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Abstract

We present a sublinear-time algorithm for testing whether a bounded degree graph is bipartite or far from
being bipartite. Graphs are represented by incidence lists of bounded length d, and the testing algorithm
can perform queries of the form: “who is the :th neighbor of vertex v”. The tester should determine with
high probability whether the graph is bipartite or ¢-far from bipartite for any given distance parameter ¢.
Distance between graphs is defined to be the fraction of entries on which the graphs differ in their incidence-
lists representation. Our testing algorithm has query complexity and running time poly((log N)/e¢) - VN
where N is the number of graph vertices. In previous work [GR96] we showed that Q(\/ﬁ ) queries are
necessary (for constant ¢), and hence the performance of our algorithm istight (in its dependenceon V), up
to polylogarithmic factors.

In our analysiswe use techniquesthat were previously applied to prove fast convergence of random walks
on expander graphs. Here we use the counter-positive statement that slow convergence implies small cuts
in the graph, and further show that these cuts have certain additional properties. Thisimplicationis applied
in showing that for any graph, the graph vertices can be divided into disjoint subsets such that: (1) the total
number of edges between the different subsets is small; and (2) each subset itself exhibits a certain mixing
property that isuseful in our analysis.
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1 Introduction

Property Testing as formulated in [RS96] and [GGR96]" is the study of the following family of tasks: Given
oracle access to an unknown function, determine whether the function has a certain predefined property or is
far from any function having that property. Distance between functions is measured in terms of the fraction of
the domain-elements on which the two functions have different values. Thus, testing a property is arelaxation
of deciding that property, and it suggests a certain notion of approximation. In particular, in applications where
functions close to having the property are dmost as good as ones having the property, atesting agorithm, which
is faster than the corresponding decision procedure, is avery valuable aternative to the latter. The same holds
in applications where one encounters functions that either have the property or are far from having it.

Testing algebraic properties (e.g., linearity or being a polynomia of low-degree) plays an important rolein
the settings of Program Testing (e.g., [BLR93, RS96, Rub94]) and Probabilistically-Checkable Proof systems
(e.g., [BFL91, BFLS91, FGL191, AS92b, ALM*92]). Recently, the applicability of property testing has been
extended to the domain of combinatoria optimization and the context of approximation algorithms (rather than
inapproximability results via PCP). In particular, fast property testers for a variety of standard graph theoretic
problems such as 3-Colorability, Max-CUT and edge-connectivity, have been presented [ GGR96, GR96], and
applications to the standard notion of approximation have been suggested (e.g., to approximating max-CUT in
dense graphs [GGR96]).

The complexity and applicability of property testing depends very much on the representation of the objects
being tested. Two models, corresponding to the two standard representations of graphs, were suggested for
testing graph properties. Inthefirst model, most appropriate to the study of dense graphs, graphs are represented
by their adjacency-matrix (equivaently, adjacency predicate) [GGR96]. This means that the tester may make
gueries of the form “are « and v adjacent in the graph”. Moreover, the distance between two N -vertex graphs
is defined as the fraction of vertex-pairs on which the graphs disagree over the tota of V2 possible vertex-pairs
(i.e., elements in the domain of the adjacency predicate). In the second model, most appropriate to the study of
bounded-degree graphs, graphs are represented by their incidence-lists [GR96]: That is, an [V -vertex graph of
degree bound d is represented by afunction from {1,2,...., N} x {1,2,...,d}t0 {0, 1,2, ...., N }. Thismeans
that the tester may make queries of the form “who is the :** neighbor of »” (and the answer may be a vertex or
O indicating that » has less than ¢ neighbors). In this model, the distance between N -vertex graphs of degree
bound d is defined as the fraction of vertex-pairs on which they disagree over the totd dV pairsin the domain
of the function.

It is not surprising that property testing in the above two models has different flavor and complexity, and
requires different techniques. A natura graph property exhibiting such a difference is bipartiteness. In the
first model (adjacency-matrix representation), a simple agorithm of complexity independent of the size of the
graph was shown to be a good tester of bipartiteness [GGR96]: Given a distance parameter ¢, the agorithm
uniformly selects a set of O(e—z) vertices and accepts if and only if the subgraph induced by these vertices
is bipartite. Clearly, each bipartite graph is accepted, and it was shown that any graph which is ¢-far from
bipartite is rejected with high probability. Under the distance metric of the first model, this means that graphs
for which every 2-partition has ¢ V? bipartite-violating edges, are rejected with high probability — a statement
which is meaningful for dense graphs. On the other hand, it was shown that in the second model (incidence-lists
representation), Q(\/ﬁ ) queries are required for testing bipartiteness (for constant d and ¢ such as d = 3 and
¢ = 0.01) [GR9¢].

In this work we show that bipartiteness can be tested in the second model (incidence-lists representation)

'In [GGR96] Property Testing was given a broader definition. Here we restrict ourselves to the special case of testing using queries
under the uniform distribution as defined already in [RS96].



intime O(poly(1/¢) - v/N). Thisresult is quite tight in light of the above cited lower bound. Furthermore, it
enriches the study of combinatorial property testing in two ways:

1. The graph testing algorithms presented in both [GGR96] and [GR96] have complexity bounded by a
function of the distance parameter ¢ (independent of the size of the graph). As shown in [GR96], such
complexity can not be achieved for some natural properties. Our result demonstrates that property testing
may have something to offer also in such acase. Ingenerd, we believe that aproperty testing algorithmis
of interest if its complexity (for, say, constant ¢) islower than the complexity of deciding the property. We
have demonstrated a natural problem for which property testing requires and can be done in time which
is approximately the sguare root of the time required for deciding.

2. The graph testing agorithms presented in [GGR96] operate by uniformly selecting a small sample of
vertices and inspecting the subgraph induced by them. Thisiscertainly animportant paradigm, but limited
in scopeto dense graphs and furthermoreto cases where random subgraphsinherit properties of the graph.
The agorithmsin [GR96] operate by uniformly selecting a vertex and inspecting its close neighborhood.
This paradigm seems restricted to bounded-degree graphs and to properties which are “approximately
local”. The algorithm presented in this paper can be viewed as a combination of both paradigms. In a
way, we select arandom sample of vertices together with random paths connecting them. Certainly, we
cannot just select random vertices and then try to find paths among them. Instead, we take many random
walks starting at (few) uniformly selected vertices.

Techniques.  The agorithm presented in this paper is fairly smple. The algorithm uniformly selects O(1/¢)
starting vertices, and from each starting vertex it performs poly ((log N )/¢) - /N randomwalks, each of length
poly((log N')/e¢). If for any starting vertex s, it detects that s lies on an odd-length cycle, then it rgjects the
graph. Otherwise it accepts. Itisclear that if the graph is bipartite, then it is always accepted. The main thrust
of our analysisisin proving that if the graph isfar from bipartite then an odd-length cycle is detected with high
probability. More precisely, we prove the counter-positive of that statement: If the acceptance probability is
not too small then there exists a partition of the graph vertices that does not cause many violation (i.e. edges
between vertices that belong to the same side of the partition).

To prove the existence of such a good partition, we use combinatorial techniques that were previously
applied to prove fast convergence of random walks on expanders [Mih89]. Whereas Mihail [Mih89] showed that
if there are no small cuts in the graph then convergence must be rapid, we show that too slow of a convergence
implies the existence of small cuts with certain additional properties needed for the rest of our analysis. In
particular, we show that for any graph, the graph vertices can be divided into digoint subsets such that: (1)
the total number of edges between the different subsets is small, and (2) each subset S exhibits certain mixing
properties. Namely, there exists a vertex s such that for every vertex » in S, a short walk from s ends at »
with probability approximately /N+|S|' This mixing property is used to show that either the vertices in S can
be 2-partitioned without causing many violations, or an odd-length cycle (containing s) is detected with high
probability. Hence, if the graph is accepted with high enough probability, then we can deduce that amost all of
these subsets can be 2-partitioned without having many interna violations. Adding the (relatively few) edges
between the subset, we end up with agood partition of the whole graph. Asacorollary to our anaysis, weobtain
several lemmas which may be of independent interest. In particular, a drastic “degeneration” of our analysis

yields the following combinatoria proposition (whose proof is given in Appendix C).

Proposition 1 Let G bean undirected graph having /V vertices and degree at most d. If G ise-far from bipartite
then it contains an odd-length cycle of length L = O(e~!log V). Furthermore, such a cycle can be found in



time linear in V. On the other hand, if G has no odd-cycle of length at most I then it can be 2-partitioned in
linear time so that there are at most ¢ - d.N violating edges.

2 Preliminaries

Let G = (V, E) be an undirected simple graph with NV vertices where each vertex has degree at most d. For a
vertex v, let I'(v) be the set of neighbors of ». We think of G as being represented by a two-dimensional array
of size N x d, where for each vertex v and integer ¢ € {1, ..., d} the value of the corresponding entry isthe
i"" neighbor of v. If v has less than d neighbors then this value may be 0 (where 0 ¢ V). For any subgraph H
of G let the size of H, denoted |H|, be the number of verticesin H.

