Property Testing in Bounded Degree Graphs

Oded Goldreich* Dana Ron'

February 18, 1997

Abstract

We further develop the study of testing graph properties as initiated by Goldreich, Gold-
wasser and Ron. Whereas they view graphs as represented by their adjacency matrix and
measure distance between graphs as a fraction of all possible vertex pairs, we view graphs as
represented by bounded-length incidence lists and measure distance between graphs as a fraction
of the maximum possible number of edges. Thus, while the previous model is most appropriate
for the study of dense graphs, our model 1s most appropriate for the study of bounded-degree
graphs.

In particular, we present randomized algorithms for testing whether an unknown bounded-
degree graph is connected, k-connected (for £ > 1), planar, etc. Our algorithms work in time
polynomial in 1/¢, always accept the graph when it has the tested property, and reject with high
probability if the graph is e-away from having the property. For example, the 2-Connectivity
algorithm rejects (w.h.p.) any N-vertex d-degree graph for which more than ed N edges need to
be added to make the graph 2-edge-connected.

In addition we prove lower bounds of Q(\/N) on the query complexity of testing algorithms
for the Bipartite and Expander properties.

KevyworDs: Approximation Algorithms, Graph Algorithms.

*Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, ISRAEL.
E-mail: oded@wisdom.weizmann.ac.il. On sabbatical leave at LCS, MIT.

"Laboratory for Computer Science, MIT, 545 Technology Sq., Cambridge, MA 02139. E-mail:
danar@theory.lcs.mit.edu. Supported by an NSF postdoctoral fellowship.

1 Introduction

Approximation is one of the basic paradigms of modern science. One of its facets in computer
science is approximation algorithms. Yet, it is not always clear what approximation means. The
dominant approach considers a cost function associated with possible solutions of an instance,
and regards an approximation algorithm as one which provides an approzimation of the cost of
an optimal solution. In many cases one also expects (or requires) the approximation algorithm
to supply a solution with cost close to optimal. This approach is most suitable in case there is
a natural cost measure for candidate solutions and the optimal solution is preferable only due
to its low(est) cost. An alternative approach is to consider the distance of the given instance
to the closest instance which has a desirable property. The property may be having a solution
of certain cost (w.r.t some cost measure defined as in the first approach), but it can also be of a
qualitative nature; for example, being a connected graph (in case the instances are graphs), or being
a linear function (in case the instances are functions). The latter approach underlines all work on
testing low-degree polynomials [BLR93, RS96, GLR*91, BFL91, BFLS91, FGL*91, ALM*92] and
codes [BFLS91, ALM*92, BGS95, Has96], and its relevance to the construction of probabilistically
checkable proofs [BFL91, BFLS91, FGL*T91, AS92, ALM™*92] is well known. Recently, a general
formulation of property testing has been presented in [GGR96], and its connection to the former
approach to approximation have been demonstrated. Still the two approaches do differ, and the
question of meaningfulness has to be addressed (as we do below).

Another general point is that approximation is applicable not only when the optimization
problems are intractable. Also in case there exists an efficient algorithm for solving the problem
optimally, one may wish to have an even faster algorithm and be willing to tolerate its approxima-
tive nature. In particular, in a RAM model of computation, an approximation algorithm may even
run in sub-linear time and still provide valuable information. For example, the testing algorithms
of [GGRY6] run in constant time and provide “constant error approximations” (e.g., one can ap-
proximate the value of the maximum cut in a dense graph to within a constant factor in constant
time).

1.1 Testing graph properties

Recently, a study of testing graph properties was initiated by Goldreich et. al., as part of a general
study of Property Testing [GGR96]. In the general model, the algorithm is given oracle access!
to a function and has to decide whether the function has some specified property or is “far” from
having that property. Distance between functions is defined as the fraction of instances on which
the functions’ values differ.? In their study of testing graph properties, Goldreich et. al. view the
graph as a Boolean function defined over the set of all vertex-pairs. Thus, their measure of distance
between graphs is the fraction of vertex-pairs which are an edge in one graph and a non-edge in
the other graph, taken over the total number of vertex-pairs. This model is most appropriate for
the study of dense graphs, and indeed the graph algorithms in [GGR96] refer mainly to dense
graphs. For example, their (constant time) Monte Carlo algorithm for testing whether a graph
is Bipartite or is 0.1-far from Bipartite is meaningful only for N-vertex graphs which have more
than 0.1 () edges (as any graph having fewer edges is 0.1-close to being Bipartite). Furthermore,

2
testing connectivity in this model is trivial as long as the distance parameter is bigger than % (since

! Here we ignore the variant in which the algorithm is given only random examples.
2 We ignore the variant where distance is measured with respect to an arbitrary distribution (rather than w.r.t
the uniform one).

every N-vertex graph is %—close to being connected and so the algorithm may as well accept any
graph).

In this paper we present an alternative model. We view bounded-degree graphs as functions
defined over pairs (v,7), where v is a vertex and ¢ is a positive integer within a predetermined
(degree) bound, denoted d. The range of the function is the vertex set augmented by a special
symbol. Thus the value on argument (v,) specifies the :*" neighbor of v (with the special symbol
indicating non-existence of such a neighbor). Our measure of distance between (N-vertex) graphs
is the fraction of vertex-pairs which are an edge in one graph and a non-edge in the other, taken
over the size of the domain (i.e., over dN). Thinking of d as being a fixed constant, this model
does not allow to consider dense graphs, yet it is most appropriate to the study of graphs with
maximum degree d. In particular, it is no longer true that every (degree-d) graph is 0.1-close to
being connected and so an algorithm for testing connectivity cannot be trivial (i.e., always accept).
On the other hand, the techniques in [GGR96] do not apply to our model and the analogies of most
of the results in [GGRI6] do not hold: For example, we show that no constant time (Monte Carlo)
algorithm can test whether a graph is Bipartite or is 0.1-far from Bipartite, where distance is as

defined here.

To demonstrate the viability of our model, we present randomized algorithms for testing several
natural properties of bounded-degree graphs. All algorithms get as input a degree bound d and
an approximation parameter e. The algorithms make queries of the form (v,7) which are answered
with the name of the i neighbor of v (or with a special symbol in case v has less than ¢ neighbors).
With probability at least 2/3, each algorithm accepts any graph having the tested property and
rejects any graph which is at distance greater than ¢ from any graph having the property. Actually,
except for the cycle-freeness tester, all algorithms have one-sided error (i.e., always accept graphs
which have the property), and furthermore when rejecting they present a short certificate vouching
that the property does not hold in the tested graph. Assuming that vertex names are manipulated
at constant time, all algorithms have poly(d/¢) running-time (i.e., independent of the size of the
graph). Actually, most algorithms have poly(1/¢) running-time and some have O(1/¢) running-
time, where O({) = poly(log(£)) - £. In particular, we present testing algorithms for the following
properties:

connectivity: Our algorithm runs in time O(1/¢). Recall that by the above this means that in
case the graph is connected the algorithm always accepts, whereas in case the graph is e
far from being connected the algorithm rejects with probability at least % and furthermore
supplies a small counter-example to connectivity (in the form of an induced subgraph which
is disconnected from the rest of the graph).

k-edge-connectivity: Our algorithms run in time O(kS . 6_3"'%). For k = 2,3 we have improved
algorithms whose running-times are O(e™!) and O(e™?), respectively.

k-vertex-connectivity (for k = 2,3): Our algorithms run in time O(e™%).
planarity: Our algorithm runs in time O(d*- e 1).

cycle-freeness: Our algorithm runs in time 0(6_3). Unlike all other algorithms, this algorithm
has two-sided error probability, which is shown to be unavoidable for testing this property
(within o(v/N) queries, where N is the size of the graph).

In addition, we establish (v N) lower bounds on the query complexity of testing algorithms for
the Bipartite and Expander properties. The first lower bound stands in sharp contrast to a

result on testing bipartiteness which is described in [GGR96]. Recall that in [GGR96] graphs are
represented by their NV x N adjacency matrices, and the distance between two graphs is defined
to be the fraction of entries on which their respective adjacency matrices differ. The Bipartite
tester of [GGRI6] works in time poly(1/¢) and distinguishes Bipartite graphs from graphs in which
at least eN? edges must be omitted in order to be bipartite. Recall that in the current paper,

graphs are represented by incidence lists of length d and distance is measured as the number of
edge modifications divided by dN (rather than by N?).

Finally, we observe that the known results on inapproximability of Minimum Vertex Cover (and
Dominating Set) for bounded-degree graphs [ALM*92, PY91], rule out the possibility of efficient
testing algorithms for these properties in our model.

1.2 What does this type of approximation mean?

To make the discussion less abstract, let us consider the k-(edge)-connectivity tester. As evident
from above, this algorithm is very fast; its running-time is polynomial in the error parameter, which
one may think of as being a constant. Yet, what does one gain by using it?

One possible answer is that since the tester is so fast, it may make sense to run it before
running an algorithm for k-connectivity. In case the graph is very far from being k-connected, we
will obtain (w.h.p.) a proof towards this fact and save the time we might have used running the
exact algorithm. (In case our tester detects no trace of non-k-connectivity, we may next run our
exact algorithm.) It seems that in some natural setting where typical objects are either good or
very bad, we may gain a lot. Furthermore, if it is guaranteed that objects are either good (i.e.,
graphs are k-connected) or very bad (i.e., far from being k-connected) then we may not even need
the exact algorithm at all. The gain in such a setting is enormous.

Alternatively, we may be forced to take a decision, without having time to run an exact algo-
rithm, while given the option of modifying the graph in the future, at a cost proportional to the
number of added/omitted edges. For example, suppose you are given a graph which represents
some design problem, where k-connectivity corresponds to a good design and changes in the design
correspond to edge additions/omissions. Using a k-connectivity tester you always accept a good
design, and reject with high probability designs which will cost a lot to modify. You may still
accept bad designs, but then you know that it will not cost you much to modify them later. In this
respect we mention the existence of efficient algorithms for determining a minimum set of edges to
be added to a graph in order to make it k-connected [WN87, NGM90, Gab91, Ben95, NI196].

1.3 Testing connectivity to the rest of the graph

Our algorithm for testing k-edge-connectivity, for £ > 2, uses a subroutine which may be of in-
dependent interest. To describe it, suppose that you are given as input a vertex which resides in
a k-connected component of the graph separated from the rest of the graph by less than & edges.
Your task is to find all vertices in the same component, and this should be done within complexity
which only depends on the size of this component. As above, you are allowed oracle queries of the
form “what is the ¢*" neighbor of vertex v”.

Our algorithm finds the component containing the input vertex, within time cubic in the size of

the component (independent of k& and of the size of the entire graph). It is based on the underlying
idea of the min-cut algorithm of Karger [Kar93]. For k = 2, we have an alternative algorithm which

works in time linear in the size of the component.®> We suggest the improvement of the complexity
of the above task, for & > 3, as an open problem.

Organization

In Section 2 we present the definitions used throughout the paper. Section 3 presents our algorithms
for testing k-edge-connectivity (for k& > 1). Our algorithms for testing k-vertex-connectivity (for
k = 2,3) are presented in Section 4. Testing algorithms for Cycle-Free, Planar and Eulerian graphs
are presented in Sections 5, 6 and 7, respectively. Our hardness results are presented in Section 8.

2 Definitions and Notation

We consider undirected graphs of bounded degree. We allow multiple edges but no self-loops. For
a graph G, we denote by V(G) its vertex set and by E(G) its edge set. We assume, without loss of

generality, that V(G) = [|[V(G)|] € {1,...,|V(G)|} and that for every vertex v € V(G), there is an
ordering among the edges incident to v. We stress that this ordering may be arbitrary and need
not be consistent among neighboring vertices. Namely, (u,v) € E(G) may be the i"* edge incident
to u and the j™ edge incident to v, where 7 # j. In accordance with the above, we associate with
a (bounded degree) graph G, a function fg : V(G) X [d] — V(G)U {0}, where d is a bound on the
degree of G. That is, fg(v,¢) = u if u is the ¢ neighbor of vertex v and fg(v,7) = 0 if v has less
than ¢ neighbors.

We consider property testing algorithms which are allowed queries and work under the uniform
distribution. Our measure of the (relative) distance between graphs depends on their degree bound.
That is, the distance between two graphs G; and G, with degree bound d, where V(G;) = V(G,) =
[N], is defined as follows:

dist (G, Gia) def {(v,7): v €[N], 1 € [cg ‘a]I\lfd fa,(v,0) # fa, (v, D)})

This notation is extended naturally to a set, C, of N-vertex graphs with degree bound d; that is,
dist(G,C) = mingrec{distq(G, G')}. For a graph property II, we let Iy ; denote the class of graphs
with IV vertices and degree bound d which have property II. In case Ily 4 is empty for some 1I, IV,

and d, we define dist(G,Ily 4) to be 1 for every G.

Definition 2.1 Let A be an algorithm which receives as input a size parameter N € N, a degree
parameter d € N, and a distance parameter 0 < € < 1. Fizing an arbitrary graph G with N vertices
and degree bound d, the algorithm is also given oracle access to fo. We say that A is a property
testing algorithm (or simply a testing algorithm) for graph-property 11, if for every N, d, and ¢ and
for every graph G with N vertices and maximum degree d, the following holds:

2
3’

o if G has property 1l then with probability at least =, algorithm A accepts G;

o if dist(G, Iy) > € then with probability at least 2, algorithm A rejects G.

37

In both cases, the probability is taken over the coin flips of A.

? For k = 3, we present an algorithm which works in quadratic time.

In the above definition we deviate from some traditions of having also a confidence parameter,
denoted é, and requiring the testing algorithm to be correct with probability at least 1 — 6. of
having also a confidence parameter, denoted ¢, One can always obtain such a better performance
at the cost of a multiplicative factor of O(log(1/6)) in all complexities. We shall be interested in
bounding both the query complexity and the running time of A as a function of N, d, and ¢. In
particular we try and achieve bounds which are polynomial in d, and 1/¢, and sub-linear in N.
Actually, our query complexity will be independent of N and so is the running-time in a RAM
model in which vertex names can be written, read and compared in constant time.

3 Testing k-Edge-Connectivity

Let k£ > 1 be an integer. A graph is said to be k—edge-connected if there are k edge-disjoint paths
between each pair of vertices in the graph. An equivalent definition is that the subgraph resulting
by omitting any k& — 1 edges (from the graph) is connected. A graph that is 1-edge-connected, is
simply referred to as connected. In this section we show the following.

Theorem 3.1 For every k > 1 there exists a testing algorithm for k-edge-connectivity whose query
complexity and running time are poly(%). Specifically,

o Fork = 1,2 these complexities are O (M).

o For k =3 these complexities are O (M).

€2d

o For k > 4 these complexities are O (Mﬁ).

Z L, 2
ST RdT R

Furthermore, the algorithms never reject a k—edge-connected graph.

We note that the above complexity bounds do not increase with the degree bound d. The reason
is that the distance between graphs is measured as a fraction of d - N; thus, d effects the number
of operations as well as the distance and its effect on the latter is typically more substantial.

We start by describing and analyzing the algorithm for £ = 1, and later show how it can be
generalized to larger k. From now on we assume that d > k, since otherwise we would immediately
reject the tested graph G simply because a graph of degree less than k& cannot be k connected. In
the case of £ = 1 we may actually assume that d > 2 (since otherwise, except for N < 2, the graph
cannot be connected).

