
Universal Arguments and their ApplicationsBoaz BarakDepartment of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.boaz@wisdom.weizmann.ac.il Oded Goldreich�Department of Computer ScienceWeizmann Institute of ScienceRehovot, Israel.oded@wisdom.weizmann.ac.ilDecember 2, 2001AbstractWe put forward a new type of computationally-sound proof systems, called universal-arguments,which are related but di�erent from both CS-proofs (as de�ned by Micali) and arguments (asde�ned by Brassard, Chaum and Crepeau). In particular, we adopt the instance-based prover-e�ciency paradigm of CS-proofs, but follow the computational-soundness condition of argumentsystems (i.e., we consider only cheating strategies that are implementable by polynomial-size cir-cuits).We show that universal-arguments can be constructed based on standard intractability as-sumptions that refer to polynomial-size circuits (rather than assumptions referring to subexponential-size circuits as used in the construction of CS-proofs). As an application of universal-arguments,we weaken the intractability assumptions used in the recent non-black-box zero-knowledge argu-ments of Barak. Speci�cally, we only utilize intractability assumptions that refer to polynomial-size circuits (rather than assumptions referring to circuits of some \nice" super-polynomial size).

Keywords: Probabilistic proof systems, computationally-sound proof systems, zero-knowledgeproof systems, proofs of knowledge, probabilistic checkable proofs (PCP), collision-free hashing,witness indistinguishable proof systems, error-correcting codes,�Supported by a MINERVA Foundation, Germany. 0

1 IntroductionVarious types of probabilistic proof systems have played a central role in the development of com-puter science in the last two decades. The best known ones are interactive proofs [20], zero-knowledge proofs [20], and probabilistic checkable proofs [17, 5, 12, 2], but other notions such asvarious types of computationally-sound proofs (e.g., arguments [10] and CS-proofs [23]) and multi-prover interactive proofs [9] have made a prominent appearance as well. Do we really need yetanother type of probabilistic proof systems?We believe that the answer is positive. The number of di�erent related notions we need is exactlythe number of di�erent notions that are natural, interesting and/or useful. Con�ning ourself tousefulness, we note that the new type of computationally-sound proof systems introduced in thispaper has emerged in the context of trying to improve the recent constructions of non-black-boxzero-knowledge arguments of Barak [6]. Furthermore, these proof system seems to be inherent tocertain diagonalization techniques used in [6] and (in a di�erent context) in [11].1.1 Motivation: Applying diagonalization in cryptographyA naive idea, which was discarded for decades in Cryptography, is to construct a cryptographicscheme by \diagonalization"; for example, enumerating all probabilistic polynomial-time adver-saries and making sure that each of them fails. The main reason that this idea was discarded isthat the resulting scheme will (necessary) be more complex than the class of adversaries it defeats(while in cryptography a scheme should withstand adversaries that are (at least slightly) morecomplex than the scheme).Still, as noted by Canetti, Goldreich and Halevi [11] and Barak [6], a small twist on diago-nalization may be useful in Cryptography. The twist is to use diagonalization in order to builda \trapdoor" so that the trapdoor can be used in some \imaginary setting" (e.g., by the simula-tor [6]), but not in the \real" setting (e.g., an actual execution of the proof system [6]).1 Thus, thecomplexity of the simulator is e�ected by the diagonalization, whereas the complexity of the actualexecution of the interactive proof is independent of the diagonalization. Speci�cally, the trapdoorconstructed by Barak [6] is knowledge of the (adversarial) veri�er's strategy, where this strategy(which is the locus of diagonalization) may be any polynomial-size circuit (where the polynomial isdetermined only after the proof system is speci�ed). In the actual execution the (zero-knowledge)prover does not use this trapdoor (but rather uses an NP-witness to the real input), and so itscomplexity is independent of the complexity of the trapdoor (i.e., the cheating veri�er's strategy).However, the simulator uses the trapdoor, and so its complexity depends on the latter (and so everypolynomial-size adversary yields a related polynomial-time simulation). The above may make sensebecause the protocol utilizes a witness indistinguishable (WI) proof for which both the NP-witnessto the real input and the trapdoor (i.e., veri�er's strategy) are valid witnesses. In particular, itfollows that the honest veri�er strategy in the WI proof must be independent of the length of the\NP-witness" used by the prover. That is, the witness is of polynomial length, but this polynomialis determined (and �xed) only after the proof system is speci�ed.We conclude that in order to use diagonalization as above, we should have a (WI) proof systemthat is capable of handling any \NP-statement" (and not merely statements in any a-priori �xedNP-language). Put in other words, we need a single proof system that can be used to provide proofs1In [11], the \imaginary setting" is an implementation of the random-oracle by a function ensemble (shown notto exist), whereas the \real setting" is the ideal (Random Oracle Model) setting in which the scheme uses a random-oracle. (Indeed our perspective here is opposite to the one in [11] where the random-oracle is considered \imaginary"and its implementations by function ensembles are considered \real").1

for any language L in NP such that the running time and communication needed for verifying thatx 2 L is bounded by a �xed (i.e., single) polynomial in jxj, that does not depend on the languageL.2 We stress that in contrast, usually when people talk about \proof systems for NP" what theymean is that every langauge L 2 NP has a di�erent proof system and the complexity of verifyingthat x 2 L is bounded by an L-dependent polynomial in jxj.1.2 The notion of universal argumentsFor sake of simplicity, we de�ne and present proof systems only for the following universal language3LU : the tuple (M;x; t) is in LU if M is a non-deterministic machine that accepts x within t steps.Clearly, every NP-language L is linear-time reducible to LU (i.e., x 7! (ML; x; 2jxj), where ML isany �xed non-deterministic polynomial-time deciding L). Thus, a proof system for LU allows us tohandle all \NP-statements" (in a uniform manner); that is, there exists a single polynomial p suchthat for every L 2 NP , the complexity of verifying that x 2 L is bounded by p(jxj). In fact, LUis NE-complete (by an analogous linear-time reduction).4 We consider also the natural witness-relation for LU , denoted RU : the pair ((M;x; t); w) is in RU if M (viewed here as a two-inputdeterministic machine) accepts (x;w) within t steps.Loosely speaking, a universal argument system (or a universal argument system for LU) is atwo-party protocol (P; V), for common inputs of the form (M;x; t), that satis�es the following:E�cient veri�cation: The total time spent by the (probabilistic) veri�er V is polynomial in lengthof the common input (i.e., polynomial in j(M;x; t)j = O(jM j+ jxj+ log t)). In particular, allmessages exchanged in the protocol have length so bounded.Completeness by a relatively-e�cient prover: For every ((M;x; t); w) inRU , on common input (M;x; t),given auxiliary input w the prover P always convinces V . Furthermore, the total time spentby P in this case is bounded by a �xed polynomial in TM (x;w) � t, where TM (x;w) is thenumber of steps taken by M on input (x;w).Computational Soundness: For every polynomial-size circuit family fCngn2N and every (M;x; t) 2f0; 1gn n LU , the probability that, on common input (M;x; t), the cheater Cn fools V (toaccept (M;x; t)) is negligible (as a function of the length of (M;x; t)).(The actual de�nition appears in Section 2.)Universal-arguments are related but di�erent from both CS-proofs (as de�ned by Micali [23]) andarguments (as de�ned by Brassard, Chaum and Crepeau [10]). The e�cient-veri�cation conditionis identical in all de�nitions, the \completeness by a relatively-e�cient prover" condition followsthe instance-based paradigm of CS-proofs (but provides the prover with an auxiliary input), andthe above computational-soundness condition is exactly as in argument systems (and di�erent fromthe one in CS-proofs). Thus, in a sense, universal-arguments are a hybrid of arguments and CS-proofs. We comment that computational-soundness seems unavoidable in any proof system forLU satisfying the e�cient-veri�cation condition (even just \uniformly for all NP"): statisticalsoundness would have implied that LU (or \just" NP) is in DSpace(p), for some �xed polynomialp. 2In particular it may be the case that L 2 Ntime(p) where p(�) is a polynomial larger than the �xed polynomialbounding the veri�er's complexity.3The nice aspect about LU is that it comes with a natural measure of complexity of instances: the complexity of(M;x; t) is the actual time it takes M to accept x (when using either the best or a given sequence of non-deterministicchoices). Such a complexity measure is pivotal to the re�ned formulation of the prover complexity condition.4Furthermore, every language in NEXP is polynomial-time (but not linear-time) reducible to LU .2

