
The Theory of Computing: A Scienti�c PerspectiveOded Goldreich� Avi WigdersonyJune 8, 2001AbstractWe provide an assessment of the Theory of Computing (TOC), as a fundamental scienti�cdiscipline, highlighting the following points:� TOC is the science of computation. It seeks to understand computational phenomena, beit natural, man-made or imaginative.� Research in TOC has been extremely successful and productive in the few decades ofits existence, with continuously growing momentum. This research has revolutionizedthe understanding of computation and has deep scienti�c and philosophical consequences,which will be further recognized in the future. Moreover, this research and its dissemi-nation through education and interaction has been responsible for enormous technologicalprogress.

�Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.ilyInstitute for Advanced Study, Princeton, NJ. E-mail: avi@ias.edu

Contents1 Introduction 11.1 Culture, Science and Technology : 11.2 Individual scienti�c disciplines : 21.3 Theory of Computing: A Scienti�c Discipline : 22 On the fundamental nature of TOC and its success so far 33 On the impact of TOC on Technology 54 On the impact of TOC on other sciences 75 Four concrete topics of investigation in TOC 85.1 One-way functions (do they exist?) : 95.2 Solving problems versus verifying solutions : 95.3 Computational View of Phenomena and Concepts : : : : : : : : : : : : : : : : : : : 115.4 The Search for More E�cient Procedures : 13

1 IntroductionThe revolutionary impact of Computing Technology on our society does not necessarily facilitatethe appreciation of the intellectual contents of the Theory of Computing (TOC). Typically, peopleare so overwhelmed by the wonders of the computing technology that they fail to wonder aboutthe theory underlying it. Furthermore, they tend not to think of computing in general termsbut rather in the concrete terms in which they have lastly encountered it. Consequently, theintellectual contents of the Theory of Computing is rarely communicated and rarely understood(by non-specialists).Our aim is to help to redeem this sour state of a�airs and try to communicate the intellectualcontents of the Theory of Computing. But before doing so, we explicitly state the philosophicalbeliefs that underly our view of science in general.1.1 Culture, Science and TechnologyThe search for truth and beauty is the essence of civilization. Since the Renaissance, the searchfor truth takes the form of (or is called) Science. Technology is an important by-product of thescienti�c progress, not its raison d'etre. Furthermore, philosophical reasoning as well as experienceshow that technology is best served by a free scienti�c process; that is, a scienti�c process whichevolves according to its own intrinsic logic and is not harnessed to the immediate technologicalneeds. Such free scienti�c process evolves by formulating and addressing intermediate goals whichare aimed at narrowing the gap between the ultimate goals of the discipline and the understandingachieved so far.It is ironic that as the contribution of science to technology becomes wide-spread, a populardemand arises to have more. Namely, the success of science and in particular the bene�ts of itstechnological by-products causes the populace to turn against science (in the form of demandsthat science deliver even more consumable commodities). Still, one has to oppose these demands.Science is to maintain its autonomy which is correlated to its success. In the long run, this is alsothe best way to serve technology.Technology evolves mostly via applied scientists and engineers who use the scienti�c knowledgethey have acquired and their own creative forces to the development of speci�c applications. Con-trary to popular beliefs, the most important contributions of science to technology do not stemfrom the harnessing of scientists to engineering tasks, but rather from the fact that scientists in-struct and enrich the thinking of these engineers. The education of engineers does not reduce tothe acquisition of information. Its more important features are the development of conceptualiza-tion and problem-solving abilities. The conceptual frameworks of the discipline are o�ered to thestudent and the better these frameworks are the better an engineer he/she may become. This formof education is most e�ective when done by good scientists who enjoy the freedom to pursue theirown research interests.It is important to note that the nature of the process by which science e�ects technology makesit very hard for the laymen, and sometimes even the expert, to trace a technological breakthroughto its scienti�c origins. Almost always these breakthroughs depend on the conceptual scienti�cframework and very often they utilize speci�c discoveries which were considered totally impracticalat the time of discovery (e.g., complex numbers and electricity).
1

