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Standard Models

• A Fixed underlying structure. Inputs: a set 
of ‘vectors’ assigned with this structure. E.g., 
a coloring of the points. Property: a 
collection of ‘vectors’, : E.g., collection of ‘vectors’, : E.g., 

• Graph properties: Structure is Kn, input 
(vectors): Boolean assignment on edges. 
Property: e.g., connected graphs, bipartite 
graphs...



• Properties of Boolean functions: 
Structure: the Boolean cube. Inputs:  
Boolean assignment of vertices. 
Property: e.g., monotone, linear,….



• Here: Structure is not fixed in advance !
E.g., Structure: a given undirected graph, 
inputs: all 0/1 assignments to its edges, 
property: the subgraph is Eulerian, 
connected,…. 

• Strongly connected, DAG, having a di-path 
of length k….of length k….

• Structure: A given graph, inputs: all 0/1 
assignments to its vertices. Properties:
graph properties of the induced subgraph.



• Structure: A Boolean circuit/ 
formula/ branching program…, inputs: 
Boolean assignment to the variables.  
Property: the 1-inputs of the 
computation.

• There  are many more examples….



Comments on ‘standard’ models, 
e.g., graph properties

• [GT01]: Every 1-sided error testable 
property is testable by a generic
algorithm:  An algorithm that queries 
at random a subgraph of a given size 
algorithm:  An algorithm that queries 
at random a subgraph of a given size 
and accept/reject only based on it.

• Thus, algorithm are somewhat ‘not 
interesting’.



• [AFNS] A characterization of all 
testable graph properties in terms of 
regular partitions. 

• In massively parametrized graph 
properties:  properties:  

• Typically, there is a ‘significant’ place 
for preprocessing the structure. 

• Algorithms turns out to be quite 
different from the ‘standard’ 
sampling.



Some ‘old’ results 

• [N00]  testing membership in read-once 
constant width Branching programs.

• [FLNRRS02] – testing monotonicity in 
‘general’  posets.‘general’  posets.



Subgraphs porperties

• Structure: A given arbitrary underlying 
graph G=(V,E). Algorithm has full 
knowledge of G.

• Inputs: (Boolean) assignment on the • Inputs: (Boolean) assignment on the 
edges (vertices). Hence a property P is a 
subset of {0,1}E . 

P can be interpreted is several ways:



subgraph porperties
The edge assignment is interpreted as its 
existence /non existence. Thus an input 
defines a subgraph G containing the edges 
of value ‘1’. 

Hence, a property is a collection of  
subgraphs, e.g:

Being bipartite (k-colorable), Eulearian, 
Hamiltonian, being acyclic etc.



Orientations porperties
The edge assignment is interpreted as an 
orientation of it. Hence, a property is a 
collection of directed graphs obtained by 
orienting the edges of G in certain ways.

e.g:

Being strongly connected, Eulearian, having 
an s-t path, being acyclic, excluding a 
forbidden subgraph etc.



Properties of constraint graphs
Structure:  An arbitrary undirected graph, 
and Boolean formulae φv, for every vertex 
v in G,  on variables that are indexed by 
the adjacent edges to v. 

Inputs: Boolean assignment to the variables. 

Property: assignments that satisfy φv for 
every vertex v.



Examples

• the vertex formulae assert that  the 
number of ‘1’-edges is even (Eulerian).number of ‘1’-edges is even (Eulerian).

• A 2-coloring of the edges s.t not all 
edges adjacent to a vertex have the same 
value.



Motivation

• The constraint graph model is fairly 
general, any property problem can be cast 
in this way.

• The subgraph model directly generalizes 
the dense graph model. Gives the the dense graph model. Gives the 
possibility to consider sparse graphs in a 
way that the representation remains 
simple. 

• One can pose interesting problems.

• The algorithms are interesting (not just 
sampling, not just local search).



Connection to other testing problems: 
Testing satisfying assignment of CNF 
formulae.

• [BHR] 3CNF are generally hard to test, 
even if every variable appears O(1) times.

