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Abstract

We present a near-linear time algorithm that approximates the edit distance between two
strings within a polylogarithmic factor. More precisely, for strings of length n and every fixed
ε > 0, it can compute a (log n)O(1/ε)-approximation in n1+ε time. This result arises naturally
in the study of a new asymmetric query model. In this model, the input consists of two strings
x and y, and an algorithm can access y in an unrestricted manner, while being charged for
querying every symbol of x. Our query lower bound for this model provides the first rigorous
separation between edit distance and Ulam distance, which is edit distance on non-repetitive
strings, i.e., permutations.

1 Introduction

Manipulation of strings has long been central to computer science, which is abundant with require-
ments to efficiently process texts and other sequences. One of the first approaches to comparing
two strings (sequences) emerged to be edit distance (aka Levenshtein distance) [Lev65], defined as
the minimum number of character insertions, deletions, and substitutions needed to transform one
string into the other. This basic distance measure is widely used in a variety of areas such as com-
putational biology, speech recognition, and information retrieval. Consequently improvements in
edit distance algorithms have the potential of major impact. As a result, computational problems
involving edit distance were studied extensively, see [Nav01, Gus97], and references therein.

The most basic problem is that of computing the edit distance between two strings of length n
over some alphabet. It can be solved in O(n2) time by a classical algorithm [WF74]; in fact this
is a prototypical dynamic programming algorithm, see e.g. the textbook [CLRS01] and references
therein. Despite significant research over nearly four decades, this running time has so far been
improved only slightly to O(n2/ log2 n) [MP80], which is the fastest algorithm known to date.1

Still, a near-quadratic runtime is often unacceptable in modern applications dealing with massive
datasets such as the genomic data. Hence practitioners tend to rely on faster heuristics [Gus97,
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1Their result applies to constant-size alphabets, and it was recently extended to arbitrarily large alphabets by

Bille and Farach-Colton [BFC08] with an O(log log n)2 factor loss in runtime.
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Nav01]. This has motivated the quest for faster algorithms at the expense of approximation, see,
e.g., [Ind01, Section 6] and [IM03, Section 8.3.2]. Indeed, the past decade has seen a serious effort
in this direction.2 One approach that is particularly relevant for us and may illustrate this general
direction, is to design linear (or near-linear) time algorithms that approximate edit distance. A
linear-time

√
n-approximation algorithm immediately follows from the exact algorithm of [LMS98],

which runs in time O(n + d2), where d is the edit distance between the input strings. Subsequent
research improved the approximation factor, first to n3/7 [BJKK04], then to n1/3+o(1) [BES06], and

finally to 2Õ(
√

log n) [AO09] (building on [OR07]). Predating some of this work was the sublinear
time algorithm of [BEK+03] achieving nε approximation, but only when the edit distance d is
rather large.

Better progress has been obtained on variants of edit distance, where one either restricts the
input strings, or allows additional edit operations. One example for the first category is the case
of edit distance on non-repetitive strings (e.g., permutations of [n]), termed the Ulam distance in
the literature. The classical Patience Sorting algorithm computes the exact Ulam distance between
two strings in O(n log n) time. An example in the second category is the case of two variants
of edit distance with certain block operations allowed, which admit an Õ(log n)-approximation in
near-linear time [CPSV00, MS00, CM07, Cor03].

Yet, achieving a polylogarithmic approximation factor for the classical edit distance has eluded
researchers for a long time now, not only in the context of linear-time algorithms, but also in
the related tasks, such as nearest neighbor search, ℓ1-embedding, or sketching. A sublogarithmic
approximation has been ruled out for the latter two tasks [KN06, KR06, AK07], thus giving evidence
that a sublogarithmic approximation for the distance computation might be much harder or even
impossible to attain.

2 Results

Our first and main result is an algorithm that runs in near-linear time and approximates the
classical edit distance within a polylogarithmic factor. Note that this is exponentially better than
the previously known factor 2Õ(

√
log n) (in comparable runtime), due to [OR07, AO09].

Theorem 2.1 (Main). For every fixed ε > 0, there is an algorithm that approximates the edit
distance between two input strings x, y ∈ Σn within a factor of (log n)O(1/ε), and runs in n1+ε time.

This development stems from a principled study of edit distance in a computational model, that
we call the asymmetric query model, and which we shall define shortly. Specifically, we design a
query-efficient procedure in the said model, and then show how this procedure yields a near-linear
time algorithm. We also provide for this model a query complexity lower bound, which matches
or nearly-matches the performance of our procedure. Altogether, we provide near-tight upper and
lower bounds for this new query complexity model.