1.2 Individual scienti�c disciplinesThe scienti�c disciplines are de�ned by the questions they address. For example, the formative ques-tions of Biology refer to (structural and operational) properties of living beings, those of Chemistryrefer to (structural and operational) properties of (natural and arti�cial) substances, and those ofPhysics refer to (motion and interaction) properties of matter and energy. (Jumping ahead, weidentify the formative questions of the Theory of Computation as referring to general properties ofcomputation be it natural, man-made, or imaginary.)The importance of a discipline is determined by the nature of its formative questions. Themore fundamental these questions are the more important the discipline is. Educated laymen andcertainly scientists can usually assess how fundamental major scienti�c questions are.The success of a discipline is measured by the progress it achieves on its own formative questions.To measure the amount of progress one has to understand the questions and the state of knowledgeof the discipline with respect to these questions. This usually requires the understanding of experts,but can be conveyed to scientists of other disciplines.Neither the importance nor the success of a scienti�c discipline can be measured by the impactof its current discoveries on technology (or on other disciplines). If the discipline is indeed importantand successful such impacts are likely to follow. However, rarely will this impact be linearly relatedto the scienti�c progress in the discipline.Individual scienti�c disciplines do not exist in a vacuum. The healthy evolution of a scienti�cdiscipline is sensitive to scienti�cally relevant inputs from other disciplines as well as technologicaldevelopments. We wish to stress that the inuence of these inputs is determined by the disciplinesinternal logic and inherent goals and that such inuences are vastly di�erent from non-inherentsuggestions (e.g., that in order to increase funding and/or employment opportunities the disciplineshould pursue alternative directions).1.3 Theory of Computing: A Scienti�c DisciplineThe Theory of Computing aims at understanding general properties of computing, be it natural, man-made, or imaginary. Most importantly, it aims to understand the nature of e�cient computation.Following are teasers for four concrete topics which will be discussed in greater length in Section 5.One key question is which functions can be e�ciently computed? For example, it is (relatively)easy to multiply integers, but it seems hard to take the product and factor it into its prime com-ponents. In general, it seems that there are one-way computations, or put di�erently one-wayfunctions: Such functions are easy to evaluate but hard to invert. Do one-way functions exist? Wedon't know, though we believe they do exist, and can relate this belief to other important questions.A related question is that of the comparable di�culty of solving problems versus verifying thevalidity of solutions. We believe that some problems are much harder to solve than to verify thevalidity of a solution for them. However, we don't know this to be a fact either. Still, we know ofmany problems which are hard to solve, provided that the above belief is indeed valid. For eachof these problems, an e�cient solving method would imply an e�cient solving method for eachproblem for which verifying validity of solution is easy.The Theory of Computing provides a new viewpoint on old phenomena and concepts. Forexample, a computational approach to randomness leads to the conclusion that randomness can beexpanded almost arbitrarily. Likewise, a computational approach to proofs leads to the conclusionthat obtaining a proof to a statement may not teach you anything beyond the validity of thestatement. 2

The Theory of Computing is also concerned with �nding the most e�cient methods for solvingspeci�c problems. To demonstrate this line of research we present a method for multiplying numberswhich is more e�cient than the simple method learned in elementary school.2 On the fundamental nature of TOC and its success so farThe Nature of E�cient Computation and its natural as well as surprising derivatives, is the forma-tive question of the Theory of Computing (TOC). We consider this question to be one of the mostfundamental scienti�c questions ever asked. Unfortunately, the fundamental status of this questionis usually disregarded due to its immediate technological impact.We feel that both the fundamental nature of the questions of the Theory of Computing and thesuccess of our community in engaging these questions (up to this very day) are evident. To be onthe safe side, here is some evidence.An excellent demonstration of the the fundamental nature of TOC is provided by the impact ofNP-completeness on other sciences. Papadimitriou lists about 20 diverse scienti�c disciplines thatwere unsuccessfully struggling with some of their internal questions and came to recognize theirintrinsic complexity when realizing that these questions are, in some form, NP-complete. Accordingto his bibliographic search, NP-completeness is mentioned as a keyword in about 6,000 scienti�carticles per year. How many scienti�c notions have had such impact?More generally, TOC has established a direct relationship between structural and computationalcomplexity. E�cient algorithms are discovered almost only if tangible mathematical structure ex-ists. This connection has already bene�ted mathematical progress in many areas such as NumberTheory, Algebra, Group Theory and Combinatorics, where on one hand a need for e�cient al-gorithms existed, and on the other hand the search for them has generated structural results ofindependent interest.Actually, we tend to forget the revolution in problem-solving introduced by the TOC treatmentof algorithms. This revolution consists of the explicit introduction of the concept of an algorithmand the measures for its e�ciency, the emphasis on data representation and organization, thegeneral techniques for creating algorithms for classes of problems, and the notion of reductionsbetween problems. Needless to mention the impact of all these on computer practice, but we wishto stress the impact on any kind of problem solving.The TOC has drastically changed the perception of knowledge and information. Speci�cally,the TOC stresses that di�erent representations of the same information may not be e�ectivelyequivalent; that is, it may be infeasible to move from one representation to the other (although atransformation does exist). In this new world, publicly available information may be unintelegible.All of Modern Cryptography is based on this Archimedes' point, and its scienti�c and technologicalimpact are well known. Here we wish to suggest that this revolution applies not only to computersystems but to any aspect of human interaction in which privacy and fault-tolerance are importantconcerns.The TOC has introduced totally novel ways of understanding and using randomness. Theprobabilistic algorithms developed within the TOC use randomness in many varied sophisticatedways. The applicability of randomized procedures for solving tasks from di�erent domains such asnumber theory, optimization and distributed computing is amazing. Moreover, the growing studyof derandomization has lead to derivation of better deterministic algorithms from probabilistic ones.Combining randomness and interaction lead TOC to create and successfully investigate fasci-nating concepts such as interactive proofs, zero-knowledge proofs and Probabilistically CheckableProofs (PCP). Each of these concepts introduces a deep and fruitful revolution in the understanding3