A strange-looking aspect of universal-arguments is that, on some inputs, the designated provermay run more time than allowed to cheating provers5 (i.e., a �xed polynomial in TM (:; :) maybe more than an arbitrary polynomial in the length of the common input). However, in typicalapplication (such as ours), the designated prover will never be invoked on such inputs (i.e., requiringit to run for time that is super-polynomial in the length of the common input). In fact, one maythink of universal-arguments as relating to three categories of inputs (as in promise problems),where the polynomial in Items 1 and 3 is selected after the system is speci�ed:1. yes-instances for which tM is polynomial in the length of jM j + jxj. For such inputs thedesignated prover is a uniform machine that given an appropriate auxiliary input convincesthe veri�er while running in time that is polynomial in the length of jM j+ jxj.2. no-instances. For such inputs (even non-uniform) polynomial (in jM j + jxj) sized circuitscannot fool the veri�er to accept. Note that if tM is super-polynomial in jM j + jxj then itmay be the case that tM sized circuits can fool the veri�er into accepting.3. Other yes-instances (i.e., for which tM is super-polynomial in the length of jM j + jxj). Forsuch inputs there is no guarantee as to whether or not (non-uniform) polynomial-size circuitscan convince the veri�er to accept.Thus, for every language in NP , we may select the polynomial (in Items 1 and 3) such that allyes-instances fall into the �rst category. This means that a universal-argument yields a family ofargument systems, one per each L 2 NP , but the complexity of veri�cation in all these argumentsystems is bounded by the same (universal) polynomial (in the length of the common input). Thelatter holds also for CS-proofs, but we will be able to construct a universal-argument based onweaker assumption than the ones seem necessary for constructing CS-proofs (cf. Footnote 5).1.3 The construction of universal argumentsBy adapting the construction of Kilian [21], one can easily show that the existence of strong collision-free hashing functions implies the existence of universal arguments (and even CS-proofs for LU ;cf. Micali [23]). By strong collision-free hashing we mean families of functions for which collisionsare hard to �nd even by using subexponential-size circuits. The goal, achieved in this paper, isto construct universal arguments based only on standard collision-free hashing; that is, families offunctions for which collisions are hard to �nd by polynomial-size circuits. That is, we obtain:Theorem 1.1 The existence of (standard) collision-free hashing functions implies the existence ofuniversal arguments. Furthermore, these proof systems are of the public-coin (Arthur{Merlin [3])type and use a constant number of rounds.Our construction of universal arguments (also) adapts Kilian's construction [21] in a straightfor-ward manner. Our contribution is in the analysis of this construction. Unlike in previous analysis(as in [21] and [23]), in establishing computational-soundness via contradiction, we cannot a�ordto derive a collision-forming circuit of size that is (at least) polynomial in the complexity of the5This phenomena does not occur in arguments [10] and in CS-proofs [23]: Arguments were de�ned only forindividual languages in NP, and so the issue never arises. In case of CS-proofs, the de�nition of computational-soundness relates to cheating provers of size exponential in the security parameter, which is typically set to be linearin the length of the common input [23]. Thus, the cheating provers are always allowed more running time than thedesignated prover (since its running-time is always at most exponential in the length of the common input). However,it seems that allowing the adversaries time that is exponential in the security parameter requires using intractabilityassumptions that refer to exponential (or sub-exponential) circuits.3

designated prover (which may be exponential in the input length).6 We need to derive collision-forming circuit of size that is polynomial in the input length. Indeed, doing so allows us to usestandard collision-free hashing (rather than strong ones).The analysis is further complicated by our desire to establish a \proof of knowledge" property,which is needed in for our main application (discussed next).1.4 Application to zero-knowledge argumentsBarak's construction [6] of non-black-box zero-knowledge arguments (for any language in NP)uses a witness indistinguishable (WI) argument of knowledge for RU .7 In his protocol, the proveruses this WI argument (of knowledge) to prove that it knows either an NP-witness for the origi-nal common input or a program that �ts the veri�er functionality (as re
ected in the challenge-respond exchange that follows). Thus, as a �rst step, we need to transform our universal argument(of knowledge) into a corresponding WI universal argument (of knowledge). The transformationfollows Barak's transformation [6], but then we encounter a second place where Barak uses asuper-polynomial hardness assumption: Barak uses a collision-free hashing function to hash \LU -witnesses" (into �x-length strings), where the length of these witnesses is bounded by some super-polynomial function (but not by any polynomial). Consequently, a collision on such long stringsonly yields violation of a super-polynomial collision-free assumption. To avoid super-polynomialhardness assumptions, we hash these witnesses by combining \tree-hashing" (as in Kilian's con-struction [21]) with an error-correcting code. Speci�cally, �rst the witness string is encoded usingan error-correcting code, and then the \tree-hashing" is applied to the result. Thus, if two di�erentstrings are so hashed to the same value, then we can form a collision with respect to the basichashing function (used in the \tree-hashing") by considering a uniformly selected leaf (which isquite likely to be assigned di�erent values under an error-correction coding of di�erent strings).Combining the above, we obtain:Theorem 1.2 The existence of (standard) collision-free hashing functions implies the existence of(non-black-box) zero-knowledge arguments, for any language in NP, with the following properties:� The protocol has a constant number of rounds and uses only public-coins;� The simulator runs in strict (rather than expected) probabilistic polynomial-time;� The protocol remains zero-knowledge when, say, n2 copies are executed concurrently.Theorem 1.2 establishes the main result of Barak's work [6], under a weaker assumption: We onlyassume the existence of hashing functions that are resilient with respect to polynomial-size circuits(rather than with respect to some super-polynomial-size circuits).6Speci�cally, Kilian's construction [21] uses a PCP system, and the contradiction hypothesis is shown to yielda collision-forming circuit that is always bigger than the relevant PCP-oracle. Instead, we show how to obtain acollision-forming circuit that is smaller than the relevant PCP-oracle.7In fact, Barak uses a CS-proof (of knowledge) for RfU � RU , where f is any \nice" super-polynomial function (e.g.,f(n) = nlog2 n) and ((M;x; t); w) is in RfU only if t � f(jxj). He constructs such CS-proof assuming the existence ofhashing functions that are resilient with respect to f -size circuits (rather than subexponential hardness which wouldhave been required for CS-proof for RU).
4

2 The De�nition of Universal ArgumentsIn continuation to the discussion in Subsection 1.2, we now de�ne universal argument systems (forLU). Recall that LU = f(M;x; t) : 9w s.t. ((M;x; t); w) 2 RUg, where ((M;x; t); w) 2 RU if Maccepts (x;w) within t steps. Let TM (x;w) denote the number of steps made by M on input (x;w);indeed, if ((M;x; t); w) 2 RU then TM (x;w) � t. Recall that j(M;x; t)j = O(jM j+ jxj+ log t); thatis, t is given in binary.We consider a pair of (interactive) strategies, denoted (P; V), and let (P (w); V)(y) denote theoutput of V when interacting with P (w) on common input y, where P (w) denotes the functionalityof P when given auxiliary input w. We denote by � :N! [0; 1] an unspeci�ed negligible function;that is, for every positive polynomial p and all su�ciently large n's, it holds that �(n) < 1=p(n).In the following de�nition, we incorporate a (weak) \proof of knowledge" property (which wasmentioned in Subsections 1.3 and 1.4, but not in Subsection 1.2).De�nition 2.1 (universal argument): A universal-argument system is a pair of strategies, denoted(P; V), that satis�es the following properties:E�cient veri�cation: There exists a polynomial p such that for any y = (M;x; t), the total timespent by the (probabilistic) veri�er strategy V , on common input y, is at most p(jyj). Inparticular, all messages exchanged in the protocol have length smaller than p(jyj).Completeness by a relatively-e�cient prover: For every ((M;x; t); w) in RU ,Pr[(P (w); V)(M;x; t) = 1] = 1Furthermore, there exists a polynomial p such that the total time spent by P (w), on commoninput (M;x; t), is at most p(TM (x;w)) � p(t).Computational Soundness: For every polynomial-size circuit family f ePngn2N, and every (M;x; t) 2f0; 1gn n LU , Pr[(ePn; V)(M;x; t) = 1] < �(n)where � : N! [0; 1] is a negligible function.A weak Proof of Knowledge Property: For every positive polynomial p there exists a positive poly-nomial p0 and a probabilistic polynomial-time oracle machine E such that the following holds:8for every polynomial-size circuit family f ePngn2N, and every su�ciently long y = (M;x; t) 2f0; 1g� if Pr[(ePn; V)(y) = 1] > 1=p(jyj) thenPrr " 9w = w1 � � �wt2RU(y)8i2f1; :::; tg E ePnr (y; i) = wi # > 1p0(jyj)where RU (y) def= fw : (y;w) 2 RUg and E ePnr (:; :) denotes the function de�ned by �xing therandom-tape of E to equal r, and providing the resulting Er with oracle access to ePn. Theoracle machine E is called a (knowledge) extractor.A few comments regarding the weak proof-of-knowledge property are in place. First, note that (inthe good case) E ePnr (y; :) is an implicit representation of a witness w 2 RU (y) (i.e., any speci�c bit of8Indeed, the polynomial p0 as well as the (polynomial) running-time of E may depend on the polynomial p (whichde�nes the noticeable threshold probability below). 5

