
Chapter 6Zero-Knowledge Proof SystemsIn this chapter we discuss zero-knowledge proof systems. Loosely speaking, such proofsystems have the remarkable property of being convincing and yielding nothing (beyondthe validity of the assertion). The main result presented is a method to generate zero-knowledge proof systems for every language in NP . This method can be implemented usingany bit commitment scheme, which in turn can be implemented using any pseudorandomgenerator. In addition, we discuss more re�ned aspects of the concept of zero-knowledgeand their a�ect on the applicability of this concept.6.1 Zero-Knowledge Proofs: MotivationAn archetypical \cryptographic" problem consists of providing mutually distrustful partieswith a means of \exchanging" (predetermined) \pieces of information". The setting consistsof several parties, each wishing to obtain some predetermined partial information concerningthe secrets of the other parties. Yet each party wishes to reveal as little information aspossible about its own secret. To clarify the issue, let us consider a speci�c example.Suppose that all users in a system keep backups of their entire �le system,encrypted using their public-key encryption, in a publicly accessible storagemedia. Suppose that at some point, one user, called Alice, wishes to reveal toanother user, called Bob, the cleartext of one of her �les (which appears in one ofher backups). A trivial \solution" is for Alice just to send the (cleartext) �le toBob. The problem with this \solution" is that Bob has no way of verifying thatAlice really sent him a �le from her public backup, rather than just sendinghim an arbitrary �le. Alice can simply prove that she sends the correct �le byrevealing to Bob her private encryption key. However, doing so, will reveal toBob the contents of all her �les, which is certainly something that Alice does143

144 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSnot want to happen. The question is whether Alice can convince Bob that sheindeed revealed the correct �le without yielding any additional \knowledge".An analogous question can be phrased formally as follows. Let f be a one-waypermutation, and b a hard-core predicate with respect to f . Suppose that oneparty, A, has a string x, whereas another party, denoted B, only has f(x).Furthermore, suppose that A wishes to reveal b(x) to party B, without yieldingany further information. The trivial \solution" is to let A send b(x) to B, but,as explained above, B will have no way of verifying whether A has really sentthe correct bit (and not its complement). Party A can indeed prove that it sendsthe correct bit (i.e., b(x)) by sending x as well, but revealing x to B is muchmore than what A had originally in mind. Again, the question is whether A canconvince B that it indeed revealed the correct bit (i.e., b(x)) without yieldingany additional \knowledge".In general, the question is whether it is possible to prove a statement without yieldinganything beyond its validity. Such proofs, whenever they exist, are called zero-knowledge,and play a central role (as we shall see in the subsequent chapter) in the construction of\cryptographic" protocols.Loosely speaking, zero-knowledge proofs are proofs that yield nothing (i.e., \no knowl-edge") beyond the validity of the assertion. In the rest of this introductory section, wediscuss the notion of a \proof" and a possible meaning of the phrase \yield nothing (i.e.,no knowledge) beyond something".6.1.1 The Notion of a ProofWe discuss the notion of a proof with the intention of uncovering some of its underlyingaspects.A Proof as a �xed sequence or as an interactive processTraditionally in mathematics, a \proof" is a �xed sequence consisting of statements whichare either self-evident or are derived from previous statements via self-evident rules. Actu-ally, it is more accurate to substitute the phrase \self-evident" by the phrase \commonlyagreed". In fact, in the formal study of proofs (i.e., logic), the commonly agreed statementsare called axioms, whereas the commonly agreed rules are referred to as derivation rules.We wish to stress two properties of mathematics proofs:1. proofs are viewed as �xed objects;2. proofs are considered at least as fundamental as their consequence (i.e., the theorem).

6.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION 145However, in other areas of human activity, the notion of a \proof" has a much widerinterpretation. In particular, a proof is not a �xed object but rather a process by whichthe validity of an assertion is established. For example, the cross-examination of a witnessin court is considered a proof in law, and failure to answer a rival's claim is considered aproof in philosophical, political and sometimes even technical discussions. In addition, inreal-life situations, proofs are considered secondary (in importance) to their consequence.To summarize, in \canonical" mathematics proofs have a static nature (e.g., they are\written"), whereas in real-life situations proofs have a dynamic nature (i.e., they are es-tablished via an interaction). The dynamic interpretation of the notion of a proof is moreadequate to our setting in which proofs are used as tools (i.e., subprotocols) inside \cryp-tographic" protocols. Furthermore, the dynamic interpretation (at least in a weak sense) isessential to the non-triviality of the notion of a zero-knowledge proof.Prover and Veri�erThe notion of a prover is implicit in all discussions of proofs, be it in mathematics or inreal-life situations. Instead, the emphasis is placed on the veri�cation process, or in otherwords on (the role of) the veri�er. Both in mathematics and in real-life situations, proofsare de�ned in terms of the veri�cation procedure. Typically, the veri�cation procedure isconsidered to be relatively simple, and the burden is placed on the party/person supplyingthe proof (i.e., the prover).The asymmetry between the complexity of the veri�cation and the theorem-provingtasks is captured by the complexity class NP , which can be viewed as a class of proofsystems. Each language L 2 NP has an e�cient veri�cation procedure for proofs of state-ments of the form \x 2 L". Recall that each L 2 NP is characterized by a polynomial-timerecognizable relation RL so thatL = fx : 9y s.t. (x; y)2RLgand (x; y)2RL only if jyj � poly(jxj). Hence, the veri�cation procedure for membershipclaims of the form \x 2 L" consists of applying the (polynomial-time) algorithm for rec-ognizing RL, to the claim (encoded by) x and a prospective proof denoted y. Hence, anyy satisfying (x; y) 2 RL is considered a proof of membership of x 2 L. Hence, correctstatements (i.e., x 2 L) and only them have proofs in this proof system. Note that the ver-i�cation procedure is \easy" (i.e., polynomial-time), whereas coming up with proofs maybe \di�cult".It is worthwhile to stress the distrustful attitude towards the prover in any proof system.If the veri�er trusts the prover then no proof is needed. Hence, whenever discussing a proofsystem one considers a setting in which the veri�er is not trusting the prover and furthermoreis skeptic of anything the prover says.

146 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSCompleteness and ValidityTwo fundamental properties of a proof system (i.e., a veri�cation procedure) are its validityand completeness. The validity property asserts that the veri�cation procedure cannot be\tricked" into accepting false statements. In other words, validity captures the veri�erability of protecting itself from being convinced of false statements (no matter what theprover does in order to fool it). On the other hand, completeness captures the ability ofsome prover to convince the veri�er of true statements (belonging to some predeterminedset of true statements). Note that both properties are essential to the very notion of a proofsystem.We remark here that not every set of true statements has a \reasonable" proof systemin which each of these statements can be proven (while no false statement can be \proven").This fundamental fact is given a precise meaning in results such as G�odel's IncompletenessTheorem and Turing's proof of the unsolvability of the Halting Problem. We stress that inthis chapter we con�ne ourself to the class of sets that do have \e�cient proof systems".In fact, Section 6.2 is devoted to discussing and formulating the concept of \e�cient proofsystems". Jumping ahead, we hint that the e�ciency of a proof system will be associatedwith the e�ciency of its veri�cation procedure.6.1.2 Gaining KnowledgeRecall that we have motivated zero-knowledge proofs as proofs by which the veri�er gains\no knowledge" (beyond the validity of the assertion). The reader may rightfully wonderwhat is knowledge and what is a gain of knowledge. When discussing zero-knowledge proofs,we avoid the �rst question (which is quite complex), and treat the second question directly.Namely, without presenting a de�nition of knowledge, we present a generic case in which itis certainly justi�ed to say that no knowledge is gained. Fortunately, this \conservative"approach seems to su�ce as far as cryptography is concerned.To motivate the de�nition of zero-knowledge consider a conversation between two par-ties, Alice and Bob. Assume �rst that this conversation is unidirectional, speci�cally Aliceonly talks and Bob only listens. Clearly, we can say that Alice gains no knowledge fromthe conversation. On the other hand, Bob may or may not gain knowledge from the con-versation (depending on what Alice says). For example, if all that Alice says is 1 + 1 = 2then clearly Bob gains no knowledge from the conversation since he knows this fact himself.If, on the other hand, Alice tells Bob a proof of Fermat's Theorem then certainly he gainedknowledge from the conversation.To give a better avour of the de�nition, we now consider a conversation between Aliceand Bob in which Bob asks Alice questions about a large graph (that is known to both ofthem). Consider �rst the case in which Bob asks Alice whether the graph is Eulerian ornot. Clearly, we say that Bob gains no knowledge from Alice's answer, since he could have

6.1. ZERO-KNOWLEDGE PROOFS: MOTIVATION 147determined the answer easily by himself (e.g., by using Euler's Theorem which asserts thata graph is Eulerian if and only if all its vertices have even degree). On the other hand, ifBob asks Alice whether the graph is Hamiltonian or not, and Alice (somehow) answersthis question then we cannot say that Bob gained no knowledge (since we do not know ofan e�cient procedure by which Bob can determine the answer by himself, and assumingP 6= NP no such e�cient procedure exists). Hence, we say that Bob gained knowledgefrom the interaction if his computational ability, concerning the publicly known graph, hasincreased (i.e., if after the interaction he can easily compute something that he could nothave e�ciently computed before the interaction). On the other hand, if whatever Bob cane�ciently compute about the graph after interacting with Alice, he can also e�cientlycompute by himself (from the graph) then we say that Bob gained no knowledge from theinteraction. Hence, Bob gains knowledge only if he receives the result of a computation whichis infeasible for Bob. The question of how could Alice conduct this infeasible computation(e.g., answer Bob's question of whether the graph is Hamiltonian) has been ignored so far.Jumping ahead, we remark that Alice may be a mere abstraction or may be in possessionof additional hints, that enables to e�ciently conduct computations that are otherwiseinfeasible (and in particular are infeasible for Bob who does not have these hints). (Yet,these hints are not necessarily \information" in the information theoretic sense as they maybe determined by the common input, but not e�ciently computed from it.)Knowledge vs. informationWe wish to stress that knowledge (as discussed above) is very di�erent from information (inthe sense of information theory).� Knowledge is related to computational di�culty, whereas information is not. In theabove examples, there was a di�erent between the knowledge revealed in case Aliceanswers questions of the form \is the graph Eulerian" and the case she answers ques-tions of the form \is the graph Hamilton". From an information theoretic point of viewthere is no di�erence between the two cases (i.e., in both Bob gets no information).� Knowledge relates mainly to publicly known objects, whereas information relatesmainly to objects on which only partial information is publicly known. Consider thecase in which Alice answers each question by ipping an unbiased coin and tellingBob the outcome. From an information theoretic point of view, Bob gets from Aliceinformation concerning an event. However, we say that Bob gains no knowledge fromAlice, since he can toss coins by himself.

148 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS6.2 Interactive Proof SystemsIn this section we introduce the notion of an interactive proof system, and present a non-trivial example of such a system (speci�cally to claims of the form \the following twographs are not isomorphic"). The presentation is directed towards the introduction of zero-knowledge interactive proofs. Interactive proof systems are interesting for their own sake,and have important complexity theoretic applications, that are discussed in Chapter 8.6.2.1 De�nitionThe de�nition of an interactive proof system refers explicitly to the two computational tasksrelated to a proof system: \producing" a proof and verifying the validity of a proof. Thesetasks are performed by two di�erent parties, called the prover and the veri�er, which interactwith one another. The interaction may be very simple and in particular unidirectional (i.e.,the prover sends a text, called the proof, to the veri�er). In general the interaction may bemore complex, and may take the form of the veri�er interrogating the prover.InteractionInteraction between two parties is de�ned in the natural manner. The only point worthnoting is that the interaction is parameterized by a common input (given to both parties).In the context of interactive proof systems, the common input represents the statementto be proven. We �rst de�ne the notion of an interactive machine, and next the notionof interaction between two such machines. The reader may skip to the next part of thissubsection (titled \Conventions regarding interactive machines") with little loss (if at all).De�nition 6.1 (an interactive machine):� An interactive Turing machine (ITM) is a (deterministic) multi-tape Turing machine.The tapes consists of a read-only input-tape, a read-only random-tape, a read-and-write work-tape, a write-only output-tape, a pair of communication-tapes, and aread-and-write switch-tape consisting of a single cell initiated to contents 0. Onecommunication-tape is read-only and the other is write-only.� Each ITM is associated a single bit � 2 f0; 1g, called its identity. An ITM is saidto be active, in a con�guration, if the contents of its switch-tape equals the machine'sidentity. Otherwise the machine is said to be idle. While being idle, the state ofthe machine, the location of its heads on the various tapes, and the contents of thewriteable tapes of the ITM is not modi�ed.

6.2. INTERACTIVE PROOF SYSTEMS 149� The contents of the input-tape is called input, the contents of the random-tape is calledrandom-input, and the contents of the output-tape at termination is called output.The contents written on the write-only communication-tape during a (time) periodin which the machine is active is called the message sent at this period. Likewise,the contents read from the read-only communication-tape during an active period iscalled the message received (at that period). (Without loss of generality the machinemovements on both communication-tapes are only in one direction, say left to right).The above de�nition, taken by itself, seems quite nonintuitive. In particular, one maysay that once being idle the machine never becomes active again. One may also wonderwhat is the point of distinguishing the read-only communication-tape from the input-tape(and respectively distinguishing the write-only communication-tape from the output-tape).The point is that we are never going to consider a single interactive machine, but rather apair of machines combined together so that some of their tapes coincide. Intuitively, themessages sent by an interactive machine are received by a second machine which shares itscommunication-tapes (so that the read-only communication-tape of one machine coincideswith the write-only tape of the other machine). The active machine may become idle bychanging the contents of the shared switch-tape and by doing so the other machine (havingopposite identity) becomes active. The computation of such a pair of machines consists ofthe machines alternatingly sending messages to one another, based on their initial (common)input, their (distinct) random-inputs, and the messages each machine has received so far.De�nition 6.2 (joint computation of two ITMs):� Two interactive machines are said to be linked if they have opposite identities, theirinput-tapes coincide, their switch-tapes coincide, and the read-only communication-tape of one machine coincides with the write-only communication-tape of the othermachine, and vice versa. We stress that the other tapes of both machines (i.e., therandom-tape, the work-tape, and the output-tape) are distinct.� The joint computation of a linked pair of ITMs, on a common input x, is a sequenceof pairs. Each pair consists of the local con�guration of each of the machines. In eachsuch pair of local con�gurations, one machine (not necessarily the same one) is activewhile the other machine is idle.� If one machine halts while the switch-tape still holds its identity the we say that bothmachines have halted.At this point, the reader may object to the above de�nition, saying that the individualmachines are deprived of individual local inputs (and observing that they are given indi-vidual and unshared random-tapes). This restriction is removed in Subsection 6.2.3, and in

150 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSfact removing it is quite important (at least as far as practical purposes are concerned). Yet,for a �rst presentation of interactive proofs, as well as for demonstrating the power of thisconcept, we prefer the above simpler de�nition. The convention of individual random-tapesis however essential to the power of interactive proofs (see Exercise 4).Conventions regarding interactive machinesTypically, we consider executions when the contents of the random-tape of each machine isuniformly and independently chosen (among all in�nite bit sequences). The convention ofhaving an in�nite sequence of internal coin tosses should not bother the reader since duringa �nite computation only a �nite pre�x is read (and matters). The contents of each of theserandom-tapes can be viewed as internal coin tosses of the corresponding machine (as in thede�nition of ordinary probabilistic machines, presented in Chapter 1). Hence, interactivemachines are in fact probabilistic.Notation: Let A and B be a linked pair of ITMs, and suppose that all possible interactionsof A and B on each common input terminate in a �nite number of steps. We denote byhA;Bi(x) the random variable representing the (local) output of B when interacting withmachine A on common input x, when the random-input to each machine is uniformly andindependently chosen.Another important convention is to consider the time-complexity of an interactive ma-chine as a function of its input only.De�nition 6.3 (the complexity of an interactive machine): We say that an interactivemachine A has time complexity t : IN 7! IN if for every interactive machine B and everystring x, it holds that when interacting with machine B, on common input x, machine Aalways (i.e., regardless of the contents of its random-tape and B's random-tape) halts withint(jxj) steps.We stress that the time complexity, so de�ned, is independent of the contents of themessages that machine A receives. In other word, it is an upper bound which holds for allpossible incoming messages. In particular, an interactive machine with time complexity t(�)reads, on input x, only a pre�x of total length t(jxj) of the messages sent to it.Proof systemsIn general, proof systems are de�ned in terms of the veri�cation procedure (which may beviewed as one entity called the veri�er). A \proof" to a speci�c claim is always consideredas coming from the outside (which can be viewed as another entity called the prover). The

