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1 IntroductionIn 1979, Carter and Wegman introduced the notion of universal hashing functions [7]. Though thesefunctions were introduced with data storage application in mind, they found many applications tocomplexity theory [28, 30, 33, 16, 15, 19, 20, 17, 18, 25, 26, 36]. This wide range of applicationsowns its existence to two related `random' properties of these succinct and e�ciently computablefunctions: the extraction and the mixing properties.For a family F of functions, each mapping n-bit strings to m-bit strings, the extraction prop-erty asserts the following. Every subset of K � 2m strings in the domain f0; 1gn, is mapped almostuniformly to the range f0; 1gm, by all but a small fraction of the functions in the family. Theparameter K > 1 determines the quality of the approximation to the uniform distribution and thefraction of bad functions in F (i.e. those that don't achieve this approximation). The extractionproperty is the heart of the Leftover Hash Lemma [19] and its precursors, which were key to numer-ous results, e.g. in saving randomness [20], weak random sources [36], pseudorandom generators[15, 19] and interactive proofs [16]. (Alternative function families with extraction property werepreviously constructed in [27], with a variety of other applications.)The mixing property is meaningful also in case m = n, and in fact it is usually used with thischoice. Hence, we assume for simplicity that m = n. Loosely speaking, the mixing property assertsthat, for all but a small fraction of the functions f in the family F , the membership in A � Bof a pair (a; f(a)) with a being a random element from the domain, is essentially the same asthat of a random pair (a; b) of elements. The prime use of the mixing property is in the logspacepseudorandom generators [25, 26].In the de�nitions above, there is an error parameter � (e.g. the fraction of bad functions,the distance from the uniform distribution etc.), which determines the quality of the mixing orextraction achieved by the family F . All the applications mentioned above take F to be a universalfamily of hash functions. This family achieves the best possible quality parameter: � is exponentiallysmall in m. However, while small enough for these applications, a universal family has to be large:exponential in n.But in some applications we may be content with a larger � (i.e. lower quality), say constant or1=poly(n). Can we use much smaller families F in this case and achieve similar random properties?A straightforward counting argument shows that there exist families F of size poly(1=�) (resp.poly(n=�)) achieving the mixing (resp. extraction) properties with quality �. Note that thesebounds depend essentially only on the quality required, and not on the size of the domain.The main contribution of this paper is in presenting explicit constructions of such families, thusyielding a trade-o� between the size of the family and the desired quality. The �rst constructionis for mixing, where we obtain a complete trade-o�. The second and third constructions are forextraction, where we (respectively) handle two extreme cases: when n�m� n and when m� n.Our constructions are relatively simple. The �rst two of them combine universal hashing andexpander graphs. (It is interesting to note that despite the similarity in these two constructions,the proofs are completely di�erent). The third construction uses small-bias probability spaces ofsmall size. We provide lower bounds to show that the �rst construction is nearly optimal, and thethird is nearly optimal for m = O(logn). By nearly optimal here we mean that the number of bitsneeded to describe a member of the family in our constructions is within a constant factor of the1



lower bound.Using the �rst construction we reduce the randomness complexity of two generic procedures asfollows:1. For sampling procedures, which use an asymptotically optimal number of sample points, theamount of randomness required to generate the sample points is reduced by a factor of 2,yielding an optimal result upto a small additive term; and2. The randomness complexity of Nisan's \generalized logspace" generator [25], is reduced by alogarithmic factor.The second construction implies a randomness{e�cient leftover hash lemma, which is particularlyappealing in case n �m � n. The third construction turned out to be the main technical tool inthe recent advances on constructing optimal extractors for any m = �(n), on which we elaboratebelow.Previous, Concurrent and Subsequent WorkDespite the general interest in reducing the size of sample spaces achieving various random prop-erties, very little was done for the properties provided by universal hashing. The only previousresult achieving such a quality-size trade-o� is by Nisan and Zuckerman [27]. They deal with theextraction problem in the di�cult range m = �(n) (which we cannot handle), via an ingeniousconstruction, following earlier work of Zuckerman [36]. In addition, they applied their extractors toshow that poly(S) many random bits add no power at all to space(S) Turing machines. (Actually,they showed how to simulate poly(S) many random bits, in space(S) computations by using O(S)many random coins.)Srinivasan and Zuckerman [32] have independently discovered a construction similar to our thirdconstruction. Actually, their construction and its analysis are simpler than ours. Furthermore, theyhave used such a construction as the main technical tool in reducing the size of extractors for therange m = �(n) to nearly optimal.Recently, Zuckerman [37], using ideas from [35, 32], obtained the optimal results for the extrac-tion problem in the range m = �(n). This construction has numerous applications which we shallnot elaborate here.We stress that although all the above results improve on our second construction in case m =�(n), our construction is better in case n �m� n (i.e., in case n�m � O(log 1=�)).ConventionsMost probabilistic expressions refer to explicitly de�ned random variables which are typically de-noted X; Y; Z; Un and �. In this case we writeProb(Boolean expression in these random variables)and it is understood that the probability space is the one used in the de�nition of these randomvariables. In a few cases, the probabilistic expression also involves a uniformly selected object, suchas f 2 F . In such a case we writeProbf2F (Boolean expression in these random variables and in f)2



OrganizationWe start by recalling the technical tools used in our proofs. The following three sections are devotedto the corresponding three constructions mentioned above. Each section starts with a brief intuitivesummary of the results obtained. Next, comes a formal statement of the result, a description ofthe construction which achieves it and an analysis of this construction. We conclude each sectionwith a relevant lower bound. In addition, for the �rst construction, we describe two applications.2 Technical ToolsUniversal Hashing and Expanders are used in our �rst two constructions, whereas Small BiasProbability Spaces are used in the third.2.1 Universal HashingLoosely speaking, universal families of hashing functions consist of functions operating on the samedomain-range pair so that a function uniformly selected in the family maps each pair of points ina pairwise independent and uniform manner. Speci�cally, a family, Hn;m, of functions from f0; 1gnto f0; 1gm, is called universal if for every x 6= y 2 f0; 1gn and �; � 2 f0; 1gm it holdsProbh2Hn;m(h(x)=� ^ h(y)=�) = 2�2mwhere the probability is taken over all choices of h 2Hn;m with uniform probability distribution.Several e�cient families of universal hashing functions are known [7]. The functions in thesefamilies can be described using O(n + m) bits and posses an e�cient (e.g., polynomial-time andeven logspace) evaluating algorithms. The two main facts we will use about universal hash familiesare:Pairwise IndependenceLemma 2.1 The set of random variables fh(x)jx 2 f0; 1gng de�ned by a random h 2 H arepairwise independent and uniformly distributed in f0; 1gm.Leftover Hash Lemma. This fundamental lemma of [19] asserts that a random hash func-tion from a universal family will smooth min-entropy k (recall de�nition in the previous section)whenever the range parameter m is smaller than k. More preciselyLemma 2.2 (Leftover Hash Lemma [19]): Let X be any random variable on f0; 1gn with min-entropy k. Then the distribution (h; h(X)), with h chosen at random from Hn;m, has (norm-1)distance 2�(k�m)=3 from the uniform distribution.2.2 ExpandersWhen we talk of expanders we refer to families of d-regular graphs where a bound, denoted � < d,is given on the absolute value of all eigenvalues (except the biggest one) of the correspondingadjacency matrix. 3