• [FLNRRS] 2CNF are also hard, even if 
monotone (By testing monotonicity).monotone (By testing monotonicity).

• If monotone and every variable appears 
O(1) times – testable.

• Read-twice CNF are testable – reduction 
from a result on orientation/constraint 
graphs.



This works for the combination of: 
every monotone variable appears O(1) 
times and every non-monotone 
appears 2 times.

Read-O(1)-times is not testable in 
general.



Testing constraint graphs 
[HLNT  CCC07]

• Every property can be cast in this way 
(star).

• A constraint graph is in LD3 if for every 
vertex with degree at least 3, the vertex with degree at least 3, the 
hamming distance between any two 
assignments not satisfying φv is at least 3.
e.g: φv  is a clause of size 3 or more. 

• Thm:  Every LD3 has an (ε, exp(1/ ε)) 
1-sided error test.



• Cor: Every read-twice CNF formula is 
testable.

• Algorithm: non-trivial sampling. Proof is 
quite technical.

• Best possible; there are properties in • Best possible; there are properties in 
which two non-sat assignments have 
dist=2 and are highly non-testable. 
Similarly for read-3-times CNF’s.



• Cor: the property of orientation of 
having no source vertex is testable.  

The property of edge 2-coloring in The property of edge 2-coloring in 
which not all edges have the same 
color is testable. 



Algorithm flavour

• Define a suitable neighborhood B(z), 
around each vertex z.

• Algorithm for the ‘generic’ case:

- Select a random edge e.- Select a random edge e.

- for each vertex z such that e is in B(z), 
and z has suitably bounded degree, test all 
edges adjacent to z and reject if z is not 
satisfied. 



Testing of Orientations
[HLNT ECCC06, CFLMN Random07, FLMNY 
Random08].

Testing H-freeness
• For underlying graphs with bounded 
degree, being H-free is testable for any degree, being H-free is testable for any 
fixed forbidden directed graph H, that 
has no source or has no drain.  

• For forbidden graphs with sources and 
drains: P2-free is testable while P3-free 
is highly non-testable.



• What about testing H-freeness in 
input graphs of unbounded average 
degree ?

• If testable, algorithm is not 
poly(1/ ε).



Testing strong connectivity

Easy cases:

• G has ω(n) edges.

• The DAG of components has  Ω(n) 
sources. sources. 



• Def: An undirected graph G=(V,E) is called 
δ -efficiently-Steiner connected if for 
every S⊆ V,  |S|< δ2n there is a connected
subgraph T=(V,E’) of G spanning S, with 
|E’| < 10 δn .

• Thm: If G is 1/log n -efficiently Steiner • Thm: If G is 1/log n -efficiently Steiner 
connected then strong conn. is testable 
for G.

• SC is testable for nxn grid.

• SC   is testable on expanders.



Testing s-t connectivity

• Testing s-t connectivity can be 
efficiently done for any underlying 
graph.
- Algorithm is non-trivial. It uses - Algorithm is non-trivial. It uses 
several reduction steps to testing 
small width branching programs. 



• Testing Eulerianity:  Not testable in 
general. However, there are sublinear
testing algorithms and quite efficient for 
certain classes of graphs.



Some general lower bounds for 
non-adaptive 1-sided error 

algorithms

[FLNR on-going work]

Consider the property of subgraphs of 
being bipartite.  A 1-sided error algorithm 
needs to find a refutation in order to 
reject.  Here a witness is an odd-cycle. 

Hence, the size of the refutation is a lower 
bound. However, this is quite weak.



• Let G=(V,E) be an expander graph, with 
girth = Ω(log n). 

• Refutation size is O(log n).

• Can prove: non-adaptive lower bound of • Can prove: non-adaptive lower bound of 
Ω(nδ), for some fixed δ>0.



This is quite general; the same technique 
gives lower bound for testing acyclicity, 
testing any  property in which a 
refutation contains a ‘large’ path, or a 
cycle. 

E.g., any (non-trivial) minor-H-free graph 
for a given H, e.g., planarity. 



• [FL….. – on going]: membership in  
read-once formulae is testable.

• Extensions to non-boolean case