6.2. INTERACTIVE PROOF SYSTEMS 151veri�cation procedure itself, does not generate \proofs", but merely veri�es their validity.Interactive proof systems are intended to capture whatever can be e�ciently veri�ed viainteraction with the outside. In general, the interaction with the outside may be verycomplex and may consist of many message exchanges, as long as the total time spent bythe veri�er is polynomial.In light of the association of e�cient procedures with probabilistic polynomial-timealgorithms, it is natural to consider probabilistic polynomial-time veri�ers. Furthermore,the veri�er's verdict of whether to accept or reject the claim is probabilistic, and a boundederror probability is allowed. (The error can of course be decreased to be negligible byrepeating the veri�cation procedure su�ciently many times.) Loosely speaking, we requirethat the prover can convince the veri�er of the validity of valid statement, while nobody canfool the veri�er into believing false statements. In fact, it is only required that the veri�eraccepts valid statements with \high" probability, whereas the probability that it acceptsa false statement is \small" (regardless of the machine with which the veri�er interacts).In the following de�nition, the veri�er's output is interpreted as its decision on whether toaccept or reject the common input. Output 1 is interpreted as `accept', whereas output 0is interpreted as `reject'.De�nition 6.4 (interactive proof system): A pair of interactive machines, (P; V), is calledan interactive proof system for a language L if machine V is polynomial-time and the followingtwo conditions hold� Completeness: For every x 2 LProb (hP; V i(x)=1) � 23� Soundness: For every x 62 L and every interactive machine BProb (hB; V i(x)=1) � 13Some remarks are in place. We �rst stress that the soundness condition refers to allpotential \provers" whereas the completeness condition refers only to the prescribed proverP . Secondly, the veri�er is required to be (probabilistic) polynomial-time, while no re-source bounds are placed on the computing power of the prover (in either completeness orsoundness conditions!). Thirdly, as in the case of BPP , the error probability in the abovede�nition can be made exponentially small by repeating the interaction (polynomially)many times (see below).Every language in NP has an interactive proof system. Speci�cally, let L 2 NP andlet RL be a witness relation associated with the language L (i.e., RL is recognizable in

152 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSpolynomial-time and L equals the set fx : 9y s.t. jyj = poly(x) ^ (x; y) 2 RLg). Then,an interactive proof for the language L consists of a prover that on input x 2 L sends awitness y (as above), and a veri�er that upon receiving y (on common input x) outputs1 if jyj = poly(jxj) and (x; y)2RL (and 0 otherwise). Clearly, when interacting with theprescribed prover, this veri�er will always accept inputs in the language. On the other hand,no matter what a cheating \prover" does, this veri�er will never accept inputs not in thelanguage. We point out that in this proof system both parties are deterministic (i.e., makeno use of their random-tape). It is easy to see that only languages in NP have interactiveproof systems in which both parties are deterministic (see Exercise 2).In other words, NP can be viewed as a a class of interactive proof systems in whichthe interaction is unidirectional (i.e., from the prover to the veri�er) and the veri�er isdeterministic (and never errs). In general interactive proofs, both restrictions are waived:the interaction is bidirectional and the veri�er is probabilistic (and may err with some smallprobability). Both bidirectional interaction and randomization seem essential to the powerof interactive proof systems (see further discussion in Chapter 8).De�nition 6.5 (the class IP): The class IP consists of all languages having interactiveproof systems.By the above discussion NP � IP. Since languages in BPP can be viewed as having averi�er (that decides on membership without any interaction), it follows that BPP[NP �IP. We remind the reader that it is not known whether BPP � NP .We stress that the de�nition of the class IP remains invariant if one replaced the(constant) bounds in the completeness and soundness conditions by two functions c; s :IN 7! IN satisfying c(n) < 1� 2�poly(n), s(n) > 2�poly(n), and c(n) > s(n)+ 1poly(n) . Namely,De�nition 6.6 (generalized interactive proof): Let c; s : IN 7! IN be functions satisfyingc(n) > s(n) + 1p(n) , for some polynomial p(�). An interactive pair (P; V) is called a (gen-eralized) interactive proof system for the language L, with completeness bound c(�) andsoundness bound s(�), if� (modi�ed) completeness: For every x 2 LProb (hP; V i(x)=1) � c(jxj)� (modi�ed) soundness: For every x 62 L and every interactive machine BProb (hB; V i(x)=1) � s(jxj)The function g(�), where g(n) def= c(n)�s(n), is called the acceptance gap of (P; V); and thefunction e(�), where e(n) def= maxf1� c(n); s(n)g, is called the error probability of (P; V).

6.2. INTERACTIVE PROOF SYSTEMS 153Proposition 6.7 The following three conditions are equivalent1. L 2 IP. Namely, there exists a interactive proof system, with completeness bound 23and soundness bound 13 , for the language L;2. L has very strong interactive proof systems: For every polynomial p(�), there existsan interactive proof system for the language L, with error probability bounded aboveby 2�p(�).3. L has a very weak interactive proof: There exists a polynomial p(�), and a generalizedinteractive proof system for the language L, with acceptance gap bounded below by1=p(�). Furthermore, completeness and soundness bounds for this system, namely thevalues c(n) and s(n), can be computed in time polynomial in n.Clearly either of the �rst two items imply the third one (including the requirement fore�ciently computable bounds). The ability to e�ciently compute completeness and sound-ness bounds is used in proving the opposite (non-trivial) direction. The proof is left as anexercise (i.e., Exercise 1).6.2.2 An Example (Graph Non-Isomorphism in IP)All examples of interactive proof systems presented so far were degenerate (e.g., the in-teraction, if at all, was unidirectional). We now present an example of a non-degenerateinteractive proof system. Furthermore, we present an interactive proof system for a lan-guage not known to be in BPP [NP . Speci�cally, the language is the set of pairs ofnon-isomorphic graphs, denoted GNI .Two graphs, G1=(V1; E1) and G2=(V2; E2), are called isomorphic if there exists a 1-1and onto mapping, �, from the vertex set V1 to the vertex set V2 so that (u; v) 2 E1 if andonly if (�(v); �(u)) 2 E2. The mapping �, if existing, is called an isomorphism between thegraphs.Construction 6.8 (Interactive proof system for Graph Non-Isomorphism):� Common Input: A pair of two graphs, G1 = (V1; E1) and G2 = (V2; E2). Suppose,without loss of generality, that V1 = f1; 2; :::; jV1jg, and similarly for V2.� Veri�er's �rst Step (V1): The veri�er selects at random one of the two input graphs,and sends to the prover a random isomorphic copy of this graph. Namely, the veri�erselects uniformly � 2 f1; 2g, and a random permutation � from the set of permutationsover the vertex set V�. The veri�er constructs a graph with vertex set V� and edge setF def= f(�(u); �(v)) : (u; v)2E�gand sends (V�; F) to the prover.

154 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS� Motivating Remark: If the input graphs are non-isomorphic, as the prover claims,then the prover should be able to distinguish (not necessarily by an e�cient algorithm)isomorphic copies of one graph from isomorphic copies of the other graph. However,if the input graphs are isomorphic then a random isomorphic copy of one graph isdistributed identically to a random isomorphic copy of the other graph.� Prover's �rst Step (P1): Upon receiving a graph, G0 = (V 0; E 0), from the veri�er, theprover �nds a � 2 f1; 2g so that the graph G0 is isomorphic to the input graph G� . (Ifboth � =1; 2 satisfy the condition then � is selected arbitrarily. In case no � 2 f1; 2gsatis�es the condition, � is set to 0). The prover sends � to the veri�er.� Veri�er's second Step (V2): If the message, � , received from the prover equals �(chosen in Step V1) then the veri�er outputs 1 (i.e., accepts the common input).Otherwise the veri�er outputs 0 (i.e., rejects the common input).The veri�er program presented above is easily implemented in probabilistic polynomial-time. We do not known of a probabilistic polynomial-time implementation of the prover'sprogram, but this is not required. We now show that the above pair of interactive machinesconstitutes an interactive proof system (in the general sense) for the language GNI (GraphNon-Isomorphism).Proposition 6.9 The language GNI is in the class IP. Furthermore, the programs speci-�ed in Construction 6.8 constitute a generalized interactive proof system for GNI. Namely,1. If G1 and G2 are not isomorphic (i.e., (G1; G2) 2 GNI) then the veri�er alwaysaccept (when interacting with the prover).2. If G1 and G2 are isomorphic (i.e., (G1; G2) 62 GNI) then, no matter with whatmachine the veri�er interacts, it rejects the input with probability at least 12.proof: Clearly, if G1 and G2 are not isomorphic then no graph can be isomorphic to bothG1 and G2. It follows that there exists a unique � such that the graph G0 (received by theprover in Step P1) is isomorphic to the input graph G� . Hence, � found by the prover inStep (P1) always equals � chosen in Step (V1). Part (1) follows.On the other hand, if G1 and G2 are isomorphic then the graph G0 is isomorphic toboth input graphs. Furthermore, we will show that in this case the graph G0 yields noinformation about �, and consequently no machine can (on input G1, G2 and G0) set � sothat it equal �, with probability greater than 12 . Details follow.Let � be a permutation on the vertex set of a graph G= (V;E). Then, we denote by�(G) the graph with vertex set V and edge set f(�(u); �(v)) : (u; v) 2 Eg. Let � be a

6.2. INTERACTIVE PROOF SYSTEMS 155random variable uniformly distributed over f1; 2g, and � be a random variable uniformlydistributed over the permutations of the set V . We stress that these two random variableare independent. We are interested in the distribution of the random variable �(G�). Weare going to show that, although �(G�) is determined by the random variables � and �,the random variables � and �(G�) are statistically independent. In fact we showClaim 6.9.1: If the graphs G1 and G2 are isomorphic then for every graph G0 it holds thatProb ��=1j�(G�)=G0� = Prob ��=2j�(G�)=G0� = 12proof: We �rst claim that the sets S1 def= f� : �(G1) = G0) and S2 def= f� : �(G2) = G0)are of equal cardinality. This follows from the observation that there is a 1-1 and ontocorrespondence between the set S1 and the set S2 (the correspondence is given by theisomorphism between the graphs G1 and G2). Hence,Prob ��(G�)=G0j�=1� = Prob ��(G1)=G0�= Prob (�2S1)= Prob (�2S2)= Prob ��(G�)=G0j�=2�Using Bayes Rule, the claim follows.2Using Claim 6.9.1, it follows that for every pair, (G1; G2), of isomorphic graphs and forevery randomized process, R, (possibly depending on this pair) it holds thatProb (R(�(G�))=�) = XG0 Prob ��(G�))=G0� �Prob �R(G0))=�j�(G�)=G0�= XG0 Prob ��(G�))=G0�� Xb2f1;2gProb �R(G0))=b� �Prob �b=�j�(G�)=G0�= XG0 Prob ��(G�))=G0� �Prob �R(G0))2 f1; 2g� � 12� 12with equality in case R always outputs an element in the set f1; 2g. Part (2) of the propo-sition follows.

156 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSRemarks concerning Construction 6.8In the proof system of Construction 6.8, the veri�er always accepts inputs in the language(i.e., the error probability in these cases equals zero). All interactive proof systems we shallconsider will share this property. In fact it can be shown that every interactive proof systemcan be transformed into an interactive proof system (for the same language) in which theveri�er always accepts inputs in the language. On the other hand, as shown in Exercise 5,only languages in NP have interactive proof system in which the veri�er always rejectsinputs not in the language.The fact that GNI 2 IP, whereas it is not known whether GNI 2 NP, is an indi-cation to the power of interaction and randomness in the context of theorem proving. Amuch stronger indication is provided by the fact that every language in PSPACE has aninteractive proof system (in fact IP equals PSPACE). For further discussion see Chapter 8.6.2.3 Augmentation to the ModelFor purposes that will become more clear in the sequel we augment the basic de�nition ofan interactive proof system by allowing each of the parties to have a private input (in addi-tion to the common input). Loosely speaking, these inputs are used to capture additionalinformation available to each of the parties. Speci�cally, when using interactive proof sys-tems as subprotocols inside larger protocols, the private inputs are associated with the localcon�gurations of the machines before entering the subprotocol. In particular, the privateinput of the prover may contain information which enables an e�cient implementation ofthe prover's task.De�nition 6.10 (interactive proof systems - revisited):� An interactive machine is de�ned as in De�nition 6.1, except that the machine hasan additional read-only tape called the auxiliary-input-tape. The contents of this tapeis call auxiliary input.� The complexity of such an interactive machine is still measured as a function of the(common) input. Namely, the interactive machine A has time complexity t : IN 7! INif for every interactive machine B and every string x, it holds that when interactingwith machine B, on common input x, machine A always (i.e., regardless of contentsof its random-tape and its auxiliary-input-tape as well as the contents of B's tapes)halts within t(jxj) steps.� We denote by hA(y); B(z)i(x) the random variable representing the (local) output ofB when interacting with machine A on common input x, when the random-input toeach machine is uniformly and independently chosen, and A (resp., B) has auxiliaryinput y (resp., z).

