
Testing Bipartiteness in an Augmented VDF

Bounded-Degree Graph Model

Oded Goldreich∗

October 13, 2021

Abstract

In a recent work (ECCC, TR18-171, 2018), we introduced models of testing graph properties
in which, in addition to answers to the usual graph-queries, the tester obtains random vertices
drawn according to an arbitrary distribution D. Such a tester is required to distinguish between
graphs that have the property and graphs that are far from having the property, where the distance
between graphs is defined based on the unknown vertex distribution D. These (“vertex-distribution
free” (VDF)) models generalize the standard models in which D is postulated to be uniform on the
vertex-set.

The focus of the aforementioned work was on testers, called strong, whose query complexity
depends only on the proximity parameter ε, and such testers were studied both in the dense graph
model and in the bounded-degree graph model. Unfortunately, in the standard bounded-degree graph
model, some natural properties such as Bipartiteness do not have strong testers, and others (like
cycle-freeness) do not have strong testers of one-sided error (whereas one-sided error was shown
inherent to the VDF model). Hence, it was suggested to study general (i.e., non-strong) testers of
“sub-linear” complexity.

In this work, we pursue the foregoing suggestion, but do so in a model that augments the model
presented in the aforementioned work. Specifically, we provide the tester with an evaluation oracle
to the unknown distribution D, in addition to samples of D and oracle access to the tested graph.
Our main results are testers for Bipartiteness and Cycle-freeness, in this augmented model, having
complexity that is almost-linear in the square root of the “effective support size” of D.

The foregoing testers use an algorithm for approximating the effective support size of D, which
triggered a general study of this computational problem, which we conducted in a subsequent work
(ECCC, TR19-088, 2019).

A preliminary version of this work was posted in May 2019 on arXiv (as report number 1905.03070).
Unfortunately, the original presentation contained several errors, which are corrected in the current
version.1 In general, the presentation in the current version is more accurate and more detailed.

1 Introduction

In the last couple of decades, the area of property testing has attracted much attention (see, e.g., a
relatively recent textbook [3]). Loosely speaking, property testing typically refers to sub-linear time
probabilistic algorithms for deciding whether a given object has a predetermined property or is far
from any object having this property. Such algorithms, called testers, obtain local views of the object

∗Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel. Email:
oded.goldreich@weizmann.ac.il.

1Most importantly, the graph G′′ used in the analysis of the Bipartitness tester of [8] was wrongly defined before.
Likewise, the claim that one could have just applied the tester of [9] to the graph G′ was incorrect.

1

by making adequate queries; that is, the object is seen as a function and the testers get oracle access
to this function (and thus may be expected to work in time that is sub-linear in the size of the object).

A significant portion of the foregoing research was devoted to testing graph properties in two
different models: the dense graph model (introduced in [6] and reviewed in [3, Chap. 8]) and the
bounded-degree graph model (introduced in [7] and reviewed in [3, Chap. 9]). In both models, it
was postulated that the tester can sample the vertex-set uniformly at random2 (and, in both models,
distances between graphs were defined with respect to this distribution).

In a recent work [4], we considered settings in which uniformly sampling the vertex-set of the graph
is not appropriate, and asked what happens if the tester obtains random vertices drawn according to
some distribution D (and, in addition, obtain answers to the usual graph-queries). The distribution D
should be thought of as arising from some application, and it is not known a priori to the (application-
independent) tester. In this case, it is reasonable to define the distance between graphs with respect
to the distribution D, since this is the distribution that the application uses. (See further discussion
in Section 1.4.)

These considerations led us to introduce models of testing graph properties in which the tester
obtains random vertices drawn according to an arbitrary vertex distribution D (and, in addition, obtains
answers to the usual graph-queries). Such a tester is required to distinguish between graphs that have
the property and graphs that are far from having the property, where the distance between graphs is
defined based on the unknown vertex distribution D. These (“vertex-distribution free” (VDF)) models
generalize the standard models in which D is postulated to be uniform on the vertex-set, and they were
studied both in the dense graph model and in the bounded-degree graph model (see [4, Sec. 2] and [4,
Sec. 3], respectively).

The focus of [4] was on testers, called strong, whose query complexity depends only on the proximity
parameter ε. Unfortunately, in the standard bounded-degree graph model, some natural properties such
as Bipartiteness do not have strong testers, and others (like Cycle-freeness) do not have strong testers of
one-sided error (whereas one-sided error was shown inherent to the VDF model [4, Thm. 1.1]). Hence,
it was suggested in [4, Sec. 5.2] to study general (i.e., non-strong) testers of “sub-linear” complexity,
especially for the VDF bounded-degree graph model.

In this work, we pursue the foregoing suggestion, but do so in a model that augments the model
presented in [4]. Specifically, we provide the tester with an evaluation oracle to the unknown distribution
D, in addition to samples of D and oracle access to the tested graph.

1.1 The vertex-distribution-free model and its augmentation

We start by recalling the vertex-distribution free (VDF) model that generalizes the bounded-degree
graph model. Essentially, this model differs from the standard bounded-degree graph model in that
the tester cannot obtain uniformly distributed vertices, but rather random vertices drawn according
to an arbitrary distribution D (which is unknown a priori). (In addition, the tester obtains answers
to the usual graph-queries.) As usual, the tester is required to accept (whp) graphs that have the
predetermined property and reject (whp) graph that that are far from the property, but the distance
between graphs is defined in terms of the distribution D. Specifically, when generalizing the standard
bounded-degree model, we define the distance between graphs as the sum of the weights of the edges
in their symmetric difference, where the weight of an edge is proportional to the sum of the probability
weights of its end-points according to D.

Recall that the bounded-degree model (both in its standard and VDF incarnations) refers to a
fixed degree bound, denoted d, and to graphs that are represented by their incidence functions; that
is, the graph G = (V,E) is represented by the incidence function g : V × [d] → V ∪ {⊥}, where

2Actually, in all these models, it is postulated that the vertex-set consists of [n] = {1, 2, ..., n}, where n is a natural
number that is given explicitly to the tester, enabling it to sample [n] uniformly at random.

2

g(v, i) = u if u is the ith neighbour of v and g(v, i) = ⊥ if v has less than i neighbours. Fixing a vertex
distribution D : V → [0, 1], we say that the graph G or rather its incidence function g is ε-far from
the graph property Π if, for every g′ : V × [d] → V ∪ {⊥} that represents a graph in Π, it holds that
Prv←D,i∈[d][g(v, i) 6=g′(v, i)] > ε.

Hence, following [4, Def. 3.1], a tester of Π in the VDF bounded-degree graph model is given a
proximity parameter ε, samples drawn from an arbitrary distribution D, and oracle access to the
incidence function of the graph G = (V,E). It is required that, for every vertex-distribution D (and
every ε > 0 and G), the tester accepts (whp) if G is in Π and rejects (whp) if G is ε-far from Π (where
the distance is defined according to D).

The augmentation. Here, we augment the foregoing model by providing the tester also with an
evaluation oracle to the vertex distribution; that is, an oracle that on query v returns D(v) = Prx←D[x=
v]. This augmentation is introduced because we could not obtain our results without it (or without some
relaxation of it), but it can be justified as feasible in some settings (see brief discussion in Section 1.4).
At this point, we spell out the resulting definition of a tester.

Definition 1.1 (the augmented VDF testing model): For a fixed d ∈ N, let Π be a property of graphs
of degree at most d. An augmented VDF tester for the graph property Π (in the bounded-degree graph
model) is a probabilistic oracle machine T that satisfies the following two conditions (for all sufficiently
large V), when given access to the following three oracles: an incidence function g : V × [d]→ V ∪{⊥},
a device – denoted sampD – that samples in V according to an arbitrary distribution D : V → [0, 1],
and an evaluation oracle – denoted evalD – for D.

1. The tester accepts each G = (V,E) ∈ Π with probability at least 2/3; that is, for every g :
V × [d]→ V ∪ {⊥} representing a graph in Π and every distribution D (and ε > 0), it holds that
Pr[T g,sampD,evalD(ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any graph G = (V,E) and distribution D such that G is
ε-far from Π according to D, the tester rejects with probability at least 2/3; that is, for every
ε > 0 and distribution D, if g : V × [d] → V ∪ {⊥} satisfies δΠ

D(g) > ε, then it holds that
Pr[T g,sampD,evalD(ε) = 0] ≥ 2/3, where δΠ

D(g) denotes the minimum of δD(g, g′) taken over all
incidence functions g′ : V × [d]→ V ∪ {⊥} that represent graphs in Π, and

δD(g, g′)
def
= Prv←D,i∈[d][g(v, i) 6= g′(v, i)]. (1)

(That is, δD(g, g′) =
∑

v∈V D(v) · |{i ∈ [d] : g(v, i) 6= g′(v, i)}|/d.)