The Expander Mixing Lemma. The following lemma is folklore and has appeared in manypapers. Loosely speaking, the lemma asserts that expander graphs (for which d � �) have theproperty that the fraction of edges between two large sets of vertices approximately equals theproduct of the densities of these sets. This property is called mixing.Lemma 2.3 (Expander Mixing Lemma): Let G = (V;E) be an expander graph of degree d and �be an upper bound on the absolute value of all eigenvalues, save the biggest one, of the adjacencymatrix of the graph. Then for every two subsets, A;B � V , it holds���� j(A�B) \EjjEj � jAjjV j � jBjjV j ���� � �pjAj � jBjd � jV j < �dFor sake of self-containment, we provide a proof in Appendix AThe Expander Smoothing Lemma. The following lemma follows easily by the standard tech-niques of dealing with random walks on expander graphs.Lemma 2.4 (Expander Smoothing Lemma): Let G = (V;E), d and � be as in the previous lemma.Let X be a random variable, distributed over V , so that Prob(X=v) � KjV j , for every v2V , and Ydenote the vertex reached from X by following a uniformly chosen edge. ThenXv2V ����Prob(Y =v)� 1jV j ���� < �d � pK � 1For sake of self-containment, we provide a proof in Appendix A2.3 Small Probability Spaces with the Small Bias PropertyThe following de�nition of small-bias sample spaces implies the informal de�nition in Section 5.Both de�nitions are legitimate generalizations of the de�nition of small-biased sample spaces forthe binary case (and indeed they are equivalent for p = 2).De�nition 2.5 Let t be an integer, p be a prime and ! be a pth root of unity (in the complex �eld).A set S � GF (p)t is said to have � bias (sample space for GF (p)t) if, for every t-long sequence(a1; :::; at) of elements in GF (p), so that not all ai's are zero, the expectation of (the norm-2 of)!Pti=1 aisi, taken over all (s1; :::; st) 2 S with uniform distribution, is bounded above by �.The following theorem, due to G. Even [12], is obtained by generalizing a construction of Alonet. al. [3]. Speci�cally, Even generalizes the LFSR construction by considering sequences overGF (p) (rather than over GF (2)).Theorem 2.6 [12, 13]: For every integer t, prime p and � > 0, there exists an e�ciently con-structible �-bias sample space of size (2t=�)2 for GF (p)t.4



3 Tiny Families of Functions with Mixing PropertiesRecall that a function f is mixing for subsets A;B of the domain if membership in A�B of a pair(a; f(a)), with a being a random element in the domain, occurs roughly as often as it would for arandom pair (a; b) of elements. The main result of this section is the explicit construction of an �-mixing family of size poly(1=�). Here � stands both for distance from truly random behavior, as wellas the fraction of bad functions which do not achieve this distance. We state the precise theorem,then describe the construction. We prove that our family has optimal size up to a polynomial, andpresent two applications; one to saving randomness in sampling procedures and the other for savingrandomness in the generalized logspace model of [25]. We conclude with a di�erent perspective ofthis result, advocated by Linial.3.1 Main resultTheorem 3.1 Let n be an integer and � > 2�O(n). Then, there exists a family of functions, eachmapping f0; 1gn to itself, satisfying the following properties.� succinctness: the family contains a polynomial in 1� number of functions, and each functionis represented by a unique string of length l(�) = O(log 1� ).� e�cient evaluation: There exists a logspace algorithm that, on input a description of a functionf and a string x, returns f(x).� mixing property: For every two subsets A;B � f0; 1gn, all but at most an � fraction of thefunctions f in the family satisfyjProb(Un2A ^ f(Un)2B)� �(A)�(B)j � �where �(S) def= jSj2n denotes the density of the set S and Un is a random variable uniformlydistributed over f0; 1gn.The following corollary will be used for the application to sampling.Corollary 3.2 Let F be as in Theorem 3.1. Then, for every subset S � f0; 1gn,1. all but at most an 2� fraction of the function pairs (f; f 0) in F � F satisfyjProb(f(Un)2S ^ f 0(Un)2S)� �(S)2j � 2�where � and Un are as in the theorem.2. For a uniformly chosen f 2 FjProbf2F (f(Un)2S)� �(S)j � 2�where the probability is over the choices of f and Un.5



Proof: Let Rf def= fx : f(x)2Sg. Then, for every f and f 0Prob(f(Un)2S ^ f 0(Un)2S) = Prob(Un2Rf ^ f 0(Un)2S)By the mixing property, for every f and all but at most � fraction of the f 0 2 F we havejProb(f(Un)2S ^ f 0(Un)2S)� �(Rf)�(S)j � �Clearly, for all but at most � fraction of the f 's we have j�(Rf) � �(S)j � � and Part 1 follows.Now, let G denote the subset of f 's in F for which jProbf2F (f(Un)2S)��(S)j � �. By the mixingproperty, jGjjF j � 1� �. Thus,jProbf2F (f(Un)2S)� �(S)j � maxf2G jProb(f(Un)2S)� �(S)j + Probf2F (f 62 G)� � + �and Part 2 follows.3.2 The ConstructionThe construction make used of two basic tools which are frequently used for saving randomness:universal hashing functions and expander graphs (see Section 2). We start by setting the parametersfor the expander graph and the universal hashing family to be used.The expander graph. We use an expander graph, denoted G, of degree d, second eigenvalue �,and vertex set f0; 1gn, so that �d � �2 . Such expander graphs are e�ciently constructible for d = 1�O(1)(cf., [14]).1 Assume, without loss of generality, that d is a power of 2. For every i 2 [d] def= f1; 2:::; dgand v 2 f0; 1gn, denote by gi(v) the vertex reached by moving along the ith edge of the vertex v.The universal hashing family. We consider a universal family, denoted H , of hash functions,each mapping l def= 3 log2(2=�)-bit long strings to [d] (where [d] = f0; 1gm, for some m). Namely, auniformly chosen function h 2 H maps each string � 2 f0; 1gl uniformly into [d] so that every twostrings are mapped in an independent manner.Our construction. We now de�ne the functions in our family, denoted F . For each hashingfunction h 2 H , we introduce a function f 2 F de�ned byf(v) def= gh(lsb(v)(v)where lsb(v) returns the l least signi�cant bits of v 2 f0; 1gn. Namely, f(v) is the vertex reachedfrom v by following the ith edge of v, where i is the image of the l least signi�cant bits of v underthe function h. (We remark that our choice of using the l least signi�cant bits is arbitrary and anyother e�cient partition of f0; 1gn into 2l parts, of approximately the same size, will do.)1Actually, using Ramanujan Graphs, it su�ces to have d = 4�2 (cf., [22]). One may prefer the Gaber{Galil expandersince it allows to avoid problems such as generating large primes and embedding f0; 1gn in GF (p), for a suitablylarge prime p. 6