Let P = (V,,V,) beapartition of V. We say that an edge (v, u) € E isaviolating edge with respect to
P, if » and u belong to the same subset V, (for some b € {1,2}). A partition P is said to be e-good, where
0 < e < 1, if the number of violating edgesin G with respect to P isat most € - V. We say that G is e-far from
being bipartite, if there isno e-good partition of V. In other words, G is e-far from being bipartite if thefraction
of entriesin its array representation that need to be modified in order to make it bipartite is greater than 2¢.2

An algorithm for testing bipartiteness is given a size parameter, N, a degree parameter, d, and a distance
parameter ¢. It isthen given oracle access to an unknown graph G (with NV vertices and maximum degree d).
That is, the algorithm may ask queries of the form “who isthe i'" neighbor of vertex »” (i.e., make probes into
the array representation of G). If G is bipartite then with probability at |east % the algorithm should accept it,
and if G ise-far from bipartite, then with probability % it should reject it.

3 TheAlgorithm

In this section we present our algorithm for testing bipartiteness. Since the algorithm has oracle access to G,
as defined in Section 2, it can be viewed as performing walks on G, starting from vertices of its choice. In
particular, our algorithm (described in Figure 1), performs random walks on G: At each step, if the degree of
the current vertex v isd’ < d, then the walk remains at v with probability 1 — j—d > % and foreach u € I'(v),
the walk traverses to u with probability % Thus, the stationary distribution over the vertices is uniform. If we
consider only steps in which the walk continued to a new vertex, then each random walk corresponds to a path
in the graph. Thispath is not necessarily simple, but does not contain self loops. Note that when referring to the
length of the walk, we mean the total number of steps taken, including steps in which the wak remains at the
current vertex, while the length of the corresponding path does not include these steps.

Theorem 2 Thealgorithm Test-Bipartite constitutes a tester for bipartiteness with complexity poly((log N)/€) -
V/N. Specifically,

¢ |If G isbipartite then the algorithm always accepts.

o If G is e-far from being bipartite then the algorithm rejects with probability at least % Furthermore,
whenever the algorithm rgjects a graph it outputs a certificate to the non-bipartiteness of the graph in form
of an odd-length cycle of length poly(e~* log V).

2We note that, for sake of simplicity, this definition slightly differs from that discussed in the Introduction and in [GR96]. There, ¢ is
the fraction of entries that should be modified in the graph representation. This meansthat each (undirected) edge (v, «) in G is counted
twice - once as an entry [v, 1] and once as an entry [u, .



Algorithm Test-Bipartite
o Repeat 7= O(1)times:

1. Uniformly select s in'V.
2. If odd-cycle(s) returns found then reject.

e Incase the dgorithm did not reject in any one of the above iterations, it accepts.

odd-cycle(s)
1. Let K Y poly((log N)/e)- VN, and L € poly((log N)/e);
2. Perform K random walks starting from s, each of length L;

3. If some vertex v isreached (from s) both on a prefix of a random walk corresponding to an even-length
path and on a walk-prefix corresponding to an odd-length path then return found. Otherwise, return
not-found.

Figure 1: Algorithm Test-Bipartite and Procedure odd-cycle.

4 Analysisof the Algorithm

The completeness part of Theorem 2 (i.e., accepting bipartite graphs) is straightforward. We focus on proving
the soundness of the algorithm (i.e., that ¢-far graphs are rejected with probability %). What we eventually show
(in Subsection 4.6) is the counterpositive. Namely, that if thetest accepts G with probability greater than % then
there exists an e-good partition of G. We start with an overview of our analysis.

The Rapidly—-Mixing Case. To gain intuition, consider first the following “ided” case: From each starting
vertex s in G, and for every v € 'V, the probability that a random walk of length . = poly((log N)/¢) ends
at visatleast ;- and a most < —i.e., approximately the probability assigned by the stationary distribution.
(Note that this ideal case occurs when G is an expander). Let us fix a particular starting vertex s. For each
vertex v, let p¥ be the probability that a random walk (of length 1) starting from s, ends at v and corresponds
to an even-length path. Define p! anaogously for odd-length paths. Then, by our assumption on G, for every
v, p) + p. > 5%. We consider two cases regarding the sum }_, .y pJ - p, — In case the sum is (relatively)
“small”, we show that there exists apartition (V,, V, ) of V that ise-good, and so G is e-close to being bipartite.
Otherwise (i.e., when the sum is not “small”), we show that Pr[odd-cycle(s) = found] is constant. Thisimplies
that in case G is accepted with probability at least % then G is e-close to being bipartite. In what follows we
give some intuition concerning the two cases.

Consider first the case in which 3, . py - p, issmaller than ¢ - £ for some suitable constant ¢ < 1. Let
the partition (V,, V,) be defined as follows: Vo = {v : p? > plland V, = {v : p. > pP}. Consider a
particular vertex v € V,. By definition of V,, and our rapid-mixing assumption, p? > ﬁ Assume v has
neighborsin V. Then for each such neighbor «, p°? > ﬁ as well. However, since there is a probability of %
of taking atransition from  to v inwalkson G, we can infer that each neighbor « contributes (5 - 7 ) tothe
probability p;. Thus, if there are many violating edges with respect to (V,, Vy), thenthesum 3~ . p) - p; is
large, contradicting our case hypothesis.

We now turn to the second case (3", cv Py - Py > ¢ - ). For every fixed pair i, j € {1,..., K}, (recall
that K = Q(+/N) isthe number of walks taken from s), consider the 0/1 random variable that is 1 if and only
if both the :*® and the j*® walk end a the same vertex v but correspond to paths with different parity. Then the



expected value of each random variableis )", .y 2 - p - p,. Since thereare K = Q(N) such variables, the
expected value of their sum is greater than 1. These random variables are not pairwise independent, nonetheless
we can obtain a constant bound on the probability that the sum is 0 using Chebyshev’s inequality (cf., [AS92a,
Sec. 4.3]).

The General Case. Unfortunately, we may not assume in genera that for every (or even some) starting
vertex, al (or even amost al) vertices are reached with probability ©(1/N). Instead, for each vertex s,
we may consider the set of vertices that are reached from s with relatively high probability on walks of length
L = poly((log N')/¢). Aswasdone above, we could try and partition these vertices according to the probability
that they are reached on random walks corresponding to even-length and odd-length paths, respectively. The
difficulty that arises is how to combine the different partitions induces by the different starting vertices, and
how to argue that there are few violating edges between verti ces partitioned according to one starting vertex and
vertices partitioned according to another (assuming they are exclusive).

To overcome this difficulty, we proceed in a dightly different manner. Let us cal avertex s good, if the
probability that odd-cycle(s) returns found isat most 0.1. Then, assuming G is accepted with probability greater
than % al but a most ;= of the vertices are good. We define a partition in stages as follows. Inthe first stage
we pick any good vertex s. What we can show is that not only is there a set of vertices S that are reached from
s with high probability and can be partitioned without many violations (due to the goodness of s), but aso that
thereisasmall cut between S and the rest of the graph. Thus, no matter how we partition the rest of the vertices,
there cannot be many violating edges between S and V \ S. We therefore partition S (as above), and continue
with the rest of the vertices in G.

In the next stage, and those that follow, we consider the subgraph H induces by the yet “unpartitioned”
vertices. If |H| < .V then we can partition H arbitrarily and stop since the total number of edges adjacent to
verticesin Hislessthan £ - dN. If |H| > { N then we can show that any good vertex s in H that has acertain
additiona property (which at least half of theverticesin H have), determines aset S (whose vertices are reached
with high probability from s) with the following properties: S can be partitioned without having many violating
edges among vertices in S; and there isa small cut between S and therest of H. Thus, each such set S accounts
for the violating edges between pairs of vertices that both belong to S as well as edges between pairs of vertices
such that one vertex belongsto S and oneto V(H) \ S. Adding it al together, the total number of violating
edges with respect to the final partition isat most ¢ - d.V.

THE SeT S. To prove the existence of such sets S, consider first the initid stage in the partition process (i.e.,
here H = (). Recadl that in this stage we are looking for a subset of vertices S C V, al reached with
relatively high probability from some good vertex s, that are separated from the rest of G by relatively few
edges. From the previous discussion we know that if for al (or aimost al) vertices v in G, arandom walk of
length poly((log N')/¢) starting from s ends a v with probability ©(1/N') then we can define a good partition
of al of G and be done. Thus assume we are not in this case. Namely, there is a significant fraction of vertices
that are reached from s with probability that differs significantly from 1/N. In other words, the distribution
on the ending vertices (when starting from s) is far from stationary. What we can show (using techniques of
Mihail [Mih89]) is that this implies the existence of a small cut between some set of vertices S that are each
reached from s with probability that isroughly 1/+/|5| - N and the rest of G. Furthermore, we can show that
S has an additional property that combined with the fact that s is good implies that it can be partitioned without
having many violating edges.