of the notion of a proof, one of the most fundamental notions of civilization. Furthermore, theserevolutions bore fruits which reached far beyond the realm of proof systems. For example, work onPCP lead to the �rst breakthrough in the understanding of the hardness of approximation. Thisis but one incredible demonstration of the how probabilistic thinking leads (very indirectly andnon-trivially) to fundamental understanding of totally non-random phenomena.In addition, combining randomness and complexity, TOC has generated meaningful notionsof pseudorandomness. Computational hardness yields pseudorandom generators: using \one-way"functions, randomness can be \stretched" in an almost unlimited way as far as e�cient observationsare concerned. This yields the stunning (to most scientists) conclusion that if their Monte-Carloalgorithm (estimating perhaps a numerical integral or simulating a physical process) behaved dif-ferently on sequences produced by such generator, than on genuine random sequences, then theyhave discovered an e�cient factoring algorithm! Totally di�erent pseudorandom generators whichTOC discovered can fool any space limited algorithm. Since all standard statistical tests have suchimplementations, this is great news to Statisticians, Physicists, and most Social Scientists whouse such tests on everyday basis. Namely, the results of all their experiments are guaranteed tohold even if they replace all their random choices by pseudorandom choices produced by from tinyrandom seed.TOC has gained considerable understanding of organizing work on huge systems of many com-ponents. The study of parallel algorithms resulted in amazing ways to get around \inherentlysequential" tasks. Subdividing work to smaller chunks in e�cient and balanced ways is takingplace not only in computer systems but in many organizations, and the insights gained by TOC areavail to them too. A di�erent kind of parallel computing arises in settings where the information isdistributed among the components of the system. TOC studies of such distributed environmentsresulting in models and methods of consistency, recovery, knowledge, synchrony and decision mak-ing, are relevant not only to (distributed) computer systems but also to economics and other socialsciences.The organization and availability of information was always a major part of civilization, and inparticular science and technology depend on it. The models and solutions developed by TOC forsuch problems not only resulted in computer systems that would do it for people, but in the veryway people and institutions have to think about information. The amazing new abilities to handlehuge masses of data increase, rather than decrease, the human decisions on what they want to bestored, what access patterns they want to allow and disallow, what should be retrieved quickly andwhat can take longer, etc. The theoretical understanding enables to formalize their demands, andenable programmers (who should understand the algorithms and data structures as well) either tosatisfy these demands or to explain why they are impossible to achieve.Likewise, some of TOC's insights to performance analysis, the minimizing and balancing ofseveral resources, are of universal applicability. One example is the notion (and techniques) ofcompetitive analysis, whose applications range from operating systems to information compres-sion (Lempel-Ziv) to emergency services to stock-market investments. More generally, asymptoticanalysis has taught us that structure is often revealed at the limit. The adversarial point of viewdeveloped for worst case analysis (both of inputs to algorithms and behavior of distributed systems)has taught us a similar lesson: structure is often revealed under the worse circumstances and maybe obscured by unjusti�ed assumptions on \typical behavior". Such structure often leads to better(in every respect) theoretical and practical solutions.Finally, let us mention that that many inter-disciplinary scienti�c activities involve and fur-ther seek the participation of TOC members. These include the di�erent \neurocomputational"groups (encompassing brain models, learning, and neural networks, involving physicists, biologists,4

psychologists) and \rational behavior" groups (encompassing economy, ecology, evolution, compe-tition, and decision making, involving economists, statisticians, psychologists and mathematicians).They want TOC to be there since they have recognized the universal value of the problems TOCdeals with and the understanding TOC has obtained so far, and in particular their relevance tothese areas.Clearly, lack of space, time and knowledge prevents us from going on. Still, the massive listabove illustrates the fundamental nature of our endevours from the scienti�c point of view. Butthey are fundamental also from two other important viewpoints. One is the philosophical viewpoint,which has dealt with many of the notions and questions above for centuries, and which receives afresh, radically di�erent perspective (namely the computational one) from TOC. As an exampleconsider the question of P vs. NP vs. CoNP. Some tend to think of it is a mere technical questionand miss its deep philosophical signi�cance: Understanding the relation between the di�culty ofsolving a problem to the di�culty of verifying the correctness of the solution, to the di�culty ofproving that no solution exists. Additional examples are the TOC perceptions of the notion of aproof, its view of randomness, and its emphasis on the importance of speci�c representations. Thesecond viewpoint is the potential contribution of TOC to the general education and enrichment ofhumanity. Many notions, problems and even some of the solutions TOC has produced are availablefor understanding (in nontrivial levels) by laymen. We have successfully tried to explain some ofthem to elementary school kids (and indeed we foresee some of them taught and used as teachingparadigms in grade and high school). Few sciences (which existed for many centuries) can competeon these grounds with what TOC achieved in a few decades.To summarize, this section illustrated the fundamental importance of TOC as well as its success.As for the latter point, let us stress that the achievements sketched above are more or less equallyspread over the last 30 years, and many are very recent. Indeed, the rate of progress done by TOCin these years is astonishing and there is no inherent reason for this progress to stop.3 On the impact of TOC on TechnologyWhile we rejected technological impact as a measure of importance and progress of a scienti�cdiscipline, the enormous impact of TOC research on technology should not be made a secret. Weare far from experts regarding this impact, still there are a few points that even we can tell. We hopeand believe that a much better treatment will be given in the future by more quali�ed colleagues.The most important impact of TOC on Computer Science and Technology stems from thefundamental goals of TOC. In its endevour to understand the nature of computation, TOC createdgeneral abilities to conceptualize, model, unify, solve and analyze computational mediums andproblems. The e�ects of this understanding are present in essentially every working system andalgorithm on earth. Without them the computer revolution, which has changed life on this planet ina fundamental way and will continue to e�ect it at increasing speed, would simply not be possible!Indeed, they are the very reason that theory courses are mandatory for all undergraduates incomputer science departments. They are the reason that most applied computer science coursesare not a mere collection of ad-hoc tricks and are thus suitable to be taught in universities. Theyare the reason that the originators of technological breakthroughs, as well as all engineers andprogrammers, can actually think, talk, present and evaluate their ideas. Some critics may say thatthese understandings were achieved long ago, and there is no need for further \re�nements". Thisis contradicted by many technological advances which have resulted (and will continue to result)from recent developments of such understandings regarding, for example, parallel, distributed,interactive, secure and fault-tolerant computation. Many such developments were achieved by5