3.3 AnalysisThe main technical tools used in our analysis are the Expander Mixing Lemma (Lemma 2.3) andthe pairwise independence of images under Universal Hashing functions.Clearly, the family F satis�es the succinctness and e�ciency requirements (of Theorem 3.1).We now turn to prove that it satis�es the mixing property. Towards this end we �xed two arbitrarysets A and B. We �rst observe that by the Expander Mixing Lemma, it holds thatjProb(Un2A ^ g�(Un)2B) � �(A)�(B)j < �d � �=2 (1)where � is a random variable uniformly distributed over [d], and Un is uniformly distributed overf0; 1gn. That is, let ei(A;B) def= 2�n � jfx 2A : gi(x)2Bgj. Then,ei(A;B) = Prob(Un2A ^ gi(Un)2B) (2)1d � dXi=1 ei(A;B) = Prob(Un2A ^ g�(Un)2B) (3)Thus, Eq. (1) can be rewritten as�����1d � dXi=1 ei(A;B)� �(A)�(B)����� � �=2 (4)Overview. Eq. (4) states that 1dPi ei(A;B) is a good approximation of �(A)�(B). If, for mosti 2 [d], each ei(A;B) were a good approximation to �(A)�(B) then we would be done. But, wedon't know whether this property holds. Instead, we partition A into a small number of subsets,denoted A�'s, associate a random i� 2 [d] for each such A� and consider how well P� ei�(A�; B)approximates P� �(A�)�(B) = �(A)�(B). We note that when the i�'s are uniformly distributedin a pairwise independent manner, as is the case when setting i� = h(�) for one uniformly chosenh 2 H , the approximation is good with high probability.Returning to the formal proof, we consider a partition of A into L def= 2l subsets so that A� =fx 2 A : lsb(x) = �g, for every � 2 f0; 1gl. We de�ne L random variables, �0l; :::; �1l, so that ��represents the density of the set fx 2A� : gh(�)(x) 2 Bg (in f0; 1gn). Note that the ��'s are alldetermined by the choices of h, and thus the probability space is uniform over all choices of h 2 H .Alternatively, since lsb(x) = � for every x 2 A�, we can write�� = 2�n � jfx 2A� : gh(lsb(x))(x) 2 BgjObserve that the set fx 2A : gh(lsb(x))(x) 2 Bg we can write as :[� fx 2 A� : gh(lsb(x))(x) 2 Bg.Thus, the theorem can be rephrased as claimingProb0@������ X�2f0;1gl �� � �(A) � �(B)������ � �1A � � (5)where the probability space is over all possible choices of h 2 H (or, equivalently of f 2 F ). Thisclaim is very appealing since each �� is expected to approximate �(A�) � �(B). Indeed, Eq. (5)follows by combining the two items of the next lemma.7



Lemma 3.3 Let the ��'s be as above and I def= f0; 1gl. Then�����X�2I Exp(��)� �(A)��(B)����� < �2 (6)Prob �����X�2I �� �X�2IExp(��)����� > �2! < � (7)Proof: Using the fact that h(�) is uniformly distributed on [d] and recalling the de�nition of ��,we have Exp(��) = 1d � dXi=1 jfx 2 A� : gi(x)2Bgj2nUsing A = :[� A� and Eq. (2), we haveX�2IExp(��) = 1d � dXi=1 P�2I jfx 2 A� : gi(x)2Bgj2n= 1d � dXi=1 ei(A;B)Using Eq. (4), we establish Eq. (6).Next we use Chebyshev Inequality to prove Eq. (7): here we use the fact that the ��'s arepairwise independent (since the h(�)'s are pairwise indepedent).Prob �����X�2I �� �X�2IExp(��)����� > �2! < Var(P� ��)(�=2)2� 4 �P�Exp(�2�)�2Using P�Exp(�2�) � P� �(A�)2 � P� 1L � �(A�) = 1L � �(A) � 1L , and the de�nition of L (= 8=�3),we upper bound the above by 4�2 � 1L = �=2, and so Eq. (7) follows.3.4 Lower BoundTheorem 3.4 A family with mixing property of accuracy �, must have size at least q4� .Proof: Otherwise, let F = ffi : 1� i� tg be a family of functions over f0; 1gn, contradicting theclaim. We construct a graph with vertex set f0; 1gn and edges set f(x; f(x)) : x2f0; 1gn ^ f 2Fg.Clearly, the graph has an independent set of size N=t, where N def= 2n. Consequently, there aretwo sets, A and B, each of cardinality N=2t, so that there exists no function f 2 F for which bothx 2 A and f(x) 2 B. On the other hand, �(A) � �(B) = (1=2t)2, and the theorem follows (in astrong sense!).3.5 Application to SamplingIn many settings repeated sampling is used to estimate the average value of a huge set of values.Namely, there is a value function � de�ned over a huge space, say � :f0; 1gn 7! [0; 1], and one wishes8



to approximate �� def= 12n Px2f0;1gn �(x). To this end, one may randomly select a small sample set Sand compute 1jSjPx2S �(x). Using a sample of O(1=�2) uniformly and independently selected points,one gets, with constant probability, an approximation that is within an additive factor of � fromthe correct average. In fact, a set of O(1=�2) points selected in a pairwise-independent and uniformmanner yields the same quality of approximation. Whereas generating t totally independent randompoints in f0; 1gn requires t � n unbiased coin ips, one can generate t pairwise-independent randompoints using only 2�n unbiased coin ips [9]. Using the new family of functions, we further reduce therandomness complexity of the approximation problem to n+O(log(1=�)), while almost maintainingthe number of sample points.De�nition 3.5 (sampler): A sampler is a randomized algorithm that on input parameters n (length),� (accuracy) and � (error), and oracle access to any function � :f0; 1gn 7! [0; 1], outputs, with prob-ability at least 1� �, a value that is at most � away from ��. Namely,Prob(jsampler�(n; �; �)� �� j > �) < �Theorem 3.6 There exists a poly(n; ��1; ��1)-time sampler which� makes O( 1��2 ) oracle queries; and� tosses n+ O(log(1=�)) + O(log(1=�)) coins.The proof of Theorem 3.6 is given below. We remark that samplers for Boolean functions canbe obtained in a more direct way; and furthermore, these samplers use only n coin tosses (seeAppendix B).Bellare et al [5] presented a generic method of reducing the dependence of the query complexityof a sampler on the error parameter �. Given a sampler of query complexity q(n; �; �) and random-ness complexity r(n; �; �) they obtain a sampler having query complexity O(log(1=�) � q(n; �; 0:1))and randomness complexity r(n; �; 0:1)+O(log(1=�)). Applying this result to the sampler of The-orem 3.6, we obtainCorollary 3.7 There exists a poly(n; ��1; log(1=�))-time sampler which� makes O( log(1=�)�2 ) oracle queries; and� tosses n+ O(log(1=�)) + O(log(1=�)) coins.The last sampler is optimal (up to a multiplicative factor) in its sample-complexity, and amongthe samplers with nearly optimal sample complexity the above is optimal (up to the additivelogarithmic factors) in its randomness-complexity [6]. Previously, e�cient samplers with optimalsample-complexity were known only for twice the randomness-complexity [5] (yet, [6] have provednon-constructively that \samplers" with sample and randomness complexities as in the corollarydo exist2). The known results are summarized in Figure 1.Proof of Theorem 3.6: The idea is to use a sequence of related random sample points. Thesesample points are generated by selecting a sequence of pairwise independent functions from a family2Actually, the non-constructive upper bound is slightly better than the result of Corollary 3.7.9



