
On Universal Learning Algorithms�Oded Goldreichy Dana RonzJuly 5, 1996AbstractWe observe that there exists a universal learning algorithm which PAC-learns every conceptclass within complexity which is linearly related to the complexity of the best learning algorithmfor this class. This observation is derived by a straightforward adaptation, to the learningcontext, of Levin's proof of the existence of optimal algorithms for NP.

�Presented in the Impromptu Session of COLT96.yDepartment of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.E-mail: oded@wisdom.weizmann.ac.il. On sabbatical leave at LCS, MIT.zLaboratory for Computer Science, MIT, Cambridge 02139, USA. E-mail: danar@theory.lcs.mit.edu. Researchwas supported in part by an NSF Postdoctoral Fellowship.0

1 IntroductionIn his seminal paper on NP-completeness [9], in addition to proving (independently of Cook [4] andKarp [6]) the existence of NP-complete problems, Levin presented an optimal algorithm for solvingany NP-complete problem. That is,Theorem 1 ([9] { see Appendix for terminology): For every NP-relation, R, there exists an algo-rithm A, which solves R, and a polynomial p(�) so that for every A0 which solves R, there exists aconstant c such that for every x 2 L(R): timeA(x) < c � timeA0(x) + p(jxj).More than a decade later, the same underlying idea was used by Levin to prove the following:Proposition 2 [10]: There exists a polynomial-time computable function F which is one-way,unless no one-way functions exist. (F is explicitly given!)Here we employ the same idea to proveTheorem 3 (a universal learning algorithm { informal version): There exists a universal learningalgorithm U , so that for any concept class C, if C can be PAC-learned in polynomial-time then UPAC-learns C in polynomial-time. Furthermore, if some algorithm PAC-learns C in time t(�) thenU PAC-learns C in time O(t(�)).We wish to stress that this result has no practical signi�cance since the constant hidden in theO-notation is huge (see the proof). On the other hand, the result holds also for many extensions ofthe PAC-learning model [12] such as learning with queries [1], learning under a �xed distribution(e.g., [3]), learning with statistical queries [7], etc. In general, the result holds in any model whichenables e�cient hypothesis testing (i.e., given a hypothesis h one should determine whether happroximates the target concept within a given approximation parameter).2 Formal SettingA formal statement of Theorem 3 follows. We �rst stress that by PAC-learning we mean thedistribution-free model of learning from examples as introduced by Valiant in [12]. (Extensions willbe discussed later.) Another two changes with respect to Theorem 3 are the introduction of theadditive log(1=�)=� term (which can be eliminated in most cases{ see below) and the speci�cationof the (standard) parameters on which the time complexity depends (cf., [8]).Theorem 4 (a universal learning algorithm { formal version): There exists a universal learningalgorithm U , so that for any concept class C = fCng, if some algorithm PAC-learns C in timet(n; size(c); �; �) then U PAC-learns C in time O(t(n; size(c); �; �)+ log(1=�)�), where n, size(c), � and� are the usual dimension of the instance space, size of the target concept c 2 Cn, approximationparameter and con�dence parameter, respectively.We remark that for any \non-trivial" concept class1 C, any PAC-learning algorithm must takelog(1=�)� many examples [2], and so t(�; �; �; �)> log(1=�)� and the additive log(1=�)� term can be omitted.1A concept class is trivial if it consists of a single concept or of two disjoint concepts whose union equals theinstance space. 1