special interest groups within TOC, who took on to study in depth such models and algorithms.Their specialized conferences, which are a relatively recent phenomena, often enjoy the activeparticipation of more applied scientists, who have both easy access to this knowledge as well as aforum to inuence its direction.It is crucial to recognize and communicate the fact that most of this understanding resulted notfrom attempts of solve a concrete problem under particular technological constraints. Rather, itcame from generalizing the problems and abstracting away unnecessary technological details to thepoint that enables �nding structures and connections to other knowledge. Only then could appliedscientists and engineers, who had both the theoretical understanding as well as the mastership ofthe speci�cs of the technological task, fuse them together to a successful practical object. The valueof this approach has many examples, and we discuss only one.By far the largest impact computers had on humanity is the Internet. Here are a few key theoret-ical developements, mostly done much before the internet was even conceieved, that were absolutelyessential to its deployment and success (but by no means undercut the enormous contribution ofthe practical side of CS and the Industry to the Internet revolution).� Cryptography is the key to people trusting the internet, for their privacy, and their abilityto conduct a variety of transactions securely. In brief, Cryptography guarantees the hugeeconomic potential of e-commerce on the Internet.� Distributed Computation is the key for the various protocols and algorithms making surepackets are routed quickly and reliably. In brief, it delivers the e�ciency of communicationon the Internet.� Algorithms and Data Structure drive the fantastic speed of information processing and re-trieval. In brief, they deliver search, which is the main activity on the Internet.In general, one should advocate the value of abstractions which address some fundamentalaspects of an important problem (even if they seem not to address all aspects), and warn againstthe shortsightedness captured by dismissing such abstractions as irrelevant. The study of suchan abstraction is more likely to yield fundamental insights than the study of the \real problem"(assuming such a creature exists { actually there is never one real problem but rather many di�erentrelated real problems and what these have in common may well be the dismissed abstraction).Only later will people, with a concrete application and technology in mind, be able to �ne-tunethe theoretical understanding to their needs. (This in itself may require signi�cant research andimplementation, that was and is taking place by computer scientists and engineers, and whichresulted in so many successful technological developments.)It is equally important to recognize and communicate that it was the freedom and time givento TOC researchers to pursue these general directions, in real attempt to understand novel com-putational media, that resulted in such progress { quite often in surprising and unexpected ways.One can illustrate the point above by numerous examples. We prefer to give two very recentexamples whose technological and practical e�ects are imminent and yet to come. So far their\practicality" is demonstrated by a major leap in the algorithmic understanding of major problems.This leap is rooted in developments of complexity theory which, at �rst and for a long time, seemedtotally irrelevant to the latter or any other algorithmic task. Such leaps are frequent in our �eld,and are due to the freedom of pursuing scienti�c intuition, as well as to the strong communicationand information exchange between the various subareas of our �eld.� The Euclidean TSP Algorithm. A few years ago Sanjeev Arora announced a polynomialtime approximation scheme for the Traveling Salesman Problem (and a host of other combi-6

natorial optimization problems) in the plane. The problem itself was a major object of studyin our �eld for decades. The failed attempts to �nd such approximation scheme resulted infundamental contributions to NP-completeness, probabilistic analysis, approximation algo-rithms and mathematical programming. It also resulted in enormous e�orts to understandthe relative power of various heuristics.The techniques present in the algorithm of Arora were available decades ago! Why was itonly found now? While this is a source of speculations, Arora himself tells how he cameabout it. The algorithm arose from his attempts to generalize the inapproximability resultsof metric TSP to Euclidean TSP, attempts which revealed to him the extra structures of theEuclidean case. These attempts were based on the surprising connection of PCP proofs tohardness of approximation. In turn, these \mysterious" proofs arised from abstract results likeMIP=NEXP (relating \clearly impractical" complexity classes). Moreover, the MIP modelof multi-prover interactive proofs was suggested by Sha� Goldwasser as a generalization ofinteractive proofs (themselves the outcome of amazing developments). Needless to say thatGoldwasser did not think of approximation algorithms when she suggested the new model.� E�cient Error Correction. Again, a few years ago Dan Spielman discovered a linear-ratecode which has asymptotically optimal (i.e., linear time) encoding and decoding algorithms.This central problem of communication, that originated with Shannon half a century ago,has attracted the best minds in Information Theory, Mathematics, Electrical Engineeringand Computer Science, and has resulted in beautiful and important theory. Still, this majorproblem, resolved by Spielman, was beyond reach.The construction of Spielman closely mimics the construction of a superconcentrator. Thisobject was not available to most scientists working on this problem, and Spielman learnedabout it from Complexity Theory. The superconcentrator was invented in TOC, by Valiant, inhis attempts at one of the quinticential impractical problems { proving circuit lower bounds.Failing to do that, Valiant turned to an even more impractical problem { to show that this par-ticular attempts will necessarily fail! Here he was successful. He (noconstructively) exhibitedthe existence of expanders, and used them as building blocks of linear size superconcentrators.A deep and beautiful mathematical theory developed, motivated by the explicit and e�cientconstruction of expanders, which e�ected diverse areas of TOC. More to the point of thissubsection, indirectly and through much further work, derivatives of the study of expandersbecame extremely relevant to technological development concerning communication networksand protocols for a variety of parallel and distributed architectures.The amazing scienti�c consequences and the surprising practical implications which sprouted (andwill continue to grow) from the totally abstract and impractical proposals of Goldwasser and Valiantin the examples above, well illustrate the richness and unity of our �eld. Such connections seem tobe more common in TCS than in other �elds.4 On the impact of TOC on other sciencesIn the short time of its existence, TOC has had an unprecedented e�ect on other sciences. Thishas taken at least three forms.� Algorithms. Many sciences use heavy computation for their research, mainly for simulationand analysis. The advances in fundamental algorithms in TOC, on data structures and gen-eral techniques are essential for them to understand, so as to optimize their computational7

