycle-Free property whose query com-plexity and running time are O � 1�3 + d�2�.Proof: Since each BFS takes time O(1=(�d) � d) = O(1=�), and ` = O(1=�2) such searches areperformed, Steps 1-3 of the algorithm takes O(1=�3) time. Step 4 takes at most ` � d = O(d=�2)time, and we obtain the complexity bounds stated in the lemma. We now turn to establish thatAlgorithm 4.1 is indeed a tester for cycle-freeness. We start with the quality of the approximationsperformed in Step (4).We say that a component is small if it contains less than 8�d vertices, otherwise it is big. Letus denote by t the number of big components. We �rst establish that with probability at least 23both estimates done in Step (4) are accurate to within (�d)=32. Let N 0 be the number of vertices19



belonging to big components, and letM 0 be the number of edges in big components. For i = 1; : : : ; `,let �i be a 0-1 random variable that equals 1 if and only if the ith vertex selected belongs to abig component. Then n̂ = Pi �i, and the expected value of ǹ̂ is N 0N . By a Cherno� bound, since` = �(1=�2), then for an appropriate constant in the �(�) notation, with probability at least 5=6, wehave ��� ǹ̂ � N 0N ��� < �32 . Similarly, for i = 1; : : : ; `, let  i be a random variable taking values between0 and d, that equals the degree of the ith vertex selected if it belongs to a big component, and 0otherwise. Then m̂ = 12Pi  i, and the expected value of m̀̂ is M 0N . Applying a Cherno� bound onceagain (while noting that the range of the random variables is [0; d]) we obtain that with probabilityat least 5=6, ��� m̀̂ � M 0N ��� < �d32 . From this point on we assume that these estimates in fact hold, sothat ��� m̂�n̂` � M 0�N 0N ��� < �d16 . The probability (of at most 1=3) that these estimates are not withinthese bounds accounts for the probability that the testing algorithm fails.In case G is cycle-free, the algorithm never rejects in Step (2). Furthermore, in this case wehave M 0 �N 0 = �t � 0, and so by our assumption on the estimates n̂ and m̂, m̂�n̂` < �d16 , so thatthe algorithm accepts in Step (4).We now consider the case that G is �-far from cycle-free. For any connected component in Ghaving n vertices and m edges, we de�ne m � (n � 1) � 0 to be the number of super
uous edgesin the component. Since G is �-far from cycle-free the total number of super
uous edges is at least12�dN . We consider two cases:Case 1: There are �dN4 super
uous edges inside small components. Consider a (small) componenthaving s super
uous edges. Then using the degree bound d, this component must contain atleast 2s=d vertices. Thus, the total number of vertices in small components which containsuper
uous edges is at least �N2 . Recall that if a connected component has a super
uousedge then it necessarily has a cycle. Hence, in this case a cycle is detected in Step (2) withprobability at least 1� (1� �2 )` > 23 .Case 2: There are �dN4 super
uous edges inside big components. Recall that t denotes the numberof big components, and N 0 (resp., M 0) the number of vertices (resp., edges) in them. Byde�nition of super
uous edges, we have M 0 � (N 0 � t) � �dN4 . Since t � N8=(�d) = �dN8 , we getthat M 0�N 0N � �d8 . By our assumption on the estimates n̂ and m̂, we obtain m̂�n̂` > �dN16 sothat the algorithm rejects in Step (4).Remark: The above tester has two-sided error probability. The next proposition, whose proof isprovided at the end of Subsection 7.1, asserts that this is unavoidable if one allows only o(pN)many queries.Proposition 4.3 Any algorithm for testing cycle-freeness that always accept cycle-free graphs mustmake 
(pN) queries.5 Testing Subgraph FreenessTwo graphs, G1 = (V1;E1) and G2 = (V2;E2), are called isomorphic if there is a 1-1 and ontomapping � : V1 ! V2 so that (u; v) 2 E1 i� (�(u); �(v)) 2 E2. A graph G is H-free, if no subgraph20



of G is isomorphic to H; that is, for every 1-1 mapping � : V(H) ! V(G) there exist u; v 2 V(H)so that (u; v) 2 E(H) but (�(u); �(v)) 2 E(G).A natural algorithm for testing H-freeness consists of selecting a vertex at random and checkingif it participates in a subgraph of G which is isomorphic to H. Let diam(H) denote the diameter ofH (where the diameter of a connected graph is the largest distance between any pair of vertices inthe graph). Then starting at a random vertex, we should just search G up to distance diam(H).Algorithm 5.1 (H-freeness Testing Algorithm):1. Uniformly and independently select m = ��1�� vertices in G;2. For each vertex s chosen, perform a BFS starting from s up to depth diam(H).3. If any of the above searches found a subgraph isomorphic to H then output REJECT, otherwiseoutput ACCEPT.Theorem 5.2 Algorithm 5.1 is a testing algorithm for the H-freeness property whose query com-plexity and running time are O �ddiam(H)� � and O �ddiam(H)�jV(H)j+1�jV(H)j� �, respectively.Proof: Clearly, if G is H-free it is accepted with probability 1. Since in each search at mostddiam(H) queries are asked (as diam(H) is the depth of the BFS), the algorithm's query complexityis O �ddiam(H)� �. Let R denote the subgraph of G reached during the BFS in Step 2. Then, the thirdstep of the algorithm (i.e., looking for a subgraph isomorphic to H) can be implemented by tryingall possible 1-1 mappings of H into R, and for each such mapping checking if the induced subgraphcontains the edges of H. Thus, the time complexity is bounded by jV(R)jjV(H)j � djV(H)j. SincejV(R)j � ddiam(H) the bound in the theorem follows.It remains to show that if G is �-far from the class of H-free graphs then the Algorithm 5.1rejects it with probability at least 23 . But this follows directly from the de�nition of �-far: If G is�-far from the class of H-free graphs then it contains at least �2dN edges that reside in subgraphs ofG which are isomorphic to H. Since the degree of every vertex is at most d, there are at least �Nvertices that reside in such subgraphs. Since the algorithm uniformly selects ��1�� vertices, withprobability 2=3 at least one of these vertices resides in such a subgraph, and this will be detectedin the third step of the algorithm.The above algorithm extends to testing whether the input graph G has no subgraph isomorphic toany of a �xed collection of graphs H1; :::;Hk . Alternatively, we note that although, in general, prop-erty testing is not closed under intersection of properties [GGR98], closure does hold for monotonedecreasing graph properties (such as H-freeness). That is,Theorem 5.3 Let �1 and �2 be two graph properties that are monotone decreasing; that is, ifG 2 �i then every subgraph of G is in �i. Suppose that Ai is an algorithm for testing property�i having failure probability 1=6 (rather than 1=3). Then an algorithm that on input graph G anddistance parameter � invokes both Ai's on G with distance parameter �=2, and accepts if and onlyif both accept, is a property tester for the conjunction of �1 and �2.We comment that the above theorem extends also to arbitrary properties that are monotone de-creasing (i.e., classes of arbitrary functions that are not necessarily graph properties).21