w is obtained by instantiating the second input to E ePnr (y; :) accordingly). If Pr[(ePn; V)(y) = 1] >1=p(jyj) then at least an 1=p0(jyj) fraction of the possible r's yield such implicit representations (ofstrings in RU (y)), but these strings are not necessarily equal (i.e., di�erent r's may yield di�erentstrings in RU(y)). Implicit (rather than explicit) representation is required because we want theextractor to run in polynomial-time, whereas the length of the strings in RU(y) may be not boundedby any polynomial (in jyj). Finally, we note that the weak proof-of-knowledge property is indeedweaker than the standard de�nition of a proof of knowledge (cf. [7], [18, Sec. 4.7] and Footnote 8),but it su�ces for the applications we have in mind.3 The Construction of Universal ArgumentsAs mentioned in Subsection 1.3, by adapting of the construction of Kilian [21], one can easily showthat the existence of strong collision-free hashing functions implies the existence of universal argu-ments (and even CS-proofs for LU ; cf. Micali [23]). Here we show how a similar adaptation, whenusing only standard collision-free hashing functions, yields universal arguments. Our focus is ondemonstrating the computational soundness of this construction, which should now be establishedunder a weaker assumption than the one used in [21, 23].3.1 MotivationIn order to explain the di�culty and its resolution, let us recall the basic construction of Kilian [21](used also by Micali [23]), as adapted to our setting.Our starting point is a PCP [poly;poly] system for LU 2NEXP , which is used in the universal-argument system as follows. The veri�er starts by sending the prover a hashing function. Theprover constructs a PCP-proof/oracle (corresponding to the common input and its own auxiliaryinput), places the bits of this oracle at the leaves of a polynomial-depth full binary tree, and placesin each internal node the hash-value obtained by applying the hashing function to the labels of itschildren. The prover sends the label of the root to the veri�er, which responses by sending a randomtape of the type used by the PCP-veri�er. Both parties determine the queries corresponding to thistape, and the prover responds with the values of the corresponding leaves along with the labels ofthe vertices along the paths from these leaves to the root (as well as the labels of the siblings of thesevertices). The veri�er checks that this sequence of labels matches the corresponding applications ofthe hashing function, and also emulates the PCP-veri�er. Ignoring (for now) the issue of prover'scomplexity, the problem is in establishing computational-soundness.The naive approach is to consider what the prover does on each of the possible random-tapessent to it. In case it answers consistently (i.e., with leaves labels that depend only on the leavelocation), we obtain a pcp-oracle and soundness follows by the soundness of the PCP scheme. Onthe other hand, inconsistent labels for the same leaf yield a (hashing) collision somewhere alongthe path to the root. However, in order to �nd such a collision, we must spend time proportionalto the size of the tree, which yields contradiction only in case the hashing function is supposed towithstand adversaries using that much time. In case the tree is exponential (or even merely super-polynomial) in the security parameter, we derive contradiction only when using hashing functionsof subexponential (respectively, super-polynomial) security.The approach taken here is to consider each leaf separately rather than all leaves together.That is, the naive analysis distinguishes the case that the prover answers inconsistently on someleaf from the case it answer consistently on all leaves. Instead, we consider each leave separately,and distinguishes the case that the prover answers inconsistently on this leaf from the case it answer6

consistently on this leaf. Loosely speaking, we call a leaf good if the prover answers consistently onit, and observe that if a big fraction of the leaves are good then soundness follows by the soundnessof the PCP scheme. In case su�ciently many leaves are not good, we obtain a collision by pickinga random leave (hoping that it is not good) and obtaining inconsistent labels for it. This requiresbeing able to uniformly select a random-tape that makes the pcp-veri�er make the correspondingquery, a property which is fortunately enjoyed by the relevant PCP systems.We warn that the above is merely a rough description of the main idea in our analysis. Further-more, in order to establish the proof-of-knowledge property of our construction, we need to relyon an analogous property of the PCP system (which again happens to be satis�ed by the relevantPCP systems).3.2 The PCP system in useWe �rst recall the basic de�nition of a PCP system. Loosely speaking, a probabilistically checkableproof (PCP) system consists of a probabilistic polynomial-time veri�er having access to an oraclewhich represents a proof in redundant form. Typically, the veri�er accesses only few of the oraclebits, and these bit positions are determined by the outcome of the veri�er's coin tosses. It isrequired that if the assertion holds then the veri�er always accepts (i.e., when given access to anadequate oracle); whereas, if the assertion is false then the veri�er must reject with high probability(as speci�ed in an adequate bound), no matter which oracle is used. The basic de�nition of thePCP setting is given in Item (1) below. Typically, the complexity measures introduced in Item (2)are of key importance, but not so in this work.De�nition 3.1 (PCP { basic de�nition):1. A probabilistic checkable proof system (pcp) with error bound � :N! [0; 1] for a language L is aprobabilistic polynomial-time oracle machine (called veri�er), denoted V , satisfying� Completeness: For every x 2 L there exists an oracle �x such that V , on input x andaccess to oracle �x, always accepts x.� Soundness: For every x 62 L and every oracle �, machine V , on input x and access tooracle �, rejects x with probability at least 1� �(jxj).2. Let r and q be integer functions. The complexity class PCP�[r(�); q(�)] consists of languageshaving a pcp system with error bound � in which the veri�er, on any input of length n, makesat most r(n) coin tosses and at most q(n) oracle queries.Note that if L has a pcp system with error bound � then L 2 PCP �[p(�); p(�)], for some polynomialp. Here we will only care that LU 2 NE has a pcp system with and exponentially decreasing errorbound (i.e., �(n) = 2�n). Instead of caring about the re�ne complexity measures (of Item 2), wewill care about the following additional properties satis�ed by this speci�c pcp system, where onlysome of these properties were explicitly considered before (see discussion below).De�nition 3.2 (PCP { auxiliary properties): Let V be a pcp veri�er with error � :N! [0; 1] for alanguage L 2 NEXP, and let R be a corresponding witness relation. That is, if L 2 Ntime(t(�)),then we refer to a polynomial-time decidable relation R satisfying x 2 L if and only if there existsw of length at most t(jxj) such that (x;w) 2 R. We consider the following auxiliary properties:Relatively-e�cient oracle-construction: This property holds if there exists a polynomial-time algo-rithm P such that, given any (x;w) 2 R, algorithm P outputs an oracle �x that makes Valways accept (i.e., as in the completeness condition).7

Non-adaptive veri�er: This property holds if the veri�er's queries are determined based only on theinput and its internal coin tosses, independently of the answers given to previous queries.That is, V can be decomposed into a pair of algorithms, Q and D, such that on input x andrandom-tape r, the veri�er makes the query sequence Q(x; r; 1); Q(x; r; 2); :::; Q(x; r; p(jxj)),obtains the answers b1; :::; bp(jxj), and decides by according to D(x; r; b1 � � � bp(jxj)).E�cient reverse-sampling: This property holds if there exists a probabilistic polynomial-time algo-rithm S such that, given any string x and integers i and j, algorithm S outputs a uniformlydistributed r that satis�es Q(x; r; i) = j, where Q is as above.A proof-of-knowledge property: This property holds if there exists a probabilistic polynomial-timeoracle machine E such that the following holds:9 for every x and �, if Pr[V �(x) = 1] > �(jxj)then there exists w = w1 � � �wt such that (x;w) 2 R and Pr[E�(x; i) = wi] > 2=3 holds forevery i.Non-adaptive pcp veri�ers were explicitly considered in several works, all popular pcp systemsuse non-adaptive veri�ers, and in fact in some sources PCP is de�ned in terms of non-adaptiveveri�ers. The oracle-construction and proof-of-knowledge properties are implicit in some works,and are known to hold for most popular pcp systems (although to the best of our knowledge aproof of this fact has never appeared). To the best of our knowledge, the reverse-sampling propertywas not considered before. Nevertheless it can be veri�ed that any L 2 NEXP has a pcp systemsatisfying all the above properties.Theorem 3.3 For every L 2 NEXP and for every � :N! [0; 1] such that �(n) > 2�poly(n), thereexist a pcp system with error � for L that satis�es all properties in De�nition 3.2.Proof sketch: For L 2 Ntime(t(�)), we consider a PCP1=2[O(log t(�));poly(�)] system as in [5] (i.e.,the starting point of [2, 1]). (We stress that this pcp system, unlike the one of [12], uses oraclesof length polynomial in t.)10 This pcp system is non-adaptive and is well-known to satis�es theoracle-construction property. It is also known (alas less well-known) that this pcp system satis�esthe proof-of-knowledge property. Finally, it is easy to see that this pcp system (as any reasonablepcp system we know of) also satis�es the reverse-sampling property.11 All these claims will beproven in the full version of this work. Error reduction is obtained without e�ecting the oracle,and so it is easy to see that the ampli�ed pcp preserves all the auxiliary properties.3.3 The actual constructionThe construction is an adaptation of Kilian's construction [21] (used also by Micali [23]). UsingTheorem 3.3, we start with a pcp system with error �(n) = 2�n for LU that satis�es the auxiliaryproperties in De�nition 3.2. Actually, the corresponding witness relation will not be RU as de�nedin Section 1.2, but rather a minor modi�cation of it, denoted R0U : the pair ((M;x; t); (w; 1t0))is in R0U if M accepts (x;w) in t0 � t steps. (The purpose of the modi�cation is to obtain arelation that is decidable in polynomial-time, as required in De�nition 3.2.) Let Vpcp denote the9For negligible � (as used below) this proof-of-knowledge property is stronger than the standard proof-of-knowledgeproperty (as in [7] and [18, Sec. 4.7]).10Moving to non-binary encoding of objects seems important for achieving this.11This property follows from the structure of the standard pcp systems. In our case, the system consists of asum-check (a la Lund et. al. [22]), and a low-degree test. In both tests, the queries are selected in a very simplemanner, and what is complex (at least in the case of low-degree tests) is the analysis of the test.8