resources. The impact of these on the rate of progress in these sciences cannot be under-estimated. Moreover, sometimes such disciplines generate a particular type of problems forwhich the general algorithmic knowledge does not su�ce. In some cases where these problemsraised su�cient scienti�c interest (perhaps luckily timed with internal developments), TOCwas quick to pick up and study its natural computational structure. Two such superb exam-ples are the great advances TOC has made in understanding and analyzing random walks,so often at the base of simulations in Physics, and its contributions to number theoretic andalgebraic algorithms. Finally, the success of the Human Genome Project, was partially basedon algorithmic progress on problems related to sequencing and other computational biologyinduced problems of massive information processing. Much more essential will algorithms befor the real challenge of understanding the structure and function of genes and proteins.� Natural Computational Models. Nature computes! While this was observed long beforecomputer science existed, TOC supplied the mechanisms to model, discuss and explain thesephenomena. A recent challenge directed by TOC towards Physics is whether a QuantumComputer can be built? But even without the demonstration of the excessive power of theQuantum Computer model (e.g., Shor's polynomial-time Quantum algorithm for factoring),we speculate that complexity may be the right way of thinking about decoherence of a quan-tum mechanical system. The brain is another computational device whose understandingseems to be extremely far, but to which our unique contributions in neural networks andcomputational learning are providing important stimulation. Valiant's book \Circuits of theMind" is the �rst serious attempt in any of the sciences studying the brain to relate the whatwe know of the \hardware" in our brain, to the computational complexity of the \functions"it manages to perform. Understanding the complexity of cognitive tasks, and our ability toperform them is a great challenge to TOC.� Universality of TOC notions. As pointed out in Section 2, the unique computationalpoint of view of TOC and its conceptual derivatives, has resulted in surprising impact onintrinsic studies of other disciplines. NP completeness, discovered over 20 years ago, has hada sweeping e�ect. But our view on other notions such as randomness, pseudorandomness,interaction and approximation is only beginning to take e�ect.It should be reiterated that the discoveries above has made a fundamental impact on these sciences,and have lead them to reassess their points of view on some basic intrinsic questions and pursuenovel research directions. We wish to stress that, having sound tradition and self esteem, thesesciences were not (and could not have been) forced to pursue these novel directions by TOCor anyone else. Their choice was based on their scienti�c understanding of their intrinsic goals.Similarly, the interest of TOC in these problems arose from the understanding of TOC researchersthat these problems are relevance to the goal of understanding computation. The amazing successof this impact and the high and growing regard to TOC in these sciences, again, stems from theintellectual freedom in which these interactions arose. Again, even a small fraction of these e�ectsjusti�ed the investment so far in TOC.5 Four concrete topics of investigation in TOCThe following exposition is aimed at laymen, and we hope that it can be understood by such.Before embarking, we point out that the choice of representation of objects plays a key rolein the theory of computing. If you care to talk of multiplying numbers, you should say in what8