In the next stages of the partition process, we would have liked to apply the same techniques to determine
small cuts (with other desired properties) in subgraphs H of G. If we could at each stage “cut-away” the



subgraph H from the rest of G and perform walks only inside H then we would have proceeded as in the first
stage. However, these subgraphs H are only determined by the analysis while the algorithm, oblivious to the
analysis, always performsrandom walkson al of G. Therefore we would like to have away to map waksin G
towaksin H so that probabilities of events occurring inimaginary walkson H can be related to events occurring
in the real walks on G. Consider awalk of length L in G that starts at s in H. Suppose we remove from this
walk al steps outside of H and refer to the remaining sequence of steps as the restriction of the walk to H. If
the walk never takes long excursions outside of H, then for sufficiently large L, the restriction of the walk to H
is sufficiently long for our purposes (i.e. proving the existence of aset S with the desired properties). However,
if the walk does take long excursions (and in particular if it exits H and does not return within L steps) then it is
not useful for our purposes.

THE MARKOV CHAIN. To model both the undesired long excursions, and the fact that we want to disregard
(or contract to one step) the short excursions, we define, for any given subgraph H of G, an auxiliary Markov
Chain. The states of the Markov Chain are the vertices of H and some additiona auxiliary states. \We prove
severa claims concerning the chain, and in particular relate random walks on the chain to random walks on G.
The basic idea is that short excursions out of H starting a » € H and ending a « € H (in walks on G), are
trandated (in the Markov Chain) to asingle transition between » and . On the other hand, long excursions are
trandated to walks outside of H (on auxiliary paths) that effectively do not return to H (when performing walks
of a particular length on the Markov Chain). We then show that for a suitable choice of "long" and "short", for
a least half of the starting vertices in H, (which we refer to as useful vertices) the probability of entering an
auxiliary path in the Markov Chain (which corresponds to exiting H for along excursion in G \ H) is small.

Armed with this property of the Markov Chain, we prove that for every useful starting vertex s in H there
exists asubset of vertices S in H that are al reached with high probability from s and are separated from the rest
of H by asmall cut. We then give sufficient conditions (on s and S) under which the set S can be partitioned
without many violations. In case these conditions are not satisfied then we show that a sufficient number of
walks starting from s in the Markov Chain, will detect an odd cycle with probability greater than 0.1. Based
on the definition of the Markov Chain, these conditions (for the same s and S) aso imply that (slightly longer)
walks on G will detect an odd cycle in G with probability greater than 0.1. Combining all the above we prove
Theorem 2.

Organization. In Subsection 4.1 we define the Markov Chain discussed above. In Subsection 4.2 we bound
the probability of entering auxiliary paths in the Markov Chain (i.e., taking long excursions outside of H) for
most starting vertices. In Subsection 4.3 we determine the set S (discussed above). Subsections 4.4 and 4.5
present a dichotomy: Either S can be partitioned without many violations, or an odd cycle is detected with
non-negligible probability. The proof iswrapped up in Subsection 4.6.

4.1 TheMarkov Chain My (H)

Let H beasubgraph of G. For any given pair of lengths, ¢, and ¢, we defineaMarkov Chain Mﬁj(H). Roughly
speaking, Mﬁj(H) captures random walks of length at most ¢, - {5 in G that do not exit H for (sub)walks of
length £, or more. The states of the chain consist of the vertices of H and some additional auxiliary states. For
vertices that do not have neighbors outside of H, thetransition probabilitiesin Mﬁj (H) areexactly asinwakson
G. However, for vertices v that have neighbors outside of H there are two modifications: (1) For each vertex w,
the transition probability from » to u, denoted ¢, ,,, is the probability of awalk (in ;) starting from v and ending
at u after less than £, steps (without passing through any other vertex in H). Thus, walks of length less than £,
out of H (and in particular thewalk » — w in case (v, u) € E), are contracted into single transitions. (2) There



is an auxiliary path of length ¢; emitting from ». The transition probability from v to the first auxiliary vertex
on the path equals the probability that awalk starting from v exits H and does not return in less than £, steps.
From the last auxiliary vertex on the auxiliary path there are transitions to vertices in H with the corresponding
conditional probabilities of reaching them after such awalk.

A more formal definition of M;*(H) follows. For every vertex v in H we have a state v in M,*(H). For
simplicity, we shal continue referring to these states as vertices. Let the border of H, denoted B(H ), be the set
of vertices in H that have at least one neighbor in G that isnot in H. Then, for every vertex » € B(H), we have
aseta,q,...,a,, of auxiliary states. Let pEu(t) denote the probability of awalk of length ¢ that starts at v
and ends a « without passing through any other vertex in H. Namely, itisthe sum over al such waks w, of the
product, taken over dl stepsin w, of the transition probabilities of these steps. In particular, pEv(l) > % (where
equality holdsin case » has degree d), and for every u € I'(v), p}' (1) = 55. Thetransition probabilities, ¢, ,,
in M;2(H) are defined as follows:

o Forevery vanduinH, q,, = >027" pil (1)

v,u

Thus, ¢, . isasumof pil (1) and ;2" p!t, (). Thefirst term implies that for every v inH, ¢, , > %

and for every pair of neighbors v and u, ¢, , > ﬁ The second term, which we refer to as the excess
probability is due to walks of length lessthan £, (from » to ) passing through vertices outside of H, and
can be viewed as contraction of these walks.

Note that for every pair of vertices v and u, ¢, « = ¢y v-

o Forevery v € B(H), qua,, = Dyen 2orse, Pou(t); forevery (,1 < £ < 0y, ¢a,,a,,,, = 1;andfor
every u € H, Qav,ll,u =t ZtZZQ va,u(t)

Gu,aq,1
In other words, ¢, ., , isthe probability that arandom walk in G that starts from v takes at least (, steps
outside of H before returning to H, and ¢,, , . is the conditional probability of reaching « in such a
walk. Thus, the auxiliary states form auxiliary pathsin Mﬁj(H), where these paths correspond to walks
of length at least /., outside of H.

We shall restrict our attention to walks of length at most ¢, in M;*(H), and hence any walk that starts at a
vertex of H and enters an auxiliary path never returns to vertices of H. For any two states y, z in Mﬁj(H) let
q, -(t) bethe probability that awalk of length ¢ starting from y ends at . We further let the parity of thelengths
of paths corresponding to walksin G be carried onto M;*(H). That is, each transition between vertices » and v
that correspondsto walks outside of H consists of two transitions — one due to even-length paths corresponding
to walks from v to u outside of H, and one to odd-length paths. For any two verticesin H we let ¢7 ,(¢) denote
the probability in Mﬁj (H) of awalk of length ¢ starting from », ending at «, and corresponding to a path whose
length has parity o.

In al that follows we assume that G is connected. Our analysis can easily be modified to deal with the
case in which G is not connected, simply by tresting separately each of its connected components. Under the
assumption that G isconnected, for every v and u in H, there existsat such that ¢,, , () > 0, and hence My>(H)
isirreducible. Furthermore, because for each v € H ¢, , > % Mﬁj(H) isaso aperiodic. Thusit has aunique
stationary distribution.

4.2 Probability of Long walks Outside of H

In our first lemma we show that the probability of entering an auxiliary path while taking walks of length at
most £; in Mﬁj(H), starting from a uniformly chosen vertex in H, is small, provided ¢, < ¢,. Thisimplies that
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Figure 2: The structure of Mﬁj(H). The states corresponding to vertices of H are depicted as black dots,

and the auxiliary states as white ones. Here j,, = Y27 p (1), by & Y en Yise, Ph (1), and Py o

z,y
pl_u : ZQ@ Pg,z(t)-

for L = ¢, - {5, with high probability, arandom walk of length 7. in G (starting from auniformly chosen vertex
in H), will perform at least ¢, stepsin H.

Lemma4.1l Let H be a subgraph of G, and ¢, and ¢, be integers. The probability that a walk in Mﬁj(H)
starting from a uniformly chosen vertex of H enters an auxiliary path after at most /; steps, is at most ﬁ—; . %

We first establish the following related lemma that refers to random walks in G (as opposed to random
walksin Mﬁj(H), which are considered in Lemma4.1). Phrased dightly differently, Lemma 4.2 says that if we
uniformly choose a vertex in G, then the probability that in the next step we start a walk that exits H and does
not returnto H inlessthan ¢, steps, isat most é (In particular, for every starting vertex » ¢ H the contribution
to this probability is 0.)

G
Lemmad.2 3, cud s, Ph (1) < %

Proof: To prove the lemma we define an additiona Markov Chain, which we denote by M(H). The chain
M(H) is used to describe random walksin G (of any length), where the parts of the walks that are outside of
H pass through auxiliary states. For each vertex v in H we have a state in M(H ). For every pair of vertices v
and u in B(H), and for every ¢ > 2 such that there exists awalk of length ¢ between v and u outside of H, we
have two setsof ¢ — 1 auxiliary states— one set creates apath of length ¢ from v to «, and one set creates apath
fromu to v.