above pcp system (or its veri�er), and Ppcp; Qpcp;Dpcp; Spcp; Epcp denote the auxiliary algorithms(or machines) guaranteed by De�nition 3.2 (e.g., Ppcp is the oracle-constructing procedure, Qpcpdetermines the veri�er's queries, and Spcp provides reverse-sampling).A second ingredient used in the construction is a family of collision-free hashing functions. Thatis, a collection of (uniformly polynomial-time computable) functions fh� : f0; 1g� ! f0; 1gj�jg suchthat for every (non-uniform) family of polynomial-size circuits fCngn2NPr�2f0;1gn [Cn(�) = (x; y) s.t. x 6= y and h�(x) = h�(y)] = �(n)where � is a negligible function.Construction 3.4 (a universal argument for LU):Common input: y = (M;x; t) supposedly in LU . Let n def= jyj.Auxiliary input to the prover: w such that supposedly (y;w) 2 RU holds.First veri�er step (V1): Uniformly select � 2 f0; 1gn, and send it to the prover.First prover step (P1): When describing the prover's actions, we assume that (y;w) 2 RU .1. Preliminary action by the prover: The prover invokes M on input (x;w), and obtainst0 = tM (x;w). Assuming that (y;w) 2 RU and letting w0 = (w; 1t0), the prover obtainsan R0U -witness; that is, (y;w0) 2 R0U .2. Oracle-construction: Invoking Ppcp on (y;w0), the prover obtains �y = Ppcp(y;w0).3. Construction of a hashing tree: Letting d def= dlog2 j�yje, the prover constructs a binarytree of depth d such that its nodes are associated with binary strings of length at mostd, and each node is labeled as follows. The root is associated with the empty string,and an internal node associated with
 has children associated with
0 and
1. Thelabel of a leaf associated with
 2 f0; 1gd, denoted `
, is the value of �y at position
;that is this oracle answer to the query
. The label of an internal node associated with
 2 [d�1i=0 f0; 1gi is the value obtained by applying h� to the string `
0`
1.4. The actual message sent is the depth of the tree and the label of its root. That is, theprover sends the pair (d; `�) to the veri�er.Second veri�er step (V2): The veri�er uniformly selects a random-tape r for the pcp system, andsends r to the prover.Second prover step (P2): The prover provides the corresponding (pcp) answers, augmented by proofsof consistency of these answers with the label of the root as provided in Step (P1).1. Determining the queries: Invoking Qpcp, the prover determines the sequence of queriesthat the pcp system makes on random-tape r. That is, for i = 1; :::;m, it computesqi = Qpcp(y; r; i), where m def= poly(n) is the number of queries made by the system.2. The message sent: for i = 1; :::;m and j = 0; :::; d�1, the prover sends the pair (`
0; `
1),where
 is the j-bit long pre�x of qi.Veri�er �nal decision { Step (V3): The veri�er checks that the answers provided by the prover wouldhave been accepted by the pcp-veri�er, and that the corresponding proofs of consistency (withthe label of the root) are valid. That is, denoting by `0
 the label provided by the prover for thenode associated with
, the veri�er accepts if and only if all the following checks pass:9

1. Invoking Dpcp, the veri�er checks whether, on input y and random-tape r, the pcp-veri�er would have accepted the answer sequence `0q1 ; :::; `0qm . That is, check whetherDpcp(y; r; `0q1 � � � `0qm) = 1.2. Check whether the labels provided are consistent with the label of the tree as sent inStep P1. That is, for i = 1; :::;m and j = 0; :::; d � 1, check whether `0
 = h�(`0
0`0
1).We denote the above veri�er and prover strategies by V and P , respectively.Clearly, Construction 3.4 satis�es the �rst two requirements of De�nition 2.1; that is, the veri�er'sstrategy is implementable in probabilistic polynomial-time, and completeness holds with respect toa prover strategy that (given y = (M;x; t) and w as above) runs in time polynomial in TM (x;w).We thus focus on establishing the two last requirements of De�nition 2.1. In fact, computationalsoundness follows from the weak proof-of-knowledge property (because whenever some adversarycan convince the veri�er to accept with non-negligible probability the extractor outputs a validwitness for membership in LU). Thus, it su�ces to establish the latter.3.4 Establishing the weak proof-of-knowledge propertyThis subsection contains the main technical contribution of the current section. The novel aspectin the analysis is the \local de�nition of a con
ict" (i.e., a con
icting oracle-bit rather than acon
icting pair of oracles), and the fact that reverse-sampling can be used to derive (in polynomial-time) hashing-collisions (given a con
icting oracle bit-position).Lemma 3.5 Construction 3.4 satis�es the weak proof-of-knowledge property of De�nition 2.1, pro-vided that the family fh�g is indeed collision-free.Combining Lemma 3.5 with the above discussion, we derive Theorem 1.1.Proof: Fixing any polynomial p, we present a probabilistic polynomial-time knowledge-extractorthat extracts witnesses from any feasible prover strategy that makes V accept with probabilityabove the threshold speci�ed by p. Speci�cally, for any family of (deterministic) polynomial-sizecircuits representing a possible cheating prover strategy and for all su�ciently long y's, if theprover convinces V to accept y with probability at least 1=p(jyj) then, with noticeable probability(i.e., 1=p0(jyj)), the knowledge-extractor (given oracle access to the strategy) outputs the bits of acorresponding witness.We �x an arbitrary family, f ePngn2N, of (deterministic) polynomial-size circuits representinga possible cheating prover strategy, and a generic n and y 2 f0; 1gn such that Pr[(ePn; V)(y) =1] > " def= 1=p(n). We consider a few key notions regarding the interaction of ePn and the desig-nated veri�er V on common input y. First we consider notions that refer to a speci�c interaction(corresponding to a �xed sequence of veri�er coins):� The ith query in such interaction is qi = Qpcp(y; r; i), where r is the Step (V2) message.� The ith answer supplied by (the prover) ePn is the label (`0qi) it has provided (in Step (P2))for the leaf (associated with) the ith query (i.e., qi = Qpcp(y; r; i)). The corresponding au-thentication is the corresponding sequence of pairs (`0
0; `0
1), where
 is the j-bit long pre�xof qi.� The ith answer supplied by ePn is said to be proper if the corresponding authentication passesthe veri�er's test (in Step (V3)). That is, `0
 = h�(`0
0`0
1) holds, for j = 0; :::; d � 1.10

Next, we consider the probability distribution induced by the veri�er's coins. Note that these coinsconsist of the pair of choices (�; r) that the veri�er took in Steps (V1) and (V2), respectively.Fixing any � 2 f0; 1gn, we consider the conditional probability, denoted py;�, that the veri�eraccepts when choosing � is Step (V1). Clearly, for at least a "=2 fraction of the possible �'s itholds that py;� � "=2. We �x any such � for the rest of the discussion. We now consider notionsthat refer to the probability space induced by a uniformly chosen r 2 f0; 1gpoly(n) (selected by theveri�er in Step (V2)).� For any query q2f0; 1gd, a query index i2f1; :::;mg, possible answer �2f0; 1g, and �2 [0; 1],we say that � is �-strong for (i; q) if, conditioned on the ith query being q, the probability thatePn properly answers the ith with � is at least �. That is,Prr[`0qi = � is proper j qi = Q(y; r; i)] � �When i and q are understood from the context, we just say that � is a �-strong answer.� We say that a query q 2 f0; 1gd has �-con
icting answers if there exist i and j (possibly i = j)such that 0 is �-strong for (i; q) and 1 is �-strong for (j; q).We stress that throughout the rest of the analysis we consider a �xed � 2 f0; 1gn and a uniformlydistributed r 2 f0; 1gpoly(n).Claim 3.5.1 The probability that the veri�er accepts while receiving only �-strong answers is atleast py;� �m�.12Thus, picking � = py;�=2m, we may con�ne ourselves to the case that all the prover's answers are�-strong.Proof: The key observation is that whenever the veri�er accepts, all answers are proper. Intuitively,answers that are not �-strong (i.e., are rarely proper) are unlikely to appear in such interactions.Speci�cally, we just upper bound the probability that, for some i 2 f1; :::;mg, the answer `0qi isproper but not �-strong for (i; qi), where qi = Q(y; r; i). Fixing any i and any possible value ofqi = Q(y; r; i), by de�nition (of being proper but not �-strong), the corresponding event occurs withprobability less than �. Averaging over the possible values of qi = Q(y; r; i) we are done. 2Claim 3.5.2 There exist a probabilistic polynomial-time oracle machine that, given � and oracleaccess to ePn, �nds z0 6= z00 such that h�(z0) = h�(z00) with probability that is polynomially related to�=n and to the probability that the veri�er makes a query that has �-con
icting answers. Speci�cally,letting � denote the latter probability, the probability of �nding a collision is at least ��2=m3.Thus, on a typical �, the probability � must be negligible (because otherwise we derive a contradic-tion to the collision-free hypothesis of the family fh�g). Consequently, for � = py;�=2m > 1=poly(n),we may con�ne ourselves to the case that the prover's answers are not (�=2)-con
icting.Proof: We uniformly select r 2 f0; 1gpoly(n) and i 2 f1; :::;mg, hoping that qi = Q(y; r; i) is �-con
icting (which is the case with probability at least �=m). Uniformly selecting i0; i00 2 f1; :::;mg,and invoking the reverse-sampling algorithm Spcp on inputs (y; i0; qi) and (y; i00; qi), respectively, weobtain uniformly distributed r0 and r00 that satisfy qi = Q(y; r0; i0) and qi = Q(y; r00; i00). We nowinvoke ePn twice, feeding it with � and r0 (resp. � and r00) in the �rst (resp., second) invocation.12Recall that m is the number of queries asked by the PCP veri�er Vpcp.11