lower bound [6] upper bound [6] algorithm (this paper)Boolean n+ log2(1=�) n+ 2 log2(2=�) n +O(log(1=�)) (Thm. B.2)functions �2 log2(1=�)� O(log log(1=�))general n+ log2(1=�) n+ 2 log2(2=�) n +O(log(1=�))functions �2 log2(1=�)� O(log log(1=�)) + log2 log2(1=�) +O(log(1=�)) (Cor. 3.7)Figure 1: The randomness complexity of samplers which make �( log(1=�)�2 ) queries.as in Corollary 3.2 and applying each function to a single string that is uniformly selected in f0; 1gn.(We remark that the constructions of almost k-wise independent sample spaces, and speci�callythe ones in [24, 3, 13, 12], are of no help here as they would all require O(n) random bits, whereaswe aim at using (1 + o(1)) � n random bits.)We begin by considering the special case of Boolean functions; namely, we assume that � :f0; 1gn 7!f0; 1g. Next, we de�ne S def= fx : �(x) = 1g. Hence, the problem reduces to approximating�(S) def= jSj=N , where N def= 2n. Using a family of functions, F , guaranteed by Corollary 3.2 (whilereplacing � by �0 to be determined later), we know that all but at most a 4�0 fraction of the pairs,(f; f 0), of functions in F it holdsjProb(f(Un)2S ^ f 0(Un)2S)� �(S)2j < 2�0 (8)jProb(f(Un)2S) �Prob(f 0(Un)2S)� �(S)2j < 2�0 (9)Intuitively, this means that as far as sampling S is concerned, setting m = 3��2 and generating msample points by randomly selecting a sequence of pairwise independent functions, f1; :::; fm 2 F ,and a single random string s 2 f0; 1gn, is as good as using a pairwise independent sequence of msample points in f0; 1gn.The actual sampling algorithm is now obvious. We pick uniformly in f0; 1gn a seed, denoteds, and independently of it, we generate an m-long sequence of pairwise independent functions,f1; :::; fm 2 F . (Recall thatm = 2��2 and that the mixing parameter �0 of F is yet to be determined.)Our sample is the sequence s1; :::; sm, where si = fi(s). As our estimate, we output the average of� over this sample; namely, ~� def= 1mPmi=1 �(si).To analyze the performance of this algorithm, we use an analysis analogous to the one used forpairwise independent sampling. Namely, we de�ne a sequence of m random variables, �1; :::; �m, sothat �i = ( 1 if fi(Un) 2 S0 otherwiseNamely, �i = �(fi(Un)), where fi is uniformly chosen in F . Note that unlike the analysis of pairwiseindependent sampling, here the �i's are not pairwise independent. Each �i has expectation ��� 2�0(due to Item 2 of Corollary 3.2). Using the Chebyshev Inequality and �0 < �=4, we getProb(j~� � �� j > �) < Prob ����� mXi=1 �i � mXi=1 Exp(�i)����� > (�� 2�0)m!< Var(Pi �i)(�m=2)2 10



< Pi2[m] Exp(�2i )�2m2=4 + Pi 6=j2[m] (Exp(�i�j)� Exp(�i) � Exp(�j))�2m2=4The �rst term in the last expression is bounded by �=2 (as usual), since Exp(�2i ) � 1 andm = 3=(��2). To bound the second term note that Exp(�i) = Probfi(Un) and Exp(�i�j) =Probfi;fj (fi(Un)2S ^ fj(Un)2S), for every i; j.Let G denote the set of pairs (f; g) for which Eq. (8) and (9) both hold. Then for every(f; g) 2 G,�(f; g) def= jProb(f(Un)2S ^ g(Un)2S)� Prob(f(Un)2S) �Prob(g(Un)2S)j � 4�0It follows thatProb(j~� � ��j > �) < �2 + 4�2m2 � Xi 6=j2[m] (Exp(�i�j)� Exp(�i) �Exp(�j))< �2 + 4�2m2 � Xi 6=j2[m]�Probfi;fj2F ((fi; fj) 62 G) + max(fi ;fj)2G(�(fi; fj))�< �2 + 4m2 � (4�0 + 4�0)�2m2Using �0 = �2�64 the above is bounded by �. Note that �0 = poly(�; �) implies log(1=�0) = O(log(1=�))+O(log(1=�)), and so our usage of randomness is as required. This concludes the analysis of the simplecase of Boolean functions.We now generalize the proof to deal with arbitrary functions �, rather than Boolean ones. Weuse the same algorithm, except for a di�erent setting of the parameter �0, and analyze it with morecare. The de�nition of the random variables, �i, is modi�ed as follows. Let q def= d1� e+ 1. We de�neq + 1 sets Sr def= fx : r�1q ��(x)< rqg, for 1�r�q + 1, and set �i = r�1q if fi(Un) 2 Sr . We proceedby considering only functions � :f0; 1gn 7!f r�1q : 1�r�q + 1g, rounding-up any other function inthe obvious manner. This, by itself, introduces an �=2 error in the approximation. As before, forthe functions we consider we have �i = �(fi(Un)).Following the same ideas as before, we show that for all but a 4q2�0 fraction of the pairs, (f; f 0),of functions in F it holds for every 1�r; r0�qjProb(f(Un)2Sr ^ f 0(Un)2Sr0)� �(Sr)�(Sr0)j < 2�0 (10)jProb(f(Un)2Sr) � Prob(f 0(Un)2Sr0)� �(Sr)�(Sr0)j < 2�0 (11)Here we will set �0 = �2�64q2 = �(�4�). The rest of the analysis now follows as before, since again wewill have bound the sum Xi 6=j Exp(�i�j)� Exp(�i) �Exp(�j)by considering separately the pairs (fi; fj) for which Eq. (10) and (11) hold and the few for which oneof these does not hold. Here the sum is bounded above bym2 �q2 �4�0, and the theorem follows notingthat the algorithm usesm = O(��1��2) samples and n+O(log(1=�0) = n+O(log(1=�))+O(log(1=�))random bits. 11



Remark: In retrospect, one can describe the construction employed in the proof of Theorem 3.6as follows. We start with an explicit construction of an expander with vertex set f0; 1gn and degreepoly(1=��). The sampler consists of uniformly selecting a vertex of the expander and consideringa pairwise independent O(1=�2�)-long sequence of the neighbors of this vertex. The output of thesampler is merely the average of the function value on these neighbors. Furthermore, for the specialcase of Boolean functions, an optimal sampler utilizes a Ramanujan graph of degree O(1=�2�) andconsists of unifomly selecting a single vertex and outputting the average of the function values ofall its neighbours (see Appendix B).3.6 Application to Generalized Random LogspaceIn [25], Nisan considered the problem of saving randomness in a context in which m randomizedalgorithms are executed and their output is fed to an s-space machine which then produces a �nalBoolean output. (Actually, the problem is not a�ected if the s-space machine is allowed to haveoutput of length bounded by O(s).) For simplicity, assume that each of the algorithms uses ncoin ips. The obvious way of running the entire procedure requires m � n coin ips. In case weare willing to tolerate an � additive error/deviation in the �nal output, more randomness-e�cientsolutions are possible. In particular, Nisan showed [25] that the randomness complexity can bedecreased to O(maxfn; s+ log(m=�)g � logm)Replacing the universal hash functions used in [25] by our family of mixing functions, we note thatthe above problem can be solved with randomness complexityn+ O((s+ log(m=�)) � logm)We remark that in many applications n � s + log(m=�). For these cases, our improvement yieldsa logarithmic reduction in the randomness complexity.Remark: Theorem 3.6 follows as a special case case of the above (alas with a more complicatedconstruction).3.7 A Di�erent PerspectiveThe mixing property of families of functions should not be confused with the mixing propertyof graphs. Yet, the two are related as we shall see below. We say that a graph has a goodmixing property if for every two subsets of vertices the fraction of edges connecting these subsets isapproximately equal to the product of the densities of these subsets. Clearly, a family of functionsover f0; 1gn, with good mixing, induces a regular multi-graph3 with good mixing. The converse isnot obvious. Speci�cally, it was not even known whether the edges of some small degree graph withgood mixing property (e.g., an expander) can be so colored that they induce a family of functionswith a good mixing property.Let us try to clarify the nature of this problem. Consider a d-degree expander with vertex-setV def= f0; 1gn, and some d-coloring of its edges. For every two sets of vertices, A and B, denote by3A multi-graph is a graph in which parallel edges are allowed.12