A conceptual contribution of our query complexity lower bound is that it is the first one to
expose hardness stemming from “repetitive substrings”, which means that many small substrings
of a string may be approximately equal. Empirically, it is well-recognized that such repetitiveness

2We shall not attempt to present a complete list of results for restricted settings (e.g., average-case/smoothed
analysis, weakly-repetitive strings, and bounded distance-regime), for variants of the distance function (e.g., allowing
more edit operations), or for related computational problems (such as pattern matching, nearest neighbor, and
sketching). See also the surveys of [Nav01] and [Sah08].
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is a major obstacle for designing algorithms. All previous lower bounds (in any computational
model) failed to exploit it, while in our proof the strings’ repetitive structure is readily apparent.
More formally, our lower bound provides the first rigorous separation of edit distance from Ulam
distance (edit distance on permutations). Such a separation was not previously known in any
studied model of computation, and in fact, all the lower bounds known for edit distance hold to
(almost) the same degree for the Ulam distance. These models include: non-embeddability into
normed spaces [KN06, KR06, AK07], lower bounds on sketching complexity [AK07, AJP10], and
(symmetric) query complexity [BEK+03, AN10].

Asymmetric Query Complexity. Before stating the results formally, we define the problem
and the model precisely. Consider two strings x, y ∈ Σn for some alphabet Σ, and let ed(x, y)
denote the edit distance between these two strings. The computational problem is the promise
problem known as Distance Threshold Estimation Problem (DTEP) [SS02]: distinguish whether
ed(x, y) > R or ed(x, y) ≤ R/α, where R > 0 is a parameter (known to the algorithm) and α ≥ 1
is the approximation factor. We use DTEPβ to denote the case of R = n/β where β ≥ 1 may be a
function of n.

In the asymmetric query model, the algorithm knows in advance (has unrestricted access to)
one of the strings, say y, and has only query access to the other string, x. The asymmetric query
complexity of an algorithm is the number of coordinates in x that the algorithm has to probe in
order to solve DTEP with success probability at least 2/3.

We now give statements of our upper and lower bound results. Both exhibit a smooth tradeoff
between approximation factor and query complexity. For simplicity, we state the bounds in two
extreme regimes of approximation (α = polylog(n) and α = poly(n)). Full statements are available
in the full paper. Our upper bound is non-adaptive, whereas our lower bound holds for adaptive
algorithms as well.

Theorem 2.2 (Query complexity upper bound). For every β = β(n) ≥ 2 and fixed 0 < ε < 1
there is an algorithm that solves DTEPβ with approximation α = (log n)O(1/ε), and makes βnε

asymmetric queries. This algorithm runs in time O(n1+ε).
For every β = O(1) and fixed integer t ≥ 2 there is an algorithm for DTEPβ achieving approx-

imation α = O(n1/t), with O(logt−1 n) queries into x.

It is an easy observation that our general edit distance algorithm in Theorem 2.1 immediately
follows from the above query complexity upper bound theorem, by running it for β equal to all
powers of 2.

Theorem 2.3 (Query complexity lower bound). For a sufficiently large constant β > 1, every
algorithm that solves DTEPβ with approximation α = α(n) > 2 has asymmetric query complexity

2
Ω

“

log n

log α+log log n

”

. Moreover, for every fixed non-integer t > 1, every algorithm that solves DTEPβ

with approximation α = n1/t has asymmetric query complexity Ω(log⌊t⌋ n).

Table 1 summarizes our results and previous bounds for DTEPβ under edit distance and Ulam
distance. The more common query complexity model where the algorithm has query access to both
strings is henceforth referred to as the symmetric model. We point out two implications of our
bounds on the asymmetric query complexity:

• There is a strong separation between edit and Ulam distance. In the Ulam metric, a con-
stant approximation is achievable with only O(log n) asymmetric queries (see [ACCL07],
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which builds on [EKK+00]). For edit distance, we prove a much higher complexity, of
2Ω(log n/ log log n), even for a larger (polylogarithmic) approximation.

• Our query complexity upper and lower bound are nearly-matching, at least in some regime of
parameters. At one extreme, approximation O(n1/2) can be achieved with O(log n) queries,
whereas approximation n1/2−ε already requires Ω(log2 n) queries. At the other extreme,
approximation α = (log n)1/ε can be achieved using nO(ε) queries, and requires nΩ(ε/ log log n)

queries.