The tester is said to have one-sided error probability if it always accepts graphs in Π; that is, for
every g : V × [d] → V ∪ {⊥} representing a graph in Π (and every D and ε > 0), it holds that
Pr[T g,sampD,evalD(ε)=1] = 1.

At times, we shall identify the incidence function g with the graph G that g represents, and simply say
that we provide the tester with oracle access to G.

The query complexity of a tester is the maximum number of queries it makes to its (three) oracles as a
function of ε and parameters of the vertex-distribution D : V → [0, 1]. The parameters we have in mind
are label-invariant, where a parameter ψ is label invariable if ψ(D) = ψ(D′) for any two distributions
D and D′ that have the same histogram (i.e., for every p > 0 it holds that |{v : D(v) = p}| = |{v :
D′(v)=p}|).3 Recall that in the standard testing model, the complexity could depend on the size of the
vertex-set, which is a special case of a parameter of D : V → [0, 1]. However, we are interested in more

3Indeed, in this case there exists a permutation π : V → V such that D′(v) = D(π(v)) for every v ∈ V .

3

refined parameters of D. The first parameter that comes to mind is the support size of D, but this
parameter is too sensitive to insignificant changes in D (e.g., any distribution over V is infinitesimally
close to having support size |V |). A more robust parameter is the “minimum effective support size”;
that is, being “close” to a distribution with the specified support-size (cf., [1]).

Definition 1.2 (effective support size): We say that the distribution D has η-effective support of size
n if D is η-close to a distribution that has support size at most n, where D is η-close to D′ if their total
variation distance is at most η. The minimal η-effective support size of D is the minimal n such that D
has η-effective support of size n.

The notion of effective support size is much more robust that the support size; in particular, if D is
infinitesimally close to a distribution that has η-effective support of size n, then D that has η-effective
support of size n+ 1 (where the additional unit is needed only in pathological cases).4 Furthermore, if
D is o(ε)-close to a distribution that has ε-effective support size n, then D that has (1+o(1)) ·ε-effective
support size n.

An initial observation and an open problem. Recall that it was shown in [4, Prop. 3.2] that,
without loss of generality, any tester in the VDF model only queries vertices that were provided as
answers to prior sample and graph queries. The argument extends to the augmented VDF model. In
contrast, it is unclear whether [4, Thm. 3.3], which asserts that strong testability in the VDF model
yields strong testability with one-sided error, holds in the augmented VDF model.

Open Problem 1.3 (does one-sided error testing reduce to general testing): For q : (0, 1] → N,
suppose that Π is a graph property that can be tested using q(ε) queries in the augmented VDF model,
where ε denotes the proximity parameter. Does there exist a function q′ : (0, 1]→ N such that Π has a
one-sided error tester of query complexity q′(ε) in the augmented VDF model.

(Recall that in the original VDF model, an upper bound of q′(ε) = exp(O(q(ε))) was shown in [4,
Thm. 3.3]. The derived one-sided error tester uses a sample of O(q(ε)2) vertices and invokes the
original tester while emulating a vertex-distribution that is uniform over this sample.5 The analysis
relies on the fact that, in the original VDF model, the tester’s behavior on a fixed sample of vertices
is oblivious of the distribution from which this sample is taken. This fact is no longer valid in the
augmented model, since the tester may make evaluation queries.)

4Let D′ be the foregoing distribution that has η-effective support of size n. Then, the typical case is that this value of η
is not critical (w.r.t having η-effective support size n); that is, for some η′ < η, the distribution D′ has η′-effective support
of size n. In this case, any distribution that is (η− η′)-close to D′ has η-effective support of size n. The pathological case
is that D′ has η-effective support of size n, but for every η′ < η the minimal η′-effective support size of D′ is larger than
n. We claim that in this case, for some η′ < η, the distribution D′ has η′-effective support of size n + 1 (and it follows
that any distribution that is (η − η′)-close to D′ has η-effective support of size n+ 1). To prove this claim, suppose that
D′ is η-close to a distribution D′′ of support size n, and consider the following two cases.

1. If the support of D′ is contained in the support of D′′, then the claim is trivial (since then D′ has support size n).

2. Otherwise, let v be in the support of D′ but not in the support of D′′, and consider modifying D′′ by moving a
probability mass of D′(v) > 0 from {u : D′′(u) > D′(u)} to v. Then, the modified distribution D′′′ has support
size n + 1 (i.e., the support of D′′′ is contained in the union of the support of D′′ and v) and is (η − D′(v))-close
to D′. Hence, the claim follows with η′ = η −D′(v).

5Actually, using a sample S of O(q(ε)2) vertices, the derived tester emulates
(|S|
q(ε)

)
different executions of the original

tester, where in each execution the elements of a different q(ε)-subset of S are provided as answers to the original tester’s
sampling requests. Note that these invocations make at most |S| · dq(ε) different incidence queries.

4

1.2 Our results

Our main result is testing Bipartiteness in the augmented VDF model within complexity that matches
the complexity of the known tester in the standard (bounded-degree graph) model [8], which in turn
is almost optimal [7].

Theorem 1.4 (testing Bipartiteness in the augmented VDF model): For any constant d, Bipartiteness
can be tested in the augmented VDF bounded-degree graph model (of Definition 1.1) in expected time
Õ(
√
n) · poly(1/ε), where n denotes the minimal ε/5-effective support size of the vertex distribution D

faced by the tester. Furthermore, the tester has one-sided error.

The tester that we use when proving Theorem 1.4 starts by obtaining a rough approximation of the
minimal effective support size of D, where by a rough approximation of the minimal η-effective support
size we mean that the value Õ(n) is admissible if the minimal poly(η)-effective support size is n. In
fact, a rough approximation of the effective support size of D is implicit in the running-time of the
asserted tester. We comment that it seems essential to make queries to evalD in order to obtain such
a rough approximation, since obtaining such an approximation by making queries only to sampD has
complexity n1−o(1) (cf. [10] and [5, Cor. 1.7]).6 We mention that, using both types of queries to D, we
obtain a good (i.e., constant factor) approximation in polylogarithmic time (see Section 2.2).

Next, we extend the known reduction of testing Cycle-freeness to testing Bipartiteness, presented
in [2] for the standard (bounded-degree graph) model, to the (augmented) VDF model. Combining
this reduction with Theorem 1.4, we obtain

Theorem 1.5 (testing Cycle-freeness in the augmented VDF model): Cycle-freeness can be tested in
the augmented VDF testing model (of Definition 1.1) in expected time Õ(

√
n)·poly(1/ε), where n denotes

the minimal ε/5-effective support size of the vertex distribution D faced by the tester. Furthermore, the
tester has one-sided error.

A begging open problem is whether the foregoing results can also be obtained in the original VDF
model (of [4]), at least when providing the tester with the effective support size.7

Open Problem 1.6 (the complexity of testing Bipartiteness in the VDF model): What is the query
complexity of testing Bipartiteness in the (original) VDF model. In particular, can Bipartite be tested
in this model in time Õ(

√
n) · poly(1/ε), where n denotes the Ω(ε)-effective support size of the vertex

distribution D faced by the tester? The question holds both for the VDF model (as defined in [4]), and in
a model in which the tester is provided with the effective support size. Ditto for testing Cycle-freeness.

Since the reduction of testing Cycle-freeness to Bipartiteness does not make queries to D (and is in fact
oblivious of D), any upper bound regarding testing Bipartiteness in the (original) VDF model would
yield a similar result for testing Cycle-freeness. However, the latter problem may be easier.

6Specifically, for any c : N→ (0, 0.06), at least Ω(n1−c(n)) queries are necessary to distinguish an n-grained distribution

of support size n/11 from an n-grained distribution with support size n1−3c(n)1/2 , where a distribution is called n-grained
if all probabilities are integer multiples of 1/n.

7Indeed, obtaining a rough approximation of the effective support size (i.e., n) requires at least n1−o(1) queries to
sampD, but this refers to a setting in which only sampD queries are available. In contrast, the tester can also make
incidence queries to the graph, and the combination of such queries with sampD queries may potentially allow a more
query-efficient approximation of the effective support size of D (i.e., n). Furthermore, as noted in [5, Prob. 1.8], the

results of [10] do not rule out the possibility of approximating n to a factor of nc when using n0.5+c′ queries, for some
c, c′ ∈ (0, 0.5).

5

1.3 Techniques

The testers asserted in Theorems 1.4 and 1.5 constitute testers for the standard (bounded-degree graph)
model that meet the best results known in that model. Given that the proofs of the latter results are
quite complex (see, e.g., [8]), it is fortunate that we can proceed by reducing the current results to the
known ones.