Ei(A;B) the set of edges of color i that connect a vertex in A to a vertex in B. By the ExpanderMixing Lemma, it follows that the average of jEi(A;B)jjV j , taken over all 1� i� d, is approximatelyjAjjV j � jBjjV j . The question is whether jEi(A;B)jjV j is approximately jAjjV j � jBjjV j , for almost all 1� i� d. Onecan easily verify that, in general, the answer is negative. Speci�cally, for Cayley Graph expanders(e.g., [23, 4, 22]), there are sets A and B for which there exist no i such that jEi(A;B)jjV j approximatesjAjjV j � jBjjV j . The problem raised by Nati Linial was to construct an expander for which the mixingproperty holds for most colors (and not only on the average).We resolve the above problem by presenting a transformation which takes an arbitrary (edge-colored) expander and produces an (edge-colored) expanders for which the mixing property holdsfor most colors (as required above). Our transformation preserves the vertex set and the expansionproperties of the original expander, but increases the degree by a polynomial factor (i.e., from dto poly(d)). Although the transformation is not explicitly presented in this paper, it can be easilyderived from the description above.4 Tiny Families Extracting High Min-entropyRecall that the extraction property, for a family of functions each mapping n-bit strings to m-bitstrings, means that each subset of K � 2m strings in f0; 1gn is mapped almost uniformly to f0; 1gm,by all but a small fraction of the functions in the family. We consider the extraction problem intwo special cases: the case where m is very small (in the next section) and the case m is veryclose to n (in this section). Actually, we consider a generalization of the extraction problem torandom variables with an upper bound, of 1K�2m , on the probability function. Such a bound iscalled min-entropy (cf., Chor and Goldreich [8]).De�nition 4.1 (min-entropy): Let X be a random variable. We say that X has min-entropy k ifProb(X=x) � 2�k, for each x.Here we treat the case of random variables with min-entropy n � k with k � n. We constructa family of poly(2k=�) functions mapping f0; 1gn to f0; 1gm, where m = n � O(k). For each suchrandom variable, all but a � fraction of the functions, when applied to it, yield a random variablewhich is �-close to uniform (in norm-1). Loosely speaking, this means that these functions are ableto \smoothen" almost the entire min-entropy; speci�cally, min-entropy n� k is mapped to almostuniform distribution over the strings of length n� O(k).In a typical use of this extraction, most notably the applications of the leftover hash lemma,� = 2�
(k). In these cases the size of our family is poly(1=�) which is optimal by the lower boundwe give.4.1 Main ResultTheorem 4.2 Let k < n, m < n � k and � > 2�(n�m�O(k))=O(1). (Typically, m = n � O(k) and� = 2��(n�m).) There exists a family of functions, each mapping f0; 1gn to f0; 1gm, satisfying thefollowing properties.� succinctness: the family contains a polynomial in 2k� number of functions, and each functionis represented by a unique string of length l(k; �) = O(k + log 1� ).13



� e�cient evaluation: There exists a logspace algorithm that, on input a description of a functionf and a string x, returns f(x).� extraction property: For every random variable X 2 f0; 1gn of min-entropy n� k, all but an� fraction of the functions f in the family satisfy12 � X�2f0;1gm jProb(f(X)=�)� 12m j � �4.2 The constructionAgain, we use universal hashing functions and expander graphs. This time we use an expandergraph, G, degree d (power of two), second eigenvalue �, and vertex set f0; 1gm, so that �d � �28�2k=2 .(Recall that such an expander can be constructed for d = poly(2k� ).) As before, for every i 2 [d] def=f1; 2:::; dg and v 2 f0; 1gm, denote by gi(v) the vertex reached by moving along the ith edge of thevertex v. The universal family, denoted H , contains hash functions each mapping (n�m)-bit longstrings to [d].Our construction. We now de�ne the functions in our family, denoted F . For each hashingfunction h 2 H , we introduce a function f 2 F de�ned byf(x) def= gh(lsb(x))(msb(x))where lsb(x) returns the n�m least signi�cant bits of x 2 f0; 1gn, and msb(x) returns the m mostsigni�cant bits of x. Namely, f(x) is the vertex reached from the vertex v def= msb(x) by followingthe ith edge of v, where i is the image of the n�m least signi�cant bits of x under the function h.(Again, our choice of using the n�m least signi�cant bits is arbitrary.)We remark that one may use any family of extractors with the appropriate parameters insteadof the universal family H used above. In fact, in preliminary versions of this work we have used theextractors of [27] in order to derive alternative constructions with size kO(log(1=�). However, thesealternative constructions are subsumed by Zuckerman's recent work [37].4.3 AnalysisDespite the apparent similarity to the construction for mixing, the analysis of the current construc-tion is completely di�erent. It is based on \stronger" technical tools: the Expander SmoothingLemma and the Leftover Hash Lemma.Clearly, the family F satis�es the succinctness and e�ciency requirements. We now turn toprove that it satis�es the extraction property. We �x an arbitrary random variable X 2 f0; 1gn, ofmin-entropy n�k, and consider the distribution (f; f(X)), when f is randomly chosen in F . Oncewe bound the statistical di�erence between (f; f(X)) and (f; Um) by �2, where Um is the uniformdistribution over f0; 1gm, the theorem follows (by a counting argument).Lemma 4.3 Let X and f 2 F be as above. Then, the statistical di�erence between (f; f(X)) and(f; Um) is bounded above by �2. 14



