
Demystifying the Master Thesis and Research in General:

The Story of Some Master Theses

Oded Goldreich

Department of Mathematics and Computer Science

Weizmann Institute of Science, Rehovot, Israel.

oded.goldreich@weizmann.ac.il

Revised November 6, 2009

Abstract

I don’t think that there is a generically good way of doing a master thesis (nor of doing
research in general). Research (like other creative activities) evolves in unpredictable ways, and
each research project has its own story. I will tell a few such stories, and naturally I will rely on
stories I know from the inside (or close to that). The only lesson that I can offer is maintaining
an openness towards ideas that may emerge.

(Notes for a talk to be given on January 20, 2008.)

1 My own thesis (1981)

In one of my first meeting with my predetermined interim supervisor, Shimon Even (who has later
become my Master and Doctorate thesis advisor) tossed to my direction a Rubic Cube and asked
if I can arrange it. A few days later, when I described to him a highly wasteful algorithm, the
question of the minimum move sequence arose naturally. Phrased in general terms, this yields a
computational problem regarding permutation groups, to be described next.

A permutation group over a set D is represented by a set of generators; that is, the group
generated by a set S of permutation (over D) is defined as

〈S〉
def
= {g1 ◦ g2 ◦ · · · ◦ gℓ : g1, g2, ..., gℓ ∈ S}

where ◦ denotes the composition of permutations. For example, in the case of the Rubic Cube, the
set of generators corresponds to the 6 × 2 rotations that can be applied to the cube (where each
rotation is determined by a rotating side of the cube and a direction of rotation).

A shortest move sequence between two permutations π1, π2 ∈ 〈S〉 is the shortest sequence
(g1, g2, ..., gℓ) over S such that π2 = gℓ ◦ · · · ◦ g2 ◦ g1 ◦ π1. A natural computational problem is
finding, given S and π1, π2 ∈ 〈S〉, a shortest move sequence from π1 to π2. A computationally
equivalent problem refers to finding the shortest sequence of permutations that generates a given
permutation. A corresponding decision problem is presented next.

Definition 1 (short generating sequence): Given a set of generators S, a permutation π ∈ 〈S〉, and

in integer ℓ presented in unary, determine whether or not there exists ℓ′ ≤ ℓ and g1, g2, ..., gℓ′ ∈ S
such that π = gℓ′ ◦ · · · ◦ g2 ◦ g1.

1

It is quite easy to show that the foregoing problem is NP-complete, where the unary presentation
of ℓ seems essential for the problem being in NP (since, as shown later, for ℓ presented in binary
the problem is actually PSPACE-complete).

My proof of NP-completeness consisted of a simple reduction from 3XC. Recall that an instance
of the latter is a sequence of 3-sets over some universe [3n] and the question is whether there exists
a subsequence that forms an exact cover of [3n]. The reduction maps such an instance to a sequence
of generating permutations over 3n pairs of elements such that in the ith generator permutation
the jth pair is switched if and only if the ith subset contain the element j. The target permutation
has all 3n pairs switched, and the target length is set to n.

Epilogue: Although the foregoing proof could pass as a Master Thesis in 1981 (but probably
not today...), I actually ended-up submitting a different work as my Master Thesis. That work
consisted of a taxonomic study of various edge testing problems for networks, where most of these
problems were proved to be NP-complete.

2 The thesis of Ronen Vainish (1988)

Ronen was the first master student that I advised. Our joint research was aimed at providing a
simplification of the general construction of secure multi-party protocols. The following description
assumes some basic familiarity with the subject, as provided in [2, Sec. 7.1].

At the time this research was started, the general construction of secure multi-party protocols
proceeded by invoking a general construction of secure two-party protocols multiple times. In
retrospect, the most important part of our study is a couple of observations that allow to replace
the invocation of the general construction of a secure two-party protocol by a simple protocol.

The first simplifying observation was that the task of constructing arbitrary secure multi-party
protocols reduces to providing a secure implementation of the following two-party randomized
functionality (for the special case of n = 2). For parties holding inputs x ∈ {0, 1}n and y ∈ {0, 1}n,
respectively, the desired output is a random pair of bits (each obtained at one of the two parties)
that sum-up (mod 2) to the inner-product (mod 2) of x and y. In fact, it suffices to consider security
in the semi-honest model, where each party follows the prescribed protocol and the question is what
can be learned from the full transcript of the party’s view of the protocol’s execution.