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 157� A pair of interactive machines, (P; V), is called an interactive proof system for alanguage L if machine V is polynomial-time and the following two conditions hold{ Completeness: For every x 2 L, there exists a string y such that for everyz 2 f0; 1g� Prob (hP (y); V (z)i(x)=1) � 23{ Soundness: For every x 62 L, every interactive machine B, and every y; z 2f0; 1g� Prob (hB(y); V (z)i(x)=1) � 13We stress that when saying that an interactive machine is polynomial-time, we meanthat its running-time is polynomial in the length of the common input. Consequently, it isnot guaranteed that such a machine has enough time to read its entire auxiliary input.6.3 Zero-Knowledge Proofs: De�nitionsIn this section we introduce the notion of a zero-knowledge interactive proof system, andpresent a non-trivial example of such a system (speci�cally to claims of the form \thefollowing two graphs are isomorphic").6.3.1 Perfect and Computational Zero-KnowledgeLoosely speaking, we say that an interactive proof system, (P; V), for a language L is zero-knowledge if whatever can be e�ciently computed after interacting with P on input x 2L,can also be e�ciently computed from x (without any interaction). We stress that the aboveholds with respect to any e�cient way of interacting with P , not necessarily the way de�nedby the veri�er program V . Actually, zero-knowledge is a property of the prescribed proverP . It captures P 's robustness against attempts to gain knowledge by interacting with it. Astraightforward way of capturing the informal discussion follows.Let (P; V) be an interactive proof system for some language L. We say that(P; V), actually P , is perfect zero-knowledge if for every probabilistic polynomial-time interactive machine V � there exists an (ordinary) probabilistic polynomial-time algorithm M� so that for every x 2 L the following two random variablesare identically distributed� hP; V �i(x) (i.e., the output of the interactive machine V � after interactingwith the interactive machine P on common input x);

158 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS� M�(x) (i.e., the output of machine M� on input x).Machine M� is called a simulator for the interaction of V � with P .We stress that we require that for every V � interacting with P , not merely for V ,there exists a (\perfect") simulator M�. This simulator, although not having access to theinteractive machine P , is able to simulate the interaction of V � with P . This fact is takenas evidence to the claim that V � did not gain any knowledge from P (since the same outputcould have been generated without any access to P).Note that every language in BPP has a perfect zero-knowledge proof system in whichthe prover does nothing (and the veri�er checks by itself whether to accept the commoninput or not). To demonstrate the zero-knowledge property of this \dummy prover", onemay present for every veri�er V � a simulatorM� which is essentially identical to V � (exceptthat the communication tapes of V � are considered as ordinary work tapes of M�).Unfortunately, the above formulation of perfect zero-knowledge is slightly too strict to beuseful. We relax the formulation by allowing the simulator to fail, with bounded probability,to produce an interaction.De�nition 6.11 (perfect zero-knowledge): Let (P; V) be an interactive proof system forsome language L. We say that (P; V) is perfect zero-knowledge if for every probabilisticpolynomial-time interactive machine V � there exists a probabilistic polynomial-time algo-rithm M� so that for every x 2 L the following two conditions hold:1. With probability at most 12, on input x, machine M� outputs a special symbol denoted? (i.e., Prob(M�(x)=?) � 12).2. Let m�(x) be a random variable describing the distribution of M�(x) conditioned onM�(x) 6= ? (i.e., Prob(m�(x) = �) = Prob(M�(x) = �jM�(x) 6= ?), for every � 2f0; 1g�). Then the following random variables are identically distributed� hP; V �i(x) (i.e., the output of the interactive machine V � after interacting withthe interactive machine P on common input x);� m�(x) (i.e., the output of machine M� on input x, conditioned on not being ?);Machine M� is called a perfect simulator for the interaction of V � with P .Condition 1 (above) can be replaced by a stronger condition requiring thatM� outputsthe special symbol (i.e., ?) only with negligible probability. For example, one can requirethat on input x machine M� outputs ? with probability bounded above by 2�p(jxj), forany polynomial p(�); see Exercise 6. Consequently, the statistical di�erence between the

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 159random variables hP; V �i(x) and M�(x) can be made negligible (in jxj); see Exercise 7.Hence, whatever the veri�er e�ciently computes after interacting with the prover, can bee�ciently computed (up to an overwhelmingly small error) by the simulator (and hence bythe veri�er himself).Following the spirit of Chapters 3 and 4, we observe that for practical purposes thereis no need to be able to \perfectly simulate" the output of V � after interacting with P .Instead, it su�ces to generate a probability distribution which is computationally indis-tinguishable from the output of V � after interacting with P . The relaxation is consistentwith our original requirement that \whatever can be e�ciently computed after interactingwith P on input x 2L, can also be e�ciently computed from x (without any interaction)".The reason being that we consider computationally indistinguishable ensembles as beingthe same. Before presenting the relaxed de�nition of general zero-knowledge, we recall thede�nition of computationally indistinguishable ensembles. Here we consider ensembles in-dexed by strings from a language, L. We say that the ensembles fRxgx2L and fSxgx2L arecomputationally indistinguishable if for every probabilistic polynomial-time algorithm, D,for every polynomial p(�) and all su�ciently long x 2 L it holds thatjProb(D(x;Rx)=1)� Prob(D(x; Sx)=1)j < 1p(jxj)De�nition 6.12 (computational zero-knowledge): Let (P; V) be an interactive proof sys-tem for some language L. We say that (P; V) is computational zero-knowledge (or justzero-knowledge) if for every probabilistic polynomial-time interactive machine V � there ex-ists a probabilistic polynomial-time algorithm M� so that the following two ensembles arecomputationally indistinguishable� fhP; V �i(x)gx2L (i.e., the output of the interactive machine V � after interacting withthe interactive machine P on common input x);� fM�(x)gx2L (i.e., the output of machine M� on input x).Machine M� is called a simulator for the interaction of V � with P .The reader can easily verify (see Exercise 9) that allowing the simulator to outputthe symbol ? (with probability bounded above by, say, 12) and considering the conditionaloutput distribution (as done in De�nition 6.11), does not add to the power of De�nition 6.12.We stress that both de�nitions of zero-knowledge apply to interactive proof systems inthe general sense (i.e., having any non-negligible gap in the acceptance probabilities forinputs inside and outside the language). In fact, the de�nitions of zero-knowledge apply to

160 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSany pair of interactive machines (actually to each interactive machine). Namely, we maysay that the interactive machine A is zero-knowledge on L if whatever can be e�cientlycomputed after interacting with A on common input x 2 L, can also be e�ciently computedfrom x itself.An alternative formulation of zero-knowledgeAn alternative formulation of zero-knowledge considers the veri�er's view of the interactionwith the prover, rather than only the output of the veri�er after such an interaction. By the\veri�er's view of the interaction" we mean the entire sequence of the local con�gurations ofthe veri�er during an interaction (execution) with the prover. Clearly, it su�ces to consideronly the contents of the random-tape of the veri�er and the sequence of messages that theveri�er has received from the prover during the execution (since the entire sequence of localcon�gurations as well as the �nal output are determine by these objects).De�nition 6.13 (zero-knowledge { alternative formulation): Let (P; V), L and V � be asin De�nition 6.12. We denote by viewPV �(x) a random variable describing the contents ofthe random-tape of V � and the messages V � receives from P during a joint computation oncommon input x. We say that (P; V) is zero-knowledge if for every probabilistic polynomial-time interactive machine V � there exists a probabilistic polynomial-time algorithm M� sothat the ensembles fviewPV �(x)gx2L and fM�(x)gx2L are computationally indistinguishable.A few remarks are in place. De�nition 6.13 is obtained from De�nition 6.12 by replac-ing hP; V �i(x) for viewPV �(x). The simulator M� used in De�nition 6.13 is related, but notequal, to the simulator used in De�nition 6.12 (yet, this fact is not reected in the text ofthese de�nitions). Clearly, V �(x) can be computed in (deterministic) polynomial-time fromviewPV �(x), for every V �. Although the opposite direction is not always true, De�nition 6.13is equivalent to De�nition 6.12 (see Exercise 10). The latter fact justi�es the use of Def-inition 6.13, which is more convenient to work with, although it seems less natural thanDe�nition 6.12. An alternative formulation of perfect zero-knowledge is straightforward,and clearly it is equivalent to De�nition 6.11.* Complexity classes based on Zero-KnowledgeDe�nition 6.14 (class of languages having zero-knowledge proofs): We denote by ZK(also CZK) the class of languages having (computational) zero-knowledge interactive proofsystems. Likewise, PZK denotes the class of languages having perfect zero-knowledge in-teractive proof systems.Clearly, BPP � PZK � CZK � IP . We believe that the �rst two inclusions arestrict. Assuming the existence of (non-uniformly) one-way functions, the last inclusion isan equality (i.e., CZK = IP). See Proposition 6.24 and Theorems 3.29 and 6.30.

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 161* Expected polynomial-time simulatorsThe formulation of perfect zero-knowledge presented in De�nition 6.11 is di�erent fromthe standard de�nition used in the literature. The standard de�nition requires that thesimulator always outputs a legal transcript (which has to be distributed identically to thereal interaction) yet it allows the simulator to run in expected polynomial-time rather thanin strictly polynomial-time time. We stress that the expectation is taken over the cointosses of the simulator (whereas the input to the simulator is �xed).De�nition 6.15 (perfect zero-knowledge { liberal formulation): We say that (P; V) is per-fect zero-knowledge in the liberal sense if for every probabilistic polynomial-time interactivemachine V � there exists an expected polynomial-time algorithm M� so that for every x 2 Lthe random variables hP; V �i(x) and M�(x) are identically distributed.We stress that by probabilistic polynomial-time we mean a strict bound on the run-ning time in all possible executions, whereas by expected polynomial-time we allow non-polynomial-time executions but require that the running-time is \polynomial on the aver-age". Clearly, De�nition 6.11 implies De�nition 6.15 { see Exercise 8. Interestingly, thereexists interactive proofs which are perfect zero-knowledge with respect to the liberal de�ni-tion but not known to be perfect zero-knowledge with respect to De�nition 6.11. We preferto adopt De�nition 6.11, rather than De�nition 6.15, because we wanted to avoid the notionof expected polynomial-time that is much more subtle than one realizes at �rst glance.A parenthetical remark concerning the notion of average polynomial-time: Thenaive interpretation of expected polynomial-time is having average running-timethat is bounded by a polynomial in the input length. This de�nition of expectedpolynomial-time is unsatisfactory since it is not closed under reductions and is(too) machine dependent. Both aggravating phenomenon follow from the factthat a function may have an average (say over f0; 1gn) that is bounded bypolynomial (in n) and yet squaring the function yields a function which is notbounded by a polynomial (in n). Hence, a better interpretation of expectedpolynomial-time is having running-time that is bounded by a polynomial in afunction which has average linear growing rate.Furthermore, the correspondence between average polynomial-time and e�cient computa-tions is more controversial than the more standard association of strict polynomial-timewith e�cient computations.An analogous discussion applies also to computational zero-knowledge. More speci�cally,De�nition 6.12 requires that the simulator works in polynomial-time, whereas a more liberalnotion allows it to work in expected polynomial-time.

162 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSFor sake of elegancy, it is customary to modify the de�nitions allowing expected polynomial-time simulators, by requiring that such simulators exist also for the interaction of expectedpolynomial-time veri�ers with the prover.6.3.2 An Example (Graph Isomorphism in PZK)As mentioned above, every language in BPP has a trivial (i.e., degenerate) zero-knowledgeproof system. We now present an example of a non-degenerate zero-knowledge proof system.Furthermore, we present a zero-knowledge proof system for a language not known to be inBPP. Speci�cally, the language is the set of pairs of isomorphic graphs, denoted GI (seede�nition in Section 6.2).Construction 6.16 (Perfect Zero-Knowledge proof for Graph Isomorphism):� Common Input: A pair of two graphs, G1= (V1; E1) and G2= (V2; E2). Let � be anisomorphism between the input graphs, namely � is a 1-1 and onto mapping of thevertex set V1 to the vertex set V2 so that (u; v) 2 E1 if and only if (�(v); �(u))2 E2.� Prover's �rst Step (P1): The prover selects a random isomorphic copy of G2, andsends it to the veri�er. Namely, the prover selects at random, with uniform probabilitydistribution, a permutation � from the set of permutations over the vertex set V2, andconstructs a graph with vertex set V2 and edge setF def= f(�(u); �(v)) : (u; v)2E2gThe prover sends (V2; F) to the veri�er.� Motivating Remark: If the input graphs are isomorphic, as the prover claims, thenthe graph sent in step P1 is isomorphic to both input graphs. However, if the inputgraphs are not isomorphic then no graph can be isomorphic to both of them.� Veri�er's �rst Step (V1): Upon receiving a graph, G0 = (V 0; E 0), from the prover, theveri�ers asks the prover to show an isomorphism between G0 and one of the inputgraph, chosen at random by the veri�er. Namely, the veri�er uniformly selects � 2f1; 2g, and sends it to the prover (who is supposed to answer with an isomorphismbetween G� and G0).� Prover's second Step (P2): If the message, �, received from the veri�er equals 2 thenthe prover sends � to the veri�er. Otherwise (i.e., � 6= 2), the prover sends � �� (i.e.,the composition of � on �, de�ned as � � �(v) def= �(�(v))) to the veri�er. (Remark:the prover treats any � 6= 2 as � = 1.)

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 163� Veri�er's second Step (V2): If the message, denoted , received from the prover is anisomorphism between G� and G0 then the veri�er outputs 1, otherwise it outputs 0.Let use denote the prover's program by PGI .The veri�er program presented above is easily implemented in probabilistic polynomial-time. In case the prover is given an isomorphism between the input graphs as auxiliary input,also the prover's program can be implemented in probabilistic polynomial-time. We nowshow that the above pair of interactive machines constitutes a zero-knowledge interactiveproof system (in the general sense) for the language GI (Graph Isomorphism).Proposition 6.17 The language GI has a perfect zero-knowledge interactive proof system.Furthermore, the programs speci�ed in Construction 6.16 satisfy1. If G1 and G2 are isomorphic (i.e., (G1; G2) 2 GI) then the veri�er always accepts(when interacting with the prover).2. If G1 and G2 are not isomorphic (i.e., (G1; G2) 62 GI) then, no matter with whatmachine the veri�er interacts, it rejects the input with probability at least 12.3. The above prover (i.e., PGI) is perfect zero-knowledge. Namely, for every probabilisticpolynomial-time interactive machine V � there exists a probabilistic polynomial-timealgorithmM� outputting ? with probability at most 12 so that for every x def= (G1; G2) 2GI the following two random variables are identically distributed� viewPGIV � (x) (i.e., the view of V � after interacting with PGI , on common input x);� m�(x) (i.e., the output of machine M�, on input x, conditioned on not being ?).A zero-knowledge interactive proof system for GI with error probability 2�k (only in thesoundness condition) can be derived by executing the above protocol, sequentially, k times.We stress that in each repetition, of the above protocol, both (the prescribed) prover andveri�er use coin tosses which are independent of the coins used in the other repetitions of theprotocol. For further discussion see Section 6.3.4. We remark that k parallel executions willdecrease the error in the soundness condition to 2�k as well, but the resulting interactiveproof is not known to be zero-knowledge in case k grows faster than logarithmic in the inputlength. In fact, we believe that such an interactive proof is not zero-knowledge. For furtherdiscussion see Section 6.5.We stress that it is not known whether GI 2 BPP. Hence, Proposition 6.17 asserts theexistence of perfect zero-knowledge proofs for languages not known to be in BPP .proof: We �rst show that the above programs indeed constitute a (general) interactive proofsystem for GI . Clearly, if the input graphs, G1 and G2, are isomorphic then the graph G0

164 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSconstructed in step (P1) is isomorphic to both of them. Hence, if each party follows itsprescribed program then the veri�er always accepts (i.e., outputs 1). Part (1) follows. Onthe other hand, if G1 and G2 are not isomorphic then no graph can be isomorphic to bothG1 and G2. It follows that no matter how the (possibly cheating) prover constructs G0 thereexists � 2 f1; 2g so that G0 and G� are not isomorphic. Hence, when the veri�er follows itsprogram, the veri�er rejects (i.e., outputs 0) with probability at least 12 . Part (2) follows.It remains to show that PGI is indeed perfect zero-knowledge on GI . This is indeed thedi�cult part of the entire proof. It is easy to simulate the output of the veri�er speci�edin Construction 6.16 (since its output is identically 1 on inputs in the language GI). It isalso not hard to simulate the output of a veri�er which follows the program speci�ed inConstruction 6.16, except that at termination it output the entire transcript of its interac-tion with PGI { see Exercise 11. The di�cult part is to simulate the output of an e�cientveri�er which deviates arbitrarily from the speci�ed program.We will use here the alternative formulation of (perfect) zero-knowledge, and show howto simulate V �'s view of the interaction with PGI , for every probabilistic polynomial-timeinteractive machine V �. As mentioned above it is not hard to simulate the veri�er's viewof the interaction with PGI in case the veri�er follows the speci�ed program. However, weneed to simulate the view of the veri�er in the general case (in which it uses an arbitrarypolynomial-time interactive program). Following is an overview of our simulation (i.e., ofour construction of a simulator, M�, for each V �).The simulator M� incorporates the code of the interactive program V �. On input(G1; G2), the simulator M� �rst selects at random one of the input graphs (i.e., eitherG1 or G2) and generates a random isomorphic copy, denoted G00, of this input graph. Indoing so, the simulator behaves di�erently from PGI , but the graph generated (i.e., G00) isdistributed identically to the message sent in step (P1) of the interactive proof. Say thatthe simulator has generated G00 by randomly permuting G1. Then, if V � asks to see theisomorphism between G1 and G00, the simulator can indeed answer correctly and in doingso it completes a simulation of the veri�er's view of the interaction with PGI . However,if V � asks to see the isomorphism between G2 and G00, then the simulator (which, unlikePGI , does not \know" �) has no way to answer correctly, and we let it halt with output?. We stress that the simulator \has no way of knowing" whether V � will ask to see anisomorphism to G1 or G2. The point is that the simulator can try one of the possibilitiesat random and if it is lucky (which happens with probability exactly 12) then it can outputa distribution which is identical to the view of V � when interacting with PGI (on commoninput (G1; G2)). A detailed description of the simulator follows.Simulator M�. On input x def= (G1; G2), simulator M� proceeds as follows:1. Setting the random-tape of V �: Let q(�) denote a polynomial bounding the running-time of V �. The simulator M� starts by uniformly selecting a string r 2 f0; 1gq(jxj),to be used as the contents of the random-tape of V �.

