
Another motivation for reducing the randomness complexity of algorithmsOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.ilNovember 21, 2006AbstractWe observe that the randomness-complexity of an algorithm e�ects the time-complexity ofimplementing a version of it that utilizes a weak source of randomness (through a randomness-extractor). This provides an additional motivation for the study of the randomness complexityof randomized algorithms. We note that this motivation applies especially in the case thatderandomization is prohibitingly costly.Keywords: Randomness Complexity, Weak Sources of Randomness, Randomness Extractors,Pseudorandom Generators, Sampling, Property Testing.ContentsIntroduction: the standard motivations : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1The main message: another motivation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1Two examples: the settings of Sampling and Property Testing : : : : : : : : : : : : : : : : 3Conclusions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 5Introduction: the standard motivationsThe randomness-complexity of a randomized algorithm is a natural complexity measure associatedwith such algorithms. Furthermore, randomness is a \real" resource, and so trying to minimize theuse of it falls within the standard paradigms of algorithmic design.In addition to the aforementioned generic motivation (which was highlighted in [2]), there is amore concrete motivation (which was highlighted in [13]): If we manage to reduce the randomness-complexity to become su�ciently low then this opens the door to a relatively e�cient derandom-ization. Speci�cally, a randomized algorithm having time-complexity t and randomness-complexityr yields a functionally equivalent deterministic algorithm of time-complexity 2r � t.The main message: another motivationIn this note we highlight another concrete motivation to the study of the randomness-complexityof randomized algorithms. We refer to the e�ect of the randomness-complexity on the overhead



involved in implementing the algorithm when using only weak sources of randomness (rather thanperfect ones). Speci�cally, we refer to the paradigm of implementing randomized algorithms byusing (a single sample from) such a weak source, and trying all possible seeds to an adequaterandomness extractor (see below). We will show that the overhead created by this method isdetermined by the randomness-complexity of the original algorithm.Recall that a randomness extractor is a function E : f0; 1gs�f0; 1gn ! f0; 1gr that uses an s-bitlong random seed in order to transform an n-bit long (outcome of a) weak source of randomnessinto an r-bit long string that is almost uniformly distributed in f0; 1gr . Speci�cally, we considerarbitrary weak sources that restricted (only) in the sense that, for a parameter k, no string appearsas the source outcome with probability that exceeds 2�k. Such sources are called (n; k)-sources(and k is called the min-entropy). Now, E is called a (k; �)-extractor if for any (n; k)-source X itholds that E(Us;X) is �-close to Ur, where Um denotes the uniform distribution over m-bit strings(and the term `close' refers to the statistical distance between the two distributions). For furtherdetails about (k; �)-extractors, the interested reader is referred to Shaltiel's survey [10].Next we recall the standard paradigm of implementing randomized algorithms while usingsources of weak randomness. Suppose that the algorithm A has time-complexity t and randomness-complexity r � t. Recall that, typically, the analysis of algorithm A refers to what happenswhen A obtains its randomness from a perfect random source (i.e., for each possible input w, weconsider the behavior of A(w;Ur), where A(w;!) denotes the output of A on input w when givenrandomness !). Now, suppose that we have at our disposal only a weak source of randomness;speci�cally, a (n; k)-source for n � k � r (e.g., n = 10k and k = 2r). Then, using a (k; �)-extractor E : f0; 1gs � f0; 1gn ! f0; 1gr , we can transform the n-bit long outcome of this sourceinto 2s strings, each of length r, and use the resulting 2s strings (which are \random on theaverage") in 2s corresponding invocations of the algorithm A. That is, upon obtaining the outcomex 2 f0; 1gn from the source, we invoke the algorithm A for 2s times such that in the ith invocationwe provide A with randomness E(i; x). The results of these 2s invocations are processed in thenatural manner. For example, if A is a decision procedure, then we output the majority voteobtained in the 2s invocations (i.e., when given the input w, we output the majority vote of thesequence hA(w;E(i; x))ii=1;:::;2s).1The analysis of the foregoing implementation is based on the fact that \on the average" the 2sstrings extracted from the source approximate a perfect r-bit long source (i.e., a random setting ofthe s-bit seed yields an almost uniformly distributed r-bit string). In the case of decision proceduresthis means that if A has error probability p and X is a (n; k)-source then the number of values inhE(i;X)ii=1;:::;2s that fail A(w; �) is at most (p + �) � 2s, where the expectation is taken over thedistribution ofX. It follows that the implementation (which rules by majority) errs with probabilityat most 2(p+ �). This means that we should start with p < 1=4. (A similar analysis can be appliedto the randomized search procedures discussed in Footnote 1.)Let us consider the cost of the foregoing implementation. We assume, for simplicity, that therunning-time of the randomness extractor is dominated by the running-time of A. Then, algorithmA can be implemented using a weak source, while incurring an overhead factor of 2s. Recallingthat s > log2 n and that n > k > r it follows that the aforementioned overhead is at least linear inr. On the other hand, if s = (1 + o(1)) log2 n and n = O(r) (resp., s = O(log n) and n = poly(r))then the aforementioned overhead is in fact linear in r (resp., polynomial in r). This establishes our1For search problems in NP, we output any valid solution that is obtained in the relevant 2s invocations. Forgeneral search problems (i.e., outside NP), some extra condition regarding the original randomized algorithm isrequired (e.g., either that it never outputs a wrong solution or that it outputs some speci�c correct solution withprobability that exceeds 1=2 by a noticeable amount). 2