3.1 Testing Connectivity

Our algorithm is based on the following simple observation concerning the connected components
(i.e., the maximal connected subgraphs) of a graph.

Lemma 3.1 Letd > 2. If a graph G is e-far from the class of connected graphs of degree bound d,
then it has more that £dN connected components.

* Adopting these traditions seems justifiable in case one can derive better results than by mere repetition of the
basic procedure. Alas, this is not the case in the present work.

The lemma is very easy to establish in case the maximum degree of G is below d. Otherwise, an
additional argument is needed.

Proof: Assume contrary to the claim that G has at most £dN connected components. We will
show that by adding and removing at most $d/N edges we can transform G into a connected graph
G’ which has maximum degree d. (Recall that according to our distance measure (Equation (1))
every edge in the symmetric difference between graphs is counted twice).

Let Cy,...,C; be the connected components of G. The easy case is when the sum of degrees in
each C; is at most d - |C;| — 2. In this case, for every ¢ = 1,...,{ — 1, we can add an edge between
some vertex of C; and some vertex of C;;;. This maintains the degree bound and makes the graph
connected. The number of edges added in such a caseis { — 1 < £dN — 1 < ZdN. But in general,
the above condition may not hold and we need to do slightly more.

Suppose that for some connected component, C;, the sum of degrees is greater than d - |C;| — 2
(and hence we cannot add edges between C; and C,4;, without violating the degree bound). Let T;
be an arbitrary spanning tree of C;. Since T; has at least 2 leaves, and by our assumption regarding
C; at least one of them has degree d > 2, that vertex has an incident edge in C; which is not an edge
in T;. We can remove this edge from G without disconnecting C; and get two vertices in C; which
have degree less than d. It follows that by removing at most one edge from each component and
adding an edge between every C; and C,,;, we obtain a connected graph G’ respecting the degree
bound d, where the symmetric difference between E(G) and E(G’) is bounded above by 2- <X W

As an immediate corollary we get

edN
8

Corollary 3.2 If a graph G is e-far from the class of connected graphs then it has at least

connected components each containing less than f—d vertices.

By using the fact that each connected component contains at least one vertex we conclude that if

G is e-far from the class of connected graphs then the probability that a uniformly chosen vertex

belongs to a connected component which contains at most f—d vertices, is at least ;—d. Therefore,
16

if we uniformly choose m = = vertices, then the probability that no chosen vertex belongs to a

component of size less than < is bounded above by (1 — €)™ < 1. This gives rise to the following
testing algorithm, where we assume that N > % since otherwise we could determine if the graph

is connected by inspecting the whole graph®.

Connectivity Testing Algorithm

16

-, vertices;

1. Uniformly choose a set of m =

2. For each vertex s chosen perform a Breadth First Search (BFS)® starting from s until [2] ver-
tices have been reached or no more new vertices can be reached (a small connected component
has been found);

3. If any of the above searches found a small connected component then output REJECT, oth-
erwise output ACCEPT.

Since a connected graph consists of a single component, the algorithm never rejects a connected

graph. The query complexity and running time of the algorithm are m - f—d -d = O(ﬁ). We

note that the choice to perform a BFS is quite arbitrary, and that any other linear-time searching
method (e.g., DF'S) will do. The complexity of the Connectivity Tester can be improved by applying

® In this uninteresting case the query complexity and running time are bounded by O(Nd) = 0(1;))
5 The search is performed by making queries of the form (v,1).

Corollary 3.2 more carefully. That is, suppose that G has at least I ! E‘ZN

Then, there exists an i < (% log,(8/ed) so that G has at least £ connected components of size
ranging between 2°~! and 2' — 1. This suggests the following improved algorithm:

connected components.

210

Connectivity Testing Algorithm (Improved Version)
1. For i =1 to log(8/(ed)) do:

_ 32-log(8/(ed))
2ted

(a) Uniformly choose a set of m; vertices;

(b) For each vertex s chosen, perform a BFS starting from s until 2° vertices have been
reached or no new vertices can be reached.

2. If any of the above searches found a small connected component then output REJECT, oth-
erwise output ACCEPT.

Lemma 3.3 If G is e-far from the class of connected graphs then the improved testing algorithm
will reject it with probability at least %. The query complexity and running time of the algorithm

are O(log2(1€/(6d))).

Proof: Let B; be the set of connected components in G which contain at most 2° — 1 vertices and
at least 21~! vertices. Let (% log,(8/ed). By Corollary 3.2 we know that Y5_, | B;| > Y Hence,
there exists an ¢ < (so that |B;| > Egév. Thus, the number of vertices residing in components
belonging to B; is at least 2°=! - | B;|. It follows that the probability of choosing a vertex s in one

of these components is at least

271 |By| | ed-2 2

Thus, with probability at least %, a vertex s belonging to a component in B; is chosen in iteration
i of Step (2), and the BFS starting from s will discover a small connected component leading
to the rejection of G. The query complexity and running-time of the algorithm are bounded by

S mg -2 d = O(logZ(le/(ed)))‘]

3.2 Testing k-Connectivity for £ > 1

The structure of the testing algorithm for k-Connectivity where k£ > 1 is similar to the structure
of the Connectivity Tester (i.e., case k = 1): We uniformly choose a set of vertices and for each of
these vertices we test if it belongs to a small component of the graphs which has a certain property
(i.e., is separated from the rest of the graph by a cut of size less than k). Similarly to the k =1
case, we show that if a graph is e-far from being k—connected then it has many such components. In
addition, we present an efficient procedure for recognizing such a component given a vertex which
resides in it.

A subset of vertices X C V is said to be k—edge-connected if there are k edge-disjoint paths
between each pair of vertices in X. We stress that, in case k > 3, these paths may go through
vertices not in X and that any singleton is defined to be k—edge-connected. The k—edge-connected
classes of a graph G are maximal subsets of V(G) which are k—edge-connected, and each vertex
in V(G) resides in exactly one such class. In the remaining of this subsection, whenever we say
k—connected we mean k—edge-connected, and a k-class is a k—connected class.

3.2.1 The Combinatorics

We start by assuming that the graphs we test for k-connectivity are (k — 1)-connected. We later
(in Sec. 3.2.6) remove this assumption. In Appendix A we describe in more detail the structure of
(k — 1)-connected graphs in terms of their k-classes. Here we only state the facts necessary for our
algorithms. Let G be a (k—1)-connected graph. Then we can define an auxiliary graph Tg [DW95]
(based on the cactus structure of [DKL76]), which is a tree, such that for every k-class in G there
is a corresponding (unique) node in Tg. The tree Tg might include additional auxiliary nodes,
but they are not leaves and we shall not be interested in them here. If G is k—connected, then Tq
consists of a single node, corresponding to the vertex set of G. Otherwise, Tg has at least two
leaves. The leaves of T play a central role in our algorithm. Each leaf corresponds to a k-class C
of G which is separated from the rest of the graph by a cut of size k — 1. (Recall that G is assumed
to be (k — 1)-connected.) As we show below, for every leaf class C, given a vertex v € C, we
can efficiently identify that » belongs to a leaf class. For & = 2 this can be done deterministically
within query and time complexity O(|C| - d). For k = 3 this can be done deterministically within
query and time complexity O(|C|*- d). For k > 4, we present a randomized algorithm with query
and time complexity O(|C|?-d). The analysis of our algorithm relies on the following lemma which
directly follows from Lemma A.4 (see Appendix A).

Lemma 3.4 Let G be a (k—1)-connected graph which is e-far from the class of k—connected graphs
with mazimum degree d. Suppose that either d > k+1 or k-|V(G)| is even.” Then, T has at least
SdN leaves.

3.2.2 The Algorithm

Similarly to the k = 1 case, the above lemma implies that at least E‘fé.v of the leaves in T contain at

most % vertices. Hence we can run the following algorithm, where the implementation of Step (2)
is discussed subsequently. As was shown for the k = 1 case, the algorithm below can be modified
to save a factor of (:)(1/€d) in its query complexity and running time, but for sake of simplicity we
describe the less efficient algorithm. We also assume that the number of vertices in G is greater
than %, since otherwise we could decide if the graph is k—connected by observing the whole graph

and running an algorithm for finding a minimum cut (in time O(Ndk) [Gab95]).

k-Connectivity Testing Algorithm

32

= vertices;

1. Uniformly choose a set of m =

2. For each vertex s chosen, check whether s belongs to a leaf class which has at most % vertices.

3. If any leaf class was discovered then output REJECT, otherwise output ACCEPT.

As said above, this algorithm can be modified analogously to the improved version of the connec-
tivity tester, yielding

" The reason for this technical requirement is to rule out the pathological case in which d(= k) and |V(G)]| are both
odd in which case it is not possible to transform G into a k—connected graph with maximum degree d by performing
edge modifications. In other words, the class of k—connected graphs with max-degree k& where &k and N are odd is
empty. Clearly, this pathological case is easily detected by the algorithm.

Lemma 3.5 The (modified) k-connectivity algorithm runs in time O(W) S loga(16/(ed) %,
where Ty(n) is the time needed to implement the identification of a k-class leaf of size at most n
(i.e., Step (2)). It always accept a k—connected graph and rejects with probability at least % any

graph which is (k — 1)-connected but e-far from being k—connected.

In the following three subsection, we present such (k-class leaf) identification algorithms for the
three cases k = 2, k = 3 and k > 4. The running-time bounds are T5(n) = O(nd), T5(n) = O(n*d),
and Ty(n) = O(n?~%d), respectively, where d is the degree bound (or actually the maximum degree
of vertices in the class).

3.2.3 Identifying a 2-class Leaf

Given a vertex s and an integer n, the following Identification Procedure can be used to determine
whether s belongs to a 2—connected class of size at most n which is aleafin Tg. Note that the upper
bound, n, on the size of the class is determined by the algorithm when calling the identification
procedure.

2-Class Leaf Identification Procedure

1. Starting from s, perform a Depth First Search (DF'S) until n 4+ 1 vertices have been reached.
Let Ty be the tree defined by the search, and let E(T,) be its tree edges.

2. Starting once again from s, perform another search (using either DFS or BF'S) until n vertices
are reached or no new vertices can be reached. This search is restricted as follows: If (u,v)
is an edge in T, where u is the parent of v, then (u,v) cannot be used to get from u to v in
the second search (but can be used to get from v to u). Let X, be the set of vertices reached.

3. If there is a single edge with one end-point in X, and the other outside of X, (i.e. (Xy, X3)®
is a cut of size 1), then X, is the 2-class s belongs to.

Clearly, the query complexity and running time of the procedure are O(nd). Since the procedure
always checks if it has found a cut of size 1, it will never identify a 2-class leaf when given a vertex
s belonging to a 2-connected graph. Thus, we only need to prove the following.

Lemma 3.6 Let G be a connected graph, C a 2-class in G of size at most n which is a leaf in Tg,
and s a vertex in C. Then the above procedure will always terminate with X, = C.

Proof: Since the first DFS terminates after seeing n + 1 vertices, and vertices in C can be reached
only by traversing the single edge (u,v) where u € C and v € C, we know that (u,v) must be a
edge in T (with u being the parent). This ensures that the second search will never exit C. In
other words, X5 C C. What needs to be shown is that the second search reaches every vertex in C
(i.e., Xy = C), and hence the cut (C, C) is discovered.

Assume contrary to this claim, that § & C \ X5 is non-empty. Let (uy,v1),...,(us,v,) be the

set of edges crossing the cut (X,,S), where Vi, u; € X5 and v; € S. Since C is 2-connected, there
must be at least two edges in the cut (X,,S). By our assumption that S is not reached in the
second search, it follows that for every ¢, (u;, v;) is an edge in the DFS-tree T, and furthermore, u;
is the parent of v;. However, since C is 2—connected there must be a path between »; and vy which

8 For a subset X C V, we let Ydéf\/\x.

does not use the edge (uy,v,). There are two cases. In case the path does not contain vertices in
X5, we reach a contradiction to T being a DFS-tree. Otherwise, there must be a cut edge between
some vertex, v, in the DFS-subtree rooted at »; and a vertex, u, in X5. By the structure of the
DFS-tree, this cannot be a DFS-tree edge from u to v, contradicting our hypothesis about the cut
edges. W

3.2.4 Identifying a 3-class Leaf

Given a vertex s and a size bound n, we first perform a DFS until n 4 1 vertices are discovered. At
this point for each edge e in the tree (note that there are only n such edges) we “omit” e from the
graph. (That is, in the rest of the algorithm we pretend that this edge is not in the graph.) Next
we invoke the Identification procedure of the previous subsection (again starting from vertex s).

Lemma 3.7 Let G be a 2-connected graph, C a 3-class leaf of Tq with at most n vertices, and s
an arbitrary vertex in C. Then the above search process terminates in finding the cut (C,C).

It follows that we can identify a 3-Class Leaf of size n in time O(n*d).

Proof: Clearly the initial DFS must cross an edge of the cut (C,C), and so its DFS-tree has
at least one cut edge. When this cut edge is omitted from the graph, the cut (C,C) contains a
single edge in the resulting graph, denoted G’. While the removal of this edge might decrease the
connectivity of the vertices in C (which was 3 in), they are at least 2—connected in G’. Invoking
Lemma 3.6, we are done. W

3.2.5 Identifying a k-class Leaf (k > 2)

The following applies to any k& > 2, but for £ = 2,3 we have described more efficient procedures
(above).

The algorithm for finding leaf k-classes (k > 2) is based on Karger’s Contraction Algorithm [Kar93]
which is a randomized algorithm for finding a minimum cut in a graph. Given a vertex s and a
size bound n, the following search process is performed @(n?~%) times, or until a cut (S,S) of size
less than k is found: Starting from the singleton set {s}, at each step the algorithm has a set S
of vertices it has visited. As long as |S| < n and the cut (S,S) has size at least k, the algorithm
chooses an edge to traverse among the cut edges in (S,S) and adds the new vertex reached to S.
The cut edge chosen is the one having the smallest cost, where edges are assigned random costs
as follows. Whenever a new vertex is added to S, its incident edges which were not yet assigned
costs are each assigned a random cost uniformly in [0, 1]. Note that, as in the case of & = 1, the
algorithm never rejects a k—connected graph (simply since a k—connected graph does not have any
cut of size less than k).

Lemma 3.8 Let G be a (k—1)-connected graph, C k-class leaf of Tq with at most n vertices, and
s an arbitrary vertex in C. Then, with probability at least (Qn)_(z_%), a single iteration of the above
search process succeeds in finding the cut (C,C).

Proof: Assume first that instead of assigning the edges costs in an online manner as described

above, all edges in the graph are assigned random costs off-line. (We may think of our algorithm
as simply revealing these costs as it proceeds.) Consider any assignment of costs to all edges in the

10

graph. A spanning tree, T, of the subgraph induced by C is said to be cheaper than the cut if the
cost of every edge in T is smaller than the cost of any of the cut edges between C and C.

Claim 3.8.1: Suppose that C contains a spanning tree which is cheaper than the cut (C,C). Then
the search process succeeds in finding (C, C).

Comment: The above claim presents a sufficient but NOT necessary condition for the success of
the search process. For example, the search may expand S by an edge with cost greater than any
cut-edge in case S is not incident to any cut-edge.

Proof of Claim 3.8.1: By induction on the size of S. O

Thus, all we need is to lower bound the probability that C contains a cheaper-than-the-cut spanning
tree. This is done by using Karger’s analysis of his contraction algorithm (for finding a minimum
cut) [Kar93]. Details follow.