2.1 Proof in a model allowing Weak Equivalence QueriesThe basic idea in the proof of Theorem 1 is to just try all possible algorithms, \in parallel", andrely on the fact that it is easy to recognize a correct solution. Here we follow the same idea.A technical problem is that there exist in�nitely many potential algorithms. Following Levin,we classify algorithms according to their length (w.r.t. any standard encoding of algorithms) andemulate an additional step of an algorithm of length ` only after we've emulated many more stepsof all algorithms of length `� 1.The universal learning algorithm, U , proceeds in rounds. In the jth round U utilizes onlyalgorithms of length at most j � 2 log2 j. For every ` � j � 2 log2 j, algorithm U allows eachalgorithm of length ` to make 2j`2�2` additional steps.But what does U do with all these parallel learning algorithms? This depends on the speci�clearning model. For sake of simplicity we �rst consider a model of learning-from-examples aug-mented by weak equivalence queries. In this model, one may determine in unit cost whether agiven hypothesis approximates the target concept up to a given approximation parameter. In thismodel, whenever an (emulated) algorithm halts with an hypothesis, we check this hypothesis usingan equivalence query. (This may not be needed since the emulated algorithm might have checkedits output by itself.) Thus, the universal algorithm halts with a good hypothesis whenever anyalgorithm halts doing so.We �rst observe that, for every concept class C, if some algorithm A learns C then so doesU . The reason being that eventually U will emulate su�ciently many steps of A, whereas wronghypotheses output by other algorithms emulated by U will be rejected by U (since it tests eachhypothesis output by any emulated algorithm). The question is how does the complexity of Urelate to the complexity of a \good" algorithm for the concept class C. We �rst observe that thetime consumed by U in round j is j�2 log2 jX̀=1 2` � 2j`2 � 2` < 2 � 2jDuring this round each algorithm of length ` was allowed to make 1`2�2` � 2j additional steps. Thus,each such algorithm is slowed down by only a factor of 2`2 � 2`. That is, to emulate T steps of aparticular algorithm of length ` we need 2`22` �T steps of algorithm U . It follows that T steps of agood algorithm A for C are emulated by cA � T steps of U , where cA is a constant depending on A.This constant is admitably huge (i.e., it is exponential in the length of the description of A). Stillit is a constant and so Theorem 4 follows in a model allowing weak equivalence queries.Remark: The sequence h1=`2i used above can be replaced by any sequence ha`i which is easy tocompute and has a sum bounded by a constant. Similarly, the sequence h1=2i2i used below can bereplaced by any sequence hbii which is easy to compute and has a sum bounded by 1.2.2 Managing without Equivalence QueriesIt is well-known that equivalence queries can be simulated by examples, yet we have to be slightlymore careful here since the number of equivalence queries used by our universal algorithm is nota-priori known (akin the running-time of the universal algorithm on a speci�c concept class). Thus,whenever we implement an equivalence query for the universal algorithm we set the allowed errorprobability so that the sum of all errors incurred is bounded; for example, if we are allowed error� then we may implement the ith equivalence query while allowing for error �=2i2.2

The above analysis of running-time did not account for the time required to test the hypothesesoutput by the emulated algorithms. In case we are allowed weak equivalence queries (as assumedabove), testing each hypothesis takes unit time and can thus be ignored. Otherwise, we need toimplement a test which rejects, with probability at least 1��0, any given (single!) hypothesis whichdeviates by more than � from the target concept. Such a test can be implemented in time log(1=�0)� .Recall however that our invocations of the hypothesis tester require �0 to be smaller than thecon�dence parameter � given to algorithm U . A host of minor technical problems arises and theyare all resolved by augmenting each algorithm being emulated so that it tests its output hypothesiswith an adequate con�dence parameter. Details follows.Consider an enumeration of all possible learning algorithms according to their length. Let Aidenote the ith algorithm (i.e., its length is log2 i � 1). We augment Ai so that before outputtinga hypothesis h it tests h with approximation parameter � and con�dence parameter �=2i2, where� and � are the corresponding parameters given to algorithm U . This means that the runningtime of Ai is increased by an additive factor of log(2i2=�)� . Thus, we need to replace T in the aboverunning-time bound by T + log(c2A=�)� . Theorem 4 follows.Remark: Enumerating all possible algorithms should not be confused with enumerating all pos-sible hypotheses (e.g., as done explicitly in [11]).2.3 ExtensionsAs stated in the introduction, Theorem 4 applies also to many extensions and variants of thebasic PAC-learning model provided that these extensions/variants allow e�cient single-hypothesis-testing. That is, given a hypothesis h one should determine, within time O(log(1=�)�), whetherh approximates the target concept. Models in which the condition holds include learning with(membership and/or equivalence) queries [1], learning under a �xed distribution (e.g., [3]), learningwith statistical queries [7], etc.Theorem 4 also holds with respect to proper (representation dependent) learning, provided thatmembership in the hypothesis class can be easily decided. The reason for this additional conditionis that the universal algorithm should check not only that the hypothesis (output by an emulatedalgorithm) is probably approximately correct but also that it belongs to the hypothesis class. Thisintroduces an additive term into the running-time of the universal algorithm.Theorem 4 also holds with respect to other (single) complexity measures such as sample com-plexity and query complexity. The construction of the universal algorithm has to be modi�edso that in the jth round each algorithm of length ` is allowed complexity 2j`2 �2` (according to themeasure of interest).3 DiscussionUniversality versus Optimality Theorem 4 demonstrates that universality does not have tocome at the cost of e�ciency. The universal learning algorithm can be used to learn any learnableconcept class and it is optimal up to a constant factor. That is, any algorithm which is tailored fora speci�c concept class cannot perform much better (on this class!) than the universal algorithm.Abuse of Asymptotic Analysis Theorem 4 abuses the paradigm of asymptotic analysis. Theconstant hidden in its O-notation is not only huge (in any reasonable application of the theorem),3