claim that the time-complexity of implementing randomized algorithms when using weak sourcesis related to the randomness-complexity of these algorithms. Let us take a closer look at thisrelationship.We shall consider two types of (n; k)-sources, which are most appealing. Indeed, these type ofsources have received a lot of attention in the literature. Recall that r denotes the number of bitsthat we need to extract for such a source (in order to feed our algorithm). Furthermore, it su�cesto set the deviation parameter of the extractor (i.e., �) to a small constant (e.g., � = 1=10 will do).The two cases we consider are:1. Linearly related n; k and r: that is, for some constants c > c0 > 1, it holds that n = c � r andk = c0 � r. In other words, we refer to sources having a constant rate of min-entropy.In this case, e�cient randomness extractors that use s = log n+O(log log n) = log2 ~O(n) areknown (cf. [12, 10]). Using these extractors, we obtain an implementation of A (using suchweak sources) with overhead factor ~O(r).2. Polynomially related n; k and r: that is, for some c > c0 > 1, it holds that n = rc and k = rc0 .In other words, we refer to a source having min-entropy that is polynomially related to itslength.In this case, e�cient randomness extractors that use s = log ~O(n) = c log2 ~O(r) are known(cf. [11, 10]). Using these extractors, we obtain an implementation of A (using such weaksources) with overhead factor ~O(rc).In both cases, the overhead factor is approximately linear in the length of the source's outcome(which, in turn, is linearly or polynomially related to r).We wish to stress that the implementation paradigm considered above is most relevant in thecase that a full derandomization (incurring an overhead factor of 2r) is prohibitingly costly. Twosettings in which this is inherently the case are considered next.Two examples: the settings of Sampling and Property TestingDerandomization is not a viable option in the setting of sampling and property testing, and thusthese settings provide a good demonstration of the importance of the new motivation. We startwith the setting of sampling, although the more dramatic results are obtained in the context ofproperty testing, which may be viewed as a generalization of the context of sampling.Sampling. In many settings repeated sampling is used to estimate the average of a huge setof values. Namely, given a \value" function � : f0; 1gn ! R, one wishes to approximate �� def=12n Px2f0;1gn �(x) without having to inspect the value of � at each point of the domain. Theobvious thing to do is sampling the domain at random, and obtaining an approximation to �� bytaking the average of the values of � on the sample points. It is essential to have the range of � bebounded (or else no reasonable approximation is possible). For simplicity, we adopt the conventionof having [0; 1] be the range of �, and the problem for other (predetermined) ranges can be treatedanalogously. Our notion of approximation depends on two parameters: accuracy (denoted �) anderror probability (denoted �). We wish to have an algorithm that, with probability at least 1 � �,gets within � of the correct value. That is, a sampler is a randomized oracle machine that on inputparameters n; �; � and oracle access to any function � :f0; 1gn! [0; 1], outputs, with probability atleast 1� �, a value that is at most � away from �� def= 12n Px2f0;1gn �(x).3