We start by considering an auxiliary graph G’, in which all of C is represented by an auxiliary
vertex, denoted z. That is, V(G') = C U {2} and E(G’) contains all edges internal to C and an
edge (u,) for every edge (u,v) crossing the cut (C,C) in G. Since C is a k—connected class in G,
the graph G’ has a single minimum cut of size k — 1; that is, the cut (C,{z}).

We now turn to Karger’s analysis of his Contraction Algorithm. Contraction is an operation
performed on a pair of vertices connected by an edge. When two vertices u and v are contracted,
they are merged into a single vertex, w, where for each edge (u, z) such that z # v, we have an edge
(w, z), and similarly for each edge (v, 2’) (such that 2z’ #). Thus multiple edges are allowed, but
there are no self-loops. Given a graph as input, the Contraction Algorithm performs the following
process until two vertices remain: It chooses an edge at random from the current graph (which is
initially the original graph), and contracts its endpoints (resulting in a new graph which is smaller).
An alternative presentation is to assign all edges uniformly chosen costs in [0, 1] and to contract the
cheapest edge at each step. Karger shows that the probability that the algorithm never contracts a
min-cut edge is at least 2n~2. In our case, this means that with probability at least 2n~2, Karger’s
algorithm does not contract an edge incident to z, which implies that C has a spanning tree cheaper

than the cut (C, {z}).

To obtain the better bound claimed in the lemma, we reproduce Karger’s analysis [Kar93]. He
considers an n-vertex graph with min-cut of size ¢ and such that the degree of every vertex in
the residual graph at any step of the Contraction Algorithm is at least D > ¢. Hence, at the i}
step of the algorithm, the probability of choosing to contract a cut edge is at most The
probability no cut edge is contracted in any step of the algorithm is at least

m(- o55) - A 2)

i=0 i=0 n—1

(n—i)D/2"

where the strict inequality is due to elementary algebraic manipulations (see Appendix C). In our
case, since all cuts in G’ other than the minimum cut (C,{z}) have size at least k, we can set
c=k—1,D =k, and the lemma follows. N

3.2.6 Testing k-Connectivity of Graphs which are not (k — 1)—connected

In the general case where the tested graph is not necessarily k — 1 connected, we claim that we can
simply run the k-connectivity testing algorithm with distance parameter set to ¢/O(k). Note that,
for every k > 4 and ¢ > 1, when we run the k-connectivity algorithm on an (i — 1)-connected graph

11

which is e-far from being i—connected, the algorithm detects a cut of size ¢+ — 1 with probability at
least 2. (We stress that this holds also for i = 1, in which case this means that the algorithm detects
a small connected component.) Furthermore, the more efficient Identification procedures for 2-class
and 3-class can be easily modified so that they remain valid when omitting edges. Specifically, in
Step 1 of the 2-Class procedure, one should declare detection in case less than n 4+ 1 vertices are
found in the initial DF'S. The 3-Class procedure is modified analogously.

However, in general the situation may be more complex. The tested graph may not be (i — 1)-
connected for any ¢ > 1 and we need to analyze what happens if we run the k-connectivity tester on
such a graph. The following lemma allows us to simplify the analysis by considering the distance
of the graph to the class of i—connected graphs rather than to the class of i—connected graphs with
degree bound d.

Lemma 3.9 Let G be a graph which is e-far from the class of k-connected graphs with maximum
degree d, where either kN is even or d > k + 1.° Then the minumum number of edges which must
be added to G in order to transform it into a k-connected graph (without any bound on its degree),
s at least 21—6€dN.

Proof: Assume, contrary to the claim that in order to transform G into a k-connected graph
it suffices to augment it with m < =edN edges. We next show that by adding and removing at
most 13m edges we can transform G into a k-connected graph which has maximum degree d, in
contradiction to the hypothesis.

Let Gy be a k-connected graph which results from augmenting G with m edges. Some of the
vertices in Gy might have degree larger than d. Hence we define the excess of G, (with respect
to the degree bound d) as 3=, 4.()>4(deg(v) — d). Since G has maximum degree d, and G;, was
obtained by augmenting G with m edges, the excess of G, is at most 2m. We now show how by
performing at most 12m edge modifications to Gy, we can obtain a k-connected graph with excess
0 (i.e., maximum degree at most d). Thus, we transform G (via G;) into a k-connected graph with
degree bound d by modifying at most m + 12m edges. At each step of the following process we
decrease the excess of the graph while retaining its k-connectivity.

While the excess of the graph is non-zero, do:

1. If there is an edge (u, v) such that deg(u) > d and deg(v) > k, remove (u, v). In case the graph
remains k-connected, no additional modification is needed. Otherwise (the graph becomes
(k — 1)-connected), by Lemma A.2 (in Appendix A), the auxiliary tree of the graph consists
of a simple path, with u belonging to one k-class leaf, and v to the other. Since v now has
degree at least k, it cannot be a singleton leaf (because leaves have exactly k — 1 edges going
out of them). The same holds for v which now has degree at least d > k. We can thus
apply Lemma A.3 on the two leaf k-classes, and obtain a k-connected graph at the cost of 4
edge modifications. Thus, we have decreased the excess by at least 1, at the cost of 5 edge
modifications.

2. Otherwise, for every vertex u such that deg(u) > d, all of u’s neighbors have degree k (no
vertex may have degree lower than k since the graph is k-connected). We consider two
subcases.

® Recall that the technical condition (i.e., either kN is even or d > k -+ 1) is required as otherwise the class of
k-connected graph with maximum degree d is empty.

12

(a) If there are at least two such vertices u; and us (i.e., with deg(u;) > d), then there must
exist two vertices v; # v, such that v, is a neighbor of u; and v, is a neighbor of u,. (If
u; and uy only had a single (common) neighbor, or had edges between themselves, this
would contradict the hypothesis that they both only have degree k neighbors.) We add
an edge between vy and v, increasing their degree to k+ 1, and then apply Step 1 twice;
that is, to the edges (u;,v;), for ¢ = 1,2. We have decreased the excess of the graph by
2, at a cost of 1 + 2.5 = 11 edge modifications.
(b) Otherwise, there exists a single vertex u with degree greater than d. Here we further
consider two subcases.
i. deg(u) > d+ 1. In such a case, we must remove at least two edges adjacent to u.
Let v; # vy be any two neighbors of u (once again, the existence of two such distinct
vertices follows from the hypothesis that all of u’s neighbors have degree k). We
now proceed as in Step 2.a, by adding an edge between v; and vy and then applying
Step 1 to (u,v;) and then to (u,vs). We have decreased the excess of the graph by

2, at a cost of 1 + 2.5 = 11 edge modifications.
ii. deg(u) = d+ 1. Let v be any neighbor of w (which, recall, must has degree k). In

case there exists a vertex (other than v), denoted w, with degree smaller than d, we
add an edge between v and w, raising the degree of v to k 4+ 1 (where the degree of
w is now at most d). Applying Step 1 to the edge (u,v) we are done (at a cost of
14 5 edge modifications).

Otherwise, except for u and v, all vertices in the graph have degree d. We show
that this is not possible by using the lemma’s technical assumptions by which either
d >k or kN is even. In case d > k, all neighbors of u other than v have degree
d > k, contradicting the hypothesis that all of u’s neighbors have degree k£ (and
again, u must have such neighbors since deg(v) = k < d + 1deg(u)). In case d = k
we have that u has degree d + 1 and all other vertices in the graph have degree
k = d, yielding a degree sum of kN + 1 which is odd.

Thus in all cases, a decrease of 1 unit in the excess of the graph is obtained at a cost of at most 6
edge modifications. Since the initial excess is at most 2m, the lemma follows. W

Let G be e-away from the class of k—connected graphs of degree bound d. By the above lemma,
m > Egév edges must be added to G to make it k—connected. For every ¢ > 1, let us denote by m;

the minimum number of edges which should be added to G in order to make it i—connected, and

let G; denote an i—connected graph which results when adding such m; edges to G. Let my =)

and Gy “rq. Then, there must exist an i € {1,...,k} so that m; — m;_; > m/k. Let us consider

any such i and let ¢ % €/(26k). It follows that in order to transform G,_; into an i—connected

graph, we must augment it with at least € dN edges. This implies that the auxiliary tree of G;_;
has a least %G/dN leaves, and so, had we run the k-connectivity tester on G;_; with approximation
parameter €, it would detect that G,_; is not k (> i) connected, with probability at least % What
is left to show is that the detection probability of the k-connectivity tester on the graph G, which
is a subgraph of G;_;, is no smaller. Although this sounds very appealing, a proof is in place.
Actually we will modify the analysis of the detection probability of G;_; so that it applies to G.

Recall that our analysis of the execution of the algorithm on an (7 — 1)-connected graph only
refers to the number of leaf i-classes of certain small sizes. Specifically, a leaf ¢-class C is hit with
probability % and is identified as such (with high probability) within time 7;(|C]) (see Sec. 3.2.2).
Note that C is not necessarily a (leaf) i-class in G (as the structure of i-classes in G may be very
different than in G,_; and in particular G may not be (¢ — 1)—connected). Instead we let C’ be a

13

minimal subset of C which is separated from the rest of G by a minimal number of edges, denoted
j. Such a set is sometimes referred to as j-extreme. Since in G;_; the whole set C is separated
from the rest of the graph by ¢ — 1 edges, we have that 7 < ¢— 1. Furthermore, by the definition of
(', it contains no (strict) subset which is separated from the rest of G by less than j edges. Thus,
we may apply the analysis of Sec. 3.2.5 to C’. It follows that if a vertex s € C’ is chosen by the
(modified) algorithm in iteration ¢ = [log(|C’|)] (i.e. when testing if the graph has many leaves of
size at most 2 — 1 and at least 2¢71), then the leaf identification procedure, starting from s, detects
the cut (C’, V), with high probability, within time 7;(2 - |C’]). The above analysis holds also with
respect to the (modified) Identification procedures for 2-class and 3-class.

4 Testing k-Vertex-Connectivity for k = 2,3

The definitions for vertex-connectivity are analogous to the ones for edge-connectivity. There
are also similarities in the induced structures, though the structures induced by vertex-connected
classes tend to be more complex. In particular, although we believe that our techniques will apply
to arbitrary k, we have only verified the relatively simpler cases of k = 2, 3.

For k > 1, a graph G having at least k£ 4+ 1 vertices is said to be k-vertex-connected if there
are k vertex-disjoint paths between each pair of vertices in G. An equivalent definition is that
the subgraph of G resulting by omitting any k& — 1 vertices (and the edges incident to them) is
connected. For k = 1, edge-connectivity and vertex-connectivity coincide, but for k > 2 the two
notions are quite different. Assume from now on that |V(G)| > k 4 1.

Theorem 4.1 For k = 2,3 there exists a testing algorithm for k-vertex-connectivity whose query
complexity and running time are poly(1/€). In particular,

1. For k = 2 these complexities are

: log(1/(ed)) 2¢log*(1/(ed))
mm{O (T) ,0 (f)}

2. For k = 3 these complexities are

. log(1/(ed)) 2°?log(1/(ed))
mm{O(S),O(=y)}

Similarly to the case of edge-connectivity, our vertex connectivity testing algorithms try to find
small k-vertex-connected classes. A subset of vertices X C V is said to be k-vertex-connected
(k-connected) if there are k vertex-disjoint paths between each pair of vertices in X. As is the
case for k-edge-connectivity, when k& > 3, these paths may pass through vertices not in X. The
k-vertex-connected classes (k-classes) of a graph G are maximal subsets of V(G) which are k-vertex-
connected. In contrast to edge-connected classes, a vertex may belong to several vertex-connected
classes. However, every two k-vertex-connected classes of a graph can have at most £k — 1 common
vertices.

For k = 2,3, given a (k — 1)-connected graph G, we can define an auxiliary graph Tg which is
a tree. Similarly to the case of edge-connectivity, the leaves of the tree will play an important role
in our algorithms. In particular we’ll be interested in identifying leaves of Tg which correspond
to k—classes of G which contain at least k£ + 1 vertices, and leaves which correspond to sets which

14

contain a vertex with only k£ — 1 distinct neighbors. The former, which we’ll refer to as k—class
leaves, have the property that they contain a single separating set of size k — 1 —i.e., aset of £ —1
vertices whose removal disconnects the graph. For more details on the structure of the auxiliary
tree of 2 and 3 connected graphs, see [Eve79] and [Pou92], respectively. For our purposes we only
need the above stated fact concerning the k-class leaves and the following lemma which follows
from Lemmas B.4 and B.8 (see Appendix B).

Lemma 4.1 1. Let G be a connected graph which is e-far from the class of 2-connected graphs.
Then the sum of the number of degree-1 vertices in G and the number of 2-class leaves in Tq

1s at least Ed6N.

2. Let G be a 2-connected graph which is e-far from the class of 3-connected graphs with mazimum
degree d. If d > 4 or G has an even number of vertices,'® then the sum of the number of

degree-2 vertices in G and the number of 3-class leaves in Tq is at least “; .

The vertex-connectivity testing algorithms have the same structure as the edge-connectivity
testing algorithms. Namely, for both £k = 2 and k£ = 3 we uniformly choose a set of O(:—d) vertices,
and for each vertex s chosen we first check if s has only k& — 1 different neighbors, in which case
we immediately reject the graph. Otherwise (s has at least k neighbors), we run a procedure for
checking if s belongs to a k-class leaf of size O(1/(ed)). Thus, a straightforward implementation
would run in time O (& - T;(O(<;))), where Ty (+) is the running time of the identification procedure.
Using the same technique described in the edge connectivity testing algorithms, we can cut a factor
of (:)(:—d) in the running time. We hence focus on describing how to identify a small £-class leaf
given a vertex in the class.

4.1 Identifying a 2-class Leaf

We have two procedures for identifying a 2-class leaf C given a vertex s € C and an upper bound n
of the size of C. The first has running time O(n?-d), and the second has running time O(n -d - 2%).

2-Class Leaf Identification Procedure (Version I)

1. Perform a BFS (or DFS) starting from s until n vertices are reached. Let the set of vertices
reached be denoted by X.

2. For each vertex v € X\ {s}, start a new search from s in the auxiliary graph resulting from
the omission of vertex v from the given graph. That is, start a new BIFS from s, except that
when vertex v is reached treat it as if it has no other incident edges (i.e., do not extend the
search from it). The search is terminated once n+1 vertices (including s and v) were reached.
Let us denote by X, the set of vertices reached in this search (including v).

3. If for some v € X, the number of vertices in X, is at most n, then X, is a 2-class leaf.

Clearly, the query and time complexity of the above procedure are O(n?d).

Lemma 4.2 Let G be a connected graph with more than n vertices, C a 2-class in G of size at
most n which is a leaf in T, and s a vertex in C which is not a separating vertex. Then for some
v chosen in Step (2) of the above procedure, X, = C. On the other hand, if G is 2-connected and
|IV(G)| > n, then the above procedure will never find a leaf class of size < n.

10 See Footnote 7.

15

Differently from the leaf identification procedures in the edge-connectivity case, here, in order to
detect a leaf, the procedure cannot start from ANY vertex belonging to the leaf class. In particular,
it should not start from a separating vertex. However, since each leaf class contains at least one non-
separating vertex and exactly one separating vertex, the probability of choosing a good starting
1 the probability of choosing any vertex in a leaf class. Hence our analysis is

2
essentially unchanged.

point is at least

Proof: Suppose first that G is 2-connected (and |V(G)| > n). Then for every choice of v (in
Step 2) of the procedure, there are connected paths not passing through v between vertex s and
any other vertex in V(G)\ {s,v}. Thus, |X,| > n for every v.