With probability at least (�=m)2 both answers to qi will be proper but with opposite values. Fromthe authentication information corresponding to these two (proper) answers, we obtain a collisionunder h� (because each of the di�erent values for the same leave is authenticated with respect tothe same value of the root). 2Suppose for a moment, that (for � = py;�=2m) all the prover's answers are �-strong but not(�=2)-con
icting. Then, we can use the prover's answers in order to construct (and not merely claimthe existence of) an oracle for the pcp system that makes it accept with probability at least py;�=2.Speci�cally, let the qth bit of the oracle be � if and only if there exists an i such that � is �-strongfor (i; q). The setting of the oracle bits can be decided in probabilistic polynomial-time by usingthe reverse-sampling algorithm Spcp to generate multiple samples of interactions in which thesespeci�c oracle bits are queried. That is, to determine the qth bit, we try i = 1; :::;m, and for eachvalue of i generate multiple samples of interactions in which the ith oracle query equals q. We willuse the gap provided by the hypothesis that for some i there is an answer that is �-strong for (i; q),whereas (by the non-con
icting hypothesis) for every j the opposite answer is not (�=2)-strong for(j; q).In general, in contrary to the simplifying assumption above, some queries may either have nostrong answers or be con
icting. The procedure may indeed fail to recover the corresponding entriesin the pcp-oracle, but this will not matter because with su�cient high probability the pcp veri�erwill not query these badly-recovered locations.The oracle-recovery procedure: We present a probabilistic polynomial-time oracle machinethat on input (y; �) and q 2 f0; 1gd and oracle access to the prover ePn, outputs a candidate for theqth bit of a pcp-oracle. The procedure operates as follows, where T def= poly(n=�) and � = "=4m:1. For i = 1; :::;m and j = 1; :::; T , invoke Spcp on input (y; i; q) and obtain ri;j.2. For i = 1; :::;m and j = 1; :::; T , invoke ePn feeding it with � and ri;j, and if the ith answer isproper then record (i; j) as supporting this answer value.3. If for some i 2 f1; :::;mg, there are (2�=3) � T records for the form (i; �) for value � 2 f0; 1gthen de�ne � as a candidate. That is, � is a candidate if there exists an i and at least (2�=3) �Tdi�erent j's such that the ith answer of ePn(�; ri;j) is proper and has value �.4. If a single value of � 2 f0; 1g is de�ned as a candidate then set the qth bit accordingly.(Otherwise, do whatever you please.)We call the query q good if it does not have (�=2)-con
icting answers and there exists an i 2f1; :::;mg and a bit value that is �-strong for (i; q). For a good query, with overwhelmingly highprobability, the above procedure will de�ne the latter value as a unique candidate. (The expectednumber of (i; �)-supports for the strong value is at least � � T , whereas for the opposite value theexpected number of (i0; �)-supports is less than (�=2) �T , for every i0.) Let use denote the pcp-oracleinduced by the above procedure by �.Claim 3.5.3 Let � = "=4m and recall that py;� � "=2. Suppose that the probability that V makesa query that has (�=2)-con
icting answers is at most py;�=4. Then, with probability at least 1�2�ntaken over the reconstruction of �, the probability that Vpcp�(y) accepts is lower bounded by py;�=4.Proof: Combining the hypothesis (regarding (�=2)-con
icting answers) with Claim 3.5.1, we con-clude that with probability at least (py;� �m�) � (py;�=4) � py;�=4 the veri�er (of the interactiveargument) accepts while making only good queries and receiving only �-strong answers. However,12

in this case, with probability at least 1� 2�n, the answers of ePn equal the corresponding bits in �.(This is because for a good query, with overwhelmingly high probability, the answer that is �-strongwill be the only candidate determined by the procedure.) Since the (interactive argument) veri�eris accepting after invoking Vpcp on the answers it obtained, it follows that in this case Vpcp acceptstoo. 2The weak proof-of-knowledge property (of the interactive argument) now follows from the cor-responding property of the pcp system. Speci�cally, we combine the pcp extractor with the aboveoracle-recovery procedure, and obtain the desired extractor.Extractor for the argument system: On input (y; i) and access to a prover strategy ePn, theextractor operates as follows (using � = "=4m):1. Uniformly select � 2 f0; 1gn, hoping that � is typical (with respect to collision-freeness) andthat py;� > "=2 (which hold with probability at least ("=2) � �(n) > "=3).By saying that � is typical with respect to collision-freeness we mean that in the correspondingconditional probability space (of � being chosen in Step (V1)), the probability that theveri�er makes a query that has (�=2)-con
icting answers is less than py;�=4, which in turnis at least "=8. By Claim 3.5.2, there exists a probabilistic polynomial-time machine that,given any untypical � (and access to ePn), �nds a collision (under h�) with probability atleast (py;�=4) � (�=2)2=m3 =
("3=m5) = 1=poly(n), because " = 1=p(n). It follows that thefraction of untypical �'s must be negligible.2. Uniformly select coins ! for the oracle-recovery procedure, and �x ! for the rest of thediscussion.Note that the oracle-recovery procedure (implicitly) provides oracle access to a pcp-oracle�, where (by Claim 3.5.3) with probability at least 1 � 2�n (over the choice of !), this �convinces Vpcp with probability at least py;�=4 > "=8 > 2�n.3. Invoke Epcp(y; i) providing it with oracle access to �. This means that each time Epcp(y; i)makes a query q, we invoke the oracle-recovery procedure on input (y; q) (and with � and !as �xed above), and obtain the qth bit of �, which we return as answer to Epcp(y; i). WhenEpcp(y; i) provides an answer (supposedly the ith bit of a suitable witness w), we just outputthis answer.Let us call � useful if it is typical w.r.t collisions and py;� > "=2. We say that ! is �-useful if whenused as coins for the oracle-recovery procedure (which gets main-input (y; �)) yields an oracle thatconvinces Vpcp with probability at least 2�n. Recall that at least a "=3 fraction of the �'s areuseful, and that for each useful � at least a 1� 2�n fraction of the !'s are �-useful. By the proof-of-knowledge property of the pcp system, if � is useful and ! is �-useful then with probability atleast 2=3 (over the coins of Epcp), the output of Epcp (and thus of our extractor) will be correct.By suitable ampli�cation, we can obtain the correct answer with probability at least 1�2�2n (overthe coins of Epcp), pending again on � and ! being useful. Denoting the coins of the ampli�edEpcp by �, we conclude that for at least a fraction 1 � t � 2�2n � 1 � 2�n of the possible �'s, theampli�ed Epcp provides correct answers for all t bit locations. We call such �'s (�; !)-useful.Let us denote the above extractor by E. The running-time of E is dominated by the running-time of the oracle-recovery procedure, whereas the latter is dominated by the poly(n=") invoca-tions of ePn (during the oracle-recovery procedure). Using " = 1=p(n), it follows that E runs inpolynomial-time. The random choices of E correspond to the above three steps; that is, they consist13