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 1652. Simulating the prover's �rst step (P1): The simulator M� selects at random, withuniform probability distribution, a \bit" � 2 f1; 2g and a permutation from the setof permutations over the vertex set V� . It then constructs a graph with vertex set V�and edge set F def= f((u); (v)) : (u; v)2E�gSet G00 def= (V� ; F).3. Simulating the veri�er's �rst step (V1): The simulator M� initiates an execution ofV � by placing x on V �'s common-input-tape, placing r (selected in step (1) above) onV �'s random-tape, and placing G00 (constructed in step (2) above) on V �'s incomingmessage-tape. After executing a polynomial number of steps of V �, the simulator canread the outgoing message of V �, denoted �. To simplify the rest of the description,we normalize � by setting � = 1 if � 6= 2 (and leave � unchanged if � = 2).4. Simulating the prover's second step (P2): If � = � then the simulator halts withoutput (x; r; G00;).5. Failure of the simulation: Otherwise (i.e., � 6= �), the simulator halts with output ?.Using the hypothesis that V � is polynomial-time, it follows that so is the simulator M�.It is left to show that M� outputs ? with probability at most 12 , and that, conditionedon not outputting ?, the simulator's output is distributed as the veri�er's view in a \realinteraction with PGI". The following claim is the key to the proof of both claims.Claim 6.17.1: Suppose that the graphs G1 and G2 are isomorphic. Let � be a randomvariable uniformly distributed in f1; 2g, and �(G) be a random variable (independent of�) describing the graph obtained from the graph G by randomly relabelling its nodes (cf.Claim 6.9.1). Then, for every graph G00, it holds thatProb ��=1j�(G�)=G00� = Prob ��=2j�(G�)=G00�Claim 6.17.1 is identical to Claim 6.9.1 (used to demonstrate that Construction 6.8 consti-tutes an interactive proof for GNI). As in the rest of the proof of Proposition 6.9, it followsthat any random process with output in f1; 2g, given �(G�), outputs � with probabilityexactly 12 . Hence, given G00 (constructed by the simulator in step (2)), the veri�er's programyields (normalized) � so that � 6= � with probability exactly 12 . We conclude that the simu-lator outputs ? with probability 12 . It remains to prove that, conditioned on not outputting?, the simulator's output is identical to \V �'s view of real interactions". Namely,Claim 6.17.2: Let x = (G1; G2) 2 GI . Then, for every string r, graph H , and permutation , it holds thatProb�viewPGIV � (x)=(x; r;H;)�= Prob (M�(x)=(x; r;H;) jM�(x) 6=?)

166 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSproof: Let m�(x) describe M�(x) conditioned on its not being ?. We �rst observe that bothm�(x) and viewPGIV � (x) are distributed over quadruples of the form (x; r; �; �), with uniformlydistributed r 2 f0; 1gq(jxj). Let �(x; r) be a random variable describing the last two elementsof viewPGIV � (x) conditioned on the second element equals r. Similarly, let �(x; r) describe thelast two elements of m�(x) (conditioned on the second element equals r). Clearly, it su�cesto show that �(x; r) and �(x; r) are identically distributed, for every x and r. Observe thatonce r is �xed the message sent by V � on common input x, random-tape r, and incomingmessage H , is uniquely de�ned. Let us denote this message by v�(x; r;H). We show thatboth �(x; r) and �(x; r) are uniformly distributed over the setCx;r def= n(H;) : H = (Gv�(x;r;H))owhere (G) denotes the graph obtained from G by relabelling the vertices using the per-mutation (i.e., if G=(V;E) then (G) = (V; F) so that (u; v) 2 E i� ((u); (v)) 2 F).The proof of this statement is rather tedious and unrelated to the subjects of this book(and hence can be skipped with no damage).The proof is slightly non-trivial because it relates (at least implicitly) to theautomorphism group of the graph G2 (i.e., the set of permutations � for which�(G2) is identical, not just isomorphic, to G2). For simplicity, consider �rstthe special case in which the automorphism group of G2 consists of merely theidentity permutation (i.e., G2=�(G2) if and only if � is the identity permuta-tion). In this case, (H;) 2 Cx;r if and only if H is isomorphic to (both G1and) G2 and is the isomorphism between H and Gv�(x;r;H). Hence, Cx;r con-tains exactly jV2j! pairs, each containing a di�erent graph H as the �rst element.In the general case, (H;) 2 Cx;r if and only if H is isomorphic to (both G1and) G2 and is an isomorphism between H and Gv�(x;r;H). We stress thatv�(x; r;H) is the same in all pairs containing H . Let aut(G2) denotes the sizeof the automorphism group of G2. Then, each H (isomorphic to G2) appears inexactly aut(G2) pairs of Cx;r and each such pair contain a di�erent isomorphismbetween H and Gv�(x;r;H).We �rst consider the random variable �(x; r) (describing the su�x ofm�(x)).Recall that �(x; r) is de�ned by the following two step random process. In the�rst step, one selects uniformly a pair (�;), over the set of pairs f1; 2g-times-permutation, and sets H = (G�). In the second step, one outputs (i.e., sets�(x; r) to) ((G�);) if v�(x; r;H)= � (and ignores the (�;) pair otherwise).Hence, each graphH (isomorphic toG2) is generated, at the �rst step, by exactlyaut(G2) di�erent (1; �)-pairs (i.e., the pairs (1;) satisfying H= (G1)), and byexactly aut(G2) di�erent (2; �)-pairs (i.e., the pairs (2;) satisfying H= (G2)).All these 2 � aut(G2) pairs yield the same graph H , and hence lead to the samevalue of v�(x; r;H). It follows that out of the 2 � aut(G2) pairs, (�;), yielding

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 167the graph H= (G�), only the pairs satisfying �=v�(x; r;H) lead to an output.Hence, for each H (which is isomorphic to G2), the probability that �(x; r) =(H; �) equals aut(G2)=(jV2j!). Furthermore, for each H (which is isomorphic toG2), Prob (�(x; r)=(H;)) = (1jV2j! if H= (Gv�(x;r;H))0 otherwiseHence �(x; r) is uniformly distributed over Cx;r.We now consider the random variable �(x; r) (describing the su�x of theveri�er's view in a \real interaction" with the prover). Recall that �(x; r) isde�ned by selecting uniformly a permutation � (over the set V2), and setting�(x; r)= (�(G2); �) if v�(x; r; �(G2))= 2 and �(x; r)= (�(G2); � � �) otherwise,where � is the isomorphism between G1 and G2. Clearly, for each H (which isisomorphic to G2), the probability that �(x; r) = (H; �) equals aut(G2)=(jV2j!).Furthermore, for each H (which is isomorphic to G2),Prob (�(x; r)=(H;)) = (1jV2j! if =� � �2�v�(x;r;H)0 otherwiseObserving that H = (Gv�(x;r;H)) if and only if =� ��2�v�(x;r;H), we concludethat �(x; r) and �(x; r) are identically distributed.The claim follows. 2This completes the proof of Part (3) of the proposition.6.3.3 Zero-Knowledge w.r.t. Auxiliary InputsThe de�nitions of zero-knowledge presented above fall short of what is required in practicalapplications and consequently a minor modi�cation should be used. We recall that thesede�nitions guarantee that whatever can be e�ciently computed after interaction with theprover on any common input, can be e�ciently computed from the input itself. However,in typical applications (e.g., when an interactive proof is used as a sub-protocol inside abigger protocol) the veri�er interacting with the prover, on common input x, may havesome additional a-priori information, encoded by a string z, which may assist it in itsattempts to \extract knowledge" from the prover. This danger may become even moreacute in the likely case in which z is related to x. (For example, consider the protocol ofConstruction 6.16 and the case where the veri�er has a-priori information concerning anisomorphism between the input graphs.) What is typically required is that whatever can bee�ciently computed from x and z after interaction with the prover on any common inputx, can be e�ciently computed from x and z (without any interaction with the prover). Thisrequirement is formulated below using the augmented notion of interactive proofs presentedin De�nition 6.10.

168 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSDe�nition 6.18 (zero-knowledge { revisited): Let (P; V) be an interactive proof for a lan-guage L (as in De�nition 6.10). Denote by PL(x) the set of strings y satisfying the complete-ness condition with respect to x 2 L (i.e., for every z 2 f0; 1g� Prob (hP (y); V (z)i(x)=1) �23). We say that (P; V) is zero-knowledge with respect to auxiliary input (auxiliary input zero-knowledge) if for every probabilistic polynomial-time interactive machine V � there exists aprobabilistic algorithmM�, running in time polynomial in the length of its �rst input, so thatthe following two ensembles are computationally indistinguishable (when the distinguishinggap is considered as a function of jxj)� fhP (y); V �(z)i(x)gx2L;y2PL(x);z2f0;1g�� fM�(x; z)gx2L;z2f0;1g�Namely, for every probabilistic algorithm, D, with running-time polynomial in length ofthe �rst input, every polynomial p(�), and all su�ciently long x 2 L, all y 2 PL(x) andz 2 f0; 1g�, it holds thatjProb(D(x; z; hP (y); V �(z)i(x))=1)� Prob(D(x; z;M�(x; z))=1)j< 1p(jxj)In the above de�nition y represents a-priori information to the prover, whereas z repre-sents a-priori information to the veri�er. Both y and z may depend on the common inputx. We stress that the local inputs (i.e., y and z) may not be known, even in part, to thecounterpart. We also stress that the auxiliary input z is also given to the distinguishingalgorithm (which may be thought of as an extension of the veri�er).Recall that by De�nition 6.10, saying that the interactive machine V � is probabilisticpolynomial-time means that its running-time is bounded by a polynomial in the lengthof the common input. Hence, the veri�er program, the simulator, and the distinguishingalgorithm, all run in time polynomial in the length of x (and not in time polynomial in thetotal length of all their inputs). This convention is essential in many respects. For example,having allowed even one of these machines to run in time proportional to the length ofthe auxiliary input would have collapsed computational zero-knowledge to perfect zero-knowledge (e.g., by considering veri�ers which run in time polynomial in the common-inputyet have huge auxiliary inputs of length exponential in the common-input).De�nition 6.18 refers to computational zero-knowledge. A formulation of perfect zero-knowledge with respect to auxiliary input is straightforward. We remark that the perfectzero-knowledge proof for Graph Isomorphism, presented in Construction 6.16, is in factperfect zero-knowledge with respect to auxiliary input. This fact follows easily by a minoraugmentation to the simulator constructed in the proof of Proposition 6.17 (i.e., wheninvoking the veri�er, the simulator should provide it with the auxiliary input which isgiven to the simulator). In general, a demonstration of zero-knowledge can be extended

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 169to yield zero-knowledge with respect to auxiliary input, provided that the simulator usedin the original demonstration works by invoking the veri�er's program as a black box. Allsimulators presented in this book have this property.* Implicit non-uniformity in De�nition 6.18The non-uniform nature of De�nition 6.18 is captured by the fact that the simulator getsan auxiliary input. It is true that this auxiliary input is also given to both the veri�erprogram and the simulator, however if it is su�ciently long then only the distinguishercan make any use of its su�x. It follows that the simulator guaranteed in De�nition 6.18produces output that is indistinguishable from the real interactions also by non-uniformpolynomial-size machines. Namely, for every (even non-uniform) polynomial-size circuitfamily, fCngn2IN, every polynomial p(�), and all su�ciently large n's, all x 2 L \ f0; 1gn,all y 2 PL(x) and z 2 f0; 1g�,jProb(Cn(x; z; hP (y); V �(z)i(x))=1)� Prob(Cn(x; z;M�(x; z))=1)j< 1p(jxj)Following is a sketch of the proof. We assume, to the contrary, that there exists a polynomial-size circuit family, fCngn2IN, such that for in�nitely many n's there exists triples (x; y; z)for which Cn has a non-negligible distinguishing gap. We derive a contradiction by incorpo-rating the description of Cn together with the auxiliary input z into a longer auxiliary input,denoted z0. This is done in a way that both V � and M� have no su�cient time to reachthe description of Cn. For example, let q(�) be a polynomial bounding the running-time ofboth V � and M�, as well as the size of Cn. Then, we let z0 be the string which results bypadding z with blanks to a total length of q(n) and appending the description of the circuitCn at its end (i.e., if jzj > q(n) then z0 is a pre�x of z). Clearly, M�(x; z0) = M�(x; z)and hP (y); V �(z0)i(x) = hP (y); V �(z)i(x). On the other hand, by using a circuit evaluat-ing algorithm, we get an algorithm D such that D(x; z0; �) = Cn(x; z), and contradictionfollows.6.3.4 Sequential Composition of Zero-Knowledge ProofsAn intuitive requirement that a de�nition of zero-knowledge proofs must satisfy is thatzero-knowledge proofs are closed under sequential composition. Namely, if one executes onezero-knowledge proof after another then the composed execution must be zero-knowledge.The same should remain valid even if one executes polynomially many proofs one afterthe other. Indeed, as we will shortly see, the revised de�nition of zero-knowledge (i.e.,De�nition 6.18) satis�es this requirement. Interestingly, zero-knowledge proofs as de�nedin De�nition 6.12 are not closed under sequential composition, and this fact is indeed anotherindication to the necessity of augmenting this de�nition (as done in De�nition 6.18).

170 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSIn addition to its conceptual importance, the Sequential Composition Lemma is animportant tool in the design of zero-knowledge proof systems. Typically, these proof systemconsists of many repetitions of a atomic zero-knowledge proof. Loosely speaking, the atomicproof provides some (but not much) statistical evidence to the validity of the claim. Byrepeating the atomic proof su�ciently many times the con�dence in the validity of the claimis increased. More precisely, the atomic proof o�ers a gap between the accepting probabilityof string in the language and strings outside the language. For example, in Construction 6.16pairs of isomorphic graphs (i.e., inputs in GI) are accepted with probability 1, whereas pairsof non-isomorphic graphs (i.e., inputs not in GI) are accepted with probability at most 12 .By repeating the atomic proof the gap between the two probabilities is further increased.For example, repeating the proof of Construction 6.16 for k times yields a new interactiveproof in which inputs in GI are still accepted with probability 1 whereas inputs not in GIare accepted with probability at most 12k . The Sequential Composition Lemma guaranteesthat if the atomic proof system is zero-knowledge then so is the proof system resulting byrepeating the atomic proof polynomially many times.Before we state the Sequential Composition Lemma, we remind the reader that thezero-knowledge property of an interactive proof is actually a property of the prover. Also,the prover is required to be zero-knowledge only on inputs in the language. Finally, westress that when talking on zero-knowledge with respect to auxiliary input we refer to allpossible auxiliary inputs for the veri�er.Lemma 6.19 (Sequential Composition Lemma): Let P be an interactive machine (i.e.,a prover) which is zero-knowledge with respect to auxiliary input on some language L.Suppose that the last message sent by P , on input x, bears a special \end of proof" symbol.Let Q(�) be a polynomial, and let PQ be an interactive machine that, on common inputx, proceeds in Q(jxj) phases, each of them consisting of running P on common input x.(We stress that in case P is probabilistic, the interactive machine PQ uses independent cointosses for each of the Q(jxj) phases.) Then PQ is zero-knowledge (with respect to auxiliaryinput) on L. Furthermore, if P is perfect zero-knowledge (with respect to auxiliary input)then so is PQ.The convention concerning \end of proof" is introduced for technical purposes (and is re-dundant in all known provers for which the number of messages sent is easily computed fromthe length of the common input). Clearly, every machine P can be easily modi�ed so thatits last message bears an appropriate symbol (as assumed above), and doing so preservesthe zero-knowledge properties of P (as well as completeness and soundness conditions).The Lemma remain valid also if one allows auxiliary input to the prover. The extensionis straightforward. The lemma ignores other aspects of repeating an interactive proof severaltimes; speci�cally, the e�ect on the gap between the accepting probability of inputs insideand outside of the language. This aspect of repetition is discussed in the previous section(see also Exercise 1).