Consider now a non-separating vertex s which resides in a 2-class, C, of size at most n. Consider
the first BI'S performed in Step (1) of the procedure. Since it reaches n vertices, one of these vertices
must be the single separating vertex belonging to C, which we denote by w. Since w is the only
separating vertex in C, any vertex outside of C can be reached only by passing through w. This
implies that when v = w in Step (2) of the procedure, the set of vertices X, is a subset of C. It
remains to show that every vertex in C is reached in this execution of Step (2). But this follows
directly from the fact that C is a two-connected class. W

2-Class Leaf Identification Procedure (Version II) The second procedure for identifying a
2-class leaf is based on the the observation that the problem of identifying a 2-vertex-connected
class leaf can be reduced to the problem of identifying a 2-edge-connected class leaf (or simply a cut
of size 1) in an auxiliary graph. In particular, consider the following randomized transformation of
the tested graph, G, into a new graph G’: Replace each vertex v in G by two vertices, v; and vs,
connected by an edge, and partition the edges incident to v randomly among »; and v,. That is, a
random non-trivial subset of these edges are now incident to »; and the rest are incident to vs.

Consider a separating vertex, w, belonging to a leaf class Cin G, and let C’ be the corresponding
set of vertices in G'. That is, C' = {v; : v € C, i € {1,2}}. Since C is 2-vertex-connected, w must
have some (actually — at least two) incident edges (in G) whose other end-points are in C. Let this
set of incident edges be denoted E;(w), and the remaining edges (with end-points outside of C),
be Es(w). Suppose that when replacing w with two vertices, w; and w,, the set of edges incident
to wy is E;(w) (and the set incident to ws is Eo(w)). This event happens with probability at least
274, Since w is a separating vertex, the edge between w; and w, is a bridge in G’ — that is, its
removal disconnects the vertices in € % (7 \ {ws} from the rest of G’. On the other hand, it is
not hard to verify, that no matter how the other, non-separating, vertices in C are “broken into

two”, no other edge incident to a vertex in C” is a bridge in G'.

Thus, suppose we have chosen a non-separating vertex s that belongs to a small leaf class C of
G. We can now simulate the procedure for identifying a 2-edge-connected class in a graph G’, where
we transform G into G’ randomly as we execute the procedure. Namely, whenever we encounter
a new vertex v, we do the following. We rename v as vy, and “virtually” connect it to another
(new) vertex v,. We then randomly partition »’s set of incident edges into two non-trivial subsets,
E;(v) and Es(v), so that the edge traversed in order to reach v belongs to E;(v). We think of v; as
being incident to E(v), and of v, as incident to E,(v). The identification procedure (for a 2-edge-
connected class leaf) treats virtual edges as real edges. In order to achieve success probability 2/3,
for each vertex chosen by the algorithm we perform the above randomized process 24+ times.

16

4.2 Identifying a 3-class Leaf of a 2-Connected Graph

Analogously to the case of 2-class leaf identification, we use two alternative procedures for identi-
fying 3-class leaves. Both procedures are straightforward extensions of the ideas presented in the
2-class case. Specifically, the first identification procedure performs three “levels” of BFS rather
than two:

1. Perform a BFS starting from s until n vertices are reached. Let the set of vertices reached
be denoted by X.

2. For every vertex v € X \ {s}:

(a) Perform a BFS in the auxiliary graph resulting from the omission of vertex v. Again,
the search is suspended once n + 1 vertices are discovered. Denote the set of vertices
reached (including v) by X,.

(b) For every vertex w € X, \ {s,v}, perform a BFS in the auxiliary graph resulting from
the omission of both v and w. Again, the search is suspended once n 4+ 1 vertices are
discovered. Denote the set of vertices reached (including v and w) by X, 4.

3. If for some v € X and w € X,,, the number of vertices in X, ,, is at most n, then X, , is a
2-class leaf.

The second identification procedure is based on the same reduction of the identification of vertex-
connected-classes to the identification of edge-connected-classes. This time we consider two sets
of edges — those incident to each of the two vertices which separate the class from the rest of the
graph. With probability at least 272¢ both sets are partitioned so that the edges going into the
vertex-class are on one side and the rest of the edges (going to the rest of the graph) are on the
other.

4.2.1 Testing k-Connectivity of Graphs which are not (k — 1)-connected

Consider first the case in which k& = 2 and the graph is not necessarily connected. We claim that in
this case we may simply run the 2-vertex-connectivity testing algorithm with distance parameter
set to ¢. Note that if the graph G is not connected, and the 2-class leaf identification procedure is
given a vertex s belonging to a small connected component of G, then it will always output that
it has identified a leaf''. Thus, in case G is g-far from being connected, with high probability, the

testing algorithm will reject G.

Otherwise, let ;1 be a connected graph with maximum degree d which is at distance smaller
than ¢ from G. Assuming that G is efar from the class of 2-connected graphs with maximum
degree d, G; must be at least gefar from this class. Thus, by Lemma 4.1, its auxiliary tree, Tq,,
has at least £€dN 2-class leaves and vertices with a single neighbor. Let G} be the graph whose
edge set is the union of the edge sets of G and G;. Clearly, G} is connected (though its maximum
degree might be larger than d). Furthermore, the edge set of G/ is a superset of both the edge set
of G and the edge set of G, and it is at most ;5dN larger than each one of them. In particular,
this implies that T, has at least £€dN - éng = 41—8€dN 2-class leaves and vertices with a single

neighbor (since the addition of an edge can remove at most two leaves from the tree). This means

" For sake of elegance, the procedure can explicitly check if in the first BFS it has reached less than n vertices, in
which case it will stop and output that it has found a small connected component

17

that if we tested G for 2-connectivity, it would be rejected with high probability. Namely, with
high probability, the algorithm would choose a vertex s such that either s has only one neighbor
or s belongs to a small 2-class leaf C of G| (but is not a separating vertex), and this leaf would be

identified.

Now consider the actual algorithm which runs on G. Since the number of neighbors each vertex
in G has is bounded by the number of neighbors it has in G}, the algorithm will reject the graph if
a vertex s which has only one neighbor in G (and hence in G) is chosen. Thus consider a vertex
s which belongs to a small 2-class leaf C in Tq: (but is not a separating vertex), and assume the
leaf identification procedure on G starts from s. Since the edge set of G is a subset of the edge
set of GG/, either s cannot reach the separating vertex v of C, in which case it belongs to a small
connected component, or v is still a separating vertex in G. In both cases, the leaf identification
procedure will detect it,

Similarly, for k& = 3, it suffices to run the 3-connectivity testing algorithm with distance pa-
rameter set to o=. By the discussion above concerning 2-connectivity, if the graph is at least J5-far
from being 2-connected, then it will be rejected with high probability. Otherwise, we use the same
argument as above to show that there exists a 2-connected graph G, whose edge set is a superset
of the edge set of G, such that there are many 3-class leaves in Tg,. Similarly to the 2-class case,
if the algorithm (executed on () chooses a vertex s in one of these leaf classes C of G, then it will
either find that s belongs to a small connected component, or that there exist one or two vertices
separating s (together with all or part of C) from the rest of the graph. It follows that G is rejected
with high probability.

5 Testing if a Graph is Cycle-Free (a Forest)

The testing algorithm described in this section is based on the following observation. Let G be the
tested graph and Cy,C,,...,Cy its connected components. By definition, if G is cycle-free then
each of its components is a tree. We should therefore expect each C; to have |C;| — 1 edges, and
so the total number of edges in G should be N — k. Intuitively, if G is far from being cycle-free,
then this is due mainly to either many extra edges within small components or to many extra edges
inside big components. In the first case, we can hope to sample a bad small component. In the
second case, we may consider the subgraph if G which consists of all big component and detect a
discrepancy between its edge count and its vertex count. (Since here the number of components is
relatively small it cannot account for this discrepancy.) Details follow.

Let C; be the i*® connected component of G, and denote by m; the number of edges in C;.
Denote n; def |C;], and let b; def m; —(n; — 1) > 0 be the number of edges which should be removed
from C; to make it a tree. Suppose that the components are arranged according to decreasing size
and let ¢ be the number of components of size at least f—d (i.e.,n; > 8/ediff t <t). Let b def SF b,

i=1
and consider the following two cases.

Case 1: Suppose Yi_, b; < b/2. In this case we may forget of the big components and concentrate
on finding a violation (cycle) inside a small component. If we select a vertex at random then
it will belong to a small component with probability at least Z/—NZ . Once we have selected such

a vertex, we may detect a cycle in its component by conducting a search on the component.

The complexity of the search is bounded by the size of the component; that is, the complexity

.3
is = d.

18

Case 2: Suppose S.i_, b; > b/2. In this case we may forget of the small components and concen-
trate on approximating the sum S2;_; b;. This can be done by sampling vertices, and checking
if they are inside a large component. This sampling enables us to estimate _i_, n; (i.e., by
the probability we fall inside a large component) as well as S (i.e., by the average
of the degrees of vertices selected inside large components). A discrepancy of substantially
more than ¢ between the estimates (for Yj_, n; and Y;_, m;) indicates a big distance from
cycle-freeness.

Putting everything together, we get the following algorithm.

Cycle-Freeness Testing Algorithm

1. Uniformly choose a set of £ = ©(Z%) vertices;

2. For each vertex s chosen, perform a BFS starting from s until f—d vertices are reached or no
more new vertices can be reached (s belongs to a small connected component);

3. If any of the above searches found a cycle then output REJECT (otherwise continue);

4. Let 7 be the number of vertices in the sample which belong to connected components of size
greater than %, and let 7 be half the sum of their degrees. If mz_” > % then output REJECT,
otherwise output ACCEPT.

This establishes that:

Theorem 5.1 There exists a testing algorithm for the Cycle-Free property whose query complexity
and running time are O(=7).

Proof: Let us denote by ¢ the number of big connected components (i.e., connected components
of size at least 8/ed). Firstly, note that with probability at least % both estimates done in Step 4

are accurate to within (ed)/32; that is, % = %I + % and % = NWI + %, where N’ (resp., M') is
the number of vertices (resp., edges) in big components. From this point on we assume that these

estimates are good.

In case G is cycle-free, we never reject in Step 2. Furthermore, in this case we have M’ — N’ =
—t < 0 and so Step 4 makes us accept. On the other hand, if G is e-far from cycle-free then either
there are E‘ZN superfluous edges inside small components or there are E‘ZN superfluous edges inside
large components. The first case is detected in Step 2 with probability at least (1— i)z > %, whereas
the second case is detected by Step 4 provided the estimates are good. Specifically, in the latter

caseM’—N’Z%—tZﬁN. |

REMARK: The above tester has two-sided error probability. This is unavoidable if one allows only
o(ﬁ) many queries. To see why consider either classes considered in the proof of Theorem 8.1: A
o(ﬁ)—query algorithm must reject a random graph in the class with high probability and without
seeing a cycle in it! Fixing any such sequence of coins, we observe that the algorithm will also reject
a graph which consists only of the (partial) forest it has observed. Thus the algorithm has a non-
zero rejecting probability on some cycle-free graphs. It is even easier to show that any o(N)-query
algorithm must have a non-zero accepting probability on graphs which are far from cycle-free (e.g.,
consider the execution on the empty graph).

19

6 Testing Planarity

A graph is planar if it can be drawn in the plane so that no two edges in the graph cross each
other (¢f. [Eve79]). Our planarity testing algorithm is based on a theorem which is due to Kura-
towski [Kur30]. Two graphs are said to be homomorphic if both can be obtained from the same
graph by replacing edges with paths of degree-2 vertices (where these degree-2 vertices do not
appear in the original graph). The graph K33 is a completely connected bipartite graph with 3
vertices on each side, and the graph Kj is a clique of 5 vertices.

Kuratowski’s Theorem: A graph G is planar if and only if no subgraph of G is homomorphic
to either K54 or K.

We begin by considering the easier problem of testing whether a graph is H-free, where H is any
fixed constant size graph (e.g., K33 or K5). A graph G is H-free, if no subgraph is G is isomorphic
to H. Let diam(H) denote the diameter of H.

H-freeness Testing Algorithm

1. Choose uniformly a set of m = ©(1) vertices;
2. For each vertex s chosen, perform a BF'S starting from s to depth diam(H).

3. If any of the above searches found a subgraph isomorphic to H then output REJECT, otherwise
output ACCEPT.

Lemma 6.1 The above algorithm is a testing algorithm for the H-freeness property whose query
R R R gdiam(H) gdiam(H)"[H| K

complexity and running time are O(*———) and O(*———), respectively.

Proof: Clearly, if G is H-free it will be accepted with probability 1. Since in each search at most

d¥amM) queries are asked, the algorithm’s query complexity is O(@) The third step of the
(M) b
?

algorithm (looking for a subgraph isomorphic to H) can be performed in time O -

checking all mappings from the (at most) d**™() vertices reached to H.

It thus remains to show that if G is e-far from the class of H-free graphs then the H-freeness
Testing Algorithm will reject it with probability at least % But this follows directly from the
definition of e-far: If G is e-far from the class of H-free graphs then it contains at least $dN edges
which each reside in at least one subgraph of G which is isomorphic to H. Since the degree of
every vertex is at most d, there are at least £N vertices which reside in such subgraphs. Since
the algorithm uniformly chooses @(%) vertices, with probability 2/3 at least one of these vertices

resides in such a subgraph, and this will be detected in the third step of the algorithm. W

If a graph is e-far from the class of planar graphs, then it contains at least £dN edges which
reside in a subgraph of G which is homomorphic to either K33 or K5. Note that since neither
K33 nor Ky have degree 2 vertices this means that such a subgraph can be obtained by replacing
edges of K35 or K5 with paths of degree 2 vertices. Consider a particular edge (u,v) in a subgraph
homomorphic to K33 or K5, and the corresponding homomorphism. Without loss of generality, let
this homomorphism be to A’53. In this homomorphism, either (u,v) alone is mapped to an edge
in K33 (in which case both u and v have degree at least 3) or (u,v) belongs to a path which is
mapped to an edge in K33 (in which case either u or v has degree 2 (or possibly both have degree
2)). We thus need to replace the BF'S in the H-freeness testing algorithm with a slightly different
search. Suppose we could transform G into a contracted graph which contains no vertices with

20

degree 2. Namely, every path in the graph in which all vertices except its endpoints have degree 2,
is contracted into a single edge between the two endpoints. Note that all such paths are disjoint,
and hence the process is well defined. We would thus like to essentially simulates a BFS to depth
diam(/55) = 2 on the contracted graph, given access to G.

The only problem that arises if we actually perform this simulation is that some paths might
be very long, causing the simulation to be expensive. Fortunately, there can’t be too many long
paths. More precisely, since every vertex is an intermediate vertex in at most one such path, there
are no more than £dN paths with more than 2 intermediate vertices (or edges). It follows that
it G is e-far from the class of planar graphs, then it contains at least $dN edges that reside in a
subgraph of G which is homomorphic to either K33 or K5 and do not belong to a path of length

greater than %. The above discussion gives rise to the following algorithm.

