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1 Brief IntroductionThis memo reports partial results regarding the task of testing whether a given bounded-degreegraph is an expander. The model is of testing graph properties as formulated in [1]: The (ran-domized) algorithm is given integers d and N , a distance parameter � (as well as some problem-speci�c parameters), and oracle access to a N -vertex graph G with degree bound d; that is, query(v; i) 2 [N ] � [d] is answered by the ith neighbor of v in G (or by a special symbol in case v hasless than i neighbors). For a predetermined property P, the algorithm is required to accept (withprobability at least 2/3) any graph having property P, and reject (with probability at least 2/3)any graph that is �-far from having property P, where distance between graphs is de�ned as thefraction of edges (over dN) on which the graphs di�er.Loosely speaking, the speci�c property considered here is being an expander. More precisely,for a given bound � < 1, we consider the property, denoted E�, of having a normalized by dadjacency matrix with second eigenvalue at most �. Actually, we further relax the property testingformulation (as in [4]): Using an additional parameter �0 � �, we only require that� the algorithm must accept (with probability at least 2/3) any graph having property E� (i.e.,having second eigenvalue at most �); and� the algorithm must reject (with probability at least 2/3) any graph that is �-far from havingproperty E�0 (i.e., from any graph that has second eigenvalue at most �0).Setting �0 = � we regain the more strict formulation of testing whether a graph has second eigen-value at most �.We mention that the 
(pN) lower bound on \testing expansion" (presented in [1]) continuesto hold for the relaxed formulation above, provided that �0 < 1. This is the case since the lowerbound is established by showing that any o(pN)-query algorithm fails to distinguish between avery good expander and an unconnected graph with several huge connected components.1In view of the above, we shall be content with any sub-linear time algorithm for testing ex-pansion. Below, we present a parameterized family of algorithms. For any � > 0, the algorithmhas running-time n0:5+�=poly(�) and is supposed to satisfy the above requirement with �0 = ��=7.Unfortunately, we can only prove that this is indeed the case provided that a certain combinatorialconjecture (presented in Section 4.2) holds.2 Conventions and NotationsWe consider N -vertex graphs of degree bound d, which should be thought of as �xed. We considerthe stochastic matrix representing a canonical random walk on this graph, where canonical isanything reasonable (e.g., go to each neighbor with probability 1=2d). The eigenvalues below referto this matrix.By � we denote the claimed second eigenvalue (i.e., we need to accept graphs having secondeigenvalue at most �). By � we denote the distance parameter: we need to reject graphs that are�-far from having second eigenvalue at most �0, where �0 > � is related to �.The algorithm presented below is parameterized by a small constant � > 0 that determinesboth its complexity (i.e., O(N0:5+�=poly(�))) and its performance (i.e., �0 = ��=O(1)). To be ofinterest, the algorithm must use � < 0:5.1In the latter case, the graph has (normalized) second eigenvalue equal 1.1



3 The algorithmWe set L = 1:5 lnNln(1=�) . This guarantees that a graph with second eigenvalue at most � mixes well inL steps (i.e., the deviation in max-norm of the end probability from the uniform distribution is atmost N�1:5). The following algorithm evaluates the distance of the end probability (of an L-steprandom walk starting at a �xed vertex) from the uniform probability distribution. It is based on thefact that the uniform distribution over a set has the smallest possible collision probability, amongall distributions over this set.Repeat t def= �(1=�) times(1) Select uniformly a start vertex, denoted s.(2) Perform m def= �(N0:5+�=�) random walks of length L, starting from vertex s.(3) Count the number of pairwise collisions between the endpoints of these m walks.