Proof: Let �1;2 denote the property that is de�ned by the conjunction of �1 and �2. Clearly,if G has property �1;2 then each of the two algorithms will reject it with probability at most 1/6,and hence the combined algorithm rejects with probability at most 1/3. The key claim is that, incase both properties are monotone decreasing, if G is �-far from �1;2 then G must be either �=2-farfrom �1 or �=2-far from �2, in which case it is rejected by either A1 or A2 (with probability atleast 5=6 > 2=3). Suppose, on the contrary that G is �0 = �=2-close to both �1 and �2. Let G1 bea graph having property �1 that is at distance �0 from G, and let G2 be a graph having property�2 that is at distance �0 from G. Consider a maximal graph, denoted G0, which is a subgraph ofthe three graphs G, G1 and G2. Namely, E(G0) = E(G) \ E(G1) \ E(G2). By monotonicity ofboth properties, G0 has property �1;2. By de�nition of G0, E(G0) � E(G). Finally, any edge thatappears in G and not in G0 must be missing in either G1 or G2, and so is counted in their distancesto G. This implies thatdistd(G;G0) = 2 � jE(G) n E(G0)jNd � 2 � jE(G) n E(G1)j+ 2 � jE(G) n E(G2)jNd � 2�0 = �But this contradicts the fact that G is �-far from �1;2, and the theorem follows.6 Testing if a Graph is EulerianA graph G = (V;E) is Eulerian if there exists a path in the graph that traverses every edge inE exactly once. It is well known that a graph is Eulerian if and only if it is connected and allvertices have even degree or exactly two vertices have odd degree. The testing algorithm is quitestraightforward. In addition to testing connectivity (as done in subsection 3.1), we sample verticesand reject whenever we see more than two vertices of odd degree.Algorithm 6.1 (Eulerian Testing Algorithm):1. Invoke Algorithm 3.5 with distance parameter �=2, and REJECT if that algorithm rejects.2. Uniformly and independently select m = O(1=�d) vertices in the graph, determine the degreeof each vertex, and REJECT if more than two di�erent vertices have odd degree. OtherwiseACCEPT.That is, initiate S  ;, and repeat the following steps m times.(a) Uniformly select a vertex v in the graph;(b) If the degree of v is odd then S  S [ fvg.If jSj > 2 the REJECT else ACCEPT.Thus, we test the two properties whose conjunction yields the desired property. However, theanalysis does not reduce to showing that each of the two sub-testers is valid { as property testingof a conjunction of two sub-properties does not reduce in general to the property testing of eachof the two sub-properties [GGR98]. Nonetheless, the following lemma does establish the validity ofour tester.Lemma 6.2 Let G be a graph that is �-far from the class of Eulerian graphs with maximum degreed. Then, it either has more than �8dN connected components, or it has more than �16dN verticeswith odd degree. 22



Proof: Assume contrary to the claim that G has at most �8dN connected components, and atmost �16dN vertices with odd degree. We now show that by adding and removing less than �2dNedges we can transform G into a Eulerian graph (while maintaining the degree bound).First consider the case in which d � 2 is even, and hence all odd degree vertices have degreeless than d. In such a case, we �rst pair all these vertices up and add an edge between every pair(using at most �32dN edges). Clearly, the number of connected components can only decrease inthis process. At this point, all vertices have even degree, which in particular means that all (atmost �8dN) connected components either consist of a single vertex (with degree 0) or have a cyclein them. We can then remove one edge from each non-trivial component, and then connect allcomponents in a cycle without raising the degree of any vertex above d. Speci�cally, in case theedge (ui; vi) was removed from the ith component then we connect ui (resp., vi) to a vertex of thei � 1st (resp., i + 1st) component. Thus, the resulting graph is connected and all its vertices haveeven degree. The total number of edge modi�cations is bounded by �dN32 + 2 � �dN8 < �dN2 .In case d is odd, we �rst remove a single incident edge from each vertex of degree d. Sincethere are at most �16dN vertices of odd degree, at most �16dN edges were removed. The number ofvertices of odd degree cannot increase (as each edge omission 
ips the parity of the degrees of bothend-points, and at least one of these degrees was odd). The number of connected component mayincrease by at most �16dN , and so is now at most 3�16dN . The resulting graph has degree at mostd� 1, which is even, and so we can apply the procedure of the even case (above). In this case, weobtain an Eulerian graph of degree at most d� 1 by making at most�dN16 + ��dN32 + 2 � 3�dN16 � < �dN2edge modi�cations.Theorem 6.3 Algorithm 6.1 is a testing algorithm for the Eulerian property whose query complex-ity and running time are O � log2(1=(�d))� �.Proof: Algorithm 6.1 has complexities as stated and clearly accepts any Eulerian graph. Nowsuppose it is given access to a graph that is �-far from any Eulerian graph (with maximum degreed). Then, by Lemma 6.2, one of the following cases holds.Case 1: The graph has at least �8dN connected components. By adapting the �gures in the proof ofLemma 3.6 it follows that with probability at least 2=3, Algorithm 6.1 rejects in Step (1).Case 2: The graph has at least �d16 �N vertices of odd degree. Thus, the probability that a uniformlyselected vertex has odd degree is at least �d=16. With an appropriate choice of m = O(1=�d),it follows that with probability at least 2=3 more than two odd degree vertices are seen inStep (2), and the algorithm rejects.Thus, in both cases Algorithm 6.1 rejects with probability at least 2=3 as required.7 Hardness ResultsIn this section we present several lower bounds on the query complexity and running time requiredfor testing various properties. 23



7.1 Testing BipartitenessA graph is said to be bipartite if its set of vertices can be partitioned into two disjoint sets sothat there are no violating edges. An edge is said to be violating with respect to a given partition(V1;V2), if both its endpoints are either in V1 or in V2. An equivalent characterization of bipartitegraphs is that they contain no odd-length cycles. In this section we show that any algorithm fortesting whether a graph is bipartite has query complexity 
(pN). This lower bound stands incontrast to a result on testing bipartiteness which is described in [GGR98]. In [GGR98] a graph isassumed to be represented by its N � N adjacency matrix, and the distance between two graphsis de�ned to be the fraction of entries on which their respective adjacency matrices di�er. Thus,in this model, a testing algorithm for a certain graph property should distinguish between the casein which the graph has the property, and the case in which one must add and/or remove at least12�N2 edges in order to transform the graph into a graph that has the property. In [GGR98] thereis an algorithm for testing bipartiteness in this model whose query complexity and running timeare poly(1=�). Recall that in the current paper, graphs are represented by incident lists of length dand distance is measured as (twice) the number of edge modi�cations divided by dN (rather thanby N2).Theorem 7.1 Testing Bipartiteness with distance parameter 0.01 requires 14 � pN queries.Proof: We describe two families of degree-3 N -vertex graphs that are hard to distinguish by anyalgorithm which makes less than pN=4 queries: A typical member of one family is 0.01-far frombeing bipartite, whereas all members of the second family are bipartite graphs. Speci�cally, we �xany testing algorithm that makes less than pN=4 queries, and consider its decision when given agraph uniformly selected in one of these families. The indistinguishability claim implies that on theaverage, such an algorithm will accept the random input graph, with about the same probabilityregardless of the family it was selected from. But this contradicts the requirement from a testingalgorithm, since it should accept every member of the second family with probability at least 2=3while for almost all members of the second family it is allowed acceptance probability smaller than1=3.We start with the construction of both families: Let N be an even integer.101. The �rst family, denoted GN1 , consists of all degree-3 graphs that are composed of the unionof a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting thevertices in a cycle, and the other N=2 edges are a perfect matching.2. The second family, denoted GN2 , is the same as the �rst except that the perfect matchingsallowed are restricted as follows: the distance on the cycle between every two vertices thatare connected by an perfect matching edge must be odd.In both cases we assume that the edges incident to any vertex are labeled in the following �xedmanner: Each cycle edge is labeled 1 in one endpoint and 2 in the other. This labeling forms anorientation of the cycle. The matching edges are labeled 3.Clearly, all graphs in GN2 are bipartite as all cycles in the graph are of even length. We nextprove that almost all graphs in GN1 are far from being bipartite. Afterwards, we show that a testing10 For odd N , every graph (in both families) contains one degree-0 vertex, and the rest of the vertices are connectedas in the even case. 24