Planarity Testing Algorithm

1. Uniformly choose a set of m = ©(1) vertices;
2. For each vertex u chosen perform the following procedure.

(a) If u has degree at least 3 then let s = u. If u has degree 1 then Stop (go to 2). Otherwise
(u has degree 2), perform a DFS starting from u until a vertex with degree at least 3 is
reached or 2 4 2 vertices are reached (or no new vertices can be reached). If a degree 3
vertex is reached then let s be this vertex. Otherwise Stop (go to 2).

(b) Starting from s perform a “BFS” as follows. Every vertex v reached, is assigned a label
Uv) = (L1(v),Ll5(v)), where {(s) = (0,0) and the label assignment rule is defined as
follows. If vy,...,v; are the children of v in the BF'S tree, then: (1) For every v; with
degree 2, let {1(v;) = {1(v) and let {5(v;) = lo(v) + 1; (2) For every v; with degree other
than 2, let {;(v;) = {1(v) + 1, and €5(v;) = 0. The search should be discontinued at

vertices v for which {;(v) = 2, or lr(v) = = + 1.

3. If any of the above searches found a subgraph homomorphic to either K33 or K5 then output

REJECT, otherwise output ACCEPT.

The correctness of the algorithm follows from Lemma 6.1 and the discussion following it. The
number of queries performed is O(%) larger than that stated in Lemma 6.1 (where here diam(H)
is 1 for K5 and 2 for K5 3), since we might need to follow paths of that length in our search (Step
(2b)). As for the running time, we can obtained better bounds than those implied by Lemma 6.1 as
follows. First note that for each starting vertex s, the graph induced by the search in Step (2b) can
be contracted while performing the search. Thus Step (3) is reduced to determining whether some
contracted subgraph containing s is isomorphic to K53 or K5. For the former we have to check if
there exist three neighbors of s which all have two common neighbors (other than s). For the latter
we can simply go over all subsets {v;,vq, v3,v4} of 4 neighbors of s and check if {s, vy, vs,v3, 04}
induces a clique.

As described above, the algorithm has query complexity O(f—z) and running time O(f—z + %)

However, similarly to the connectivity algorithms described in Sections 3 and 4, we can save a
factor of O(1/¢) in the query complexity (and in the first term of the bound on the running time).

TheoreQm 6.1 There exz'sfs an algorithm for testing planarity whose query complexity and running
are O(M) and O(M), respectively.

21

7 Testing if a Graph is Eulerian

A graph G = (V,E) is Fulerian if there exists a path in the graph that traverses every edge
in E exactly once. It is well known the a graph is Eulerian if and only if it is connected and
all vertices have even degree or exactly two vertices have odd degree. The testing algorithm is
quite straightforward. In addition to testing connectivity (as done in subsection 3.1), we sample
vertices and reject whenever we see more than two vertices of odd degree. Thus we test the two
properties which conjuncted together yield the desired property. However, the analysis does not
reduce to showing that each of the two sub-testers is valid — as property testing of a conjunction
of two sub-properties does not reduce in general to the property testing of each of the two sub-
properties [GGR96]. Nonetheless, the following lemma does establish the validity of our tester.

Lemma 7.1 Let G be a graph which is e-far from the class of Fulerian graphs with maximum
degree d. Then, it either has more than ¢dN connected components, or it has more than 5dN
vertices with odd degree.

In other words, a graph which is e-far from the class of Eulerian graphs with maximum degree d is
either ¢-far from the class of connected graphs (with such degree bound) or £-far from the class of
graphs in which all (but at most two vertices) have even degree.

Proof: Assume contrary to the claim that G has at most gdN connected components, and at
most SdN vertices with odd degree. We now show that by adding and removing at most £dN
edges we can transform G into becoming a Eulerian graph.

First consider the case in which d is even, and hence all odd degree vertices have degree less
than d. In such a case, we first pair all these vertices up and add an edge between every pair
(using at most 5;dN edges). Clearly, the number of connected components can only decrease in
this process. At this point, all vertices have even degree, which in particular means that all (at
most gdN) connected components either consist of a single vertex (with degree 0) or have a cycle
in them. We can then remove one edge from each non-trivial component, and then connect all
components in a cycle without raising the degree of the vertices above d. The total number of edge

modifications is bounded by % + 2. % < %.

In case d is odd, we first remove a single incident edge from every vertex with odd degree.
Since there are at most ;5dN such vertices, at most {5dN edges were removed, and the number
of connected components has increased by at most the same number (totaling to at most =dV).
However, now all vertices have even degree and we can connect the components as described above,
by adding and removing at most 2- %dN edges. The total number of edge modifications is bounded

by Y Y -

We have thus shown that:

Theorem 7.1 There exz'stg a testing algorithm for the Fulerian property whose query complexity
and running time are O(M),

8 Hardness Results

In this section we present several lower bounds on the query complexity and running time required
for testing various properties.

22

8.1 Testing Bipartiteness

A graph is said to be bipartite if its set of vertices can be partitioned into two disjoint sets so
that there are no wviolating edges. An edge is said to be violating with respect to a given partition
(Vy,Vs), if both its endpoints are either in V; or in V,. In this section we show that any algorithm
for testing whether a graph is bipartite has query complexity Q(\/N) This lower bound stands in
contrast to a result on testing bipartiteness which is described in [GGR96]. In [GGRI6] a graph
is assume to be represented by its N X N adjacency matrix, and the distance between two graphs
is defined to be the fraction of entries on which their respective adjacency matrices differ. Thus,
a testing algorithm for a certain graph property should distinguish between the case in which the
graph has the property, and the case in which one must add and/or remove at least eN? edges
in order to transform the graph into a graph that has the property. [GGRI6] give an algorithm
for testing bipartiteness in this model whose query complexity and running time are poly(1/e).
Recall that in the current paper, graphs are represented by incident lists of length d and distance
is measured as the number of edge modifications divided by dN (rather than by N?).

Theorem 8.1 Testing Bipartiteness with distance parameter 0.01 requires % -/ N queries.

Proof: For any even'? N, consider the following two families of graphs:

1. The first family, denoted GI¥, consists of all degree-3 graphs which are composed by the union
of a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting the
vertices in a cycle, and the other N/2 edges are a perfect matching.

2. The second family, denoted G, is the same as the first ewcept that the perfect matchings
allowed are restricted as follows: the distance on the cycle between every two vertices which
are connected by an perfect matching edge must be odd.

In both cases we assume that the edges incident to any vertex are labeled in the following fixed
manner: Each cycle edge is labeled 1 in one endpoint and 2 in the other. This labeling forms an
orientation of the cycle. The matching edges are labeled 3.

Clearly, all graphs in GY are bipartite. We next prove that almost all graphs in GV are far
from being bipartite. Afterwards, we show that a testing algorithm that performs less than av/N
queries (for some constant a < 1) is not able to distinguish between a graph chosen randomly from
GY (which is always bipartite) and a graph chosen randomly from G (which with high probability
will be far from bipartite).

Lemma 8.1 With probability at least 1 — exp(U(N)), a graph chosen randomly in G is 0.02-far
from the class of bipartite graphs.

Proof: What we’ll actually show is something slightly stronger: For every ordering of the vertices
on the cycle, with high probability over the choice of the matching edges, the resulting graph is
far from bipartite. Let us thus fix a certain ordering of the vertices on the cycle and consider all
possible partitions of the graph vertices into two sets. We show that with high probability (over

the choice of the matching edges) all such partitions have at least 31—2]\7 violating edges (and since

2(V/52) _ 1y,

d = 3, this implies that the graph is e-far from bipartite for e = == = ¢

12 For odd N, every graph (in both families) contains one degree-0 vertex, and the rest of the vertices are connected
as in the even case.

23

Consider a particular partition (Vy,V,) of V. We consider two cases: (1) There are at least 5 N
violating cycle edges with respect to (Vy, Vy). In this case we are done no matter how the matching
edges are chosen. (2) There are less than =N violating cycle edges. In this case we show (below)
that with probability at least 1 —exp(— %N), over the choice of the matching edges, there are at least
31—2]\7 violating matching edges with respect to (Vy, Vs). This will suffice since for any fixed i < N,
each partition which has ¢ violating cycle edges is determined by the choice of those i violating
edges. Thus there are at most vaz/ogz (JZV) < exp(55N) partitions with less than 55N violating cycle
edges. It follows that with probability at least 1 — exp(s5N) - exp(—55;N) = 1 — exp(—35 V) there
are at least 31—2]\7 violating matching edges with respect to each one of these partitions.

Without loss of generality, let |V,| > N/2 and consider the following process for choosing a
random matching. Starting from j = 1, choose an arbitrary vertex v in V;, and match it with
a randomly chosen unmatched vertex u. If the number of unmatched vertices in V; is smaller
than the number of unmatched vertices in the other side of the partition then switch side (i.e., let
Jj < 3 —j). Clearly, during this process, we always try to match a vertex from the side having
more unmatched vertices. Thus, at each step we create a violating edge with probability at least
1 1

5 (independent of the past events). Since there are N/2 steps, the probability that less than ;5 NV
11

violating edges are created is bounded above by exp(—2- (1 — 55)? - &) < exp(—55V), as required.

2 7 33
|

NotraTioN. Let A be an algorithm for testing bipartiteness using { = {(N) queries. Namely, A
is a (possibly probabilistic) mapping from query-answer histories [(q1,a1),...,(q,a)] to g1 =
(Vig1,%041), for every ¢ < £, and to {accept,reject}, for t = (. A query ¢, is a pair (v,4;), where
vy € Vand 4, € {1,2,3}, and an answer «a, is simply a vertex u, € V. We assume that the mapping
is defined only on histories which are consistent with some graph. Any query-answer history of
length ¢ — 1 can be used to define a knowledge graph, G¥,, at time ¢ — 1 (i.e., before the ™ query).
The vertex set of GE", contains all vertices which appear in the history (either in queries or as
answers), and its edge set contains the edges between v, and a, for all ¢ < ¢ (with the appropriate
labelings — i, at vertex v,). Thus, Gk, is a labeled subgraph of the labeled graph tested by .A.

In what follows we describe two random processes, P, and P, which interact with an arbitrary
algorithm A, so that for j € {1,2}, P; answers A’s queries while constructing a random graph
from QJN. For a fixed A which uses { queries, and for j € {1,2}, let D;“ denote the distribution
on query-answer histories (of length () induced by the interaction of A and P;. We show that for
any given A which uses { < av/N queries, the statistical difference between D and D% is 4a?.
Combining this with Lemma 8.1, Theorem 8.1 follows.

We start by defining P;. The process has two stages. In the first stage, which goes on as long
as the algorithm performs queries, the exact position of the vertices on the cycle is undetermined.
However, each vertex which is introduced into the knowledge graph of the algorithm, following
some query, is assigned the parity of its future position on the cycle (but this bit is NOT given to
A). That is, we think of the N positions on the cycle as being numbered from 0 to N — 1, and a
vertex which is assigned even (resp. odd) parity, will be allowed to be positioned only in even (resp.
odd) cycle positions in the second stage. Thus, in this stage, the process essentially maintains the
knowledge graph (which is extended according to the query-answer pairs), and keeps one additional
bit per vertex. Observe that by our convention on the labeling of the edges, the knowledge graph
maintained during the first stage can be viewed as “floating” (cycle) sections some of which are
connected by arcs (the matching edges). In the second stage, all vertices in the final knowledge
graph are positioned on the cycle randomly in a way that is consistent with the position-parity of
the vertices, and so the knowledge graph edges which are labeled 1 or 2 coincide with cycle edges.

24

Thus the sections stop floating and are restricted to fixed positions. Finally, all vertices which do
not belong to the knowledge graph are randomly positioned on the remaining cycle positions and
all unmatched vertices are randomly matched.

First Stage of P;: Starting from ¢ = 1, for each query ¢ = (v, ;) of A, process P, proceeds as

follows:

1. If v; belongs to G, then there are three cases:

(a)

(b)

This edge already exists in the knowledge graph (i.e., there exists an edge (v;,) in GI™,
and this edge is labeled ¢, at the endpoint v;). In this case P, answers “u” (and the
knowledge graph remains unchanged).

i; = 3 and v, is unmatched in G, (i.e., there is no edge (v;,-) in G¥", which is labeled
3). In this case P, chooses a random unmatched vertex w € V (where u may belong to
G) and answers “u”. If u did not belong to G, then it is assigned a position-parity
in the natural manner. That is, let n, be the number of vertices in G, which were
assigned even parity, and let n, be the number that where assigned odd parity. Then
u is assigned even parity with probability % and odd parity otherwise. In any
case, the edge (v, u) is added to the knowledge graph (with label 3).

i; € {1,2} and there is no edge incident to v, in G, which is labeled 7,. Suppose,
without loss of generality, that ¢, = 1 and v, has even parity. Let X, be the set of

vertices in GX*, which have odd parity, and do not have an incident edge labeled 2. Let
def No, 2

Moo = |Xoa|. Then Py first flips a coin with bias TRy

a vertex in X, . If so, it uniformly chooses a vertex in X,,. Otherwise, it uniformly

chooses a vertex not in Gk . Let the chosen vertex be u, Then the process answers “u”,

and if u does not belong to G, it is assigned odd parity (i.e., parity opposite to v;).

In either case, the edge (v;,u) is added to the knowledge graph (with label ¢, at v;).

to decide if to choose

2. If v, does not belong to G, process P, first assigns v, parity as described in (1b) above,

adds v, to the knowledge graph, and next answers the query as in (1).

Second Stage of P;: After all queries are answered, do the following:

1.

(a)
(b)

Among all possible ways to embed G on the cycle, choose one uniformly, where a possible
embedding of G§* on the cycle must satisfy the following conditions.

Every vertex is assigned a cycle position (i.e., an integer in {0,..., N — 1} with parity
matching the vertex’s parity bit.

Vertices connected by a cycle edge in GE" are assigned adjacent positions on the cycle.
Furthermore, if » is assigned position ¢ on the cycle, and v has an edge labeled “1”
connecting it to w in G§", then u must be assigned position (¢ + 1) (mod N)).

Next, randomly position all other vertices on the cycle,

Finally, match all unmatched vertices randomly.

Process P, is the same as P, except when randomly matching vertices (since matched vertices
must have the same position-parity). The modification to the second stage is self-evident (the
unmatched vertices must be matched in a parity preserving manner). We also modify Step (1b)

25

of the first stage — when choosing a vertex to match v, process P, only considers vertices in Gk,
which have the same parity as v,. Without loss of generality, assume v, has even parity. Let X,
be the set of vertices in Gk, which have odd parity, and do not have an incident edge labeled 3.

def no)a

Let n,5 = |X,3]. Then P first flips a coin with bias TRy
X, 3. If so, it uniformly chooses a vertex in X, 3. Otherwise, it uniformly chooses a vertex not in

to decide if to choose a vertex in

Gkn . The rest of the process, and in particular the assignment of parity to new vertices, remains
unchanged.

Lemma 8.2 For every algorithm A and for each j € {1,2}, the process P;, when interacting with
A, uniformly generates graphs in QJN.

Proof: We’ll prove this by induction on the number of queries, £, that A performs. Since every
probabilistic algorithm can be viewed as a distribution on deterministic algorithms, it suffices to
prove the lemma for any deterministic algorithm A. Also note that the (accept/reject) output of
the algorithm is irrelevant to the claim and hence we view the algorithm only as a mapping from
histories to queries.