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 171Proof: Let V � be an arbitrary probabilistic polynomial-time interactive machine interactingwith the composed prover PQ. Our task is to construct a (polynomial-time) simulator,M�, which simulates the real interactions of V � with PQ. Following is a very high leveldescription of the simulation. The key idea is to simulate the real interaction on commoninput x in Q(jxj) phases corresponding to the phases of the operation of PQ. Each phaseof the operation of PQ is simulated using the simulator guaranteed for the atomic proverP . The information accumulated by the veri�er in each phase is passed to the next phaseusing the auxiliary input.The �rst step in carrying-out the above plan is to partition the execution of an arbitraryinteractive machine V � into phases. The partition may not exist in the code of the programV �, and yet it can be imposed on the executions of this program. This is done using thephase structure of the prescribed prover PQ, which is induced by the \end of proof" symbols.Hence, we claim that no matter how V � operates, the interaction of V � with PQ on commoninput x, can be captured by Q(jxj) successive interaction of a related machine, denoted V ��,with P . Namely,Claim 6.19.1: There exists a probabilistic polynomial-time V �� so that for every commoninput x and auxiliary input z it holds thathPQ; V �(z)i(x) = Z(Q(jxj))where Z(0) def= z and Z(i+1) def= hP; V ��(Z(i))i(x)Namely, Z(Q(jxj)) is a random variable describing the output of V �� after Q(jxj) successiveinteractions with P , on common input x, where the auxiliary input of V �� in the i + 1stinteraction equals the output of V �� after the ith interaction (i.e., Z(i)).proof: Consider an interaction of V �(z) with PQ, on common input x. Machine V � can beslightly modi�ed so that it starts its execution by reading the common-input, the random-input and the auxiliary-input into special regions in its work-tape, and never accesses theabove read-only tapes again. Likewise, V � is modi�ed so that it starts each active periodby reading the current incoming message from the communication-tape to a special regionin the work tape (and never accesses the incoming message-tape again during this period).Actually, the above description should be modi�ed so that V � copies only a polynomiallylong (in the common input) pre�x of each of these tapes, the polynomial being the onebounding the running time of V �.Considering the contents of the work-tape of V � at the end of each of the Q(jxj) phases(of interactions with PQ), naturally leads us to the construction of V ��. Namely, on commoninput x and auxiliary input z0, machine V �� starts by copying z0 into the work-tape of V �.Next, machine V �� simulates a single phase of the interaction of V � with PQ (on input x)starting with the above contents of the work-tape of V � (instead of starting with an emptywork-tape). The invoked machine V � regards the communication-tapes of machine V �� as

172 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSits own communication-tapes. Finally, V �� terminates by outputting the current contentsof the work-tape of V �. Actually, the above description should be slightly modi�ed todeal di�erently with the �rst phase in the interaction with PQ. Speci�cally, V �� copies z0into the work-tape of V � only if z0 encodes a contents of the work-tape of V � (we assume,w.l.o.g., that the contents of the work-tape of V � is encoded di�erently from the encodingof an auxiliary input for V �). In case z0 encodes an auxiliary input to V �, machine V ��invokes V � on an empty work-tape, and V � regards the readable tapes of V �� (i.e., common-input-tape, the random-input-tape and the auxiliary-input-tape) as its own. Observe thatZ(1) def= hP; V ��(z)i(x) describes the contents of the work-tape of V � after one phase, andZ(i) def= hP; V ��(Z(i�1))i(x) describes the contents of the work-tape of V � after i phases.The claim follows. 2Since V �� is a polynomial-time interactive machine (with auxiliary input) interactingwith P , it follows by the lemma's hypothesis that there exists a probabilistic machine whichsimulates these interactions in time polynomial in the length of the �rst input. Let M��denote this simulator. We may assume, without loss of generality, that with overwhelminglyhigh probability M�� halts with output (as we can increase the probability of output bysuccessive applications ofM��). Furthermore, for sake of simplicity, we assume in the rest ofthis proof that M�� always halts with output. Namely, for every probabilistic polynomial-time (in x) algorithmD, every polynomial p(�), all su�ciently long x 2 L and all z 2 f0; 1g�,we havejProb(D(x; z; hP; V ��(z)i(x)) = 1)� Prob(D(x; z;M��(x; z)) = 1)j < 1p(jxj)We are now ready to present the construction of a simulator, M�, that simulates the\real" output of V � after interaction with PQ. Machine M� uses the above guaranteedsimulator M��. On input (x; z), machine M� sets z(0) = z and proceeds in Q(jxj) phases.In the ith phase, machine M� computes z(i) by running machine M�� on input (x; z(i�1)).After Q(jxj) phases are completed, machine M� stops outputting z(Q(jxj)).Clearly, machine M�, constructed above, runs in time polynomial in its �rst input. (Fornon-constant Q(�) it is crucial here that the running-time ofM� is polynomial in the lengthof the �rst input, rather than being polynomial in the length of both inputs.) It is leftto show that machine M� indeed produces output which is polynomially indistinguishablefrom the output of V � (after interacting with PQ). Namely,Claim 6.19.2: For every probabilistic algorithm D, with running-time polynomial in its �rstinput, every polynomial p(�), all su�ciently long x 2 L and all z 2 f0; 1g�, we havejProb(D(x; z; hPQ; V �(z)i(x)) = 1)� Prob(D(x; z;M�(x; z)) = 1)j < 1p(jxj)

6.3. ZERO-KNOWLEDGE PROOFS: DEFINITIONS 173proof sketch: We use a hybrid argument. In particular, we de�ne the following Q(jxj) + 1hybrids. The ith hybrid, 0� i�Q(jxj), corresponds to the following random process. We�rst let V �� interact with P for i phases, starting with common input x and auxiliary inputz, and denote by Z(i) the output of V �� after the ith phase. We next repeatedly iterateM��for the remaining Q(m)� k phases. In both cases, we use the output of the previous phaseas auxiliary input to the new phase. Formally, the hybrid H(i) is de�ned as follows.H(i)(x; z) def= M��Q(m)�i(x; Z(i))where Z(0) def= z and Z(j+1) def= hP; V ��(Z(j))i(x)M��0 (x; z0) def= (x; z0) and M��j (x; z0) def= M��j�1(x;M��(x; z0))Using Claim 6.19.1, the Q(jxj)th hybrid (i.e., H(Q(jxj))(x; z)) equals hPQ; V �(z)i(x)). On theother hand, recalling the construction of M�, we see that the zero hybrid (i.e., H(0)(x; z))equalsM�(x; z)). Hence, all that is required to complete the proof is to show that every twoadjacent hybrids are polynomially indistinguishable (as this would imply that the extremehybrids, H(Q(m)) and H(0), are indistinguishable too). To this end, we rewrite the ith andi� 1st hybrids as follows.H(i)(x; z) = M��Q(jxj)�i(x; hP; V ��(Z(i�1))i(x))H(i�1)(x; z) = M��Q(jxj)�i(x;M��(x; Z(i�1)))where Z(i�1) is as de�ned above (in the de�nition of the hybrids).Using an averaging argument, it follows that if an algorithm, D, distinguishes the hy-brids H(i)(x; z) and H(i�1)(x; z) then there exists a z0 so that algorithm D distinguishesthe random variables M��Q(jxj)�i(x; hP; V ��(z0)i(x)) and M��Q(jxj)�i(x;M��(x; z0)) at least aswell. Incorporating algorithm M�� into D, we get a new algorithm D0, with running timepolynomially related to the former algorithms, which distinguishes the random variables(x; z0; hP; V ��(z0)i(x)) and (x; z0;M��(x; z0)) at least as well. (Further details are presentedbelow.) Contradiction (to the hypothesis that M�� simulates (P; V ��)) follows. 2The lemma follows.Further details concerning the proof of Claim 6.19.2: The proof of Claim 6.19.2 israther sketchy. The main thing which is missing are details concerning the way in whichan algorithm contradicting the hypothesis that M�� is a simulator for (P; V ��) is derivedfrom an algorithm contradicting the statement of Claim 6.19.2. These details are presentedbelow, and the reader is encouraged not to skip them.Let us start with the non-problematic part. We assume, to the contradiction, thatthere exists a probabilistic polynomial-time algorithm, D, and a polynomial p(�), so that

174 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSfor in�nitely many x 2 L there exists z 2 f0; 1g� such thatjProb(D(x; z; hPQ; V �(z)i(x)) = 1)� Prob(D(x; z;M�(x; z)) = 1)j > 1p(jxj)It follows that for every such x and z, there exists an i 2 f1; :::;Q(jxj)g such thatjProb(D(x; z;H(i)(x; z)) = 1)� Prob(D(x; z;H(i�1)(x; z)) = 1)j > 1Q(jxj) � p(jxj)Denote �(n) def= 1=(Q(n) � p(n)). Combining the de�nition of the ith and i� 1st hybrids withan averaging argument, it follows that for each such x, z and i, there exists a z0, in thesupport of Z(i�1) (de�ned as above), such thatjProb(D(x; z0;M��Q(jxj)�ihP; V ��(z0)i(x)) = 1)�Prob(D(x; z0;M��Q(jxj)�i(M��(x; z0))) = 1)j > �(jxj)This almost leads to the desired contradiction. Namely, the random variables (x; z0; hP; V ��(z0)i(x))and (x; z0;M��(x; z0)) can be distinguished using algorithms D and M��, provided we\know" i. The problem is resolved using the fact, pointed out at the end of Subsection 6.3.3,that the output ofM�� is undistinguished from the interactions of V �� with the prover evenwith respect to non-uniform polynomial-size circuits. Details follow.We construct a polynomial-size circuit family, denoted fCng, which distinguishes (x; z0; hP; V ��(z00)i(x))and (x; z0;M��(x; z00)), for the above-mentioned (x; z0) pairs. On input x (supposedlyin L \ f0; 1gn) and � (supposedly in either (x; z0; hP; V ��(z00)i(x)) or (x; z0;M��(x; z00))),the circuit Cn, incorporating (the above-mentioned) i, uses algorithm M�� to compute� = MQ(jxj)�i(x; �). Next Cn, using algorithm D, computes � = D((x; z0); �) and haltsoutputting �. Contradiction (to the hypothesis that M�� is a simulator for (P; V ��)) fol-lows. 2And what about parallel composition?Unfortunately, we cannot prove that zero-knowledge (even with respect to auxiliary input)is preserved under parallel composition. Furthermore, there exist zero-knowledge proofsthat when played twice in parallel do yield knowledge (to a \cheating veri�er"). For furtherdetails see Subsection 6.5.The fact that zero-knowledge is not preserved under parallel composition of protocolsis indeed bad news. One may even think that this fact is a conceptually annoying phe-nomenon. We disagree with this feeling. Our feeling is that the behaviour of protocolsand \games" under parallel composition is, in general (i.e., not only in the context of zero-knowledge), a much more complex issue than the behaviour under sequential composition.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 175Furthermore, the only advantage of parallel composition over sequential composition is ine�ciency. Hence, we don't consider the non-closure under parallel composition to be aconceptual weakness of the formulation of zero-knowledge. Yet, the \non-closure" of zero-knowledge motivates the search for either weaker or stronger notions which are preservedunder parallel composition. For further details, the reader is referred to Sections 6.9 and 6.6.6.4 Zero-Knowledge Proofs for NPThis section presents the main thrust of the entire chapter; namely, a method for construct-ing zero-knowledge proofs for every language in NP . The importance of this method stemsfrom its generality, which is the key to its many applications. Speci�cally, we observe thatalmost all statements one wish to prove in practice can be encoded as claims concerningmembership in languages in NP .The method, for constructing zero-knowledge proofs for NP-languages, makes essentialuse of the concept of bit commitment. Hence, we start with a presentation of this concept.6.4.1 Commitment SchemesCommitment schemes are a basic ingredient in many cryptographic protocols. The are usedto enable a party to commit itself to a value while keeping it secret. In a latter stage thecommitment is \opened" and it is guaranteed that the \opening" can yield only a singlevalue determined in the committing phase. Commitment schemes are the digital analogueof nontransparent sealed envelopes. By putting a note in such an envelope a party commitsitself to the contents of the note while keeping it secret.De�nitionLoosely speaking, a commitment scheme is an e�cient two-phase two-party protocol throughwhich one party, called the sender, can commit itself to a value so the following two con-icting requirements are satis�ed.1. Secrecy: At the end of the �rst phase, the other party, called the receiver, does notgain any knowledge of the sender's value. This requirement has to be satis�ed even ifthe receiver tries to cheat.2. Unambiguity: Given the transcript of the interaction in the �rst phase, there existsat most one value which the receiver may later (i.e., in the second phase) accept as alegal \opening" of the commitment. This requirement has to be satis�ed even if thesender tries to cheat.

176 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSIn addition, one should require that the protocol is viable in the sense that if both partiesfollow it then, at the end of the second phase, the receiver gets the value committed toby the sender. The �rst phase is called the commit phase, and the second phase is calledthe reveal phase. We are requiring that the commit phase yield no knowledge (at leastnot of the sender's value) to the receiver, whereas the commit phase does \commit" thesender to a unique value (in the sense that in the reveal phase the receiver may accept onlythis value). We stress that the protocol is e�cient in the sense that the predeterminedprograms of both parties can be implemented in probabilistic, polynomial-time. Withoutloss of generality, the reveal phase may consist of merely letting the sender send, to thereceiver, the original value and the sequence of random coin tosses that it has used duringthe commit phase. The receiver will accept the value if and only if the supplied informationmatches its transcript of the interaction in the commit phase. The latter convention leadsto the following de�nition (which refers explicitly only to the commit phase).De�nition 6.20 (bit commitment scheme): A bit commitment scheme is a pair of prob-abilistic polynomial-time interactive machines, denoted (S;R) (for sender and receiver),satisfying:� Input Speci�cation: The common input is an integer n presented in unary (servingas the security parameter). The private input to the sender is a bit v.� Secrecy: The receiver (even when deviating arbitrarily from the protocol) cannot dis-tinguish a commitment to 0 from a commitment to 1. Namely, for every probabilis-tic polynomial-time machine R� interacting with S, the random variables describingthe output of R� in the two cases, namely hS(0); R�i(1n) and hS(1); R�i(1n), arepolynomially-indistinguishable.� Unambiguity:Preliminaries{ A receiver's view of an interaction with the sender, denoted (r;m), consists ofthe random coins used by the receiver (r) and the sequence of messages receivedfrom the sender (m).{ Let � 2 f0; 1g. We say that a receiver's view (of such interaction), (r;m), is apossible �-commitment if there exists a string s such that m describes the messagesreceived by R when R uses local coins r and interacts with machine S which useslocal coins s and has input (�; 1n). (Using the notation of De�nition 6.13, thecondition may be expressed as m = viewS(�;1n;s)R(1n;r) .){ We say that the receiver's view (r;m) is ambiguous if it is both a possible 0-commitment and a possible 1-commitment.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 177The unambiguity requirement asserts that, for all but a negligible fraction of the cointosses of the receiver, there exists no sequence of messages (from the sender) whichtogether with these coin tosses forms an ambiguous receiver view. Namely, that forall but a negligible fraction of the r 2 f0; 1gpoly(n) there is no m such that (r;m) isambiguous.The secrecy requirement (above) is analogous to the de�nition of indistinguishability of en-cryptions (i.e., De�nition [missing(enc-indist.def)]). An equivalent formulation analo-gous to semantic security (i.e., De�nition [missing(enc-semant.def)]) can be presented,but is less useful in typical applications of commitment schemes. In any case, the secrecy re-quirement is a computational one. On the other hand, the unambiguity requirement has aninformation theoretic avour (i.e., it does not refer to computational powers). A dual def-inition, requiring information theoretic secrecy and computational unfeasibility of creatingambiguities, is presented in Subsection 6.8.2.The secrecy requirement refers explicitly to the situation at the end of the commit phase.On the other hand, we stress that the unambiguity requirement implicitly assumes that thereveal phase takes the following form:1. the sender sends to the receiver its initial private input, v, and the random coins, s,it has used in the commit phase;2. the receiver veri�es that v and s (together with the coins (r) used by R in the commitphase) indeed yield the messages thatR has received in the commit phase. Veri�cationis done in polynomial-time (by running the programs S and R).Note that the viability requirement (i.e., asserting that if both parties follow the protocolthen, at the end of the reveal phase, the receiver gets v) is implicitly satis�ed by the aboveconvention.Construction based on any one-way permutationSome public-key encryption scheme can be used as a commitment scheme. This can bedone by having the sender generate a pair of keys and use the public-key together with theencryption of a value as its commitment to the value. In order to satisfy the unambiguityrequirement, the underlying public-key scheme needs to satisfy additional requirements (e.g.,the set of legitimate public-keys should be e�ciently recognizable). In any case, public-key encryption schemes have additional properties not required of commitment schemesand their existence seems to require stronger intractability assumptions. An alternativeconstruction, presented below, uses any one-way permutation. Speci�cally, we use a one-way permutation, denoted f , and a hard-core predicate for it, denoted b (see Section 2.5).