but is rather not fully speci�ed. That is, the theorem as well as its proof do not specify theconstant which relates the running-time of a good algorithm for the class and the running-time ofthe universal algorithm when learning this class. Instead, this constant depends on the encodingof such an unknown good algorithm.

4

References[1] D. Angluin. Queries and Concept Learning. Machine Learning, 2(4):319{342, 1988.[2] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability and the Vapnik-Chervonenkis dimension. Journal of the Association for Computing Machinery, 36(4):929{965, 1989.[3] G. M. Benedek and A. Itai. Learnability with Respect to Fixed Distributions. TheoreticalComputer Science, 86(2):377{389, 1991.[4] S. A. Cook. The Complexity of Theorem-Proving Procedures. In 3rd STOC, pages 151{158,1971.[5] A. Ehrenfeucht, D. Haussler, M. J. Kearns and L. G. Valiant. A General Lower Bound on theNumber of Examples Needed for Learning. Information and Computation, 82(3):247{251,1989.[6] R.M. Karp. Reducibility Among Combinatorial Problems. In Complexity of ComputerComputations, (Raymond E. Miller and James W. Thatcher, eds.), Plenum Press, pages85{103, 1972.[7] M. J. Kearns. E�cient noise-tolerant learning from statistical queries. In Proceedings of theTwenty-Fifth Annual ACM Symposium on the Theory of Computing, pages 392{401, 1993.[8] M. J. Kearns and U.V. Vazirani. An introduction to Computational Learning Theory. MITPress, 1994.[9] L. Levin. Universal'ny��e pereborny��e zadachi (Universal Search Problems: in Russian).Problemy Peredachi Informatsii, 9 (3), pages 265{266, 1973.[10] L. Levin. One-Way Function and Pseudorandom Generators. Combinatorica, 7 (4), pages357{363, 1987.[11] N. Linial, Y. Mansour, and R. L. Rivest. Results on Learnability and the Vapnik-Chervonenkis Dimension. Information and Computation, 90(1):33{49, 1991.[12] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134{1142,November 1984.
5

Appendix: Details on Theorem 1Theorem 1 refers to the following notions and notations:� An NP-relation is a polynomial-time recognizable set of pairs, R � f0; 1g� � f0; 1g�, so that(x; y) 2 R implies that jyj = poly(jxj). The corresponding NP-language is L(R) def= fx :9y s.t. (x; y) 2 Rg.� An algorithm A is said to solve R if, for every x 2 L(R), on input x algorithm A outputs ysuch that (x; y) 2 R.� The running-time of algorithm A on input x is denoted timeA(x).The additional poly(jxj) term mentioned in the theorem can be eliminated if one postulates thatevery solver must \check" its output by running a �xed (polynomial-time) decision procedure for R.A proof of Theorem 1 can be easily derived from Section 2.

6