Proving Theorem 1.4. The Bipartite tester asserted in Theorem 1.4 is obtained by a natural
adaptation of the corresponding tester for the standard (bounded-degree graph) model [8]. The latter
tester operates by taking many short random walks from few randomly selected vertices, where, in each
step of a random walk, the next vertex is selected uniformly among the neighbors of the current vertex.
Instead, our tester will select the the next vertex (among the neighbors of the current vertex) with
probability that is proportional to the probability weight of the corresponding incident edges (according
to D); that is, being at vertex v we move to a neighbor w with probability proportional to D(v)+D(w).
Here is where we make use of the evaluation oracle evalD. (The start vertices will be selected with
probability that is proportional to the D-weight of their incident edges.)

Since the analysis of the foregoing tester in the standard (bounded-degree graph) model is quite
complex, we wish to use this analysis (of [8]) as a black-box. Towards this end, we view our VDF-model
tester as emulating the tester of [8] on an auxiliary graph in which weighted edges are replaced by a
proportional number of parallel edges, and the vertices are replaced by sets of vertices, called clouds,
that are of size that is proportional to the sum of the weights of the edges incident at the original
vertices.8 The parallel edges are distributed uniformly between the relevant pairs of clouds, while
recalling that the analysis of [8] holds also for (non-simple) graphs having parallel edges (see [9]). (We
stress that this is a mental experiment performed in the analysis; the actual algorithm is essentially as
outlined in the previous paragraph.)

We stress that the complexity of the tester of [8] is dominated by the number of the vertices in the
graph, and hardly depends on the number of edges in it.9 In our (VDF) context, the complexity of the
adapted tester depends on the effective support size of the distribution D.

The foregoing description presumes that we have a good upper bound on the support size of D.
Indeed, such an upper bound (along with oracle access to the auxiliary graph) suffices for emulating
the tester of [8]. Actually, aiming at complexity bounds that depend on the effective support size of D
rather than on its support size, we “trim” the graph by ignoring edges of weight o(ε/n), where n is an
upper bound on the ε/4-effective support size of D. Lastly, we show how to obtain such a good upper
bound by using both the sampling and evaluation oracles of D.

Approximating the effective support size of D. We observe that if n is the minimal integer
such that at most an η fraction of the weight of D resides on elements of weight smaller than η/n, then
the Θ(η)-support size of D is between Ω(n) and O(n/η). Such a rough approximation suffices for the
foregoing application, and we obtain it by using a doubling procedure; that is, we output n if a sample
of m = O(η−1 log n) hits less than 2η ·m elements of weight smaller than η/n, and double n otherwise.
(We can actually obtain a better approximation (see Theorem 2.2) by using the rough approximation
as a starting point and approximating the total weight assigned to each set {v : 2−i+1 ≤ D(v) < 2−i}
for i ∈ [log(n/η) +O(1)]. Even better approximations were obtained in our subsequent work [5].)

8Specifically, an edge {u, v} of weight wu,v is replaced by mu,v ≈ wu,v ·N parallel edges, where N is a sufficiently large
number (which is possibly larger than the original graph). The vertex v is replaced by a cloud Cv of size proportional to∑
u wu,v, and the mu,v parallel edges connecting u and v are distributed uniformly among the vertex pairs in Cu × Cv.
9The complexity is almost-linear in a square root of the number of vertices, and only grows logarithmically with the

number of edges.

6

Proving Theorem 1.5. The Cycle-freeness tester asserted in Theorem 1.5 is obtained by using the
known reduction of testing Cycle-freeness to testing Bipartiteness, which was presented and analyzed
for the standard (bounded-degree graph) model in [2]. Recall that this reduction replaces each edge at
random either by a path of length two or by a path of length one (equiv., leaves the edge intact). It
was shown in [2, Lem 3.1] that this transformation translates a graph that is far from being cycle-free
to a graph that is far from being bipartite, where the distance refers to the number of edges that should
be omitted to make the graph satisfy the property. The challenge is to extend this claim to weighted
graphs (or rather to distances as measured by the sum of the weights of edges that should be omitted
to make the graph satisfy the property).

We meet this challenge by observing that the edges that should be omitted in order to make the
original graph cycle-free are those that do not reside on a maximal spanning forest of the graph. We then
bucket these edges according to their approximate weight, and consider only the edges that are in the
union of the heaviest bucket and the said spanning forest. Considering the two-connected components
of the corresponding graph, we observe that the edges of the spanning forest yield maximal spanning
trees of each of the two-connected components. Hence, the edges that should be omitted from each
2-connected component are all of approximately the same weight, and so lower-bounding their weight
reduces to lower-bounding their number. At this point, we invoke [2, Lem 3.1] and are done.

1.4 Discussion

As admitted upfront, the augmentation of the VDF model captured by Definition 1.1 is made for
opportunistic reasons: This augmentation (or some relaxation of it) seems essential to the testers
asserted in Theorems 1.4 and 1.5. Nevertheless, one may envision setting in which an evaluation oracle
as postulated in the augmentation can be implemented or at least be well-approximated.

Recall that the VDF model was motivated by settings in which some process (or application) of
interest refers to (or embeds or emulates) a huge graph; in particular, the process generates random
vertices according to some unknown distribution D, and answers incidence queries regarding the graph.
Furthermore, in case the vertices of the graph are real sites, they may maintain a count of the number
of times they were visited by the foregoing process (or application). This yields a good approximation
of the visiting probabilities that underly the vertex distribution D in question.

Indeed, the vertex distribution represents the “importance” of the various vertices from the ap-
plication’s point of view; that is, the application encounters vertices according to the distribution D,
and the relative “importance” of a vertex (to the application) is captured by the probability that it is
encountered (by the application). Hence, the distance of a graph to the property represents the relative
importance of the “part of the graph” that violates the property.

A VDF tester offers an application-independent way of determining whether the huge graph (em-
bedded or emulated by an application) has some predetermined property or is far from having the
property, where the distance that is relevant here is one that is induced by the vertex-distribution D
(arising from the application).

2 The Bipartiteness Tester

For starters, we consider a model in which the tester is further augmented by providing it with the
effective support size of the vertex distribution D. Specifically, on input proximity parameter ε, we
also provide the tester with an upper bound, denoted n, on the minimal ε/4-effective support size of
D. The complexity of the following tester depends on that upper bound, and at a latter stage we shall
show how the tester can obtain a good upper bound by itself.

Theorem 2.1 (a tester that gets an upper bound on the effective support size): There exists an oracle
machine T that, on input ε and n such that n is an upper bound on the minimal ε/4-effective support

7

size of D, and oracle access to G, sampD, evalD, runs in time Õ(
√
n) · poly(1/ε) and constitutes a

Bipartite tester (of one-sided error) as defined in Section 1.1. That is:

1. If G is bipartite, then Pr[TG,sampD,evalD(ε, n)=1] = 1.

2. If G is ε-far from being bipartite according to D, then Pr[TG,sampD,evalD(ε, n)=0] ≥ 2/3.

The Bipartite tester asserted in Theorem 1.4 is obtained by combining Theorem 2.1 with a procedure
that approximates the effective support size, which in turn is provided in Section 2.2.

2.1 Proof of Theorem 2.1

Our starting point is the Bipartiteness tester of [8] that works in the standard (bounded-degree graph)
model. On input an n-vertex graph, this tester operates by taking many (i.e., Õ(

√
n)) short (i.e., of

length poly(log n)) random walks from few (i.e., O(1)) randomly selected vertices, where the various
notations ignore a polynomial dependence on 1/ε. In [8], in each step of each random walk, the next
vertex is selected uniformly among the neighbors of the current vertex. Our basic idea is to adapt this
tester to the current setting by selecting the next vertex among the neighbors of the current vertex with
probability that is proportional to the probability weight of the corresponding incident edges according
to the distribution D.

Wishing to use the analysis of [8] as a black-box, we present the foregoing tester as emulating the
tester of [8] on an auxiliary graph that is derived in two steps: First, we replace the aforementioned
weighted edges by a proportional number of parallel edges, where the weight of an edge {u, v} equals
2 · (D(u) +D(v))/d. Next, we replace the vertices by sets of vertices, called clouds, that are of size that
is proportional to the sum of the weights of the edges incident at the original vertices, and distribute
the parallel edges uniformly among the pairs of vertices in the relevant pair of clouds. This yields
a regular multi-graph (i.e., having parallel edges), yet the analysis of [8] holds also for multi-graphs
having (many) parallel edges (see [9]). Furthermore, the complexity and analysis of the tester are
oblivious of the degree of the vertices (provided the maximal degree is approximately equal the average
degree).