The transition probabilities ¢, ,, in M(H) are defined as follows. Forevery v € H, ¢, , = 1 — % For
every v,u € Hsuchthat u € T'(v), ¢, = 5. For every pair of vertices v and » in B(H) and for every ¢ > 2
(such that « can be reached from v in awalk of length ¢ outside of H), the probability of entering the auxiliary
path connecting « to v is pEu(t); for each auxiliary state on the path, the transition probability to the next state
is 1, and the last state goes with probability 1 to u. Let M) be the probability assigned to state s by the
stationary distribution of M(H). The following claim, whose proof is provided in Appendix A, says that for
every vertex v in H, the stationary probability of » isthe same asin wakson G.



S M(H) _ 1
Claim 1: Fora/eryveH,ﬂv( )_N

By construction of M(H), for every pair of vertices v and « in B(H), and for every ¢ > 2, the stationary
probability of thefirst auxiliary state onthe corresponding auxiliary pathis =)™ . pf (¢). Thisistruesincethis
state has only oneincoming transition, and this transition is from v. By definition of the transition probabilities
on auxiliary paths, for every 2 < ( < t — 1, the stationary probability of the (** auxiliary state on the path
is ) . pH (1) aswell. LetII, , . denote the total stationary distribution on the auxiliary path of length ¢
from v to w. Then, ononehand I1, ,, , = ¢ - 7M. pEu(t), and on the other hand, since al paths are disjoint,
> vuen, t>2 o us < 1. Itfollowsthat

1 1
Z M(H) "Dy u() = Z ;'Hv,u,t S Z K_'Hv,u,t < E .

v u€B(H), t> 45 v u€B(H), t> 45 v u€B(H), 1>y 2
Since by Claim 1, for every v € H, 7M™ = L Lemma4.2 follows. W

Proof of Lemma4.1: LetM < Mg (H ) and recdll that |G| = N. Observethat incase (, < |H| -{; then the

claim holdstrivially. Thus, assume {, > |H| - £1. Wefirst prove that the probabilities assigned by the stationary
distributionto all vertices in H arethe same, and each isbounded below by £ - ﬁ Let 7™ denote the probability

assigned to state s by the stationary distribution of M. We first show that a distribution that assigns the same
probability, 7 to each vertex is stationary.

Consider any vertex v. ThenM =", .y 7 - q. ,. We need to show that this sumisin fact 7. For each
of the neighbors « of v in H, there is a contribution of =M - 5 d, which by our assumption is 7 - -=. Hence, the
neighbors of v in H contribute atotal of r - "8l The transition from v to itself contri but& an additional
termof - (1 — M) Incase v ¢ B(H) wearedonesince al of v’sneighborsarein H (and for every other
state z, ¢ , = 0). Otherwise, there are two additional contributions. Thefirst is dueto walks of length less than
{, outside of H that start at some « in H and end at v, which are trandated in M into atransition from « to v
with probability Zf2 ! P, (1). (Incase thereis an edge between v and v, thisis the excess probability between
uand v.) Since p, (1) = p', (1), the total contribution of these transitionsis 7 - 3~ .y S levHu( ). The
other contribution is due to walks of length at least £, outside of H that start at some «» in H and end at », which
are trandated into atransition from the auxiliary state a,, ,, to v.

By construction of the chain, for every auxiliary path emitting from a vertex u, dl states on the path
have equal stationary probability, and this probability is =M - u,a,, Since the transition probability from
@y, W0V IS —— 3, py (1), (and py (t) = p',(1)), the total contribution from these transitions is

IST - en Zgé pEu(t). Together, the contribution of transitions that are due to walks outside of H is
T+ Y uen 2is2 Proo(t). Thisexpression equals to 7 times the probability of taking a transition from v to some

vertex outside of H and isthus 7 - "M summing all contributions, we get that for every v € H,
M [I'(v) N H] ( |F(U)|) [I'(v) \ H
S O Sl e BRI S NLCAT
o g T 2d )T 2 T

Next we prove that = > 1 5 |H| We use the fact that the probabilities assigned by the stationary distribution
must sum to 1. The contribution of the vertices of H is |H| - 7. Thetota probability assigned by the stationary

distribution to auxiliary statesis
PBLEEED BP0

veH weH t> (5



which by Lemma 4.2 isat most 7 - 2~ and by our assumption that ¢, > Klﬁ, is bounded by 7 - |H|. Thus,

L2
1
T > STH]

For any state s, let ¥, denote the event that awalk starting from s enters an auxiliary pathin at most £, steps.
Let s ~ Uy denote choosing s uniformly in H, and let s ~ 7™ denote choosing s according to the stationary
distribution of M. Then, from what we have shown concerning the stationary distribution of the vertices of H,
it follows that

RsNWM[\IJs and s € H] < PrsNﬂ'M[\IJs] <2-Pr M[\IJ ]

PrSNUHI:qu] = RsNWM[qJS | S 6 H] = Pr M[S E H] - m B

But

o
Proo.m[¥,] = Z Pr,..v[ awalk starting from s enters an aux. path at step ¢
t=1

= 4 - Z ( stationary prob. on aux. edge from v to a, 1)

vEB(H)
{4 N
= Loy oY Y ) < T
veH ueH t> 14, 2

where the last inequality followsfrom Lemma 4.2 and the fact that 7™ < ﬁ Thelemmafollows. W

Definition 4.1 We say that a vertex s is useful with respect to M;*(H) if the probability that a walk in M*(H)

starting from s enters an auxiliary path after at most ¢, steps, is at most % . %

Asadirect corollary to Lemma 4.1 (using Markov’sinequality), we obtain

Corollary 3 Let H be a subgraph of G, and ¢; and {, be integers. Then at least half of the vertices s in H are
useful with respect to M;*(H).

4.3 Determiningthe Set S

In the following lemma we adapt techniques used by Mihail [Mih89]. While Mihail showed that high expansion
leads to fast convergence of random walks to the stationary distribution, we show that too slow of a convergence
implies small cuts that have certain additional properties. In particular, the vertices on one side of the cut can
be reached with roughly the same, relatively high probability from some vertex s. The places where we diverge
from Mihail’s andysis, (which in parts we follows quite closely), are when we use the specific properties of the
Markov Chain M*(H), in order to obtain the additional properties of the cut.

3
Lemma4.3 Let H be a subgraph of G with at least £V vertices, and let {; = © ((log(e#) ),Kz =0 (4),

and I = O (%). Then for every vertex s that is useful with respect to M (H), there exists a subset of vertices
SinH aninteger ¢, (,/2 < t < (,,and avalue 5 = Q (W) such that:

1. The number of edges between S and the rest of H isat most £ - d - [S|.

2. Forevery v € S, ‘/ﬁ'ﬁﬁgqs,v(t)SF' /ﬁ'l%l;

10



We start with an overview of this rather technically involved proof. Let M % Mj?(H), and fix a useful

starting vertex s in H. In the proof we consider two cases. Inthefirst (easy) case, thereexists ¢, (1 /2 <t < {3,
such that for all by at most £|H| of the vertices v in H, ¢, ,(t) > 7}, where 7} is the probability assigned
by the stationary distribution of M to ». In other words, in this case admost all vertices in H are reached with
probability that is not much smaller than that assigned by the stationary distribution. Here welet S be the subset

of these vertices that are not reached with much higher probability as well.

Inthe second (and main) case, we have that for every ¢ between ¢, /2 and (,, for at least §|H| of the vertices
vinH, ¢ (1) < %71'11)\/[. This means that the walk on M is not rapidly mixing. Using the counterpositive of the
standard rapid mixing anaysis, one may infer that there is a relatively small “cut” in M. However, thisis not
sufficient for our goal for severa reasons. Firstly, we are interested in asmall cut in H (whileasmall cut in M
might involve auxiliary states). Secondly, we areinterested in a cut that has the additiona property stated in the
lemma. Fortunately, we are able to adapt the specific analysis of Mihail [Mih89] to overcome both problems.
Building on Mihail’s formulation, we first restrict our attention to the states of M that correspond to verticesin
H, where here we use the hypothesisthat s is useful (see Definition 4.1). Furthermore, we consider as candidates
for the set S only those vertices that are reached from s with probability that is greater than the stationary
probability. We can then obtain arelatively small cut for which al vertices v’swith ¢, , (¢) above some value
are on one side and the rest on the other. Using amore careful analysis we determine acut, (S, V(H) \ S), with
the extra properties required in the lenma. In particular, for each v € S, ¢, , () is relatively big, and all these
values are of about the same size.