178 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSConstruction 6.21 (simple bit commitment): Let f : f0; 1g� 7! f0; 1g� be a function, andb : f0; 1g� 7! f0; 1g be a predicate.1. commit phase: To commit to value v 2 f0; 1g (using security parameter n), the senderuniformly selects s 2 f0; 1gn and sends the pair (f(s); b(s)� v) to the receiver.2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value v if f(s) = � and b(s)� v = �, where (�; �) isthe receiver's view of the commit phase.Proposition 6.22 Let f : f0; 1g� 7! f0; 1g� be a length preserving 1-1 one-way function,and b : f0; 1g� 7! f0; 1g be a hard-core predicate of f . Then, the protocol presented inConstruction 6.21 constitutes a bit commitment scheme.Proof: The secrecy requirement follows directly from the fact that b is a hard-core of f .The unambiguity requirement follows from the 1-1 property of f . In fact, there exists noambiguous receiver view. Namely, for each receiver view (�; �), there is a unique s 2 f0; 1gj�jso that f(s) = � and hence a unique v 2 f0; 1g so that b(s)� v = �.Construction based on any one-way functionWe now present a construction of a bit commitment scheme which is based on the weakestassumption possible: the existence of one-way function. Proving the that the assumption isindeed minimal is left as an exercise (i.e., Exercise 12). On the other hand, by the results inChapter 3 (speci�cally, Theorems 3.11 and 3.29), the existence of one-way functions implythe existence of pseudorandom generators expanding n-bit strings into 3n-bit strings. Wewill use such a pseudorandom generator in the construction presented below.We start by motivating the construction. Let G be a pseudorandom generator satisfyingjG(s)j = 3 � jsj. Assume that G has the property that the sets fG(s) : s 2 f0; 1gng andfG(s)� 13n : s 2 f0; 1gng are disjoint, were �� � denote the bit-by-bit exclusive-or of thestrings � and �. Then, the sender may commit itself to the bit v by uniformly selectings 2 f0; 1gn and sending the message G(s) � v3n (vk denotes the all-v's k-bit long string).Unfortunately, the above assumption cannot be justi�ed, in general, and a slightly morecomplex variant is required. The key observation is that for most strings � 2 f0; 1g3nthe sets fG(s) : s 2 f0; 1gng and fG(s) � � : s 2 f0; 1gng are disjoint. Such a string� is called good. This observation suggests the following protocol. The receiver uniformlyselects � 2 f0; 1g3n, hoping that it is good, and the sender commits to the bit v by uniformlyselecting s 2 f0; 1gn and sending the message G(s) if v = 0 and G(s)� � otherwise.Construction 6.23 (bit commitment under general assumptions): Let G : f0; 1g� 7!f0; 1g� be a function so that jG(s)j = 3 � jsj for all s 2 f0; 1g�.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 1791. commit phase: To receive a commitment to a bit (using security parameter n), thereceiver uniformly selects r 2 f0; 1g3n and sends it to the sender. Upon receiving themessage r (from the receiver), the sender commits to value v 2 f0; 1g by uniformlyselecting s 2 f0; 1gn and sending G(s) if v = 0 and G(s)� r otherwise.2. reveal phase: In the reveal phase, the sender reveals the string s used in the commitphase. The receiver accepts the value 0 if G(s) = � and the value 1 if G(s)� r = �,where (r; �) is the receiver's view of the commit phase.Proposition 6.24 If G is a pseudorandom generator, then the protocol presented in Con-struction 6.23 constitutes a bit commitment scheme.Proof: The secrecy requirement follows the fact that G is a pseudorandom generator.Speci�cally, let Uk denote the random variable uniformly distributed on strings of lengthk. Then for every r 2 f0; 1g3n, the random variables U3n and U3n � r are identically dis-tributed. Hence, if it is feasible to �nd an r 2 f0; 1g3n such that G(Un) and G(Un) � rare computationally distinguishable then either U3n and G(Un) are computationally dis-tinguishable or U3n � r and G(Un) � r are computationally distinguishable. In either casecontradiction to the pseudorandomness of G follows.We now turn to the unambiguity requirement. Following the motivating discussion,we call � 2 f0; 1g3n good if the sets fG(s) : s 2 f0; 1gng and fG(s) � � : s 2 f0; 1gngare disjoint. We say that � 2 f0; 1g3n yields a collision between the seeds s1 and s2 ifG(s1) = G(s2) � �. Clearly, � is good if it does not yield a collision between any pair ofseeds. On the other hand, there is a unique string � which yields a collision between agiven pair of seeds (i.e., � = G(s1) � G(s2)). Since there are 22n possible pairs of seeds,at most 22n strings yield collisions between seeds and all the other 3n-bit long strings aregood. It follows that with probability at least 1� 22n�3n the receiver selects a good string.The unambiguity requirement follows.ExtensionsThe de�nition and the constructions of bit commitment schemes are easily extended togeneral commitment schemes enabling the sender to commit to a string rather than to asingle bit. When de�ning the secrecy of such schemes the reader is advised to consultDe�nition [missing(enc-indist.def)]). For the purposes of the rest of this section weneed a commitment scheme by which one can commit to a ternary value. Extending thede�nition and the constructions to deal with this case is even more straightforward.In the rest of this section we will need commitment schemes with a seemingly strongersecrecy requirement than de�ned above. Speci�cally, instead of requiring secrecy with

180 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSrespect to all polynomial-time machines, we will require secrecy with respect to all (notnecessarily uniform) families of polynomial-size circuits. Assuming the existence of non-uniformly one-way functions (see De�nition 2.6 in Section 2.2) commitment schemes withnonuniform secrecy can be constructed, following the same constructions used in the uniformcase.6.4.2 Zero-Knowledge proof of Graph ColoringPresenting a zero-knowledge proof system for one NP-complete language implies the exis-tence of a zero-knowledge proof system for every language in NP . This intuitively appealingstatement does require a proof which we postpone to a later stage. In the current subsec-tion we present a zero-knowledge proof system for one NP-complete language, speci�callyGraph 3-Colorability. This choice is indeed arbitrary.The language Graph 3-Coloring, denoted G3C, consists of all simple graphs (i.e., noparallel edges or self-loops) that can be vertex-colored using 3 colors so that no two adjacentvertices are given the same color. Formally, a graph G=(V;E), is 3-colorable, if there existsa mapping � : V 7! f1; 2; 3g so that �(u) 6= �(v) for every (u; v) 2 E.Motivating discussionThe idea underlying the zero-knowledge proof system for G3C is to break the proof of theclaim that a graph is 3-colorable into polynomially many pieces arranged in templates sothat each template by itself yields no knowledge and yet all the templates put togetherguarantee the validity of the main claim. Suppose that the prover generates such piecesof information, places each of them in a separate sealed and nontransparent envelope, andallows the veri�er to open and inspect the pieces participating in one of the templates. Thencertainly the veri�er gains no knowledge in the process, yet his con�dence in the validityof the claim (that the graph is 3-colorable) increases. A concrete implementation of thisabstract scheme follows.To prove that the graph G = (V;E) is 3-colorable, the prover generates a random 3-coloring of the graph, denoted � (actually a random relabelling of a �xed coloring will do).The color of each single vertex constitutes a piece of information concerning the 3-coloring.The set of templates corresponds to the set of edges (i.e., each pair (�(u); �(v)), (u; v) 2 E,constitutes a template to the claim that G is 3-colorable). Each single template (beingmerely a random pair of distinct elements in f1; 2; 3g) yield no knowledge. However, if allthe templates are OK then the graph must be 3-colorable. Consequently, graphs which arenot 3-colorable must contain at least one bad template and hence are rejected with non-negligible probability. Following is an abstract description of the resulting zero-knowledgeinteractive proof system for G3C.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 181� Common Input: A simple graph G=(V;E).� Prover's �rst step: Let be a 3-coloring of G. The prover selects a random per-mutation, �, over f1; 2; 3g, and sets �(v) def= �((v)), for each v 2 V . Hence, theprover forms a random relabelling of the 3-coloring . The prover sends the veri�era sequence of jV j locked and nontransparent boxes so that the vth box contains thevalue �(v);� Veri�er's �rst step: The veri�er uniformly selects an edge (u; v) 2 E, and sends it tothe prover;� Motivating Remark: The veri�er asks to inspect the colors of vertices u and v;� Prover's second step: The prover sends to the veri�er the keys to boxes u and v;� Veri�er's second step: The veri�er opens boxes u and v, and accepts if and only ifthey contain two di�erent elements in f1; 2; 3g;Clearly, if the input graph is 3-colorable then the prover can cause the veri�er to acceptalways. On the other hand, if the input graph is not 3-colorable then any contents placed inthe boxes must be invalid on at least one edge, and consequently the veri�er will reject withprobability at least 1=jEj. Hence, the above protocol exhibits a non-negligible gap in theaccepting probabilities between the case of inputs in G3C and inputs not in G3C. The zero-knowledge property follows easily, in this abstract setting, since one can simulate the realinteraction by placing a random pair of di�erent colors in the boxes indicated by the veri�er.We stress that this simple argument will not be possible in the digital implementation sincethe boxes are not totally ine�ected by their contents (but are rather e�ected, yet in anindistinguishable manner). Finally, we remark that the con�dence in the validity of theclaim (that the input graph is 3-colorable) may be increased by sequentially applying theabove proof su�cient many times. (In fact if the boxes are perfect as assumed above thenone can also use parallel repetitions.)The interactive proofWe now turn to the digital implementation of the above abstract protocol. In this imple-mentation the boxes are implemented by a commitment scheme. Namely, for each box weinvoke an independent execution of the commitment scheme. This will enable us to exe-cute the reveal phase in only some of the commitments, a property that is crucial to ourscheme. For simplicity of exposition, we use the simple commitment scheme presented inConstruction 6.21 (or, more generally, any one-way interaction commitment scheme). Wedenote by Cs(�) the commitment of the sender, using coins s, to the (ternary) value �.Construction 6.25 (A zero-knowledge proof for Graph 3-Coloring):

182 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS� Common Input: A simple (3-colorable) graph G = (V;E). Let n def= jV j and V =f1; :::; ng.� Auxiliary Input to the Prover: A 3-coloring of G, denoted .� Prover's �rst step (P1): The prover selects a random permutation, �, over f1; 2; 3g,and sets �(v) def= �((v)), for each v 2 V . The prover uses the commitment schemeto commit itself to the color of each of the vertices. Namely, the prover uniformly andindependently selects s1; :::; sn 2 f0; 1gn, computes ci = Csi(�(i)), for each i 2 V , andsends c1; :::; cn to the veri�er;� Veri�er's �rst step (V1): The veri�er uniformly selects an edge (u; v) 2 E, and sendsit to the prover;� Motivating Remark: The veri�er asks to inspect the colors of vertices u and v;� Prover's second step (P2): Without loss of generality, we may assume that the messagereceived for the veri�er is an edge, denoted (u; v). (Otherwise, the prover sets (u; v) tobe some predetermined edge of G.) The prover uses the reveal phase of the commitmentscheme in order to reveal the colors of vertices u and v to the veri�er. Namely, theprover sends (su; �(u)) and (sv; �(v)) to the veri�er;� Veri�er's second step (V2): The veri�er checks whether the values corresponding tocommitments u and v were revealed correctly and whether these values are di�erent.Namely, upon receiving (s; �) and (s0; �), the veri�er checks whether cu = Cs(�),cv = Cs0(�), and � 6= � (and both in f1; 2; 3g). If all conditions hold then the veri�eraccepts. Otherwise it rejects.Let us denote the above prover's program by PG3C .We stress that both the programs of the veri�er and of the prover can be implemented inprobabilistic polynomial-time. In case of the prover's program this property is made possibleby the use of the auxiliary input to the prover. As we will shortly see, the above protocolconstitutes a weak interactive proof for G3C. As usual, the con�dence can be increased(i.e., the error probability can be decreased) by su�ciently many successive applications.However, the mere existence of an interactive proof for G3C is obvious (since G3C 2NP). The punch-line is that the above protocol is zero-knowledge (also with respect toauxiliary input). Using the Sequential Composition Lemma (Lemma 6.19), it follows thatalso polynomially many sequential applications of this protocol preserve the zero-knowledgeproperty.Proposition 6.26 Suppose that the commitment scheme used in Construction 6.25 satis-�es the (nonuniform) secrecy and the unambiguity requirements. Then Construction 6.25constitutes an auxiliary input zero-knowledge (generalized) interactive proof for G3C.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 183For further discussion of Construction 6.25 see remarks at the end of the current subsection.Proof of Proposition 6.26We �rst prove that Construction 6.25 constitutes a weak interactive proof for G3C. Assume�rst that the input graph is indeed 3-colorable. Then if the prover follows the program inthe construction then the veri�er will always accept (i.e., accept with probability 1). Onthe other hand, if the input graph is not 3-colorable then, no matter what the proverdoes, the n commitments sent in Step (P1) cannot \correspond" to a 3-coloring of thegraph (since such coloring does not exists). We stress that the unique correspondenceof commitments to values is guaranteed by the unambiguity property of the commitmentscheme. It follows that there must exists an edge (u; v) 2 E so that cu and cv, sent in step(P1), are not commitments to two di�erent elements of f1; 2; 3g. Hence, no matter howthe prover behaves, the veri�er will reject with probability at least 1=jEj. Hence there isa non-negligible (in the input length) gap between the accepting probabilities in case theinput is in G3C and in case it is not.We now turn to show that PG3C , the prover in Construction 6.25, is indeed zero-knowledge for G3C. The claim is proven without reference to auxiliary input (to theveri�er), yet extending the argument to auxiliary input zero-knowledge is straightforward.Again, we will use the alternative formulation of zero-knowledge (i.e., De�nition 6.13),and show how to simulate V �'s view of the interaction with PG3C , for every probabilisticpolynomial-time interactive machine V �. As in the case of the Graph Isomorphism proofsystem (i.e., Construction 6.16) it is quite easy to simulate the veri�er's view of the in-teraction with PG3C , provided that the veri�er follows the speci�ed program. However, weneed to simulate the view of the veri�er in the general case (in which it uses an arbitrarypolynomial-time interactive program). Following is an overview of our simulation (i.e., ofour construction of a simulator, M�, for an arbitrary V �).The simulator M� incorporates the code of the interactive program V �. On input agraph G=(V;E), the simulator M� (not having access to a 3-coloring of G) �rst uniformlyand independently selects n values e1; :::; en 2 f1; 2; 3g, and constructs a commitment toeach of them. These ei's constitute a \pseudo-coloring" of the graph, in which the end-pointsof each edge are colored di�erently with probability 23 . In doing so, the simulator behavesvery di�erently from PG3C , but nevertheless the sequence of commitments so generated iscomputationally indistinguishable from the sequence of commitments to a valid 3-coloringsent by PG3C in step (P1). If V �, when given the commitments generated by the simulator,asks to inspect an edge (u; v) so that eu 6= ev then the simulator can indeed answer correctly,and doing so it completes a simulation of the veri�er's view of the interaction with PG3C .However, if V � asks to inspect an edge (u; v) so that eu = ev then the simulator has no wayto answer correctly, and we let it halt with output ?. We stress that we don't assume thatthe simulator a-priori \knows" which edge the veri�er V � will ask to inspect. The validity