Model Metric Approx. Complexity Remarks

Near-linear
time

Edit (log n)O(1/ε) n1+ε Theorem 2.1

Edit 2Õ(
√

log n) n1+o(1) [AO09]

Symmetric
query
complexity

Edit nε Õ(nmax{1−2ε,(1−ε)/2}) [BEK+03] (fixed β)

Ulam O(1) Õ(β +
√

n) [AN10]

Ulam+edit O(1) Ω̃(β +
√

n) [AN10]

Asymmetric
query
complexity

Edit n1/t O(logt−1 n) Theorem 2.2 (fixed t ∈ N, β > 1)

Edit n1/t Ω(log⌊t⌋ n) Theorem 2.3 (fixed t /∈ N, β > 1)

Edit (log n)1/ε βnO(ε) Theorem 2.2

Edit (log n)1/ε nΩ(ε/ log log n) Theorem 2.3 (fixed β)
Ulam 2 + ε Oε(β log log β · log n) [ACCL07]

Table 1: Known results for DTEPβ and arbitrary 0 < ε < 1.

3 Connections to Previous Models

Symmetric Query Complexity. In a previously-studied model, the measure of complexity is
how many positions the algorithm has to query in both strings (rather than only in one of the
strings). Naturally, the query complexity in this model is at least as high as the query complexity
in our model. This model has been proposed by [BEK+03], and its main advantage is that it leads
to sublinear-time algorithms for DTEPβ. The algorithm of [BEK+03] makes Õ(n1−2ε + n(1−ε)/2)
queries (and runs in the same time), and achieves nε approximation. However, it only works for
the case β = O(1).

In the symmetric query model, the known query lower bound is Ω(
√

n/α) for approximation
α [BEK+03, AN10], and comes from the same lower bound on Ulam distance. The lower bound
essentially arises from the birthday paradox.

In terms of separating edit distance from the Ulam metric, this symmetric model can give at
most a quadratic separation in the query complexity (since there exists a trivial algorithm with 2n
queries). In contrast, in our asymmetric model, there is no “birthday paradox” lower bound, and
the Ulam metric admits a constant approximation with O(log n) queries [EKK+00, ACCL07]. Our
lower bound for edit distance is exponentially bigger. This perhaps explains why it is much harder
to design algorithms for edit distance than for Ulam distance.

Communication Complexity. In this setting, Alice and Bob each have a string, and they need
to solve the DTEPβ problem by way of exchanging messages. The measure of complexity is the
number of bits exchanged in order to solve DTEPβ with probability at least 2/3.
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The best non-trivial upper bound known is 2Õ(
√

log n) approximation with constant communica-
tion via [OR07, KOR00]. The only lower bound is that approximation α requires Ω( log n / log log n

α )
communication [AK07, AJP10].

The asymmetric model is “harder”, in the sense that the query complexity is at least the
communication complexity, up to a factor of log |Σ| in the complexity, since Alice and Bob can
simulate the asymmetric query algorithm. In fact, our upper bound implies a communication
protocol for the same DTEPβ problem with the same complexity, and where Alice sends just one
message to Bob (i.e., it is a one-way communication protocol). This is the first communication
protocol achieving polylogarithmic approximation for DTEPβ under edit distance.

4 Techniques

This section briefly highlights the main techniques and tools used in the course of proving our
results.

Algorithm and Query Complexity Upper Bound. A high-level intuition for the near-linear
time algorithm is as follows. The classical dynamic programming for edit distance runs in time that
is the product of the lengths of the two strings. It seems plausible that, if we manage to “compress”
one string to size nε, we may be able to compute the edit distance in time only nε ·n. Indeed, this is
exactly what we accomplish. Specifically, our “compression” is achieved via a sampling procedure,
which subsamples ≈ nε positions of x, and then computes ed(x, y) in time n1+ε. Of course, the
main challenge is, by far, how to subsample x so that the above is possible.

Our asymmetric query upper bound has two major components. The first component is a
characterization of the edit distance by a different “distance”, denoted E , which approximates
ed(x, y) well. The characterization is parametrized by an integer parameter b ≥ 2 governing a
tradeoff: small b leads to better approximation, whereas large b leads to faster algorithms. The
second component is a sampling algorithm that approximates E for some settings of the parameter
b, up to a constant factor, by making a small number of queries into x.

Our characterization is based on hierarchical decomposition of the edit distance computation,
which is obtained by recursively partitioning the string x, each time into b blocks. We shall view
this decomposition as a tree, whose arity is prescribed by the parameter b. Roughly speaking, the
E-distance at a node is then the sum, over all b children, of the minima of the E-distances at those
nodes over a certain range of displacements (possible “shifts” with respect to the other strings). At
the leafs (corresponding to single characters of x), the E-distance is simply the Hamming distance
to corresponding positions in y.