The base case, { = 0 is clear since the knowledge graph is empty and P; generates a random
graph in QJN from scratch. Assuming the claim is true for £ — 1, we prove it for £. Let A be an
algorithm that performs ¢ queries, and let A’ be the algorithm defined by stopping A before it asks
the (*" query. By the induction hypothesis, we know that P; when interacting with A’ uniformly
generates graphs in QJN. We thus need to show that the same will be true if the second stage of
P; is performed following the (** query of A. We need to consider the following cases, depending
on the query ¢, = (v, 4,) of A. We may assume without loss of generality that the answer to the
query cannot be derived from the algorithm’s knowledge graph, since this would be equivalent to
asking no query (in which case the knowledge graph does not change and so the distribution on
P;’s output after £ steps is identical to its output after £ — 1 steps).

1. ¢, = 3, and v, belongs to the algorithm’s knowledge graph, Gk*,. Consider first the process
P, (when interacting with A”). The probability that P, matches v, (in the second stage) to
any vertex (either in G, or not) is clearly independent of the exact ordering of the vertices
on the cycle. Hence, by first answering this query and then performing the second stage of
P; we are only changing the order in which the final graph is constructed.

In the case of P, the probability that P, matches v, to any vertex is still independent of the
exact ordering of the vertices on the cycle, but it does depend on the parity of the vertices.
In particular, assume without loss of generality that v, has even parity. Then in any possible
matching done in the second stage, the only vertices in G, that v, can be matched to are
vertices in X, 3 (where X, 5 is as defined in the process description). On the other hand, in any
possible embedding of the vertices on the cycle, there are exactly (N/2) — n, vertices not in
GE™, which have odd parity and thus may be matched to v,. This implies that v, is matched

to some vertex in X, 5 with probability b [Xo.3l

sl +(N/2)=n,
probability % Furthermore, conditioned on the event that v, is matched to a

vertex in X, 3, this vertex is distributed uniformly in X, 5. Similarly, conditioned on the event

and to some vertex not in G§",, with

that it is matched to a vertex not in G, this vertex is uniformly distributed among vertices
not in G§",. But these probabilities are exactly as defined in Step (1b) or Ps.

Therefore, for both processes the induction step holds in this case.

26

2. i, = 3, and v, does not belong to G",. This case is reduced to the previous one, provided
that the parity of v, is chosen with the correct probability. In the second stage each vertex is
assigned parity at random according to the proportion of missing vertices (with this parity).
This is exactly the assignment rule of Step (2) in the first stage.

3. i, € {1,2}, and v, belongs to G*,. Assume, without loss of generality, that 7, = 1 and v, has
even parity. Clearly, in any embedding of G§*, in the cycle, v, can be adjacent to a vertex u
in G5, only if u belongs to X, » (as defined in the process). It is also clear that conditioned
on the event that it is adjacent to a vertex in G{™,, this vertex is uniformly distributed in X, »
(and similarly if it is not in the graph). Finally, since there should be exactly N/2 odd-parity
vertices, and the total number of odd-parity vertices in G, is n,, the number of odd-parity
vertices not in G§"; (in any ordering of the vertices on the cycle) is (N/2) — n,. Thus the

probability that v, is adjacent to some u € X, is %, and the probability that it

is adjacent to some vertex outside the knowledge graph is %, which is exactly as
defined by the process. Hence the induction step holds in this case.

4. i, € {1,2}, and v, does not belong to the knowledge graph. This case is reduced to the
previous one, provided that the parity of v, is chosen with the correct probability. The
validity of the condition was already established in Case 2.

Lemma 8.3 leta <1, <av N and N > 8(. Then, for every algorithm A which asks { queries,
the statistical distance between D and D% is at most 4a®. Furthermore, with probability at least
1 —4a? the knowledge graph at time of termination of A contains no cycles.

Recall that D;“ denotes the distribution on query-answer histories (of length () induced by the
interaction of A and P;.

Proof: We assume without loss of generality that A does not ask queries whose answer can be
derived from its knowledge graph, since those give it no new information. Under this assumption,
we show that both in D# and in D2, the total weight of query-answer histories in which a vertex in
Gn | is returned as an answer to the "' query (i.e., there exist ¢ < ¢ such that a, = v, or a; = a;)
is at most 4a?. In particular, this means that with probability at least 1 —4a?, the knowledge graph
of A contains no cycles. Furthermore, in both distributions, for every history prefix, conditioned
on the event that the new answer does not equal some previous query or answer, the new answer
is uniformly distributed among all vertices not appearing in the history. Since A’s queries only
depend on the preceding query-answer history, the lemma follows.

There are two cases in which the event a; = v, or a; = a; might occur.

1. 4, = 3, and v, is matched to a vertex in the knowledge graph G",. Since the number of
2(t—1)

No20-1) when

vertices in G, is at most 2(¢ — 1), this event occurs with probability at most
2(t=1)

NT2)=30=T) when the process is Ps.

the process is P;, and at most

2. i, € {1,2} and @, is chosen in G¥" . According to both processes this event occurs with

probability less than (N/ggt—_ztz—m < 8(3;1) (as N > 8t).

The probability that such an event occur in any sequence of v N queries, is at most Z?:\/lﬁ % <

4a*. E(Lemma 8.3 and Theorem 8.1)

27

8.2 Testing Whether a Graph is an Expander

The neighbor set of a set A of vertices of a graph G = (V, F), denoted I'(A), is defined as follows:

T(A)E AU{u: (v,u) € E,ve A}
A graph on N vertices is an (N, a, 3)-expander if for every subset A of the vertices which has size
at most aN, [T(A)| > B|A|. Let us set & = 1 and § = 1.2, and simply refer to an (N, $,1.2)
expander, as an expander. Here we show that

Theorem 8.2 Testing whether a graph is an expander, with error parameter 0.01, requires % VN
queries.

Proof: Similarly to the lower bound for testing bipartiteness, we first describe two families of
graphs where with extremely high probability, a graph chosen randomly in the first family is an
expander, and every graph in the second family, is far from being an expander. We then describe
two processes which interact with a testing algorithm while constructing a random graph in one
of the families, and show that the distributions induced on the query-answer sequences are very
similar. For simplicity we assume that N =0 (mod 8).

Let d = 3. It is well known (and easy to verify) that if we randomly construct a graph by
choosing d random perfect matchings to define its edge set, then with probability 1 — exp(Q2(N)),
the resulting graph is an expander. The first family, GI¥, will consist of all possible resulting graphs.
A graph in the second family, G&¥, is constructed by first randomly partitioning the vertex set into
4 equal size subsets, and then choosing d random matchings inside each subset. Thus the four
subsets are disconnected. Clearly, every graph in this family is %—far from being an expander,
since in order to transform it into an expander we must connect each of the four subsets to at least
N /20 vertices outside the subset. In both cases, each edge in the graph has the same label at both

endpoints (i.e., corresponding to the index of the perfect matching to which the edge belongs).

The process P, for constructing a random graph in GV, while interacting with an algorithm A,
is completely straightforward. Let ¢ = (v, 4;) be A’s t™ query. If the answer a, is determined by
the current knowledge graph, GE",, then P, answers accordingly. Otherwise, it chooses a random
vertex u which does not have an incident edge labeled ¢;, answers “u”, and adds the edge (and
possibly the vertex) to the knowledge graph. When the interaction with A ends, P; randomly

completes all d matchings.

Process P, is somewhat more complex. It maintains four subsets of vertices and coordinates its
choice of matching edges with these growing subsets.

o Whenever algorithm .4 makes a query of the form (v,) where v is not in the current knowledge
graph, P, assigns it a subset-id in {1,2, 3,4} with probability proportional to the number of
vertices missing in each subset (P, starts with all subsets being empty). Specifically, let n,
be the number of vertices with subset-id s in the current knowledge graph, for s = 1,2,3,4.
Then the new vertex is assigned subset-id s with probability N_<75ﬁ2122+n4>- The query is
subsequently processed as follows.

e To answer a query (v,i) when v is already in the current knowledge graph, P> matches
it to either a vertex already assigned to the same subset as » or to an unassigned vertex.
Specifically, suppose that v is already assigned to the s™ subset, and let X, ; denote the set of
vertices which are assigned to the s subset but do not have an incident edge labeled 7. Then

28

[Xo.l-1
V/4=ns)+(1Xs,il=1) ;]
X\ {v}. Otherwise, P, matches v to a uniformly chosen vertex, u, which does not belong

with probability = process P, matches » to a uniformly chosen vertex, u, in
to the current knowledge graph, and assigns u to the s*™® subset. In both cases P, answers
with the chosen vertex u, and the knowledge graph is augmented with the edge (v, u) labeled
i.

It is easy to verify that for both processes the distribution on the generated graphs is uniform in
the respective graph family. Similarly to the bipartite lower bound, it remains to show that for any
(not too long) query-answer history, the probability that we get an answer a, which is a vertex in

the knowledge graph (and not a uniformly distributed new vertex) is small. But this is easy to see.
2t

In the case of P, such a vertex is chosen following the ¢*' query, with probability at most ~ 5 In

the case of P», such a vertex is chosen with probability at most (N/ig_m. The probability that such
an event occurs in any sequence of av/ N queries, is at most Z?:\/lﬁ Ngitgt

every N > 256. M

which is at most 8a?, for

8.3 On Testing MaxSNP Problems

It should come with little surprise that we cannot efficiently test some properties of bounded degree-
graphs which are MaxSNP-complete (i.e., when restricted to bounded-degree graphs). To see why,
we need to be a bit more formal.

Consider for example the class C/ of graphs with maximum degree d having a vertex cover of
size pN, for some constant p > 0. Suppose that A is a property tester for C/ as in Definition 2.1.
Suppose we have an algorithm .4 which on input ¢ and d, and access to a graph with degree
bounded by d, the algorithm accepts (with high probability) any graph in C; but rejects (w.h.p.)
any N-vertex graph (of degree < d) which requires modification of ed N edges in order to be in Cj.
We observe that it suffices to consider the number of edges omitted in the modification process, and
that the number of omitted edges can be related to an increase in the vertex cover. Specifically,

Claim 8.4 Suppose that A is a property tester for C;. Then A distinguishes between N -vertex
graphs (of degree at most d) having vertex cover of size p- N and similar graphs having no vertex
cover of size (p+ed)- N.

Since distinguishing the two cases is NP-Hard for some constants d, e and p [ALM*92, PY91], we
cannot expect A to have “reasonable” (e.g., polynomial in N) complexity.

Proof: By definition, the former graphs are in C/. It remains to see that N-vertex graphs having
no vertex cover of size (p 4+ ed) - N require the modification of at least ed N edges in order to put
them in C. Suppose that it suffices to omit m edges from a graph G in order to obtain a graph G’
in C§ (we don’t care if edges were added in the process).!® Then taking the pN-vertex-cover of G’
and at most one endpoint of each of the m edges omitted from G, results in a vertex cover of G
having size at most pN + m. Thus, we have m > ¢dN. W

Next, we consider the class DY of graphs with maximum degree d having a dominating set of
density p. We observe that it suffices to consider the number of edges which need to be added to
put the graph in DY. Specifically,

12 Actually, without loss of generality we may assume that no edges were added as they only make the task of
covering harder...

29

Claim 8.5 Suppose that A is a property tester for Dy. Then A distinguishes between N -vertex
graphs (of degree at most d) having no dominating set of size p - N and similar graphs having
dominating set of size (p+ed)- N.

Again, since distinguishing the two cases is NP-Hard for some constants d, € and p [ALM*92, PY91],
we cannot expect A to have “reasonable” complexity.

Proof: Again, the former graphs are in D}, and it remains to see that N-vertex graphs having
no dominating set of size (p + ed) - N require the modification of at least edN edges in order to
put them in D. Suppose that it suffices to add m edges to a graph G, with maximum degree d,
in order to obtain a graph G’ in D} (we don’t care if edges were omitted in the process).!* Let
5" be a dominating set of size pN of G’. Then 5" dominates all but at most m vertices in G (i.e.,
all vertices dominated in G’ except for those which are dominated due to the edges added to G).
Adding these vertices to S’ we obtain a dominating set of size 5’| + m of G, and thus m > edN.
|

We conclude by proving a lower bound on the query complexity of testers for the Vertex Cover
Property, Cj. Specifically,

Proposition 8.3 Letd = 3, p = 0.5 and ¢ = 0.01. Then testing whether a 3-reqular N -vertex
graph belongs to Cj; or is e-far from it requires Q(vVN) queries.

Proof: We use the families g{V and ggV presented in Subsection 8.1. By combining Lemmas 8.2
and 8.3, an algorithm which makes o(ﬁ) queries can not distinguish graphs uniformly chosen in
GY from graphs uniformly chosen in GY. It is easy to see that graphs in G have a vertex cover
of size N/2 (e.g., all vertices with odd locations on the cycle). It remains to show that, with very
high probability, a graph chosen uniformly in G¥ has no vertex cover of size 0.51 - N.

Consider an arbitrary subset, U, of vertices which cover all cycle edges. Then each vertex not
in U must be adjacent (on the cycle) to vertices in U. It follows that the number of possible subsets
of size 0.51 N which cover the cycle edges is at most

0.51N
2N/6
(0.49]\7) <
On the other hand, for every fixed U as above, the probability that U covers the matching edges is

upper bounded by o
: 0.5IN — 1
2—0.4N
1 (N -2) <

i=0
We conclude that the probability that a graph chosen uniformly in GV has a vertex cover of size
0.51 - N is exponentially vanishing in N. The lemma follows. W

Acknowledgments

We thank Yefim Dinitz, Shimon Even, David Karger for helpful discussions.

! Here we cannot assume that the modification of G into G’ consists only of the addition of edges, since we may
be forced to omit edges in order to satisfy the degree bound. Nevertheless, this fact does not effect the proof.

30

References

[ALM*92] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and

[AS92]

[Ben95]

[BFL91]

[BFLS91]

[BGS95]

[BLRO3]

[DKL76]

[DW95]

[EveT9]

[FGL*91]

[Gab91]

[Gab95]

[GGRIG]

intractability of approximation problems. In Proceedings of the Thirty-Third Annual
Symposium on Foundations of Computer Science, pages 14-23, 1992.

S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP.
In Proceedings of the Thirty-Third Annual Symposium on Foundations of Computer
Science, pages 1-13, 1992.

A. Benczur. A representation of cuts within 6/5 times the edge connectivity with
applications. In Proceedings of the Thirty-Sizth Annual Symposium on Foundations of
Computer Science, pages 92—-101, 1995.

L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1(1):3-40, 1991.

L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polyloga-
rithmic time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory
of Computing, pages 21-31, 1991.

M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcps and non-approximability —
towards tight results. In Proceedings of the Thirty-Sizth Annual Symposium on Foun-
dations of Computer Science, pages 422-431, 1995. Full version available from EFCCC,
http://www.eccc.uni-trier.de/eccc/.

M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to nu-
merical problems. Journal of Computer and System Sciences, 47:549-595, 1993.

E. A. Dinic, A. V. Karazanov, and M. V. Lomonosov. On the structure of the system
of minimum edge cuts in a graph. Studies in Discrete Optimizations, pages 290-306,
1976. In Russian.

Y. Dinitz and J. Westbrook. Maintaining the classes of 4-edge-connectivity in a graph
on-line. Technical Report #871, Technion, Department of Computer Science, 1995.

S. Even. Graph Algorithms. Computer Science Press, 1979.

U. Feige, 5. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximating clique
is almost NP-complete. In Proceedings of the Thirty-Second Annual Symposium on
Foundations of Computer Science, pages 2-12, 1991.

