
Errata to the paperThree Theorems regarding Testing Graph PropertiesOded GoldreichDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded.goldreich@weizmann.ac.il Luca TrevisanEECS { Computer Science Div.UC-BerkeleyBerkeley, CA 94720, USA.luca@eecs.berkeley.eduAugust 5, 2005The following error in our paper [4] was discovered by Asaf Shapira. In [4, Sec. 2.2], testers for graphproperties are formally de�ned as receiving the number of vertices (denoted N) and the proximity parameter(denoted �) as explicit inputs. Unfortunately, the rest of our paper (speci�cally, Sections 4 and 5) fails toproperly account for this convention. In particular, the presentation in [4] presumes that certain actions ofany relevant tester are independent of N . Consequently, Theorem 2 is not valid (as stated in [4]), and theproof of Theorem 3 (as presented in [4, Sec. 5]) needs to be slightly re�ned. Below we sketch the adequatemodi�cations, referring to the terminology and notation of [4]. In particular, we show that a non-uniformrelaxation of [4, Thm. 2] is valid, whereas [4, Thm. 3] is valid as stated.We mention that the issue of dependence of graph property testers on the number of vertices is crucialalso in the recent works of Alon and Shapira [1, 2].1 Modifying Theorem 2The problem with Theorem 2 (of [4]) is that a canonical tester for property � was de�ned as one thatuniformly selects a sample of vertices, and accepts i� the subgraph induced by this vertex-set has property�0, where �0 is a �xed graph property that only depends on �. Theorem 2 asserts that any property thatis testable within query complexity q(N; �) admits a canonical tester of query complexity O(q(N; �)2), andthat in the case of one-sided error a sample of 2q(N; �) vertices su�ces.To see that Theorem 2 is not valid as stated, consider the property of being a graph with an odd numberof vertices, and the tester that makes no queries but rather accepts the graph i� N (given to it explicitly)is odd. In this case Theorem 2 asserts a canonical tester of query complexity zero, which is impossible(because the canonical tester is supposed to decide based solely on the induced subgraph). This speci�ccounterexample may be eliminated by allowing the canonical tester to sample 2q(N; �) + 1 vertices (in thecase of one-sided error and O(q(N; �) + 1) vertices in general). In this case, we can prove the claim bypresenting a canonical tester that selects N mod 2 vertices, and accepts i� the subgraph induced by thisvertex-set has an odd number of vertices. (Needless to say, this is not the canonical tester that emerges fromthe original proof of Theorem 2.)We do not know whether the forgoing modi�cation of [4, Thm. 2] is valid, but certainly if this modi�cationis valid then its proof must go beyond the presentation and the ideas of [4]. For example, consider the propertyof being a bipartite graph with a number of vertices that is a prime number. Building on the tester of [3],on input (N; �), a canonical tester may proceed as follows. If N is prime, it selects a random sample of2dpoly(1=�)e+1 vertices, and otherwise it selects a sample of two vertices. In either case, the tester acceptsi� the induced subgraph is a bipartite graph with an odd number of vertices. Similarly, we can easily handleany graph property that is a union of a constant number of graph properties, each having a canonical testerand referring to graphs with a di�erent number of vertices. The question, however, is what happens in thegeneral case. We suggest this question as an open problem.1