We show that the characterization is an O( b
log b log n) approximation to ed(x, y). Intuitively,

the characterization manages to break-up the edit distance computation into independent distance
computations on smaller substrings. The independence is crucial here as, one of the main compu-
tational challenges for the edit distance is the apparent need to find a global alignment between the
two strings. We note that while the high-level approach, of recursively partitioning the strings, is
somewhat similar to the previous approaches from [BEK+03, OR07, AO09], the technical develop-
ment here is quite different. The previous results all relied on the following recurrence relation for
the approximation factor α:

α(n) = c · α(n/b) + α(b),
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for some c ≥ 2. It is easy to see that one obtains α(n) ≥ 2Ω(
√

log n) for any choice of b ≥ 2. In
contrast, our characterization is much more refined and achieves c = 1, which solves to α(n) =
O(b logb n). Thus, our characterization may achieve even a logarithmic approximation.

The second component of our query algorithm is a careful sampling procedure that approximates
the E-distance up to a constant factor. The basic idea is to prune the above tree by subsampling
at each node only a subset of its children. In particular, for a tree with arity b = (log n)1/ε, the
hope is to subsample (log n)O(1) children and use Chernoff-type bounds to argue that the subsample
approximates well the E-distance at that node. We note that Ω(log n) samples of children is required
due to the MIN operation taken at each node—we need the concentration bound, at each node, to
hold with “high probability” to fight against a union bound. After such a pruning of the tree, we
will be left with only (log n)O(logb n) = nO(ε) leafs, i.e., a few sampled positions of x.

However, this natural approach of subsampling (log n)O(1) children at each node does not work
when β ≫ 1. Instead, we employ a non-uniform subsampling technique: for different nodes we
subsample children at different, carefully-chosen rates. Our technique is somewhat reminiscent of
the hierarchical decomposition and subsampling technique introduced by [IW05] in the context of
sketching/streaming algorithms.

Query Complexity Lower Bound. The gist of our lower bound is designing two “hard distri-
butions” D0 and D1, on strings in Σn, for which it is hard to distinguish, using only a few queries
to x, whether x ∈ D0 or x ∈ D1. At the same time, every two strings x, y in the support of the
same Di are at a small edit distance: ed(x, y) ≤ n/(αβ); but for a mixed pair x ∈ D0 and y ∈ D1,
the distance is large: ed(x, y) > n/β.

We start from the following core observation. Take two random strings z0, z1 ∈ {0, 1}n. Each
Di, i ∈ {0, 1}, is generated by applying a cyclic shift by a random r ∈ [1, n/100] to the corresponding
zi. We show that in order to tell, for an input string, from which Di it came from, one has to make
at least Ω(log n) queries. Intuitively, this comes from the fact that if the number q of queries is
small, then the algorithm’s view is close to the uniform distribution on {0, 1}q , no matter which
positions are queried. Nevertheless, the edit distance between the two random strings is likely to
be large, and a small shift will not change this significantly.

We then amplify the above query lower bound by applying the same idea recursively. In a
string generated according to Di’s, we replace every symbol a ∈ {0, 1} by a random string selected
independently from Da. This way we obtain two distributions on strings of length n′ = n2, that
require Ω(log2 n) = Ω(log2 n′) queries to be told apart. We call the above operation of replacing
symbols by strings that come from other distributions a substitution product. Strings created this
way consist of n blocks of length n each. Intuitively, to tell the new distributions apart, one has
to discover for at least Ω(log n) blocks which distribution Di they come from, to be able to tell
which distribution D′

i the entire input comes from. By applying the recursive step multiple times,

we achieve a 2Ω( log n

log log n
) lower bound for a polylogarithmic approximation factor.

To formally prove this result, we develop several tools. In particular, we need tools for analyz-
ing the behavior of edit distance under the product substitution. It turns out that to achieve a
separation of edit distance between the hard distributions, we need a larger alphabet. After we are
done with the recursion, we map the large alphabet to sufficiently long random binary strings, and
thereby “extend” the lower bound to the binary alphabet.

We need tools also for analyzing indistinguishability of our distributions under a small number
of queries. For this, we introduce a notion of similarity. This notion nicely composes with the
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substitution product, which amplifies the similarity. We also show that random acyclic shifts
of random strings are likely to produce strings with high similarity. Finally, we show that any
algorithm that tells apart distributions that meet our similarity notion must make many queries.
We believe that these tools and ideas behind them may find applications in showing query lower
bounds for other problems.
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