The first step: The multi-graph G′. Fixing a vertex distribution D, on input a graph G = (V,E),
proximity parameter ε and a value n (provided as an effective support size of D), we consider the
following auxiliary multi-graph G′ = (V ′, E′). For sake of simplicity, we shall assume first that for
each v ∈ V either D(v) = 0 or D(v) ≥ ρ, where we later set ρ = Θ(ε/n) and reduce the general case
to this special case (see Claim 2.1.4). Recalling that the weight of the edge {u, v} ∈ E under D is

2 · (D(u) + D(v))/d, we place mu,v
def
= b(D(u) +D(v)) ·Nc � 1 parallel edges between u and v in G′,

where N = poly(1/ερ) will be determined later. We keep in V ′ only the non-isolated vertices; that is,
v ∈ V ′ if and only if

∑
umu,v > 0 (equiv.,

∑
u:{u,v}∈E(D(u) + D(v)) ≥ ρ), which holds if and only if

either D(v)≥ρ or D(u)≥ρ for some neighbor u of v. Hence,

|V ′| ≤ d/ρ and |E′| = 0.5 ·
∑
u,v∈V ′

mu,v ≤ d ·
∑
v∈V ′
D(v) ·N = dN. (2)

Next, we relate the distance of G from being bipartite to the number of edges that should be removed
from G′ in order to make it bipartite.

Claim 2.1.1 (weight under D versus number of edges in G′): If edges of total D-weight at least δ must
be removed from G in order to make it bipartite, then at least 0.5d · δ ·N − d|V ′| edges must be removed
from G′ in order to make it bipartite.

8

Indeed, if N = ω(|V ′|/δ), then 0.5dδ ·N − d|V ′| = 0.5d · (δ − o(δ)) ·N .

Proof: Removing a weighted edge of G is equivalent to removing the corresponding parallel edges of G′.
Recall that an edge {u, v} ∈ E of weight wu,v = 2·(D(u)+D(v))/d yields mu,v = b(D(u) +D(v)) ·Nc ≥
(d/2) · wu,v · N − 1 parallel edges. The claim follows because, for any R ⊆ {{u, v} :E : wu,v > 0}, we
have ∑

{u,v}∈R

mu,v ≥
∑
{u,v}∈R

((d/2) · wu,v ·N − 1)

=
d

2
·

 ∑
{u,v}∈R

wu,v

 ·N − |R|
whereas |R| ≤ d · |V ′|.

As in [9], we wish to transform G′ = (V ′, E′) to a graph with a maximum degree that is only
a constant factor larger than its average degree, while preserving the relative distance from the set
of bipartite graphs. This is done by replacing the vertices of G′ by vertex-sets, called clouds, and
distributing the edges incident at each vertex v ∈ V ′ among the vertices of the cloud that replaces v
(so that all vertices in this cloud have approximately the same degree). However, unlike in [9], we also
wish the sizes of these clouds to reflect the degrees of the different vertices of G′ (so that sampling
vertices of G′ according to their degree translates to sampling vertices uniformly in the new graph).
(In contrast, in [9] the size of the cloud that replaces v is only upper-bounded by the ratio of the degree
of v and the average degree; and no lower bound is provided.)10 Here we use the fact that each vertex
in G′ has degree at least ρ ·N − 1 and at most N , whereas N = ω(1/ρ2).

The auxiliary multi-graph G′′ = (V ′′, E′′). Denoting the degree of vertex v (in G′) by d′v =∑
umv,u and letting t = Θ(1/ε), we replace each vertex in G′ by a cloud, denoted Cv, of cv

def
=

dt · d′v/ρNe vertices. Hence, V ′′ =
⋃
v∈V ′ Cv and

|V ′′| =
∑
v∈V ′
|Cv| =

∑
v∈V ′
dt · d′v/ρNe (3)

<
∑
v∈V ′

(
t · d′v
ρN

+ 1

)
= 2t · |E

′|
ρN

+ |V ′| < 3td/ρ, (4)

since |E′| ≤ dN and |V ′| ≤ d/ρ. Unlike in [9], where the edges incident at v were distributed arbitrarily
(and equally) among the vertices of Cv (and the focus was on graphs with no parallel edges), here we
distribute the parallel edges connecting v and u equally among the vertex pairs in Cv × Cu. (We can
afford doing so because the number of parallel edges between clouds is much larger than the product
of the sizes of the clouds (i.e.., mu,v = ω(|Cu| · |Cv|/ε) for every u, v ∈ V ′ such that mu,v > 0).)11

That is, for every 〈u, i〉 ∈ Cu and 〈v, j〉 ∈ Cv, we connect 〈u, i〉 and 〈v, j〉 by mi,j
u,v parallel edges,

where mi,j
u,v ∈ {bmu,v/|Cu × Cv|c, dmu,v/|Cu × Cv|e}. Hence, all vertices of Cv are equivalent in the

sense that each of them has approximately the same number of neighbors in each other cloud (i.e.,

10On the other hand, the priority in [9] is increasing the number of vertices as little as possible. Hence, in [9], the size
of the cloud replacing v is dd′v/d′e, where d′v is v’s degree (in G′) and d′ is the average degree in G′. Needless to say, this
does not yield clouds of size proportional to the vertex degree in case d′v � d′.

11In addition, unlike in [9], we do not augment the graph with gadgets that guarantee that a 2-coloring of the graph
must assign the same color to all vertices of a cloud (and similarly for 2-partitions that are close to proper 2-colorings).

9

∑
j∈[cv]m

i,j
u,v ≈ mu,v/cu, for each 〈u, i〉 ∈ V ′′ and v ∈ V ′). Indeed, |E′′| = |E′| and the resulting graph

is almost regular; that is, the degree of each vertex 〈v, j〉 ∈ V ′′ equals∑
〈u,i〉∈V ′′

mi,j
u,v ≈

∑
〈u,i〉∈V ′′

mu,v

cucv
(5)

=
∑
u∈V ′

mu,v

cv

=
d′v

dt · d′v/ρNe
= (1±Θ(1/t)) · ρN/t, (6)

where the first approximation is up to an additive term of |V ′′| = O(t/ρ) = o(ρN/t2), since N =
ω(t3/ρ2). The key observation is that a random walk on G′ is closely related to a random walk on
G′′ in the sense that the walk on G′ moves from u to v with probability (i.e.,

mu,v∑
wmu,w

) that (almost)

equals the probability that the walk on G′′ moves from any fixed vertex in Cu to some vertex in Cv
(i.e.,

m〈u,i〉,v∑
wm〈u,i〉,w

, where m〈u,i〉,w =
∑

j∈[cw]m
i,j
u,w). These probabilities are approximately equal because

mi,j
u,v ≈ mu,v/cucv, which is due to mu,v ≥ ρN − 1 and cw ≤ (t · d′w/ρN) + 1 ≤ (t/ρ) + 1�

√
ρN , where

the last inequality is due to N = ω(t2/ρ3).
We conclude that one can employ the tester of [8] to G′′, since the analysis in [8] presumes only a

constant ratio between the maximum and the average degrees (cf. [9]). Of course, we have to guaranteed
that the distance of G to being bipartite is reflected by the distance of G′′ to being bipartite. This
follows by combining Claim 2.1.1 with the following claim.

Claim 2.1.2 (number of violating edges in G′ versus G′′): If at least ∆ edges must be removed from
G′ in order to make it bipartite, then at least ∆ − d · |V ′| edges must be removed from G′′ in order to
make it bipartite.

The slackness is due to the fact that mi,j
u,v equals

mu,v
|Cu×Cu| up to at most one unit, rather than being equal

to it. Loosely speaking, Claim 2.1.2 means that 2-partitions of G′′ with a minimal number of edges on
the same side are obtained by placing all vertices of each cloud on the same side. Intuitively, this holds
because the edges between each pair of clouds are partitioned equally between the corresponding pairs
of vertices, and so one does not benefit by treating vertices of the same cloud differently (i.e., placing
them on different sides of the 2-partition).

Proof: For every 2-partition χ′′ : V ′′ → {1, 2}, we present a 2-partition χ′ : V ′ → {1, 2} such that
the number of χ′-monochromatic edges in G′ is at most d|V ′| units larger than the number of χ′′-
monochromatic edges in G′′; that is,∑

u,v∈V ′:χ′(u)=χ′(v)

mu,v ≤
∑

〈u,i〉,〈v,j〉∈V ′′:χ′′(〈u,i〉)=χ′′(〈v,j〉)

mi,j
u,v + d · |V ′|.