Proof: By thelemma s hypotheses concerning the size of H and theratio between ¢, and £, and by the definition
of a useful vertex (Definition 4.1), for every useful vertex s, the probability that a wak starting from s will
enter an auxiliary path in at most ¢, steps isless than ¢/256 (for the appropriate choice of constants in the O(-)
notation of £,). In other words, for each useful s, and for every ¢ < ¢, the sum over al auxiliary states a, of
¢s.q(1), is bounded above by ¢/256.

Fix a useful vertex s. For every step ¢ < (,, and for each state z in M, let e, () def gs..(t) — ™, where
for notational convenience welet 7, = 7 denote the probability assigned by the stationary distribution of M
to z. That is, e, (¢) measures the difference between the probability of being at state = at time ¢ (when starting
from s) and the stationary probability of z. Recall (from the proof of Lemma 4.1), that for every vertex v € H,
7, has the same value, and this value is at least ﬁ and a most ﬁ By the above definition, for every t,
>o.e.(t) =0,and €(t + 1) = €(t) - M, where we use the same notation, M, for the Markov Chain and its

transition matrix. Let ||&(¢)|| % 3", €2 denote the Euclidean norm (squared) of the discrepancy vector . and
let ||é(1)) > ven €2 bethe contribution to the norm from vertices in H.

Case 1 (easy): Suppose that there exists ¢, £, /2 < ¢ < (4, such that for al by at most £|H| of the vertices v
inH, e,(t) > —im, (i.e, ¢,,(t) > 37,). Inother words, almost &l verticesin H are reached with probability
that is not much smaller than that assigned by the stationary distribution. Denote the set of these vertices by W.

Thus, for each v in W,
1 1 1
it > e = 0o = o (i
=3 i WI-TH]

Set S to be the subset of vertices v in W for which ¢, ,,(¢) isat most /' = O(1/¢) timesthislower bound. Since
Yovew Us,0(t) < 1,and [W| > (1 — £)|H]|, for the appropriate constant in the O(-) notation, [W \ 5| < £ - |[S].
Furthermore, by definition of W, (and the lower bounds on the sizes of W and S), |[V(H) \ W| < £ - [S|.
Therefore, |V(H) \ S| < £ - |S| and so the number of edges between S and the rest of H isat most § - d|S| as

required.

11



Case 2 (main case): We turn to the case in which for every ¢ between ¢, /2 and (,, for a least {|H| of the
vertices v in H, e, () < —%ﬂ'v. We prove the lemma for this case by a series of claims, (al using the same
hypotheses as the lemma, and the case hypothesis). We first note that under the case hypothesis and the fact that

for every v €H, 7, > ﬁ

1 \? €
= >£-H-<——) _
# > ¢ () = e

forevery ¢, /2 <t < (;. Inparticular thisis truefor ||e® (¢, )]].

Claim 1: Thereexists ¢, ,/2 <t < {1, such that
et = [l + D)l < & [lE@D)]
where § = 0( log(N/e) )

&
Proof: Assume in contradiction that ||é® (¢ + 1)|| < (1 — 62) - ||efi(¢)|| foradl ¢t = ¢,/2,...,¢; — 1. Since
1€ (¢, /2)|| < 1, wewould get that
€ €
< .
128N ~ 128[H]

1] < (1= 8)F @ (6 /2)]| < exp(—log(128N/€))-1 <

a

Let ¢ be as determined by Claim 1. We next obtain alower bound on || (#)|| — ||é"(¢ + 1)]|. (Thisbound
actually holds for every ¢ < £, but wewill useit only for ¢t = ¢.)

Claim 2:

DI = e @+l = > %qv,u-( o(1) — eu(t +Z SWans - (Beu(D)” + 26w, = (m,)7)

v,u€H vEH

Let usignore momentarily the second term in the inequality of Claim 2 (which is due to the auxiliary paths
of M and is bounded in the proof of the next claim). Then we see that the contribution to the difference between
éf(t) and é'(t 4 1), ismainly dueto significant differences between e, (¢) and e, () (equivalently, differences
between ¢, , (1) and ¢; ., (1)) for vertices v and w in H that have an edge between them. We later relate this term
more precisely to cutsin H.

Proof of Claim 2: For simplicity, in what follows, we shall think of there being exactly |H| - ¢, auxiliary vertices,
that isa, i, ..., a, ., for each vertex v in H, wherefor v ¢ B(H), ¢, ,,, = 0. For technical convenience, for

every v € I, wedéfine g, , E Qvo — % (which by definition of ¢, , is aways non-negative.) For very pair of

different states z, ¥, q. 4 Lt q. . Notethat for every vertex v, the sum over al states z (including v itself) of
s, is 5. Inthe equation below we perform an algebraic manipulation on ||¢*!(¢)]] that bringsit to a convenient
form

1D = Y e(t) = (Z (G €0 (8)” + Gu - €0 (8)°) + 2%,%,16@(%)2)

veH veH \ueH
= Z QUU' i)z‘l'eu i) ‘I’Zquavl' E)Z (1)
v,ueH veH

12



Next we bound ||é" (7 4 1)||. Notethat since ¢ < ¢y, for each of the auxiliary states a, ,, (i.e. on the end
of the auxiliary path of length ¢, from v), the probability of reaching a,, ,, in ¢ steps from s is 0, and hence
€a, ., (1) = —Ta,, . Aswehave noted before, the stationary distribution of al auxiliary vertices on the auxiliary
path emitting from v is the same, and since the only transition entering the first state on the path is from v,
Taye, = Tay, = o Gua, - BY definition of M, thisimplies that for every u € H,

vel ved \ Tv.avn 457,

= o> P

veH t>l5

= —mo Y. Y P

veEH >0,
= Ty qu,au,l

= Ty QU,au,l (2)

Z Q(l'u,ZI,U . eay,zl (f) Z ( ! ' vaH,u(t)) ) <_7Tv . QU,ay,l)

Recall that é(¢+ 1) = €(¢) - M, and that forevery v € H, ", ey Go,u + Gv,a, . = 5. Below weuse Equation (2)
(in the second equality) and the fact that the square of the mean is upper bounded by the mean of the squares (in
the third inegquality).

ww+mﬁ§2wﬁ+m2:E:G%@+Z%W%@+Z%mw%m@)

ueH ueH veH veEH
_ p, - (DD %@—wu)
%(;{q ( 2 ) q( 2 )
Cfa®ta® L (el
< %(%2%@ ( 5 ) +2Gu 0., ( 5 ))
= Y gh (@t el + Yt (@ -m)? @
v,u€H veH
By Equations (1) and (3) we have:
[N = e+l
1 1
> 2 Gl (D) = ealDF 4 D 5l (Be(D) + 260w — (7))
v,u€H veH
1 1
= 2 e () = D 4 2 e, (D) + 260w — (7))
v,u€H veH

a

Based on Claims 1 and 2 we prove the following claim. Aswe noted before, the expression in the left hand side
of theinequdity stated in Claim 3 will later be related to cutsin H.

Claim 3:

Y G (e(l) —en())’ < 387 | (D)]]

v,u€H

13



Proof; From Claims 2 and 1 we have that

> dou (e —eu®) < 201D = 1T+ DID = X oo - (D) + 260, — (7,)°)

v,u€H veEH

< 28 |0 = - G - ((Beu(D))? + 26,7, — (7,)%) (4)

veEH

Let us denote the second term in Equation (4) by X. We next show that X > —é2 - ||€(¢)|]. The quadratic
expron 3e,(1)? + 2e,m, — (7 ) has a minimum value of —4(x,)?/3 (obtained at ¢,(t) = —m,/3). Since

T < |H|,thlsvaluelsatleast 3|H|2 Furthermore, by the definition of ¢, ., , and Lemma4.2,
N

Z(Zv,au,l = Z vau > ﬁ_

veH vueH t> 0, 2
and hence using the lemma’s hypothesis concerning the size of H,

( 4 ) N S 4N 4 o 8
B 3|H|2 Kz B 3£2 €-N |H| N 3€£2|H|

By the case hypothesis, [|€"(1)|| > 155 and 0

X 2 -0 (o) 1l

Bymemmmsmmmaa(mdemmMnmé——O(Jﬂﬁﬁg)weMmmaa::Q@Q,md
(5 = Q (%) = Q(553). Therefore, for the appropriate constants in the O(-) and €)(-) notation, we have that
X > =67 ||t )H as required, and the claim follows. O

Fromthispoint on, let e, % ¢, (), and define e % max(e,,0)and e; = min(e,,0). Thus, € = & + . It

will be convenient to deal only with é* (that is, with vertices v such that e, > 0, which meansthat ¢, ,(¢) > 7,).
We hencerelate Y, .y (e )? to |||

Claim a: [|F(D)]| < 22+ 5, culed)”.
To prove Claim 4, we shall need the following technical claim whose proof is given in Appendix B.

Claim5: Letay,...,,, —— < 2; < 1 bereal numbersfor which the following holds for some0 < v < £.