(4) If the count is greater than 1+0:5�N��=2N � �m2 � then rejectIf all repetitions were completed without rejection then accept.Comment: Random walks were used before in the context of testing graph properties (in thebounded-degree model): Speci�cally, eO(pN=poly(�)) such walks were used by the bipartitnesstester of [2]. Random walks seem much more natural here.4 AnalysisFixing any start vertex s, we denote by ps;v the probability that a random walk of length L startingat s ends in v. The collision probability of L-walks starting at s is given byXv p2s;v � 1N (1)By our choice of L, if the graph has eigenvalue at most � then (for any starting vertex s) the collisionprobability of L-walks starting at s is very close to 1=N (i.e., is smaller than (1=N) + (1=N2)).4.1 Approximation of the collision probabilitiesThe �rst issue to address is the approximation to Eq. (1) provided by Steps (2){(3) of the algorithm.Lemma 1 With probability at least 1 � (1=3t), the approximation provided by Steps (2){(3) iswithin a factor of 1� 14 �N��=2 of Eq. (1).Thus, with probability at least 2=3, all approximations provided by the algorithms are within afactor of 1� 14 �N��=2 of the correct value.Proof: For every i < j, de�ne a 0-1 random variable �i;j so that �i;j = 1 if the endpoint of theith path is equal to the endpoint of the jth path. Clearly, � def= E[�i;j] = Pv p2s;v, for every i < j.Using Chebyshev's inequality we bound the probability that the count provided by Steps (2){(3)deviates from its (correct) expected value. Let P def= f(i; j) : 1 � i < j � mg and � = 14 �N��=2.Pr24������ X(i;j)2P �i;j � jP j � ������� > � � jP j � �35 � Var[P(i;j)2P �i;j](� � jP j � �)2 (2)2



Denote �i;j def= �i;j � �. The rest of the proof needs to deal with the fact that the random variablesassociated with P are not pairwise independent. Speci�cally, for four distinct i; j; i0; j0, indeed �i;jand �i0;j0 are independent, and so E[�i;j�i0;j0 ] = E[�i;j] � E[�i0;j0 ] = 0; but for i < j 6= k the randomvariables �i;j and �i;k are not independent (since they both depend on the same ith walk). StillVar24 X(i;j)2P �i;j35 = E2640@ X(i;j)2P �i;j1A2375= X(i;j)2P E h�2i;ji+ 2 � X(i;j);(i;k)2P & j 6=kE h�i;j�i;ki� X(i;j)2P E h�2i;ji+ 2 � Xi2[m] Xj 6=k2fi+1;:::;mgE [�i;j�i;k]� jP j � �+ 2 � m36 �Xv p3s;vsince �i;j�i;k = 1 if and only if all three random walks end at the same vertex. Using (Pv p3s;v)1=3 �(Pv p2s;v)1=2, and m2 < 3 � jP j, we obtainVar24 X(i;j)2P �i;j35 � jP j � �+ jP j3=2 � �3=2 < 2 � (jP j � �)3=2 (3)Combining Eq. (2) and (3), we obtainPr24������ X(i;j)2P �i;j � jP j � ������� > � � jP j � �35 < 2�2 � (jP j � �)1=2Using � � 1=N and jP j > m24 = �(N1+2��2 ), the denominator is at least �2 � �(N�� ). Recalling that� = 14 �N��=2 and t = O(1=�), the lemma follows.As an immediate corollary we getCorollary 2 If the graph has second eigenvalue at most � then the above algorithm accepts it withprobability at least 2=3.Another immediate corollary is the followingCorollary 3 Suppose that for at least a �=O(1) fraction of the vertices s in G the collision proba-bility of L-walks starting at s is greater than 1+0:8N��=2N . Then the algorithm rejects with probabilityat least 2=3.Thus, if a graph passes the test (with probability greater than 1=3) then it must have less than(�=O(1)) � N exceptional vertices; that is, vertices s for which the collision probability of L-walksstarting at s is greater than 1+0:8N��=2N .Comment: Note that by changing parameters in the algorithm (i.e., t = �(N�=�) and m =�(N0:5+2�=�)), we can make the fraction of exceptional vertices smaller than �N��. This may helpin closing the gap (below), and only increases the complexity fromN0:5+�=poly(�) toN0:5+3�=poly(�).3