H. Gabow. Applications of a poset representation to edge connectivity and graph rigid-
ity. In Proceedings of the Thirty-Second Annual Symposium on Foundations of Computer
Science, pages 812-821, 1991.

H. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
Journal of Computer and System Sciences, 50(2):259-273, 1995.

0. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learn-
ing and approximation. In Proceedings of the Thirty-Seventh Annual Symposium on
Foundations of Computer Science, pages 339-348, 1996.

31

[GLR*91] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-
testing/correcting for polynomials and for approximate functions. In Proceedings of the
Twenty-Third Annual ACM Symposium on Theory of Computing, pages 32-42, 1991.

[Has96] J. Hastad. Testing of the long code and hardness for clique. In Proceedings of the
Twenty-FEighth Annual ACM Symposium on the Theory of Computing, pages 11-19,
1996.

[Kar93] D. Karger. Global min-cuts in RAC and other ramifications of a simple mincut al-
gorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 21-30, 1993.

[Kar95] D. Karger. Random Sampling in Graph Optimization Problems. PhD thesis, Stanford
University, 1995. Available from http://theory.lcs.mit.edu/ karger.

[Kur30] K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fund. Math., 15:217—
283, 1930.

[NGM90] D. Naor, D. Gusfield, and C. Martel. A fast algorithm for optimally increasing the edge-
connectivity. In Proceedings of the Thirty-First Annual Symposium on Foundations of
Computer Science, pages 698-707, 1990.

[N196] H. Nagamochi and T. Ibaraki. Deterministic O(nm) time edge-splitting in undirected
graphs. In Proceedings of the Twenty-Fighth Annual ACM Symposium on the Theory
of Computing, pages 64-73, 1996.

[Pou92] J. A. La Poutre. Maintenance of triconnected components of graphs. In Proceedings of
the 19th International Colloguium on Automata, Languages and Programming, pages
354-365, 1992. Springer-Verlag Lecure Notes in Computer Science 623.

[PYO1] C.H. Papadimitriou and M. Yanakakis. Optimization, approximation and complexity
classes. Journal of Computer and System Sciences, 43:425-440, 1991.

[RS96] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications
to program testing. STAM Journal on Computing, 25(2):252-271, 1996.

[WN87] T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. Journal of
Computer and System Sciences, 35:96-144, 1987.

A Background on Edge-Connectivity

In this appendix we recall some known facts regarding the structure of the k-edge-connected classes
of a (k — 1)-connected graph. Whereas the structure of the 2-classes of a connected graph is well-
known and relatively simple (cf., [Eve79]), the (k-connected class) structure of (k — 1)-connected
graphs becomes slightly more complex when k > 3. We thus refrain from describing in detail this
structure and merely state the facts which we need. The interested reader is referred to [DW95]
for more details. We stress that the graphs below are not necessarily simple; that is, parallel edges
are allowed.

Fact A.1 (cf., [DWO5]): Let k > 1 be an integer and G be a (k — 1)-connected graph. Then there
exists an auziliary graph, Tq, that is a tree such that:

32

o Fach k-connected class in G corresponds to a unique node in Tq.

e In addition to nodes corresponding to k-connected classes, there are two types of auxiliary
nodes: empty nodes, and cycle nodes (the latter exist only for odd k). The neighbors of a
cycle node in Tq are said to belong to a common cycle, and we associate a cyclic order with
them. (Any two cycles can have at most one common node.)

o Allleaves of the auziliary tree Tq correspond to k-connected classes of G. Furthermore, there
are exactly k — 1 edges (in G) going out from each of these classes.

For example, when k& = 2, all nodes of the auxiliary tree correspond to 2-classes, and the edges
in the auxiliary tree correspond to graph edges which are known as bridges. Bridges are edges
connecting vertices in different 2-classes of the graph, and their removal disconnects the graph. In
the case of k = 3, the auxiliary tree includes cycle nodes (but no empty nodes). If C,...,C, are
neighbors of a cycle node Cy, then this means that there is a single graph edge between some vertex
in C; and some vertex in C;;y, (for every ¢ < () and an edge between a vertex in C, and a vertex
in C;.

Before stating the next lemma we need to define the notion of squeezing a cycle. Let Cy be
a cycle node in Tgq, and let its children be Cy,...,C, (where their indices corresponds to their
ordering around the cycle). Then the result of squeezing Cy at C; and C; is the merging of C; and
C; into a new node Cj, with one of the following changes to the cycle:

1. In case C; and C; are adjacent on the cycle, then we have two subcases. If ¢ > 3 then the
merged node Cj is connected by a single edge to the cycle node Cy (and all other nodes
belonging to the cycle remain that way); If ¢ = 3 (i.e., there was only one additional node on
the cycle), then Cy is removed, and the additional node is connected by a tree edge to Cy.

2. In case C; and C; are separated by at least one node on the cycle then we have three subcases.

a) If t = 4 (i.e., C; and C; are separated by a single node in each cycle direction), then
j g
we put a tree edge between each of these intermediate nodes and Cj, and the cycle
disappears.

(b) Otherwise (¢t > 4). If C; and C; are separated by a single node, then we put a tree edge
between this node and Cy, and C; belongs to a single cycle with all the rest of the nodes
which were previously on the cycle.

(c) Otherwise at least two nodes separate C; and C; in each direction. Then we get two
cycles, where C;, belongs to both, and the other nodes are partitioned among the cycles
according to their relative position with respect to C; and C;.

Lemma A.2 (cf., [DW95]): Let G be a (k — 1)-connected graph, and Tq be its auxiliary tree.
Suppose that we augment G by an edge with endpoints in the k-connected classes C'y and Cl,
respectively. Then the classes residing on the simple path between Cy and Cy in Tq form a k-
connected class in the augmented graph, and all classes in G which do not reside on the path
remain distinct k-classes in the augmented graph. In case the path passes through nodes C; and C;
which belong to the same cycle Cy, then Cy is squeezed at C; and C;.

A related lemma which we need follows. We note that this lemma can be proven (private
communication with Y. Dinitz, December 1996) using the Circumference Theorem in [DKL76], but
we provide a direct proof for completeness. In what follows, when we refer to an edge as being in
a class we mean that it connects two vertices belonging to the class.

33

Lemma A.3 Let G be a (k — 1)-connected graph, Tg be its auziliary tree, and Cy, Cy two (k-
connected) classes of G each containing at least one edge. Suppose that we omit a single edge
from each C; and add two edges so to maintain the vertex degrees of G; Specifically, if the edges
(uy,v1) and (ug, ve) were omitted from C, and C, respectively, then we either add the edges (uy,us)
and (vy,vs), or the edges (uy,vs) and (vi,us). As a result, the classes residing on the simple path
between Cy and Cy in Tq form a k-connected class in the augmented graph, and all classes in G
which do not reside on the path remain distinct k-classes in the augmented graph.

Proof: Let I, ..., I; be the (intermediate) k-classes residing on the path between C; and C; in the
tree Tg. (We do not exclude the case ¢t = 0.)

Consider what happens when we omit the edge (u;,v;) from C,;. Invoking Lemma A.2, we
observe that C; may break into a path of subclasses, denoted C7,...,C!*, so that the vertex u;
resides in C}, and vertex v; resides in C{'. Thus, the I;’s and the CI’s reside on a tree (ie., a
subtree of the modified auxiliary graph) so that the only leaves are among the “extreme” Cg’s (i.e.,
C1, C#, Ci, and C#). (We do not exclude the case ¢; = 1. In this case C; = C} and the above

subtree has less than four leaves.)

At this point, the only case in which we must practice caution in choosing which two edge to
add, is the case in which Ci, C{*, C}, and C%* all belong to the same cycle. In such a case assume
that the above is in fact their ordering around the cycle. Then it is essential that we add the edges
(w1, us) and (v, v9) (ie., connecting Ci to C3 and C{* to C%*) in a crossing fashion, so as to insure
that the two invocation of Lemma A.2 will cause the collapse of the four classes into one class. In
all other cases, we may invoke Lemma A.2 twice, either with the addition of the edges (u;, us) and
(v1,v2), or with the edges (uy,vs) and (vy, us), resulting in the collapse of the entire subtree to one
class. The lemma follows. W

Using Lemmas A.2 and A.3, we get.

Lemma A.4 Let G be a (k — 1)-connected graph, whose auziliary graph, T, has L leaves. Then
by removing and adding at most 4L edges to G we can transform it into a k-connected graph G'.
Furtheremore, suppose that the mazimum degree of G is d then the maximum degree of G' is upper
bounded by max{d, k} if either d > k or dN is even, and by k 4+ 1 otherwise.

We note that there might be a way to save a constant factor in the number of edges added and
removed from G when transforming it into a k-connected graph by using a result of Naor, Gusfield
and Martel [NGM90]. They give an algorithm for optimally increasing the edge connectivity of a
graph. However, they do so by always adding edges, without maintaining a bound on the degree of
the graph, and hence it is not clear if their techniques can be applied in our, bounded degree, case.

Proof: We first use Lemma A.2 to collapse all leaves in T which correspond to singleton classes.
These vertices have degree k — 1 and so we can match them in pairs and add a single edge between
each pair. At this point we may be left with a single unmatched vertex/leaf, which we deal with
later. Call the resulting graph G, and its auxiliary tree T;. The number of leaves in T} is at most
L — i, where i is the number of pairs matched above. All leaves in T (except for the possible

singleton) can be now collapsed using Lemma A.3. The number of edge modifications in this stage

is at most 4(L — ¢). The resulting graph, G,, has degree at most d’' ! max{d, k}. In case Gy is

k-connected we are done.

Otherwise, G consists of a singleton which is connected to a k-connected class containing all
other vertices. In case some vertex in the large class has degree lower than d’ we connect it to

34

the singleton and conclude as per Lemma A.2. Otherwise (i.e., all vertices in the large class have
degree d’), we need to distinguish two subcases. In case k < d’ we simply omit one edge internal
to the large class and connect its endpoints to the singleton. It can be seen that this makes the
graph k-connected and that all vertices have degree at most d’. Finally, if ' = k a parity argument
shows that both d’ and N must be odd (as otherwise the sum of degrees is odd). In this case we
are allowed to add an edge and increase the degree of the resulting graphtod’ +1=%4k+1. N

B Background on Vertex-Connectivity

In this appendix we recall some known facts regarding the structure of the k-vertex-connected
classes of a (k — 1)-connected graph for k = 2,3, and derive some new facts needed for our testing
algorithms. When we refer to k—classes, we think of k—vertex—connected classes of size at least
k+1. We use the convention that every pair of vertices which are connected by an edge and do not
both belong to the same k—class, form a class of their own which we refer to as an edge—class. In
the case of k = 3, we choose to view triplets of vertices which form a clique and do not all belong
to a common k—class as a cycle of edge—classes (see below).

For k = 2, each class corresponds to a component which is the subgraph induced by the vertices
in the class. The components corresponding to 2-vertex-connected classes are referred to as 2-
vertex-connected components, and those corresponding to edge classes, as edge components. The
(at least) two paths that connect a pair of vertices which belong to the same 2-vertex-connected
class use only vertices and edges which reside in the corresponding component. Hence, these
components are 2-vertex-connected subgraphs. For k = 3 there also exists such a correspondence
between classes and components only it is slightly more involved since the components include
edges which are not in the original graph. We return to this issue later. For simplicity, from now
on we refer to k-vertex-connected classes (components) as k-classes (components).

B.1 The 2-classes (components) of a connected graph

Given a connected graph G we can define an auxiliary graph T whose nodes are 2-vertex-connected
classes, edge-classes, and separating vertices of G. For every class C in G (where C is either a 2-
class or an edge-class), we have an edge in Tg between C and each of the separating vertices it
contains. Since G is connected and every pair of classes in G have at most one separating vertex
in common, Tg is a tree. Since 2-classes directly correspond to 2-components, we use the two
terms interchangibly (depending on whether we want to discuss sets of vertices or subgraphs (sets

of edges)).

Lemma B.1 Let G be a connected graph, C; and C, two 2-classes in G, and X', X2, ... X1 X*
the sequence of classes on the path connecting C; and Cy in Tq, where X' = C; and X* = C,.
Suppose that we augment G by an edge (vy,vs) where vy € Cy, vy € Co, and such that neither vertex
separates C L UXE in G. Then C is a 2-class in the augmented graph G', and all classes in G
which do not reside on the path remain distinct 2-classes in G'.

Proof: We need to show that for every vertex v, the removal of v from G’ does not disconnect any
pair of vertices in C. Clearly, by definition of C (and the properties of the auxiliary graph), if v ¢ C
then it cannot separate C (in G or G’). Furthermore, if v does not separate C in G then it does
not separate C in G’. Thus, let v be a separating vertex of G which belongs to C, and let X/ be the

35

class it belongs to. Note that by our assumption on »; and v, v can be neither of them. Consider
a pair of vertices, u; and uy in C which are disconnected in G by the removal of »v. We now show
that they are not separated by v in G’. (Clearly, pairs which are not separated by v in G are not
separated by it in G’). Let X/t and X2 be the classes they belong to respectively, and without loss
of generality, j; < js and j < js (if a vertex belongs to more than one class than we choose the one
with the smaller index). After the removal of v, the subgraphs induced by X!,..., X7 \ {v} and
X+ {v},..., X respectively, are each connected. Hence there still exists a path from u; to v,
and a path from uy to vs. Since we added the edge (v, v3), u; and uy are connected.

As for pairs of vertices uy, us, that are not both in C, it is not hard to verify based on the
definitions of T and C, that the addition of the edge (v;,v2) cannot increase their connectivity,
since they are still separated by the same separating vertices. W

By applying the reverse operation to that described in Lemma B.1 (i.e., removing an edge), we get
the following corollary.

Corollary B.2 Let G be a connected graph, and C a 2-class in G. Let vy and vy be any two vertices
in C that are connected by an edge in G. Assume we remove (vy,vs) from G. Then the resulting
graph G' is connected, and the vertices in C belong to classes X1, ..., X" in G' such that v, € X?,
vy € X5, and X1, ..., X form a simple path in Tq,. Furthermore, all other classes in G are classes
in G', and there are no other classes in G'. (Note that the case in which C remains a 2-class in G’
is a special case of the above).

By applying Corollary B.2 and Lemma B.1 we get:

Lemma B.3 Let G be a connected graph, Tq its auziliary graph, and C,, Cy be two 2-classes in
G. Then there exists an edge e, = (uy,v,) between two vertices in C; and an edge e5 = (g, v)
between vertices in C,, for which the following is true. If we remove e, and es, and add an edge
between v, and vy then the classes residing on the simple path between C; and Cy in Tq form a
2-class in the modified graph G'.

Proof: Let Y!, Y% ..., Y"1, Y’ be the sequence of classes on the path connecting C; and C, in
Tg where Y! = C; and Y¢ = C,. Let u; be the separating vertex common to C; and Y2, let u, be
the separating vertex common to C, and Y !, and let ¢; = (u;,v;) be any edge between u; and a
vertex v; in C;. Note that u; and us coincide in case C; and C, are neighbors. Consider first the
removal of e;, and denote the resulting graph by G;. By Corollary B.2, in Gy, the vertices belonging
to C; are possibly divided (in a non-disjoint manner) into classes Xi, .. ., X% where v, € X! and
Uy € Xﬁl (and the other classes in G remain unchanged in G;). Since u; belongs to Y? as well, we
have a path in Tg, between X} and Y?. We next remove e, from Gy, and let the resulting graph
be denoted G,. Then in G, the vertices in Cs are possibly divided into classes X1,..., X% where
vy € X} and uy € X52. Thus the auxiliary graph Tg, has the following path from X! to Xi:

1 £ 2 £—1 £ 1
XL XO YR YL X X

Note that by the above, neither v; separates the union of the classes on the path. When we add
the edge between v, and vy then by Lemma B.1, we get a new class

¢
C=uLxyJuzy Juzxy = UJv
i=1
as required. W

36

Lemma B.4 Let G be a connected graph whose auziliary graph, Tq has L leaves. Then by removing
and adding at most 3L edges to G we can transform it into a 2-connected graph G'. Furtheremore,
the maximum degree of vertices in G’ is at most the mazimum degree in G.