This is shown by using the probabilistic method. Specifically, fixing χ′′ : V ′′ → {1, 2}, we consider
assigning each vertex of G′ a color chosen at random according to the colors of the vertices in the
corresponding cloud; that is, χ′(v) = 1 with probability |{i ∈ [cv] : χ′′(〈v, i〉) = 1}|/|Cv|, and χ′(v) = 2
otherwise. Letting Xu,v be a random variable indicating whether or not χ′(u) = χ′(v) (i.e., Xu,v = 1 if
χ′(u) = χ′(v) and Xu,v = 0 otherwise), it holds that the expected number of χ′-monochromatic edges
equals

Exp

 ∑
u,v∈V ′

mu,v ·Xu,v

 =
∑
u,v∈V ′

mu,v · Pr[χ′(u) = χ′(v)]

10

=
∑
u,v∈V ′

mu,v ·
|{(i, j) ∈ [cu]× [cv] : χ′′(〈u, i〉) = χ′′(〈v, j〉)}|

|Cu × Cu|

=
∑

〈u,i〉,〈v,j〉∈V ′′:χ′′(〈u,i〉)=χ′′(〈v,j〉)

mu,v

|Cu × Cu|

Recalling that the absolute difference between mi,j
u,v and

mu,v
|Cu×Cu| is at most one unit, it follows that

the expected number of χ′-monochromatic edges in G′ differs from the number of χ′′-monochromatic
edges in G′′ (i.e.,

∑
〈u,i〉,〈v,j〉∈V ′′:χ′′(〈u,i〉)=χ′′(〈v,j〉)m

i,j
u,v) by at most |E| ≤ d · |V ′| units.

The actual tester of G and the emulated testing of G′′. Recall that, when given oracle access
to an n-vertex graph (and proximity parameter ε), the tester of [8] selects uniformly O(1/ε) (start)
vertices, and starts poly(1/ε) · Õ(

√
n) random `-step walks from each vertex, where ` = poly(ε−1 log n)

and each step in the random walk moves uniformly to one of the neighbors of the current vertex.
The tester, denoted T , accepts if and only if the explored subgraph is bipartite (i.e., contains no odd-
length cycles). When seeking to test the graph G = (V,E) under the vertex-distribution D (such that
minv∈V :D(v)>0{D(v)} ≥ ρ), we essentially emulate a testing of the auxiliary graph G′′ = (V ′′, E′′) as
follows.

• We set n = |V ′′| < 3t · d/ρ. We mimic an execution of T , on proximity parameter ε/2 and size
parameter n, while emulating the actions on G′′ as follows.

• We actually do not select vertices of G′′ uniformly at random, although this is possible to do too,
but rather select random clouds in G′′ with probability that that is proportional to their sizes.
(Recall that the size of each cloud is proportional to the number of the edges that are incident
to it in G′′, and that all vertices in each cloud are essentially equivalent.)

Selecting a cloud in G′′ with probability that that is proportional to the number of the edges
that are incident to it in G′′ is almost equivalent to selecting each vertex in G with probability
that that is proportional to the weight of the edges that are incident to v in G, which is done
by employing “rejection sampling”. Specifically, we obtain a sample s of D (i.e., s ← D), and
proceed as follows.

1. we output s with probability |Γ(s)|/2d, where Γ(v) denotes the set of neighbors of v in G;

2. with probability |Γ(s)|/2d, we output a uniformly selected neighbor of s; that is, each
neighbor of s is output with probability 1/2d;

3. otherwise (i.e., with probability (2d− 2|Γ(s)|)/2d), we halt with no output.

(Indeed, we repeat iterating the foregoing process till some vertex is output, while noting that
each trial succeeds with probability at least 1/d. Hence, we can abort and accept if ω(log n)
attempts failed.)

The probability that vertex v is output (in a single trial) equals

p(v)
def
= D(v) · |Γ(v)|

2d
+
∑

u∈Γ(v)

D(u) · 1

2d

where the first term is due to selecting s = v and the second term is due to selecting s ∈ Γ(v)
(and then picking v ∈ Γ(s)). Note that p(v) =

∑
u∈Γ(v)(D(v) + D(u))/2d, whereas the size

of the cloud Cv (in G′′) is proportional to the degree of v in G′, which in is proportional to∑
u∈Γ(v)mu,v ≈

∑
u∈Γ(v)(D(u) +D(v)) ·N . Hence, p(v) is proportional to the degree of v in G′.

11

• A step in a random walk on G is made by selecting a neighbor of the current vertex with
probability that is proportional to the weight of the edge leading to it; that is, when we reside
at v ∈ V , we move to the neighbor u with probability proportional to D(v) +D(u). Specifically,
the probability we move from v to u ∈ Γ(v) equals

D(v) +D(u)∑
w∈Γ(v)(D(v) +D(w))

≈ mv,u∑
w∈Γ(v)mv,w

which approximately equals the probability that a (uniformly) random walk (in G′′) moves from
any vertex in cloud Cv to the cloud Cu, since for every i ∈ [cv] it holds that

m〈v,i〉,u∑
w∈Γ(v) m〈v,i〉,w

≈
mv,u∑

w∈Γ(v) mv,w
, where m〈v,i〉,w =

∑
j∈[cw]m

i,j
v,w

Note that for implementing the foregoing actions it suffices to be able to sample D, and have oracle
access to the evaluation of D (and to the incidence function of G). Actually, the evaluator of D can
be replaced by an oracle that answers (w1, w2) with D(w1)/D(w2), provided D(w2) > 0 (and a special
symbol otherwise).

The time complexity of the foregoing algorithm is poly(1/ε) · Õ(
√
|V ′′|), which equals poly(1/ε) ·

Õ(ρ−1/2), since |V ′′| < 3td/ρ and t = O(1/ε). (Note that the algorithm does not actually emulate G′′;
this emulation is merely a thought experiment that is used in the analysis.)12

Claim 2.1.3 (analysis of the special case): Suppose that G = (V,E) is ε-far from being bipartite under
the vertex-distribution D such that minv∈V :D(v)>0{D(v)} ≥ ρ. Then, the foregoing algorithm rejects G
with high probability.

Needless to say, the foregoing algorithm always accepts any graph G that is bipartite.

Proof: Combining Claims 2.1.1 and 2.1.2, we observe that more than 0.5d · ε · N − 2 · d · |V ′| edges
must be removed from G′′ in order to make it bipartite. Hence, G′′ is ε′-far from being bipartite
(in the standard bounded-degree graph model), where ε′ = 2 · (0.5d · ε · N − 2 · d · |V ′|)/dN . Using
0.5d · ε · N > 4d|V ′|, which holds since |V ′| ≤ d/ρ (and since we may assume that N = ω(1/ερ)), it
follows that ε′ ≥ ε/2. Consequently, using proximity parameter ε′, the tester T (of [8]) would have
rejected G′′ with high probability (e.g., probability at least 1 − o(1)), but our emulation of T is not
perfect. Specifically, our vertex-sampling procedure produces output that is a factor of 1 ± O(1/t)
off from the uniform distribution, whereas each step that we take on the random walks is a factor of

1 ± max{u,v}∈E′
{
cucv
mu,v

}
off from the uniform distribution. Recalling that cucv

mu,v
= O((t/ρ)2/ρN), we

conclude that our emulation of T accepts G′′ with probability at most(
(1 +O(1/t)) ·

(
1 +O(t2/ρ3N)

)poly(1/ε)·Õ(ρ−1/2)
)O(1/ε)

· o(1)

<

((
1 +

O(1/ε)

t

)
·
(

1 + poly(1/ε) · t2

ρ4N

))
· o(1)

which is o(1) when using sufficiently large t = O(1/ε) and N = poly(1/ρε). Hence, our algorithm
rejects G with probability 1− o(1).

12The last comment is inessential, since we could afford emulating G′′ at the cost of a factor of O(log |E′′|). Recall that
|E′′| ≤ dN , whereas N = poly(1/ερ).

12

The general case. Recall that the foregoing analysis (which is summarized in Claim 2.1.3) presumes
that for each v ∈ V either D(v) = 0 or D(v) ≥ ρ. Using ρ = Θ(ε/n), we now reduce the general case
of D that has ε/4-effective support size n to the foregoing case. We first note that, by the following
Claim 2.1.4, the vertex-distribution D is ε/2-close to a vertex-distribution D′ that satisfies the foregoing
condition with ρ = ε/4n. Hence, if G is ε-far from being bipartite under D, then it is 0.5ε-far from
being bipartite under D′, and we can test G by providing the tester with oracle access to D′ (i.e., to
sampD′ and evalD′) and setting the proximity parameter to ε/2. Actually, it suffices to provide the
foregoing tester with sampling access to D′, which can be emulated by “rejection sampling” via sampD,
and with an evaluator of the ratios between the D′-values (which, in turn, equal the corresponding the
ratios between the D-values).13

Claim 2.1.4 (effective support size and minimal weight): Suppose that the distribution D : U →
[0, 1] has an η-effective support of size n. Then, D is 2η-close to a distribution D′ that satisfies
mine∈U :D′(e)>0{D′(e)} > η/n. Furthermore, D′(e) > 0 if and only if D(e) > η/n, and if D′(e) > 0 then
D′(e′)
D′(e) = D(e′)

D(e) for every e′ ∈ U .

Combining Claims 2.1.3 and 2.1.4, Theorem 2.1 follows.