The second simplifying observation was that securely implementing the aforementioned two-
party functionality reduces to implementing 1-out-of-2 Oblivious Transfer, OT2

1, which allows a
receiver to obtain one out of two bits held by the sender without letting the sender know which bit
was obtained. Following is the implementation suggested for the “inner-product functionality”:

Construction 2 For i = 1, ..., n, the first party selects uniformly ci ∈ {0, 1}, and invokes OT2
1 as

a sender while providing ci as its first secret and ci + xi mod 2 as its second secret, and the other

party asks for the first secret if and only if yi = 1. Note that, in the ith iteration, the second party

obtained the value c′i ← ci + xiyi mod 2. The first party (locally) outputs
∑n

i=1 ci mod 2, whereas

the second party (locally) outputs
∑n

i=1 c′i mod 2, and indeed

n∑

i=1

ci +
n∑

i=1

c′i ≡
n∑

i=1

(ci + c′i) ≡
n∑

i=1

xiyi (mod 2).

2

3 The thesis of Eyal Kushilevitz (1989)

The thesis of Eyal refers to the notion of perfect zero-knowledge, which seems much more strict
than the standard notion of zero-knowledge (see [1, Chap. 4]). The corresponding classes of sets
having zero-knowledge and perfect zero-knowledge proofs are denoted ZK and PZK, respectively.

At the time it was known that the existence of one-way functions implies that NP ⊆ ZK. In
contrast, it was known that PZK ⊆ SZK ⊆ AM∩ coAM, which implies that it is unlikely that
NP is contained in PZK. Some indications that PZK may extend beyond BPP were known,
assuming the intractability of either Graph Isomorphism or Quadratic Resideousity (since the
corresponding sets were known to be in PZK). But both these assumptions seemed less reliable than
the intractability of either factoring or the Discrete Logarithm Problem (DLP). Indeed, the open
problem that I offered to Eyal was to provide more reliable evidence to the conjecture PZK 6= BPP ,
which he did.

Theorem 3 (Eyal’s thesis): There exists a promise problem in PZK that is computationally equiv-

alent to DLP.

Thus, assuming that DLP is intractable, PZK must extend beyond (the promise problem version
of) BPP.

Interestingly, proving that PZK extends beyond BPP, based on the conjectured intractability
of factoring (or even a more general assumption) is still an open problem.

4 The thesis of Ran Canetti (1992)

So far I told the stories of one thesis emerging from a game, one thesis emerging out of studying
a famous result, and one thesis addressing a known open problem. The following story is one of a
thesis that emerged from wondering about some material learned in a course.

Taking a course on communication complexity, Ran learned about the complexity gap between
deterministic and randomized protocols, and wondered whether there exists a trade-off between the
amount of randomness and communication complexity. The answer turned out to be affirmative,
and detailing it was the contents of Ran’s thesis. Below, I will only outline the gap as taught to
Ran.

The setting for communication complexity consists of two parties and a predetermined function
f : {0, 1}n × {0, 1}n → {0, 1}. The first party is given a string x ∈ {0, 1}n, the second party is
given a string y ∈ {0, 1}n, and their goal is to obtain the value f(x, y). We are only interested
in the number of bits exchanged between the two parties towards their goal, and totally disregard
their local computation time. Clearly, each such function can be computed by exchanging n bits
(e.g., the first party sends x to the second party). A complexity gap between deterministic and
randomized protocols was known to exist for the equality function (i.e., eq(x, y) = 1 if and only if
x = y):

• Any deterministic protocol for equality has communication complexity at least n.

• There exists a probabilistic protocol for equality that has error probability 1/3 and commu-
nication complexity O(log n).

Following are two out of several protocols that may be used to establish the probabilistic commu-
nication complexity upper-bound.

3

Construction 4 (two known probabilistic protocols for the function eq):

1. Using a good error-correcting code C : {0, 1}n → {0, 1}m, the first party uniformly selects

i ∈ [m] and sends (i, C(x)i) to the second party, which outputs 1 if and only if the bit C(x)i
equals the value C(y)i.

Note that for x 6= y, it holds that Bx,y
def
= {i ∈ [m] : C(x)i = C(y)i} has cardinality at most

m− d, where d denotes the distance of C.

2. In this case the inputs x and y are viewed as elements of {0, 1..., 2n − 1}. The first party

uniformly selects a prime p ∈ [n2, 2n2] and sends (p, x mod p) to the second party, which

outputs 1 if and only if the value x mod p equals the value y mod p.

Using the Chinese Reminder Theorem, for any x 6= y, the set of primes p ∈ [n2, 2n2] that

satisfy x mod p = y mod p has cardinality smaller than n/ log n.

5 The thesis of Iftach Haitner (2004)

When writing [2], I realized that the standard Oblivious Transfer protocol works under more strict
conditioned than commonly assumed. Specifically, I refer to the following protocol (see [2, Sec. 7.3.2]
for further details).