algorithm that performs less than �pN queries (for some constant � < 1) is not able to distinguishbetween a graph chosen randomly from GN2 (which is always bipartite) and a graph chosen randomlyfrom GN1 (which with high probability is far from bipartite).Lemma 7.2 With probability at least 1� exp(�
(N)), a graph chosen randomly in GN1 is 0:01-farfrom the class of bipartite graphs.Proof: We �x a certain ordering of the vertices on the cycle and consider all possible partitionsof the graph vertices into two sets. We say that an edge (u; v) is a violating edge with respect toa partition (V1;V2) if for i 2 f1; 2g both u and v belong to the same Vi. We show that with highprobability (over the choice of the matching edges) all such partitions have at least 164N violatingedges (and since d = 3, this implies that the graph is �-far from bipartite for � = 2�(N=64)dN = 196 ).Consider a particular partition (V1;V2) of V. We consider two cases:1. There are at least 164N violating cycle edges with respect to (V1;V2). In this case we aredone no matter how the matching edges are chosen.2. There are less than 164N violating cycle edges. In this case we show that with probability atleast 1� exp(� 732N), over the choice of the matching edges, there are at least 164N violatingmatching edges with respect to (V1;V2).We �rst observe that a random matching can be constructed by selected at each step anyarbitrary vertex that is yet unmatched, and matching it with another unmatched vertex thatis selected uniformly. Thus, assume without loss of generality that jV1j � N=2 and considerthe following process for choosing a randommatching. Starting from j = 1, select an arbitraryvertex v in Vj , and match it with a randomly chosen unmatched vertex u. In case u 2 Vj , theedge (v; u) is a violating edge with respect to (V1;V2). If the number of unmatched verticesin Vj is smaller than the number of unmatched vertices in the other side of the partition thenin the next step switch sides (i.e., let j  3� j).By de�nition of the process, we always try to match a vertex from the side having moreunmatched vertices. Hence, at each step we create a violating edge with probability at least12 (independent of the past events), and so the probability that less than 164N violating edgesare created (in the N=2 steps) is upper bounded by the probability that when tossing N=2unbiased coins, less than N=64 turn out heads. The probability of the latter event is(N=64)�1Xi=0  N=2i ! � 2�N=2 < 2(H(2=64)+o(1))�N2 � 2�N=2 < 2�0:3N (3)where H(p) def= �p log p � (1 � p) log(1 � p) is the (binary) entropy function, and the �rstinequality follows from the bound �nk� � 2nH(k=n) (see [CT91, Page 284]).Given the above, we upper bound the probability that there exists a partition with less than N=64violating edges, by summing, over all possible partitions (V1;V2), the probability that (V1;V2) hasless than N=64 violating edges. We group all possible partitions into two categories correspondingto the above two cases. The contribution of each partition of the �rst category (i.e., Case 1) tothe sum is zero, since by de�nition each of these partitions has at least 164N violating cycle edges.The contribution of each partition of the second category is at most exp(� 732N). We multiply thelatter bound by the number of partitions of the second category. The number of such partitions25



is computed by observing that, for any �xed i � N , each partition which has i violating cycleedges is determined by the choice of those i violating edges. Thus there are P(N=64)�1i=0 �Ni � < 20:2Npartitions with less than 164N violating cycle edges. (We use H(1=64) + o(1) < 0:2.) Thus, theprobability that there exists a partition with less than N=64 violating edges is upper bounded by20:2N � 2�0:3N = exp(�
(N)), and the lemma follows.We now turn to showing that a testing algorithm which performs less than �pN queries (forsome constant � < 1) is not able to distinguish between a graph chosen randomly from GN2 and agraph chosen randomly from GN1Notation. Let A be an algorithm for testing bipartiteness using ` = `(N) queries. Namely, Ais a (possibly probabilistic) mapping from query-answer histories [(q1; a1); : : : ; (qt; at)] to qt+1 2V � f1; 2; 3g, for every t < `, and to faccept; rejectg, for t = `. A query qt is a pair (vt; it), wherevt 2 V and it 2 f1; 2; 3g, and an answer at is simply a vertex ut 2 V. We assume that the mappingis de�ned only on histories which are consistent with some graph. Any query-answer history oflength t�1 can be used to de�ne a knowledge graph, Gknt�1, at time t�1 (i.e., before the tth query).The vertex set of Gknt�1 contains all vertices which appear in the history (either in queries or asanswers), and its edge set contains the edges between vt0 and at0 for all t0 < t (with the appropriatelabelings { it0 at vertex vt0). Thus, Gknt�1 is a labeled subgraph of the labeled graph tested by A.Overview. In what follows we describe two random processes, P1 and P2, which interact with anarbitrary algorithm A, so that for j 2 f1; 2g, Pj answers A's queries while constructing a randomgraph from GNj . Thus, the interaction of Pj with A captures a (random) execution of A on a graphuniformly distributed in GNj . (The fact that the input graph is randomly constructed \online"while the algorithm is making queries to it is immaterial; what is important is that the distributionover the graphs constructed is exactly uniform over GNj .) For a �xed A that uses ` queries, andfor j 2 f1; 2g, let DAj denote the distribution on query-answer histories of length ` induced bythe interaction of A and Pj . We show (below) that for any A that uses ` � �pN queries, thestatistical di�erence between DA1 and DA2 is at most 4�2, where the statistical di�erence betweendistributions D1 and D2 is de�ned as12 �X� jProb[D1 = �]� Prob[D2 = �]j = maxf :f0;1g� 7!f0;1g jProb[f(D1) = 1]� Prob[f(D2) = 1]j (4)In what follows we �rst de�ne the two processes and prove that they in fact induce the desired(uniform) distribution over the respective classes of graphs. We then prove the bound mentionedabove on the statistical di�erence between DA1 and DA2 , and show that Theorem 7.1 follows bycombining this bound with Lemma 7.2.We start by de�ning P1. The process has two stages. In the �rst stage, which goes on as longas the algorithm performs queries, the exact position of the vertices on the cycle is undetermined.However, each vertex that is introduced into the knowledge graph of the algorithm, following somequery, is assigned the parity of its future position on the cycle (but this bit is not given to A).That is, we think of the N positions on the cycle as being numbered from 0 to N � 1, and a vertexwhich is assigned even (resp. odd) parity, will be allowed to be positioned only in even (resp.odd) cycle positions in the second stage. Thus, in this stage, the process essentially maintains theknowledge graph (which is extended according to the query-answer pairs), and keeps one additionalbit per vertex. Observe that by our convention on the labeling of the edges, the knowledge graphmaintained during the �rst stage can be viewed as \
oating" (cycle) sections some of which areconnected by arcs (the matching edges). In the second stage, all vertices in the �nal knowledge26