of �, ! and �. Whenever they are all useful (i.e., � is useful, ! is �-useful, and � is (�; !)-useful),the extractor E recovers correctly all bits of a suitable witness (for y). The event in the conditionoccurs with probability at least ("=3) � (1�2�n) � (1�2�n) > "=4 = 1=4p(n). Letting p0(n) = 4p(n),the lemma follows.4 Application to Zero-Knowledge ArgumentsUsing Theorem 1.1, we prove Theorem 1.2 in two steps:1. Using any constant-round public-coin universal-argument, we derive one that is (strongly)witness-indistinguishable. Here we just follow Barak's construction [6] (which in turn follows[8]), but the analysis is again more complex than in the original work.2. Using the latter, we modify Barak's construction of a zero-knowledge argument (for L 2NP) [6]. Speci�cally, rather than using any collision-free hashing (for the very �rst messagein his protocol), we use tree-hashing (as in Step (P1) of Construction 3.4) composed with anerror-correcting code.We stress that when applied to universal-arguments, the (strong) witness-indistinguishability prop-erty refers only to witness ensembles that are veri�able in time that is polynomial in the length ofthe common input (where the polynomial is �xed after the universal-argument system is speci�ed).4.1 Constructing witness-indistinguishable universal-argumentsOur starting point is any constant-round, public-coin universal-argument (for LU), denoted (Pua; Vua).For sake of simplicity, we assume (without loss of generality) that, on any n-bit long common in-put, each message sent by either parties has length m = poly(n). Using the public-coin clause thismeans that the protocol proceeds in rounds, where in each round the veri�er selects uniformly anm-bit string, and the prover responds with an m-bit string determined based on its inputs and themessages it has received so far. We denote by c the (constant) number of such rounds; in case ofConstruction 3.4, c = 2.A second ingredient used in the construction is a (constant-round, public-coin) strong witness-indistinguishable (strong WI) proof-of-knowledge for an NP-complete language. Loosely speaking,the strong notion of WI means that whenever the common inputs to the proof system are computa-tional indistinguishable so are the corresponding views of the veri�er (no matter which NP-witnessesthe prover uses). Let us denote such a system by (Pwi; Vwi). (Such proof systems exist (cf. [18,Sec. 4.6 & 4.7]), provided that (perfectly-binding) commitment scheme exist.) Finally, we use a(perfectly-binding) commitment scheme, denoted C. The commitment to value v using randomnessr is denoted Cr(v).Construction 4.1 (a witness-indistinguishable universal-argument):Common input: y = (M;x; t) supposedly in LU . Let n def= jyj.Auxiliary input to the prover: w such that supposedly (y;w) 2 RU holds.Part 1: encrypted emulation of (Pua; Vua). The parties emulate the (Pua; Vua) protocol in a par-tially encrypted manner. Speci�cally, the veri�er generates random messages exactly as Vua,but the prover answers with commitments to the corresponding responses of Pua. That is, fori = 1; :::; c:1. The veri�er uniformly selects ri 2 f0; 1gm, and sends it to the prover.14

2. The prover determines Pua's answer, and responds with a commitment to it. That is,the prover selects uniformly coins s for Pua, and �xes them for all iterations. The ithanswer of Pua is determined by ai Pua(y;w; s; r1; :::; ri). Finally, the prover selectscommitment coins si, and sends ei Csi(ai) to the veri�er.Part 2: proving that Vua accepts in the encrypted emulation. The parties invoke the proof system(Pwi; Vwi) to prove that the transcript (r1; e1; :::; rc; ec) generated above corresponds to anencryption of an accepting (Pua; Vua) transcript, and that the corresponding cleartext is knownto the prover. The prover executes the protocol using the NP-witness ((a1; s1); :::; (ac; sc)), andthe NP-statement being proven (with respect to the input (y; r1; e1; :::; rc; ec)) is1. For i = 1; :::; c, it holds that ei = Csi(ai).2. Vua(y; r1; a1; :::; rc; ac) = 1.Note that the length of the NP-statement being proven (as well as the length of the correspond-ing NP-witness) is bounded by a �xed polynomial in n+m (and thus by a �xed polynomial inn).We denote the above veri�er and prover strategies by V and P , respectively.Clearly, Construction 4.1 is constant-round, public-coin, and satis�es the �rst two requirementsof De�nition 2.1; that is, the veri�er's strategy is implementable in probabilistic polynomial-time,and completeness holds with respect to a prover strategy that (given y = (M;x; t) and w as above)runs in time polynomial in TM (x;w). It remains to establish two properties of Construction 4.1:1. The weak proof-of-knowledge property, which in turn implies also the computational sound-ness property.2. The witness-indistinguishability property.The above properties are established by an adaptation of the proof in [6].Lemma 4.2 Construction 4.1 satis�es the weak proof-of-knowledge property of De�nition 2.1, pro-vided that so does (Pua; Vua) and that C is perfectly-binding.Proof: We �x an arbitrary family, f ePngn2N, of (deterministic) polynomial-size circuits representinga possible prover strategy in the system (P; V). We �x a generic n and y 2 f0; 1gn we let py def=Pr[(ePn; V)(y) = 1].Using ePn, we construct a corresponding prover strategy gPua that makes Vua accept y withprobability at least poly(py). The strategy gPua operates in c iterations, where in each iteration itobtains from ePn an encrypted message and using the knowledge extractor of the system (Pwi; Vwi)extracts from it the corresponding cleartext message. That is, for i = 1; :::; c:1. gPua obtains from the (real) veri�er Vua a (uniformly distributed) string ri 2 f0; 1gm.2. gPua emulates a continuation of an execution of Part 1 of the (P; V) protocol (i.e., the encrypted(Pua; Vua) argument). The emulation is internal to gPua and proceeds by playing the part ofthe veri�er towards an internal copy of ePn. That is, gPua feeds ePn with veri�er messagesr1; :::; ri; pi+1; :::; pc, where the rj 's are as obtained from the real veri�er and the pj 's areselected uniformly by gPua itself. In response, gPua obtains the corresponding answers e1; :::; ec.15

3. Invoking the knowledge-extractor corresponding to the system (Pwi; Vwi) (while providing itwith oracle access to the residual strategy ePn(r1; :::; ri; pi+1; :::; pc)), strategy gPua tries to ob-tain an NP-witness ((a1; s1); :::; (ac; sc)) corresponding to the NP-statement (y,r1,e1,:::,ri,ei,pi+1,ei+1,::: , pc,ec). In particular, for ith pair in the witness (i.e., (ai; si)) it holds that ei = Csi(ai).The knowledge-extractor used here runs in strict polynomial-time, but recovers the witness(only) with probability that is polynomially-related to the probability that the prover con-vinces Vwi. An suitable proof system having such an knowledge-extractor can be obtainedby parallel repetitions of the basic zero-knowledge proof for Hamiltonicity (cf. [18, Chap. 4,Exec. 28]).134. gPua sends ai to the (real) veri�er Vua.Clearly, gPua is probabilistic polynomial-time (since it merely invokes ePn and the knowledge-extractor, which in turn invokes ePn). We need to relate its success probability to py.Claim 4.2.1 gPua makes Vua accept y with probability at least poly(py), where the polynomial de-pends on the constant c.Proof: The probability py that ePn makes V accept y is taken over the probability space thatconsists of V 's random choices in the two parts of the protocol. Speci�cally, V 's random choicesare ((r1; :::; rc); R), where the ri's are the c messages sent in the c rounds of Part 1.For i = 1; :::; c, we call (r1; :::; ri) 2 f0; 1gi�m good if the probability that ePn makes V accept yconditioned on V selecting r1; :::; ri in the �rst i rounds is at least py=2i. Using induction on i, notethat at least a py=2i fraction of the (r1; :::; ri) 2 f0; 1gi�m are good. Thus, the probability that veri�erVua has selected (r1; :::; rc) such that, for every i 2 f1; :::; cg, the i-pre�x (r1; :::; ri) is good is atleast Qci=1(py=2i) > (py=2c)c. Suppose that this lucky event has indeed happened. Then, for everyi 2 f1; :::; cg, with probability at least q0 def= py=2i+1 over the choice of (pi+1; :::; pc) 2 f0; 1g(c�i)�mthe residual prover strategy ePn(r1; :::; ri; pi+1; :::; pc) makes Vwi accept with probability at leastq00 def= py=2i+1. Thus (for every i), we successfully extract the (unique) answer ai with probabilityat least q0 � poly(q00) > poly0(py=2i+1). Here we rely on the proof-of-knowledge property of thesystem (Pwi; Vwi) (when applied to the residual prover strategy ePn(r1; :::; ri; pi+1; :::; pc)), and onthe perfect-binding property of the commitment scheme C.We conclude that gPua makes Vua accept with probability at least(py=2c)c � cYi=1poly(py=2i+1) > 2�c2 � poly(py)c (1)The claim follows. 2Using the weak proof-of-knowledge property of (Pua; Vua), with respect to gPua (as constructed andanalyzed above), the lemma follows.Lemma 4.3 Construction 4.1 is strong witness-indistinguishable, provided that so is (Pwi; Vwi)and that C is computationally-hiding.13The extractor just performs two random interactions with the prover and recovers the Hamiltonian cycle if theseinteractions are di�erent and both convince the veri�er. To deal with the annoying case in which the space ofpossible interactions contains a single convincing interaction, one may augment the extractor with an attempt toguess a Hamiltonian cycle at random. 16