Proof: Let Z be a random variable representing the distribution on the m most signi�cant bitsof X ; i.e., Z = msb(X). For each z 2 f0; 1gm, let Yz be a random variable representing thedistribution on lsb(X) conditioned on Z = z; i.e., X is the concatenation of Z and YZ . We call badthose z's in f0; 1gm for which Yz has `too small' min-entropy. Namely, for � > 0 to be �xed later,let the set of bad pre�xes be denoted byB� def= fz2f0; 1gm : 9y s.t. Prob(Yz=y) > �gThe reader can easily verify, using the min-entropy bound on X , thatProb(Z2B�) < 2m�(n�k)� (12)(As otherwise, there exists z 2 B� and y 2 f0; 1gn�m so that Prob(X=zy) = Prob(Z=z)�Prob(Yz=y) > 2m�(n�k)��2m � � = 2�(n�k).) Also, it can be veri�ed that for every zProb(Z=z) � 2�(m�k) (13)(As otherwise, there exists y 2 f0; 1gn�m so that Prob(X=zy) > 2�(m�k) � 2�(n�m) = 2�(n�k).)We now turn to bound the statistical di�erence between the distributions (f; f(X)) and (f; Um),where f is uniformly distributed in F . Denote the statistical di�erence between distributions D1and D2 by �[D1; D2] (i.e., �[D1; D2] def= 12P� jProb(D1 = �) � Prob(D2 = �)j). Some usefulinequalities used below are �[g(D1); g(D2)] � �[D1; D2], for every function g, and �[D1; D3] ��[D1; D2] + �[D2; D3]. We haveExpf2F (�[(f; f(X)); (f;Um)]) = Expf2F (�[f(X); Um]) (14)� Expf2F (�[f(X 0); Um]) + �[X;X 0] (15)where X 0 is the random variable induced by X conditioned on Z 62 B�. By Eq. (12), �[X;X 0] <2�(n�m�k)� , and it is left only to bound the other term in Eq. (15).Let A be the matrix representing the transition probabilities in a random step on the graphG; i.e., Ap describes the probability distribution after one random step on the graph G, startingwith the distribution p. Here and in the sequel, we abuse notation and refer to random variablesand distributions as vectors in the natural manner (i.e., the ith component of the vector p is p(i)and the ith component of the vector X is the probability that X = i). Each column in A has dnon-zero entries and each such entry holds the value 1d . For every h 2 H , let Ah be the matrix thatresults from A by modifying the non-zero entries as follows. The ith non-zero entry in column z ischanged from 1d to Prob(h(Yz)= i). Note that AhZ equals gh(YZ)(Z) which in turn equals f(X) forthe function f associated with the hashing function h. Thus, letting Z 0 = msb(X 0), we getExpf2F (�[f(X 0); Um]) = Exph2H (�[AhZ0; Um]) (16)� �[AZ0; Um] + Exph2H(�[AhZ 0; AZ0]) (17)� �[Z 0; Z] + �[AZ;Um] + Exph2H(�[AhZ 0; AZ0]) (18)The �rst term in Eq. (18) is bounded by Eq. (12). Fixing � def= �68d and using the Leftover HashLemma (Lemma 2.2) we get, for each z 62 B� ,Exph2H(�[h(Yz); D]) < 3p�d = �2215



where D is uniformly distributed over f1; :::; dg. Recalling the de�nition of Ah, this means that theexpected di�erence between corresponding entries in the matrices A and Ah is at most �2=2. Thus,for every probability vector p (and in particular for p induced by Z0),Exph2H(�[Ahp; Ap]) < �22This yields a bound on the third term in Eq. (18). It is left to bound the second term; that is�[AZ;Um]. This is done using the Expander Smoothing Lemma (Lemma 2.4), while relying on themin-entropy bound of Eq. (13). We get�[AZ;Um] < 2 � �d � p2k � �24Combining all the above bounds, we getExpf2F (�[(f; f(X)); (f; Um)]) < 2 � 2�(n�m�k)� + �22 + �24 (19)Recalling that � = �68d and d = (2k� )c, and using n � m � k = 6 + ck + (8 + c) � log(1=�), the �rstterm in Eq. (19) is bounded by �2=4, and the lemma follows.4.4 Lower BoundWe conclude with the lower bound. It shows, that for � = 2�
(k), our construction is optimal. Westress that the bound holds even when trying to extract just one bit.Theorem 4.4 A family of functions from f0; 1gn to f0; 1g, with extraction property of accuracy� < 0:5 with respect to random variables of min-entropy n � k � n � 1, must have size at leastmaxfk + 1; (1=�)� 1g.Proof: Let F = ffi : 1 � i � tg be a family of Boolean functions as in the hypothesis of thetheorem. First, we assume, on the contrary that t � k. Our argument proceeds in t iterations.In the �rst iteration we consider the function f1 and omit all the strings x 2 f0; 1gn which aremapped by f1 to the value with less preimages. In the ith iteration we omit the strings according tothe mapping induced by fi. Thus, in each iteration, we omit at most half of the remaining stringswhile preserving that the remaining strings have the same image under each function consideredso far. After t iterations we are left with a set B of at least 2n2t � 2n�k strings such that for everyx; y 2 B and f 2 F it holds that f(x) = f(y). Considering the uniform distribution on B, wederive a contradiction (as long as � < 1).We now turn to the second inequality. Assume, on the contrary that t < (1=�). Without lossof generality, we assume that t is odd (otherwise consider t � 1 of the functions in F ). It followsthat for every x, there exists a bit �, so that Probf2F (f(x)=�) � (t+1)=2t > 1+�2 . Thus, there existsa bit �, so that for at least half of the x's (in f0; 1gn) the above holds. Letting X be a randomvariable uniformly distributed on these \bad" x's, we get Expf2F (Prob(f(X)=�) > 1+�2 . Since Xhas min-entropy at least n � 1 and the family is not �-extracting (for X) we reach a contradictionand the theorem follows. 16



5 Tiny Families Extracting Low Min-EntropyHere we treat the case of random variables with min-entropy k, with k� n. We construct a familyof poly(2kn=�) functions mapping f0; 1gn to f0; 1gm, where m = 
(k). (Again, � is the accuracyparameter.) Loosely speaking, this means that these functions are able to \smoothen" a constantfraction of the min-entropy; speci�cally, min-entropy k is mapped to almost uniform distributionover the strings of length 
(k).5.1 Main ResultTheorem 5.1 Let 3m < k < n and � > 2�(k�3m)=3. (Typically, m = k6 and � = 2�m.) There existsa family of functions, each mapping f0; 1gn to f0; 1gm, satisfying the following properties.� succinctness: the family contains a polynomial in 2mn� number of functions, and each functionis represented by a unique string of length l(m; n� ) = O(m+ log n� ).� e�cient evaluation: There exists a logspace algorithm that, on input a description of a functionf and a string x, returns f(x).� extraction property: For every random variable X 2 f0; 1gn of min-entropy k, all but an �fraction of the functions f in the family satisfy12 � X�2f0;1gm jProb(f(X)=�)� 12m j � �5.2 The ConstructionWe use a construction of small probability spaces with small bias. Intuitively, we consider a primep � 2m and a construction of t def= nm random variables, (�1; :::; �t), each distributed over GF (p) withthe following small bias property:for every t-long sequence (a1; :::; at) of elements in GF (p), so that not all ai's are zero, therandom variablePti=1 ai�i is almost uniformly distributed overGF (p) (i.e., its statisticaldistance from uniform is small).The actual condition is given in De�nition 2.5. Typically, such random variables are de�ned by theuniform distribution over some sample space S � GF (p)t. We will use such a sample space, S, forbias �0 def= �3p3 . (Hence, using the sample space of [3, 12], jSj = poly(n2m� ).)Our construction. The functions in our family, denoted F , correspond to the samples in thesmall-bias space. Namely, for each (s1; :::; st) 2 S, we introduce the function f 2 F de�ned byf(x) def= tXi=1 sixiwhere xi is the ith coordinate in x 2 GF (p)t and the arithmetic is in GF (p). The functions, sode�ned, map GF (p)t to GF (p). Standard modi�cations can be applied to derive functions mappingf0; 1gn to f0; 1gm (recall p � 2m and pt � 2n). 17