graph are positioned on the cycle randomly in a way that is consistent with the position-parity ofthe vertices, and so the knowledge graph edges that are labeled 1 or 2 coincide with cycle edges.Thus these sections \stop 
oating" and are restricted to �xed positions. Finally, all vertices thatdo not belong to the knowledge graph are randomly positioned on the remaining cycle positionsand all unmatched vertices are randomly matched.First Stage of P1: Starting from t = 1, for each query qt = (vt; it) of A, process P1 proceeds asfollows:1. If vt belongs to Gknt�1 then there are three cases:(a) This edge already exists in the knowledge graph (i.e., there exists an edge (vt; u) in Gknt�1and this edge is labeled it at the endpoint vt). In this case P1 answers \u" (and theknowledge graph remains unchanged).(b) it = 3 and vt is unmatched in Gknt�1 (i.e., there is no edge (vt; �) in Gknt�1 that is labeled 3).In this case P1 selects a random unmatched vertex u 2 V (where u may belong to Gknt�1)and answers \u". If u did not belong to Gknt�1, then it is assigned a position-parity inthe following manner: Let ne be the number of vertices in Gknt�1 that were assigned evenparity, and let no be the number that where assigned odd parity. Then u is assignedeven parity with probability (N=2)�neN�(ne+no) and odd parity otherwise. In any case, the edge(vt; u) is added to the knowledge graph (with label 3).(c) it 2 f1; 2g and there is no edge incident to vt in Gknt�1 which is labeled it (at vt). Suppose,without loss of generality, that it = 1 and vt has even parity. Let Xo;2 be the set ofvertices in Gknt�1 which have odd parity, and do not have an incident edge labeled 2.Let no;2 def= jXo;2j. Then P1 �rst 
ips a coin with bias no;2(N=2)�no+no;2 to decide whetherto select a vertex in Xo;2. If so, it uniformly selects a vertex in Xo;2. Otherwise, ituniformly selects a vertex not in Gknt�1. In either case, let the selected vertex be u. Thenthe process answers \u", and if u does not belong to Gknt�1, it is assigned odd parity (i.e.,parity opposite to vt). In either case, the edge (vt; u) is added to the knowledge graph(with label it at vt).2. If vt does not belong to Gknt�1, process P1 �rst assigns vt parity as described in (1b) above,adds vt to the knowledge graph, and next answers the query as in (1).Second Stage of P1: After all queries are answered, do the following:1. Among all possible ways to embed Gkn` on the cycle, select one uniformly, where a possibleembedding of Gkn` on the cycle must satisfy the following conditions.(a) Every vertex is assigned a cycle position (i.e., an integer in f0; : : : ; N � 1g) with paritymatching the vertex's parity bit.(b) Vertices connected by a cycle edge in Gkn` are assigned adjacent positions on the cycle.Furthermore, if v is assigned position j on the cycle, and v has an edge labeled \1"connecting it to u in Gkn` , then u must be assigned position (j + 1) (mod N)).2. Next, randomly position all other vertices on the cycle,3. Finally, match all unmatched vertices randomly.27



Process P2 is the same as P1, except when randomly matching vertices in Step (1b) of the �rststage and Step (3) of the second. Whereas process P1 matches vertices at random (regardless oftheir position-parity), process P2 may match two vertices only if they have opposite position-parity.The modi�cation to the second stage of P2 is self-evident (i.e., in Step (3) we randomly match theeven-parity vertices with the odd-parity vertices). We also modify Step (1b) of the �rst stage {when choosing a vertex to match vt, process P2 only considers vertices in Gknt�1 that have oppositeparity of vt. Without loss of generality, assume vt has even parity. Let Xo;3 be the set of verticesin Gknt�1 that have odd parity, and do not have an incident edge labeled 3. Let no;3 def= jXo;3j.Then P2 �rst 
ips a coin with bias no;3(N=2)�no+no;3 to decide if to select a vertex in Xo;3. If so, ituniformly selects a vertex in Xo;3. Otherwise, it uniformly selects a vertex not in Gknt�1. The restof the process, and in particular the assignment of parity to new vertices (i.e., Step (2)), remainsunchanged.We �rst show that the above two processes indeed generate a uniformly distributed graph in thecorresponding family.Lemma 7.3 For every algorithm A and for each j 2 f1; 2g, the process Pj, when interacting withA, uniformly generates graphs in GNj .Proof: We'll prove this by induction on the number of queries, `, that A performs. Since everyprobabilistic algorithm can be viewed as a distribution on deterministic algorithms, it su�ces toprove the lemma for any deterministic algorithm A. Also note that the (accept/reject) output ofthe algorithm is irrelevant to the claim and hence we view the algorithm only as a mapping fromquery-answer histories to queries.The base case, ` = 0 is clear since the knowledge graph is empty, and so in Stage 2 process Pjgenerates a random graph in GNj from scratch. Assuming the claim is true for `� 1, we prove it for`. Let A be an algorithm that performs ` queries, and let A0 be the algorithm de�ned by stoppingA before it asks the `th query. By the induction hypothesis, we know that Pj when interactingwith A0 uniformly generates graphs in GNj . We thus need to show that the same will be true if thesecond stage of Pj is performed following the `th query of A. We need to consider the followingcases, depending on the query q` = (v`; i`) of A. We may assume without loss of generality thatthe answer to the query cannot be derived from the algorithm's knowledge graph, since this wouldbe equivalent to asking no query (in which case the knowledge graph does not change and so thedistribution on Pj 's output after ` steps is identical to its output after `� 1 steps).1. i` = 3, and v` belongs to the algorithm's knowledge graph, Gkn`�1. Consider �rst the processP1 (when interacting with A0). The probability that P1 matches v` (in the second stage) toany vertex (either in Gkn`�1 or not) is clearly independent of the exact ordering of the verticeson the cycle. Hence, by �rst answering this query and then performing the second stage ofPj we are only changing the order in which the �nal graph is constructed.In the case of P2, the probability that P2 matches v` to any vertex is still independent of theexact ordering of the vertices on the cycle, but it does depend on the parity of the vertices.In particular, assume without loss of generality that v` has even parity. Then in any possiblematching done in the second stage following the interaction with A0, the only vertices inGkn`�1 that v` can be matched to are vertices in Xo;3. (Recall that Xo;3 is the set of verticesassigned odd parity that do not have an incident edge labeled 3.) On the other hand, in anypossible embedding of the vertices on the cycle, there are exactly (N=2) � no vertices not in28