Proof: We may assume, without loss of generality, that the support ofD has s > n elements, and arrange
these elements according to their D-value; specifically, let e1, ..., es such that D(ei) ≥ D(ei+1) > 0 for
every i ∈ [s− 1]. Then,

∑s
i=n+1D(ei) ≤ η, because the distance of D from the class of distributions of

support size at most n is at least
∑s

i=n+1D(ei). Letting P (e) = D(e) if D(e) > η/n and P (e) = 0, we

define D′(e) = P (e)∑
i∈[s] P (ei)

, and observe that

∑
e∈U :P (e)=0

D(e) ≤
∑

i∈[n]:D(ei)≤η/n

D(ei) +
∑

i∈[s]\[n]

D(ei)

≤ n · η
n

+ η.

Hence,
∑

e∈P−1(0)D(e) ≤ 2η whereas
∑

e∈P−1(0)D′(e) = 0. Noting that D′(e) ≥ D(e) for every

e ∈ U \ P−1(0), the main claim follows. The furthermore claim follows by the definition of D′.

Caveat. Theorem 2.1 was stated for a fixed value of the degree bound d; the running-time of the
tester that we present actually grows (polynomially) with d. For starters, in our analysis we emulate an
execution of the tester of [8] on a graph that may have O(d/ε) ·n vertices, which means that we explore
a subgraph of size poly(1/ε) · Õ(

√
dn). In addition, each step in the random walk requires obtaining

the weights of all edges that are incident at the current vertex, which means that each random step
may have complexity O(d). In contrast, the tester of [8], which works in the standard bounded-degree
graph model, has complexity that is independent of the degree bound.

2.2 Approximating the minimal effective support size of D

The foregoing Bipartite tester, which establishes Theorem 2.1, presupposes that the tester is given an
upper bound on the minimum ε/4-effective support size of D as auxiliary input. Proving Theorem 1.4
requires getting rid of that auxiliary input, or rather approximating it when using oracle access to
D. Indeed, we shall show that given sampling and evaluation oracles to D, it is relatively easy to

13Note that it is not clear how to emulate evalD′ , when given restricted oracle access to evalD. Hence, it is crucial
that we can emulate the tester by using (instead) and with an evaluator of the ratios between the D′-values. An evaluator
of D′-ratios can be implemented using evalD by relying on the furthermore part of Claim 2.1.4.

13

approximate its effective support size. (In contrast, as commented in the introduction, obtaining such
an approximation while using only samples of D is too expensive for our application.)

Note that the notion of approximating the effective support size is not robust in the sense that, for
every η < η′, a distribution D may be have a minimal η-effective support size that is much larger than
its minimal η′-effective support size (e.g., consider D that assigns a total probability mass of 1− η to
very few elements and is otherwise uniform on a huge set). Hence, on input η, our goal is to approximate
the Θ(η)-effective support size of D; say, output a number between the minimal 2η-effective support
size of D and its minimal η-effective support size (or a good approximation of such a number).

2.2.1 A simple approximation of the minimal effective support size

We first present a simple algorithm for obtaining a rather rough (but sufficiently good for our purposes)
approximation. Given an “effectiveness” parameter η, we proceed in iterations such that in the ith

iteration we take a sample of m = O(η−1 log i) elements of D, and halt outputting 2i/η if the number
of samples that have D-value below η/2i is at most 3η ·m. Here and below, the sampling oracle sampD
is used to generate samples, whereas the evaluation oracle evalD is used to classify elements according
to their D-values.

Observer that (in iteration i), with probability at least 1 − 0.01/i2, the sample approximates the
total weight of the “light elements” (i.e., elements having D-value below η/2i) in the sense that if
Prv←D[D(v) < η/2i] < 2η, (resp., if Prv←D[D(v) < η/2i] ≥ 4η), then the number of samples that have
D-value below η/2i is at most 3η ·m (resp., is greater than 3η ·m).

Now, letting n be an upper bound on the minimal η-effective support size of D (and assuming for
simplicity that n is a power of two), observe that, with high (constant) probability, we halt by iteration
i∗ = log2 n, because Prv←D[D(v) < η/2i

∗
] < n · η/2i∗ + η = 2η, where the first (resp., second) term is

due to elements that are (resp., are not) in the η-effective support of D. Hence, with high (constant)
probability, the algorithm outputs a value that is at most n/η. (Actually, if we reach iteration i∗, we
halt in it with probability at least 1 − 0.01/(i∗)2; it follows that with probability at 1 − 0.01/ log2 n,
the algorithm outputs a value that is at most n/η.)

On the other hand, assuming that n′ is a lower bound on the minimal 4η-effective support size
of D (and assuming that n′ is also a power of two), with high (constant) probability, we do not halt
before iteration i+ = log2(η · n′), because otherwise Prv←D[D(v) < η/2i

+−1] < 4η, which implies that
D has 4η-effective support size at most n′/2 (since Prv←D[D(v) < 2/n′] < 4η implies that D is 4η-close
to a distribution of support size at most n′/2). Hence, with high (constant) probability (i.e., with
probability at least 1−

∑
i<i+ 0.01/i2 > 0.98), the algorithm outputs a value that is at least n′.

It follows that, with high (constant) probability, the algorithm outputs a number that lies between
2blog2 n

′c and 2dlog2 ne/η (i.e., between the half the minimal 4η-effective support size of D and 2/η times
its minimal η-effective support size). Furthermore, with high (constant) probability, this algorithm
runs for

∑
i≤i∗ O(η−1 · log i) = Õ(log n)/η steps (and its expected number of steps can be similarly

bounded). Combining this result with Theorem 2.1, we essentially obtain Theorem 1.4 (except that
ε/5 is replaced by ε/16).

2.2.2 Better approximations of the minimal effective support size

For starters, we present a tighter analysis of (a minor variant of) the foregoing algorithm. Specifically,
for any constant β > 1, in the ith iteration, we take a sample of m = O(η−1 log i) elements of D, and
halt outputting 2i/η if the number of samples that have D-value below (β−1) ·η/2i is at most β2 ·η ·m.

In analyzing the foregoing version, we shall use the fact that (in iteration i), with probability at
least 1−0.01/i2, the sample approximates the total weight of the “light elements” (i.e., elements having
D-value below η/2i) in the sense that if Prv←D[D(v) < (β − 1) · η/2i] < β · η (resp., if Prv←D[D(v) <
(β − 1) · η/2i] ≥ β3 · η), then the number of samples that have D-value below (β − 1) · η/2i is at

14

most β2 · η ·m (resp., is greater than β2 · η ·m). When analyzing the probability that this algorithm
halts by iteration i∗ = log2 n (where n upper-bounds the minimal η-effective support size of D) we
use the fact that Prv←D[D(v) < (β − 1) · η/2i∗] < n · (β − 1) · η/2i∗ + η = β · η, whereas when
analyzing the probability that the algorithm halts before iteration i+ = log2(η ·n′) we use the fact that
Prv←D[D(v) < (β − 1) · η/2i+−1] < β3 · η implies that D is β3 · η-close to a distribution with support
size at most n′/2. It follows that, with high (constant) probability, the algorithm outputs a number,
denoted ñ, that lies between half the minimal β3 ·η-effective support size of D and 2/η times its minimal
η-effective support size. Hence, the slackness factor in the “effectiveness” parameter is reduced from 4
to β3, for any constant β > 1.

Obtaining a better approximation factor. To obtain an even better approximation of the mini-
mal effective support size, we use the rough estimate ñ (obtained above) in order to approximate the
number of elements that have D-value approximately β−(i−0.5) for every i ∈ [O(log(ñ/η))], where ñ/η
is upper-bounded by 2/η2 times the minimal η-effective support size of D. The key observation here
is that the hypothesis that 2ñ upper-bounds the β3η-effective support size of D implies that the total
weight of elements having a D-value that is smaller than (β − 1) · β3η/2ñ is at most β4 · η (cf., prior
paragraph, while replacing 2i

∗
by 2ñ).14 Indeed, the rough estimate of the effective support size of

D (i.e., ñ) is only used in order to determine the set of i’s for which we approximate the number of
elements that have D-value approximately β−(i−0.5).

In light of the foregoing, our first step is ignoring elements having D-value below η/ñ or so. Specif-

ically, letting η′ = β3 · η and H
def
= {v : D(v) ≥ (β − 1) · (η′/2ñ)}, recall that D has η′-effective support

size at most 2ñ, which implies that D(H)
def
=
∑

v∈H D(v) ≥ 1 − βη′ (see prior paragraph). Hence, for
η′′ = β · η′ = β4 · η, the size of H provides an upper bound on the minimal η′′-effective support size of
D. If D(H) ≤ 1−η, then |H| is a lower bound on the minimal η-effective support size of D. Otherwise,
we shall obtain such a lower bound by using the information gathered for the upper bound. Details
follow.