form are these numbers represented. The natural choice, which the Theory of Computing indeedadopts, is a (natural) number is represented as a sequence of decimal digits. (Actually, the commonconvention is to represent numbers as sequences of binary digits, but the di�erence between thetwo conventions is immaterial.)5.1 One-way functions (do they exist?)We consider functions which map natural numbers to natural numbers. To simply the discussion,we consider only functions which are one-to-one (i.e., never map two di�erent numbers to the samenumber) and preserve the magnitude of numbers (i.e., the number of digits in the representationis preserved when applying the function).A function is called one-way if it is (relatively) easy to evaluate but hard to invert. For example,consider the function which maps pairs of prime numbers to their product. The elementary methodfor multiplying numbers demonstrates that it is relatively easy to evaluate this function. (By theway, more e�cient methods for multiplication are known; see below.) However, we do not know ofan e�cient method for inverting the above function; that is, for going from the product back tothe prime factors. In fact, the problem of factoring numbers is believed to be hard.To get some feeling for the plausibility of the belief that factoring numbers is fundamentallymore di�cult than multiplying them, think of the task of multiplying two 4-digit numbers (forexample, 5381 and 6673). Certainly, you can do this using a pen and paper within a couple ofminutes. But how about �nding the prime factors of a 8-digit number (for example, 51855637)?Any one-way function can be inverted by trying all possible inverses, but such an exhaustivesearch is not e�cient: To invert the function on a 100-digit number, an exhaustive search will take10100 operations (which will take more time than the age of the universe even using the fastestpossible computer ever to be built). For some functions, there are more e�cient ways of invertingthe function (for example, consider the function which maps an integer to its successor { that is, nis mapped to n+ 1). The question is whether every function which is easy to evaluate is also easyto invert. Our belief is that the answer is negative; that is, that they are functions (called one-way)which are easy to evaluate but hard to invert. In case our belief is wrong this would mean thatany process can be reversed within an e�ort which is proportional to the e�ort invested in carryingit through. Analogies from many disciplines suggest that this cannot be true in general. That is,some processes may be easy to reverse, but there are processes which are hard to reverse.Trying to prove that one-way functions do exist is indeed within the agenda of the Theory ofComputing and so is exploring the consequences of assuming that one-way functions exist. Forexample, it turns out that \Cryptography" is possible if and only if one-way functions exist (seemore below).5.2 Solving problems versus verifying solutionsWhen I say a \problem" I mean a general type of a problem for which they are many instances. Forexample, consider the problem of �nding a number which (strictly) divides a given number. In thiscase the instances are numbers and each instance may have several solutions (for example, 385 isan instance and 5, 7 and 11 are all solutions (that is non-trivial divisors)). There may be instanceswhich have no solution (for example the number 17 has no non-trivial divisors). It is easy to verifythe validity of solutions to instances of the problem we are discussing here: Given two numbers Nand M it is easy to test if M divides N . However, it seems hard to solve this problem for giveninstances: Recall that we believe that it is hard to factor numbers into their prime components.Thus, if we could always (easily) �nd a divisor of a given number (or tell if such does not exist)9

then we could factor. (This claim is not immediate: you may need to apply the divisor-�ndingmethod several times, but not too many times...)In general a problem consists of a set of instances each having a (possibly empty) set of solutions.With respect to such a problem we consider two computational tasks:solving: given an instance of the problem �nd a valid solution or indicate that no such solutionexists (if this is indeed the case).verifying: given an instance of the problem and a candidate solution, determine whether thecandidate is indeed a legitimate solution to the given instance.The big question of the Theory of Computing is what is the relation between the di�culty (orcomplexity) of the above two tasks. Speci�cally, whether for each problem for which the veri�cationtask is easy also the solving task is easy. This question is known as the \P vsNP" question: Looselyspeaking, P stands for the class of problems which can be solved easily, NP stands for the class ofproblems for which veri�cation is easy, and the question is whether P contains everything in NP .Another Example. Suppose you are given a set of Quadratic equation and is asked to �nd 0-1values for the variables so that all equations are satis�ed. For example, consider the systemx1x2 � x3 = 0x1x3 � x1x4 + x3x4 = 1x1x4 � x2x3 + x1x3 = 0You may easily verify that the setting x1 = x2 = x3 = 1 and x4 = 0 satis�es all requirements, butit would have taken you more e�ort to �nd such a setting by yourself. In general, the veri�cationtask is easy (you just substitute variables by their values and do a little arithmetics), whereas thesolving task (�nding a 0-1 setting satisfying all equations) seems hard. Note that there is an obvious(but ine�cient!) way of solving the problem: just trying all possible solutions. But this is notfeasible if you have a system with many (say 100) variables. The question is whether there existsan e�cient way of solving the above problem. We believe that no such e�cient method exists.Furthermore, we can show that an e�cient method of �nding solutions to Quadratic equations asabove would yield an e�cient method for solving any problem in NP (that is, it would yield thatP = NP). Indeed, the latter statement is interesting and surprising: the fate of the \P vs NP"question depends on whether it is easy to solve Quadratic equations. Thus, we say that solvingQuadratic equations is NP-complete (see below).The belief that P does not contain all NP. Recall that we do not know whether for eachproblem for which the veri�cation task is easy also the solving task is easy. That is we do not knowwhether NP = P or not. We do however believe that there are problems for which veri�cation iseasy and yet solving is hard (that is NP 6= P). This belief is based not only on the intuition thatsolving is generally harder than verifying validity of solutions, but also by a variety of problems (inNP) for which many people failed to �nd e�cient solution-�nding procedures.NP-completeness. There are many problems (the above example is merely one of them) forwhich we know that an e�cient way of �nding solutions for the problem would yield such e�cientsolutions for any problem in NP . Thus, each of the former problems, called NP-complete, encom-passes the fate of all NP. If an NP-complete problem can be solved e�ciently then any problem10