L e > -y,
2. 5 136 > 2

m

Then, >,

[ \/

%229@2

zx>

Proof of Claim 4: By thelemma’s hypothesis, s is useful, and as we have previously shown, thisimplies that the
total probability of being in any auxiliary state at any step ¢ < {,, isat most .. Since ) ., €. = 0, and for
every state z (and in particular every auxiliary state), e, < ¢; . (1), we get that

Zev = Zez_ Z €q Z 0— Z QS,a(f) Z _%

veEH z€M aux. a aux. a
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Finally, by the case hypothesis, ||e(2)(| > T[] and so Claim 4 follows by applying Claim 5 withy = 55
andm = |H|. O

Claim 6:

S o ) — ()] = o(} z(e;)z) |

v,u€H veEH

Proof: We first observe that

Z %},u'(ev _eu)z Z Z QU,u '(63_63)24‘ Z qv,u'(ev_ _61;)2

v,u€H v,u€H v,u€H

> Z Qv - (ej— - 62—)2 (5)

v,u€H

Combining Equation (5), Claim 3, and Claim 4, we have:

Yoo (ef —el) < 36%- =) (ef)’ (6)
v,u€H € veEH

On the other hand, using the Cauchy-Schwartz inequality,

(ZU,UEH Qo (eF — 63)2) : (Zv;éueH Qv (ef + 63)2)

ST quuc(ef —€f)? =

v,u€H Zv;ﬁuEH quu : (61-)'_ + 63)2
2
L (Suenton 1) = () -
N Zv;ﬁuEH Qv u * (61-;'— + 611—)2

In order to bound the denominator, we perform a similar manipulation to that in Equation (1) and then use the
fact that the mean of squaresislower bounded by the square of means (sothat (e} )? + (ef)? > (el + ef)?).
Recall that g, , = ¢, — 5, andforu # v, G, w = o u-

DEH = D G (e + (€ + D 200, - ()

veEH v,u€H veEH

1
3 > R G (8)

vZuUEH

v

By combining Equation (7) and (8),

(Do o (et = (€1 1)’

Qo (eF =€) > - 9
v%E:H QZUEH(ej—)z
The Claim followsfrom Equations (9) and (6). O

Assume we rename the states in H from ‘1’ to ‘[H|' so that ¢} > ¢f,,. Let S, € {1,...,k}, and

let C'(Sk) ! 2 vesiugs, Qo,u DE the probability weight of the corresponding cut. Since for every v € H,

2 ouer(v) Qo < % the number of edges between S, and therest of H isa most 2d - C(Sy,).
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Claim 7:

[H|-1
D o = (€D’ = 2 ) ((ef)” = (e)?) - C(Sk)
v,ueH k=1
Proof: For brevity, werefer to the vertices according to their new renamingin {1, ..., |H|} (eg., i and j instead

of v and u). Using thefact that ¢; ; = ¢; ;, and that the vertices are ordered according to the value of e; (and in
particular, ey, = 0),

S s e = (V] = 2 () = ()

ijeH ijemi<
j-1
= 2 > gy ((ef) = (ef1)?)
i jeH i< h=i
|H|1

(

[N

@
a4
+
H

Z G

(
[N
@
a4
+
—
~—
[N
~—
R
Q
~~
2
o
~—

Claim 8: Thereexists k, 1 < k < |H| — 1 such that

1. C(Sx) < §l5l;
2. For all but at most §|S;| of thevertices i € Sy, 57 < (ef)* < F- gy for 8 = Q(e?/ log(N/e))
and I' = O(1/e).
Proof: Inorder to prove the claim, we partition e}, . . .,ergll into maximal consecutive intervals so that theratio

between the square of thelargest e} in each interval and the square of the smallest ¢} intheinterval isat most 2.
Letb = O(log(N/¢)). Since by thecasehypothesis and Claim 4, 3", .y (e )? = Q(€?/|H|) there must be an
interval 7, suchthat 3", (eff)? > ¢ ZveH( T2 Let I ={f,...,(} bethefirst suchinterval, and let i > ¢
be the largest index such that (e;f )* > 1(ef)? (thus, (ef,,)? < 1(ef)?). We claim that for some ¢ < k < &,
C(Sk) < § - |5k|. Assume, contrary to the claim that all these cuts are large. Then, using the fact that the €]7's
are ordered and our choice of A,

llil (€)= (e530)") C(Sk) = é((ei)z—(ehl)z) C(Sk)
> LYk (e - )
_ g (ﬁ (ef)2—h (e;+1)2+k_221(e:)2)
> g.@( 2=+ (h—10))- (_eh+1)2+(h—€) (ei)?)



>

6 D 2 5 ) 2 52 (@) = Q(W'Z(W) o

veEH
By combing Claim 7 together with Equations (10) and (11) we get

S (e (] = 0 (W - Z(emz)

v,u€H veEH

Since§ = O (\/@)

s = o (v () )

3
And so, by our choice of {; = O (m) , we get a contradiction to Claim 6 (for the appropriate choice of

constants in the O(-) notation). Therefore, for some k, { < k < h, C'(Sy) < g - [Sk|. Let usfix thisk. By
definition of I and h, and using Claim 4 and the case hypothesis, for every j € S;,,

2 1 2 11 2 p
)y > 74“_]»_'_1)2(6?) > E'EUEH(@J—) > mﬁ

i€l

(7 > () > (e

for g = Q (m) It remains to bound the number of vertices 5 in S, for which (e;’)2 is much larger than
(ef)?. Let1,,...,I, betheintervasupto I (i.e, I, = I). Foreachg,1 < g < r, let f, and {, be the first
and last elements, respectively, in I,. Then, by the definition of the intervals, for every g, (e}rg)2 > 2(e}’g+1)2.
Recall that theinterval I = I, was thefirstinterval for which 3=, /(e )? > 13~ ciy(ef)?. Thisimplies that
foreach I,

L] - (ed)” < 1L (ef)?

Let a be the largest index such that (e )* > 22(ef)2. Then by the above, 3
8follows. O

I1,] = O(e - |Sk]), and Claim

g<a

We thus define S to be the subset of vertices v in Sy, for the k& implied by Claim 8, for which (ej)2 iswithin
the bounds stated in the claim. The size of the cut between S and the rest of H is hence as desired, and since
s »(t) > e, thelemmafollows. W

4.4 Sufficient Conditionsfor Good Partitions

In the next lemmawe give sufficient conditions under which subsets of vertices can be partitioned without having
many violating edges. What the lemma essentialy requiresisthat for some fixed vertex s and subset of vertices
S in H, there is alower bound on the probability that each vertex in S isreached from s (in ¢ steps), and there
aren’t too many vertices v in the subset such that both ¢; (1) and ¢; ,(t) are large (with respect to this lower
bound).
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Lemma4.4 Let H be a subgraph of G, s avertex in H, S a subset of vertices in H and ¢, and ¢, integers.
Assume that for some o > 0 and ¢ = Q(log(L)), ¢ < ¢4, thefollowing holdsin M;*(H):

1. Foreveryv € S, ¢, ,(t) > o;

2. Y es e, (1) - qi(t) < £-[S|-«” for some constant c.

Let (So, S1) bea partition of S, where Sy = {v : ¢/ (1) > ¢; ,(1)},and Sy = {v: ¢, (1) > ¢/ ,(¢)}. Then
the number of violating edgesin G with respect to (S, S;) isat most 2° - £ - d - |S].

Proof: Let M %' M;?(H). Consider avertex v and let v € S, for o € {0, 1}. By definition of the partition

(S0,51), 47, (t) > 2q,,,(t) > £. By definition of M we have that
1
qsv Z qsut_l quv Z ﬁ Z qg,u(t_l) (12)
u€l(v) u€l(v)NS,
While we know that for every u € S,, ¢7 (1) > $4..(t) > §, weneed alower bound on ¢7 (1 — 1).
Claim: Letu € S,. Ift = Q(log(1/a)), then g7 ,(t — 1) > 547 ,(1).
We prove the clam momentarily, and first show how the lemma follows from the claim and Equation (12). By
combining Equation (12) with the claim, we have that for every vertex » such that v € S,
g 1 g
qq,(t) > T6d STl (1)
u€l(v)NS,
And hence,

R OR O RO RET I D)

u€l(v)NS,

> Gs,0(t) 1 T Gs,u(t)

u€l(v)NS,

Assume, contrary to what is claimed in the lemma that the number of violating edges with respect to (Sy, S1) is
morethan 2° - € - d - |S|. Then

L qoo(t) qoy(t
quv qsv Z Z Z 216—d 72() 7?42()
vES 0€{0,1} z,y€S,,(z,y)EE
€ 1 a?
25 .2.d.8]- —
” c || 8d 4
= 8] a
c

wherethe factor of 2in thefirst inequality comes from the contribution of theedge (, y) bothto ¢ . (t) - ¢; (1)
andto q; (t) - g, ,(t). But this contradicts the second hypothesis of the lemma.