To approximate |H|, we let Wi = {v : β−i ≤ D(v) < β−(i−1)}, and observe that it suffice the

approximate D(Wi) for i = 1, ..., `, where `
def
= logβ(ñ/(β−1) ·η′) = O((β−1)−1 · log(ñ/η)), since |Wi| ≈

D(Wi)/β
−(i−0.5). Actually, letting I = {i ∈ [`] : D(Wi) ≥ (β−1)η′′/`}, it suffices to approximate D(Wi)

for every i ∈ I, which yields approximations of the corresponding |Wi|’s (using |Wi| ≈ βi−0.5 · D(Wi)).

That is, we do not actually approximate |H| but rather approximate the size of H ′
def
=
⋃
i∈IWi ⊆ H,

while capitalizing on D(H \ H ′) ≤ (β − 1) · η′′, which implies that D(H ′) ≥ 1 − η′′ − (β − 1) · η′′,
which in turn means that the minimal β · η′′-effective support size of D is at most |H ′|. Now, for
each i ∈ [`], using a sample of O(t`/(β − 1)2 · η′) samples, we obtain (with probability 1 − 2−t) a
β-factor approximation of D(Wi) for each i ∈ I, which yields a β2-factor approximation of |Wi| (since
|Wi| ∈ [βi−1D(Wi), β

i · D(Wi))). Hence, we obtain a β2-factor approximation of |H ′|.
If D(H) ≤ 1−η, then |H ′| also provides the desired lower bound (on the minimal η-effective support

size of D). Otherwise (i.e., 1 − D(H) ≤ η), we approximate the minimal η-effective support size of
D by using the foregoing approximations of the |Wi|’s. For starters, note that we can easily estimate
1 − D(H) up to any error term of the form Ω(η) (using O(1/η2) samples of D). Letting δ̃ denote our
approximation of 1−D(H), we wish to dispose of the maximal number of elements of H ′ having total

probability weight w
def
= max(η − δ̃, 0) according to D. In other words, we wish to dispose of as many

of the lightest elements of H ′ till we reach a total weight of w. We do so by finding a maximal t ∈ I
such that

∑
i∈I:i≥tD(Wi) ≥ w and dispose of all the elements in ∪i∈I:i>tWi as well as of w−w′

β−(t−0.5) of the

elements of Wt, where w′
def
=
∑

i∈I:i>tD(Wi) ≤ w. (We stress that the foregoing process is performed

14That is, letting η′ = β3η, observe that Prv←D[D(v) < (β− 1) · (η′/2ñ)] < 2ñ · (β− 1) · (η′/2ñ) + η′ = β · η′, where the
first (resp., second) term is due to elements that are (resp., are not) in the η′-effective support of D.

15

without making any samples or queries; it is solely based on the estimated values of D(Wi) for i ∈ I
already obtained.) Denoting the resulting set by H ′′, it follows that |H ′′| is a lower bound on the
minimal β−1 · η-effective support size of D. Hence, we get.

Theorem 2.2 (approximating the effective support size): There exists an oracle machine M that,
on input parameters η > 0 and β > 1, satisfies the following condition. For every distribution D,
Given oracle access to sampD and evalD, with probability at least 2/3, the machine outputs a number

n after making poly(1/(1 − β)) · Õ(η−2 log n) steps such that n ∈ [L,U], where L equals the minimal
β5 · η-effective support size of D and U equals β3 times the minimal β−1 · η-effective support size of D.
Furthermore, the expected number of steps performed by M is poly(1/(1− β)) · Õ(η−2 log n).

Needless to say, by a change in parameters we can make n lie between the minimal β · η-effective
support size of D and β times its minimal η-effective support size. Combining Theorems 2.1 and 2.2,
we establish Theorem 1.4.

The algorithm underlying Theorem 2.2 provides a rather good approximation of the minimal ef-
fective support size, but its complexity depends (mildly) on the effective support size. In the original
version of this work, we asked whether it is possible to obtain a meaningful approximation of the effec-
tive support size within complexity that is independent of it, and furthermore whether one can obtain
good approximations (as in Theorem 2.2) within complexity poly(1/η). In a subsequent work [5], we
addressed these questions, obtaining a positive answer to the first question but leaving the second
question unresolved. Specifically, a Õ(logO(1)(n/ε))-factor approximation can be obtained in o(1/η2)-
time [5, Thm. 1.9], where log(i) denotes i iterated logarithms.

3 The Cycle-Freeness Tester

Following [2], which operates in the standard bounded-degree model, we reduce (VDF) testing Cycle-
freeness to (VDF) testing Bipartiteness, where in both cases we refer to testing in the augmented VDF
model for bounded-degree graphs. While the reduction is identical to the one presented in [2], our
analysis presented in Lemma 3.1, addresses issues that arise only in the VDF model.

Specifically, we use the presentation provided in [2, Sec. 8.1] rather than the one provided in [2,
Sec. 3]. The pivot of this presentation is the following generalization of 2-Colorability in which the
edges of the graph are labeled by either eq or neq. That is, an instance of this problem is a graph
G = (V,E) along with a labeling τ : E → {eq, neq}. We say that χ : V → {0, 1} is a legal 2-coloring
of this instance if for every {u, v} ∈ E it holds that χ(u) = χ(v) if and only if τ({u, v}) = eq. That
is, a legal 2-coloring (of the vertices) is one in which every two vertices that are connected by an edge
labeled eq (resp., neq) are assigned the same color (resp., opposite colors). When testing the instance
〈G, τ〉 for generalized 2-Colorability, one gets oracle access both to (the incidence function of) G and
to τ , and distances between instances are defined in the natural manner.15

Note that the standard notion of 2-Colorability corresponds to the case in which all edges are
labeled neq. We first observe that the Bipartite tester provided in Section 2 can be extended to test
this generalization of 2-Colorability. This is the case because the (one-sided error) Bipartite tester
of [8] (as well as the ones of [9] and [6]) is easily extended to test this generalization of 2-Colorability.
Specifically, instead of checking whether the explored subgraph is bipartite, one checks whether the

15Specifically, we replace δΠ
D(g) by the minimum of δD(〈g, τ〉, 〈g′, τ ′〉) taken over all incidence functions g′ : V × [d] →

V ∪ {⊥} representing graphs G′ = (V,E′) and all functions τ ′ : E′ → {eq, neq} such that 〈G′, τ ′〉 has a legal 2-coloring,
where

δD(〈g, τ〉, 〈g′, τ〉) def
= Prv←D,i∈[d][g(v, i) 6= g′(v, i) ∨ (g(v, i) 6= ⊥ & τ({v, g(v, i)}) 6= τ ′({v, g(v, i)}))].

(If g(v, i) 6= g′(v, i), then the condition is defined to hold even if either τ or τ ′ is undefined on {v, g(v, i)}; on the other
hand, if g(v, i) = g′(v, i) = ⊥, then the condition is defined to be violated.)

16

explored sub-instance (i.e., the explored subgraph along with the labeling of its edges) has a legal
2-coloring.

Next, as in [2, Sec. 8.1], we randomly reduce testing cycle-freeness of a graph G = (V,E) to
testing generalized 2-coloring of the instance obtained by coupling G with a uniformly selected labeling
τ : E → {eq, neq}, which may be selected on the fly (i.e., whenever we encounter a new edge, we assign it
a random label). Clearly, if G is cycle-free, then, for any choice of τ : E → {eq, neq}, the instance 〈G, τ〉
has a legal 2-coloring. We conjecture that, like in [2, Lem. 3.1], it holds that ifG is ε-far from being cycle-
free (under the distribution D), then in expectation the random instance 〈G, τ〉 is Ω(ε)-far from having a
legal 2-coloring (under the distribution D). We only prove a weaker result (in which Ω(ε) is replaced by
Ω(ε/ log n)), which suffices for our application (since Õ(

√
n) ·poly(1/Ω(ε/ log n)) = Õ(

√
n) ·poly(1/ε)).

Lemma 3.1 (analysis of the randomized reduction): Let G = (V,E) be a simple bounded-degree graph
(i.e., G has neither parallel edges nor self-loops)16 and D be a distribution on V . If G is ε-far (according
to distribution D) from being Cycle-free, then, with probability at least Ω(1) over the random choice of
τ : E → {eq, neq}, the instance 〈G, τ〉 is Ω(ε/ log |V |)-far (according to distribution D) from having a
2-legal coloring.

Hence, referring to Definition 1.1, we reduce testing Cycle-freeness of n-vertex graphs with respect
to the proximity parameter ε and vertex-distribution D to testing generalized 2-coloring of n-vertex
graphs with respect to the proximity parameter Ω(ε/ log n) and vertex-distribution D. An analogous
assertion holds for testing Cycle-freeness with respect to arbitrary graphs and distribution D that have
ε/4-effective support size n (see Corollary 3.2). Hence, combining Corollary 3.2 with the core of the
proof of Theorem 2.1 (i.e., Claims 2.1.4 and 2.1.3), we obtain Theorem 1.5. (See details following
Corollary 3.2.)