5.3 AnalysisOur analysis uses the fact that the construction of small{bias spaces of [3, 12] satis�es a bound onan exponential sum related to the above intuitive motivation to small{bias spaces. We then provea Lindsey{like lemma on near-orthogonal vectors and combine it with the bound above to give theresult.Suppose, on the contrary to the extraction property, that for some random variable X =(X1; :::; Xt) with min-entropy k, for an � fraction of the f 's in F , the random variable f(X) is�-away (in norm-1) from the uniform distribution. Then, it follows that there is a subset S 0 � Sof � � jSj sequences so that, for each �s def= (s1; :::; st) 2 S0, the random variable Pti=1Xisi is �-awayfrom the uniform distribution. Namely, for every �s def= (s1; :::; st) 2 S 0,12 � p�1Xj=0 �����Prob tXi=1 Xisi = j! � 1p ����� > � (20)Let v be a zero-sum p-dimensional vector with norm-1 greater than 2� (here v represents thedi�erence between the probability function of Pti=1Xisi and the uniform distributional function).Then, the norm-2 of v def= (v1; :::; vp) is at least pp � (2�=p)2 = 2�=pp. Passing to the Fourier basis(i.e., in which the jth vector is p�1=2 �(!j; !2j; :::; !pj) with ! being a pth root of unity), we representv by v̂ = (v̂1; :::; v̂p), where v̂j = 1ppPi !ij � vi. The norm-2 of v and v̂ are equal, and thus themax-norm of v̂ is at least 2�=pppp = 2�=p. Let kck denote the magnitude of the complex number c. Itfollows that there exists a j so that pp � kv̂jk = kPi vi!jik � 2�=pp and this j cannot be p (sincePi vi!pi = Pi vi = 0). Applying this argument to the vector representing the di�erence betweenthe probability function ofPti=1Xisi and the uniform distributional function, we conclude that forevery �s def= (s1; :::; st) 2 S0 there exists some j 2 f1; :::; p�1g, so that2�pp � Xi  Prob tXk=1Xksk = i! � 1p! � !ij= Xi Prob tXk=1Xksk = i! � !ij= Exp �!jPtk=1Xksk�It follows that for some j 2 f1; :::; p� 1g there exists a subset S 00 � S 0 of cardinality jS0jp�1 > �p � jSj,so that for every �s def= (s1; :::; st) 2 S 00Exp �!jPti=1Xisi� � 2�pp (21)Assume, without loss of generality that j = 1. By partitioning these sequences according to theapproximate direction of the exponential sum and applying a pigeon-hole argument4, we obtain aset B � S 00 of cardinality 
(�jSj=p) so that 1jBj X(s1;:::;st)2BExp �!Pti=1 Xisi� = 
(�=pp) (22)4E.g., partition the vectors according quarters of the plain and consider the direction which resides in the middleof the quarter with the largest number of vectors. This yields, jBj � 14 �jS00j and sum bounded below by p22 � 2�pp > �pp .18



Contradiction follows by contrasting Eq. (22) with the following lemma, which generalizes Lindsey'sLemma (cf., [11, p. 88] and [2]).Lemma 5.2 (A Generalized Lindsey's Lemma): Let A be an N -by-M matrix of complex numbers,so that each row has inner-product5 with itself equal to M and each pair of di�erent rows haveinner-product bounded (in norm-2) by �0M . Let u be an N -dimensional probability vector with eachcomponents bounded above by �, and v be anM -dimensional probability vector with each componentsbeing either 1K or zero. Then, kuAv>k � s(�0 + �) � MKLindsey's Lemma is obtained from the above by requiring the rows of A to be orthogonal (i.e.,�0 = 0) and considering only \at" distributions (i.e., each ui being either � or 0).6Proof: Denote, � def= kuAv>k. Then, using Cauchy Schwartz Inequality, we get�2 � (v � v>) � ((uA) � (uA)>)= 1K � ((Xi uiAi) � (Xi uiAi)>)where Ai is the ith row of the matrix A and ui is the ith entry of the vector u. Using the hypothesisconcerning the inner-product of the rows of A we obtain the bound�2 � 1K �0@Xi 6=j uiuj�0M +Xi u2iM1A< MK �0@�0Xi;j uiuj +Xi u2i1AUsing Pi;j uiuj = (Pi ui)2 = 1 and Pi u2i �Pi ui � � = �, we get �2 � MK � (�0 + �) and the lemmafollows.Contradiction to Eq. (22) follows by considering the pt-by-jSj matrix with rows corresponding toelements of GF (p)t and columns corresponding to elements of S. The (x; s)th entry in this matrixconsists of !Pti=1 xisi, where x = (x1; :::; xt) 2 GF (p)t and s = (s1; :::; st) 2 S. Let u be a vectordescribing the probability distribution of the random variable X (i.e., ux = Prob(X = x)) and� = 2�k (the upper bound on probability for X). Let v be the (normalized) vector characterizingthe set B (i.e., vs equals 1jBj if s 2 B and 0 otherwise). Note that the inner-product of di�erent rowscorresponding to sequences x = (x1; :::; xt) and y = (y1; :::; yt) equals Ps2S !Pti=1(xi�yi)�si , which,5Note that inner-product of complex vectors is de�ned as component-wise complex multiplication of one vectorby the conjugate of the other.6The standard formulation refers to matrices with �1 entries and asserts that the sum of elements in any L-times-K generalized sub-matrix is bounded by pLKM . Instead, our formulation bounds the sum normalized by the areaof the sub-matrix (i.e., by L �K, with L = 1=�). 19