Proof: Suppose that fy0ngn2N and fy00ngn2N are computationally indistinguishable, and that fw0ngn2Nand fw00ngn2N are corresponding sequences of witnesses such that TM 0n(x0n; w0n) = poly(n), wherey0n = (M 0n; x0n; t0n) (and similarly for f(y00n; w00n)gn2N). Then, by the computationally-hiding propertyof the commitment scheme C, the corresponding Part 1 transcripts are also computationally indistin-guishable. That is, f(y0n; r01; C(a01); :::; r0c; C(a0c)gn2N and f(y00n; r001 ; C(a001); :::; r00c ; C(a00c)gn2N are compu-tationally indistinguishable, where a0i = Pua(y0n; w0n; s; r01; :::; r0i) and a00i = Pua(y00n; w00n; s; r001 ; :::; r00i).(We rely on the hypothesis that TM 0n(x0n; w0n) = poly(n) and on the prover-e�ciency with per-fect completeness property of that Pua.) Using the strong witness-indistinguishability property of(Pwi; Vwi), it follows that the corresponding Part 2 transcripts are also computationally indistin-guishable.4.2 Modifying Barak's zero-knowledge argumentHere our starting point is any (constant-round, public-coin) strong witness-indistinguishable universal-argument (for LU), denoted (Pwi-ua; Vwi-ua).A second ingredient used in the construction is a tree-hashing scheme, denoted TH, as used inConstruction 3.4. Loosely speaking, such a scheme can be applied to arbitrary long strings andallow veri�cation of a particular bit in the string within time polynomial in the hash-value. Westress that veri�cation does not require presenting the entire string to which hashing was applied(but rather only auxiliary authentication information speci�c to that bit position). We denote byauthi the authentication information corresponding to bit position i. Recall that tree-hashing isconstructed based on some \basic" hashing function (which maps 2n-bit strings to n-bit strings),and that con
icting values assigned to any bit position in the tree-hashing (easily) yield a collisionin the basic hashing.In addition we use a perfectly-binding commitment scheme C, and any good error-correcting code(i.e., a code correcting a constant fraction of errors with polynomial-time encoding and decodingalgorithms), denoted ECC.The key idea in our modi�cation of Barak's construction [6], is to replace an arbitrary hashingof strings by the following two-step (hashing) process:1. Apply the error-correcting code to the input string.2. Apply the tree-hashing to the resulting codeword.The advantage of this two-step (hashing) process over standard hashing is that if two di�erentstrings are hashed to the same value then we can easily obtain a collision in the basic hashing func-tion (underlying the tree-hashing). We stress that this collision is found in time that is polynomialin the hash-value (independent of the length of the strings being hashed). The reason is that, with(positive) constant probability, a uniformly selected bit-position in the codeword will have di�erentvalues in the two codewords, and in this case we obtain from the corresponding authentications acollision in the basic hashing. (See analysis below.)Construction 4.4 (a zero-knowledge argument for L 2 NP (with a corresponding witness rela-tion RL)):Common input: x supposedly in L. Let n def= jxj.Auxiliary input to the prover: w such that supposedly (x;w) 2 RL holds.Part 1: introducing a trapdoor for the simulation.1. The veri�er uniformly selects � 2 f0; 1gn (i.e., a basic hash function), and sends it tothe prover. 17

2. The prover sends a dummy commitment; that is, it uniformly selects s 2 f0; 1gpoly(n),and sends c def= Cs(02n) to the veri�er.3. The veri�er uniformly selects r 2 f0; 1gn, and sends it to the prover.Part 2: proving that either x 2 L or the prover could have guessed r. The parties invoke the proofsystem (Pwi-ua; Vwi-ua) such that the prover proves that it knows (w; jECC(�)j; auth(ECC(�)); s)such that either (x;w) 2 RL or (jECC(�)j; auth(ECC(�)); s) encodes authentication and de-commitment information for a program � such that �(c) = r.14 That is, the parties reducethe above instance (x; �; c; r) to triplet y = (M 0L; (x; �; c; r); 2n) (where jyj = poly(n) and y issupposedly in LU) such that M 0L((x; �; c; r); (w;m; �; (auth1; :::; authm); s)) def= 1 if and onlyif one of the following two conditions hold1. (x;w) 2 RL.2. Cs(m; TH�(�)) = c, the sequence (auth1; :::; authm) authenticates the corresponding bitsof � 2 f0; 1gm, and �(c) = r, where � ECC�1(�) is a program for a universal Turingmachine, TH�(z) is computed as in Step (P1) of Construction 3.4, and each authi encodesthe ith bit of z as well as the corresponding authentication information.15When invoking Pwi-ua, the prover provides it with the witness (w;m0; �0; auth0; s0), wherem0 = n and �0 = auth0 = s0 def= 0n are (short) dummy values.Note that the �rst condition can be evaluated in (�xed) polynomial-time (in jxj), whereas thecomplexity of evaluating the second condition is dominated by the running-time of � on inputc. Furthermore, if (x;w) 2 RL then (y; (w;m0; �0; auth0; s0)) 2 RU and the running-time ofPwi-ua on (y; (w;m0; �0; auth0; s0)) is a �xed polynomial in jxj. We stress that, in any case,the length of the statement being proven is bounded by a �xed polynomial in jxj.We denote the above veri�er and prover strategies by V and P , respectively.Clearly, Construction 4.4 is constant-round, public-coin, and employs a probabilistic polynomial-time veri�er strategy. Furthermore, the designated prover satis�es the completeness property whilerunning in polynomial-time, given x and w as above. Demonstrating that Construction 4.4 is zero-knowledge is done by following the ideas of [6]. We start with a rough sketch of this proof, andthen turn to establish the computational-soundness property of Construction 4.4.Construction 4.4 is zero-knowledge: We present a non-black-box simulator that, given thecode of any feasible cheating veri�er (represented by a polynomial-size circuit family f eVngn2N), sim-ulates the interaction of P with that veri�er. Speci�cally, given eVn, the simulator emulates Part 1 ofthe protocol, except that it sets c def= Cs(jECC(eVn)j; TH�(ECC(eVn))) (rather than c def= Cs(02n)). Next,the simulator emulates Part 2 of the protocol by using the witness (w0; jECC(eVn)j; ECC(eVn); auth(ECC(eVn)); s),where w0 = 0n is a (short) dummy value, s was selected by the simulator when emulating Part 1,and eVn was given to it as (auxiliary) input. (Given eVn, the simulator computes ECC(eVn) as well asthe corresponding sequence of authenticators auth(ECC(eVn)), in polynomial-time.)14The reason that we include (in the witness) the authentication information (i.e., auth(ECC(�))) rather than �itself will become clear in the proof of Lemma 4.5. Furthermore, for technical reasons, we explicitly include in thewitness also the length of ECC(�). For sake of clarify, we also explicitly include ECC(�) in the witness (but we do notuse it in the analysis).15That is, TH�(z) = (d; `�), where jzj = 2d (for an integer d), `i is the ith bit of z, and `
 = h�(`
0`
1). Actually,here it is more natural to let TH�(z) = (d; `0;0), where `d;i is the ith bit of z, and `j;i = h�(`j+1;2i`j+1;2i+1). Similarly,authi = (`d;2bi=2c; `d;2bi=2c+1; `d�1;2bi=4c; `d�1;2bi=4c+1; :::; `1;2bi=2dc; `1;2bi=2dc+1).18

The computational-hiding property of the commitment scheme C implies that emulation ofPart 1 is indistinguishable from the corresponding part in a real execution. Given this fact, the(strong) witness indistinguishability property of Pwi-ua implies that the emulation of Part 2 isindistinguishable from the corresponding part in a real execution. We stress that when usingthe witness indistinguishability property of Pwi-ua, we refer to witnesses that are veri�able in�xed polynomial-time (because f eVngn2N has been �xed for the current discussion). That is, forevery polynomial bounding the size of the veri�er's strategy, we prove that the simulator's output(produced when given the veri�er's strategy as auxiliary input) is computationally indistinguishablefrom a real execution.Construction 4.4 is computational-sound: We show that any feasible cheating strategy forthe prover, yields a feasible algorithm that form collisions with respect to the basic hashing familyfh� :f0; 1g2j�j!f0; 1gj�jg�2f0;1g� . The main idea is to use the (weak) proof-of-knowledge propertyof Vwi-ua in order to implicitly reconstruct an error-correcting codeword that encodes (di�erent)valid witnesses that corresponding to di�erent executions of Part 1. We stress that since there is noa-priori polynomial bound on the length of such witnesses, we cannot a�ord to explicitly reconstructthem (as done in [6], where only a contradiction to super-polynomial hardness is derived). However,implicit reconstruction of valid codewords will su�ce, because di�erent witnesses will be encodedby codewords that di�er on a constant fraction of the bit-locations.Lemma 4.5 Construction 4.4 is computationally-sound (w.r.t L), provided that the family fh�gis indeed collision-free.Proof: Suppose towards the contradiction that there exists a feasible prover strategy that foolsV with non-negligible probability (to accept inputs not in L). Speci�cally, let f ePngn2N be such afamily, and p be a polynomial such that for in�nitely many x 62L it holds that px def= Pr[(ePn; V)(x) =1] > 1=p(jxj). Let us �x a generic n and x 2 f0; 1gn n L such that px > 1=p(n). For simplicity, weincorporate this x in ePn.Using f ePngn2N, we present a family of circuits fCngn2N that try to form collisions. On input� 2 f0; 1gn, the circuit Cn proceeds as follows:1. Invoking ePn, on input �, we obtain c ePn(�). This is supposedly a commitment producedby the cheating prover (in the second step of Part 1 of the protocol).2. Uniformly select r 2 f0; 1gn, feed it to ePn, and derive a residual prover ePn(�; r) for Part 2 ofthe protocol. That is, gPwi-ua def= ePn(�; r) is a prover strategy for the (witness-indistinguishable)universal-argument system (Pwi-ua; Vwi-ua).3. Invoking the knowledge-extractor guaranteed for the system (Pwi-ua; Vwi-ua), while providingit with oracle access to gPwi-ua, we reconstruct the values in bit-locations n + 1; :::; 2n inthe witness. (The knowledge-extractor used corresponds to acceptance probability threshold1=4p(n), and so it runs in polynomial-time and succeeds with noticeable probability whengiven access to a residual prover that makes Vwi-ua accept with probability at least px=4.)Recall that since x =2 L, the witness must encode a program � such that �(c) = r andthe reconstructed bits encode the length of ECC(�), denoted m. The values in bit-locations2n + 1; :::; 2n +m are an error-correcting encoding of �, and subsequent m strings containauthentication information for the corresponding bits.4. We uniformly select i 2 f1; :::;mg. Invoking the knowledge-extractor again with oracle accessto gPwi-ua, we reconstruct the values in the bit-locations that correspond to the authenticatorof the ith bit in the codeword. 19