Proof: Let L, be the number of edge classes which are leaves of Tq and let L, be the number of
2-classes which are leaves of Tg. Since G is connected, its maximum degree is at least 2, and its
only degree-1 vertices belong to edge classes which are leaves. Assume first that L is even. In such
a case we pair the edge leaves, and add an edge between the degree-1 vertices in each pair (raising
their degree to 2). By Lemma B.1, each pair of edge classes now belongs to a single class (which
possibly includes other vertices). The auxiliary graph (tree) Tqs of the resulting graph G’ has at
most Ly /24 Ly 2-class leaves (and no edge leaves). Applying Lemma B.3 at most L,/2+ L, times
we can merge all classes of G’ into a single 2-class by removing and adding at most 3(L,/2 + L)
edges in and between the leaves of Tg/. Note that in the process described in Lemma B.3 we do
not increase the degree of any vertex.

In case L; is odd, we can pair all but one edge class. Let this class be {u,v} where u is the
separating vertex which also belongs to a neighbor 3-class C. Let v’ be a neighbor of u in C, then
it is not hard to verify that by removing the edge (u, ') and adding the edge (v, v’), the set CU{v}
becomes a new 3-class. W

B.2 The 3-classes (components) of a 2-vertex-connected graph

Here the structure becomes more complicated and we refer the reader to [Pou92]. First we describe
how to decompose a 2-connected graph G into components of two types: 3-components (with at
least 3 vertices) and cycles. Slightly differently from the case of two-components of a connected
graph which are subgraphs of the graph, here the components contain additional edges (which
“stand for” paths using vertices outside the component). However, it is still true that the set of
vertices of each 3-component is a 3-class of the graph, and with slight abuse of terminology, we shall
sometimes interchange between the two terms. We later show how to construct an auxiliary graph
(which is a tree) whose nodes correspond to 3-components, cycles, edge components and separating
pairs.

If G is 3-vertex-connected then it consists of a single 3-component. If G is a simple cycle, then
it consists of a single cycle component. Otherwise there must exist at least one separating pair
of vertices in G that are 3-connected. Let v; and v, be such a pair which we call a block. The
removal of v; and v, induces a partition of V \ {v;,v,} into disjoint subsets Vi,...,V, that are
maximal sets which remain connected after the removal of v,,v,. For each V;, let E; be the set of
edges that have endpoints in V;. Since {vy,v,} is a separating pair, the sets E; are disjoint. For
each j let G; be the graph whose vertex set is V; U {vy,v,} and whose edge set is the union of E;
with two edges between v; and vy. A single edge between v, and vy would suffice to ensure that
for each G; and for every pair of vertices y; € V; and y» € V; U{v1, 02}, y1 and y, have the same
vertex-connectivity in G; as in . However, we allow for multiple edges between v, and v, so that
they remain 3-vertex-connected in G;. Each G; is either 3-connected, or it is a cycle, or it contains
a block (a separating 3-connected pair).

We thus continue recursively to decompose Gy,..., G, as described above, with the minor
exception that whenever we obtain a non-simple cycle (due to the addition of multiple edges), we
turn it into a simple cycle. The resulting decomposition is independent of the order of separating
pairs chosen. Since the decomposition process induces a partition on E,'® For an example of the

1°By the above, a block in G (or more generally in some G; defined by the recursive decomposition) induces a

37

decomposition process, see Figure 1.

The auxiliary graph Tg (which we shall also refer to as the decomposition graph) is constructed
using the above decomposition process as follows. In case G is 3-connected then Tq contains a
single node corresponding to its single 3-component (a 3-component node). In case G is a cycle,
then T contains one node corresponding to its cycle component (a cycle node), one node for each
edge component on the cycle (an edge node), and an edge between the cycle node and each one
of the edge nodes. (Recall that we use the convention that edges which do not belong to any
3-component are considered as separate edge components). Otherwise, let {v;,vs} be the block
according to which we decompose G. Then we have a node {v;,v,} in Tq corresponding to this
block (a block node). We next recursively construct the decomposition trees of Gy,...,G, and
connect them to {vy,vs} as follows. For each G;, if (v, v2) is an edge node (i.e., part of a cycle),
then we identify it with the node {v;,v,} (that is, we discard the node from T, and put an edge
between {v;,v,} and its cycle node neighbor). Otherwise, v; and v, must belong to a 3-component
C, and we put an edge between {v;,v,} and the node corresponding to C. See Figure 2 for an
example of a decomposition tree (of the graph depicted in Figure 1).

As noted previously, Tq is a tree. While a vertex » in G may belong to several components
and blocks which have corresponding nodes in the tree, these nodes induce a connected subgraph
(subtree) of T, which we denote by Sg(v). If v; and v, belong to a common 3-components and/or
bar (that is, Sg(v;) and Sg(v2) are not disjoint) then by definition, they are 3-connected. Otherwise
we denote by Pg(vy,vs) the path connecting Sg(v;) and Sg(v2) in Tq (since Tq is a tree, this path
is well defined). By definition of Tg, (and the 2-connectivity of G), v, and v, have two vertex
disjoint paths that pass only through vertices that belong to bars and 3-components on Pg(vy, vs).
Furthermore:

Lemma B.5 (cf., [Pou92]) Let G be a 2-connected graph, and let vy and vy be any two vertices in
G which are not 3-connected. Assume we augment G with an edge between vy and vy. Then vy,
vq, together with all the vertices in the 3-components and bars on the path Pg(vi,vs), form a new
3-class in the augmented graph G'. All classes in G which do not reside on the path are classes in
G’ and there are no other classes in G'.

Proof: Let X!,..., X" be the sequence of 3-components and bars on Pg(v;,v,), and let C be the
union of v1,v, and the vertices belonging to X!, ..., X% From the definitions of T and C, any two
vertices that do not both belong to C cannot separate C (neither in G not in G’). Also, any pair of
vertices that does not separate C in G cannot separate C in G’. We can thus restrict our attention
to separating pairs in C (with respect to G), where by definition of C all such pair are blocks in G.
Let X/ be a block whose vertices belong to C, and let 3; and y, be two vertices that X/ separates
in G. Then the removal of X/ separates G into at least 2 connected subgraphs: one which contains
v; and all vertices in X',...,X/=! (excluding the two vertices in X7), and the other which contains
v, and all vertices in XJT' ... X (excluding the two vertices in X7). Furthermore, y; belongs to
one of these subgraphs (without loss of generality, let it be the first) and y, belongs to the second
subgraph. Thus g, is connected to y, in G’ via the path y,— v, — v,—— o, where y; — v; passes
in the first subgraph and and vy —— %, in the second subgraph. Therefore, all vertices in C are
3-connected in G'.

As for pairs of vertices ¥y, yo, that are not both in C, it is not hard to verify based on the
definitions of T and C, that the addition of the edge (v;,v;) cannot increase their connectivity.

partition on all edges of E (E;) except the edge that might exist between the block vertices. In such a case we
arbitrarily place this edge in one of the partition’s subsets.

38

By applying the reverse operation to that described in Lemma B.5 (i.e., removing an edge), we
get the following corollary.

Corollary B.6 Let G be a 2-connected graph, and C a 3-class in G. Let vy and vy be two vertices
in C which are connected by an edge in G. Assume we remove (vy,vs) from G. Then the resulting
graph G’ is 2-connected, and either C remains a 3-class in G' or the vertices in C\ {vy, vy} belong to
the 3-components and bars X', ... X" that lie on Pgi(v1,v,) in Tg:. Furthermore, all other classes
in G are classes in G, and there are no other classes in G'.

By applying Corollary B.2 and Lemma B.1 we get:

Lemma B.7 Let C; and Cy be two 3-classes in a 2-connected graph G which correspond to leaves
in Tg. Then there exists an edge e; = (uy,v,) between vertices in C,; and an edge ey = (usz,vs)
between vertices in C,, for which the following is true. If we remove e, and es, and add an edge
between uy and us, and an edge between vy and vy then the vertices belonging to 3-components and
bars residing on the simple path between C; and C, in Tq form a 3-class in the modified graph G'.

Proof: Since C; and C, both correspond to 3-component leaves in Tg, they (i.e. the nodes they
correspond to) are each connected to a single bar in Tg. Let the bars they are connected to be
{wy, 2z} and {w,, x5}, respectively (where {wy, z,} and {w,, x5} might coincide). Then in each C;
there exist two vertices wu;, v; which are neither z; nor w;, and which have an edge between them.
Let e; be this edge.

Similarly to Lemma B.3, let Y!,...,Y* be the sequence of bars and 3-components on the path
between C; and C; in Tq (here Y! = C;, Y* = C,, and using the notation above, Y? = {w;, 2}
and Y~! = {ws,, x,}). Consider first the removal of e; and let G; be the resulting graph. Then by
Corollary B.6, in G, the vertices belonging to C; \ {uy,v,} are possible divided (in a non-disjoint
manner) among 3-components and bars, X!,..., X% which lie on Pg(uy,v;). This path either
contains the bar Y? = {&,,w;} or there exists a 3-component le which contains w; and z;, and
it is connected to Y? in Tq,. Furthermore, since C; is a leaf in G, there are two possibilities for
S, (1) (Sa,(v1)). It is either a single node subtree, consisting of a 3-component leaf in Tq,, or it is
a three node subtree, consisting of two edge components (with u; (v;)) being a common edge point
and a cycle node they are connected to. In the former case X7 is the abovementioned 3-component,
and in the latter, X] is a bar on the cycle, and the cycle does not include any other edges or bars.

Next, we remove e, and obtain a graph G,. Similarly, in G, the vertices in C, \ {uy,v,} are
possible divided (in a non-disjoint manner) among components and bars X3, ..., X% which lie on
Pg,(us,v5). This path either contains the bar Y=! = {5, w,} or there exists a 3-component X/
which contains w, and x5, and it is connected to Y*=! in Tq,. The subtrees Sg,(u2) and Sq,(v2)
have one of the two structures defined above for Sg,(u1). By Lemma B.5, if we now add an edge
between u; and us; and and edge between v, and vy then wuy, vy, us, vy together with all vertices
in X1, X092 L YA XD L, XY become a class in the augmented graph. This set of vertices
is exactly the union of C;, C, and the vertices belonging to 3-components and bars on the path
between C; and C, in G.

Lemma B.8 Let G be a 2-connected graph whose auziliary graph, Tq, has Ly degree-2 vertices
and Ly 3-component leaves. Then by removing and adding at most 4(L, + Ls) edges to G we can

39

transform it into a 3-connected graph G'. Furtheremore, suppose that the mazimum degree of G is
d. Then the mazimum degree of G' is upper bounded by max{d,3} if either d > k or dN is even
and by 4 otherwise.

Proof: We start by noting that degree-2 vertices are vertices which belong to a single edge
component or to two edge components that lie on a cycle. These vertices do not belong to bars.
Assume first that L, is even. In such a case we pair the degree-2 edges (not allowing pairs that are
already end-points of a common edge), and add an edge between vertices in each pair. The degree
of these vertices is now 3. By Lemma B.5, these pairs of vertices (and possibly others) become
3-connected, and in the resulting graph, G’, each vertex belongs to some 3-components and/or to
some bar in Tg.. In particular, each vertex either belongs to a 3-component leaf or is on the path of
3-components and bars between two such leaves. Furthermore, the number of 3-component leaves
is at most L,/2 + L,. Applying Lemma B.7 at most L;/2 4+ L, times, we can merge all classes of
G’ into a single 3-class by removing and adding at most 4(L;/2 + L) edges in and between the
3-component leaves of Tq,. Note that in the process described in Lemma B.7 we do not increase
the degree of any vertex.

In case L; is odd, we can pair all but one degree-2 vertex, v. We separate in to two subcases:
N is even, and N is odd. In case N is even, simple counting shows that it cannot be the case that
all vertices but v have degree exactly 3, and thus the maximum degree of G is at least 4. In case
N is odd then by the Corollary statement the resulting graph is allowed to have degree 4 vertices.
If we have at least one vertex with degree smaller than the maximum between the largest degree
in G and 4, then we add an edge between this vertex and v. Otherwise (all vertices except v have
degree at least 4), it is not hard to verify that by removing an arbitrary edge (u;,us) and adding
the edges (v,u;) and (v, us), the graph becomes 3-connected. M

C Proof of one inequality

Our aim is to prove that for any integers ¢ < D,
n—3 .
def n—1—(2¢/D e
p:H< (./))>(2n)2/D
i=0 n—1
A proof that p = Q(n=2¢/P), for constant ¢, D, can be found in Karger’s Ph.D. Thesis [Kar95] (see
proof of Corollary 4.7.5 which refers to an exercise in Knuth Vol. 1). An alternative proof follows.

Fixing D, c and n, let f(m) % [['57 m=Li=2c Then, for any m > D(n — 3) + 1, we have f(m) >

m—D1i

f(m —1). In particular, for every j < D — 1, we have f(Dn) > f(DN — j), and so
p’ = f(Dn)”
D-1
> H fD,n,c(Dn_j)
j=0
B ﬁlﬁDn—j—Di—Qc
j=0 i=0 Dn—j—Di

D-(n—3)+(D-1) Dn—k— 2¢

- H Dn —k

k=0
B 2ﬁ1 2D — (
B Dn—¢

£=0

40

where the third equality is obtained by substituting k = D¢+ j. Finally, we get
2D /4)%*
) > (C217)

(Dn)ZC
— (Qn)—Zc/D

1/D

41

GRS
@ GO

O — O O
@?@ @@m ot
O—@® @E—

(© CHC
0O
()

O D@
\/Q:: S Cyll o |
eNclcCHcIcMte

Figure 1: (a): A 2-vertex-connected graph. (b)—(e): The graph’s recursive decomposition into 3-
components and cycles, using the separating pairs (vy, v2), (v3, v4), (vs,v6), and (v7, vg), respectively.
The edges added in the decomposition process are depicted as dotted lines (in all cycles, multiple
edges are merged into single edges). 49

CI {v1v3} CI2 CI

{viv2} e {Vv3v4}

{v2,v5} |7@4| {v4,v6} Cyl’ 4| {v4,v6}
B (\5.6) {VZ'VG\

‘ ci
‘ CI3

{viv2} e {Vv3Vv4} Cl2

B (V7,8

{v7,v9} {(v8\9}

Figure 2: Left: The auxiliary tree of the graph depicted in Figure 1. 3-components are denoted
by lightly filled circles, cycles by non-filled circles, blocks by lightly filled rectangles, and edge
components by bold lines. Right: The auxiliary tree of the same graph with an edge added between
vy and vy. The new component Clg is the union of v4, vy, and the vertices vs, vg, v7, vg Which reside
in the components and blocks on the path between the subtrees corresponding to vy and vg.

43