Gkn`�1 that have odd parity and thus may be matched to v`. (Recall that no is the numberof vertices assigned odd parity.) This implies that v` is matched to some vertex in Xo;3 withprobability jXo;3jjXo;3j+(N=2)�no , and to some vertex not in Gkn`�1, with probability (N=2)�nojXo;3j+(N=2)�no .Furthermore, conditioned on the event that v` is matched to a vertex in Xo;3, this vertexis distributed uniformly in Xo;3. Similarly, conditioned on the event that it is matched toa vertex not in Gkn`�1, this vertex is uniformly distributed among vertices not in Gkn`�1. Butthese probabilities are exactly as de�ned in Step (1b) of P2.Therefore, for both processes the induction step holds in this case.2. i` = 3, and v` does not belong to Gkn`�1. This case is reduced to the previous one, providedthat the parity of v` is chosen with the correct probability. In the second stage each vertex isassigned parity at random according to the proportion of missing vertices (with this parity).This is exactly the assignment rule of Step (2) in the �rst stage.3. i` 2 f1; 2g, and v` belongs to Gkn`�1. Assume, without loss of generality, that i` = 1 and v` haseven parity. Clearly, in any embedding of Gkn`�1 on the cycle, v` can be adjacent to a vertex uin Gkn`�1 only if u belongs to Xo;2 (as de�ned in the process). It is also clear that conditionedon the event that it is adjacent to a vertex in Gkn`�1, this vertex is uniformly distributed in Xo;2(and similarly if it is not in the graph). Finally, since there should be exactly N=2 odd-parityvertices, and the total number of odd-parity vertices in Gkn`�1 is no, the number of odd-parityvertices not in Gkn`�1 (in any ordering of the vertices on the cycle) is (N=2) � no. Thus theprobability that v` is adjacent to some u 2 Xo;2 is jXo;2jjXo;2j+(N=2)�no , and the probability that itis adjacent to some vertex outside the knowledge graph is (N=2)�nojXo;2j+(N=2)�no , which is exactly asde�ned by the process. Hence the induction step holds in this case.4. i` 2 f1; 2g, and v` does not belong to the knowledge graph. This case is reduced to theprevious one, provided that the parity of v` is chosen with the correct probability. Thevalidity of the condition was already established in Case 2.Finally we bound the statistical di�erence between the distributions of query-answer sequencesinduced by the interaction of A with the two processes. Recall that DAj denotes the distributionon query-answer histories (of length `) induced by the interaction of A and Pj .Lemma 7.4 Let � < 12 , ` � �pN and N � 8`. Then, for every algorithm A that asks ` queries,the statistical distance between DA1 and DA2 is at most 4�2. Furthermore, for both distributions,with probability at least 1�4�2 the knowledge graph at time of termination of A contains no cycles.Proof: We assume without loss of generality that A does not ask queries whose answer can bederived from its knowledge graph, since those give it no new information. Under this assumption,we �rst prove the following.Claim: Both in DA1 and in DA2 , the total probability mass assigned to query-answer histories inwhich for some t � ` a vertex in Gknt�1 is returned as an answer to the tth query is at most 4�2.Proof: We show that for every t the probability that the tth answer is in Gknt�1 (i.e., there existt0 < t such that at = vt0 or at = at0) is at most 8(t� 1)=N . The claim directly follows (as describedbelow). Fixing t, there are two cases in which the event at 2 Gknt�1 might occur.29



1. it = 3, and vt is matched to a vertex in the knowledge graph Gknt�1. Since the number ofvertices in Gknt�1 is at most 2(t� 1), this event occurs with probability at most 2(t�1)N�2(t�1) whenthe process is P1, and at most 2(t�1)(N=2)�2(t�1) when the process is P2.2. it 2 f1; 2g and at is chosen in Gknt�1. According to both processes this event occurs withprobability less than 2(t�1)(N=2)�2(t�1)Thus, in each of the cases, the probability that at 2 Gknt�1 is at most 2(t�1)(N=2)�2(t�1) < 8(t�1)N (asN � 8t). The probability that such an event occurs in any sequence of �pN queries, is at mostP�pNt=1 8(t�1)N < 4�2. 2In particular, the Claim implies that with probability at least 1 � 4�2, the knowledge graph of Acontains no cycles. Observe that whenever any of these processes returns as an answer a vertexnot in the current knowledge graph, this vertex is uniformly distributed among the vertices not inthat graph. Since A's queries only depend on the preceding query-answer history, it follows thatconditioned on the process not returning vertices in the current knowledge graph, the answers aredistributed obliviously of the identity of the process. Lemma 7.4 follows.Finishing up the proof of Theorem 7.1: We use the above three lemmas to show that Acannot be a tester for bipartiteness with distance parameter � = 0:01, and Theorem 7.1 follows.Setting � = 1=4 and using Lemma 7.4, it follows that for any algorithm A which makes �pNqueries, the statistical di�erence between DA1 and DA2 is at most 4 � (1=4)2 = (1=4). By Lemma 7.3,DAj is distributed identically to the query-answer sequences in an execution of A on a uniformlydistributed graph in GNj . We start by observing that since all graphs in GN2 are bipartite (and A isa bipartiteness tester), Prob[A(DA2 ) = accept] � 23 (5)Recall that A(DA2 ) denotes the �nal decision of A after interacting with process P2, and thisdistribution is identical to the one in an execution of A on a uniformly distributed graph in GN2 .Combining Eq. (5) with the bound of 1=4 on the statistical di�erence between DA1 and DA2 , wehave Prob[A(DA1 ) = accept] � 23 � 14 > 0:4 (6)But, by Lemma 7.2, more than 99% of the graphs in GN1 are 0.01-far from bipartite and thus mustbe rejected. Thus, Prob[A(DA1 ) = accept] � 0:99 � 13 + 0:01 < 0:35, in contradiction to Eq. (6).Proof of Proposition 4.3: Consider either classes described in the proof of Theorem 7.1: Atesting algorithm for cycle-freeness must reject a random graph in the class with probability 2=3since such a graph is far from cycle free. However, if the algorithm asks only o(pN) queries thenthe probability it actually observes a cycle is negligible. Fixing any such sequence of coins whereno cycle is detected, we observe that the algorithm will also reject a graph that consists only of the(partial) forest it has observed. Thus the algorithm has a non-zero rejecting probability on somecycle-free graphs.
30