184 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSof the simulator stems from a di�erent source. If the veri�er's request were oblivious of theprover's commitment then with probability 23 the veri�er would have asked to inspect anedge which is properly colored. Using the secrecy property of the commitment scheme itfollows that the veri�er's request is \almost oblivious" of the values in the commitments.The zero-knowledge claim follows (yet, with some e�ort). Further detail follow. We startwith a detailed description of the simulator.Simulator M�. On input a graph G=(V;E), the simulator M� proceeds as follows:1. Setting the random tape of V �: Let q(�) denote a polynomial bounding the running-time of V �. The simulator M� starts by uniformly selecting a string r 2 f0; 1gq(jxj),to be used as the contents of the local random tape of V �.2. Simulating the prover's �rst step (P1): The simulator M� uniformly and indepen-dently selects n values e1; :::; en 2 f1; 2; 3g and n random strings s1; :::; sn 2 f0; 1gnto be used for committing to these values. The simulator computes, for each i 2 V , acommitment di = Csi(ei).3. Simulating the veri�er's �rst step (V1): The simulator M� initiates an execution ofV � by placing G on V �'s \common input tape", placing r (selected in step (1) above)on V �'s \local random tape", and placing the sequence (d1; :::; dn) (constructed in step(2) above) on V �'s \incoming message tape". After executing a polynomial numberof steps of V �, the simulator can read the outgoing message of V �, denoted m. Again,we assume without loss of generality thatm 2 E and let (u; v) = m. (Actually m 62 Eis treated as in step (P2) in PG3C ; namely, (u; v) is set to be some predetermined edgeof G.)4. Simulating the prover's second step (P2): If eu 6= ev then the simulator halts withoutput (G; r; (d1; :::; dn); (su; eu; sv; ev)).5. Failure of the simulation: Otherwise (i.e., eu = ev), the simulator halts with output?.Using the hypothesis that V � is polynomial-time, it follows that so is the simulator M�.It is left to show that M� outputs ? with probability at most 12 , and that, conditionedon not outputting ?, the simulator's output is computationally indistinguishable from theveri�er's view in a \real interaction with PG3C". The proposition will follow by running theabove simulator n times and outputting the �rst output di�erent from ?. We now turn toprove the above two claims.Claim 6.26.1: For every su�ciently large graph, G=(V;E), the probability thatM�(G) = ?is bounded above by 12 .

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 185proof: As above, n will denote the cardinality of the vertex set of G. Let us denote bypu;v(G; r; (e1; :::; en)) the probability, taken over all the choices of the s1; :::; sn 2 f0; 1gn,that V �, on input G, random coins r, and prover message (Cs1(e1); :::; Csn(en)), replies withthe message (u; v). We assume, for simplicity, that V � always answers with an edge of G(since otherwise its message is anyhow treated as if it were an edge of G). We �rst claimthat for every su�ciently large graph, G=(V;E), every r 2 f0; 1gq(n), every edge (u; v) 2 E,and every two sequences �; � 2 f1; 2; 3gn, it holds thatjpu;v(G; r; �)� pu;v(G; r; �)j � 12jEjActually, we can prove the following.Request Obliviousness Subclaim: For every polynomial p(�), every su�ciently large graph,G = (V;E), every r 2 f0; 1gq(n), every edge (u; v) 2 E, and every two sequences �; � 2f1; 2; 3gn, it holds that jpu;v(G; r; �)� pu;v(G; r; �)j � 1p(n)The Request Obliviousness Subclaim is proven using the non-uniform secrecy of the com-mitment scheme. The reader should be able to �ll-up the details of such a proof at thisstage. Nevertheless, a proof of the subclaim follows.Proof of the Request Obliviousness Subclaim: Assume on the contrary that thereexists a polynomial p(�), and an in�nite sequence of integers such that for eachinteger n (in the sequence) there exists an n-vertices graph, Gn = (Vn; En),a string rn 2 f0; 1gq(n), an edge (un; vn) 2 En, and two sequences �n; �n 2f1; 2; 3gn so thatjpun;vn(Gn; rn; �n)� pun;vn(Gn; rn; �n)j > 1p(n)We construct a circuit family, fAng, by letting An incorporate the interactivemachine V �, the graph Gn, and rn; un; vn; �n; �n, all being as in the contradic-tion hypothesis. On input, y (supposedly a commitment to either �n or �n),circuit An runs V � (on input Gn coins rn and prover's message y), and out-puts 1 if and only if V � replies with (un; vn). Clearly, fAng is a (non-uniform)family of polynomial-size circuits. The key observation is that An distinguishescommitments to �n from commitments to �n, sinceProb(An(CUn2 ()) = 1) = pun;vn(Gn; rn;)where Uk denotes, as usual, a random variable uniformly distributed over f0; 1gk.Contradiction to the (non-uniform) secrecy of the commitment scheme follows bya standard hybrid argument (which relates the indistinguishability of sequencesto the indistinguishability of single commitments).

186 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSReturning to the proof of Claim 6.26.1, we now use the above subclaim to upper boundthe probability that the simulator outputs ?. The intuition is simple. Since the requestsof V � are almost oblivious of the values to which the simulator has committed itself, it isunlikely that V � will request to inspect an illegally colored edge more often than if he wouldhave made the request without looking at the commitment. A formal (but straightforward)analysis follows.Let M�r (G) denote the output of machine M� on input G, conditioned on the eventthat it chooses the string r in step (1). We remind the reader that M�r (G) = ? only incase the veri�er on input G, random tape r, and a commitment to some pseudo-coloring(e1; :::; en), asks to inspect an edge (u; v) which is illegally colored (i.e., eu = ev). LetE(e1;:::;en) denote the set of edges (u; v) 2 E that are illegally colored (i.e., satisfy eu = ev)with respect to (e1; :::; en). Then, �xing an arbitrary r and considering all possible choicesof (e1; :::; en) 2 f1; 2; 3gn,Prob(M�r (G) = ?) = Xe2f1;2;3gn 13n � X(u;v)2Ee pu;v(G; r; e)(Recall that pu;v(G; r; e) denotes the probability that the veri�er asks to inspect (u; v) whengiven a sequence of random commitments to the values e.) De�ne Bu;v to be the set of n-tuples (e1; :::; en) 2 f1; 2; 3gn satisfying eu = ev. Clearly, jBu;v j = 3n�1. By straightforwardcalculation we getProb(M�r (G) = ?) = 13n � X(u;v)2E Xe2Bu;v pu;v(G; r; e)� 13n � X(u;v)2E jBu;vj � �pu;v(G; r; (1; :::; 1))+ 12jEj�= 16 + 13 � X(u;v)2E pu;v(G; r; (1; :::; 1))= 16 + 13The claim follows. 2For simplicity, we assume in the sequel that on common input G 2 G3C, the prover getsthe lexicographically �rst 3-coloring of G as auxiliary input. This enables us to omit theauxiliary input to PG3C (which is now implicit in the common input) from the notation.The argument is easily extended to the general case where PG3C gets an arbitrary 3-coloringof G as auxiliary input.Claim 6.26.2: The ensemble consisting of the output of M� on input G= (V;E) 2 G3C,conditioned on it not being ?, is computationally indistinguishable from the ensemble

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 187fviewPG3CV � (G)gG2G3C . Namely, for every probabilistic polynomial-time algorithm, A, everypolynomial p(�), and all su�ciently large graph G=(V;E),jProb(A(M�(G)) = 1jM�(G) 6= ?)� Prob(A(viewPG3CV � (G)) = 1)j < 1p(jV j)We stress that these ensembles are very di�erent (i.e., the statistical distance between themis very close to the maximum possible), and yet they are computationally indistinguishable.Actually, we can prove that these ensembles are indistinguishable also by (non-uniform)families of polynomial-size circuits. In �rst glance it seems that Claim 6.26.2 follows easilyfrom the secrecy property of the commitment scheme. Indeed, Claim 6.26.2 is provenusing the secrecy property of the commitment scheme, yet the proof is more complex thanone anticipates (at �rst glance). The di�culty lies in the fact that the above ensemblesconsist not only of commitments to values, but also of an opening of some of the values.Furthermore, the choice of which commitments are to be opened depends on the entiresequence of commitments.proof: Given a graph G=(V;E), we de�ne for each edge (u; v) 2 E two random variablesdescribing, respectively, the output of M� and the view of V � in a real interaction, in casethe veri�er asked to inspect the edge (u; v). Speci�cally� �u;v(G) describes M�(G) conditioned on M�(G) containing the \reveal information"for vertices u and v.� �u;v(G) describes viewPG3CV � (G) conditioned on viewPG3CV � (G) containing the \revealinformation" for vertices u and v.Let pu;v(G) denote the probability thatM�(G) contains \reveal information" for verticesu and v, conditioned on M�(G) 6= ?. Similarly, let qu;v(G) denote the probability thatviewPG3CV � (G) contains \reveal information" for vertices u and v.Assume, in the contrary to the claim, that the ensembles mentioned in the claim arecomputationally distinguishable. Then one of the following cases must occur.Case 1: There is a noticeable di�erence between the probabilistic pro�le of the requestsof V � when interacting with PG3C and the requests of V � when invoked by M�.Formally, there exists a polynomial p(�) and an in�nite sequence of integers such thatfor each integer n (in the sequence) there exists an n-vertices graph Gn = (Vn; En),and an edge (un; vn) 2 En, so thatjpun;vn(Gn)� qun ;vn(Gn)j > 1p(n)

188 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSCase 2: An algorithm distinguishing the above ensembles does so also conditioned onV � asking for a particular edge. Furthermore, this request occurs with noticeableprobability which is about the same in both ensembles. Formally, there exists aprobabilistic polynomial-time algorithm A, a polynomial p(�) and an in�nite sequenceof integers such that for each integer n (in the sequence) there exists an n-verticesgraph Gn=(Vn; En), and an edge (un; vn) 2 En, so that the following conditions hold� qun;vn(Gn) > 1p(n)� jpun;vn(Gn)� qun ;vn(Gn)j < 13�p(n)2� jProb(A(�un;vn(Gn)) = 1)� Prob(A(�un;vn(Gn)) = 1)j > 1p(jV j) .Case 1 can be immediately discarded since it leads easily to contradiction (to the non-uniform secrecy of the commitment scheme). The idea is to use the Request ObliviousnessSubclaim appearing in the proof of Claim 6.26.1. Details are omitted. We are thus left withCase 2.We are now going to show that also Case 2 leads to contradiction. To this end we willconstruct a circuit family that will distinguish commitments to di�erent sequences of values.Interestingly, neither of these sequences will equal the sequence of commitments generatedby either the prover or by the simulator. Following is an overview of the construction.The nth circuit gets a sequence of 3n commitments and produces from it a sequence of ncommitments (part of which is a subsequence of the input). When the input sequence to thecircuit is taken from one distribution the circuit generates a subsequence corresponding tothe sequence of commitments generated by the prover. Likewise, when the input sequence(to the circuit) is taken from the other distribution the circuit will generate a subsequencecorresponding to the sequence of commitments generated by the simulator. We stress thatthe circuit does so without knowing from which distribution the input is taken. Aftergenerated an n-long sequence, the circuit feeds it to V �, and depending on V �'s behaviourthe circuit may feed part of the sequence to algorithm A (mentioned in Case 2). Followingis a detailed description of the circuit family.Let us denote by n the (lexicographically �rst) 3-coloring of Gn used by the prover.We construct a circuit family, denoted fAng, by letting An incorporate the interactivemachine V �, the \distinguishing" algorithm A, the graph Gn, the 3-coloring n, and theedge (un; vn), all being those guaranteed in Case 2. The input to circuit An will be a sequenceof commitments to 3n values, each in f1; 2; 3g. The circuit will distinguish commitmentsto a uniformly chosen 3n-long sequence from commitments to the �xed sequence 1n2n3n(i.e., the sequence consisting of n 1-values, followed by n 2-values, followed by n 3-values).Following is a description of the operation of An.On input, y = (y1; :::; y3n) (where each yi is supposedly a commitment to an element off1; 2; 3g), the circuit An proceeds as follows.

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 189� An �rst selects uniformly a permutation � over f1; 2; 3g, and computes �(i) = �(n(i)),for each i 2 Vn.� For each i 2 Vn � fun; vng, the circuit sets ci = y�(i)�n�n+i (i.e., ci = yi if �(i) = 1,ci = yn+i if �(i) = 2, and ci = y2n+i if �(i) = 3). Note that each yj is used at mostonce, and 2n+ 2 of the yj 's are not used at all.� The circuit uniformly selects su; sv 2 f0; 1gn, and sets cun = Csun (�(un)) and cvn =Csvn(�(vn)).� The circuit initiates an execution of V � by placing Gn on V �'s \common input tape",placing a uniformly selected r 2 f0; 1gq(n) on V �'s \local random tape", and placingthe sequence (c1; :::; cn) (constructed above) on V �'s \incoming message tape". Thecircuit reads the outgoing message of V �, denoted m.� If m 6= (un; vn) then the circuit outputs 1.� Otherwise (i.e., m = (un; vn)), the circuit invokes algorithm A and outputsA(Gn; r; (c1; :::; cn); (sun ; �(un); svn ; �(vn)))Clearly the size of An is polynomial in n. We now evaluate the distinguishing ability ofAn. Let us �rst consider the probability that circuit An outputs 1 on input a random com-mitment to the sequence 1n2n3n. The reader can easily verify that the sequence (c1; :::; cn)constructed by circuit An is distributed identically to the sequence sent by the prover instep (P1). Hence, letting C() denote a random commitment to a sequence 2 f1; 2; 3g�,we get Prob(An(C(1n2n3n)) = 1) = (1� qun ;vn(Gn))+qun;vn(Gn) � Prob(A(�un;vn(Gn)) = 1)On the other hand, we consider the probability that circuit An outputs 1 on input arandom commitment to a uniformly chosen 3n-long sequence over f1; 2; 3g. The reader caneasily verify that the sequence (c1; :::; cn) constructed by circuit An is distributed identicallyto the sequence (d1; :::; dn) generated by the simulator in step (2), conditioned on dun 6= dvn .Letting T3n denote a random variable uniformly distributed over f1; 2; 3g3n, we getProb(An(C(T3n) = 1) = (1� pun;vn(Gn))+pun;vn(Gn) �Prob(A(�un ;vn(Gn)) = 1)Using the conditions of Case 2, and omitting Gn from the notation, we getjProb(An(C(1n2n3n)) = 1)� Prob(An(C(T3n) = 1)j