5. We repeat Steps 2 and 4 with a new uniformly selected r0 2 f0; 1gn but with the same valueof i as selected in Step 4. That is, analogously to Step 2, we �rst obtain a correspondingprover strategy gP 0wi-ua def= ePn(�; r0) (for the (witness-indistinguishable) universal-argumentsystem (Pwi-ua; Vwi-ua)). We need not repeat Step 3 because the perfect-binding property ofC guarantees the uniqueness of m (obtained in Step 3). Analogously to Step 4, we invoke theknowledge-extractor with oracle access to gP 0wi-ua, and obtain the values in the bit-locationsthat correspond to the authenticator of the ith bit in the codeword.Recall that since x =2 L, the witness used by gP 0wi-ua must encode a program �0 such that�0(c) = r0. Since (with probability 1 � 2�n it holds that) r 6= r0 (and �(c) = r), it mustbe the case that �0 6= � (whereas jECC(�)j = m = jECC(�0)j). We hope that ECC(�) andECC(�0) di�er on the ith bit (which happens with constant probability), in which case weobtain authenticators to con
icting values (with respect to the same tree-root (where theuniqueness is due to perfect-binding property of C)).6. Consider the authenticators obtained in Steps 4 and 5. If they authenticate con
icting values,then we obtain a collision under h� (as in the proof of Claim 3.5.2).The above circuit family has polynomial-size (because each Cn is implementable by the sameprobabilistic polynomial-time oracle machine, which in turn is given access to the polynomial-sizeePn). We now turn to analyze the success probability of Cn.Claim 4.5.1 Given a uniformly distributed � 2 f0; 1gn, with probability at least 1=poly(n), thecircuit Cn outputs a collision with respect to h�.Proof: Recall that ePn makes V accept x with probability px > 1=p(n), where the probability istaken over V 's random choices in the two parts of Construction 4.4. Moreover, V 's choices in Part 1are (�; r), where � (resp., r) is uniformly selected in f0; 1gn.We call � good if the probability that ePn makes V accept x, conditioned on V selecting � inthe �rst step of Part 1, is at least px=2. Clearly, at least a px=2 fraction of the �'s are good, andwe focus on any such good �.Similarly, we call r �-good if the probability that ePn makes V accept x, conditioned on Vselecting � and r in Part 1, is at least px=4. We denote by G = G� the set of �-good strings, andnote that jGj > (px=4) � 2n (since � is good). That is, for every r 2 G, the residual prover ePn(�; r)convinces Vwi-ua with probability at least px=4 > 1=4p(n), and therefore the knowledge-extractor(given oracle access to ePn(�; r)) implicitly extracts the corresponding witness with probability atleast qn def= 1=poly(n).Observe that, with probability at least (px=4)2, both r and r0 selected in Steps 2 and 5 respec-tively reside in G. Conditioned on this event, we (implicitly) extract the corresponding witnesseswith probability at least q2n. We stress that the two witnesses must be of the same length by thevirtue of their length being committed to in c (sent by the prover in the second step of Part 1).Finally, with constant probability, these witnesses di�er in bit position i (selected in Step 4), inwhich case Cn forms a collision under h�.We conclude that, for any good �, the circuit Cn forms a collision under h� with probability atleast (px=4)2 � q2n �
(1) =
(p2x � (1=poly(n))2) (2)Using px > 1=p(n), we lower-bound Eq. (2) by poly(px). Recalling that at least px=2 of the �'s aregood, the claim follows. 2 20

Using Claim 4.5.1, we derive a contradiction to the hypothesis that fh�g is collision-free. Thelemma follows.Achieving bounded concurrent zero-knowledge. We have shown that Construction 4.4 sat-is�es the �rst two items of Theorem 1.2. To establish the third item we need to modify theconstruction a little (analogously to the way this is done in [6]). Speci�cally, for a suitably chosenpolynomial `, in Part 1 we select r uniformly in f0; 1g`(n)+n (rather than in f0; 1gn), and in Part 2we relax the second case so that now we require that there exists a string z 2 f0; 1g`(n) such that�(c; z) = r (rather than requiring that �(c) = r). The extra string z allows to encode informationfrom n2 concurrent executions of the protocol (see details in [6]), and so enables the simulatorstrategy to insert a \trapdoor" to the second step of Part 1 of the current execution (and thusproceed in an \execution-by-execution" manner). When demonstrating computational-soundness,we merely observe that for a uniformly distributed r0 2 f0; 1g`(n)+n (chosen in Step 5), it is unlikelythat �, which is (implicitly) recovered (in Step 4) obliviously of r0, will satisfy �(c; z0) = r0 forsome z0 2 f0; 1g`(n).References[1] S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy. Proof Veri�cation and In-tractability of Approximation Problems. JACM, Vol. 45, pages 501{555, 1998. Preliminaryversion in 33rd FOCS, 1992.[2] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.JACM, Vol. 45, pages 70{122, 1998. Preliminary version in 33rd FOCS, 1992.[3] L. Babai. Trading Group Theory for Randomness. In 17th STOC, pages 421{429, 1985.[4] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time has Two-Prover Interactive Protocols. Computational Complexity, Vol. 1, No. 1, pages 3{40, 1991.Preliminary version in 31st FOCS, 1990.[5] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarith-mic Time. In 23rd STOC, pages 21{31, 1991.[6] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd FOCS, pages106{115, 2001.[7] M. Bellare and O. Goldreich. On De�ning Proofs of Knowledge. In Crypto'92, Springer-Verlag LNCS 740, pages 390{420.[8] M. Ben-Or, O. Goldreich, S. Goldwasser, J. H�astad, J. Kilian, S. Micali and P. Rog-away. Everything Provable is Provable in Zero-Knowledge. In Crypto'88, Springer-VerlagLNCS 403, pages 37{56, 1990.[9] M. Ben-Or, S. Goldwasser, J. Kilian and A. Wigderson. Multi-Prover Interactive Proofs:How to Remove Intractability. In 20th STOC, pages 113{131, 1988.[10] G. Brassard, D. Chaum and C. Cr�epeau. MinimumDisclosure Proofs of Knowledge. JCSS,Vol. 37, No. 2, pages 156{189, 1988. Preliminary version by Brassard and Cr�epeau in 27thFOCS, 1986. 21

[11] R. Canetti, O. Goldreich and S. Halevi. The Random Oracle Methodology, Revisited. In30th STOC, pages 209{218, 1998.[12] U. Feige, S. Goldwasser, L. Lov�asz, S. Safra, and M. Szegedy. Approximating Clique isalmost NP-complete. JACM, Vol. 43, pages 268{292, 1996. Preliminary version in 32ndFOCS, 1991.[13] U. Feige and J. Kilian. Making games short (extended abstract). In 29th STOC, pages506{516, 1997.[14] U. Feige, A. Shamir and M. Tennenholtz. The noisy oracle problem. In Crypto'88,Springer-Verlag LNCS 403, pages 284{296.[15] U. Feige and A. Shamir. Zero-Knowledge Proofs of Knowledge in Two Rounds. InCrypto'89, Springer-Verlag LNCS Vol. 435, pages 526{544, 1990.[16] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge ProofsUnder General Assumptions. SICOMP, Vol. 29 (1), pages 1{28, 1999.[17] L. Fortnow, J. Rompel and M. Sipser. On the power of multi-prover interactive protocols.In Proc. 3rd IEEE Symp. on Structure in Complexity Theory, pages 156{161, 1988.[18] O. Goldreich. Foundation of Cryptography { Basic Tools. Cambridge University Press,2001.[19] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity orAll Languages in NP Have Zero-Knowledge Proof Systems. JACM, Vol. 38, No. 1, pages691{729, 1991. Preliminary version in 27th FOCS, 1986.[20] S. Goldwasser, S. Micali and C. Racko�. The Knowledge Complexity of Interactive ProofSystems. SICOMP, Vol. 18, pages 186{208, 1989. Preliminary version in 17th STOC,1985.[21] J. Kilian. A Note on E�cient Zero-Knowledge Proofs and Arguments. In 24th STOC,pages 723{732, 1992.[22] C. Lund, L. Fortnow, H. Karlo�, and N. Nisan. Algebraic Methods for Interactive ProofSystems. JACM, Vol. 39, No. 4, pages 859{868, 1992. Preliminary version in 31st FOCS,1990.[23] S. Micali. Computationally Sound Proofs. SICOMP, Vol. 30 (4), pages 1253{1298, 2000.Preliminary version in 35th FOCS, 1994.

22