7.2 Testing Whether a Graph is an ExpanderThe neighbor set of a set S of vertices of a graph G = (V;E), denoted �(S), is de�ned as follows:�(S) def= S [ fu : (v; u) 2 E; v 2 SgA graph on N vertices is an (N; 
; �){expander if for every subset S of the vertices that has size atmost 
N , j�(S)j � �jSj. Let us set 
 = 14 and � = 1:2, and simply refer to an (N; 14 ; 1:2){expander,as an expander. Here we show thatTheorem 7.5 Testing whether a graph is an expander, with distance parameter � = 0:01, requires15 � pN queries.Proof: Similarly to the lower bound for testing bipartiteness, we �rst describe two families ofgraphs where with extremely high probability, a graph chosen randomly in the �rst family is anexpander, and every graph in the second family is far from being an expander. We then describetwo processes which interact with a testing algorithm while constructing a random graph in oneof the families, and show that the distributions induced on the query-answer sequences are verysimilar. For simplicity we assume that N � 0 (mod 8).Let d = 3. It is well known (see [Pin73], [MR95, Thm. 5.6]) that if we randomly constructa graph by choosing d random perfect matchings to de�ne its edge set, then with probability1 � exp(�
(N)), the resulting graph is an expander. The �rst family, GN1 , consists of all possibleresulting graphs. A graph in the second family, GN2 , is constructed by �rst randomly partitioningthe vertex set into 4 equal size subsets, and then choosing d random matchings inside each subset.Thus the four subsets are disconnected. Clearly, every graph in this family is 160 -far from being anexpander, since in order to transform it into an expander we must connect each of the four subsetsto at least N=20 vertices outside the subset. In both processes, each edge in the graph has the samelabel at both endpoints (i.e., corresponding to the index of the perfect matching to which the edgebelongs).The process P1 for constructing a random graph in GN1 , while interacting with an algorithm A,is completely straightforward. Let qt = (vt; it) be A's tth query. If the answer at is determined bythe current knowledge graph, Gknt�1, then P1 answers accordingly. Otherwise, it selects a randomvertex u which does not have an incident edge labeled it, answers \u", and adds the edge (v; u)to the knowledge graph. (In case u does not belong to Gknt�1 it is of course added in.) When theinteraction with A ends, P1 randomly completes all d matchings.Process P2 is somewhat more complex. It maintains four subsets of vertices and coordinates itschoice of matching edges with these growing subsets.� Whenever algorithm Amakes a query of the form (v; i) where v is not in the current knowledgegraph, P2 assigns it a subset-id in f1; 2; 3; 4g with probability proportional to the number ofvertices missing in each subset (P2 starts with all subsets being empty). Speci�cally, let nsbe the number of vertices with subset-id s in the current knowledge graph, for s = 1; 2; 3; 4.Then the new vertex is assigned subset-id s with probability (N=4)�nsN�(n1+n2+n3+n4) . The query isthen processed as follows.� To answer a query (v; i) when v is already in the current knowledge graph, P2 matchesit to either a vertex already assigned to the same subset as v or to an unassigned vertex.Speci�cally, suppose that v is already assigned to the sth subset, and let Xs;i denote the set31



of vertices which are assigned to the sth subset but do not have an incident edge labeled i.Then with probability jXs;ij�1(N=4�ns)+(jXs;ij�1) process P2 matches v to a uniformly selected vertex,u, in Xs;i n fvg. Otherwise, P2 matches v to a uniformly selected vertex, u, which does notbelong to the current knowledge graph, and assigns u to the sth subset. In both cases P2answers with the selected vertex u, and the knowledge graph is augmented with the edge(v; u) labeled i.It is easy to verify, using arguments similar to those in the proof of Lemma 7.3, that for bothprocesses the distribution on the generated graphs is uniform in the respective graph family. Sim-ilarly to the bipartite lower bound, it remains to show that for any (not too long) query-answerhistory, the probability that we get an answer at which is a vertex in the knowledge graph (andnot a uniformly distributed new vertex) is small. But this is easy to see. In the case of P1, sucha vertex is selected following the tth query, with probability at most 2tN�2t . In the case of P2, sucha vertex is selected with probability at most 2t(N=4)�2t . The probability that such an event occursin any sequence of �pN queries, is at most P�pNt=1 8tN�8t which is at most 8�2, for every N � 256.7.3 Vertex Cover and Dominating SetIt should come with little surprise that we cannot e�ciently test graph properties which are relatedto hard-to-approximate problems on bounded-degree graphs.Consider, for example, the class C�d of graphs with maximum degree d having a vertex coverof size �N , for some constant � > 0. (A vertex cover of a graph G = (V;E) is a set C � V sothat every edge e 2 E is incident to some vertex in C.) Let A be a property tester for C�d as inDe�nition 2.1. Namely, on input � and d, and access to a graph with degree bounded by d, Aaccepts (with high probability) any graph in C�d but rejects (w.h.p.) any N -vertex graph (of degree� d) which requires modi�cation of �dN edges in order to be in C�d . We observe that it su�ces toconsider the number of edges omitted in the modi�cation process, and that the number of omittededges can be related to an increase in the vertex cover. Speci�cally,Claim 7.6 Suppose that A is a property tester for C�d . Then, on distance parameter �, algorithmA distinguishes between N -vertex graphs (of degree at most d) having a vertex cover of size � � Nand N -vertex graphs (of degree at most d) having no vertex cover of size ��+ 12�d� �N .Since distinguishing the two cases is NP-Hard for some constants d; � and � [ALM+98, PY91], wecannot expect A to have \reasonable" (e.g., polynomial in N) time-complexity.Proof: By de�nition, the former graphs are in C�d . It remains to see that any N -vertex graphhaving no vertex cover of size ��+ 12�d� � N requires the modi�cation of more than 12�dN edgesin order to put it in C�d . Suppose that it su�ces to omit m edges from a graph G in order toobtain a graph G0 in C�d (we don't care if edges were added in the process).11 Then taking the�N -vertex-cover of G0 and at most one endpoint of each of the m edges omitted from G, results ina vertex cover of G having size at most �N +m. Thus, we have m > 12�dN .11 Actually, without loss of generality we may assume that no edges were added as they only make the task ofcovering harder. 32