Construction 5 (Oblivious Transfer (OT2
1) protocol for semi-honest model): The protocol refers

to a collection of trapdoor permutation, {fα :Dα→Dα}α∈I , where Dα ⊆ {0, 1}
|α|, and to a corre-

sponding hard-core predicate b : {0, 1}∗ → {0, 1}.

Inputs: The sender has input (σ1, σ2) ∈ {0, 1}
2, the receiver has input i ∈ {1, 2}.

Step S1: The sender uniformly selects an index-trapdoor pair, (α, t), by running the generation

algorithm of the said collection, and sends the index α to the receiver.

Step R1: The receiver uniformly and independently selects xi, y3−i ∈ Dα, sets yi = fα(xi), and

sends (y1, y2) to the sender.

Step S2: Upon receiving (y1, y2), using the inverting-with-trapdoor algorithm and the trapdoor t,
the sender computes zj = f−1

α (yj), for both j ∈ {1, 2}, and sends (σ1⊕b(z1), σ2⊕b(z2)) to the

receiver.

Step R2: Upon receiving (c1, c2), the receiver locally outputs ci⊕b(xi).

The security of the foregoing protocol relies on the assumption that it is possible to uniformly
select y3−i ∈ Dα without knowing f−1

α (y3−i) (or making the task of finding this value easy). This
assumption clearly holds in case Dα = {0, 1}|α|, and can be proved for some popular candidate
collections of trapdoor permutations (see [2, Apdx. C.1] for details). However, I wanted to regain
the claim that OT2

1 can be securely implemented based on any collection of trapdoor permutations,
and posed this challenge to Iftach.

Although Iftach did not resolve this challenge, he made significant progress on it. Specifically,
he showed that an alternative protocol (indeed a more complicated version of Construction 5)
works when using any collection of trapdoor permutations for which Dα has a noticeable density
in {0, 1}|α|. It follows that OT2

1 can be securely implemented based on any such collection (i.e., of
trapdoors with “dense” domain). The question of securely implement OT2

1 based on an arbitrary
collection of trapdoor permutations remains open.

4

6 Brief comments on four recent theses

6.1 Or Sheffet (Dec. 2006)

The thesis (see also [5]) initiates a study of the randomness-complexity of property testing, present-
ing both general existential bounds and specific efficient algorithms for the case of Bipartiteness.
This starting point of the study is the essential role of randomness in property testing, and the
focus is on maintaining the low query (and time) complexity of the tester while decreasing its
randomness complexity as much as possible.

6.2 Kfir Barhum (Feb. 2007)

The thesis presents fast algorithms for approximating the average distance between pairs of points
in a Euclidean space. A follow-up paper [3] confronts the algorithm presented in the thesis with
a straightforward algorithm that merely samples pairs of points, and studies the derandomization
of the latter algorithm. That is, the question is of constructing a fixed sparse set of pairs that
approximates all pairwise distances for any (corresponding) set of points in a Euclidean space (and
more generally in any metric space).

6.3 Or Meir (Oct. 2007)

The thesis (see also [6]) is a technical tour de force presenting a combinatorial construction of locally
testable codes. Loosely speaking, a code is locally testable if it admit a codeword test that probe
the string in a constant number of (randomly selected) locations. Or’s construction meets the best
known parameters, but does in a way that is different and more pleasing than prior constructions.
Specifically, it neither rely on sophisticated algebraic constructions nor on a PCP construction.

6.4 Lidor Avigad (Nov. 2009)

This thesis presents a significant extension of the study of the “lowest complexity level” of testing
graph properties (in the adjacency representation model). By the “lowest complexity level” I refer
to properties that can be tested by a non-adaptive tester of query complexity that is inversely
proportional to the proximity parameter. This class was shown in [4, Sec. 6] to contain, for any
constant c, the set of graphs that consist of up to c isolated cliques. Looking at the complement
graphs, this means that the propert associated with c is being a “blow-up” of the graph consisting
of c isolated vertices. Lidor’s extension refers to all properties that correspond to being a blow-up
of any fixed graph.

References

[1] O. Goldreich. Foundation of Cryptography – Basic Tools. Cambridge University Press,
2001.

[2] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge University
Press, 2004.

[3] K. Barhum, O. Goldreich and A. Shraibman. On approximating the average distance
between points. In the proceedings of 11th RANDOM, Springer LNCS, Vol. 4627, pages
509–524, 2007.

5

[4] O. Goldreich and D. Ron. Algorithmic Aspects of Property Testing in the Dense Graphs
Model. ECCC, TR08-039, 2008.

[5] O. Goldreich and O. Sheffet. On the randomness complexity of property testing. In the
proceedings of 11th RANDOM, Springer LNCS, Vol. 4627, pages 296–310, 2007.

[6] O. Meir. Combinatorial construction of locally testable codes. ECCC, TR07-115, 2007.

6