Proof of Claim: Without loss of generality let ¢ = 0. Consider random walks of length ¢ in M that do not enter
an auxiliary path (or else they cannot reach u ast < ¢;). Inwhat follows we map walks of length ¢ that end at
u and correspond to even length paths, to walks of length ¢ — 1 that end a « (and have the same parity). We do
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this by removing asingle step in which the walk remained at the current vertex. Intuitively, since the probability
of remaining at the current vertex is at least % the total probability of the resulting walks (of length ¢t — 1) is
roughly the same as that of the original walks (of length t). In what follows we formalize this.

We associate with each walk a sequence of transition-labels. Transitions that correspond to edges between
vertices are given the edge-label, and the self-transition from a vertex v to itself is replaced by 2d — |I'(v)|
transitions (labeled |T'(v)| + 1,. . ., 2d), each having probability 5. Thus each walk of length ¢ (that does not

enter an auxiliary path) is uniquely labeled and has exactly the same probability, (ﬁ)t

Let vy = s,and vy, ..., v; bethe vertices passed on arandom walk of length ¢. Consider those steps 7 in
which the walk remains at the current vertex. That is, ¢ such that v»; = v;_;. Since (conditioned on the event
that the walk does not enter an auxiliary path), the probability at each step ¢ that v; = v;_, isat least % the
expected number of such steps is at least % By a multiplicative Chernoff bound we have that the probability
that [{i: v; = v;_1}| < £, isa mostexp(—1/12) < a/4.

We now focus only on those walks that end at « and correspond to even-length paths. Let the set of these
walks be denoted U. Recall that since u € S, we have that ¢7 () > . Let T be the subset of walks in U
for which |[{i : v; = v;_1}| > £. By what we have shown above, |T| > |U|/2. Let T’ isthe set of walks
of length ¢t — 1 that end at « and can be obtained from some wak in T by removing a single step 7 such that
v; = v;_;. Consider an auxiliary bipartite graph over T U T that has the following edges. There is an edge
between anodein T and anodein T” if an only if the latter can be obtained from the former by removing a
single step ¢ such that v; = v;_;. We alow for multiple edges in case there is more than one way to perform
this transformation (that is, if the walk remained at a particular vertex for more than one step, and furthermore,
took the same self-transition in al the corresponding steps). By definition of T, each nodein T isincident to at
least 1 edges, while each nodein T’ isincident to at most ¢ - (2d — 1) edges. (Thefactor of (2d — 1) isthe
result of the multiple self-transitions). Therefore, |T|- £ < |T’[-(2d —1)-t,andso |T’| > & -|T| > & - |UJ.
Since each walk in T’ has probability (2d)~(“~1) while each walk in U has probability (2d)~¢, the claim, and
subsequently the lemma, follow. W

45 Sufficient Conditionsfor Detecting Odd Cycles

Inthe next lemma we describe sufficient conditionsfor “ detecting” odd cycles when performingwalksin Mﬁj (H)
starting from some vertex s. What the lemma essentially requires is that there exist a subset S of vertices such
that there are both lower and upper bounds on the probability that each vertex in S isreached from s (int < (;
steps), and there are many vertices v in S such that both ¢, () and ¢, , (t) are large (with respect to the lower
bound). As stated later in Corollary 4, these conditions are sufficient for detecting odd cycles when performing
random walksin G of length ¢, - /.

Lemma4.5 Let H be a subgraph of G, s avertex in H, S a subset of vertices in H and ¢, and ¢, integers.
Assume that for some e, F > 0 and ¢ < {;, thefollowing holdsin M*(H):

1 Foreveryv € S, o < ¢,,(t) < F-a;

2. Y es e, () - qi(t) > £-[S| - for some constant c.

c

Then with probability at least 0.99, if we perform O ( : f/ﬁ) random walks of length ¢ starting from s in

Mﬁj (H) then for some vertex v we shall end at » both on a walk corresponding to an even-length path and on a
walk corresponding to an odd-length path.
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We note that when we apply Lemma 4.5, we set o = poly(¢/(log N))/+/|S| - |H|, and F' = O(1/¢), so that
the number of random walks that should be performed is poly((log N)/e)v/N.

Proof: Let M = M{(H), and v = 2,5 ¢°, () - ¢!, (1), so that by the second hypothesis of the lemma

F
]

let ; ; be a0/1 random variable that is 1 if and only if the :*™" and j*" walks correspond to paths whose lengths
have different parity, but both end at the same vertex in S. Thus, we would like to bound the probability that
>i<; My = 0. Thedifficulty isthat the r; ;'sare not pairwiseindependent. Yet, since the sum of the covariances
of the dependent 7, ;’sis quite small, Chebyshev's Inequality is still very useful (cf., [AS92a, Sec. 4.3]). Details

follow. For every ¢ # j,
Explni;] = > D al,(t)-ql,(t) = 2y

s€{0,1} veS

vy > £-]S]-a* Consider m = O ( ) random walks of length ¢ starting from s. For 1 < 7,5 < m,

By Chebyshev’s inequality,

Pr 2772'7]' =0

i<

] _ Var [Zi<j 772’,]’] Ver [Zi<j 772’,]'] (13)

(B0 [y mis]) G

We now bound Var[3~,_; m:;]. Since the 7;;'s are not pairwise independent, some care is needed: Let
_ def

Nij = Mij — EXplmi ]

2
Var [Z 772’,]’] = Exp (Z 772',]')
i<y i<j

= Y EXp[ii; - ]
i< k<t
= B[] +4 Y Bxpli w40
1< i<j<k
m m
= (2) - Expl7j; ] + 4 - (3) ~EXplij12 « 12 3] (14)

Thefactor of 4 in thethird equdity isthe number of possibilities among thefour elementsz, 7, &, £ (where: < j
and k < () that exactly two areequd. The 0 term isdueto thefact that for i # j # k # (, therandom variables
n; ; and 1, , are independent, and hence Exp[7; ; - 1x,¢] = EXp[7; ;] - EXp[7z,¢] = 0. We next bound each of the
two terms in Equation (14).

Explii,] < Explng.] = Explmo) = 27 (15)
L et v; be arandom variable that represents the vertex that the :** walk ends at.
Exp[n1,2 - 72,3]
Pri(m,» = 1) and (vs = vs)]
Z Pr[77172 =1and (?]3 = Vy = ?])]

EXp[712- 23] <
<

Z Privs = v | m 2= 1and (v = v)]-Pr[n; 2 = 1and (v, = v)]

= Z Privs = v] - Pr[n o = 1 and (v, = v)]
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< max{Prlos = 0]} - Y Pr{(m2 = 1) and (s = )]

= mvaX{QS,U (t)} ' 27
< 2F oy (16)

Since by the Lemma's second hypothesisy > £ - |S| - a*, we can replace « in Equation (16) with j—lg—l and get

C- 3 1
B a] < 200 [ = Ve et [ an

Combining Equation (13)—(17) we get

[ERE) o
m -

m4-’)/2 1/€-|S|-’y

As observed above, by the lemma’s hypothesis concerning v, it holds that o« = O(+/v/(¢€[S|)). Since m =

L - [
Q <e.a.\/ﬁ) , wehavethat m = (F M), and thelemmafollows. W

Based on the construction of Mﬁj(H) we can map walks of length ¢; - {5 in G to waks of length ¢, in
M;?(H), and obtain as acorollary to Lemma 4.5 —

Pr

Zm,j =0

i<

Corollary 4 Let H be a subgraph of G and S, s, {1, {», t, « and F asin Lemma 4.5. Then with probability at
least 0.99, if we perform O ( £ ) randomwalks of length ¢, - /, starting from s in G then for some vertex

]

v in S we shall reach » both on a prefix of a walk that corresponds to an even-length path and on a prefix that
corresponds to an odd-length path.

def def

Proof: Let M = Mﬁj(H) and L = ¢, - {,. We shall map walks of length L in G (starting from s ¢ H) to
walks of length ¢, in Mﬁj(H). In case the walk in G does not perform ¢, or more consecutive steps outside of
H before it has made at least ¢, steps (not necessarily consecutive) in H, then it is mapped to that sequence of
{, stepsin H. Otherwise, it is mapped to a sequence of less than /; stepsin H and the remaining steps on an
auxiliary path in M. More precisely, we define amapping ¢ from walks of length L in G to walks of length ¢,
in M asfollows.

Forawak w = vy, ...,vr (inG), where vy = s, let g, . . ., 1, beexactly those indices such that v;, € H.
(In particular, ¢, = 0.) We consider two cases: (1) k£ > {;,andforevery 0 < j < 4, — 1,441 — t; < {9, (2)
either £ < (y, orforsome0 < j < {; — 1, ¢;41 — ¢; > {s; Inthefirst case, ¢(w) def Vi, Vi, - -0, - INthe
second case, let 4, bethefirst index such that ¢, ; — ¢, > ¢ (if nosuch index exists, i.e., k < {4, let ¢, = i}).
Then é(w) € vy, ... v;.ay, ...y, 4. By the definition of M, the distribution on ¢(w) induced by the

distribution on w is exactly the same as the distribution on random walks of length £, in M.