Next, we consider the class D�d of graphs with maximum degree d having a dominating set ofsize �N . (A dominating set of a graph G = (V;E) is a set D � V so that every vertex in V is eitherin D or adjacent to some vertex in D.) We observe that it su�ces to consider the number of edgeswhich need to be added to put the graph in D�d. Speci�cally,Claim 7.7 Suppose that A is a property tester for D�d. Then, on distance parameter �, algorithmA distinguishes between N -vertex graphs (of degree at most d) having a dominating set of size � �Nand N -vertex graphs (of degree at most d) having no dominating set of size ��+ 12�d� �N .Again, since distinguishing the two cases is NP-Hard for some constants d; � and � [ALM+98, PY91],we cannot expect A to have \reasonable" time-complexity.Proof: Again, the former graphs are in D�d, and it remains to see that N -vertex graphs havingno dominating set of size ��+ 12�d� �N require the modi�cation of more than 12�dN edges in orderto put them in D�d. Suppose that it su�ces to add m edges to a graph G, with maximum degreed, in order to obtain a graph G0 in D�d (we don't care if edges were omitted in the process).12 LetS0 be a dominating set of size �N of G0. Then S0 dominates all but at most m vertices in G (i.e.,all vertices dominated in G0 except for those which are dominated due to the edges added to G).Adding these vertices to S0 we obtain a dominating set of size jS0j+m of G, and thus m > 12�dN .We conclude by proving a lower bound on the query complexity of testers for the Vertex CoverProperty, C�d . Speci�cally,Proposition 7.8 Let d = 3, � = 0:5 and � = 0:005. Then testing whether a 3-regular N -vertexgraph belongs to C�d or is �-far from it requires 
(pN) queries.Proof: We use the families GN1 and GN2 presented in Subsection 7.1. By combining Lemmas 7.3and 7.4, an algorithm which makes o(pN) queries can not distinguish graphs uniformly chosen inGN1 from graphs uniformly chosen in GN2 . It is easy to see that graphs in GN2 have a vertex coverof size N=2 (e.g., all vertices with odd locations on the cycle). It remains to show that, with veryhigh probability, a graph chosen uniformly in GN1 has no vertex cover of size 0:51 �N . By Claim 7.6,it follows that an algorithm which makes o(pN) queries cannot test C0:53 on distance parameter2 � 0:01=3 > 0:005.As in the proof of Lemma 7.2, we �x an ordering of the vertices on the cycle, and consider theprobability over the random choice of a perfect matching, that the resulting graph has a vertexcover of size 0:51 � N . We observe that such a potential vertex cover, denoted C, must cover allcycle edges. This allows us to upper bound the number of potential vertex covers (of size 0:51 �N)which we should consider. In such a vertex cover, C, each vertex not in C must be adjacent (on thecycle) to vertices in C. Let w1; : : : ; w0:51�N be the vertices in a generic cover, ordered according totheir relative position on the cycle. Then a speci�c cover C is determined by whether w1 is the �rstvertex on the cycle or the second, and by which of the vertices among w1; : : : ; w0:51�N are followedby a vertex not in C. Thus, the number of possible sets of size 0:51N which cover the cycle edgesis at most 2 �  0:51N0:49N! � 2H(49=51)�0:51N+1 < 20:122N12 Here we cannot assume that the modi�cation of G into G0 consists only of the addition of edges, since we maybe forced to omit edges in order to satisfy the degree bound. Nevertheless, this fact does not e�ect the proof.33



where recall that H(p) def= �p log p � (1 � p) log(1 � p), and that the �rst inequality follows fromthe bound �nk� � 2nH(k=n) (see [CT91, Page 284]). On the other hand, for every �xed C as above,the probability that C covers the matching edges is upper bounded by the probability that the�rst 0:4N edges selected have each an endpoint in C. Consider the selection of the i + 1st edge.The probability that both its end-points are not in C is at least (0:49N�iN�2i )2 (using the hypothesisthat all prior edges had an end-point in C). De�ne f(x) def= 0:49�x1�2x , and observe that this functionis monotonically decreasing in [0; 0:5]. Thus, the probability that C covers the matching edges isupper bounded by 0:4NYi=0 �1� f(i=N)2� < �1� f(0:4)2�0:4N < 2�0:131NWe conclude that the probability that a graph chosen uniformly in GN1 has a vertex cover of size0:51 �N is smaller that 20:122N � 2�0:131N = exp(�
(N)). The proposition follows.AcknowledgmentsWe thank Ye�m Dinitz, Shimon Even, and David Karger for helpful discussions. We are mostgrateful to an anonymous referee for very useful comments.
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A Background on Edge-ConnectivityIn this appendix we recall some known facts regarding the structure of the k-edge-connected classesof a (k � 1)-connected graph. Whereas the structure of the 2-classes of a connected graph is well-known and relatively simple (cf., [Eve79]), the (k-connected class) structure of (k � 1)-connectedgraphs becomes slightly more complex when k � 3. We thus refrain from describing in detail thisstructure and merely state the facts which we need. The interested reader is referred to [DW98]for more details.A.1 The auxiliary tree of a (k � 1){connected graphWe emphasize that the graphs below are not necessarily simple; that is, parallel edges are allowed.Fact A.1 (cf., [DW98]): Let k > 1 be an integer and G be a (k � 1)-connected graph. Then thereexists an auxiliary graph, TG, which is a tree such that:� Each k-connected class in G corresponds to a unique node in TG.� In addition to nodes corresponding to k-connected classes, there are two types of auxiliarynodes: empty nodes, and cycle nodes (the latter exist only for odd k). The neighbors of acycle node in TG are said to belong to a common cycle, and we associate a cyclic order withthem. (Since TG is a tree, any two cycles can have at most one common node.)� All leaves of the auxiliary tree TG correspond to k-connected classes of G. Furthermore, thereare exactly k � 1 edges (in G) going out from each of these classes.For example, when k = 2, all nodes of the auxiliary tree correspond to 2-classes, and the edgesin the auxiliary tree correspond to graph edges which are known as bridges. Bridges are edgesconnecting vertices in di�erent 2-classes of the graph, and their removal disconnects the graph. Inthe case of k = 3, the auxiliary tree includes cycle nodes (but no empty nodes). If C1 : : : ;C` areneighbors of a cycle node Cy, then this means that there is a single graph edge between some vertexin Ci and some vertex in Ci+1mod`, for every i.Before stating the next lemma we need to de�ne the notion of squeezing a cycle. Let Cy bea cycle node in TG, and let its neighbors be C1; : : : ;Ct (where their indices corresponds to theirordering around the cycle). Then the result of squeezing Cy at Ci and Cj is the merging of Ci andCj into a new node Ck, with one of the following changes to the cycle:1. In case Ci and Cj are adjacent on the cycle, then we have two subcases.(a) If t > 3 then the merged node Ck is connected by a single edge to the cycle node Cy(and all other nodes belonging to the cycle remain that way).(b) If t = 3 (i.e., there was only one additional node on the cycle), then Cy is removed, andthe additional node is connected by a tree edge to Ck.2. In case Ci and Cj are separated by at least one node on the cycle then t � 4, and we havethree subcases.(a) If t = 4 (and so Ci and Cj are separated by a single node in each cycle direction), thenwe put a tree edge between each of these intermediate nodes and Ck, and the cycledisappears. 37