In this errata we point out that the proof presented in [4, Sec. 4] established a weaker version of [4,Thm. 2]. The latter version refers to a more relaxed notion of a canonical tester, which in turn refers to anin�nite sequence of graph properties, f�(i)g. On input (N; �), this tester accepts i� the induced subgraph(determined as in the original de�nition) has property �(N).That is, here we call T canonical if, for some function s :N�[0; 1]!N and an in�nite sequence ofgraph properties f�(i)g, the tester operates as follows: on input (N; �) and oracle access to anyN -vertex graph G, the tester T selects uniformly a set of s(N; �) vertices (in G), and accepts ifand only if the corresponding induced subgraph (of G) has property �(N).Indeed, the de�nition in [4] requires that �(i) be independent of i (i.e., �(i) = �(j) for all i; j).Going through [4, Sec. 4], we observe that all assertions regarding the derived testers hold, except thatthe operation of these testers is allowed to depend arbitrarily on N . The consequence is, indeed, that thedecision of the �nal tester (i.e., the \canonical" one) depends on whether the induced subgraph has a graphproperty that is allowed to depend on N .Alternatively, one may restate and prove [4, Thm. 2] while referring to testing graphs of a �xed numberof vertices. We merely need to specify a constant for the main part of the theorem (and as in the original[4, Thm. 2] this constant is determined by the number of repetitions that su�ces for decreasing the tester'serror probability from 1=3 to 1=6).1 We stress that the entire proof as presented in [4, Sec. 4] refers to testinggraphs with a �xed number of vertices; that is, it starts with a tester for N -vertex graphs, and derives asequence of testers, each referring to N -vertex graphs.2 Modifying the proof of Theorem 3Theorem 3 in [4] is valid, but the proof presented in [4, Sec. 5] is inaccurate in that it ignores the possible e�ectof N on the decision of arbitrary (one-sided error) testers for graph properties (even of the graph partitiontype). Here we sketch a set of modi�cations that su�ces for removing the aforementioned inaccuracies.We observe that the justi�cations presented in [4, Sec. 5] (refer to assertions that) fall into one of threecategories.1. The �rst category is of (justi�cations to) assertions that refer to any graph partition property (and donot refer at all to the testability of these properties). Notable examples are Lemmas 5.1 and 5.5, whichindeed remain intact (because the operation of potential testers is irrelevant to them).2. The second category is of (almost immediate) corollaries to previously proved claims, which indeedremain intact. Notable examples are Corollary 5.4 and Theorem 5.8.3. This leaves us with Claims 5.2 and 5.3 and Lemmas 5.6 and 5.7, which are discussed below. Theproblem with their current proofs is that they refer to potential testers of property �, and furthermoreto the operation of these testers on graphs of di�erent number of vertices.The proof of Claim 5.2 is a typical case. The original proof (of Claim 5.2) refers to a blow-up of theoriginal graph, and presupposes that the canonical tester's behavior on the blow-up version G0 is identicalto its behavior on the original graph G. (Note that this assumption is justi�ed for the original versionof the notion of canonical testers, but not for the relaxed notion de�ned above.) This assumption cannotbe justi�ed when the tester's decision depend on the number of vertices. Instead, we may verify that theblow-up version G0 satis�es the claim's hypothesis (which refers to the original graph G), and work directlywith the blow-up version G0. For example, for every N 0 > t2 �N , we may consider a blow-up of G by a factorof N 0=N (allowing fractional vertices and edges as per the conventions in [4, Sec. 5.0]), and argue directlyon this blow-up version rather than on G. The same applies to the (main part of the) proof of Claim 5.3,which is analogous to the proof of Claim 5.2.The proof of Lemma 5.6 refers to any graph partition problem that satis�es Corollary 5.4, and proceedswhile referring to the operation of a canonical tester on su�ciently large graphs. However, the argument �rst1It turns out that 9 repetitions are necessary and su�cient, and so (in the case of two-sided error testers) the canonicaltester needs to sample 18q(N; �) vertices. 2



selects N to be su�ciently large (in a way depending only on � and the query complexity of the tester), andproceeds by considering the operation of a canonical tester on various N -vertex graphs. Thus, the foregoingproblem does not arise, and the proof may remain intact.Finally, we turn to the proof of Lemma 5.7. The �rst part of the proof (which establishes Claim 1)presupposes that the tester behavior remains unchanged when considering a blow-up of the graph. This partcan be modi�ed as the proof of Claim 5.2. The second part of the proof of Lemma 5.7 (which establishesClaim 2 and the rest) refers to any graph that satis�es the conclusion of Claim 1, and proceeds withoutreference to any potential tester. Thus it can remain intact.Comments regarding Corollary 5.9 and Proposition D.2. The proof of Corollary 5.9 refers toProposition D.2, which in turn is stated in an inaccurate manner. We �rst note that Corollary 5.9 has adirect proof (see Footnote 16). Alternatively, Corollary 5.9 can be proven based on the following weakerversion of Proposition D.2. We call a tester natural if its query complexity is independent of the size of thegraph and, on input (N; �) and access to an N -vertex graph, its decision is based solely on the sequence oforacle answers that it has received (while possibly tossing additional fresh coins, provided that their numberis independent of N). Note that the testers of [3] (to which the proof of Corollary 5.9 refers) are natural inthis sense. The revised version of Proposition D.2 refers only to natural testers (for graph properties thatare closed under taking induced subgraphs), and is supported by the current proof (which presumes that thetester T is natural). It su�ces to note that applying the \canonization process" to a natural tester yields atester that accepts an N -vertex graph G i� a random induced subgraph (of size s(�)) has property �0 (i.e.,�0 = �(N) for all N).2 Using such a tester, the rest of the proof of [4, Prop. D.2] remains intact.AcknowledgmentsWe are grateful to Asaf Shapira for calling our attention to the error in [4], and discussing related issueswith us.References[1] N. Alon and A. Shapira. A Characterization of the (natural) Graph Properties Testable with One-Sided.In 46th FOCS, to appear, 2005.[2] N. Alon and A. Shapira. A Separation Theorem in Property Testing. Unpublished manuscript, 2004.[3] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approxi-mation. Journal of the ACM, pages 653{750, July 1998.[4] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Random Structuresand Algorithms, Vol. 23 (1), pages 23{57, August 2003.

2Note that when deriving such a canonical tester, some of the steps in the (revised) proof of [4, Thm. 2] can be avoided. Inparticular, when applied to natural tests, [4, Clm. 4.2] is trivial.3