190 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMS� qun ;vn � jProb(A(�un;vn) = 1)� Prob(A(�un ;vn) = 1)j � 2 � jpun;vn � qun;vn j> 1p(n) � 1p(n) � 2 � 13 � p(n)2= 13 � p(n)2Hence, the circuit family fAng distinguishes commitments to f1n2n3ng from commitmentsto fT3ng. Combining an averaging argument with a hybrid argument, we conclude that thereexists a polynomial-size circuit family which distinguishes commitments. This contradictsthe non-uniform secrecy of the commitment scheme.Having reached contradiction in both cases, Claim 6.26.2. 2Combining Claims 6.26.1 and 6.26.2, the zero-knowledge property of PG3C follows. Thiscompletes the proof of the proposition.Concluding remarksConstruction 6.25 has been presented using a unidirectional commitment scheme. A funda-mental property of such schemes is that their secrecy is preserved also in case (polynomi-ally) many instances are invoked simultaneously. The proof of Proposition 6.26 indeed tookadvantage on this property. We remark that Construction 6.23 also possesses this simulta-neous secrecy property, and hence the proof of Proposition 6.26 can be carried out also ifthe commitment scheme in used is the one of Construction 6.23 (see Exercise 14). We recallthat this latter construction constitutes a commitment scheme if and only if such schemesexist at all (since Construction 6.23 is based on any one-way function and the existence ofone-way functions is implied by the existence of commitment schemes).Proposition 6.26 assumes the existence of a nonuniformly secure commitment scheme.The proof of the proposition makes essential use of the nonuniform security by incorpo-rating instances on which the zero-knowledge property fails into circuits which contradictthe security hypothesis. We stress that the sequence of \bad" instances is not necessar-ily constructible by e�cient (uniform) machines. Put in other words, the zero-knowledgerequirement has some nonuniform avour. A uniform analogue of zero-knowledge wouldrequire only that it is infeasible to �nd instances on which a veri�er gains knowledge (andnot that such instances do not exist at all). Using a uniformly secure commitment scheme,Construction 6.25 can be shown to be uniformly zero-knowledge.By itself, Construction 6.25 has little practical value, since it o�ers very moderate accep-tance gap (between inputs inside and outside of the language). Yet, repeating the protocol,on common input G = (V;E), for k � jEj times (and letting the veri�er accept only if alliterations are accepting) yields an interactive proof for G3C with error probability bounded

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 191by e�k , where e � 2:718 is the natural logarithm base. Namely, on common input G 2 G3Cthe veri�er always accepts, whereas on common input G 62 G3C the veri�er accepts withprobability bounded above by e�k (no matter what the prover does). We stress that, byvirtue of the Sequential Composition Lemma (Lemma 6.19), if these iterations are per-formed sequentially then the resulting (strong) interactive proof is zero-knowledge as well.Setting k to be any super-logarithmic function of jGj (e.g., k = jGj), the error probability ofthe resulting interactive proof is negligible. We remark that it is unlikely that one can provean analogous statement with respect to the interactive proof which results by performingthese iteration in parallel. See Section 6.5.An important property of Construction 6.25 is that the prescribed prover (i.e., PG3C)can be implemented in probabilistic polynomial-time, provided that it is given as auxiliaryinput a 3-coloring of the common input graph. As we shall see, this property is essential tothe applications of Construction 6.25 to the design of cryptographic protocols.As admitted in the beginning of the current subsection, the choice of G3C as a boot-strapping NP-complete language is totally arbitrary. It is quite easy to design analogouszero-knowledge proofs for other popular NP-complete languages. Such constructions willuse the same underlying ideas as those presented in the motivating discussion.6.4.3 The General Result and Some ApplicationsThe theoretical and practical importance of a zero-knowledge proof for Graph 3-Coloring(e.g., Construction 6.25) follows from the fact that it can be applied to prove, in zero-knowledge, any statement having a short proof that can be e�ciently veri�ed. More pre-cisely, a zero-knowledge proof system for a speci�c NP-complete language (e.g., Construc-tion 6.25) can be used to present zero-knowledge proof systems for every language in NP .Before presenting zero-knowledge proof systems for every language in NP , let us recallsome conventions and facts concerning NP . We �rst recall that every language L 2 NP ischaracterized by a binary relation R satisfying the following properties� There exists a polynomial p(�) such that for every (x; y) 2 R it holds jyj � p(jxj).� There exists a polynomial-time algorithm for deciding membership in R.� L = fx : 9w s.t. (x; w) 2 Rg.Actually, each language in NP can be characterized by in�nitely many such relations.Yet, for each L 2 NP we �x and consider one characterizing relation, denoted RL. Sec-ondly, since G3C is NP-complete, we know that L is polynomial-time reducible (i.e., Karp-reducible) to G3C. Namely, there exists a polynomial-time computable function, f , such

192 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSthat x 2 L if and only if f(x) 2 G3C. Thirdly, we observe that the standard reduction ofL to G3C, denoted fL, has the following additional property:There exists a polynomial-time computable function, denoted gL, such that forevery (x; w) 2 RL it holds that gL(w) is a 3-coloring of fL(x).We stress that the above additional property is not required by the standard de�nitionof a Karp-reduction. Yet, it can be easily veri�ed that the standard reduction fL (i.e.,the composition of the generic reduction of L to SAT , the standard reductions of SAT to3SAT , and the standard reduction of 3SAT to G3C) does have such a corresponding gL.(See Exercise 16.) Using these conventions, we are ready to \reduce" the construction ofzero-knowledge proof for NP to a zero-knowledge proof system for G3C.Construction 6.27 (A zero-knowledge proof for a language L 2 NP):� Common Input: A string x (supposedly in L);� Auxiliary Input to the Prover: A witness, w, for the membership of x 2 L (i.e., astring w such that (x; w) 2 RL).� Local pre-computation: Each party computes G def= fL(x). The prover computes def=gL(w).� Invoking a zero-knowledge proof for G3C: The parties invoke a zero-knowledge proofon common input G. The prover enters this proof with auxiliary input .Proposition 6.28 Suppose that the subprotocol used in the last step of Construction 6.27 isindeed an auxiliary input zero-knowledge proof for G3C. Then Construction 6.27 constitutesan auxiliary input zero-knowledge proof for L.Proof: The fact that Construction 6.27 constitutes an interactive proof for L is immediatefrom the validity of the reduction (and the fact that it uses an interactive proof for G3C).In �rst glance it seems that the zero-knowledge property of Construction 6.27 follows asimmediately. There is however a minor issue that one should not ignore. The veri�er inthe zero-knowledge proof for G3C, invoked in Construction 6.27, possesses not only thecommon input graph G but also the original common input x which reduces to G. Thisextra information might have helped this veri�er to extract knowledge in theG3C interactiveproof, if it were not the case that this proof system is zero-knowledge also with respect toauxiliary input. can be dealt with using auxiliary input to the veri�er in Details follow.Suppose we need to simulate the interaction of a machine V � with the prover, on commoninput x. Without loss of generality we may assume that machine V � invokes an interactive

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 193machine V �� which interacts with the prover of the G3C interactive proof, on common inputG = fL(x) and having auxiliary input x. Using the hypothesis that the G3C interactiveproof is auxiliary input zero-knowledge, it follows that there exists a simulator M�� thaton input (G; x) simulates the interaction of V �� with the G3C-prover (on common inputG and veri�er's auxiliary input x). Hence, the simulator for Construction 6.27, denotedM�, operates as follows. On input x, the simulator M� computes G def= fL(x) and outputsM��(G; x). The proposition follows.We remark that an alternative way of resolving the minor di�culty addressed above isto observe that the function fL (i.e., the one induced by the standard reductions) can beinverted in polynomial-time (see Exercise 17). In any case, we immediately getTheorem 6.29 Suppose that there exists a commitment scheme satisfying the (nonuni-form) secrecy and the unambiguity requirements. Then every language in NP has an aux-iliary input zero-knowledge proof system. Furthermore, the prescribed prover in this systemcan be implemented in probabilistic polynomial-time, provided it gets the corresponding NP-witness as auxiliary input.We remind the reader that the condition of the theorem is satis�ed if (and only if) there ex-ists (non-uniformly) one-way functions. See Theorem 3.29 (asserting that one-way functionsimply pseudorandom generators), Proposition 6.24 (asserting that pseudorandom genera-tors imply commitment schemes), and Exercise 12 (asserting that commitment schemesimply one-way functions).An Example: Proving properties of secretsA typical application of Theorem 6.29 is to enable one party to prove some property ofits secrets without revealing the secrets. For concreteness, consider a party, denoted S,sending encrypted messages (over a public channel) to various parties, denoted R1; :::; Rt,and wishing to prove to some other party, denoted V , that all the corresponding plaintextmessages are identical. Further suppose that the messages are sent to the receivers (i.e., theRi's) using a secure public-key encryption scheme, and let Ei(�) denote the (probabilistic)encryption employed when sending a message to Ri. Namely, to send messageMi to Ri, thesender uniformly chooses ri 2 f0; 1gn, computes the encryption Ei(ri;Mi), and transmits itover the public channel. In order to prove that C1 = E1(r1;M) and C2 = E2(r2;M) bothencrypt the same message it su�ces to reveal r1, r2 and M . However, doing so reveals themessage M to the veri�er. Instead, one can prove in zero-knowledge that there exists r1,r2 and M such that C1 = E1(r1;M) and C2 = E2(r2;M). The existence of such a zero-knowledge proof follows from Theorem 6.29 and the fact that the statement to be provenis of NP-type. Formally, we de�ne a languageL def= f(C1; C2) : 9r1; r2;M s.t. C1 = E1(r1;M) and C2 = E2(r2;M)g

194 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSClearly, the language L is in NP , and hence Theorem 6.29 can be applied. Additionalexamples are presented in Exercise 18.Zero-Knowledge for any language in IPInterestingly, the result of Theorem 6.29 can be extended \to the maximum"; in the sensethat under the same conditions every language having an interactive proof system also hasa zero-knowledge proof system. Namely,Theorem 6.30 Suppose that there exists a commitment scheme satisfying the (nonuni-form) secrecy and unambiguity requirements. Then every language in IP has a zero-knowledge proof system.We believe that this extension does not have much practical signi�cance. Theorem 6.30is proven by �rst converting the interactive proof for L into one in which the veri�er usesonly \public coins" (i.e., an Arthur-Merlin proof); see Chapter 8. Next, the veri�er'scoin tosses are forced to be almost unbiased by using a coin tossing protocols (see section****???). Finally, the prover's replies are sent using a commitment scheme, At the endof the interaction the prover proves in zero-knowledge that the original veri�er would haveaccepted the hidden transcript (this is an NP-statement).6.4.4 E�ciency ConsiderationsWhen presenting zero-knowledge proof systems for every language in NP , we made noattempt to present the most e�cient construction possible. Our main concern was topresent a proof which is as simple to explain as possible. However, once we know thatzero-knowledge proofs for NP exist, it is natural to ask how e�cient can they be.In order to establish common grounds for comparing zero-knowledge proofs, we have tospecify a desired measure of error probability (for these proofs). An instructive choice, usedin the sequel, is to consider the complexity of zero-knowledge proofs with error probability2�k , where k is a parameter that may depend on the length of the common input. Anotherissue to bear in mind when comparing zero-knowledge proof is under what assumptions (ifat all) are they valid. Throughout this entire subsection we stick to the assumption usedso far (i.e., the existence of one-way functions).Standard e�ciency measuresNatural and standard e�ciency measures to consider are

6.4. ZERO-KNOWLEDGE PROOFS FOR NP 195� The communication complexity of the proof. The most important communicationmeasure is the round complexity (i.e., the number of message exchanges). The totalnumber of bits exchanged in the interaction is also an important consideration.� The computational complexity of the proof. Speci�cally the number of elementarysteps taken by each of the parties.Communication complexity seems more important than computational complexity, as longas the trade-o� between them is \reasonable".To demonstrate these measures we consider the zero-knowledge proof for G3C presentedin Construction 6.25. Recall that this proof system has very moderate acceptance gap,speci�cally 1=jEj, on common input graph G = (V;E). So Construction 6.25 has to beapplied sequentially k � jEj in order to result in a zero-knowledge proof with error probabilitye�k , where e � 2:718 is the natural logarithm base. Hence, the round complexity of theresulting zero-knowledge proof is O(k � jEj), the bit complexity is O(k � jEj � jV j2), and thecomputational complexity is O(k � jEj �poly(jV j)), where the polynomial poly(�) depends onthe commitment scheme in use.Much more e�cient zero-knowledge proof systems may be custom-made for speci�clanguages inNP . Furthermore, even if one adopts the approach of reducing the constructionof zero-knowledge proof systems for NP languages to the construction of a zero-knowledgeproof system for a single NP-complete language, e�ciency improvements can be achieved.For example, using Exercise 15, one can present zero-knowledge proofs for the HamiltonianCircuit Problem (again with error 2�k) having round complexity O(k), bit complexityO(k � jV j2+�), and computational complexity O(k � jV j2+O(�)), where � > 0 is a constantdepending on the desired security of the commitment scheme (in Construction 6.25 andin Exercise 15 we chose � = 1). Note that complexities depending on the instance sizeare e�ected by reductions among problems, and hence a fair comparison is obtained byconsidering the complexities for the generic problem (i.e., Bounded Halting).The round complexity of a protocol is a very important e�ciency consideration and itis desirable to reduce it as much as possible. In particular, it is desirable to have zero-knowledge proofs with constant number of rounds and negligible error probability. Thisgoal is pursued in Section 6.9.Knowledge Tightness: a particular e�ciency measureThe above e�ciency measures are general in the sense that they are applicable to anyprotocol (independent on whether it is zero-knowledge or not). A particular measure ofe�ciency applicable to zero-knowledge protocols is their knowledge tightness. Intuitively,knowledge tightness is a re�nement of zero-knowledge which is aimed at measuring the\actual security" of the proof system. Namely, how much harder does the veri�er need to

196 CHAPTER 6. ZERO-KNOWLEDGE PROOF SYSTEMSwork, when not interacting with the prover, in order to compute something which it cancomputes after interacting with the prover. Thus, knowledge tightness is the ratio betweenthe (expected) running-time of the simulator and the running-time of the veri�er in thereal interaction simulated by the simulator. Note that the simulators presented so far, aswell as all known simulator, operate by repeated random trials and hence an instructivemeasure of tightness should consider their expected running-time (assuming they never err(i.e., output the special ? symbol)) rather than the worst case.De�nition 6.31 (knowledge tightness): Let t : IN 7! IN be a function. We say that a zero-knowledge proof for language L has knowledge tightness t(�) if there exists a polynomial p(�)such that for every probabilistic polynomial-time veri�er V � there exists a simulator M� (asin De�nition 6.12) such that for all su�ciently long x 2 L we haveTimeM�(x)� p(jxj)TimeV �(x) � t(jxj)where TimeM�(x) denotes the expected running-time of M� on input x, and TimeV �(x)denotes the running time of V � on common input x.We assume a model of computation allowing one machine to invoke another machine atthe cost of merely the running-time of the latter machine. The purpose of polynomial p(�),in the above de�nition, is to take care of generic overhead created by the simulation (this isimportant in case the veri�er V � is extremely fast). We remark that the de�nition of zero-knowledge does not guarantee that the knowledge tightness is polynomial. Yet, all knownzero-knowledge proof, and more generally all zero-knowledge properties demonstrated usinga single simulator with black-box access to V �, have polynomial knowledge tightness. Inparticular, Construction 6.16 has knowledge tightness 2, whereas Construction 6.25 hasknowledge tightness 3=2. We believe that knowledge tightness is a very important e�ciencyconsideration and that it desirable to have it be a constant.6.5 * Negative ResultsIn this section we review some negative results concerning zero-knowledge. These resultscan be viewed as evidence to the belief that some of the shortcomings of the results and con-structions presented in previous sections are unavoidable. Most importantly, Theorem 6.29asserts the existence of (computational) zero-knowledge proof systems for NP , assumingthat one-way functions exist. Two natural questions arise1. An unconditional result: Can one prove the existence of (computational) zero-knowledgeproof systems for NP , without making any assumptions?