(b) If t > 4 and Ci and Cj are separated by a single node C` on one of the cycle directions,then we put a tree edge between C` and Ck, and Ck belongs to a single cycle with allthe rest of the (at least 2) nodes which were previously on the cycle.(c) Otherwise (t > 4 and at least two nodes separate Ci and Cj in each direction), then weget two cycles, where Ck belongs to both, and the other nodes are partitioned amongthe cycles according to their relative position with respect to Ci and Cj.Lemma A.2 (cf., [DW98]): Let G be a (k � 1)-connected graph, and TG be its auxiliary tree.Suppose that we augment G by an edge with endpoints in the k-connected classes C1 and C2,respectively. Then the classes residing on the simple path between C1 and C2 in TG form a k-connected class in the augmented graph, and all classes in G which do not reside on the pathremain distinct k-classes in the augmented graph. In case the path passes through nodes Ci and Cjwhich belong to the same cycle Cy, then Cy is squeezed at Ci and Cj.A related lemma which we need follows. In what follows, when we refer to an edge as being ina class we mean that it connects two vertices belonging to the class.Lemma A.3 Let G be a (k � 1)-connected graph, TG be its auxiliary tree, and C1, C2 two (k-connected) classes of G each containing at least one edge. Suppose that we omit a single edgefrom each Ci and add two edges so to maintain the vertex degrees of G; Speci�cally, if the edges(u1; v1) and (u2; v2) were omitted from C1 and C2 respectively, then we either add the edges (u1; u2)and (v1; v2), or the edges (u1; v2) and (v1; u2). As a result, the classes residing on the simple pathbetween C1 and C2 in TG form a k-connected class in the augmented graph, and all classes in Gwhich do not reside on the path remain distinct k-classes in the augmented graph.We note that this lemma can be proven (private communication with Y. Dinitz, December 1996 )using the Circumference Theorem in [DKL76], but we provide a direct proof for completeness.Proof: Let I1; :::; It be the (intermediate) k-classes residing on the path between C1 and C2 in thetree TG. (We do not exclude the case t = 0.)Consider what happens when we omit the edge (ui; vi) from Ci. Either Ci remains a k-class, orit breaks into several k-classes, denoted C1i ; :::;Cqii . It follows from Lemma A.2 that in the lattercase the classes C1i ; :::;Cqii correspond to a path on the auxiliary tree of the modi�ed graph, so thatthe vertex ui resides in C1i , and vertex vi resides in Cqii . (Any other restructuring is ruled out byLemma A.2, since if we now add the edge (ui; vi) back, we must regain the k-class Ci.) Thus, theIj's and the Cji 's reside on a sub-tree of the auxiliary tree of the modi�ed graph so that the onlyleaves in this sub-tree are among the \extreme" Cji 's (i.e., C11, Cq11 , C12, and Cq22 ).Consider �rst the simpler case of t � 1. The existence of intermediate nodes guarantees thatnone of the Cj1's may belong to the same cycle as a Cj2. In this case, we may use either pairs ofedges suggested in the lemma to join the four classes in two pairs and collapse the entire sub-treeinto a single node. That is, suppose we add the edges (u1; u2) and (v1; v2). Then, by Lemma A.2the �rst (resp., second) added edge will cause the collapse of all classes on the path between C11and C12 (resp., Cq11 and Cq22 ). Since these are the only leaves on the sub-tree, the claim follows. Asimilar argument can be applied as long as C11, Cq11 , C12, and Cq22 do not belong to the same cycle.It remains to deal with the case in which C11, Cq11 , C12, and Cq22 all belong to the same cycle.Here we must be careful in choosing which two edges to add. Assume, w.l.o.g., that indeed theirorder on the cycle is as above. Then it is essential that we add the edges (u1; u2) and (v1; v2) (i.e.,connecting C11 to C12 and Cq11 to Cq22 ) in a crossing fashion, so as to insure that the two invocationof Lemma A.2 will cause the collapse of the four classes into one class. The lemma follows.38



A.2 Distance from k-connectivity versus number of leavesUsing Lemma A.2, it is easy to transform any (k� 1)-connected graph G into a k-connected graphG0 by adding at most L � 1 edges, where L is the number of leaves in the auxiliary tree of G.This follows by observing that each application of the lemma reduces the number of leaves by one.However, this process (especially if applied obliviously) may result in a graph G0 which violatesthe degree bound. Thus, we use a slightly more complicated argument which utilizes Lemmas A.2and A.3.Lemma A.4 Let G be a (k � 1)-connected graph, whose auxiliary graph, TG, has L leaves. Thenby removing and adding at most 4L edges to G we can transform it into a k-connected graph G0.Furthermore, suppose that the maximum degree of G is d then the maximum degree of G0 is upperbounded by maxfd; kg if either d > k or dN is even, and by k + 1 otherwise.We note that there might be a way to save a constant factor in the number of edges added andremoved from G when transforming it into a k-connected graph (while respecting the degree bound).Proof: We �rst use Lemma A.2 to collapse all leaves in TG which correspond to singleton classes(i.e., classes consisting of a single vertex of G). These vertices have degree k�1 and so we can matchthem in pairs and add a single edge between each pair. At this point we may be left with a singleunmatched vertex/leaf, which we deal with later. Call the resulting graph G1 and its auxiliary treeT1. The number of leaves in T1 is at most L � i, where i is the number of pairs matched above.All leaves in T1 (except for possibly a unique singleton) can be now collapsed using Lemma A.3.The number of edge modi�cations in this stage is at most 4(L � i � 1). The resulting graph, G2,has degree at most d0 def= maxfd; kg. In case G2 is k-connected we are done.Otherwise, G2 consists of a singleton which is connected to a k-connected class containing allother vertices. In case some vertex in the large class has degree lower than d0 we connect it tothe singleton and conclude as per Lemma A.2. Otherwise (i.e., all vertices in the large class havedegree d0), we need to distinguish two subcases. In case k < d0 we simply omit one edge internalto the large class and connect its endpoints to the singleton. It can be seen that this makes thegraph k-connected and that all vertices have degree at most d0. Finally, if d0 = k a parity argumentshows that d0N must be odd (as otherwise the sum of degrees, (N � 1)d0 + (k � 1) = Nd0 � 1, isodd). In this case we are allowed to add an edge and increase the degree of the resulting graph tod0 + 1 = k + 1.The total number of modi�cations is thus i+4(L� i�1)+3 < 4L, and the lemma follows.B Proof of Inequality (2)Our aim is to prove that for any integers c � D and n � 2,p def= nYj=2 j � (c=D)j + (c=D) > �(n)�2c=DA proof that p = 
(n�2c=D), for constant c;D, can be derived from Karger's Ph.D. Thesis [Kar95](see proof of Corollary 4.7.5 which refers to an exercise in Knuth Vol. 1). An alternative prooffollows. 39



We �rst observe that for every i > 0 jD � cjD + c > jD � c� ijD + c� i (7)Using Eq. (7), we have pD = 0@ nYj=2 jD � cjD + c)1AD> D�1Yi=0 nYj=2 jD � c� ijD + c� i= nDYk=2D�(D�1) k � ck + c= (D � c+ 1) � (D � c+ 2) � � � (D + c)(nD � c+ 1) � (nD � c+ 2) � � � (nD + c)> (D=O(1))2c(nD + c)2cThus, using c � D and n � 2, we getp > � 1=O(1)n+ (c=D)�2c=D> � 1�(n)�2c=D
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