Let ¥, (G, s) be the probability, when performing walks of length I on G starting from s that for some
vertex v in S we shall reach v both on a prefix of awalk that corresponds to an even-length path and on a prefix
that corresponds to an odd-length path. Let ¥, (M, s) be the probability, when performing walks of length
£, on M starting from s that for some vertex v in S we shall end up a » both on a walk that corresponds to
an even-length path and on a walk that corresponds to an odd-length path. Then, by the above mapping and
Lemmad4.5 ¥ (G,s) > ¥, (M,s) >0.99. A
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4.6 Puttingit all Together (Proof of Theorem 2)

Recall that we need to show that if thetest accepts G with probability greater than % then G ise-closeto bipartite.

We say that avertex s in G isgood (for defining a partition) if the probability that odd-cycle(s) returns found
isat most 0.1. Otherwiseit is bad. Since the test rejects G with probability less than 2, and 7' = ©Q(1/¢), the
fraction of bad vertices in GG isat most 5. We now show that in such a case we can find a partition of the graph
vertices that has at most ed V violating edges. We shall do so in steps, wherein each step we partition anew set
of vertices S until we are left with at most £V vertices. For each partitioned set 5 we show that: (1) there are
few (at most {d|S|) violating edges between pairs of vertices in S; and (2) there are few (at most $d|S|) edges
between S and the yet “unpartitioned” vertices R so that no matter how the vertices in R are partitioned, the
number of violating edges between S and R is smal.

At each step, let D be the set of vertices we have aready partitioned, and let H be the subgraph induced by
V\D. Initially, D = §),and H = G. Let ¢, and (-, beasrequired by Lemma4.3, and let thelength I of thewalks

3 6
we performon G be (¢, - (,. Since(, = O ((w) ) and (, = O (4), wegetthat L = O (@‘E#)

Let M & Mg (H). While [H| > £N we do the following. We select any vertex s in H that is both good and

useful with respect to M (see Definition 4.1). By Corollary 3, at least haf of the vertices in H are useful. Since
|H| > $N and the total number of bad verticesis -5 N < £V, there exist good and useful vertices.

We next apply Lemma 4.3 to determine aset S, and an integer ¢, (1 /2 < t < (;, with the properties stated
in thelemma. In particular, the number of vertices between S and therest of H is a most §d|S|, and for every

v e S, [ < @) < F o/l where F = O (1), and § = Q (157 ) - We dlaim that it must
bethe casethat 3,5 ¢7, (1) - 41, (1) < zfu'—lﬁHl. This claim, (which we establish momentarily) implies that we

can apply Lemma 4.4 (with o = ,/lslfﬁ (note that ¢ > (,/2 = Q(log(1/a)) as required)) to show that S
can be partitioned so that there are at most $d|S| violating edges with respect to this partition. The claim holds

since otherwise, we could apply Lemma 4.5, or, more precisely Corollary 4, and by letting the number of walks
perform from each starting vertex be

r _ 7Y _ 1og”2<N/€>'ﬁ) = K
o(m) - o (F5) - o (=) -

(where F', a and 3 are as set above), obtain a contradiction to our assumption the s is good.

Thus, aslong as |H| > $N, each set S contributed a most £ - [S| - d + 5 - |S| - d violating edges to the
partition. Since these sets are digoint, al these violating edges sum up to % -d - N. Thefina H contributes at
most ; - NV - d, and s0 G5 is e-close to Bipartite.

Verifying that indeed 7' = O(1/¢), K = poly((log N)/¢)) - v/N, and L = poly((log N)/e)), and that
t

the odd-cycle procedure can be implemented intime O( & - L), the theorem follows.
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A Proof of Claaim 1in Lemma4.2

Consider first an even more detailed Markov Chain, denoted M(H). Asin M(H), thereisa state in M(H) for
every vertex in H, and the transitions between vertices in H areasin M(H) (i.e,, asin wakson G). However,
between each « and v in B(H), thereis an auxiliary path for every walk from « to » that passes only through
vertices not in H (rather than for every walk-length asin M(H)). Each such walk is determined by a sequence
of transition-labels. A transition from z to y, where z and y are neighborsin G, is given the label of the edge
from z to y. As for sef-transitions from z to itself, we think of there being 2d — |I'(z)| transitions, labeled
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IT(2)| 4+ 1,...,2d. Each of these self-transitions has probability ;. By this definition, for any integer ¢, a
walk of length ¢ between any two vertices has probability (Zl—d)Z

In view of the above, the probability of entering an auxiliary path in M(H) from « € B(H) to v € B(H),
corresponding to awalk w outside of H, is (ﬁ)'wl. The transition probabilities between each auxiliary state
on an auxiliary path and the next state on the path (or the vertex reached in B(H)), is 1. Note that for each
auxiliary path from u to » that correspondsto awalk w, thereis an auxiliary path from v to « (corresponding to
the reverse of w), where both are entered with exactly the same probability.

Given the definition of M(H ), we see that M(H) can be transformed into M(H) as follows. For every pair
of vertices u, v € B(H), and for each length ¢, al auxiliary paths of length ¢ between « and v in M(H) are
merged into asingle auxiliary path in M(H). The probability of entering the resulting path in M(H ) isthe sum
over the probabilities of entering the corresponding paths in M(H). It follows that the stationary probability of
each auxiliary state in M(H) isthe sum of the stationary probabilities of the auxiliary states in M(H) that were
merged into it, while the stationary probability of vertices in H remains the same. However, it is not hard to
verify that the stationary probability in M(H) of each vertex in H, isthe same asin walks on G, i.e, it is ~.
This follows from the correspondence between walks on G and walks on M(H). Stated slightly differently, it
follows from the fact that M(H ) can be transformed into the Markov chain defined by walks on G by merging,
for each vertex v € G \ H, al auxiliary statesin M(H) that correspond to that vertex. O

B Proof of Claim 5in Lemma4.3

Let X € 5 22, andmy = |{i: 2; > 0}|. Assumein contradiction that > rs02i < ¥ - X. Conditioned
on this bound on the sum of their squares, the sum of the positive x;’sis maximized when they are dl equdl, i.e.,

v X
S a<my oy~ 1 X< fm- L. x (18)
- my 4 4

when each z; is . Hence,
m+
i, ;>0

We next observe that the Claim'’s first hypothesis implies that

SNoodwl = > =D < D wity (19)
i, ;<0 i, ;>0 7 i, ;>0
By Equations (19) and (18),
1
Z lz;| < m-l-X—l—’yg m-z-X—l——-m-X (20
2, ¢; <0 4 4 2

where the second inequality follows from the second hypothesis of the claim (and the definition of X). Since
for every negative z;, |x;| < -, Equation (20) implies that

1 1 [y 1 [~ 1
| E z; < — E |z < - ( m 1 X—I—2 m X) 4X/m—l—2 X (21D

Putting together theinitial contrary assumptionthat 5, , ., x7 < - X with Equation (21), we get that

X:fo—l—Zx?

1, ;>0 i, ;<0

Y Y 1

Lo X 4 VX 42X
< g + Am + 2
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But this implies that
1 gl

(G-37 am

which for v < 1/2 isless than 2y/m, and we have reached a contradiction to the second hypothesis of the
Clam. W

X <

C Proof of Proposition 1

We show the counterpositive of the claim. Namely, if there are no odd-cycles in G of length a most L then G
is e-close to bipartite.

Consider first the (simple) case in which @l vertices in G are reachable from some vertex s by paths of
length L /2. Consider abreadth-first-search (BFS) treerooted at s, and the partition induced by putting odd-level
vertices on one side and the rest on the other. By our hypothesis (non-existence of short odd-cycles), there can be
no edges between vertices of the same level (and by the properties of a BFS tree there can be no edges between
vertices which differ in levels by more than 1). Thus, the above partition demonstrates that G is bipartite.

In the more general case, we start an iterative process by which we partition the vertices in the graph. In
each iteration, let D bethe set of vertices that have aready been assigned asidein the partition. Initialy, D = 0.
Consider aBFS tree in the subgraph induced by V \ D starting from some vertex s € V \ D. Let ¢ be the first
level such that the number of verticesin level ¢ + 1 is smaller than ¢ times the number of verticesin al ¢ first
levels. The existence of such an i < L follows from our choice of Z > log, . N. Denote the nodes in the
first 7 levels by D’. Then, the number of edges between D’ and the rest of V — D is at most ed|D’|, where d
is the degree bound. Asfor D’ itself, the subgraph induced by it is bipartite (by an argument as in the simple
case). Thus, weset D = D U D’ and proceed. Each D’ accounts for a most ed|D’| potentialy violating edges
(between D’ and the yet unpartitioned part of G), totaling to an ¢ fractionof V. W
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