by construction of the sample space S, has norm-2 bounded by �0jSj. Letting A = (!Pti=1 xisi)x;s,we have kuAv>k =  Xx2GF (p)tXs2S ux � !Pti=1 xisi � vs=  Xx2GF (p)tXs2B 1jBj � Prob(X=x) � !Pti=1 xisi= Xs2B 1jBj � Exp(!Pti=1 Xisi)Applying Lemma 5.2 and using the de�nition of �0, �, M and K (i.e., �0 = �3p3 , � = 2�k � �3 � 2�3m ��3p3 , jM j = jSj and K = jBj = 
(�jSj=p)) we get 1jBj X(s1;:::;st)2B Exp(!Pti=1Xisi) � s(�0 + �) � MK= O(�=p)which, for su�ciently large p, contradicts Eq. (22).There are two minor technicalities to be addressed: how can we assume that p is su�cientlylarge (i.e., bigger than some unspeci�ed constant which is actually 9) and how do we achive amapping to f0; 1gm (rather than to GF (p)). Both issues are resolved by letting p � 2m=� (stillpt � 2n) and mapping GF (p) to f0; 1gm in the natural manner (i.e., each range element having��1 � 1 elements). We may also assume � < 1=9, and so the theorem follows.5.4 Lower BoundTo illustrate that this construction is near optimal when k = O(logn) we restate Theorem 4.4 withthe necessary change of parameters.A family of functions from f0; 1gn to f0; 1g, with extraction property of accuracy � < o:5with respect to random variables of min-entropy k � n � 1, must have size at leastmaxfn� k + 1; (1=�)� 1g.We note that theBPP simulation of [32] mentioned in the introduction indeed uses this constructionfor this value of the parameter k.AcknowledgementsWe are grateful to the anonymous referees for their useful comments.References[1] M. Ajtai, J. Komlos, E. Szemer�edi, \Deterministic Simulation in LOGSPACE", Proc. 19thSTOC, 1987, pp. 132{140. 20
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[35] A. Wigderson, D. Zuckerman, \ Expanders that Beat the Eigenvalue Bound, Explicit Con-struction and Applications", Proc. of the 25th STOC, pp. 245{251, 1993. To appear inCombinatorica.[36] D. Zuckerman, \Simulating BPP Using a General Weak Random Source," Algorithmica,Vol. 16, pp. 367{391, 1996.[37] D. Zuckerman, \Randomness-Optimal Sampling, Extractors, and Constructive Leader Elec-tion", 28th STOC, 1996, pp. 286{295.A Proofs for Section 2Recall that G = (V;E) is a d-regular (expander) graph and � is an upper bound on the absolutevalue of all eigenvalues, save the biggest one, of the adjacency matrix of the graph.A.1 Proof of Lemma 2.3Lemma A.1 (Lemma 2.3 restated): For every two subsets, A;B � V , it holds���� j(A�B) \EjjEj � jAjjV j � jBjjV j ���� � �pjAj � jBjd � jV j < �dProof: Let A;B � V be two sets and denote N def= jV j, �(A) def= jAj=N and �(B) def= jBj=N . Denoteby M the adjacency matrix of the graph G, and let us denote it eigenvalues by �1; :::; �N, wherej�ij � j�i+1j. Note that �1 = d, whereas, by the statement of the lemma, � � j�2j. Hence, theclaim of the lemma is restated as���� j(A� B) \ Ejd �N � �(A) � �(B)���� � �p�(A) � �(B)dWe proceed by bounding the value of j(A� B) \ Ej (from both directions). To this end we let �adenote the N -dimensional Boolean vector having 1 in the ith component i� i 2 A. The vector �bis de�ned similarly. Clearly, j(A � B) \ Ej equals �aM�b>. We consider the orthogonal eigenvectorbasis, e1; :::; eN, where eie>i = N for each i, and write each vector as a linear combination of thevectors in the basis, denoting by ai the coe�cient of �a in the direction of ei (i.e., �a =Pi aiei). Onecan easily verify that a1 = �(A) and PNi=1 a2i = �(A). Similarly for �b. It now follows thatj(A�B) \Ej = �aM�b>= �aM(b1e>1 + NXi=2 bie>i )= d � �(B) � jAj+ �a NXi=2 �ibie>i= �(B)�(A) � dN + NXi=2 �iaibiN2 "�(B)�(A) � dN � � �N NXi=2 aibi#23



Using PNi=1 a2i = �(A) and PNi=1 b2i = �(B), and applying Cauchy-Schwartz Inequality, we boundPNi=2 aibi by p�(A)�(B). The lemma follows.A.2 Proof of Lemma 2.4Lemma A.2 (Lemma 2.4 restated): Let X be a random variable, distributed over V , so thatProb(X = v) � KjV j , for every v 2 V , and Y denote the vertex reached from X by following auniformly chosen edge. Then Xv2V ����Prob(Y =v)� 1jV j ���� < �d � pK � 1Proof: Let N def= jV j, and x denote the N -dimensional probability vector de�ned by X (i.e.,xi def= Prob(X = i)). Let A denote the Markov process de�ned by traversing a uniformly selectededge in G; namely, the matrix A is the adjacency matrix of the graph G, normalized by division byd. Denote the eigenvalues of A by �1; :::; �N, and note that �1 = 1 and j�ij � �d , for every i > 1. Weconsider the orthogonal eigenvector basis, e1; :::; eN, where eie>i = 1N for each i, e1 = ( 1N ; :::; 1N ), andwrite each vector as a linear combination of the vectors in this basis. Denote by ci the coe�cientof x in the direction of ei. We start by bounding Pi c2i as followsXi c2i 1N = (Xi cie>i ) � (Xi cie>i )>= x � x>= Xi x2i� NK ��KN �2getting Pi c2i � K. It is also easy to see that c1 = 1. We now consider the di�erences vector,denoted z, representing the deviation of the random variable Y from the uniform distribution.z> def= Ax> � e>1= A(Xi ciei)> � e>1= Xi>1 �icieiRecall that the lemma claims an upper bound on the norm-1 of z. Instead, we start by providinga bound on its norm-2: Xi z2i = Xi>1 �2ic2ieie>i� ��d�2Xi>1 c2i 1N� ��d�2 K � 1NMaximizing the sum of the jzij's, subject to the above bound, the lemma follows.24



B A Simpler Sampler for the Boolean CaseFor the case of Boolean functions, a much simpler sampler, meeting the complexity bounds of thesampler presented above, exists. In fact, this simpler sampler has even lower randomness complexity(speci�cally n instead of n + O(log(1=�))). Our sampling procedure is exactly the one that waspresented by Karp, Pippinger and Sipser for hitting a witness set [21], yet the analysis is somewhatmore involved. Furthermore, to get an algorithm which samples the universe only on O(�=�2)points, it is crucial to use a Ramanujan graph in role of the expander in the Karp-Pippinger-Sipsermethod. Again, we present a sampler for constant � and derive the result for general � using themethod of Bellare et. al. [5]. Namely,De�nition B.1 (Boolean sampler): A Boolean sampler is a randomized algorithm, denoted A,which satis�es Prob(jA�(n; �; �)� ��j > �) < �for every Boolean function � :f0; 1gn 7!f0; 1g.Theorem B.2 There exists a poly(n; ��1; log(1=�))-time Boolean sampler which� makes O( log(1=�)�2 ) oracle queries; and� tosses n+ O(log(1=�)) coins.B.1 ConstructionAs said, the sampling algorithm uses, in an essential way, an explicit construction of a Ramanujan(expander) graph [22]; namely, expanders with second eigenvalue, �, satisfying � � 2pd, where ddenotes the degree. Speci�cally, we use an expander of degree d = 4=��2 and associate the vertexset of the expander with f0; 1gn.The sampling algorithm consists of uniformly selecting a vertex, v, (of the expander) andaveraging over the values assigned (by �) to the neighbors of v; namely,~� def= 1d Xu2N (v) �(u)where N (v) denotes the set of neighbors of vertex v.B.2 AnalysisLemma B.3 The above algorithm constitutes a Boolean sampler. It� makes 4�2� oracle queries;� tosses n coins; and� runs in time poly(n)�2� . 25



Proof: The complexity bounds are obvious from the description of the algorithm. We turn to theanalysis of its estimates.We denote by B the set of bad choices for the algorithm; namely, the set of vertices that onceselected by the algorithm yield a wrong estimate. That is, v 2 B if������1d Xu2N (v) �(u)� �������� > �Denote by B0 the subset of v 2 B for which1d Xu2N (v) �(u) > �� + � (23)It follows that each v 2 B0 has �d too many neighbors in the set A def= fu : �(u)=1g; namely,jfu2N (v) : u2Agj > (�(A) + �) � d (24)where �(A) def= jAjN and N def= 2n. Using the Expander Mixing Lemma ones gets that� � �(B0) = ���� jB0j � (�(A) + �)ddN � �(B) � �(A)����� ���� j(B0 �A) \ EjjEj � jAjjV j � jBjjV j����� �d � pjAj � jB0jN� 2pd �q�(A) � �(B0)and �(B0) � ��(A) follows. Using a similar argument, we can show that �(B � B0) � �(1� �(A)).Thus, �(B) � � and the claim follows.
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