We are interested in \the complexity of sampling" quanti�ed as a function of the parameters n,� and �. Speci�cally, we will consider three complexity measures: The sample-complexity (i.e., thenumber of oracle queries made by the sampler); the randomness-complexity (i.e., the length of therandom seed used by the sampler); and the computational-complexity (i.e., the running-time of thesampler). We say that a sampler is e�cient if its running-time is polynomial in the total lengthof its queries (i.e., polynomial in both its sample-complexity and in n). It is easy to see that adeterministic sampler must have sample-complexity close to 2n, and thus derandomization is notan option here.While e�cient samplers that have optimal (up-to a constant factor) sample-complexity are ofnatural interest, the motivation for the study of the randomness-complexity of such samplers isless evident. Indeed, one may o�er the generic answer (i.e., that randomness as any other resourceneed to be minimized), but the previous section shows that (in a very natural setting) there is avery concrete reason to care about the randomness-complexity of the sampler: the randomness-complexity of the sampler e�ects the sample-complexity of an implementation that uses a weakrandom source.Recall that the naive sampler uses sample-complexity s def= O(��2 log(1=�)) and randomness-complexity r = s � n. Using sources of constant min-entropy rate, this yields an implementation ofsample-complexity s0 � r � s = s2n. However using a better sampler that has sample-complexityO(s) but randomness-complexity r00 = 2n + O(log(1=�)) (cf. [1]), we obtain an implementation ofsample-complexity s00 � r00 � s � �2s2n (assuming � > 2�n). This is a signi�cant saving, whenevergood accuracy is required (i.e., � is small).Property testing. This notion refers to a relaxation of decision problems, where it su�ces todistinguish inputs having a (�xed) property from objects that are far from satisfying the property(cf. [8, 5]). Typically, one seeks sublinear-time algorithms that query the object at few randomlyselected locations. In the natural cases, derandomization is not a viable option, because a deter-ministic algorithm must inspect at least a constant fraction of the object (and thus cannot runin sublinear-time). Let us clarify this discussion by looking at the speci�c example of testing thebipartiteness property for graphs of bounded-degree.Fixing a degree bound d, the task is to distinguish (N -vertex) bipartite graphs of maximumdegree d from (N -vertex) graphs of maximum degree d that are �-far from bipartite (for someparameter �), where �-far means that � � dN edges have to be omitted from the graph in or-der to yield a bipartite graph. It is easy to see that no deterministic algorithm of o(N) time-complexity can solve this problem. Yet, there exists a probabilistic algorithm of time-complexity~O(pNpoly(1=�)) that solves this problem correctly (with probability 2=3). This algorithm makesq def= ~O(pNpoly(1=�)) incidence-queries to the graph, and (as described in the original work [7])has randomness-complexity r > q > pN (yet r < q � log2N).2Let us now turn to the question of implementing the foregoing tester in a setting where we haveaccess only to a weak source of randomness. In this case, the implementation calls for invoking theoriginal tester ~O(r) times, which yields a total running time of ~O(r) � ~O(pNpoly(1=�)) > N . Butin such a case we better use the standard (deterministic) decision procedure for bipartiteness!Fortunately, a randomness-e�cient implementation of the original tester of [7] is possible. Thisimplementation (presented in [9]) has randomness-complexity r0 = poly(��1 logN) (rather than r =poly(��1 logN) �pN). Thus, the cost of the implementation that uses a weak source of randomness2We comment that 
(pN) is a lower-bound on the query-complexity of any property tester of bipartiteness (inthe bounded-degree model; see [6]). 4



is related to r0 �s = ~O(pNpoly(1=�)), which matches the original bound (up to di�erences hidden inthe ~O() and poly() notation). Needless to say, this is merely an example, and randomness-e�cientimplementations of other property testers are also presented in [9].ConclusionsThis essay articulates an additional motivation for studying the randomness-complexity of algo-rithms. This motivation is relevant even if one believes that generating a random bit is not more ex-pensive than performing a standard machine instruction. It refers to the fact that the randomness-complexity of a randomized algorithm e�ects the running-time of an implementation that may onlyutilize a weak source of randomness (and does so by using a randomness-extractor). Speci�cally,such an implementation incurs a multiplicative overhead factor that is (at least) linearly related tothe randomness-complexity of the original algorithm. This fact motivates the attempt to presentrandomness-e�cient versions of randomized algorithms and even justi�es the use of pseudorandomgenerators for this purpose.3AcknowledgmentsWe are grateful to Ronen Shaltiel for an update regarding the state-of-art of the problem of ran-domness extraction. We also wish to thank Adi Akavia and Sha� Goldwasser for a discussion thatled to the current note.References[1] M. Bellare, O. Goldreich, and S. Goldwasser. Randomness in Interactive Proofs. Compu-tational Complexity, Vol. 4, No. 4, pages 319{354, 1993.[2] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. SIAM Journal on Computing, Vol. 13, pages 850{864, 1984. Preliminaryversion in 23rd FOCS, 1982.[3] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press,2001.[4] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journalof the ACM, Vol. 33, No. 4, pages 792{807, 1986.[5] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learningand approximation. Journal of the ACM, pages 653{750, July 1998.[6] O. Goldreich and D. Ron. Property testing in bounded degree graphs. Algorithmica, pages302{343, 2002.[7] O. Goldreich and D. Ron. A sublinear bipartite tester for bounded degree graphs. Com-binatorica, Vol. 19 (3), pages 335{373, 1999.3The running-time of the generator itself can be ignored, because one may use a pseudorandom generator thatruns in time that is almost-linear in the length of its output. Such a generator can be constructed by using apseudorandom function (cf. [4]). Alternatively, such a generator is implied by the notion of an on-line pseudorandomgenerator (cf. [3, Chap. 3, Exer. 21]). 5



[8] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications toprogram testing. SIAM Journal on Computing, Vol. 25 (2), pages 252{271, 1996.[9] O. She�et. M.Sc. Thesis, Weizmann Institute of Science, in preparation. Available fromhttp://www.wisdom.weizmann.ac.il/�oded/msc-os.html[10] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. Bulletin of theEATCS 77, pages 67{95, 2002.[11] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a New Pseudo-Random Generator. In 32nd IEEE Symposium on Foundations of Computer Science,pages 648{657, 2001.[12] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller Codes. In 32ndIEEE Symposium on Foundations of Computer Science, pages 638{647, 2001.[13] A.C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium onFoundations of Computer Science, pages 80{91, 1982.

6