4.2 The gapWe believe that the following conjecture (or something similar) is true.Conjecture: Let G be an N -vertex graph of degree-bound d. Suppose that for all but at most�=O(1) fraction of the vertices s in G the collision probability of L-walks starting at s is at most1+0:8N��=2N . Then G is �-close to a N -vertex graph (of degree-bound d) in which the collisionprobability of L-walks starting at any vertex is at most 1+N��=2N .The conjecture is very appealing: Supposedly, you add �dN edges connecting at random theexceptional vertices to the rest of the graph. Ignoring for a moment the issue of preserving thedegree bounds, this seems to work { but we cannot prove it. Indeed, one can show that thepreviously exceptional vertices enjoy rapid mixing, but it is not clear that the added edges will notcause harm to the mixing properties of non-exceptional vertices.4.3 Finishing it o�Once the gap is closed, we have the following situation: If the algorithm rejects with probabilitysmaller than 2=3 then the input graph is �-close to a graph in which the collision probability of L-walks starting at any vertex is at most 1+N��=2N . But the excess of the collision probability beyond1=N is nothing but the square of the distance, in norm 2, of the probability vector (ps;v)v2[N ] fromthe uniform probability vector (i.e., (Pv p2s;v)� (1=N) =Pv(ps;v � (1=N))2). Thus, for every s thedistance, in norm 2, of the probability vector (ps;v)v2[N ] from the uniform probability vector is atmost qN��=2N = N�(0:5+�), where � = �=4.The plan now is to \reverse" the standard eigenvalue to rapid-mixing connection. That is, inferfrom the rapid-mixing feature that the graph has a small second eigenvalue. Such a lemma hasappeared in [3]:Lemma 4 (Lemma 4.6 in [3]): Consider a regular connected graph on N vertices, let A be itsnormalized adjacency matrix and �2 denote the absolute value of the second eigenvalue of A. Let `be an integer and �` denote an upper bound on the maximum, taken over all possible start verticess, of the di�erence in Norm2 between the distribution induced by an `-step random walk starting ats and the uniform distribution. Then �2 � (N ��`)1=`.Note that by the above, we have �L < N�(0:5+�). This does not give anything useful when applyingthe lemma directly. Instead, we apply the lemma after bounding �` for ` = O(L). (The followingmay be an oversight, but that's how we argue it now.)Claim 5 Let �` be de�ne as in Lemma 4. Then �k` � (pN ��`)k, for every integer k.Proof: Let B = A` be the stochastic matrix representing an `-step random walk, and let ~e1; :::; ~eNdenote probability vectors in which all the mass is on one vertex. Let ~� denote the uniformprobability vector. Then �` (resp., �k`) equals the maximum of kB~ei � ~�k (resp., kBk~ei � ~�k)taken over all the ~ei's.Considering the basis of ~ei's, let ~z be a zero-sum vector (such as ~ei � ~�). That is, ~z is writtenin the basis of ~ei's as ~z =Pi zi~ei, and Pi zi = 0. We obtain4
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� Xi kziB(~ei � ~�)k= Xi jzij � kB(~ei � ~�)k�  Xi jzij! ��`Since Pi jzij � pN �qPi z2i = pN � k~zk, we getkB~zk � pN ��` � k~zkUsing B~� = ~�, we get for every ikBk~ei � ~�k = kB(Bk�1~ei � ~�)k� �` � pN � kBk�1~ei � ~�k< ��` � pN�kand the claim follows.Combining Lemma 4 and Claim 5, we obtain the followingCorollary 6 Suppose that for every s the distance, in norm 2, of the probability vector (ps;v)v2[N ]from the uniform probability vector is at most N�(0:5+�). Then, for every constant 
 < 2�=3, thesecond eigenvalue of the graph is at most �
.So once the gap is �lled, we are done (using � = �=4 and 
 � 2�=3).Proof: Let �0 be the second eigenvalue of the graph. Then, for every k we have�0 � (N ��kL)1=kL� �N � �pN ��L�k�1=kL� �N � �N���k�1=kL= exp�(1� k�) � lnNkL �Substituting for L = 1:5 lnNln(1=�) , we get(1� k�) � lnNkL = (1� k�) � lnNk � ((1:5 lnN)= ln(1=�))= �2�3 � 23k� � ln�> 
 � ln�for su�ciently large k (since 
 < 2�=3). We get ln�0 > 
 � ln�, and the corollary follows.5



Comment: We have �0 � �
 for any 
 < �=6 (e.g., 
 = �=7 will do). One may be able toincrease the exponent (i.e., 
) somewhat, but a linear dependency (of the exponent 
) on � seemsunavoidable (under the current approach).References[1] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. In Proc. of the29th ACM Symp. on Theory of Computing, pages 406{415, 1997.[2] O. Goldreich and D. Ron. A sublinear Bipartite Tester for Bounded Degree Graphs.Combinatorica, Vol. 19 (2), pages 1{39, 1999.[3] O. Goldreich and M. Sudan. Computational Indistinguishability: A Sample Hierarchy.JCSS, Vol. 59, pages 253{269, 1999.[4] M. Parnas and D. Ron. Testing the diameter of graphs. In Proceedings of Random99,1999.
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