Proof: Maintaining D unchanged, we first omit from G all edges that have probability weight smaller
than ε/2d|V | (i.e., we omit the edge {u, v} if 2 · D(u)+D(v)

d < ε/2d|V |). Denoting the resulting graph by
G′ = (V,E′), observe that G′ is ε/2-far from being cycle-free according to distribution D.

Next, we consider a spanning forest of maximal weight of G′, denote its edges by F ′, and note that
the weight of the edges in E′ \ F ′ is at least ε/4, because G′ can be made cycle-free by omitting the
edges E′ \ F ′. We partition the edges E′ \ F ′ to buckets according to their weight, letting the bucket
Bi ⊆ E′ \ F ′ contain the edges of weight in (2−i, 2−i+1]. Letting ` = blog2(2d|V |/ε)c + 1, we observe
that E′ \ F ′ =

⋃
i∈[`]Bi, and it follows that there exists i ∈ [`] such that the total weight of the edges

in Bi is at least ε/4`. Fixing such an i ∈ [`] and focusing on the graph G′′ = (V, F ′ ∪Bi), we consider
the two-connected components of G′′ (i.e., the maximal subgraphs of G′′ in which every two vertices
are connected by at least two edge-disjoint paths). We claim that edges that connect such components
must be in F ′.

Claim 3.1.1 (all bridges in G′′ are in F ′): Any edge of G′′ that does not reside in a two-connected
component of G′′ (i.e., a bridge of G′′) is in F ′.

Proof: Note that any edge e of G′′ that does not resides in a two-connected components connects two
such components, denoted C1 and C2, whereas each of the Ci’s may consist of a single vertex. That is,
e has one endpoint in C1 and one endpoint in C2. On the other hand, C1 and C2 must be connected
in G′ by a path of edges that belong to the spanning forest F ′, and this path must exist also in G′′.
Hence, e must be on this path (and so is in F ′), since otherwise we obtain two different edge-disjoint
paths that connect C1 and C2 in G′′, which contradicts the maximality of the Ci’s.

16Alternatively, we consider a pair parallel edges (resp., a self-loop) as constituting a cycle.

17

Next, we omit the edges of F ′ that connect different two-connected components (which, by Claim 3.1.1,
is equivalent to omitting the bridges of G′′), and obtain a graph G′′′ in which each connected compo-
nent is two-connected. We next claim that each edge in G′′′ = (V,E′′′) has weight at least 2−i. Since
E′′′ ⊆ F ′ ∪Bi, we have to establish this claim only for edges in E′′′ ∩ F ′.

Claim 3.1.2 (the weight of edges in G′′′): Each edge in E′′′ ∩ F ′ has weight at least 2−i.

Proof: We first observe that the edges in E′′′∩F ′ induce a spanning tree of each connected component
of G′′′, because otherwise we reach a contradiction to the fact that the connected components of G′′′

are two-connected components of G′′. Specifically, vertices u and v in a connected component C of G′′′

that are not connected in G′′′ by a path of edges of F ′ must be connected in G′′ by a path of edges
of F ′ that passes through a vertex w that is not in C. But this contradicts the hypothesis that C
is a two-connected component of G′′, since u and v are connected in G′′ both via a path that reside
inside C and via a path that goes though w 6∈ C (a fact that contradicts the maximality of C as a
two-connected component in G′′).

Now, let T ⊆ F ′ be a spanning tree of one of the connected components of G′′′, and suppose towards
the contradiction that one of the edges of T has weight smaller than 2−i. Then, omitting this edge and
adding an edge of Bi that connects the two resulting sub-trees of T , where such an edge must exist
by two-connectivity of the component, we obtain a spanning tree of this component that has a larger
weight than the original one. Applying the same replacement to F ′ itself, this yields a spanning forest
of G′ that has weight larger than the forest F ′, in contradiction to the definition of F ′.

Recalling that E′′′ \ F ′ = Bi and that F ′ ∩ E′′′ is a spanning forest of G′′′, we observe that |Bi|
edges must be removed from G′′′ in order to make it cycle-free. Finally, we apply [2, Lem. 3.1] to
G′′′, and infer that (with probability at least Ω(1) over the choice of τ) at least Ω(|Bi|) edges must
be omitted from G′′′ such that the resulting instance 〈·, τ〉 has a legal 2-coloring. Recalling that

|Bi| ≥ ε/4`
2−i+1 = Ω(2i · ε/`), and that each edge in G′′′ has weight at least 2−i, it follows that the weight

of edges that must be omitted from G′′′ in order to yield an instance 〈·, τ〉 that has a legal 2-coloring
is at least Ω(|Bi|) · 2−i = Ω(ε/`). The same holds with respect to G, since G′′′ is a subgraph of G, and
the claim follows.

Corollary 3.2 (analysis of the randomized reduction, revised): Let G = (V,E) be a simple bounded-
degree graph and D be a distribution on V . Suppose that D is 0.5ε-close to a distribution D′ that has
support size at most n, and that D′(v) ≥ ε/4n for every v in the support of D′. If G is ε-far according
to distribution D from being cycle-free, then, with probability at least Ω(1) over the random choice of
τ : E → {eq, neq}, the instance 〈G, τ〉 is Ω(ε/ log n)-far according to distribution D′ from having a
2-legal coloring.

Recall that by Claim 2.1.4 if D has ε/4-effective support size n, then it is ε/2-close to a distribution
D′ as in the hypothesis (of Corollary 3.2). Invoking Corollary 3.2, we obtain an instance 〈G, τ〉 that
(w.p. Ω(1)) is ε′-far according to distribution D′ from having a 2-legal coloring, where ε′ = Ω(ε/ log n).
The extra condition regarding D′ allows to invoke Claim 2.1.3 (or rather its extension to generalized
2-colorings), with vertex distribution D′, the instance 〈G, τ〉, proximity parameter ε′, and ρ = ε/4n.
It follows that the corresponding tester rejects 〈G, τ〉 with probability Ω(1). Note that the time spend
by this tester on this instance is poly(1/ε′) · Õ(

√
1/ρε′), which is poly(1/ε) · Õ(

√
n), and Theorem 1.5

follows.

Proof: Noting that G is 0.5 · ε-far according to D′ from being cycle-free, we consider the subgraph
G′ = (V ′, E′) obtained by omitting from G all edges that have weight 0 under D′ as well as all vertices
that become isolated. Hence, |V ′| ≤ d ·n = O(n). Applying Lemma 3.1, we infer that, with probability
at least Ω(1) over the random choice of τ ′ : E′ → {eq, neq}, the instance 〈G′, τ ′〉 is Ω(ε/ log n)-far

18

according to distribution D′ from having a 2-legal coloring. In these cases, extending τ ′ arbitrarily to
E, we obtain a labeling τ : E → {eq, neq} such that the instance 〈G, τ〉 is Ω(ε/ log n)-far according to
distribution D′ from having a 2-legal coloring.

Acknowledgments

This project was partially supported by the Israel Science Foundation (grant No. 1146/18), and has
received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No. 819702).

References

[1] E. Blais, C.L. Canonne, and T. Gur. Distribution Testing Lower Bounds via Reductions from
Communication Complexity. In 32nd Computational Complexity Conference, pages 28:1–
28:40, 2017.

[2] A. Czumaj, O. Goldreich, D. Ron, C. Seshadhri, A. Shapira, and C. Sohler. Finding cycles
and trees in sublinear time. RS&A, Vol. 45(2), pages 139–184, 2014.

[3] O. Goldreich. Introduction to Property Testing. Cambridge University Press, 2017.

[4] O. Goldreich. Testing Graphs in Vertex-Distribution-Free Models. ECCC, TR18-171, 2018.
(See Revision Nr 1, March 2019.)

[5] O. Goldreich. On the Complexity of Estimating the Effective Support Size. ECCC, TR19-088,
2019.

[6] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, pages 653–750, July 1998.

[7] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica,
Vol. 32 (2), pages 302–343, 2002.

[8] O. Goldreich and D. Ron. A Sublinear Bipartiteness Tester for Bounded Degree Graphs.
Combinatorica, Vol. 19 (3), pages 335–373, 1999.

[9] T. Kaufman, M. Krivelevich, and D. Ron. Tight Bounds for Testing Bipartiteness in General
Graphs. SIAM Journal on Computing, Vol. 33 (6), pages 1441–1483, 2004.

[10] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong Lower Bounds for Approximating
Distribution Support Size and the Distinct Elements Problem. SICOMP, Vol. 39 (3), pages
813–842, 2009.

19