in NP can be solved e�ciently (that NP = P). However, our belief that NP 6= P implies thatno NP-complete problem has an e�cient solution-�nding procedure. Thus, NP-completeness of aproblem is taken as strong evidence that it cannot be solved e�ciently.Indeed NP-completeness is extensively used as an indication of the complexity of problems.Once you are faced with a particular problem which you need to solve and once you have failedto devise e�cient solution-�nding procedure, you may want to know if your failure is due to yourown lack of ideas or to the intrinsic di�culty of the problem at hand. Proving that the problemis NP-complete does provide an indication that your failure is due to something more fundamentalthan your lack of ideas. That is indeed comforting, but what should you do if you still need asolution? In such a case, having realized that the problem at hand is NP-complete, you should seekrelaxations of it, which are good enough for the application at hand, and try to obtain an e�cientprocedure for solving such a relaxed problem. The relaxation can take the form of restricting theset of possible instances or broadening the set of admittable solutions. For example, if you onlyneed to �nd 0-1 solutions to a set of linear equations, you should not worry that �nding solutionsto Quadratic equations is NP-complete: An e�cient method for the special case of linear equationsdoes exist! In this case the relaxed problem restricts the set of instances of the original problem.Also, if you are happy with satisfying only half of the given Quadratic equations then there is ane�cient method for �nding a 0-1 setting which will do the job. In this case the relaxed problembroadens the set of admissible solutions. Thus, NP-completeness told you to look for good enoughrelaxations of the problem, and can be used as a justi�cation for not solving the original problem.This justi�cation is especially of value if solving the original problem would have been even better.5.3 Computational View of Phenomena and ConceptsPseudorandomness. Adopting a computational view of randomness, we call a distribution pseu-dorandom if it is infeasible to distinguish between examples drawn from this distribution and ex-amples drawn from a truly random distribution. Note that two distributions may be very di�erentand yet it may be infeasible to tell them apart. In such a case we consider the di�erence betweenthem as \non-important" (since nobody can note it within his lifetime, as noting the di�erencerequires an infeasible computation). Thus, our computational view of randomness is behavioristic(it asks how does randomness look to us) rather than being ontological (asking what is the essenceof randomness). However, it is the notion of e�cient computation which allows such a meaningfuland appealing (behavioristic) approach.More importantly, we may talk of pseudorandom generators. These are e�cient (deterministic)procedures which once fed with a short random seed, output a much longer sequence which ispseudorandom. Thus, pseudorandom generators \stretch randomness": taking a short randomseed they produce a much longer sequence which cannot be told apart from a truly long randomsequence. To be speci�c, if you want to produce a 1,000,000 long sequence of random lookingdigits, it may su�ce for you to randomly select 1000 digits and stretch them using an e�cient(deterministic) program into a sequence of 1,000,000 digits. Note that the generated sequence isnot truly random, yet it looks so to any (computationally-bounded) observer. Since in real-life weare all computationally-bounded, this type of pseudorandomness su�ces for all our purposes.Pseudorandom generators can be constructed provided that one-way functions exist. Actu-ally, this su�cient condition is also a necessary one. Thus, a tight connection is made betweencomputational di�culty (of inverting some functions) and random behavior. Speci�cally, if compu-tational di�culty does exist in a meaningful way then randomness can be expanded very drasticallyand so the can be no meaningful measure for the \amount" of randomness. In particular, little11

randomness may give rise to huge random phenomena and constructs. For example, given 1000randomly selected digits it is possible to e�ciently implement a random function which assigns arandom-looking 1000 digit number to every 1000 digit argument. By this we mean that queryingthis function for its value at, say 1,000,000 places of your choice, you will not be able to distinguishthe function from a truly random one.An application to Cryptography: Pseudorandom generators yield a solution to the problemof securely communicating over an insecure (that is, possibly wire-tapped) channel. Speci�cally,this is the case since any pseudorandom generator yields a private-key encryption scheme. Such ascheme consists of two procedures, one for encoding and one for decoding. Both procedures utilizea secret key which is assumed to be selected and shared by the communicating parties. Beforesending a message, the sender encrypts it using the shared key, obtaining a so-called ciphertext.Only the ciphertext is sent over the insecure channel, but a wire-tapper which does not know thekey shared by the legitimate parties cannot make any sense of it. Once the ciphertext reaches thelegitimate receiver, he/she can read the original message by decrypting the ciphertext using theshared key. Now let us see how to use a pseudorandom generator to establish such an encryptionscheme. The key shared by the legitimate parties will serve as a seed to the pseudorandom generator(and thus it is important that the key be selected at random). Messages to be sent are representedas sequences of digits. To send a speci�c digit secretly, the sender uses the next (unused so far)digit of the pseudorandom sequence (generated by the pseudorandom generator using the key asseed). Say that the message digit is x and the pseudorandom digit is y, the the corresponding digitof the ciphertext will be the least signi�cant digit of x + y (for example, if x = 4 and y = 7 wesend 1 and if x = 6 and y = 2 we send 8). Decryption is done analogously. Say we have receivedthe digit z and currently use the pseudorandom digit y, then we compute z� y and add 10 to it incase it is negative: for example, if z = 1 and y = 7 we retrieve x = (1 � 7) + 10 = 4 and if z = 8and y = 2 we retrieve x = (8� 2) = 6.Zero-Knowledge. Do proofs teach us anything beyond the validity of the assertion? Our dailylife (and especially our school years) tell us that the answer is positive. Typically, convincing usof the validity of some fact the prover (that is, the person convincing us) tell us things we did notknow. Adopting a computational view of proofs, we may introduce a meaningful and appealingsetting in which proofs exists which yield nothing beyond the validity of the claim the are supposedto vouch for. Such proofs are called zero-knowledge since they tell us nothing we did not know (orcould not do) if we were to believe the validity of the assertion.But �rst we should ask what is a proof. The glory given to the creativity required to �ndproofs, makes us forget that it is the less glori�ed process of veri�cation which gives proofs theirvalue. What makes gives a proof its value is the existence of an e�cient veri�cation procedurewhich rejects false proofs while admitting valid proofs. Thus, any (veri�cation) process which hasthese features gives rise to a \proof system" and, in particular, one may want to consider interactiveand randomized veri�cation procedures. Indeed, it turns out that one may be able to verify morefacts by employing an interactive and randomized veri�cation procedure (rather than sticking tothe traditional perception of proofs as written texts). For example, suppose that a wine expertwishes to convince a non-expert that two bottles of wine are di�erent. Here is what they can do.The (non-expert) veri�er will secretly pour wine from the two bottles to (say) 10 di�erent glasses sothat each bottle serves 5 glasses. The veri�er will randomly permute the glasses, but keep (secret)record of which bottle served which glass. The expert will now be asked to tell which 5 glasses (outof the 10) have wine from the same bottle. If the bottles are indeed di�erent (and if the expert isindeed an expert) then the expert will have no trouble giving the right answer and so the claim12

will be accepted by the veri�er. However, if the two bottles are identical then there is no way oftelling the 10 glasses apart and the probability that an expert will guess correctly is quite small (itis one over �105 �).The above example illustrates something of the avor of the computational point of view ofproofs. Furthermore, it even has some zero-knowledge avor: the veri�er following the aboveprocedure does not really learn anything new beyond being convinced of the validity of the claim;having poured the wine into the glasses he learns nothing when the expert identi�es correctlywhich bottle served which glass. In general, it has been shown that whatever can be proven via aninteractive and randomized process (as above), can also be proven in zero-knowledge.An application to Cryptography: Zero-knowledge proofs are not merely an intriguing notion,they are a very powerful tool in cryptography. In a typical cryptographic setting parties have secretsand are supposed to take actions based on these secrets. A typical problem is to make sure thatthe actions taken are indeed correct. This can be demonstrated by revealing the secrets, butzero-knowledge proofs allow to prove this fact without revealing the secrets (and without revealinganything about the secrets).5.4 The Search for More E�cient ProceduresHow would you multiply two numbers? I guess that you would just apply the method taught atelementary school. For example to multiply 45 by 67 you would just write10 � (4� 7) + (5� 7)100 � (4� 6) + 10 � (5� 6)Which means that you would do 4 digit-by-digit multiplications, some shifts (\hidden" multiplica-tions by 10, which are indeed easy), and some additions. In general, to multiply two numbers xand y, represented by the digit-sequences xn � � � x2x1 and yn � � � y2y1, respectively, you will turn outusing (implicitly) the following equalityx� y = (nXi=1 xi � 10i�1)� (nXi=1 yi � 10i�1) = nXi=1 nXj=1(xi � yj) � 10i+j�2which means that you would do at least n2 basic operations (that is, digit-by-digit multiplication).There is however a faster way to multiply (large) numbers. Consider, for example the multiplicationof 45 by 67. We have45� 67 = (10 � 4 + 5)� (10 � 6 + 7)= 100 � (4� 6) + 10 � (4� 7 + 5� 6) + (5� 7)= 100 �M1 + 10 � (M3 �M1 �M2) +M2where M1 = 4 � 6, M2 = 5 � 7, and M3 = (4 + 5) � (6 + 7). The last equality does not seem to\make sense" yet you can easily verify that it is correct. But what have we gain by this \strange"equality? One thing is that we only do 3 multiplications (but they may be slightly more complexsince we may need to multiply numbers smaller than 19 rather than numbers smaller than 10 (singledigits)). This seems little gain, but wait a moment before passing verdict. Suppose you want tomultiply two 4-digit numbers. You can represent each number by a sequence of two 2-digit numbers13

and apply the same trick. That is1234 � 5678 = (100 � 12 + 34) � (100 � 56 + 78)= 10000 � (12� 56) + 100 � (12 � 78 + 56� 34) + (34 � 78)= 10000 �M1 + 100 � (M3 �M1 �M2) +M2where M1 = 12 � 78, M2 = 34 � 78, and M3 = (12 + 34) � (56 + 78). We may now applythe above to the 3 (two-digit) multiplications we need here, and obtain a procedure involving 9\basic" multiplications. Generalizing this idea, we obtain a procedure which multiply two n-digitnumbers by doing 20n� basic operations (that is additions/multiplications of single digits), where� = log2 3 � 1:585. For n � 100 this is better than the \Elementary-School" procedure (whichtakes 3n2 basic operations). But actually, there are even faster procedures for multiplying twonumbers (which do beat the \Elementary-School" procedure for numbers of 20 digits or more).The above example of a sophisticated computational procedure was taken from the domain ofarithmetic, and indeed the study of e�cient procedures for arithmetic problems constitutes onearea of the Theory of Computation. Yet, there are dozens of other such areas which are occupiedwith the study of problems arising in other domains.

14

